US20110315385A1 - Calcium carbonate to increase viscosity of polyacrylamide fluids - Google Patents

Calcium carbonate to increase viscosity of polyacrylamide fluids Download PDF

Info

Publication number
US20110315385A1
US20110315385A1 US12/823,769 US82376910A US2011315385A1 US 20110315385 A1 US20110315385 A1 US 20110315385A1 US 82376910 A US82376910 A US 82376910A US 2011315385 A1 US2011315385 A1 US 2011315385A1
Authority
US
United States
Prior art keywords
fluid
polyacrylamide
calcium carbonate
viscosity
fluids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/823,769
Inventor
Lijun Lin
Bruno Drochon
Leiming Li
Syed A. Ali
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US12/823,769 priority Critical patent/US20110315385A1/en
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DROCHON, BRUNO, LIN, LIJUN, ALI, SYED A., LI, LEIMING
Publication of US20110315385A1 publication Critical patent/US20110315385A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/665Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/5045Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5083Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • C09K8/685Compositions based on water or polar solvents containing organic compounds containing cross-linking agents

Definitions

  • This invention relates to methods and fluids used in treating a subterranean formation.
  • the invention relates to the preparation and use wellbore fluids and in methods of treating subterranean formations. Also in particular, the invention relates to methods to increase the viscosity of well treatment fluids.
  • fluids are used in operations related to the development and completion of wells that penetrate subterranean formations and to the production of gaseous and liquid hydrocarbons from natural reservoirs. These operations include drilling, perforating, fracturing, modifying the permeability, or controlling the production of sand or water.
  • the fluids employed in these operations are known as drilling fluids, completion fluids, work-over fluids, packer fluids, fracturing fluids, stimulation fluids, conformance or permeability control fluids, wellbore cleanout fluids, gravel pack fluids, consolidation fluids, and the like, and are collectively referred to herein as well treatment fluids.
  • Polymers are frequently used for modifying the rheology and other physical properties of well treatment fluids including viscosity, proppant suspension, and friction reduction. Ways to improve the properties of fluids comprising polymers are needed.
  • Embodiments of this invention relate to a method to form and use a well treatment fluid.
  • Embodiments of this invention relate to compositions and methods of treating a subterranean formation including forming a fluid comprising polyacrylamide and calcium carbonate and introducing the fluid to the formation, wherein the viscosity of the fluid is higher than if no calcium carbonate is present.
  • Embodiments of this invention relate to a composition and method of treating a subterranean formation penetrated by a well bore including forming a fluid comprising polyacrylamide, calcium carbonate, and crosslinker, and introducing the fluid to the formation, wherein the fluid viscosity at 100 s-1 is increased from 300 cP to 600 cP at a temperature of 93 degC.
  • Embodiments of this invention relate to compositions and methods of treating a subterranean formation including forming a fluid comprising polyacrylamide and barium carbonate and introducing the fluid to the formation, wherein the viscosity of the fluid is higher than if no barium carbonate is present.
  • FIG. 1 is a plot of viscosity at 93° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and various amounts of CaCO 3 (0%, 0.018%, 0.036%, and 0.12%).
  • FIG. 2 is a plot of viscosity at 121° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and various amounts of CaCO 3 (0%, 0.018%, 0.036%, and 0.12%).
  • FIG. 3 is a plot of viscosity at 93° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and 0.12 weight percent CaCl 2 .
  • This invention relates to methods and compositions to form and use a well treatment fluid for treating subterranean formations.
  • the invention relates to the use of polyacrylamide to create well treatment fluids.
  • the invention also relates to providing a increase in viscosity of a crosslinked polyacrylamide fluid by using CaCO 3 to increase fluid viscosity of x-linked polyacrylamide fluids.
  • Other carbonate salts such as BaCO3 will function similarly.
  • compositions of the present invention are described herein as comprising certain materials, it should be understood that the composition could optionally comprise two or more chemically different materials. In addition, the composition can also comprise some components other than the ones already cited.
  • the polyacrylamide may be any grade material that is suitable for use in the oil field.
  • the crosslinker may be transition metal based including titanium, zirconium, and halfnium or organic species such as formaldehyde, phenylacetate activated with hexamethylenetetramine, or other similar systems.
  • the polyacrylamide is in a concentration of 0.01% to 5% by weight. In some embodiments, the polyacrylamide may not be crosslinked at all or partially crosslinked.
  • the CaCO 3 is introduced as powders, crystals, granulates, particles, flakes, or fibers. In some embodiments, it must be present in a concentration of 0.001% to 1% by weight.
  • Other fluid components that may be used include a crosslinker such as zirconium or titanium at a concentration of 50 ppm to 5000 ppm.
  • the fluid is used in applications such as hydraulic fracturing, drilling, completions, fluid loss control, sand control, and water control.
  • the fluid will perform at temperatures such as 50 degF (10 degC) to 400 degF (204 degC) and pressures such as 500 to 20,000 psi.
  • Some embodiments may benefit from controlling the pH at a range of 4.5 to 9.5 using an acid, base, or a buffer solution.
  • Examples are given below to illustrate the effect of CaCO 3 on x-linked polyacrylamide fluids.
  • 0.48 weight percent polymer, 0.5 volume percent titanium x-linker solution, and 0.2 volume percent clay stabilizer solution were used.
  • CaCO 3 was added and dispersed well into the fluid.
  • the resulting fluid viscosities were measured on a Grace M5600 rheometer with typical heating time of 15 to 20 minutes to reach the test temperature.
  • FIG. 1 is a plot of viscosity at 93° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and various amounts of CaCO 3 (0%, 0.018%, 0.036%, and 0.12%).
  • FIG. 1 shows how CaCO 3 affects the fluid at 200 degF (93 degC).
  • the fluids with CaCO 3 are apparently more viscous than the base fluid.
  • the amount of CaCO 3 is gradually increased, the fluid becomes more viscous.
  • With 0.12 weight percent CaCO 3 the final fluid exhibits almost double of the viscosity compared with the base fluid. It is believed that CaCO 3 acted as a second cross-linker, resulting in additional cross-linking.
  • 250 degF 121 degC
  • FIG. 1 is a plot of viscosity at 121° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and various amounts of CaCO 3 (0%, 0.018%, 0.036%, and 0.12%).
  • FIG. 1 displays the viscosity increase in the presence of CaCO 3 at 250 degF (121 degC).
  • FIG. 2 is a plot of viscosity at 93° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and 0.12 weight percent CaCl 2 .
  • FIG. 2 shows that, unlike CaCO 3 , CaCl 2 actually reduces the fluid viscosity. So it is not beneficial to have completely soluble calcium ions in the gel. It is likely that other carbonate salts such as BaCO 3 can also result in viscosity increase and this concept may be applicable to other Ti or Zr x-linked polymer gels.

Abstract

Compositions and methods of treating a subterranean formation including forming a fluid comprising polyacrylamide and calcium carbonate and introducing the fluid to the formation, wherein the viscosity of the fluid is higher than if no calcium carbonate is present. Compositions and methods of treating a subterranean formation penetrated by a well bore including forming a fluid comprising polyacrylamide, calcium carbonate, and crosslinker, and introducing the fluid to the formation, wherein the fluid viscosity at 100 s-1 is increased from 300 cP to 600 cP at a temperature of 93 degC. Compositions and methods of treating a subterranean formation penetrated by a well bore including forming a fluid comprising polyacrylamide and barium carbonate and introducing the fluid to the formation, wherein the viscosity of the fluid is higher than if no barium carbonate is present.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to methods and fluids used in treating a subterranean formation. In particular, the invention relates to the preparation and use wellbore fluids and in methods of treating subterranean formations. Also in particular, the invention relates to methods to increase the viscosity of well treatment fluids.
  • 2. Description of the Related Art
  • Various types of fluids are used in operations related to the development and completion of wells that penetrate subterranean formations and to the production of gaseous and liquid hydrocarbons from natural reservoirs. These operations include drilling, perforating, fracturing, modifying the permeability, or controlling the production of sand or water. The fluids employed in these operations are known as drilling fluids, completion fluids, work-over fluids, packer fluids, fracturing fluids, stimulation fluids, conformance or permeability control fluids, wellbore cleanout fluids, gravel pack fluids, consolidation fluids, and the like, and are collectively referred to herein as well treatment fluids.
  • Polymers are frequently used for modifying the rheology and other physical properties of well treatment fluids including viscosity, proppant suspension, and friction reduction. Ways to improve the properties of fluids comprising polymers are needed.
  • SUMMARY OF THE INVENTION
  • Embodiments of this invention relate to a method to form and use a well treatment fluid. Embodiments of this invention relate to compositions and methods of treating a subterranean formation including forming a fluid comprising polyacrylamide and calcium carbonate and introducing the fluid to the formation, wherein the viscosity of the fluid is higher than if no calcium carbonate is present. Embodiments of this invention relate to a composition and method of treating a subterranean formation penetrated by a well bore including forming a fluid comprising polyacrylamide, calcium carbonate, and crosslinker, and introducing the fluid to the formation, wherein the fluid viscosity at 100 s-1 is increased from 300 cP to 600 cP at a temperature of 93 degC. Embodiments of this invention relate to compositions and methods of treating a subterranean formation including forming a fluid comprising polyacrylamide and barium carbonate and introducing the fluid to the formation, wherein the viscosity of the fluid is higher than if no barium carbonate is present.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plot of viscosity at 93° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and various amounts of CaCO3 (0%, 0.018%, 0.036%, and 0.12%).
  • FIG. 2 is a plot of viscosity at 121° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and various amounts of CaCO3 (0%, 0.018%, 0.036%, and 0.12%).
  • FIG. 3 is a plot of viscosity at 93° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and 0.12 weight percent CaCl2.
  • DESCRIPTION OF THE INVENTION
  • This invention relates to methods and compositions to form and use a well treatment fluid for treating subterranean formations. In particular, the invention relates to the use of polyacrylamide to create well treatment fluids. The invention also relates to providing a increase in viscosity of a crosslinked polyacrylamide fluid by using CaCO3 to increase fluid viscosity of x-linked polyacrylamide fluids. Other carbonate salts (such as BaCO3) will function similarly.
  • At the outset, it should be noted that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The description and examples are presented solely for the purpose of illustrating the preferred embodiments of the invention and should not be construed as a limitation to the scope and applicability of the invention. While the compositions of the present invention are described herein as comprising certain materials, it should be understood that the composition could optionally comprise two or more chemically different materials. In addition, the composition can also comprise some components other than the ones already cited.
  • In the summary of the invention and this description, each numerical value should be read once as modified by the term “about” (unless already expressly so modified), and then read again as not so modified unless otherwise indicated in context. Also, in the summary of the invention and this detailed description, it should be understood that a concentration range listed or described as being useful, suitable, or the like, is intended that any and every concentration within the range, including the end points, is to be considered as having been stated. For example, “a range of from 1 to 10” is to be read as indicating each and every possible number along the continuum between about 1 and about 10. Thus, even if specific data points within the range, or even no data points within the range, are explicitly identified or refer to only a few specific, it is to be understood that inventors appreciate and understand that any and all data points within the range are to be considered to have been specified, and that inventors have disclosed and enabled the entire range and all points within the range.
  • It is possible to increase the viscosity of a crosslinked polyacrylamide fluid by using CaCO3 to increase fluid viscosity of crosslinked polyacrylamide fluids. Other carbonate salts (such as BaCO3) will function similarly. The polyacrylamide may be any grade material that is suitable for use in the oil field. The crosslinker may be transition metal based including titanium, zirconium, and halfnium or organic species such as formaldehyde, phenylacetate activated with hexamethylenetetramine, or other similar systems. The polyacrylamide is in a concentration of 0.01% to 5% by weight. In some embodiments, the polyacrylamide may not be crosslinked at all or partially crosslinked.
  • The CaCO3 is introduced as powders, crystals, granulates, particles, flakes, or fibers. In some embodiments, it must be present in a concentration of 0.001% to 1% by weight.
  • Other fluid components that may be used include a crosslinker such as zirconium or titanium at a concentration of 50 ppm to 5000 ppm.
  • The fluid is used in applications such as hydraulic fracturing, drilling, completions, fluid loss control, sand control, and water control.
  • The fluid will perform at temperatures such as 50 degF (10 degC) to 400 degF (204 degC) and pressures such as 500 to 20,000 psi. Some embodiments may benefit from controlling the pH at a range of 4.5 to 9.5 using an acid, base, or a buffer solution.
  • EXAMPLES
  • The following examples are presented to illustrate the preparation and properties of fluid systems, and should not be construed to limit the scope of the invention, unless otherwise expressly indicated in the appended claims. All percentages, concentrations, ratios, parts, etc. are by weight unless otherwise noted or apparent from the context of their use.
  • Examples are given below to illustrate the effect of CaCO3 on x-linked polyacrylamide fluids. For all rheology experiments performed, 0.48 weight percent polymer, 0.5 volume percent titanium x-linker solution, and 0.2 volume percent clay stabilizer solution were used. When required, CaCO3 was added and dispersed well into the fluid. The resulting fluid viscosities were measured on a Grace M5600 rheometer with typical heating time of 15 to 20 minutes to reach the test temperature.
  • FIG. 1 is a plot of viscosity at 93° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and various amounts of CaCO3 (0%, 0.018%, 0.036%, and 0.12%). FIG. 1 shows how CaCO3 affects the fluid at 200 degF (93 degC). The fluids with CaCO3 are apparently more viscous than the base fluid. In addition, as the amount of CaCO3 is gradually increased, the fluid becomes more viscous. With 0.12 weight percent CaCO3, the final fluid exhibits almost double of the viscosity compared with the base fluid. It is believed that CaCO3 acted as a second cross-linker, resulting in additional cross-linking. At higher temperatures, such as 250 degF (121 degC), the same trend still remained.
  • FIG. 1 is a plot of viscosity at 121° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and various amounts of CaCO3 (0%, 0.018%, 0.036%, and 0.12%). FIG. 1 displays the viscosity increase in the presence of CaCO3 at 250 degF (121 degC).
  • For comparison, CaCl2 was used in place of CaCO3 to investigate whether very soluble calcium salts would have a similar effect on the fluid.
  • FIG. 2 is a plot of viscosity at 93° C. as a function of time for fluids containing 0.48 weight percent poly(acrylamide-acrylate), 0.5 volume percent titanium x-linker solution, 0.2 volume percent clay stabilizer solution, and 0.12 weight percent CaCl2.
  • FIG. 2 shows that, unlike CaCO3, CaCl2 actually reduces the fluid viscosity. So it is not beneficial to have completely soluble calcium ions in the gel. It is likely that other carbonate salts such as BaCO3 can also result in viscosity increase and this concept may be applicable to other Ti or Zr x-linked polymer gels.
  • These examples show that the addition of CaCO3 can increase fluid viscosity of x-linked polyacrylamide fluids. This behavior was observed at least at temperatures of 200 degF (93 degC) and 250 degF (121 degC).
  • The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.

Claims (20)

1. A method of treating a subterranean formation penetrated by a well bore, comprising:
forming a fluid comprising polyacrylamide and calcium carbonate; and
introducing the fluid to the formation,
wherein the viscosity of the fluid is higher than if no calcium carbonate is present.
2. The method of claim 1, wherein the fluid also comprises a cross-linker.
3. The method of claim 2, wherein the crosslinker comprises titanium, zirconium, or halfnium.
4. The method of claim 2, wherein the crosslinker comprises formaldehyde or phenylacetate activated with hexamethylenetetramine.
5. The method of claim 1, wherein the polyacrylamide has a molecular weight of 1 thousand to 30 million.
6. The method of claim 1, wherein the polyacrylamide is in a concentration of 0.01 percent to 5 percent by weight.
7. The method of claim 1, wherein the calcium carbonate is a power, crystal, granulate, flake, or fiber.
8. The method of claim 1, wherein the calcium carbonate has a particle size of 0.01 micron to 5 mm.
9. The method of claim 1, wherein the fluid viscosity at 100 s-1 is increased from 300 cP to 600 cP at a temperature of 93 degC.
10. The method of claim 1, further comprising hydraulic fracturing, drilling, perforating, modifying the permeability, completions, fluid loss control, sand control, and water control.
11. A method of treating a subterranean formation, comprising:
forming a fluid comprising polyacrylamide, calcium carbonate, and crosslinker; and
introducing the fluid to the formation,
wherein the fluid viscosity at 100 s-1 is increased from 300 cP to 600 cP at a temperature of 93 degC.
12. The method of claim 11, wherein the crosslinker comprises titanium, zirconium, or halfnium.
13. The method of claim 11, wherein the crosslinker comprises formaldehyde or phenylacetate activated with hexamethylenetetramine.
14. The method of claim 11, wherein the polyacrylamide has a molecular weight of 1 thousand to 30 million.
15. The method of claim 11, wherein the polyacrylamide is in a concentration of 0.01 percent to 5 percent by weight.
16. The method of claim 11, wherein the calcium carbonate is a power, crystal, granulate, flake, or fiber.
17. The method of claim 11, wherein the calcium carbonate has a particle size of 0.01 micron to 5 mm.
18. The method of claim 11, wherein the fluid viscosity at 100 s-1 is increased from 300 cP to 600 cP at a temperature of 93 degC.
19. The method of claim 11, further comprising hydraulic fracturing, drilling, perforating, modifying the permeability, completions, fluid loss control, sand control, and water control.
20. A method of treating a subterranean formation penetrated by a well bore, comprising:
forming a fluid comprising polyacrylamide and barium carbonate; and
introducing the fluid to the formation,
wherein the viscosity of the fluid is higher than if no barium carbonate is present.
US12/823,769 2010-06-25 2010-06-25 Calcium carbonate to increase viscosity of polyacrylamide fluids Abandoned US20110315385A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/823,769 US20110315385A1 (en) 2010-06-25 2010-06-25 Calcium carbonate to increase viscosity of polyacrylamide fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/823,769 US20110315385A1 (en) 2010-06-25 2010-06-25 Calcium carbonate to increase viscosity of polyacrylamide fluids

Publications (1)

Publication Number Publication Date
US20110315385A1 true US20110315385A1 (en) 2011-12-29

Family

ID=45351435

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/823,769 Abandoned US20110315385A1 (en) 2010-06-25 2010-06-25 Calcium carbonate to increase viscosity of polyacrylamide fluids

Country Status (1)

Country Link
US (1) US20110315385A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001498A1 (en) * 2013-07-03 2015-01-08 Clearwater International, Llc Visco elastic surfactant crosslinked with divalent ions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811789A (en) * 1985-08-26 1989-03-14 Mobil Oil Corporation Minimizing formation damage under adverse conditions during gravel pack operations
US5325921A (en) * 1992-10-21 1994-07-05 Baker Hughes Incorporated Method of propagating a hydraulic fracture using fluid loss control particulates
US6006835A (en) * 1998-02-17 1999-12-28 Halliburton Energy Services, Inc. Methods for sealing subterranean zones using foamed resin
US6011075A (en) * 1998-02-02 2000-01-04 Schlumberger Technology Corporation Enhancing gel strength
US6997261B2 (en) * 2002-08-01 2006-02-14 Burts Iii Boyce Donald Conformance improvement additive, conformance treatment fluid made therefrom, method of improving conformance in a subterranean formation
US20060283591A1 (en) * 2005-06-20 2006-12-21 Willberg Dean M Degradable fiber systems for stimulation
US20080026957A1 (en) * 2005-01-24 2008-01-31 Gurmen M N Treatment and Production of Subterranean Formations with Heteropolysaccharides
US20080234147A1 (en) * 2007-03-22 2008-09-25 Leiming Li Method of Treating Subterranean Formation with Crosslinked Polymer Fluid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811789A (en) * 1985-08-26 1989-03-14 Mobil Oil Corporation Minimizing formation damage under adverse conditions during gravel pack operations
US5325921A (en) * 1992-10-21 1994-07-05 Baker Hughes Incorporated Method of propagating a hydraulic fracture using fluid loss control particulates
US6011075A (en) * 1998-02-02 2000-01-04 Schlumberger Technology Corporation Enhancing gel strength
US6006835A (en) * 1998-02-17 1999-12-28 Halliburton Energy Services, Inc. Methods for sealing subterranean zones using foamed resin
US6997261B2 (en) * 2002-08-01 2006-02-14 Burts Iii Boyce Donald Conformance improvement additive, conformance treatment fluid made therefrom, method of improving conformance in a subterranean formation
US20080026957A1 (en) * 2005-01-24 2008-01-31 Gurmen M N Treatment and Production of Subterranean Formations with Heteropolysaccharides
US20060283591A1 (en) * 2005-06-20 2006-12-21 Willberg Dean M Degradable fiber systems for stimulation
US20080234147A1 (en) * 2007-03-22 2008-09-25 Leiming Li Method of Treating Subterranean Formation with Crosslinked Polymer Fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001498A1 (en) * 2013-07-03 2015-01-08 Clearwater International, Llc Visco elastic surfactant crosslinked with divalent ions

Similar Documents

Publication Publication Date Title
CA2945479C (en) Treatment fluid
US7938187B2 (en) Dual functional components and associated methods
US8530393B2 (en) Methods to characterize fracture plugging efficiency for drilling fluids
US20090255677A1 (en) Micro-Crosslinked Gels and Associated Methods
US20120208727A1 (en) High Temperature Fracturing Fluids and Methods
KR20180119556A (en) High temperature crosslinked fracture fluid
MX2014008282A (en) Cellulose nanowhiskers in well services.
MX2008016219A (en) Rheology controlled heterogeneous particle placement in hydraulic fracturing.
Simjou et al. Polyacrylamide gel polymer as water shut-off system: preparation and investigation of physical and chemical properties in one of the Iranian oil reservoirs conditions
WO2017100222A1 (en) Method and composition for controlling fracture geometry
MX2012007645A (en) A method of fluid slug consolidation within a fluid system in downhole applications.
WO2012063199A2 (en) Formate salts for increased stability of polyacrylamide fluids
AU2018202757A1 (en) Gel compositions for hydraulic fracturing applications
US20100175877A1 (en) Method of designing and executing a well treatment
Karadkar et al. In-situ pore plugging using nanosilica based fluid system for gas shutoff
CA2902801C (en) Gel compositions for hydraulic fracturing applications
Holtsclaw et al. Next-generation boron-crosslinked fracturing fluids: breaking the lower limits on polymer loadings
Kalgaonkar et al. Novel in-situ gelled acid system based on inorganic nanoparticles
US20110315385A1 (en) Calcium carbonate to increase viscosity of polyacrylamide fluids
US7923414B2 (en) Rheology modifier comprising a tetrakis(hydroxyalkyl) phosphonium salt for polymer fluids
Prakash et al. Evaluation of fracturing fluid for extreme temperature applications
Prakash et al. Performance Evaluation of High Temperature Fracturing Fluid
WO2016159817A1 (en) Methods for treating high temperature subterranean formations
Songire et al. Effects of Resin-Fluid Interaction on Fracturing Fluid Stability, Proppant Flowback, and Preventive Control Methods
US8579030B2 (en) Triggered polymer viscous pill and methods of using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, LIJUN;DROCHON, BRUNO;LI, LEIMING;AND OTHERS;SIGNING DATES FROM 20100629 TO 20100720;REEL/FRAME:024774/0061

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION