US20110295381A1 - Bimetal acetabular component construct for hip joint prosthesis - Google Patents

Bimetal acetabular component construct for hip joint prosthesis Download PDF

Info

Publication number
US20110295381A1
US20110295381A1 US12/928,636 US92863610A US2011295381A1 US 20110295381 A1 US20110295381 A1 US 20110295381A1 US 92863610 A US92863610 A US 92863610A US 2011295381 A1 US2011295381 A1 US 2011295381A1
Authority
US
United States
Prior art keywords
metal
construct
engages
bone
acetabular component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/928,636
Inventor
Daniel E. E. Hayes, Jr.
Alfred S. Depres, III
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/910,653 external-priority patent/US6827742B2/en
Application filed by Individual filed Critical Individual
Priority to US12/928,636 priority Critical patent/US20110295381A1/en
Publication of US20110295381A1 publication Critical patent/US20110295381A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • A61F2/367Proximal or metaphyseal parts of shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3859Femoral components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30016Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30906Special external or bone-contacting surface, e.g. coating for improving bone ingrowth shot- sand- or grit-blasted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30925Special external or bone-contacting surface, e.g. coating for improving bone ingrowth etched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30929Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having at least two superposed coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/3097Designing or manufacturing processes using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3611Heads or epiphyseal parts of femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • A61F2002/3631Necks with an integral complete or partial peripheral collar or bearing shoulder at its base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/365Connections of heads to necks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0019Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00131Tantalum or Ta-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00407Coating made of titanium or of Ti-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00485Coating made of zirconium or Zr-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00491Coating made of niobium or Nb-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00538Coating made of hafnium or Hf-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00544Coating made of tantalum or Ta-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00574Coating or prosthesis-covering structure made of carbon, e.g. of pyrocarbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00574Coating or prosthesis-covering structure made of carbon, e.g. of pyrocarbon
    • A61F2310/0058Coating made of diamond or of diamond-like carbon DLC
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF

Definitions

  • This invention relates to surgical apparatus and procedures in general, and more particularly to orthopedic prostheses for restoring the hip joint.
  • Joint replacement surgery seeks to replace portions of a joint with prosthetic components so as to provide long-lasting function and pain-free mobility.
  • the head of the femur is replaced with a prosthetic femoral stem component
  • the socket of the acetabulum is replaced by a prosthetic acetabular cup component, whereby to provide a prosthetic total hip joint.
  • a prosthetic total knee joint In the case of a prosthetic total knee joint, the top of the tibia is replaced by a prosthetic tibial component, and the bottom of the femur is replaced by a prosthetic femoral component, whereby to provide a prosthetic total knee joint.
  • the present invention is directed to orthopedic prostheses for restoring the hip joint and, in particular, to improved prosthetic acetabular components.
  • the prosthetic femoral stem component typically comprises a metal
  • the prosthetic acetabular cup component typically comprises a metal seat with a plastic liner.
  • the prosthetic tibial component typically comprises a metal base topped with a plastic bearing surface
  • the prosthetic femoral component typically comprises a metal
  • the present state of the art is currently dominated by the use of three different materials: titanium and its alloys, cobalt-based alloys and polyethylene plastics.
  • the two metallic materials are generally used for structural constructs (e.g., constructs that must carry the loads transmitted through the joint), and polyethylene is generally used as a bearing material in the joints (e.g., to slide or rotate against an opposing metallic component).
  • Ceramic bearing couples have also been used in the art to some extent, but their use is relatively limited due to price and strength considerations.
  • titanium alloys e.g., Ti6Al4V
  • cobalt-based alloys e.g. CoCr alloys, including CoCrMo alloys.
  • titanium alloys generally exhibit relatively high general fatigue strength, relatively low stiffness compared to alternative materials, and excellent biocompatibility properties. Titanium alloys, however, also tend to suffer from notch sensitivity in fatigue, which significantly reduces the fatigue strength of the construct when the surface is notched, roughened or porous-coated. Titanium alloys are also prone to scratching and make relatively poor sliding couples with polyethylene.
  • CoCr alloys generally have relatively high fatigue strengths, are relatively notch insensitive, and are relatively tough and resistant to scratching, thus making them excellent candidates for forming sliding couples with polyethylene.
  • CoCr alloys are also relatively stiff, which can cause load pattern problems when coupled with flexible human bones, and they are not as biocompatible as many other alloys due to their chrome, and in some cases nickel, content.
  • hip femoral stem components have also been used on hip femoral stem components. More particularly, hip femoral stem components have been developed which comprise an inner core of CoCr covered with a coating of titanium for bone ingrowth. This layered construction is desirable because stems made entirely of titanium, with titanium ingrowth surfaces, are too weak, while stems that are made entirely of CoCr, with CoCr ingrowth surfaces, do not have adequate biocompatibility.
  • the combination of these two materials in a single construct provides a stem that is strong enough and also has a good bone ingrowth surface.
  • HA hydroxyapatite
  • the locking interface between the polyethylene bearing construct and the metal base construct can also be a significant source of wear debris. More particularly, it has been discovered that small sliding motions in the junction between the polyethylene bearing construct and the metal base construct produce particles of polyethylene that can migrate out of the joint and into the body. Small abrasive particles can also migrate into the interface between the polyethylene bearing construct and the metal base construct and scratch the metal base construct, particularly where the metal base construct is formed out of titanium. This issue of “backside wear” has been a significant issue for research and debate over the last five years or so.
  • This invention provides for a novel orthopedic prosthesis, specifically a prosthetic acetabular component for a prosthetic total hip joint, that comprises two constructs, one being a metal base construct that engages the bone and the other being a polyethylene bearing construct that attaches to the metal base construct and articulates with a prosthetic hip component on the opposing side of the joint.
  • the metal base construct is composed of two different metals, one of which engages the bone surface and the other of which engages the polyethylene bearing construct. Each of these metals is selected so that its characteristics are well suited to its particular function.
  • the first metal i.e., the one that engages the bone surface
  • the second metal i.e., the one that engages the polyethylene bearing construct
  • the first metal is selected so as to provide a superior bone-engaging face
  • the second metal is selected so as to provide a superior polyethylene-engaging face.
  • FIG. 1 is a schematic side view showing a prosthetic total hip joint positioned within a patient's body
  • FIG. 2 is an exploded schematic side view showing the prosthetic acetabular component of the prosthetic total hip joint shown in FIG. 1 ;
  • FIG. 3 is a schematic side view of the prosthetic acetabular component of the prosthetic total hip joint shown in FIG. 1 .
  • a prosthetic total hip joint 5 which generally comprises a prosthetic acetabular component 10 seated in a recess contained in a prepared hip 15 , and a prosthetic femoral stem component 20 which is secured to the top end of a resected femur 25 .
  • Prosthetic acetabular component 10 is shown in greater detail in FIGS. 2 and 3 .
  • Prosthetic acetabular component 10 generally comprises a metal base construct 30 and a polyethylene bearing construct 35 .
  • metal seat base construct 30 comprises a metal seat 40 with a rail 60 defining a groove 65 therein.
  • Polyethylene liner construct 35 comprises a domed top surface 75 having an annular flange 85 .
  • Flange 85 is sized to snap fit in the groove 65 of metal base construct 30 , whereby polyethylene bearing construct 35 may be secured to metal base construct 30 .
  • the socket of the acetabulum of hip 15 is removed, metal base construct 30 is secured to hip 15 via screws 55 and press fit with the acetabulum. Then polyethylene liner construct 35 is seated into metal base construct 30 until polyethylene bearing construct 35 engages the metal seat 40 .
  • metal base construct 30 is formed with a bimetal construction. More particularly, the metal base construct 30 is composed of two different metals, a first metal 87 which engages hip 15 and a second metal 90 which engages polyethylene liner construct 35 . Each of these metals is selected so that its characteristics are well suited to its particular function. More particularly, first metal 87 (i.e., the one that engages hip 15 ) is selected so as to provide a superior bone-engaging face, while second metal 90 (i.e., the one that engages polyethylene liner construct 35 ) is selected so as to provide a superior polyethylene-engaging face.
  • first metal 87 i.e., the one that engages hip 15
  • second metal 90 i.e., the one that engages polyethylene liner construct 35
  • base metal construct 10 By combining the different material characteristics of two different metals in base metal construct 10 , it is possible to simultaneously form a superior bone-engaging face and a superior polyethylene-engaging face. Among other things, by selecting two appropriate metals for the metal base construct, superior bone ingrowth can be achieved while still avoiding the aforementioned problems with “backside wear”.
  • a base metal construct 10 may be formed whose bone-engaging surfaces are formed from titanium and whose polyethylene-engaging surfaces are formed from CoCrMo. This construction places a good bone ingrowth metal against the bone and a good polyethylene-engaging metal against the polyethylene, whereby to provide a significantly superior prosthetic acetabular component 10 .
  • first metal 87 may comprise titanium, titanium alloys, tantalum, tantalum alloys or other metals and/or metal alloys consistent with the present invention.
  • first metal 87 is preferably a material which is highly biocompatible and which exhibits good bone ingrowth properties.
  • second metal 90 may comprise CoCrMo, cobalt based alloys, stainless steels, zirconium based alloys or other metals and/or metal alloys consistent with the present invention.
  • second metal 90 is preferably a material which has relatively high hardness and which is scratch resistant.
  • the term bimetal may be defined as a composite of two metals, where each of the metals has a different primary constituent. The bimetal construct can be formed from two different commercially pure metals, from two alloys of different base metals, or a combination thereof.
  • the bimetal construct can be fabricated using a variety of techniques.
  • the bimetal construct is fabricated using the method disclosed in pending U.S. patent application Ser. No. 09/079,502, which patent application is hereby incorporated herein by reference.
  • the bimetal construct can be fabricated by other techniques such as plasma spray, diffusion bonding, sintering, or metallurgical methods, e.g., such as a method of the sort disclosed in U.S. Pat. No. 5,323,954 (Shetty).

Abstract

This invention provides for a novel orthopedic prosthesis, specifically a prosthetic acetabular component for a prosthetic total hip joint, that comprises two constructs, one being a metal base construct that engages the bone and the other being a polyethylene bearing construct that attaches to the metal base construct and articulates with a femoral stem prosthetic component on the opposing side of the joint. The metal base construct is composed of two different metals, one of which engages the bone surface and the other of which engages the polyethylene bearing construct. Each of these metals is selected so that its characteristics are well suited to its particular function. More particularly, the first metal (i.e., the one that engages the bone surface) is selected so as to provide a superior bone-engaging face, while the second metal (i.e., the one that engages the polyethylene bearing construct) is selected so as to provide a superior polyethylene-engaging face. By combining the different material characteristics of two different metals in the metal bone construct, it is possible to simultaneously form a superior bone-engaging face and a superior polyethylene-engaging face.

Description

    REFERENCE TO PENDING PRIOR APPLICATIONS
  • This application claims benefit of (1) pending prior U.S. patent application Ser. No. ______ filed Jul. 9, 2001 by Alfred S. Despres III et al. for IMPLANT WITH COMPOSITE COATING (Attorney's Docket HAYES-707 CON), which is in turn a continuation of prior U.S. patent application Ser. No. 09/079,502, filed May 14, 1998 by Alfred S. Despres III et al. for IMPLANT WITH COMPOSITE COATING (Attorney's Docket No. 13928-707/HAYES 079502/HAYES-707), and (2) pending prior U.S. Provisional Patent Application Ser. No. 60/219,962, filed Jul. 20, 2000 by Daniel E. E. Hayes, Jr. et al. for BIMETAL ACETABULAR COMPONENT CONSTRUCT (Attorney's Docket No. HAYES-4 PROV).
  • The two above-identified patent applications are hereby incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to surgical apparatus and procedures in general, and more particularly to orthopedic prostheses for restoring the hip joint.
  • BACKGROUND OF THE INVENTION
  • Joint replacement surgery seeks to replace portions of a joint with prosthetic components so as to provide long-lasting function and pain-free mobility.
  • For example, in the case of a prosthetic total hip joint, the head of the femur is replaced with a prosthetic femoral stem component, and the socket of the acetabulum is replaced by a prosthetic acetabular cup component, whereby to provide a prosthetic total hip joint.
  • In the case of a prosthetic total knee joint, the top of the tibia is replaced by a prosthetic tibial component, and the bottom of the femur is replaced by a prosthetic femoral component, whereby to provide a prosthetic total knee joint.
  • The present invention is directed to orthopedic prostheses for restoring the hip joint and, in particular, to improved prosthetic acetabular components.
  • There is a long and varied history in the use of different materials for joint replacement prostheses. Some early attempts, such as stainless steel hip prostheses, were found to be reasonably successful and are still in use today. Other attempts, such as acrylic femoral head replacements or Teflon “TMJ” replacements, were found to be unacceptable and have been abandoned.
  • Currently, combinations of materials are generally used to form joint replacement prostheses.
  • More particularly, in the case of a prosthetic total hip joint, the prosthetic femoral stem component typically comprises a metal, and the prosthetic acetabular cup component typically comprises a metal seat with a plastic liner.
  • In the case of a prosthetic total knee joint, the prosthetic tibial component typically comprises a metal base topped with a plastic bearing surface, and the prosthetic femoral component typically comprises a metal.
  • The present state of the art is currently dominated by the use of three different materials: titanium and its alloys, cobalt-based alloys and polyethylene plastics. The two metallic materials are generally used for structural constructs (e.g., constructs that must carry the loads transmitted through the joint), and polyethylene is generally used as a bearing material in the joints (e.g., to slide or rotate against an opposing metallic component).
  • Ceramic bearing couples have also been used in the art to some extent, but their use is relatively limited due to price and strength considerations.
  • The vast majority of structural implant constructs are currently made from either titanium alloys (e.g., Ti6Al4V) or cobalt-based alloys (e.g. CoCr alloys, including CoCrMo alloys). These materials have different advantages and disadvantages.
  • More particularly, titanium alloys generally exhibit relatively high general fatigue strength, relatively low stiffness compared to alternative materials, and excellent biocompatibility properties. Titanium alloys, however, also tend to suffer from notch sensitivity in fatigue, which significantly reduces the fatigue strength of the construct when the surface is notched, roughened or porous-coated. Titanium alloys are also prone to scratching and make relatively poor sliding couples with polyethylene.
  • CoCr alloys generally have relatively high fatigue strengths, are relatively notch insensitive, and are relatively tough and resistant to scratching, thus making them excellent candidates for forming sliding couples with polyethylene. However, CoCr alloys are also relatively stiff, which can cause load pattern problems when coupled with flexible human bones, and they are not as biocompatible as many other alloys due to their chrome, and in some cases nickel, content.
  • In the 1980's, titanium alloys were used in many applications to take advantage of their biocompatibility. However, the applications that included sliding surfaces, such as femoral heads for the hip and knee femoral components, tended to have significant problems with wear debris and scratching, and many exhibited clinical failure.
  • From this experience, implants were developed that combined the two aforementioned materials (i.e., titanium and CoCr alloys) in advantageous ways.
  • One early product was a knee femoral component that had a sliding surface of CoCr and a bone ingrowth surface of titanium. This design took advantage of CoCr's excellent wear characteristics in sliding articulations with the tibial component's polyethylene bearing, while still providing excellent bone ingrowth at the bone/prosthesis junction.
  • The aforementioned two materials (i.e., titanium and CoCr alloys) have also been used on hip femoral stem components. More particularly, hip femoral stem components have been developed which comprise an inner core of CoCr covered with a coating of titanium for bone ingrowth. This layered construction is desirable because stems made entirely of titanium, with titanium ingrowth surfaces, are too weak, while stems that are made entirely of CoCr, with CoCr ingrowth surfaces, do not have adequate biocompatibility. The combination of these two materials in a single construct provides a stem that is strong enough and also has a good bone ingrowth surface.
  • Another attempt to improve the biocompatibility of the bone ingrowth surface has been to coat the surface with hydroxyapatite (HA). However, HA, while it yields excellent short term results, has problems with long term stability due to its pH sensitivity. More particularly, the pH of the body may fluctuate due to a variety of conditions such as nutrition and disease, and this can undermine the effectiveness of HA bone ingrowth surface.
  • Another attempt to increase the hardness of the articulating surface has been to coat the articulating surface with a ceramic such as titanium nitride. The main limitation to this approach is that loading and abrading tend to undermine the mechanical integrity of the union between the ceramic coating and the substrate, and this can lead to prosthesis failure.
  • As wear issues relating to the main articulating surfaces have been addressed and incidences of gross and catastrophic wear eliminated, it has been discovered that the locking interface between the polyethylene bearing construct and the metal base construct can also be a significant source of wear debris. More particularly, it has been discovered that small sliding motions in the junction between the polyethylene bearing construct and the metal base construct produce particles of polyethylene that can migrate out of the joint and into the body. Small abrasive particles can also migrate into the interface between the polyethylene bearing construct and the metal base construct and scratch the metal base construct, particularly where the metal base construct is formed out of titanium. This issue of “backside wear” has been a significant issue for research and debate over the last five years or so.
  • Attempts to address this issue have, to date, been limited to polishing the titanium mating surface of the metal base construct, as disclosed in U.S. Pat. No. 5,310,408 and as practiced in the “Reflection Cup” product marketed by Smith+Nephew of Memphis, Tenn. However, polishing a titanium surface has not worked well in previous attempts in sliding couples (i.e., in the femoral head component of a prosthetic total hip and in the prosthetic femoral component of a prosthetic total knee), and it has had only limited success in reducing wear debris at the locking interface between the polyethylene bearing construct and the metal base construct. This is primarily due to the inherent material limitations of the titanium metal base construct in the polished locking mechanism configuration.
  • No existing metallic construct that assembles with a polyethylene bearing is made of two metals (i.e., is bimetallic).
  • No existing bimetallic constructs lock with polyethylene.
  • SUMMARY OF THE INVENTION
  • This invention provides for a novel orthopedic prosthesis, specifically a prosthetic acetabular component for a prosthetic total hip joint, that comprises two constructs, one being a metal base construct that engages the bone and the other being a polyethylene bearing construct that attaches to the metal base construct and articulates with a prosthetic hip component on the opposing side of the joint. The metal base construct is composed of two different metals, one of which engages the bone surface and the other of which engages the polyethylene bearing construct. Each of these metals is selected so that its characteristics are well suited to its particular function. More particularly, the first metal (i.e., the one that engages the bone surface) is selected so as to provide a superior bone-engaging face, while the second metal (i.e., the one that engages the polyethylene bearing construct) is selected so as to provide a superior polyethylene-engaging face. By combining the different material characteristics of two different metals in the metal base construct, it is possible to simultaneously form a superior bone-engaging face and a superior polyethylene-engaging face. Among other things, by selecting two appropriate metals for the metal base construct, superior bone ingrowth can be achieved while still avoiding the aforementioned problems with “backside wear”.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:
  • FIG. 1 is a schematic side view showing a prosthetic total hip joint positioned within a patient's body;
  • FIG. 2 is an exploded schematic side view showing the prosthetic acetabular component of the prosthetic total hip joint shown in FIG. 1; and
  • FIG. 3 is a schematic side view of the prosthetic acetabular component of the prosthetic total hip joint shown in FIG. 1.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Looking first at FIG. 1, there is shown a prosthetic total hip joint 5 which generally comprises a prosthetic acetabular component 10 seated in a recess contained in a prepared hip 15, and a prosthetic femoral stem component 20 which is secured to the top end of a resected femur 25.
  • Prosthetic acetabular component 10 is shown in greater detail in FIGS. 2 and 3. Prosthetic acetabular component 10 generally comprises a metal base construct 30 and a polyethylene bearing construct 35.
  • More particularly, metal seat base construct 30 comprises a metal seat 40 with a rail 60 defining a groove 65 therein.
  • Polyethylene liner construct 35 comprises a domed top surface 75 having an annular flange 85. Flange 85 is sized to snap fit in the groove 65 of metal base construct 30, whereby polyethylene bearing construct 35 may be secured to metal base construct 30.
  • In use, the socket of the acetabulum of hip 15 is removed, metal base construct 30 is secured to hip 15 via screws 55 and press fit with the acetabulum. Then polyethylene liner construct 35 is seated into metal base construct 30 until polyethylene bearing construct 35 engages the metal seat 40.
  • In accordance with the present invention, metal base construct 30 is formed with a bimetal construction. More particularly, the metal base construct 30 is composed of two different metals, a first metal 87 which engages hip 15 and a second metal 90 which engages polyethylene liner construct 35. Each of these metals is selected so that its characteristics are well suited to its particular function. More particularly, first metal 87 (i.e., the one that engages hip 15) is selected so as to provide a superior bone-engaging face, while second metal 90 (i.e., the one that engages polyethylene liner construct 35) is selected so as to provide a superior polyethylene-engaging face. By combining the different material characteristics of two different metals in base metal construct 10, it is possible to simultaneously form a superior bone-engaging face and a superior polyethylene-engaging face. Among other things, by selecting two appropriate metals for the metal base construct, superior bone ingrowth can be achieved while still avoiding the aforementioned problems with “backside wear”.
  • For instance, a base metal construct 10 may be formed whose bone-engaging surfaces are formed from titanium and whose polyethylene-engaging surfaces are formed from CoCrMo. This construction places a good bone ingrowth metal against the bone and a good polyethylene-engaging metal against the polyethylene, whereby to provide a significantly superior prosthetic acetabular component 10.
  • It is also possible to use other metals that are suitable in both strength, biocompatibility, and joinability to make the bimetal tibial component construct.
  • By way of example but not limitation, first metal 87 may comprise titanium, titanium alloys, tantalum, tantalum alloys or other metals and/or metal alloys consistent with the present invention. Among other things, first metal 87 is preferably a material which is highly biocompatible and which exhibits good bone ingrowth properties.
  • By way of further example but not limitation, second metal 90 may comprise CoCrMo, cobalt based alloys, stainless steels, zirconium based alloys or other metals and/or metal alloys consistent with the present invention. Among other things, second metal 90 is preferably a material which has relatively high hardness and which is scratch resistant. For the purposes of the present invention, the term bimetal may be defined as a composite of two metals, where each of the metals has a different primary constituent. The bimetal construct can be formed from two different commercially pure metals, from two alloys of different base metals, or a combination thereof.
  • The bimetal construct can be fabricated using a variety of techniques. In one preferred form of the invention, the bimetal construct is fabricated using the method disclosed in pending U.S. patent application Ser. No. 09/079,502, which patent application is hereby incorporated herein by reference. Alternatively, the bimetal construct can be fabricated by other techniques such as plasma spray, diffusion bonding, sintering, or metallurgical methods, e.g., such as a method of the sort disclosed in U.S. Pat. No. 5,323,954 (Shetty).

Claims (14)

1.-11. (canceled)
12. A prosthetic acetabular component for a hip joint, said prosthetic acetabular component comprising two constructs, one being a metal base construct that engages the bone and the other being a non-metal bearing construct that attaches to the metal base construct and articulates with a femoral component on the opposing side of the hip joint, where said metal base construct is composed of two different metals, a first metal which engages the bone surface and a second metal which engages the non-metal bearing construct, with the first metal being selected so as to provide a superior bone-engaging face, and the second metal being selected so as to provide a superior non-metal bearing-engaging face.
13. A prosthetic acetabular component according to claim 12 wherein said first metal comprises titanium.
14. A prosthetic acetabular component according to claim 12 wherein said first metal comprises a titanium alloy.
15. A prosthetic acetabular component according to claim 12 wherein said first metal comprises tantalum.
16. A prosthetic acetabular component according to claim 12 wherein said first metal comprises a tantalum alloy.
17. A prosthetic acetabular component according to claim 12 wherein said first metal comprises a material which is highly biocompatible and which exhibits good bone ingrowth properties.
18. A prosthetic acetabular component according to claim 12 wherein said second metal comprises CoCrMo.
19. A prosthetic acetabular component according to claim 12 wherein said second metal comprises a cobalt based alloy.
20. A prosthetic acetabular component according to claim 12 wherein said second metal comprises a stainless steel.
21. A prosthetic acetabular component according to claim 12 wherein said second metal comprises a zirconium based alloy.
22. A prosthetic acetabular component according to claim 12 wherein said second metal comprises a material which has relatively high hardness and which is scratch resistant.
23. A prosthetic acetabular component for a hip joint, said prosthetic acetabular component comprising two constructs, one being a base construct that engages the bone and the other being a bearing construct that attaches to the base construct and articulates with a femoral component on the opposing side of the joint, where said base construct is composed of two different metals, a first metal which engages the bone surface and a second metal which engages the bearing construct, with the first metal being selected so as to provide a superior bone-engaging face, and the second metal being selected so as to provide a superior bearing-engaging face.
24. A prosthetic component for a joint, said prosthetic component comprising two constructs, one being a base construct that engages the bone and the other being a bearing construct that attaches to the base construct and articulates with a joint component on the opposing side of the joint, where said base construct is composed of two different materials, a first material which engages the bone surface and a second material which engages the bearing construct, with the first material being selected so as to provide a superior bone-engaging face, and the second material being selected so as to provide a superior bearing-engaging face.
US12/928,636 1998-05-14 2010-12-14 Bimetal acetabular component construct for hip joint prosthesis Abandoned US20110295381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/928,636 US20110295381A1 (en) 1998-05-14 2010-12-14 Bimetal acetabular component construct for hip joint prosthesis

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/079,502 US6261322B1 (en) 1998-05-14 1998-05-14 Implant with composite coating
US09/901,310 US7105030B2 (en) 1998-05-14 2001-07-09 Implant with composite coating
US09/910,653 US6827742B2 (en) 1998-05-14 2001-07-19 Bimetal acetabular component construct for hip joint prosthesis
US10/989,245 US7850738B2 (en) 1998-05-14 2004-11-15 Bimetal acetabular component construct for hip joint prosthesis
US12/928,636 US20110295381A1 (en) 1998-05-14 2010-12-14 Bimetal acetabular component construct for hip joint prosthesis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/989,245 Continuation US7850738B2 (en) 1998-05-14 2004-11-15 Bimetal acetabular component construct for hip joint prosthesis

Publications (1)

Publication Number Publication Date
US20110295381A1 true US20110295381A1 (en) 2011-12-01

Family

ID=22150964

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/079,502 Expired - Lifetime US6261322B1 (en) 1998-05-14 1998-05-14 Implant with composite coating
US09/901,310 Expired - Fee Related US7105030B2 (en) 1998-05-14 2001-07-09 Implant with composite coating
US11/329,273 Expired - Fee Related US7445640B2 (en) 1998-05-14 2006-01-10 Implant with composite coating
US12/290,876 Expired - Lifetime US8167954B2 (en) 1998-05-14 2008-11-04 Implant with composite coating
US12/928,636 Abandoned US20110295381A1 (en) 1998-05-14 2010-12-14 Bimetal acetabular component construct for hip joint prosthesis

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/079,502 Expired - Lifetime US6261322B1 (en) 1998-05-14 1998-05-14 Implant with composite coating
US09/901,310 Expired - Fee Related US7105030B2 (en) 1998-05-14 2001-07-09 Implant with composite coating
US11/329,273 Expired - Fee Related US7445640B2 (en) 1998-05-14 2006-01-10 Implant with composite coating
US12/290,876 Expired - Lifetime US8167954B2 (en) 1998-05-14 2008-11-04 Implant with composite coating

Country Status (7)

Country Link
US (5) US6261322B1 (en)
EP (1) EP1093384B1 (en)
AT (1) ATE415983T1 (en)
AU (1) AU3650199A (en)
CA (1) CA2354065A1 (en)
DE (1) DE69940020D1 (en)
WO (1) WO1999058167A1 (en)

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617242B2 (en) * 2001-05-25 2013-12-31 Conformis, Inc. Implant device and method for manufacture
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
US6261322B1 (en) * 1998-05-14 2001-07-17 Hayes Medical, Inc. Implant with composite coating
US6827742B2 (en) * 1998-05-14 2004-12-07 Daniel E. E. Hayes, Jr. Bimetal acetabular component construct for hip joint prosthesis
US7653923B2 (en) 2000-02-18 2010-01-26 Prime Research Alliance E, Inc. Scheduling and presenting IPG ads in conjunction with programming ads in a television environment
DE19951477A1 (en) 1999-10-26 2001-05-03 Biotronik Mess & Therapieg Stent
EP1244606B1 (en) * 1999-12-21 2005-04-27 CeramTec AG Innovative Ceramic Engineering Coating aluminium oxide ceramics with hydroxyl apatite
US8632583B2 (en) 2011-05-09 2014-01-21 Palmaz Scientific, Inc. Implantable medical device having enhanced endothelial migration features and methods of making the same
DE60111253T2 (en) * 2000-07-20 2006-04-20 Hayes Medical, Inc., El Dorado Hills RAIL INSERT FROM A BIMETAL FOR APPLICATION IN A KNEE PROSTHESIS
US20020106611A1 (en) * 2001-01-19 2002-08-08 Sutapa Bhaduri Metal part having a dense core and porous periphery, biocompatible prosthesis and microwave sintering
US6599322B1 (en) * 2001-01-25 2003-07-29 Tecomet, Inc. Method for producing undercut micro recesses in a surface, a surgical implant made thereby, and method for fixing an implant to bone
US7018418B2 (en) * 2001-01-25 2006-03-28 Tecomet, Inc. Textured surface having undercut micro recesses in a surface
US6620332B2 (en) 2001-01-25 2003-09-16 Tecomet, Inc. Method for making a mesh-and-plate surgical implant
US7597715B2 (en) 2005-04-21 2009-10-06 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US8123814B2 (en) 2001-02-23 2012-02-28 Biomet Manufacturing Corp. Method and appartus for acetabular reconstruction
US6949251B2 (en) * 2001-03-02 2005-09-27 Stryker Corporation Porous β-tricalcium phosphate granules for regeneration of bone tissue
WO2002083194A1 (en) * 2001-04-12 2002-10-24 Therics, Inc. Method and apparatus for engineered regenerative biostructures
US20050177237A1 (en) * 2001-04-12 2005-08-11 Ben Shappley Spinal cage insert, filler piece and method of manufacturing
EP1389978B1 (en) * 2001-05-01 2009-01-07 Amedica Corporation Radiolucent bone graft
US7695521B2 (en) 2001-05-01 2010-04-13 Amedica Corporation Hip prosthesis with monoblock ceramic acetabular cup
US7776085B2 (en) * 2001-05-01 2010-08-17 Amedica Corporation Knee prosthesis with ceramic tibial component
US20050177238A1 (en) * 2001-05-01 2005-08-11 Khandkar Ashok C. Radiolucent bone graft
EP1408874B1 (en) * 2001-06-14 2012-08-08 Amedica Corporation Metal-ceramic composite articulation
SE519531C2 (en) * 2001-07-04 2003-03-11 Nobel Biocare Ab Implants including pore arrangements coated with calcium phosphate
WO2003034951A1 (en) * 2001-10-20 2003-05-01 Osseobiotek Ltd Implant and method of manufacturing thereof
CA2466947C (en) 2001-11-19 2012-05-22 Scil Technology Gmbh A homogeneously coated device having osteoinductive and osteoconductive properties
ATE317070T1 (en) * 2001-11-23 2006-02-15 Univ Duisburg Essen IMPLANT
EP1358859A1 (en) * 2002-04-29 2003-11-05 Politecnico Di Milano Bone prostheses having multilayer interface
US20040000540A1 (en) * 2002-05-23 2004-01-01 Soboyejo Winston O. Laser texturing of surfaces for biomedical implants
US20040002766A1 (en) * 2002-06-27 2004-01-01 Gordon Hunter Prosthetic devices having diffusion-hardened surfaces and bioceramic coatings
DK1539261T3 (en) * 2002-09-10 2006-08-07 Scil Technology Gmbh Metal implant coated under reduced oxygen concentration with osteoinductive protein
US20040053197A1 (en) * 2002-09-16 2004-03-18 Zoran Minevski Biocompatible implants
EP1551569B1 (en) 2002-09-26 2017-05-10 Advanced Bio Prosthetic Surfaces, Ltd. Implantable materials having engineered surfaces and method of making same
US8268340B2 (en) 2002-09-26 2012-09-18 Advanced Bio Prosthetic Surfaces, Ltd. Implantable materials having engineered surfaces and method of making same
US8679517B2 (en) 2002-09-26 2014-03-25 Palmaz Scientific, Inc. Implantable materials having engineered surfaces made by vacuum deposition and method of making same
CA2448592C (en) 2002-11-08 2011-01-11 Howmedica Osteonics Corp. Laser-produced porous surface
US20060147332A1 (en) * 2004-12-30 2006-07-06 Howmedica Osteonics Corp. Laser-produced porous structure
JP2006510452A (en) * 2002-12-17 2006-03-30 アメディカ コーポレイション Total disc implant
US20040148033A1 (en) * 2003-01-24 2004-07-29 Schroeder David Wayne Wear surface for metal-on-metal articulation
US20040167632A1 (en) * 2003-02-24 2004-08-26 Depuy Products, Inc. Metallic implants having roughened surfaces and methods for producing the same
US20050155679A1 (en) * 2003-04-09 2005-07-21 Coastcast Corporation CoCr alloys and methods for making same
US7938861B2 (en) * 2003-04-15 2011-05-10 Depuy Products, Inc. Implantable orthopaedic device and method for making the same
US7520947B2 (en) 2003-05-23 2009-04-21 Ati Properties, Inc. Cobalt alloys, methods of making cobalt alloys, and implants and articles of manufacture made therefrom
US20050211680A1 (en) * 2003-05-23 2005-09-29 Mingwei Li Systems and methods for laser texturing of surfaces of a substrate
US7270679B2 (en) * 2003-05-30 2007-09-18 Warsaw Orthopedic, Inc. Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance
US7067169B2 (en) * 2003-06-04 2006-06-27 Chemat Technology Inc. Coated implants and methods of coating
US20040267376A1 (en) * 2003-06-25 2004-12-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) Ceramic member for medical implant and its production method
US8062365B2 (en) * 2003-08-04 2011-11-22 Warsaw Orthopedic, Inc. Bone supporting devices with bio-absorbable end members
US20050085922A1 (en) * 2003-10-17 2005-04-21 Shappley Ben R. Shaped filler for implantation into a bone void and methods of manufacture and use thereof
US7001672B2 (en) * 2003-12-03 2006-02-21 Medicine Lodge, Inc. Laser based metal deposition of implant structures
US20050165472A1 (en) * 2004-01-22 2005-07-28 Glocker David A. Radiopaque coating for biomedical devices
US20070106374A1 (en) * 2004-01-22 2007-05-10 Isoflux, Inc. Radiopaque coating for biomedical devices
US8002822B2 (en) 2004-01-22 2011-08-23 Isoflux, Inc. Radiopaque coating for biomedical devices
US7393589B2 (en) * 2004-01-30 2008-07-01 Ionbond, Inc. Dual layer diffusion bonded chemical vapor coating for medical implants
US20050196519A1 (en) * 2004-03-08 2005-09-08 Depuy Products, Inc. Apparatus for producing a biomimetic coating on a medical implant
US7744635B2 (en) * 2004-06-09 2010-06-29 Spinal Generations, Llc Spinal fixation system
WO2006004645A2 (en) * 2004-06-28 2006-01-12 Isoflux, Inc. Porous coatings for biomedical implants
CA2573329A1 (en) * 2004-07-13 2006-02-16 Isoflux, Inc. Porous coatings on electrodes for biomedical implants
GB0422666D0 (en) * 2004-10-12 2004-11-10 Benoist Girard Sas Prosthetic acetabular cups
US7862835B2 (en) * 2004-10-27 2011-01-04 Boston Scientific Scimed, Inc. Method of manufacturing a medical device having a porous coating thereon
CH697330B1 (en) 2004-12-28 2008-08-29 Synthes Gmbh Intervertebral prosthesis.
US20060184251A1 (en) * 2005-01-07 2006-08-17 Zongtao Zhang Coated medical devices and methods of making and using
US20060230288A1 (en) * 2005-03-29 2006-10-12 International Business Machines Corporation Source code classification method for malicious code detection
US8266780B2 (en) * 2005-04-21 2012-09-18 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US8021432B2 (en) 2005-12-05 2011-09-20 Biomet Manufacturing Corp. Apparatus for use of porous implants
US8066778B2 (en) * 2005-04-21 2011-11-29 Biomet Manufacturing Corp. Porous metal cup with cobalt bearing surface
US8292967B2 (en) * 2005-04-21 2012-10-23 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US8414907B2 (en) * 2005-04-28 2013-04-09 Warsaw Orthopedic, Inc. Coatings on medical implants to guide soft tissue healing
US9119901B2 (en) * 2005-04-28 2015-09-01 Warsaw Orthopedic, Inc. Surface treatments for promoting selective tissue attachment to medical impants
US7901462B2 (en) * 2005-06-23 2011-03-08 Depuy Products, Inc. Implants with textured surface and methods for producing the same
US9763788B2 (en) 2005-09-09 2017-09-19 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
US8936805B2 (en) 2005-09-09 2015-01-20 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
US8518123B2 (en) * 2005-09-09 2013-08-27 Board Of Trustees Of The University Of Arkansas System and method for tissue generation and bone regeneration
US20070078521A1 (en) * 2005-09-30 2007-04-05 Depuy Products, Inc. Aluminum oxide coated implants and components
ES2726355T3 (en) 2005-11-14 2019-10-03 Biomet 3I Llc Deposition of discrete nanoparticles on an implant surface
US8728387B2 (en) 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
US8070821B2 (en) * 2005-12-27 2011-12-06 Howmedica Osteonics Corp. Hybrid femoral implant
CA2572095C (en) * 2005-12-30 2009-12-08 Howmedica Osteonics Corp. Laser-produced implants
US20080299337A1 (en) * 2006-02-09 2008-12-04 Isoflux, Inc. Method for the formation of surfaces on the inside of medical devices
EP1826293A1 (en) * 2006-02-09 2007-08-29 Isoflux, Inc. Formation of nanoscale surfaces for the attachment of biological materials
US8252058B2 (en) * 2006-02-16 2012-08-28 Amedica Corporation Spinal implant with elliptical articulatory interface
US7635447B2 (en) * 2006-02-17 2009-12-22 Biomet Manufacturing Corp. Method and apparatus for forming porous metal implants
US20070198093A1 (en) * 2006-02-17 2007-08-23 Amedica Corporation Spinal implant with offset keels
US20070288021A1 (en) * 2006-06-07 2007-12-13 Howmedica Osteonics Corp. Flexible joint implant
WO2008016713A2 (en) * 2006-08-02 2008-02-07 Inframat Corporation Lumen-supporting devices and methods of making and using
US20080069854A1 (en) * 2006-08-02 2008-03-20 Inframat Corporation Medical devices and methods of making and using
US8147861B2 (en) 2006-08-15 2012-04-03 Howmedica Osteonics Corp. Antimicrobial implant
NZ550531A (en) * 2006-10-12 2009-05-31 Canterprise Ltd A method of producing an implant with an improved bone growth surface
ES2729425T3 (en) 2006-10-24 2019-11-04 Biomet 3I Llc Deposition of discrete nanoparticles on a nanostructured surface of an implant
NL1032851C2 (en) * 2006-11-10 2008-05-14 Fondel Finance B V Kit and method for fixing a prosthesis or part thereof and / or filling bony defects.
US20080131604A1 (en) * 2006-11-30 2008-06-05 Shuangbiao Liu Textured coating on a component surface
US20080150028A1 (en) * 2006-12-21 2008-06-26 Advanced Micro Devices, Inc. Zero interface polysilicon to polysilicon gate for semiconductor device
CN101657564A (en) 2007-02-12 2010-02-24 莲花应用技术有限责任公司 Prepare matrix material with ald
WO2008109016A1 (en) * 2007-03-05 2008-09-12 Signal Medical Corporation Metal/alloy coated ceramic
US8066770B2 (en) * 2007-05-31 2011-11-29 Depuy Products, Inc. Sintered coatings for implantable prostheses
EP2170222B1 (en) * 2007-06-11 2022-02-23 Smith & Nephew, Inc. Ceramic layered medical implant
US20090010990A1 (en) * 2007-06-20 2009-01-08 Little Marisa A Process for depositing calcium phosphate therapeutic coatings with controlled release rates and a prosthesis coated via the process
EP2014319A1 (en) 2007-07-09 2009-01-14 Astra Tech AB A bone tissue implant comprising strontium ions
EP2014259A1 (en) * 2007-07-09 2009-01-14 Astra Tech AB A bone tissue implant comprising lithium ions
EP2022447A1 (en) 2007-07-09 2009-02-11 Astra Tech AB Nanosurface
WO2009014718A1 (en) 2007-07-24 2009-01-29 Porex Corporation Porous laser sintered articles
CN101842062B (en) * 2007-09-25 2013-04-03 拜欧米特制造公司 Cementless tibial tray
WO2009040124A1 (en) * 2007-09-26 2009-04-02 Straumann Holding Ag Dental implant system
WO2009097218A1 (en) 2008-01-28 2009-08-06 Biomet 3I, Llc Implant surface with increased hydrophilicity
GB0809721D0 (en) * 2008-05-28 2008-07-02 Univ Bath Improvements in or relating to joints and/or implants
US20110059149A1 (en) * 2008-06-16 2011-03-10 Little Marisa A Process for depositing calcium phosphate therapeutic coatings with different release rates and a prosthesis coated via the process
US8414671B2 (en) * 2008-10-06 2013-04-09 Augustine Biomedical And Design, Llc Personal air filtration device for use with bedding structure
GB0821927D0 (en) * 2008-12-01 2009-01-07 Ucl Business Plc Article and method of surface treatment of an article
EP2199423B1 (en) * 2008-12-16 2013-04-17 Sulzer Metco AG Thermally injected surface layer and orthopaedic implant
US8696759B2 (en) * 2009-04-15 2014-04-15 DePuy Synthes Products, LLC Methods and devices for implants with calcium phosphate
US9399086B2 (en) * 2009-07-24 2016-07-26 Warsaw Orthopedic, Inc Implantable medical devices
US9173748B2 (en) * 2009-08-07 2015-11-03 Ebi, Llc Toroid-shaped spinal disc
US20110035010A1 (en) * 2009-08-07 2011-02-10 Ebi, Llc Toroid-shaped spinal disc
US8124187B2 (en) * 2009-09-08 2012-02-28 Viper Technologies Methods of forming porous coatings on substrates
US20110089041A1 (en) * 2009-10-19 2011-04-21 Biomet Manufacturing Corp. Methods of depositing discrete hydroxyapatite regions on medical implants
US20110143127A1 (en) * 2009-12-11 2011-06-16 Biomet Manufacturing Corp. Methods for coating implants
EP2512383B1 (en) 2009-12-14 2016-04-13 Ascension Orthopedics, Inc. Humeral head resurfacing implant
US8641418B2 (en) 2010-03-29 2014-02-04 Biomet 3I, Llc Titanium nano-scale etching on an implant surface
US8388887B2 (en) 2010-04-12 2013-03-05 Biomet Manufacturing Corp. Methods for making textured ceramic implants
WO2011130506A1 (en) * 2010-04-15 2011-10-20 Synthes Usa, Llc Coating for a cocrmo substrate
CA2798710C (en) 2010-05-11 2019-08-27 Venkat R. Garigapati Organophosphorous, multivalent metal compounds, & polymer adhesive interpenetrating network compositions & methods
EP2389901B8 (en) * 2010-05-24 2013-05-15 Episurf IP Management AB An implant for cartilage repair
CN103052410B (en) * 2010-07-09 2015-04-22 欧瑞康贸易股份公司(特吕巴赫) Antibacterial medicinal product and method for producing same
US8727203B2 (en) 2010-09-16 2014-05-20 Howmedica Osteonics Corp. Methods for manufacturing porous orthopaedic implants
WO2012088490A1 (en) * 2010-12-23 2012-06-28 Orchid Orthopedics Solutions, Llc Orthopedic implant and method of making same
DE102011010899A1 (en) * 2011-02-04 2012-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method of creating a three-dimensional structure and three-dimensional structure
US8728563B2 (en) 2011-05-03 2014-05-20 Palmaz Scientific, Inc. Endoluminal implantable surfaces, stents, and grafts and method of making same
WO2012158527A2 (en) 2011-05-13 2012-11-22 Howmedica Osteonics Organophosphorous & multivalent metal compound compositions & methods
US9351834B2 (en) 2011-09-12 2016-05-31 Biomet Manufacturing, Llc Negative-positive pressurizable implant
US9408686B1 (en) 2012-01-20 2016-08-09 Conformis, Inc. Devices, systems and methods for manufacturing orthopedic implants
US9364896B2 (en) 2012-02-07 2016-06-14 Medical Modeling Inc. Fabrication of hybrid solid-porous medical implantable devices with electron beam melting technology
EP2828100B1 (en) 2012-03-20 2018-05-16 Biomet 3i, LLC Surface treatment for an implant surface
US9180010B2 (en) 2012-04-06 2015-11-10 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US9135374B2 (en) 2012-04-06 2015-09-15 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
FR2991573A1 (en) * 2012-06-08 2013-12-13 Tornier Sa FEMORAL KNEE PROSTHESIS COMPONENT, METHOD FOR MANUFACTURING SUCH COMPONENT, AND PROSTHETIC COMPRISING SUCH COMPONENT
US8906108B2 (en) * 2012-06-18 2014-12-09 DePuy Synthes Products, LLC Dual modulus hip stem and method of making the same
US9636229B2 (en) 2012-09-20 2017-05-02 Conformis, Inc. Solid freeform fabrication of implant components
IN2015DN02636A (en) 2012-09-21 2015-09-18 Conformis Inc
US9370605B2 (en) 2013-03-04 2016-06-21 Howmedica Osteonics Corp. Cobalt chrome coated titanium implant
US9271839B2 (en) 2013-03-14 2016-03-01 DePuy Synthes Products, Inc. Femoral component for an implantable hip prosthesis
ITMI20132154A1 (en) * 2013-12-20 2015-06-21 Adler Ortho S R L FEMORAL COMPONENT FOR KNEE PROSTHESIS.
JP6573908B2 (en) 2014-05-12 2019-09-11 インテグラ・ライフサイエンシーズ・コーポレイションIntegra LifeSciences Corporation Total joint replacement prosthesis
US10687956B2 (en) 2014-06-17 2020-06-23 Titan Spine, Inc. Corpectomy implants with roughened bioactive lateral surfaces
EP3034033A1 (en) 2014-12-16 2016-06-22 Nobel Biocare Services AG Dental implant
TWI726940B (en) 2015-11-20 2021-05-11 美商泰坦脊柱股份有限公司 Processes for additively manufacturing orthopedic implants
CN105559947A (en) * 2015-12-15 2016-05-11 广州中国科学院先进技术研究所 Preparation method of porous implant filled with O-intersecting lines units
EP3493768A1 (en) 2016-08-03 2019-06-12 Titan Spine, Inc. Implant surfaces that enhance osteoinduction
CN106264802A (en) * 2016-08-05 2017-01-04 北京爱康宜诚医疗器材有限公司 Knee-joint prosthesis
US11039938B2 (en) 2017-07-26 2021-06-22 Optimotion Implants LLC Modular knee prothesis
US11406502B2 (en) 2017-03-02 2022-08-09 Optimotion Implants LLC Orthopedic implants and methods
US10905436B2 (en) 2017-03-02 2021-02-02 Optimotion Implants, Llc Knee arthroplasty systems and methods
US10638970B2 (en) 2017-03-08 2020-05-05 Strive Orthopedics, Inc Method for identifying human joint characteristics
US10537658B2 (en) 2017-03-28 2020-01-21 DePuy Synthes Products, Inc. Orthopedic implant having a crystalline gallium-containing hydroxyapatite coating and methods for making the same
US10537661B2 (en) 2017-03-28 2020-01-21 DePuy Synthes Products, Inc. Orthopedic implant having a crystalline calcium phosphate coating and methods for making the same
US11298747B2 (en) 2017-05-18 2022-04-12 Howmedica Osteonics Corp. High fatigue strength porous structure
CN108103428B (en) * 2017-11-14 2019-11-01 上海交通大学 A kind of surface treatment method of medical metal material
US10973658B2 (en) 2017-11-27 2021-04-13 Titan Spine, Inc. Rotating implant and associated instrumentation
US11135070B2 (en) 2018-02-14 2021-10-05 Titan Spine, Inc. Modular adjustable corpectomy cage
SE543241C2 (en) 2018-04-27 2020-10-27 Episurf Ip Man Ab An implant for cartilage and/or bone repair
EP3954400A1 (en) * 2020-08-10 2022-02-16 Waldemar Link GmbH & Co. KG Coating of a structured implant surface
CN112522666B (en) * 2021-02-05 2022-09-20 中南大学湘雅医院 Artificial joint composite coating based on titanium alloy matrix and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491987A (en) * 1979-09-24 1985-01-08 Clemson University Method of orthopedic implantation and implant product
US5938702A (en) * 1997-10-31 1999-08-17 Sulzer Orthopedics Inc. Locking mechanism for acetabular cup
US6083570A (en) * 1987-03-31 2000-07-04 Lemelson; Jerome H. Synthetic diamond coatings with intermediate amorphous metal bonding layers and methods of applying such coatings

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA962806A (en) 1970-06-04 1975-02-18 Ontario Research Foundation Surgical prosthetic device
GB1462876A (en) 1973-05-17 1977-01-26 Thackray C F Ltd Knee arthroplasty
US4038703A (en) * 1975-11-14 1977-08-02 General Atomic Company Prosthetic devices having a region of controlled porosity
US4216549A (en) 1977-06-02 1980-08-12 Purdue Research Foundation Semi-stable total knee prosthesis
US4166292A (en) 1977-09-08 1979-09-04 Carbomedics, Inc. Stress reinforced artificial joint prostheses
US5192324A (en) * 1982-02-18 1993-03-09 Howmedica Inc. Bone prosthesis with porous coating
US4818559A (en) 1985-08-08 1989-04-04 Sumitomo Chemical Company, Limited Method for producing endosseous implants
US4718905A (en) * 1986-08-13 1988-01-12 Freeman Jerre M Haptic element using ion beam implantation for an intraocular lens
IT1202437B (en) 1987-01-28 1989-02-09 Cremascoli Spa G STRUCTURE OF TOTAL ANCHOR PROSTHESIS, INCLUDING A FEMORAL COMPONENT AND AN ACETABULAR COMPONENT, REALIZED, BOTH, PART IN METAL MATERIAL AND PART IN CERAMIC MATERIAL
US5176712A (en) * 1988-04-12 1993-01-05 Tranquil Prospects Ltd. Endoprostheses with resorption preventing means
US4978358A (en) * 1988-10-06 1990-12-18 Zimmer Inc. Orthopaedic prosthetic device possessing improved composite stem design
ATE85507T1 (en) 1989-03-17 1993-02-15 Thull Roger ACETABULUM FOR CEMENTLESS IMPLANTATION IN THE ACETABULUM OF THE HIP BONE.
NZ233403A (en) * 1989-04-28 1992-09-25 Mcneil Ppc Inc Simulated capsule-like medicament
US5545227A (en) * 1989-12-21 1996-08-13 Smith & Nephew Richards, Inc. Biocompatible low modulus medical implants
US5702448A (en) * 1990-09-17 1997-12-30 Buechel; Frederick F. Prosthesis with biologically inert wear resistant surface
CA2031571A1 (en) 1990-12-05 1992-06-06 The University Of British Columbia Antibiotic loaded joint prosthesis
US5198308A (en) 1990-12-21 1993-03-30 Zimmer, Inc. Titanium porous surface bonded to a cobalt-based alloy substrate in an orthopaedic implant device
EP0525210A4 (en) * 1991-02-20 1993-07-28 Tdk Corporation Composite bio-implant and production method therefor
JP2997330B2 (en) 1991-03-29 2000-01-11 京セラ株式会社 Hip prosthesis
GB9202248D0 (en) 1992-02-03 1992-03-18 Howmedica Prosthesis for attachement without bone cement and method of attaching
US5372130A (en) 1992-02-26 1994-12-13 Djs&T Limited Partnership Face mask assembly and method having a fan and replaceable filter
US5366507A (en) * 1992-03-06 1994-11-22 Sottosanti John S Method for use in bone tissue regeneration
US5344458A (en) 1992-08-06 1994-09-06 Bonutti Peter M Arthroplasty component
US5723011A (en) * 1992-12-21 1998-03-03 Zimmer, Inc. Prosthetic implant and method of making same
US5876454A (en) * 1993-05-10 1999-03-02 Universite De Montreal Modified implant with bioactive conjugates on its surface for improved integration
US5368881A (en) * 1993-06-10 1994-11-29 Depuy, Inc. Prosthesis with highly convoluted surface
US5665118A (en) * 1994-02-18 1997-09-09 Johnson & Johnson Professional, Inc. Bone prostheses with direct cast macrotextured surface regions and method for manufacturing the same
US5443523A (en) 1994-03-18 1995-08-22 Mikhail; W. E. Michael Femoral stem cement mantle
US5593719A (en) * 1994-03-29 1997-01-14 Southwest Research Institute Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys
EP0774931B1 (en) * 1994-08-12 2003-06-25 Diamicron, Inc. Prosthetic joint with at least one diamond coated interface
DE4435680A1 (en) * 1994-10-06 1996-04-11 Merck Patent Gmbh Porous bone substitute materials
JP3681396B2 (en) * 1994-11-30 2005-08-10 インプラント・イノヴェーションズ・インコーポレーテッド Implant surface preparation
US5998024A (en) 1995-02-02 1999-12-07 Rainer H. Frey Biocompatible material and method of manufacture and use thereof
US5820707A (en) 1995-03-17 1998-10-13 Teledyne Industries, Inc. Composite article, alloy and method
US5688557A (en) * 1995-06-07 1997-11-18 Lemelson; Jerome H. Method of depositing synthetic diamond coatings with intermediates bonding layers
US5658338A (en) 1995-09-29 1997-08-19 Tullos; Hugh S. Prosthetic modular bone fixation mantle and implant system
AU7456596A (en) 1995-10-31 1997-05-22 Clarence F. Batchelder Prosthetic joint and method of manufacture
KR970025573A (en) 1995-11-09 1997-06-24 황성관 Artificial hip
US6087553A (en) 1996-02-26 2000-07-11 Implex Corporation Implantable metallic open-celled lattice/polyethylene composite material and devices
GB2312168B (en) 1996-04-17 1999-11-03 Finsbury Meniscal knee prosthesis
EP0803234B1 (en) 1996-04-23 2004-11-17 Biomet Limited Methods of manufacturing an acetabular cup
US5746272A (en) * 1996-09-30 1998-05-05 Johnson & Johnson Professional, Inc. Investment casting
NL1004207C2 (en) 1996-10-04 1998-04-07 Accis B V Joint prosthesis.
US5981827A (en) * 1996-11-12 1999-11-09 Regents Of The University Of California Carbon based prosthetic devices
EP0944368B1 (en) 1996-11-21 2003-02-05 Plus Endoprothetik Ag Artificial acetabular cup
EP0860213A3 (en) 1997-01-03 2002-10-16 Therapol SA Bioactive coating on surfaces
ES2171010T3 (en) * 1997-02-04 2002-08-16 Bekaert Sa Nv COVERING THAT INCLUDES COATS OF DIAMOND TYPE CARBON COMPOSITIONS AND DIAMOND TYPE NANOCOMPOSTS.
ATE273036T1 (en) * 1997-03-27 2004-08-15 Smith & Nephew Inc METHOD FOR PRODUCING CONSTANT THICKNESS OXIDES ON ZIRCONIUM ALLOYS
MY122234A (en) * 1997-05-13 2006-04-29 Inst Neue Mat Gemein Gmbh Nanostructured moulded bodies and layers and method for producing same
US6008432A (en) * 1997-10-01 1999-12-28 Osteonics Corp. Metallic texture coated prosthetic implants
US6045581A (en) 1997-12-12 2000-04-04 Sulzer Orthopedics Inc. Implantable prosthesis having textured bearing surfaces
US6139585A (en) * 1998-03-11 2000-10-31 Depuy Orthopaedics, Inc. Bioactive ceramic coating and method
US6261322B1 (en) * 1998-05-14 2001-07-17 Hayes Medical, Inc. Implant with composite coating
US6827742B2 (en) 1998-05-14 2004-12-07 Daniel E. E. Hayes, Jr. Bimetal acetabular component construct for hip joint prosthesis
AU2695799A (en) 1998-05-22 1999-12-02 Howmedica Osteonics Corp. Acetabular cup assembly with selected bearing
NL1009550C2 (en) 1998-07-03 2000-01-10 Straten Beheer B V Van Joint prosthesis, in particular finger joint prosthesis.
US6096175A (en) * 1998-07-17 2000-08-01 Micro Therapeutics, Inc. Thin film stent
US6280476B1 (en) 1998-10-16 2001-08-28 Biomet Inc. Hip joint prosthesis convertible in vivo to a modular prosthesis
DE50015178D1 (en) 1999-08-10 2008-07-10 Zimmer Gmbh Artificial knee joint
US6368354B2 (en) 1999-10-07 2002-04-09 Exactech, Inc. Acetabular bearing assembly for total hip joints

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491987A (en) * 1979-09-24 1985-01-08 Clemson University Method of orthopedic implantation and implant product
US6083570A (en) * 1987-03-31 2000-07-04 Lemelson; Jerome H. Synthetic diamond coatings with intermediate amorphous metal bonding layers and methods of applying such coatings
US5938702A (en) * 1997-10-31 1999-08-17 Sulzer Orthopedics Inc. Locking mechanism for acetabular cup

Also Published As

Publication number Publication date
US7105030B2 (en) 2006-09-12
CA2354065A1 (en) 1999-11-18
US6261322B1 (en) 2001-07-17
US20020016635A1 (en) 2002-02-07
US7445640B2 (en) 2008-11-04
ATE415983T1 (en) 2008-12-15
US20090254191A1 (en) 2009-10-08
WO1999058167A1 (en) 1999-11-18
DE69940020D1 (en) 2009-01-15
EP1093384B1 (en) 2008-12-03
US8167954B2 (en) 2012-05-01
EP1093384A1 (en) 2001-04-25
AU3650199A (en) 1999-11-29
US20060178751A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US6827742B2 (en) Bimetal acetabular component construct for hip joint prosthesis
US6652588B2 (en) Bimetal tibial component construct for knee joint prosthesis
US20110295381A1 (en) Bimetal acetabular component construct for hip joint prosthesis
US6695884B1 (en) Joint implant having porous coating for mitigation of wear debris dispersion when implanted
US5879404A (en) Acetabular cups and methods of their manufacture
US6096084A (en) Modular ball and socket joint preferably with a ceramic head ball
US20210338437A1 (en) Partial hip prosthesis
Harris Osteolysis and particle disease in hip replacement: a review
Galante et al. Clinical performances of ingrowth surfaces.
US10272177B2 (en) Joint replacement or joint resurfacing devices, systems and methods
US20120136454A1 (en) Hip Prosthesis With Monoblock Ceramic Acetabular Cup
EP0613667A1 (en) Plastic knee femoral implants
JP2000512164A (en) Low wear ball cup artificial joint
JPH10248917A (en) Artificial joint
Jasty et al. Ingrowth of bone in failed fixation of porous-coated femoral components.
Simon et al. Catastrophic failure of the acetabular component in a ceramic-polyethylene bearing total hip arthroplasty
WO2002007652A1 (en) Bimetal acetabular component construct for hip joint prosthesis
Miyakawa et al. Grit-blasted and hydroxyapatite-coated total hip arthroplasty: an 11-to 14-year follow-up study
US20220183847A1 (en) Resurfacing cup for acetabulum hemiarthroplasty of the hip joint
Black et al. Biomaterial aspects of surface replacement arthroplasty of the hip
AMSTUTZ et al. Canine Porous Resurfacing Hip Arthroplasty Long-term Results.
US9060864B1 (en) Joint prosthesis
Swanson The state of the art in joint replacement Part 2: Present Practice and Results
Guida et al. Hip Joint Prosthesis
Cates et al. Early Clinical Results of Hydrox Il

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION