US20110172589A1 - Surgical instrument having an integrated local anesthetic delivery system - Google Patents

Surgical instrument having an integrated local anesthetic delivery system Download PDF

Info

Publication number
US20110172589A1
US20110172589A1 US12/655,887 US65588710A US2011172589A1 US 20110172589 A1 US20110172589 A1 US 20110172589A1 US 65588710 A US65588710 A US 65588710A US 2011172589 A1 US2011172589 A1 US 2011172589A1
Authority
US
United States
Prior art keywords
handle portion
local anesthetic
surgical instrument
incising
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/655,887
Other versions
US9277936B2 (en
Inventor
Kenneth Finkelstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/655,887 priority Critical patent/US9277936B2/en
Publication of US20110172589A1 publication Critical patent/US20110172589A1/en
Priority to US15/041,244 priority patent/US10426915B2/en
Application granted granted Critical
Publication of US9277936B2 publication Critical patent/US9277936B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M19/00Local anaesthesia; Hypothermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3209Incision instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3478Endoscopic needles, e.g. for infusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0004Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
    • A61F2/0031Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra
    • A61F2/0036Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra implantable
    • A61F2/0045Support slings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00805Treatment of female stress urinary incontinence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • A61F2002/0072Delivery tools therefor

Definitions

  • the present invention relates to a surgical instrument, and more specifically, a surgical instrument used in surgery for treatment of female urinary incontinence having an integrated local anesthetic delivery system.
  • SUI is commonly caused by a functional defect of the tissue or ligaments connecting the vaginal wall with the pelvic muscles and pubic bone. Typical causes include repetitive straining of the pelvic muscles, childbirth, loss of pelvic muscle tone, and estrogen loss. These types of defects result in an improperly functioning urethra. Unlike other types of incontinence, SUI is not a problem of the bladder.
  • the urethra when properly supported by strong pelvic floor muscles and healthy connective tissue, maintains a tight seal to prevent involuntary loss of urine.
  • weakened muscle and pelvic tissues are unable to adequately support the urethra in its correct position.
  • the urethra cannot retain its seal, permitting urine to escape. Because SUI is both embarrassing and unpredictable, many women with SUI avoid an active lifestyle, shying away from social situations.
  • Non-operative treatment options for patients with SUI can be attempted, by instructing such patients to perform pelvic exercises, known as “Kegel” exercises, with the intention of strengthening the supporting muscles.
  • Kegel pelvic exercises
  • surgical repair is advised.
  • the introduction into the abdominal cavity of a urethral “sling” has emerged in the past decade as the most effective.
  • the sling typically in the form of a mesh or tape-like material, shaped like a flat ribbon, is passed through pelvic tissue and is positioned around the urethra and the bladder neck, forming a loop located between the urethra and the vaginal wall and thereby creating a supportive sling effect.
  • the sling is extended over the pubis and through the abdominal wall and is tightened, after which the surplus material is cut and removed, and the sling is left implanted in the patient's abdominal cavity.
  • U.S. Pat. No. 5,899,909 discloses a treatment method and device for SUI.
  • the device described which allows a mesh or tape-like sling to be placed under the urethra, and includes two special needles. These are mounted in turn, by screw fastening, on a reusable steel insertion tool made of a handle and of a threaded manipulator rod, which allows each of the needles to be manipulated in turn. Each needle is fixed to one of the ends of the sling.
  • This invention addresses that need and advantageously overcomes the deficiencies of the prior art.
  • the present invention advantageously provides surgical instrument that includes a handle portion having a distal end, a proximal end, and a substantially hollow body defining a valve chamber therein.
  • the surgical instrument also includes a curved incising tube partially housed within the handle portion adjacent the handle portion proximal end, extending a predetermined distance from the handle portion, terminating at an incising tip, and in fluid communication with the valve chamber.
  • the surgical instrument further includes a local anesthetic inlet tube partially housed within the handle portion adjacent the handle portion distal end, extending a predetermined distance from the handle portion, terminating at an inlet port, and in fluid communication with the valve chamber.
  • the surgical instrument includes a local anesthetic delivery actuator disposed on the handle portion, whereby the local anesthetic delivery actuator is selectively operative between opened and closed valve chamber positions.
  • FIG. 1 is a perspective view of a surgical instrument according to the present invention
  • FIG. 2 is a side view of a surgical instrument according to the present invention.
  • FIG. 3 is a partial view of a surgical instrument according to the present invention.
  • FIG. 4 is a perspective view of an alternative embodiment of a surgical instrument according to the present invention.
  • FIG. 5 is a partial view of an alternative embodiment of a surgical instrument according to the present invention.
  • FIG. 6 is a partial view of an alternative embodiment of a surgical instrument according to the present invention.
  • FIG. 7 is a cut-away view of a handle portion for a surgical instrument according to the present invention.
  • FIG. 7 a is a partial cut-away view of FIG. 7 of a handle portion for a surgical instrument according to the present invention
  • FIG. 7 b is a partial cut-away view of FIG. 7 of a handle portion for a surgical instrument according to the present invention.
  • FIG. 8 is a partial cut-away view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention.
  • FIG. 8 a is a partial side view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention.
  • FIG. 8 b is a partial cut-away view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention.
  • FIG. 8 c is a partial cut-away view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention.
  • FIG. 8 d is a partial cut-away view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention.
  • FIG. 8 e is a cross-sectional view along the line 8 e - 8 e of FIG. 8 d ;
  • FIG. 8 f is a partial cut-away view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention.
  • the present invention discloses an apparatus and surgical instrument 10 used in a surgical procedure for the treatment of SUI.
  • the surgical instrument 10 is used to incise a path in the lower abdomen of a patient and insert a mesh or tape sling (not shown), through pelvic fascia and soft tissue, which is positioned between the urethra and vaginal wall.
  • the sling offers support to the tissue of the lower abdomen, especially to the patient's urethra, and helps prevent urinary incontinence, as is known in the art.
  • pressure is exerted upon the lower abdomen, such as during a cough or sneeze, the sling provides support to the urethra, allowing it to keep its seal and prevent an unwanted discharge of urine.
  • the present invention generally discloses a surgical instrument 10 that is advantageously adapted to administer a local anesthetic to a patient during surgery.
  • the application of a predetermined local anesthetic to a patient from a pressurized remote reservoir (not shown) is facilitated via a local anesthetic delivery passageway 20 extending through said surgical instrument 10 .
  • Suitable local anesthetics are generally known in the art.
  • a surgical instrument 10 includes: a handle portion 12 having a substantially hollow body, housing a valve mechanism (described in greater detail below) having a local anesthetic delivery actuator 24 ; a curved incising tube partially housed by said handle portion 12 ; and a local anesthetic inlet tube 56 , also partially housed by said handle portion.
  • the handle portion 12 has a proximal end 28 , a distal end 30 , and a substantially hollow body extending therebetween; a portion of which defines a valve chamber 52 .
  • the handle portion 12 may be made of multiple suitable materials, such as a polymeric based material and steel or other suitable metal, as is known in the art.
  • the curved incising tube 14 is partially housed within the handle portion 12 adjacent the handle portion proximal end 28 , and extends a predetermined distance from said handle portion proximal end 28 , terminating at an incising tip 34 .
  • the local anesthetic inlet tube 56 is partially housed within the handle portion 12 adjacent the handle portion distal end 30 , and extends a predetermined distance from said handle portion distal end 30 , terminating at an inlet port 32 .
  • the valve mechanism is housed within the handle portion 12 and is manipulated by the local anesthetic delivery actuator 24 , which is pivotally attached to said handle portion 12 .
  • the local anesthetic delivery actuator 24 operates the valve mechanism and valve chamber 52 between closed and opened valve chamber positions, as shown in FIGS. 7 a and 7 b respectively.
  • the local anesthetic delivery actuator 24 allows a surgeon to selectively administer local anesthetic by manipulating the valve mechanism with a single hand.
  • the incising tube 14 , handle portion 12 , and local anesthetic inlet tube 56 are in fluid communication and define a local anesthetic delivery passageway 20 .
  • the curved incising tube 14 has a proximal end 18 , a distal end 16 , and a hollow, preferably cylindrical, body extending therebetween.
  • the incising tube distal end 16 terminates at an incising tip 34 , and preferably has a substantially circular cross-section.
  • the incising tip 34 of the incising tube 14 is rounded (see FIG. 3 ) or blunt (see FIG. 5 ), wherein the conical tip may have a radius of approximately 0.5 millimeters.
  • a blunt tip is preferred since it is less likely to stick in bone or penetrate bladder wall tissue or blood vessel wall tissue.
  • the incising tube proximal end 18 is partially housed within the handle portion 12 and extends a predetermined distance inward adjacent the handle portion proximal end 28 .
  • the incising tube proximal end 18 extends to the valve chamber 52 within the handle portion 12 .
  • the entire length of the incising tube 14 is hollow and in fluid communication with said valve chamber 52 .
  • the incising tube 14 may be helical or planar in curvature, as shown in FIGS. 1 and 4 respectively, without departing from the scope of the present invention.
  • the incising tube 14 is preferably made from a material that is compatible with the human body.
  • the incising tube 14 may be made from AISI 303 stainless steel.
  • the surface of the incising tube 14 is preferably smooth and polished, to facilitate penetration of a patient's fascia and soft tissue.
  • the local anesthetic inlet tube 56 is also partially housed within the handle portion 12 , has a hollow body, and a local anesthetic inlet port 32 that extends a predetermined distance from the handle portion distal end 30 .
  • the local anesthetic inlet port 32 is preferably threaded to facilitate coupling to a local anesthetic delivery tube 58 with a Lever-Lock or Luer-Lock type fastener 54 , or other suitable fastener as are known in the art.
  • the local anesthetic inlet tube 56 extends to the valve chamber 52 within the handle portion 12 .
  • the entire length of the local anesthetic inlet tube 56 is in fluid communication with said valve chamber 52 .
  • the local anesthetic inlet tube 56 is cylindrical, with a circular cross section, and is made from AISI 303 stainless steel.
  • the handle portion 12 advantageously houses a valve mechanism that is manipulated by a local anesthetic delivery actuator 24 , which is pivotally attached to said handle portion 12 .
  • the local anesthetic delivery actuator 24 allows a surgeon to selectively activate the valve mechanism and valve chamber 52 between open and closed positions, described in greater detail below.
  • the valve mechanism When the valve mechanism is in the open position the incising tube 14 , valve chamber 52 , and local anesthetic inlet tube 56 define the local anesthetic delivery passageway 20 for the application of local anesthetic to the patient.
  • the local anesthetic delivery mechanism is disposed within the handle portion 12 , in fluid communicating relationship and intermediate the local anesthetic inlet tube 56 and the incising tube 14 .
  • the local anesthetic inlet tube 56 and the incising tube 14 are preferably disposed in parallel but axially offset relation to the valve chamber 52 .
  • the valve chamber 52 intersects and separates the local anesthetic deliver tube 56 from the incising tube 14 , while offering selectively operable flow of local anesthetic.
  • the local anesthetic delivery actuator 24 preferably has an actuator guard 26 in order to prevent inadvertent application of the local anesthetic.
  • the local anesthetic delivery mechanism includes, a valve seat 36 at one end of the chamber that is shaped to receive a valve member 38 in sealing engagement therewith.
  • the valve member 38 is mounted on one end of an elongated valve stem 40 and is designed to reciprocate within the valve chamber 52 between an opened position, as shown in FIG. 7 b , and a closed position abutting the valve seat 36 , as shown in FIG. 7 a .
  • the valve stem 40 is coupled to the valve member 38 by a pin 50 at one end, and to the local anesthetic delivery actuator 24 , via a pivot pin 48 , at an opposing end.
  • the local anesthetic delivery actuator 24 is pivotally mounted 62 to the handle portion 12 and is biased to the closed position, as shown in FIG. 7 a , by preferably a contractile spring type biasing member 60 .
  • a tubular bearing sleeve 42 is mounted in the valve chamber 52 and carries an annular sealing ring 44 within a groove of the bearing sleeve 42 .
  • the valve stem 40 projects through an axial bore in the bearing sleeve 42 and is arranged to reciprocate in the bearing sleeve 42 in response to manual operation of the local anesthetic delivery actuator 24 . Reciprocation of the valve stem 40 is obtained by manually squeezing the local anesthetic delivery actuator 24 .
  • the surgical procedure for trans-abdominally implanting mesh (not shown) with a surgical instrument 10 under general anesthesia is known in the art.
  • the relevant parts of a female patient's lower abdomen involved are, the vagina, the uterus, the urethra, the pubic bone, the urinary bladder, and the abdominal wall.
  • a surgeon uses the instrument to enter the vagina and implanting the ends of a mesh into endopelvic fascia and/or muscle with the mesh placed at the mid-urethra vicinity or by placing the incising tube through the skin and the obturater space into the vagina to deliver the mesh to the vicinity of the mid-urethra or conversly from the vagina out through the obturator space.
  • the present invention advantageously improves the above method by providing for local anesthetic to be administered at various positions along the aforesaid pathway through the patient's abdomen, thereby foregoing the need for general anesthesia and an overnight stay in a hospital for the patient.
  • the incising tube 14 moves through the patient's abdomen, the patient communicates with the surgeon as to the level of discomfort, whereby the incising tube 14 is paused, the local anesthetic delivery actuator 24 is manipulated to the open position (see FIG. 7 b ), and a clinically effective amount of local anesthetic is administered to the patient before moving the incising tube 14 further along. This process is repeated throughout surgery as needed.
  • the incising tube 14 may be paused and local anesthetic injected as many times as the surgeon deems necessary, depending upon the condition of the patient and other clinical factors, with which persons having ordinary skill in the art will be familiar.
  • this procedure may be performed using local anesthesia, rather than general anesthesia, and can be performed as an outpatient procedure in the surgeon's office or another outpatient facility, rather than requiring admission to a hospital. Additionally, the patient is able to provide feedback to the surgeon during the procedure.
  • alternative embodiments of the present invention generally disclose a surgical instrument 70 that is adapted to administer a local anesthetic to a patient during surgery, which advantageously utilizes an internally integrated pressurization mechanism for delivering such anesthetic.
  • the application of a predetermined local anesthetic to a patient from an internally pressurized mechanism is facilitated via an internal local anesthetic reservoir 72 disposed within a handle portion 74 being in fluid communication with an incising tube 76 , wherein the anesthetic is selectively administered via an actuator 78 in ratcheting engagement with a plunger 80 , which is partially housed within the reservoir 72 .
  • Suitable local anesthetics are generally known in the art.
  • the surgical instrument 70 includes: a handle portion having a substantially hollow body, housing an internally integrated pressurization mechanism for delivering local anesthetic (described in greater detail below), the handle portion 74 having a local anesthetic delivery actuator 78 ; a curved incising tube 76 partially housed by said handle portion 74 ; and a local anesthetic fill tube 82 , also partially housed by said handle portion 74 .
  • the handle portion 74 has a proximal end 84 , a distal end 86 , and a substantially hollow body extending therebetween; a portion of which defines a preferably cylindrical local anesthetic reservoir 72 .
  • the handle portion 74 may be made of multiple suitable materials, such as a polymeric based material, as is known in the art.
  • the curved incising tube 76 is partially housed within the handle portion 74 adjacent the handle portion proximal end 84 , and extends a predetermined distance from said handle portion proximal end 84 , preferably terminating at an incising tip as described above in the previous embodiment.
  • the local anesthetic fill tube 82 is partially housed within the handle portion 74 adjacent the handle portion proximal end 84 , and extends a predetermined distance from said handle portion 74 , terminating at a pressure release type valve cap 88 .
  • valve cap any suitable valve cap, as are known in the arts, may accomplish the function of pressure release without fluid release, such as a radiator cap used in the automotive arts.
  • the internally integrated pressurization mechanism is housed within the handle portion 74 and is manipulated by the local anesthetic delivery actuator 78 , which is pivotally attached to the handle portion 74 .
  • the local anesthetic delivery actuator 78 operates a ratcheting mechanism between ratchet and return positions, as shown in FIGS. 8 f and 8 d respectively.
  • the local anesthetic delivery actuator 78 allows a surgeon to selectively administer local anesthetic, by manipulating an elongated ratcheting stem 90 slidingly coupled to a ratcheting type plunger 80 , with a single hand and without needing an external pressurization system as disclosed in the above embodiment.
  • the internally integrated pressurization mechanism is manipulated to the ratcheted position by a surgeon, local anesthetic is forced out of the local anesthetic reservoir 72 , through the incising tube 76 , and out the incising tube tip.
  • the local anesthetic inlet tube 82 , local anesthetic reservoir 72 , and incising tube 76 are in fluid communication and define a local anesthetic delivery passageway 92 .
  • the local anesthetic fill tube 82 is partially housed within the handle portion 74 , has a hollow body, and extends a predetermined distance from the handle portion proximal end 84 .
  • the local anesthetic fill tube 82 is operative between fill and capped functions via a pressure release valve cap 88 .
  • the local anesthetic fill tube 82 extends from the valve cap 88 to the local anesthetic reservoir within the handle portion 74 , being in fluid communication with the reservoir 72 and incising tube 76 .
  • the local anesthetic fill tube 82 is cylindrical, with a circular cross section, and is made from AISI 303 stainless steel.
  • the handle portion advantageously houses an internally integrated pressurization mechanism that is manipulated by a local anesthetic delivery actuator 78 , which is pivotally attached to said handle portion 74 .
  • the local anesthetic delivery actuator 78 allows a surgeon to selectively activate the pressurization mechanism and urge incremental doses of local anesthetic out of the reservoir 72 and into the incising tube 76 through to a patient.
  • the local anesthetic delivery mechanism is disposed within the handle portion 74 .
  • the reservoir 72 intersects and separates the local anesthetic fill tube from the incising tube 76 .
  • the local anesthetic delivery actuator 78 preferably has an actuator guard 94 in order to prevent inadvertent application of the local anesthetic.
  • the handle portion further advantageously includes a measured dosing window 96 , see FIG. 8 a , disposed adjacent the reservoir 72 , which allows the surgeon to measure how much local anesthetic is being delivered to the patient during surgery.
  • the increments may be in any accepted volume time measurement designations, whether English or Metric systems.
  • the integrated pressurization mechanism includes, a plunger 80 at one end of the reservoir 72 having the same preferably cylindrical cross-section as the reservoir 72 .
  • the plunger 80 has a proximal plunger end 98 partially disposed within the reservoir 72 and adapted to unidirectionally move through the reservoir 72 upon operation of the actuator 78 .
  • the plunger 80 carries an annular sealing ring 102 within a groove of the plunger 80 adjacent the plunger proximal end 98 .
  • the plunger 80 further has a ratcheting end 100 opposite the proximal end 98 .
  • the ratcheting end 100 of the plunger 80 has a plurality of ratcheting teeth or keys 110 .
  • the ratcheting stem 90 projects through an axial bore 104 in the handle and is arranged to reciprocate in the handle axial bore 104 in response to manual operation of the local anesthetic delivery actuator 78 .
  • the ratcheting stem 90 is slidingly coupled to the plunger 80 with unidirectionally angled teeth or serrated keys 108 disposed on one end of the stem 90 , and to the local anesthetic delivery actuator 78 via a pivot pin 106 at an opposing end.
  • the serrated keys 108 engage correspondingly angled keys 110 of plunger 80 adjacent the ratcheting end 100 thereof.
  • the local anesthetic delivery actuator 78 is pivotally mounted 114 to the handle portion 74 and is biased to the return position, as also shown in FIG. 8 d , by a contractile spring type biasing member 114 .
  • a contractile spring type biasing member 114 As shown in FIG. 8 d , as the actuator moves to the return position via the biasing member 114 , the unidirectionlly angled teeth 108 of the stem 90 slide over the plunger keys 110 and the stem 90 deflects away from the plunger 80 incrementally.
  • a pair of semi-cylindrical opposing locking fingers 112 are disposed adjacent the ratcheting end 100 of the plunger 80 , each finger 112 has a plurality of locking teeth 116 disposed in contacting relationship with the plunger ratcheting keys 110 .
  • FIGS. 8 , 8 b , and 8 c A still further embodiment of a ratcheting mechanism is shown in FIGS. 8 , 8 b , and 8 c , for the present application wherein the plunger 80 has a flexible ratcheting finger 120 that deflects as the plunger 80 is urged into the reservoir 72 and returns to engage locking teeth 110 in handle 74 .
  • ratcheting mechanisms may serve the function of incrementally urging the plunger 80 through the reservoir 72 without departing from the scope of the present application.
  • Such ratcheting arrangement being such that linear translation of the ratcheting stem 90 between ratchet and return positions, via the actuator 78 , is translated into unidirectional linear motion of the plunger 80 into the reservoir 72 ; thereby affecting pressurization of the reservoir 72 in order to facilitate passage of the local anesthetic out of the reservoir 72 and through and out of the incising tube 76 to the patient.
  • the valve cap 88 may be actuated to affect release of such pressure.
  • the surgical procedure for trans-abdominally implanting mesh (not shown) with a surgical instrument 70 under general anesthesia is known in the art.
  • the relevant parts of a female patient's lower abdomen involved are, the vagina, the uterus, the urethra, the pubic bone, the urinary bladder, and the abdominal wall.
  • a surgeon uses the instrument to enter the vagina and implanting the ends of a mesh into endopelvic fascia and/or muscle with the mesh placed at the mid-urethra vicinity or by placing the incising tube through the skin and the obturater space into the vagina to deliver the mesh to the vicinity of the mid-urethra or conversly from the vagina out through the obturator space.
  • the surgeon then repeats the same procedure, but passing the incising tube 76 on the opposite side of the urethra, to complete the implantation of the mesh between the mid-urethra and vaginal wall.
  • the present invention advantageously improves the above method by providing for local anesthetic to be administered at various positions along the aforesaid pathway through the patient's abdomen without having to couple the surgical instrument to an external local anesthetic source, also thereby foregoing the need for general anesthesia and an overnight stay in a hospital for the patient.
  • the valve cap 88 is removed and a predetermined amount and type of local anesthesia is placed into the reservoir 72 via the fill tube 82 . Once the valve cap 88 is replaced the surgeon may begin operating.
  • the incising tube 76 moves through the patient's abdomen, the patient communicates with the surgeon as to the level of discomfort, whereby the incising tube 76 is paused, the local anesthetic delivery actuator 78 is manipulated to the ratchet position (see FIGS. 8 b and 8 f ), and a clinically effective amount of local anesthetic is administered to the patient, by internally pressurizing the reservoir, before moving the incising tube 76 further along. This process is repeated throughout surgery as needed.
  • the incising tube 76 may be paused and local anesthetic injected as many times as the surgeon deems necessary, depending upon the condition of the patient and other clinical factors, with which persons having ordinary skill in the art will be familiar.
  • this procedure may be performed using local anesthesia, rather than general anesthesia, does not need an externally pressurized source of local anesthetic as needed for the first embodiment, and can be performed as an outpatient procedure in the surgeon's office or another outpatient facility, rather than requiring admission to a hospital.

Abstract

A surgical instrument includes a handle portion having a distal end, a proximal end, and a substantially hollow body defining a valve chamber therein; a curved incising tube partially housed within the handle portion adjacent the handle portion proximal end, extending a predetermined distance from the handle portion, and in fluid communication with the valve chamber; a local anesthetic inlet tube partially housed within the handle portion adjacent the handle portion distal end, extending a predetermined distance from the handle portion, and in fluid communication with the valve chamber; a local anesthetic delivery actuator disposed on the handle portion, whereby the local anesthetic delivery actuator is selectively operative between opened and closed valve chamber positions.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a surgical instrument, and more specifically, a surgical instrument used in surgery for treatment of female urinary incontinence having an integrated local anesthetic delivery system.
  • BACKGROUND OF THE INVENTION
  • Women account for over 10 million of the diagnosed incontinence cases. A majority of women dealing with incontinence suffer from stress urinary incontinence (“SUI”). Generally, women with SUI involuntarily lose urine during normal daily activities, such as laughing, coughing, and regular exercise.
  • Specifically, SUI is commonly caused by a functional defect of the tissue or ligaments connecting the vaginal wall with the pelvic muscles and pubic bone. Typical causes include repetitive straining of the pelvic muscles, childbirth, loss of pelvic muscle tone, and estrogen loss. These types of defects result in an improperly functioning urethra. Unlike other types of incontinence, SUI is not a problem of the bladder.
  • Normally, the urethra, when properly supported by strong pelvic floor muscles and healthy connective tissue, maintains a tight seal to prevent involuntary loss of urine. When a woman suffers from the most common form of SUI, however, weakened muscle and pelvic tissues are unable to adequately support the urethra in its correct position. As a result, during normal movements when pressure is exerted on the bladder from the diaphragm, the urethra cannot retain its seal, permitting urine to escape. Because SUI is both embarrassing and unpredictable, many women with SUI avoid an active lifestyle, shying away from social situations.
  • Non-operative treatment options for patients with SUI can be attempted, by instructing such patients to perform pelvic exercises, known as “Kegel” exercises, with the intention of strengthening the supporting muscles. However, when these exercises fail to reverse SUI, surgical repair is advised.
  • Among the many surgical options for SUI, the introduction into the abdominal cavity of a urethral “sling” has emerged in the past decade as the most effective. In this surgical procedure, the sling, typically in the form of a mesh or tape-like material, shaped like a flat ribbon, is passed through pelvic tissue and is positioned around the urethra and the bladder neck, forming a loop located between the urethra and the vaginal wall and thereby creating a supportive sling effect. The sling is extended over the pubis and through the abdominal wall and is tightened, after which the surplus material is cut and removed, and the sling is left implanted in the patient's abdominal cavity.
  • U.S. Pat. No. 5,899,909 discloses a treatment method and device for SUI. The device described, which allows a mesh or tape-like sling to be placed under the urethra, and includes two special needles. These are mounted in turn, by screw fastening, on a reusable steel insertion tool made of a handle and of a threaded manipulator rod, which allows each of the needles to be manipulated in turn. Each needle is fixed to one of the ends of the sling.
  • Often patients needing the surgical sling procedure are uncomfortable general anesthetic and would prefer the procedure be performed as an outpatient surgery with local anesthetic. It would therefore be beneficial to provide a surgical instrument for use in treating SUI that has a local anesthetic delivery system integrated therein. It would also be beneficial to provide a surgical instrument for use in treating SUI that allows the instrument operator to administer the local anesthetic with one hand, as it is often the case that a second hand is needed to guide the incising portion of the surgical instrument through the patient's abdominal fascia and soft tissue.
  • This invention addresses that need and advantageously overcomes the deficiencies of the prior art.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a surgical instrument having an integrated local anesthetic delivery system that overcomes the disadvantages of the prior art.
  • Accordingly, the present invention advantageously provides surgical instrument that includes a handle portion having a distal end, a proximal end, and a substantially hollow body defining a valve chamber therein. The surgical instrument also includes a curved incising tube partially housed within the handle portion adjacent the handle portion proximal end, extending a predetermined distance from the handle portion, terminating at an incising tip, and in fluid communication with the valve chamber. The surgical instrument further includes a local anesthetic inlet tube partially housed within the handle portion adjacent the handle portion distal end, extending a predetermined distance from the handle portion, terminating at an inlet port, and in fluid communication with the valve chamber.
  • It is a feature of the present invention that the surgical instrument includes a local anesthetic delivery actuator disposed on the handle portion, whereby the local anesthetic delivery actuator is selectively operative between opened and closed valve chamber positions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects, advantages, and features of the present invention will become apparent from a reading of the following detailed description with reference to the accompanying drawings, in which:
  • FIG. 1 is a perspective view of a surgical instrument according to the present invention;
  • FIG. 2 is a side view of a surgical instrument according to the present invention;
  • FIG. 3 is a partial view of a surgical instrument according to the present invention;
  • FIG. 4 is a perspective view of an alternative embodiment of a surgical instrument according to the present invention;
  • FIG. 5 is a partial view of an alternative embodiment of a surgical instrument according to the present invention;
  • FIG. 6 is a partial view of an alternative embodiment of a surgical instrument according to the present invention;
  • FIG. 7 is a cut-away view of a handle portion for a surgical instrument according to the present invention;
  • FIG. 7 a is a partial cut-away view of FIG. 7 of a handle portion for a surgical instrument according to the present invention;
  • FIG. 7 b is a partial cut-away view of FIG. 7 of a handle portion for a surgical instrument according to the present invention;
  • FIG. 8 is a partial cut-away view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention;
  • FIG. 8 a is a partial side view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention;
  • FIG. 8 b is a partial cut-away view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention;
  • FIG. 8 c is a partial cut-away view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention;
  • FIG. 8 d is a partial cut-away view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention;
  • FIG. 8 e is a cross-sectional view along the line 8 e-8 e of FIG. 8 d; and
  • FIG. 8 f is a partial cut-away view of an alternative embodiment of a handle portion for a surgical instrument according to the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • The present invention discloses an apparatus and surgical instrument 10 used in a surgical procedure for the treatment of SUI. Generally, the surgical instrument 10 is used to incise a path in the lower abdomen of a patient and insert a mesh or tape sling (not shown), through pelvic fascia and soft tissue, which is positioned between the urethra and vaginal wall. The sling offers support to the tissue of the lower abdomen, especially to the patient's urethra, and helps prevent urinary incontinence, as is known in the art. Specifically, when pressure is exerted upon the lower abdomen, such as during a cough or sneeze, the sling provides support to the urethra, allowing it to keep its seal and prevent an unwanted discharge of urine.
  • Referring to FIGS. 1-7, the present invention generally discloses a surgical instrument 10 that is advantageously adapted to administer a local anesthetic to a patient during surgery. The application of a predetermined local anesthetic to a patient from a pressurized remote reservoir (not shown) is facilitated via a local anesthetic delivery passageway 20 extending through said surgical instrument 10. Suitable local anesthetics are generally known in the art.
  • Referring to FIGS. 1, 4, and 7, a surgical instrument 10 includes: a handle portion 12 having a substantially hollow body, housing a valve mechanism (described in greater detail below) having a local anesthetic delivery actuator 24; a curved incising tube partially housed by said handle portion 12; and a local anesthetic inlet tube 56, also partially housed by said handle portion. The handle portion 12 has a proximal end 28, a distal end 30, and a substantially hollow body extending therebetween; a portion of which defines a valve chamber 52. The handle portion 12 may be made of multiple suitable materials, such as a polymeric based material and steel or other suitable metal, as is known in the art. The curved incising tube 14 is partially housed within the handle portion 12 adjacent the handle portion proximal end 28, and extends a predetermined distance from said handle portion proximal end 28, terminating at an incising tip 34. The local anesthetic inlet tube 56 is partially housed within the handle portion 12 adjacent the handle portion distal end 30, and extends a predetermined distance from said handle portion distal end 30, terminating at an inlet port 32. The valve mechanism is housed within the handle portion 12 and is manipulated by the local anesthetic delivery actuator 24, which is pivotally attached to said handle portion 12.
  • The local anesthetic delivery actuator 24 operates the valve mechanism and valve chamber 52 between closed and opened valve chamber positions, as shown in FIGS. 7 a and 7 b respectively. Advantageously, the local anesthetic delivery actuator 24 allows a surgeon to selectively administer local anesthetic by manipulating the valve mechanism with a single hand. When the valve mechanism is manipulated to the open position by the surgeon the incising tube 14, handle portion 12, and local anesthetic inlet tube 56 are in fluid communication and define a local anesthetic delivery passageway 20.
  • The curved incising tube 14 has a proximal end 18, a distal end 16, and a hollow, preferably cylindrical, body extending therebetween. The incising tube distal end 16 terminates at an incising tip 34, and preferably has a substantially circular cross-section. Advantageously, the incising tip 34 of the incising tube 14 is rounded (see FIG. 3) or blunt (see FIG. 5), wherein the conical tip may have a radius of approximately 0.5 millimeters. A blunt tip is preferred since it is less likely to stick in bone or penetrate bladder wall tissue or blood vessel wall tissue. The incising tube proximal end 18 is partially housed within the handle portion 12 and extends a predetermined distance inward adjacent the handle portion proximal end 28. The incising tube proximal end 18 extends to the valve chamber 52 within the handle portion 12. The entire length of the incising tube 14 is hollow and in fluid communication with said valve chamber 52. The incising tube 14 may be helical or planar in curvature, as shown in FIGS. 1 and 4 respectively, without departing from the scope of the present invention. The incising tube 14 is preferably made from a material that is compatible with the human body. For example, the incising tube 14 may be made from AISI 303 stainless steel. The surface of the incising tube 14 is preferably smooth and polished, to facilitate penetration of a patient's fascia and soft tissue.
  • As best shown in FIG. 7, the local anesthetic inlet tube 56 is also partially housed within the handle portion 12, has a hollow body, and a local anesthetic inlet port 32 that extends a predetermined distance from the handle portion distal end 30. The local anesthetic inlet port 32 is preferably threaded to facilitate coupling to a local anesthetic delivery tube 58 with a Lever-Lock or Luer-Lock type fastener 54, or other suitable fastener as are known in the art. At the opposite end of the inlet port 32, the local anesthetic inlet tube 56 extends to the valve chamber 52 within the handle portion 12. The entire length of the local anesthetic inlet tube 56 is in fluid communication with said valve chamber 52. Preferably, the local anesthetic inlet tube 56 is cylindrical, with a circular cross section, and is made from AISI 303 stainless steel.
  • As shown in FIG. 7, the handle portion 12 advantageously houses a valve mechanism that is manipulated by a local anesthetic delivery actuator 24, which is pivotally attached to said handle portion 12. The local anesthetic delivery actuator 24 allows a surgeon to selectively activate the valve mechanism and valve chamber 52 between open and closed positions, described in greater detail below. When the valve mechanism is in the open position the incising tube 14, valve chamber 52, and local anesthetic inlet tube 56 define the local anesthetic delivery passageway 20 for the application of local anesthetic to the patient.
  • As further shown in FIG. 7, the local anesthetic delivery mechanism is disposed within the handle portion 12, in fluid communicating relationship and intermediate the local anesthetic inlet tube 56 and the incising tube 14. The local anesthetic inlet tube 56 and the incising tube 14 are preferably disposed in parallel but axially offset relation to the valve chamber 52. The valve chamber 52 intersects and separates the local anesthetic deliver tube 56 from the incising tube 14, while offering selectively operable flow of local anesthetic. The local anesthetic delivery actuator 24 preferably has an actuator guard 26 in order to prevent inadvertent application of the local anesthetic.
  • More specifically with respect to FIGS. 7, 7 a, and 7 b, the local anesthetic delivery mechanism includes, a valve seat 36 at one end of the chamber that is shaped to receive a valve member 38 in sealing engagement therewith. The valve member 38 is mounted on one end of an elongated valve stem 40 and is designed to reciprocate within the valve chamber 52 between an opened position, as shown in FIG. 7 b, and a closed position abutting the valve seat 36, as shown in FIG. 7 a. The valve stem 40 is coupled to the valve member 38 by a pin 50 at one end, and to the local anesthetic delivery actuator 24, via a pivot pin 48, at an opposing end. The local anesthetic delivery actuator 24 is pivotally mounted 62 to the handle portion 12 and is biased to the closed position, as shown in FIG. 7 a, by preferably a contractile spring type biasing member 60. A tubular bearing sleeve 42 is mounted in the valve chamber 52 and carries an annular sealing ring 44 within a groove of the bearing sleeve 42. The valve stem 40 projects through an axial bore in the bearing sleeve 42 and is arranged to reciprocate in the bearing sleeve 42 in response to manual operation of the local anesthetic delivery actuator 24. Reciprocation of the valve stem 40 is obtained by manually squeezing the local anesthetic delivery actuator 24.
  • The surgical procedure for trans-abdominally implanting mesh (not shown) with a surgical instrument 10 under general anesthesia is known in the art. Typically, the relevant parts of a female patient's lower abdomen involved are, the vagina, the uterus, the urethra, the pubic bone, the urinary bladder, and the abdominal wall. A surgeon uses the instrument to enter the vagina and implanting the ends of a mesh into endopelvic fascia and/or muscle with the mesh placed at the mid-urethra vicinity or by placing the incising tube through the skin and the obturater space into the vagina to deliver the mesh to the vicinity of the mid-urethra or conversly from the vagina out through the obturator space.
  • The present invention advantageously improves the above method by providing for local anesthetic to be administered at various positions along the aforesaid pathway through the patient's abdomen, thereby foregoing the need for general anesthesia and an overnight stay in a hospital for the patient. As the incising tube 14 moves through the patient's abdomen, the patient communicates with the surgeon as to the level of discomfort, whereby the incising tube 14 is paused, the local anesthetic delivery actuator 24 is manipulated to the open position (see FIG. 7 b), and a clinically effective amount of local anesthetic is administered to the patient before moving the incising tube 14 further along. This process is repeated throughout surgery as needed. The incising tube 14 may be paused and local anesthetic injected as many times as the surgeon deems necessary, depending upon the condition of the patient and other clinical factors, with which persons having ordinary skill in the art will be familiar. Advantageously, this procedure may be performed using local anesthesia, rather than general anesthesia, and can be performed as an outpatient procedure in the surgeon's office or another outpatient facility, rather than requiring admission to a hospital. Additionally, the patient is able to provide feedback to the surgeon during the procedure.
  • Referring to FIGS. 8-8 f, alternative embodiments of the present invention generally disclose a surgical instrument 70 that is adapted to administer a local anesthetic to a patient during surgery, which advantageously utilizes an internally integrated pressurization mechanism for delivering such anesthetic. The application of a predetermined local anesthetic to a patient from an internally pressurized mechanism is facilitated via an internal local anesthetic reservoir 72 disposed within a handle portion 74 being in fluid communication with an incising tube 76, wherein the anesthetic is selectively administered via an actuator 78 in ratcheting engagement with a plunger 80, which is partially housed within the reservoir 72. Suitable local anesthetics are generally known in the art.
  • More specifically, with respect to FIGS. 8 d and 8 f, the surgical instrument 70 includes: a handle portion having a substantially hollow body, housing an internally integrated pressurization mechanism for delivering local anesthetic (described in greater detail below), the handle portion 74 having a local anesthetic delivery actuator 78; a curved incising tube 76 partially housed by said handle portion 74; and a local anesthetic fill tube 82, also partially housed by said handle portion 74. The handle portion 74 has a proximal end 84, a distal end 86, and a substantially hollow body extending therebetween; a portion of which defines a preferably cylindrical local anesthetic reservoir 72. The handle portion 74 may be made of multiple suitable materials, such as a polymeric based material, as is known in the art. The curved incising tube 76 is partially housed within the handle portion 74 adjacent the handle portion proximal end 84, and extends a predetermined distance from said handle portion proximal end 84, preferably terminating at an incising tip as described above in the previous embodiment. The local anesthetic fill tube 82 is partially housed within the handle portion 74 adjacent the handle portion proximal end 84, and extends a predetermined distance from said handle portion 74, terminating at a pressure release type valve cap 88. Any suitable valve cap, as are known in the arts, may accomplish the function of pressure release without fluid release, such as a radiator cap used in the automotive arts. The internally integrated pressurization mechanism is housed within the handle portion 74 and is manipulated by the local anesthetic delivery actuator 78, which is pivotally attached to the handle portion 74.
  • The local anesthetic delivery actuator 78 operates a ratcheting mechanism between ratchet and return positions, as shown in FIGS. 8 f and 8 d respectively. Advantageously, the local anesthetic delivery actuator 78 allows a surgeon to selectively administer local anesthetic, by manipulating an elongated ratcheting stem 90 slidingly coupled to a ratcheting type plunger 80, with a single hand and without needing an external pressurization system as disclosed in the above embodiment. When the internally integrated pressurization mechanism is manipulated to the ratcheted position by a surgeon, local anesthetic is forced out of the local anesthetic reservoir 72, through the incising tube 76, and out the incising tube tip. The local anesthetic inlet tube 82, local anesthetic reservoir 72, and incising tube 76 are in fluid communication and define a local anesthetic delivery passageway 92.
  • As best shown in FIG. 8 d, the local anesthetic fill tube 82 is partially housed within the handle portion 74, has a hollow body, and extends a predetermined distance from the handle portion proximal end 84. The local anesthetic fill tube 82 is operative between fill and capped functions via a pressure release valve cap 88. The local anesthetic fill tube 82 extends from the valve cap 88 to the local anesthetic reservoir within the handle portion 74, being in fluid communication with the reservoir 72 and incising tube 76. Preferably, the local anesthetic fill tube 82 is cylindrical, with a circular cross section, and is made from AISI 303 stainless steel.
  • As shown in FIGS. 8 d and 8 f, the handle portion advantageously houses an internally integrated pressurization mechanism that is manipulated by a local anesthetic delivery actuator 78, which is pivotally attached to said handle portion 74. The local anesthetic delivery actuator 78 allows a surgeon to selectively activate the pressurization mechanism and urge incremental doses of local anesthetic out of the reservoir 72 and into the incising tube 76 through to a patient.
  • Advantageously, as further shown in FIGS. 8 d and 8 f, the local anesthetic delivery mechanism is disposed within the handle portion 74. The reservoir 72 intersects and separates the local anesthetic fill tube from the incising tube 76. The local anesthetic delivery actuator 78 preferably has an actuator guard 94 in order to prevent inadvertent application of the local anesthetic. The handle portion further advantageously includes a measured dosing window 96, see FIG. 8 a, disposed adjacent the reservoir 72, which allows the surgeon to measure how much local anesthetic is being delivered to the patient during surgery. The increments may be in any accepted volume time measurement designations, whether English or Metric systems.
  • More specifically with respect to FIGS. 8 d and 8 f, the integrated pressurization mechanism includes, a plunger 80 at one end of the reservoir 72 having the same preferably cylindrical cross-section as the reservoir 72. The plunger 80 has a proximal plunger end 98 partially disposed within the reservoir 72 and adapted to unidirectionally move through the reservoir 72 upon operation of the actuator 78. The plunger 80 carries an annular sealing ring 102 within a groove of the plunger 80 adjacent the plunger proximal end 98. The plunger 80 further has a ratcheting end 100 opposite the proximal end 98. The ratcheting end 100 of the plunger 80 has a plurality of ratcheting teeth or keys 110. The ratcheting stem 90 projects through an axial bore 104 in the handle and is arranged to reciprocate in the handle axial bore 104 in response to manual operation of the local anesthetic delivery actuator 78. The ratcheting stem 90 is slidingly coupled to the plunger 80 with unidirectionally angled teeth or serrated keys 108 disposed on one end of the stem 90, and to the local anesthetic delivery actuator 78 via a pivot pin 106 at an opposing end. As the ratcheting stem 90 moves in response to operation by a surgeon manually engaging the actuator 78, see FIG. 8 f, the serrated keys 108 engage correspondingly angled keys 110 of plunger 80 adjacent the ratcheting end 100 thereof. The local anesthetic delivery actuator 78 is pivotally mounted 114 to the handle portion 74 and is biased to the return position, as also shown in FIG. 8 d, by a contractile spring type biasing member 114. As shown in FIG. 8 d, as the actuator moves to the return position via the biasing member 114, the unidirectionlly angled teeth 108 of the stem 90 slide over the plunger keys 110 and the stem 90 deflects away from the plunger 80 incrementally. A pair of semi-cylindrical opposing locking fingers 112 are disposed adjacent the ratcheting end 100 of the plunger 80, each finger 112 has a plurality of locking teeth 116 disposed in contacting relationship with the plunger ratcheting keys 110. As the plunger 80 is urged through the reservoir 72 in progressive increments (visually discernable through the dosing window 96) via manual operation of the actuator 78, the locking fingers 112 flex outward to accommodate such movement. When the actuator 78 is released and the stem 90 is biased back to the return position, the locking fingers 112 return to contacting relation with the locking teeth 116 of the plunger 80, wherein the teeth 116 of the fingers 112 engage the ratcheting keys 110 of the plunger 80 thereby holding the plunger 80 in place. A still further embodiment of a ratcheting mechanism is shown in FIGS. 8, 8 b, and 8 c, for the present application wherein the plunger 80 has a flexible ratcheting finger 120 that deflects as the plunger 80 is urged into the reservoir 72 and returns to engage locking teeth 110 in handle 74.
  • The above and other ratcheting mechanisms may serve the function of incrementally urging the plunger 80 through the reservoir 72 without departing from the scope of the present application. Such ratcheting arrangement being such that linear translation of the ratcheting stem 90 between ratchet and return positions, via the actuator 78, is translated into unidirectional linear motion of the plunger 80 into the reservoir 72; thereby affecting pressurization of the reservoir 72 in order to facilitate passage of the local anesthetic out of the reservoir 72 and through and out of the incising tube 76 to the patient. Should pressurization of the reservoir 72 reach a state where manual operation of the actuator 78 is overly cumbersome, the valve cap 88 may be actuated to affect release of such pressure.
  • The surgical procedure for trans-abdominally implanting mesh (not shown) with a surgical instrument 70 under general anesthesia is known in the art. Typically, the relevant parts of a female patient's lower abdomen involved are, the vagina, the uterus, the urethra, the pubic bone, the urinary bladder, and the abdominal wall. A surgeon uses the instrument to enter the vagina and implanting the ends of a mesh into endopelvic fascia and/or muscle with the mesh placed at the mid-urethra vicinity or by placing the incising tube through the skin and the obturater space into the vagina to deliver the mesh to the vicinity of the mid-urethra or conversly from the vagina out through the obturator space. The surgeon then repeats the same procedure, but passing the incising tube 76 on the opposite side of the urethra, to complete the implantation of the mesh between the mid-urethra and vaginal wall.
  • The present invention advantageously improves the above method by providing for local anesthetic to be administered at various positions along the aforesaid pathway through the patient's abdomen without having to couple the surgical instrument to an external local anesthetic source, also thereby foregoing the need for general anesthesia and an overnight stay in a hospital for the patient. Specifically, the valve cap 88 is removed and a predetermined amount and type of local anesthesia is placed into the reservoir 72 via the fill tube 82. Once the valve cap 88 is replaced the surgeon may begin operating. As the incising tube 76 moves through the patient's abdomen, the patient communicates with the surgeon as to the level of discomfort, whereby the incising tube 76 is paused, the local anesthetic delivery actuator 78 is manipulated to the ratchet position (see FIGS. 8 b and 8 f), and a clinically effective amount of local anesthetic is administered to the patient, by internally pressurizing the reservoir, before moving the incising tube 76 further along. This process is repeated throughout surgery as needed. The incising tube 76 may be paused and local anesthetic injected as many times as the surgeon deems necessary, depending upon the condition of the patient and other clinical factors, with which persons having ordinary skill in the art will be familiar. Advantageously, this procedure may be performed using local anesthesia, rather than general anesthesia, does not need an externally pressurized source of local anesthetic as needed for the first embodiment, and can be performed as an outpatient procedure in the surgeon's office or another outpatient facility, rather than requiring admission to a hospital.
  • While a multiple embodiments have been illustrated and described in detail, it should be understood that various modifications in design and details of construction are possible without departing from the spirit of this invention or the scope of the following claims.

Claims (20)

1. A surgical instrument, comprising:
a handle portion having a distal end, a proximal end, and a substantially hollow body defining a valve chamber therein;
a curved incising tube partially housed within the handle portion adjacent the handle portion proximal end, extending a predetermined distance from said handle portion, and in fluid communication with said valve chamber; and
a local anesthetic inlet tube partially housed within the handle portion adjacent the handle portion distal end, extending a predetermined distance from said handle portion, and in fluid communication with said valve chamber.
2. The surgical instrument of claim 1, further comprising a local anesthetic delivery actuator disposed on said handle portion, wherein said local anesthetic delivery actuator is selectively operative between opened and closed valve chamber positions.
2. The surgical instrument of claim 1, wherein the curved incising tube extends a predetermined distance from said handle portion and terminates at an incising tip.
3. The surgical instrument of claim 1, wherein the local anesthetic inlet tube extends a predetermined distance from said handle portion and terminates at an inlet port.
4. The surgical instrument of claim 2, wherein the local anesthetic delivery actuator is pivotally disposed on said handle portion.
5. The surgical instrument of claim 1, wherein the handle portion is formed from a polymeric material.
6. The surgical instrument of claim 1, wherein the curved incising tube is formed from a stainless steel material.
7. The surgical instrument of claim 1, wherein the local anesthetic inlet tube is formed from a stainless steel material.
8. A surgical instrument, comprising:
a handle portion having a distal end, a proximal end, and a substantially hollow body defining a valve chamber therein;
a curved incising tube partially housed within the handle portion adjacent the handle portion proximal end, extending a predetermined distance from said handle portion, and in fluid communication with said valve chamber;
a local anesthetic inlet tube partially housed within the handle portion adjacent the handle portion distal end, extending a predetermined distance from said handle portion, and in fluid communication with said valve chamber; and
a local anesthetic delivery actuator disposed on said handle portion, wherein said local anesthetic delivery actuator is selectively operative between opened and closed valve chamber positions.
9. The surgical instrument of claim 8, wherein the curved incising tube extends a predetermined distance from said handle portion and terminates at an incising tip.
10. The surgical instrument of claim 8, wherein the local anesthetic inlet tube extends a predetermined distance from said handle portion and terminates at an inlet port.
11. The surgical instrument of claim 8, wherein the local anesthetic delivery actuator is pivotally disposed on said handle portion.
12. The surgical instrument of claim 8, wherein the handle portion is formed from a polymeric material.
13. The surgical instrument of claim 8, wherein the curved incising tube is formed from a stainless steel material.
14. The surgical instrument of claim 8, wherein the local anesthetic inlet tube is formed from a stainless steel material.
15. A surgical instrument, comprising:
a handle portion having a distal end, a proximal end, and a substantially hollow body defining a reservoir therein;
a curved incising tube partially housed within the handle portion adjacent the handle portion proximal end, extending a predetermined distance from said handle portion terminating at an incising tip, and in fluid communication with said reservoir;
a local anesthetic fill tube partially housed within the handle portion adjacent the handle portion proximal end, extending a predetermined distance from said handle portion terminating at a valve cap, and in fluid communication with said reservoir; and
a local anesthetic delivery actuator disposed on said handle portion, whereby said local anesthetic delivery actuator is selectively operative between ratchet and return positions.
16. The surgical instrument of claim 15, wherein the local anesthetic delivery actuator is pivotally disposed on said handle portion.
17. The surgical instrument of claim 15, wherein the handle portion further includes a pressurization mechanism disposed therein having a plunger partially disposed within said reservoir, a pair of opposed locking fingers disposed adjacent said plunger, and a ratcheting stem pivotally attached to said actuator at one end, and slidingly engaged to said plunger at an opposing end.
19. The surgical instrument of claim 15, wherein the incising tube is formed from a stainless steel material.
20. The surgical instrument of claim 15, wherein the local anesthetic inlet tube is formed from a stainless steel material.
US12/655,887 2010-01-11 2010-01-11 Surgical instrument having an integrated local anesthetic delivery system Active 2032-07-30 US9277936B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/655,887 US9277936B2 (en) 2010-01-11 2010-01-11 Surgical instrument having an integrated local anesthetic delivery system
US15/041,244 US10426915B2 (en) 2010-01-11 2016-02-11 Surgical instrument having an integrated local anesthetic delivery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/655,887 US9277936B2 (en) 2010-01-11 2010-01-11 Surgical instrument having an integrated local anesthetic delivery system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/041,244 Continuation US10426915B2 (en) 2010-01-11 2016-02-11 Surgical instrument having an integrated local anesthetic delivery system

Publications (2)

Publication Number Publication Date
US20110172589A1 true US20110172589A1 (en) 2011-07-14
US9277936B2 US9277936B2 (en) 2016-03-08

Family

ID=44259064

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/655,887 Active 2032-07-30 US9277936B2 (en) 2010-01-11 2010-01-11 Surgical instrument having an integrated local anesthetic delivery system
US15/041,244 Active 2031-07-13 US10426915B2 (en) 2010-01-11 2016-02-11 Surgical instrument having an integrated local anesthetic delivery system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/041,244 Active 2031-07-13 US10426915B2 (en) 2010-01-11 2016-02-11 Surgical instrument having an integrated local anesthetic delivery system

Country Status (1)

Country Link
US (2) US9277936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120029275A1 (en) * 2010-07-29 2012-02-02 Boston Scientific Scimed, Inc. Bodily implants and methods of adjusting the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2110339A (en) * 1934-06-23 1938-03-08 Alphonse F Pieper Fluid control device
US2688968A (en) * 1949-05-14 1954-09-14 Scherer Corp R P Hypo jet ampoule
US3727614A (en) * 1971-05-13 1973-04-17 Merck & Co Inc Multiple dosage inoculator
US4230108A (en) * 1979-03-13 1980-10-28 Young Sharon L Apparatus and method for sealing esophageal entrance to trachea above and below
US4432350A (en) * 1981-04-17 1984-02-21 Breslau Alan J Means for applying topical anesthesia for use with a laryngoscope
US4693243A (en) * 1983-01-14 1987-09-15 Buras Sharon Y Conduit system for directly administering topical anaesthesia to blocked laryngeal-tracheal areas
US5049125A (en) * 1987-05-26 1991-09-17 Claude Accaries Needleless injection apparatus of a liquid, notably for dental care
US5250065A (en) * 1990-09-11 1993-10-05 Mectra Labs, Inc. Disposable lavage tip assembly
US5665076A (en) * 1994-02-18 1997-09-09 Merit Medical Systems, Inc. Catheter apparatus with means for subcutaneous delivery of anesthetic agent or other fluid medicament
US5891086A (en) * 1993-07-31 1999-04-06 Weston Medical Limited Needle-less injector
US5899909A (en) * 1994-08-30 1999-05-04 Medscand Medical Ab Surgical instrument for treating female urinary incontinence
US20010018549A1 (en) * 2000-01-21 2001-08-30 Victor Scetbon Percutaneous device and method for treating urinary stress incontinence in women using a sub-urethral tape
US6638210B2 (en) * 2000-09-26 2003-10-28 Ethicon, Inc. Surgical apparatus and methods for delivery of a sling in the treatment of female urinary incontinence
US6932759B2 (en) * 1999-06-09 2005-08-23 Gene W. Kammerer Surgical instrument and method for treating female urinary incontinence
US20070015953A1 (en) * 2005-07-13 2007-01-18 Boston Scientific Scimed, Inc. Snap fit sling anchor system and related methods
US20070038017A1 (en) * 2005-08-11 2007-02-15 Boston Scientific Scimed, Inc. Tubular implantable sling and related delivery systems, methods and devices

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1250965A (en) * 1917-03-19 1917-12-25 Courtland G Capwell Dental obtunding-syringe.
US1911386A (en) 1929-11-15 1933-05-30 Oscar H Pieper Dental apparatus
US2316095A (en) * 1941-07-15 1943-04-06 Jr John H Mead Vaccinating syringe
US2632445A (en) * 1951-10-20 1953-03-24 Sr John L Kas Dosing hypodermic syringe
US2825334A (en) * 1953-08-07 1958-03-04 Sr John Leo Kas Hypodermic syringe for livestock
US2892457A (en) * 1956-07-30 1959-06-30 Sturtz Harry Hypodermic syringe hand grip
US3052240A (en) * 1959-01-29 1962-09-04 Silver Disposable hypodermic syringe
US3101711A (en) * 1960-12-16 1963-08-27 Reitknecht Jack Automatic hypodermic unit
US3104448A (en) * 1961-09-21 1963-09-24 Morrow Mortician's body cavity injector
DE9107574U1 (en) * 1991-06-20 1991-08-01 Bayer Ag, 5090 Leverkusen, De
US6461296B1 (en) * 1998-06-26 2002-10-08 2000 Injectx, Inc. Method and apparatus for delivery of genes, enzymes and biological agents to tissue cells
US5454827A (en) * 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
US5807340A (en) * 1995-06-06 1998-09-15 Pokras; Norman M. Self refilling I.V. syringe
US5893839A (en) * 1997-03-13 1999-04-13 Advanced Research And Technology Institute, Inc. Timed-release localized drug delivery by percutaneous administration
US7070556B2 (en) 2002-03-07 2006-07-04 Ams Research Corporation Transobturator surgical articles and methods
WO2002102435A2 (en) * 2001-06-14 2002-12-27 Artes Medical Usa, Inc. Medical injection apparatus
US7347812B2 (en) 2003-09-22 2008-03-25 Ams Research Corporation Prolapse repair
JP5535070B2 (en) * 2007-07-30 2014-07-02 ボストン サイエンティフィック サイムド,インコーポレイテッド Apparatus and method for treatment of stress urinary incontinence
US20100298630A1 (en) 2007-12-07 2010-11-25 Shawn Michael Wignall Pelvic floor treatments and related tools and implants
FR2929854B1 (en) * 2008-04-10 2010-05-28 Primequal Sa METHOD FOR MANUFACTURING DISPOSABLE EJECTION DEVICE

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2110339A (en) * 1934-06-23 1938-03-08 Alphonse F Pieper Fluid control device
US2688968A (en) * 1949-05-14 1954-09-14 Scherer Corp R P Hypo jet ampoule
US3727614A (en) * 1971-05-13 1973-04-17 Merck & Co Inc Multiple dosage inoculator
US4230108A (en) * 1979-03-13 1980-10-28 Young Sharon L Apparatus and method for sealing esophageal entrance to trachea above and below
US4432350A (en) * 1981-04-17 1984-02-21 Breslau Alan J Means for applying topical anesthesia for use with a laryngoscope
US4693243A (en) * 1983-01-14 1987-09-15 Buras Sharon Y Conduit system for directly administering topical anaesthesia to blocked laryngeal-tracheal areas
US5049125A (en) * 1987-05-26 1991-09-17 Claude Accaries Needleless injection apparatus of a liquid, notably for dental care
US5250065A (en) * 1990-09-11 1993-10-05 Mectra Labs, Inc. Disposable lavage tip assembly
US5891086A (en) * 1993-07-31 1999-04-06 Weston Medical Limited Needle-less injector
US5665076A (en) * 1994-02-18 1997-09-09 Merit Medical Systems, Inc. Catheter apparatus with means for subcutaneous delivery of anesthetic agent or other fluid medicament
US5899909A (en) * 1994-08-30 1999-05-04 Medscand Medical Ab Surgical instrument for treating female urinary incontinence
US6932759B2 (en) * 1999-06-09 2005-08-23 Gene W. Kammerer Surgical instrument and method for treating female urinary incontinence
US20010018549A1 (en) * 2000-01-21 2001-08-30 Victor Scetbon Percutaneous device and method for treating urinary stress incontinence in women using a sub-urethral tape
US6638210B2 (en) * 2000-09-26 2003-10-28 Ethicon, Inc. Surgical apparatus and methods for delivery of a sling in the treatment of female urinary incontinence
US20070015953A1 (en) * 2005-07-13 2007-01-18 Boston Scientific Scimed, Inc. Snap fit sling anchor system and related methods
US20070038017A1 (en) * 2005-08-11 2007-02-15 Boston Scientific Scimed, Inc. Tubular implantable sling and related delivery systems, methods and devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120029275A1 (en) * 2010-07-29 2012-02-02 Boston Scientific Scimed, Inc. Bodily implants and methods of adjusting the same
US9402706B2 (en) * 2010-07-29 2016-08-02 Boston Scientific Scimed, Inc. Bodily implants and methods of adjusting the same

Also Published As

Publication number Publication date
US9277936B2 (en) 2016-03-08
US20160158484A1 (en) 2016-06-09
US10426915B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
US7261723B2 (en) Surgical instrument and method for the treatment of urinary incontinence
EP1339350B1 (en) Apparatus for measurement and assessment of sling-tension for treatment of female urinary incontinence
US7674269B2 (en) Bone anchor implantation device
US6596001B2 (en) Aiming device for surgical instrument and method for use for treating female urinary incontinence
US9402705B2 (en) Apparatus and method for the treatment of stress urinary incontinence
AU2002241763A1 (en) Apparatus and method for measurement and assessment of sling-tension for treatment of female urinary incontinence
US7104401B2 (en) Packaging assembly for surgical instruments
US8622886B2 (en) Surgical instrument and method for the treatment of urinary incontinence
US9078730B2 (en) Surgical instrument and method for the treatment of urinary incontinence
US10426915B2 (en) Surgical instrument having an integrated local anesthetic delivery system
WO1996002197A1 (en) Instrument for gynaecological surgery in women
US9616167B2 (en) Anesthetic delivery device
Martan et al. The ultrasound imaging of the tape after TVT procedure
EP1424045A2 (en) Apparatus and method for the measurement and assessment of sling-tension for treatment of female urinary incontinence

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8