US20110315427A1 - Communication wire - Google Patents

Communication wire Download PDF

Info

Publication number
US20110315427A1
US20110315427A1 US13/222,476 US201113222476A US2011315427A1 US 20110315427 A1 US20110315427 A1 US 20110315427A1 US 201113222476 A US201113222476 A US 201113222476A US 2011315427 A1 US2011315427 A1 US 2011315427A1
Authority
US
United States
Prior art keywords
channels
conductors
twisted pairs
jacket
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/222,476
Inventor
David Wiekhorst
Robert Kenny
Jeff Stutzman
Jim L. Dickman
Scott Juengst
Fred Johnston
Spring Stutzman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commscope Technologies LLC
Commscope Connectivity LLC
Original Assignee
ADC Telecommunications Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/389,254 external-priority patent/US7214880B2/en
Application filed by ADC Telecommunications Inc filed Critical ADC Telecommunications Inc
Priority to US13/222,476 priority Critical patent/US20110315427A1/en
Publication of US20110315427A1 publication Critical patent/US20110315427A1/en
Assigned to COMMSCOPE TECHNOLOGIES LLC reassignment COMMSCOPE TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COMMSCOPE EMEA LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/002Pair constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0233Cables with a predominant gas dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49194Assembling elongated conductors, e.g., splicing, etc.

Definitions

  • the present invention relates to an improved wire and methods of making the same.
  • a twisted pair includes at least one pair of insulated conductors twisted about one another to form a two conductor pair.
  • a number of methods known in the art may be employed to arrange and configure the twisted pairs into various high-performance transmission cable arrangements.
  • a plastic jacket is typically extruded over them to maintain their configuration and to function as a protective layer.
  • the combination is referred to as a multi-pair cable.
  • the signals generated at one end of the cable should ideally arrive at the same time at the opposite end even if they travel along different twisted pair wires. Measured in nanoseconds, the timing difference in signal transmissions between the twisted wire pairs within a cable in response to a generated signal is commonly referred to as “delay skew.” Problems arise when the delay skew of the signal transmitted by one twisted pair and another is too large and the device receiving the signal is not able to properly reassemble the signal. Such a delay skew results in transmission errors or lost data.
  • the dielectric constant (DK) of the insulation affects signal throughput and attenuation values of the wire. That is, the signal throughput increases as the DK decreases and attenuation decreases as DK decreases. Together, a lower DK means a stronger signal arrives more quickly and with less distortion. Thus, a wire with a DK that is lower (approaching 1) is always favored over an insulated conductor with a higher DK, e.g. greater than 2.
  • the DK of the insulation affects the delay skew of the twisted pair.
  • delay skew is that both signals should arrive within 45 nanoseconds (ns) of each other, based on 100 meters of cable.
  • a delay skew of this magnitude is problematic when high frequency signals (greater than 100 MHz) are being transmitted. At these frequencies, a delay skew of less than 20 ns is considered superior and has yet to be achieved in practice.
  • Insulated conductors with ribbed insulation also produced cabling with poor electrical properties.
  • the spaces between ribs may be contaminated with dirt and water.
  • These contaminants negatively affect the DK of the insulated conductor because the contaminants have DKs that are widely varying and typically much higher then the insulation material.
  • the varying DKs of the contaminants will give the overall insulated conductor a DK that varies along its length, which will in turn negatively affect signal speed.
  • contaminants with higher DK will raise the overall DK of the insulation, which also negatively affects signal speed.
  • Insulated conductors with ribbed and channeled insulation also produced cabling with poor physical properties, which in turn degraded the electrical properties. Because of the limited amount of material near the exterior surface of ribbed and known channeled insulation, such insulated conductors have unsatisfactorily low crush strengths; so low that the insulated conductors may not even be able to be spooled without deforming the ribs and channels of the insulation. From a practical standpoint, this is unacceptable because it makes manufacture, storage and installation of this insulated conductor nearly impossible.
  • NFPA National Fire Prevention Association
  • fluoropolymers have desirable electrical properties such as low DK. But fluoropolymers are comparatively expensive. Other compounds are less expensive but do not minimize DK, and thus delay skew, to same extent as fluoropolymers. Furthermore, non-fluorinated polymers propagate flame and generate smoke to a greater extent than fluoropolymers and thus are less desirable material to use in constructing wires.
  • FIG. 1 shows a perspective, stepped cut away view of a wire according to the present invention.
  • FIG. 2 shows a cross-section of a wire according to the present invention.
  • FIG. 3 shows a cross-section of another wire according to the present invention.
  • FIG. 4 shows a perspective view of an extrusion tip for manufacturing a wire according to the present invention.
  • FIG. 5 shows a perspective view of another extrusion tip for manufacturing a wire according to the present invention.
  • FIG. 6 shows a cross-section of a wire with a channeled jacket according to the present invention.
  • FIG. 7 shows a cross-section of a wire with a channeled conductor according to the present invention.
  • the wire of the present invention is designed to have a minimized dielectric constant (DK).
  • DK dielectric constant
  • a minimized DK has several significant effects on the electrical properties of the wire. Signal throughput is increased while signal attenuation is decreased. In addition, delay skew in twisted pair applications is minimized.
  • the minimized DK is achieved through the utilization of an improved insulated conductor or isolated core as described below.
  • a wire 10 of the present invention has a conductor 12 surrounded by a primary insulation 14 , as shown in FIG. 1 .
  • Insulation 14 includes at least one channel 16 that runs the length of the conductor. Multiple channels may be circumferentially disposed about conductor 12 . The multiple channels are separated from each other by legs 18 of insulation.
  • the individual wires 10 may be twisted together to form a twisted pair. Twisted pairs, in turn, may be twisted together to form a multi-pair cable. Any plural number of twisted pairs may be utilized in a cable. Alternately, the channeled insulation may be used in coaxial, fiber optic or other styles of cables.
  • An outer jacket 20 is optionally utilized in wire 10 . Also, an outer jacket may be used to cover a twisted pair or a cable. Additional layers of secondary, un-channeled insulation may be utilized either surrounding the conductor or at other locations within the wire. In addition, twisted-pairs or cables may utilize shielding.
  • the cross-section of one aspect of the present invention is seen in FIG. 2 .
  • the wire 10 includes a conductor 12 surrounded by an insulation 14 .
  • the insulation 14 includes a plurality of channels 16 disposed circumferentially about the conductor 12 that are separated from each other by legs 18 .
  • Channels 16 may have one side bounded by an outer peripheral surface 19 of the conductor 12 .
  • Channels 16 of this aspect generally have a cross-sectional shape that is rectangular.
  • the insulation 14 ′ includes a plurality of channels 16 ′ that differ in shape from the channels 16 of the previous aspect. Specifically, the channels 16 ′ have curved walls with a flat top. Like the previous aspect, the channels 16 ′ are circumferentially disposed about the conductor 12 and are separated by legs 18 ′. Also in this aspect, the insulation 14 ′ may include a second plurality of channels 22 . The second plurality of channels 22 may be surrounded on all sides by the insulation 14 ′. The channels 16 ′ and 22 are preferably used in combination with each other.
  • the channeled insulation protects both the conductor and the signal being transmitted thereon.
  • the composition of the insulation 14 , 14 ′ is important because the DK of the chosen insulation will affect the electrical properties of the overall wire 10 .
  • the insulation 14 , 14 ′ is preferably an extruded polymer layer that is formed with a plurality of channels 16 , 16 ′ separated by intervening legs 18 , 18 ′ of insulation. Channels 22 are also preferably formed in the extruded polymer layer.
  • any of the conventional polymers used in wire and cable manufacturing may be employed in the insulation 14 , 14 ′, such as, for example, a polyolefin or a fluoropolymer.
  • Some polyolefins that may be used include polyethylene and polypropylene.
  • a fluoropolymer as the insulation for one or more of the conductors included in a twisted pair or cable.
  • foamed polymers may be used, a solid polymer is preferred because the physical properties are superior and the required blowing agent can be eliminated.
  • fluoropolymers are preferred when superior physical properties, such as tensile strength or elongation, are required or when superior electrical properties, such as low DK or attenuation, are required. Furthermore, fluoropolymers increase the crush strength of the insulated conductor, while also providing an insulation that is extremely resistant to invasion by contaminants, including water.
  • the channels 16 , 16 ′ and 22 in the insulation generally have a structure where the length of the channel is longer than the width, depth or diameter of the channel.
  • the channels 16 , 16 ′ and 22 are such that they create a pocket in the insulation that runs from one end of the conductor to the other end of the conductor.
  • the channels 16 , 16 ′ and 22 are preferably parallel to an axis defined by the conductor 12 .
  • Air is preferably used in the channels; however, materials other than air may be utilized. For example, other gases may be used as well as other polymers.
  • the channels 16 , 16 ′ and 22 are distinguished from other insulation types that may contain air. For example, channeled insulation differs from foamed insulation, which has closed-cell air pockets within the insulation.
  • the present invention also differs from other types of insulation that are pinched against the conductor to form air pockets, like beads on a string. Whatever material is selected for inclusion in the channels, it is preferably selected to have a DK that differs from the DK of the surrounding insulation.
  • the legs 18 , 18 ′ of the insulation 14 , 14 ′ abut the outer peripheral surface 19 of the conductor 12 .
  • the outer peripheral surface 19 of the conductor 12 forms one face of the channel, as seen in FIGS. 1-3 .
  • the signal travels at or near the surface of the conductor 12 . This is called the ‘skin effect’.
  • the signal can travel through a material that has a DK of 1, that is, air.
  • the area that the legs 18 , 18 ′ of the insulation 14 , 14 ′ occupy on the outer peripheral surface 19 of the conductor 12 is preferably minimized.
  • FIG. 3 A good example of maximizing cross-sectional area and minimizing the occupied area can be seen in FIG. 3 , where channels 16 ′ with curved walls are utilized.
  • the walls curve out to give channels an almost trapezoidal shape.
  • the almost trapezoidal channels 16 ′ have larger cross-sectional areas than generally rectangular channels 16 .
  • the curve walls of adjacent channels cooperate to minimize the size of the leg 18 ′ that abuts the outer peripheral surface 19 of the conductor 12 .
  • the area that the legs 18 , 18 ′ of the insulation 14 occupy on the outer peripheral surface 19 of the conductor 12 can be minimized by reducing the number of channels 16 , 16 ′ utilized. For example instead of the six channels 16 , 16 ′ illustrated in FIGS. 2-3 , five or four channels may be used.
  • the area occupied by the legs 18 , 18 ′ on the outer peripheral surface 19 of the conductor 12 is less than about 75% of the total area, with legs that occupy less than about 50% being more preferred. Insulation with legs that occupy about 35% of the area of outer peripheral surface is most preferred, although areas as small as 15% may be suitable. In this way, the area of the outer peripheral surface where the signal can travel through air is maximized. Stated alternatively, by minimizing the area occupied by the legs, the skin effect is maximized.
  • a good example of increasing strength through channel shape is through the use of an arch.
  • An arch has an inherent strength that improves the crush resistance of the insulated conductor, as discussed in more detail below.
  • Arch shaped channels may also have economic benefits as well. For example, because the insulation is stronger, less insulation may be needed to achieve the desired crush resistance.
  • the channels may have other shapes that are designed to increase the strength of the channels.
  • the channels 22 also minimize the overall DK of the insulation 14 ′ by including air in the insulation 14 ′. Furthermore, the channels 22 can be utilized without compromising the physical integrity of the wire 10 .
  • the cross-sectional area of the channels should be selected to maintain the physical integrity of wire. Namely, it is preferred that any one channel not have a cross-sectional area greater than about 30% of the cross-sectional area of the insulation.
  • a delay skew of less than 20 ns is easily achieved in twisted pair or multi-pair cable applications, with a delay skew of 15 ns preferred.
  • a delay skew of as small as 5 ns is possible if other parameters, e.g. lay length and conductor size, are also selected to minimize delay skew.
  • the lowered DK of the insulation 14 , 14 ′ is advantageous when used in combination with a cable jacket.
  • jacketed plenum cables use a fire resistant PVC (FRPVC) for the outer jacket.
  • FRPVC fire resistant PVC
  • the low DK provided by the insulation 14 , 14 ′ also increases the signal speed on the conductor, which, in turn, increases the signal throughput.
  • Signal throughput of at least 450 ns for 100 meters of twisted pair is obtained, while signal speeds of about 400 ns are possible.
  • the delay skew must be minimized to prevent errors in data transmission from occurring.
  • the signal speed in a twisted pair is also proportional to the cross-sectional area of the channels and thus easily adjustable.
  • the lay length, conductor diameter, and the insulator thickness need not be changed. Rather, the cross-sectional area of the channels can be adjusted to obtain the desired signal speed in balance with other physical and electrical properties of the twisted pair. This is particularly useful in a multi-pair cable.
  • the delay skew of the cable may be thought of as the difference in signal speed between the fastest twisted pair and the slowest twisted pair.
  • channeled insulation has a reduced dissipation factor.
  • the dissipation factor reflects the amount of energy that is absorbed by the insulation over the length of the wire and relates to the signal speed and strength. As the dissipation factor increases, the signal speed and strength decrease. The skin effect means that a signal on the wire travels near the surface of the conductor. This also happens to be where the dissipation factor of the insulation is the lowest so the signal speed is fastest here. As the distance from the conductor increases, the dissipation factor increases and the signal speed begins to slow. In an insulated conductor without channels, the difference in the dissipation factor is nominal.
  • Placement of the channels 16 , 16 ′ adjacent to the outer peripheral surface 19 of the conductor 12 also does not compromise the physical characteristics of the insulated conductor, which in turn preserves the electrical properties of the insulated conductor. Because the exterior surface of the insulated conductor is intact, there is no opportunity for contaminants to become lodged in the channels. The consequence is that the DK of the insulation does not vary over the length of the cable and the DK is not negatively affected by the contaminants.
  • the crush strength of the insulated conductor is not compromised. Namely, sufficient insulation is in place so that the channels are not easily collapsed. Further, the insulation also prevents the shape of the channels from being significantly distorted when torsional stress is applied to the insulated conductor. Consequently, normal activities, i.e., manufacture, storage and installation, do adversely affect the physical properties, and be extension, the electrical properties, of insulated conductor of the present invention.
  • the insulation 14 , 14 ′ has economic and fire prevention benefits as well.
  • the channels 16 , 16 ′ and 22 in the insulation 14 , 14 ′ reduce the materials cost of manufacturing the wire 10 .
  • the amount of insulation material used for the insulation 14 , 14 ′ is significantly reduced compared to non-channeled insulation and the cost of the filler gas is free. Stated alternately, more length of the insulation 14 , 14 ′ can be manufactured from a predetermined amount of starting material when compared to non-channeled insulation.
  • the number and cross-sectional area of the channels 16 , 16 ′ and 22 will ultimately determine the size of the reduction in material costs.
  • the reduction in the amount of material used in the insulation 14 , 14 ′ also reduces the fuel load of the wire 10 .
  • Insulation 14 , 14 ′ gives off fewer decomposition by-products because it has comparatively less insulation material per unit length.
  • the amount of smoke given off and the rate of flame spread and the amount of heat generated during burning are all significantly decreased and the likelihood of passing the pertinent fire safety codes, such as NFPA 255, 259 and 262, is significantly increased.
  • a comparison of the amount of smoke given off and the rate of flame spread may be accomplished through subjecting the wire to be compared to a UL 910 Steiner Tunnel burn test.
  • the Steiner Tunnel burn test serves as the basis for the NFPA 255 and 262 standards. In every case, a wire with channeled insulation where the channels contain air will produce at least 10% less smoke then wire with un-channeled insulation. Likewise, the rate of flame spread will be at least 10% less than that of un-channeled insulation.
  • a preferred embodiment of the present invention is a wire 10 with insulation 14 , 14 ′ made of fluoropolymers where the insulation is less than about 0.010 in thick, while the insulated conductor has a diameter of less than about 0.042 in. Also, the overall DK of the wire is preferably less than about 2.0, while the channels have a cross-sectional are of at least 2.0 ⁇ 10 ⁇ 5 in 2 .
  • the preferred embodiment was subjected to a variety of tests.
  • a test of water invasion a length of channeled insulated conductor was placed in water heated to 90° C. and held there for 30 days. Even under these adverse conditions, there was no evidence of water invasion into the channels.
  • a torsional test a 12 inch length of channeled insulated conductor was twisted 180° about the axis of the conductor. The channels retained more than 95% of their untwisted cross-sectional area. Similar results were found when two insulated conductors were twisted together.
  • a crush strength test the DK of a length of channeled insulated conductor was measured before and after crushing. The before and after DK of the insulated conductor varied by less the 0.01.
  • the insulation is typically made of a single color of material, a multi-colored material may be desirable.
  • a stripe of colored material may be included in the insulation.
  • the colored stripe primarily serves as a visual indicator so that several insulated conductors may be identified.
  • the insulation material is uniform with only the color varying between stripes, although this need not be the case.
  • the stripe does not interfere with the channels.
  • Examples of some acceptable conductors 12 include solid conductors and several conductors twisted together.
  • the conductors 12 may be made of copper, aluminum, copper-clad steel and plated copper. It has been found that copper is the optimal conductor material.
  • the conductor may be glass or plastic fiber, such that fiber optic cable is produced.
  • the wire may include a conductor 72 that has one or more channels 74 in its outer peripheral surface 76 , as seen in FIG. 7 .
  • the channeled conductor 72 is surrounded by insulation 78 to form an insulated, channeled conductor 80 .
  • the individual insulated conductors may be twisted together to form a twisted pair. Twisted pairs, in turn, may be twisted together to form a multi-pair cable. Any plural number of twisted pairs may be utilized in a cable.
  • the one or more channels 74 generally run parallel to the longitudinal axis of the wire, although this is not necessarily the case. With a plurality of channels 74 arrayed on the outer peripheral surface 76 of the conductor 72 , a series of ridges 82 and troughs 84 are created on the conductor.
  • the channeled conductor 72 may be combined with channeled insulation 78 , although this is not necessarily the case.
  • the legs 86 of the channeled insulation 78 preferably contact the channeled conductor 72 at the ridges 82 .
  • This alignment effectively combines the channels 88 of the insulation 78 with the channels 74 of the conductor, creating a significantly larger channel.
  • the larger channel may result in a synergistic effect that enhances the wire beyond the enhancements provided by either channeled insulation or channeled conductor individually.
  • a channeled conductor has two significant advantages over smooth conductors.
  • the surface area of the conductor is increased without increasing the overall diameter of the conductor. Increased surface area is important because of the skin effect, where the signal travels at or near the outer peripheral surface of the conductor. By increasing the surface area of the conductor, the signal is able to travel over more area while the size of the conductor remains the same. Compared to a smooth conductor, more signal can travel on the channeled conductor. Stated alternatively, a channeled conductor has more capacity to transmit data than a smooth conductor. Second, the use of air or other low DK material in the channels of the conductor reduces the effective DK of the wire including channeled conductors.
  • the lower overall DK of the wire is advantageous for several reasons including increased signal speed and lower attenuation and delay skew.
  • a low DK material e.g., air
  • the use of a low DK material, e.g., air, in the channels of the conductor also enhances the skin effect of signal travel. This means that the signal travel faster and with less attenuation.
  • Channeled conductors also have other incidental advantages over smooth conductors such as reduced material cost because more length of the channeled conductor can be manufactured from a predetermined amount of starting material when compared to non-channeled or smooth conductor. The number and cross-sectional area of the channels will ultimately determine the size of the reduction in material costs.
  • the outer jacket 20 may be formed over the twisted wire pairs and as can a foil shield by any conventional process. Examples of some of the more common processes that may be used to form the outer jacket include injection molding and extrusion molding.
  • the jacket is comprised of a plastic material, such as fluoropolymers, polyvinyl chloride (PVC), or a PVC equivalent that is suitable for communication cable use.
  • the wire of the present invention is designed to have a minimized DK.
  • a wire with a minimized DK can be achieved through the utilization of an improved isolated core.
  • the wire may include an outer jacket 50 that includes channels 52 , as seen in FIG. 6 .
  • the channeled jacket 50 surrounds a core element 54 to form an isolated core 56 .
  • the core element is at least one insulated conductor; typically, the core element includes a plurality of twisted-pairs.
  • the core element may include any combination of conductors, insulation, shielding and separators as previously discussed.
  • FIG. 6 shows an isolated core 56 with four twisted pairs 58 , 60 , 62 and 64 twisted around each other and surrounded by a channeled jacket 50 .
  • channeled jackets that is, a jacket with a low DK is desirable for the same reasons an insulation with a low DK is desirable.
  • the low DK of the jacket imparts to the wire similar advantageous physical, electrical and transmission properties as the channeled insulation does.
  • the channels in the jacket lower the overall DK of the jacket, which increases signal speed and decreases attenuation for the jacketed wire as a whole.
  • the dissipation factor of the jacket is significantly reduced through the use of channels, thus increasing signal speed near the core element. The signal speed away from the core element is not increased as much, thus giving a wire that effectively has two different signal speeds; an inner signal speed and an outer signal speed.
  • the difference in signal speed may be significant; e.g. the inner signal speed may be may be more than about 2% faster than the outer signal speed. Preferably, the difference in signal speed is on the order of about 5%, 10% or more.
  • the channeled jacket may have more than one DK such that the jacket includes concentric portions that have different DKs and thus different signal speeds. In addition to the speed differences observed in the jacket, differences in signal speed may also be observed between inner and outer portions of channeled insulation.
  • the dissipation factor of the jacket or insulation may be adjusted by selecting a composite density of the materials for the inner portion and the outer portion.
  • the composite density is the weight of material, either insulation or jacket, for a given volume of material.
  • a material with a lower composite density will have a lower dissipation factor as compared with a higher composite density.
  • a channeled jacket where the channels contain air will have a much lower composite density than an un-channeled jacket.
  • significant portions of the jacket material is replaced by much lighter air, thus reducing the composite density of the jacket, which in turn reduces the dissipation factor of the jacket.
  • Differences in composite density may be accomplished with means other than channels in the jacket or insulation.
  • the channeled jacket has a plurality of channels, but no one of the channels has a cross-sectional of greater than about 30% of the cross-sectional area of the jacket. Furthermore, the preferred channel has a cross-sectional area of at least 2.0 ⁇ 10 ⁇ 5 in 2 .
  • One useful wire has an isolated core diameter of less than about 0.25 in, while the preferred channeled jacket thickness is less than about 0.030 in.
  • the wire includes one or more components with channels, such that the wire includes a channeled conductor, channeled insulation or a channeled jacket.
  • the wire includes a combination of channeled components, including those embodiments where all three of the conductor, insulation and jacket are channeled. When the channeled components are used in combination, a wire is achieved that has a DK that is significantly less than a comparably sized wire without channels.
  • the present invention also includes methods and apparatuses for manufacturing wires with channeled insulation.
  • the insulation is preferably extruded onto the conductor using conventional extrusion processes, although other manufacturing processes are suitable.
  • the insulation material is in a plastic state, not fully solid and not fully liquid, when it reaches the crosshead of the extruder.
  • the crosshead includes a tip that defines the interior diameter and physical features of the extruded insulation.
  • the crosshead also includes a die that defines the exterior diameter of the extruded insulation. Together the tip and die help place the insulation material around the conductor.
  • Known tip and die combinations have only provided an insulation material with a relatively uniform thickness at a cross-section with a tip that is an unadulterated cylinder.
  • the tip and die combinations provide insulation with a uniform and consistent thickness.
  • the tip provides insulation with interior physical features; for example, channels.
  • the die on the other hand, will provide an insulation relatively constant exterior diameter.
  • the tip and die combination of the present invention provides an insulation that has several thicknesses.
  • the insulation 14 shown in FIG. 2 is achieved through the use of an extrusion tip 30 as depicted in FIG. 4 .
  • the tip 30 includes a bore 32 through which the conductor may be fed during the extrusion process.
  • a land 34 on the tip 30 includes a number of grooves 36 .
  • the tip 30 in combination with the die, fashions the insulation 14 that then may be applied to the conductor 12 .
  • the grooves 36 of the land 34 create the legs 18 of the insulation 14 such that the legs 18 contact the conductor 12 (or a layer of an un-channeled insulation).
  • the prominences 38 between the grooves 36 on the land 34 effectively block the insulation material, thus creating the channels 16 in the insulation material as it is extruded.
  • the insulation 14 ′ shown in FIG. 3 is achieved through the use of an extrusion tip as depicted in FIG. 5 .
  • the tip 30 ′ includes a bore 32 through which the conductor may be fed during the extrusion process.
  • the land 34 of the tip 30 ′ includes a number of grooves 36 ′ separated by prominences 38 ′.
  • the grooves 36 ′ are concave, while the prominences 38 ′ are flat topped.
  • the grooves 36 ′ and prominences 38 ′ of the land 34 form convex legs 18 ′ and flat-topped channels 16 ′ of the insulation.
  • the tip 30 ′ also includes a number of rods 40 spaced from the land 34 . The rods 40 act similar to the prominences 38 ′ and effectively block the insulation material, thus creating long channels 22 surrounded by insulation 14 ′, as seen in FIG. 3 .

Abstract

The present invention relates to an improved isolated core or insulated conductor with a low dielectric constant and reduced materials costs. Apparatuses and methods of manufacturing the improved isolated core or insulated conductor are also disclosed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 12/562,752, filed Sep. 18, 2009, which is a continuation of application Ser. No. 12/154,284, filed May 20, 2008, which is a continuation of application Ser. No. 11/800,038, filed May 3, 2007, now U.S. Pat. No. 7,560,648, issued Jul. 14, 2009, which is a continuation of application Ser. No. 10/389,254, filed Mar. 14, 2003, now U.S. Pat. No. 7,214,880, issued May 8, 2007, which is a Continuation-In-Part of application Ser. No. 10/321,296, filed Dec. 16, 2002, now U.S. Pat. No. 6,743,983, issued Jun. 1, 2004, which in turn is a Continuation-In-Part of application Ser. No. 10/253,212, filed Sep. 24, 2002, now abandoned, which applications are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to an improved wire and methods of making the same.
  • BACKGROUND OF THE INVENTION
  • One method of transmitting data and other signals is by using twisted pairs. A twisted pair includes at least one pair of insulated conductors twisted about one another to form a two conductor pair. A number of methods known in the art may be employed to arrange and configure the twisted pairs into various high-performance transmission cable arrangements. Once the twisted pairs are configured into the desired “core,” a plastic jacket is typically extruded over them to maintain their configuration and to function as a protective layer. When more than one twisted pair group is bundled together, the combination is referred to as a multi-pair cable.
  • In cabling arrangements where the conductors within the wires of the twisted pairs are stranded, two different, but interactive sets of twists can be present in the cable configuration. First, there is the twist of the wires that make up the twisted pair. Second, within each individual wire of the twisted pair, there is the twist of the wire strands that form the conductor. Taken in combination, both sets of twists have an interrelated effect on the data signal being transmitted through the twisted pairs.
  • With multi-pair cables, the signals generated at one end of the cable should ideally arrive at the same time at the opposite end even if they travel along different twisted pair wires. Measured in nanoseconds, the timing difference in signal transmissions between the twisted wire pairs within a cable in response to a generated signal is commonly referred to as “delay skew.” Problems arise when the delay skew of the signal transmitted by one twisted pair and another is too large and the device receiving the signal is not able to properly reassemble the signal. Such a delay skew results in transmission errors or lost data.
  • Moreover, as the throughput of data is increased in high-speed data communication applications, delay skew problems can become increasingly magnified. Even the delay in properly reassembling a transmitted signal because of signal skew will significantly and adversely affect signal throughput. Thus, as more complex systems with needs for increased data transmission rates are deployed in networks, a need for improved data transmission has developed. Such complex, higher-speed systems require multi-pair cables with stronger signals, and minimized delay skew.
  • The dielectric constant (DK) of the insulation affects signal throughput and attenuation values of the wire. That is, the signal throughput increases as the DK decreases and attenuation decreases as DK decreases. Together, a lower DK means a stronger signal arrives more quickly and with less distortion. Thus, a wire with a DK that is lower (approaching 1) is always favored over an insulated conductor with a higher DK, e.g. greater than 2.
  • In twisted pair applications, the DK of the insulation affects the delay skew of the twisted pair. Generally accepted delay skew, according to EIA/TIA 568-A-1, is that both signals should arrive within 45 nanoseconds (ns) of each other, based on 100 meters of cable. A delay skew of this magnitude is problematic when high frequency signals (greater than 100 MHz) are being transmitted. At these frequencies, a delay skew of less than 20 ns is considered superior and has yet to be achieved in practice.
  • In addition, previously, the only way to affect the delay skew in a particular twisted pair or multi-pair cable was to adjust the lay length or degree of twist of the insulated conductors. This in turn required a redesign of the insulated conductor, including changing the diameter of the conductor and the thickness of the insulation to maintain suitable electrical properties, e.g. impedance and attenuation.
  • One attempt at an improved insulated conductor included the use of ribs on the exterior surface of the insulation or channels within the insulation but close to the exterior surface of the insulation. The ribbed insulation, however, was unsatisfactory because it was difficult, if not impossible, to make the insulation with exterior surface features. Because of the nature of the insulation material used and the nature of process used, exterior surface features would be indistinct and poorly formed. Instead of ribs with sharp edges, the ribs would end as rounded mounds. The rounded result is an effect of using materials that do not hold their shape well and of using an extrusion die to form the surface features. Immediately after leaving the extrusion die, the insulation material tends to surge and expand. This surging rounds edges and fills in spaces between features.
  • Insulated conductors with ribbed insulation also produced cabling with poor electrical properties. The spaces between ribs may be contaminated with dirt and water. These contaminants negatively affect the DK of the insulated conductor because the contaminants have DKs that are widely varying and typically much higher then the insulation material. The varying DKs of the contaminants will give the overall insulated conductor a DK that varies along its length, which will in turn negatively affect signal speed. Likewise, contaminants with higher DK will raise the overall DK of the insulation, which also negatively affects signal speed.
  • Insulated conductors with ribbed and channeled insulation also produced cabling with poor physical properties, which in turn degraded the electrical properties. Because of the limited amount of material near the exterior surface of ribbed and known channeled insulation, such insulated conductors have unsatisfactorily low crush strengths; so low that the insulated conductors may not even be able to be spooled without deforming the ribs and channels of the insulation. From a practical standpoint, this is unacceptable because it makes manufacture, storage and installation of this insulated conductor nearly impossible.
  • The crushing of the ribs and channels or otherwise physically stressing the insulation, will change the shape of these features. This will negatively influence the DK of insulation. One type of physical stressing that is a necessary part of cabling is twisting a pair of insulated conductors together. This type of torsional stress cannot be avoided. Thus, the very act of making a twisted pair may severely compromise the electrical properly of these insulated conductors.
  • Another area of concern in the wire and cable field is how the wire performs in a fire. The National Fire Prevention Association (NFPA) set standards for how materials used in residential and commercial building burn. These tests generally measure the amount of smoke given off, the smoke density, rate of flame spread and/or the amount of heat generated by burning the insulated conductor. Successfully completing these tests is an aspect of creating wiring that is considered safe under modern fire codes. As consumers become more aware, successful completion of these tests will also be a selling point.
  • Known materials for use in the insulation of wires, such as fluoropolymers, have desirable electrical properties such as low DK. But fluoropolymers are comparatively expensive. Other compounds are less expensive but do not minimize DK, and thus delay skew, to same extent as fluoropolymers. Furthermore, non-fluorinated polymers propagate flame and generate smoke to a greater extent than fluoropolymers and thus are less desirable material to use in constructing wires.
  • Thus, there is a need for a wire that addresses the limitations of the prior art to effectively minimize delay skew and provide high rates of transmission while also being cost effective and clean burning.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a perspective, stepped cut away view of a wire according to the present invention.
  • FIG. 2 shows a cross-section of a wire according to the present invention.
  • FIG. 3 shows a cross-section of another wire according to the present invention.
  • FIG. 4 shows a perspective view of an extrusion tip for manufacturing a wire according to the present invention.
  • FIG. 5 shows a perspective view of another extrusion tip for manufacturing a wire according to the present invention.
  • FIG. 6 shows a cross-section of a wire with a channeled jacket according to the present invention.
  • FIG. 7 shows a cross-section of a wire with a channeled conductor according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The wire of the present invention is designed to have a minimized dielectric constant (DK). A minimized DK has several significant effects on the electrical properties of the wire. Signal throughput is increased while signal attenuation is decreased. In addition, delay skew in twisted pair applications is minimized. The minimized DK is achieved through the utilization of an improved insulated conductor or isolated core as described below.
  • A wire 10 of the present invention has a conductor 12 surrounded by a primary insulation 14, as shown in FIG. 1. Insulation 14 includes at least one channel 16 that runs the length of the conductor. Multiple channels may be circumferentially disposed about conductor 12. The multiple channels are separated from each other by legs 18 of insulation. The individual wires 10 may be twisted together to form a twisted pair. Twisted pairs, in turn, may be twisted together to form a multi-pair cable. Any plural number of twisted pairs may be utilized in a cable. Alternately, the channeled insulation may be used in coaxial, fiber optic or other styles of cables. An outer jacket 20 is optionally utilized in wire 10. Also, an outer jacket may be used to cover a twisted pair or a cable. Additional layers of secondary, un-channeled insulation may be utilized either surrounding the conductor or at other locations within the wire. In addition, twisted-pairs or cables may utilize shielding.
  • The cross-section of one aspect of the present invention is seen in FIG. 2. The wire 10 includes a conductor 12 surrounded by an insulation 14. The insulation 14 includes a plurality of channels 16 disposed circumferentially about the conductor 12 that are separated from each other by legs 18. Channels 16 may have one side bounded by an outer peripheral surface 19 of the conductor 12. Channels 16 of this aspect generally have a cross-sectional shape that is rectangular.
  • The cross-section of another aspect of the present invention is seen in FIG. 3. The insulation 14′ includes a plurality of channels 16′ that differ in shape from the channels 16 of the previous aspect. Specifically, the channels 16′ have curved walls with a flat top. Like the previous aspect, the channels 16′ are circumferentially disposed about the conductor 12 and are separated by legs 18′. Also in this aspect, the insulation 14′ may include a second plurality of channels 22. The second plurality of channels 22 may be surrounded on all sides by the insulation 14′. The channels 16′ and 22 are preferably used in combination with each other.
  • The channeled insulation protects both the conductor and the signal being transmitted thereon. The composition of the insulation 14, 14′ is important because the DK of the chosen insulation will affect the electrical properties of the overall wire 10. The insulation 14, 14′ is preferably an extruded polymer layer that is formed with a plurality of channels 16, 16′ separated by intervening legs 18, 18′ of insulation. Channels 22 are also preferably formed in the extruded polymer layer.
  • Any of the conventional polymers used in wire and cable manufacturing may be employed in the insulation 14, 14′, such as, for example, a polyolefin or a fluoropolymer. Some polyolefins that may be used include polyethylene and polypropylene. However, when the cable is to be placed into a service environment where good flame resistance and low smoke generation characteristics are required, it may be desirable to use a fluoropolymer as the insulation for one or more of the conductors included in a twisted pair or cable. While foamed polymers may be used, a solid polymer is preferred because the physical properties are superior and the required blowing agent can be eliminated.
  • In addition, fluoropolymers are preferred when superior physical properties, such as tensile strength or elongation, are required or when superior electrical properties, such as low DK or attenuation, are required. Furthermore, fluoropolymers increase the crush strength of the insulated conductor, while also providing an insulation that is extremely resistant to invasion by contaminants, including water.
  • As important as the chemical make up of the insulation 14, 14′ are the structural features of the insulation 14, 14′. The channels 16, 16′ and 22 in the insulation generally have a structure where the length of the channel is longer than the width, depth or diameter of the channel. The channels 16, 16′ and 22 are such that they create a pocket in the insulation that runs from one end of the conductor to the other end of the conductor. The channels 16, 16′ and 22 are preferably parallel to an axis defined by the conductor 12.
  • Air is preferably used in the channels; however, materials other than air may be utilized. For example, other gases may be used as well as other polymers. The channels 16, 16′ and 22 are distinguished from other insulation types that may contain air. For example, channeled insulation differs from foamed insulation, which has closed-cell air pockets within the insulation. The present invention also differs from other types of insulation that are pinched against the conductor to form air pockets, like beads on a string. Whatever material is selected for inclusion in the channels, it is preferably selected to have a DK that differs from the DK of the surrounding insulation.
  • Preferably, the legs 18, 18′ of the insulation 14, 14′ abut the outer peripheral surface 19 of the conductor 12. In this way, the outer peripheral surface 19 of the conductor 12 forms one face of the channel, as seen in FIGS. 1-3. At high frequencies, the signal travels at or near the surface of the conductor 12. This is called the ‘skin effect’. By placing air at the surface of the conductor 12, the signal can travel through a material that has a DK of 1, that is, air. Thus, the area that the legs 18, 18′ of the insulation 14, 14′ occupy on the outer peripheral surface 19 of the conductor 12 is preferably minimized. This may be accomplished by maximizing the cross-sectional area of the channels 16, 16′, and consequently minimizing the size of legs 18, 18′, utilized in the insulation 14, 14′. Also, the shape of the channels 16, 16′ may be selected to minimize the legs 18, 18′ contact area with the conductor 12 and to increase the strength of the channels.
  • A good example of maximizing cross-sectional area and minimizing the occupied area can be seen in FIG. 3, where channels 16′ with curved walls are utilized. The walls curve out to give channels an almost trapezoidal shape. The almost trapezoidal channels 16′ have larger cross-sectional areas than generally rectangular channels 16. Furthermore, the curve walls of adjacent channels cooperate to minimize the size of the leg 18′ that abuts the outer peripheral surface 19 of the conductor 12.
  • Furthermore, the area that the legs 18, 18′ of the insulation 14 occupy on the outer peripheral surface 19 of the conductor 12 can be minimized by reducing the number of channels 16, 16′ utilized. For example instead of the six channels 16, 16′ illustrated in FIGS. 2-3, five or four channels may be used.
  • Preferably, the area occupied by the legs 18, 18′ on the outer peripheral surface 19 of the conductor 12 is less than about 75% of the total area, with legs that occupy less than about 50% being more preferred. Insulation with legs that occupy about 35% of the area of outer peripheral surface is most preferred, although areas as small as 15% may be suitable. In this way, the area of the outer peripheral surface where the signal can travel through air is maximized. Stated alternatively, by minimizing the area occupied by the legs, the skin effect is maximized.
  • A good example of increasing strength through channel shape is through the use of an arch. An arch has an inherent strength that improves the crush resistance of the insulated conductor, as discussed in more detail below. Arch shaped channels may also have economic benefits as well. For example, because the insulation is stronger, less insulation may be needed to achieve the desired crush resistance. The channels may have other shapes that are designed to increase the strength of the channels.
  • The channels 22 also minimize the overall DK of the insulation 14′ by including air in the insulation 14′. Furthermore, the channels 22 can be utilized without compromising the physical integrity of the wire 10.
  • The cross-sectional area of the channels should be selected to maintain the physical integrity of wire. Namely, it is preferred that any one channel not have a cross-sectional area greater than about 30% of the cross-sectional area of the insulation.
  • Through the use of the wire 10 with channeled insulation 14, 14′, a delay skew of less than 20 ns is easily achieved in twisted pair or multi-pair cable applications, with a delay skew of 15 ns preferred. A delay skew of as small as 5 ns is possible if other parameters, e.g. lay length and conductor size, are also selected to minimize delay skew.
  • Also, the lowered DK of the insulation 14, 14′ is advantageous when used in combination with a cable jacket. Typically, jacketed plenum cables use a fire resistant PVC (FRPVC) for the outer jacket. FRPVC has a relatively high DK that negatively affects the impedance and attenuation values of the jacketed cable, but it is inexpensive. The insulation 14, 14′, with its low DK, helps to offset the negative effects of the FRPVC jacket. Practically, a jacketed cable can be given the impedance and attenuation values more like an unjacketed cable.
  • Indeed, the low DK provided by the insulation 14, 14′ also increases the signal speed on the conductor, which, in turn, increases the signal throughput. Signal throughput of at least 450 ns for 100 meters of twisted pair is obtained, while signal speeds of about 400 ns are possible. As signal speeds increase, however, the delay skew must be minimized to prevent errors in data transmission from occurring.
  • Furthermore, since the DK of the channeled insulation is proportional to the cross-sectional area of the channels, the signal speed in a twisted pair is also proportional to the cross-sectional area of the channels and thus easily adjustable. The lay length, conductor diameter, and the insulator thickness need not be changed. Rather, the cross-sectional area of the channels can be adjusted to obtain the desired signal speed in balance with other physical and electrical properties of the twisted pair. This is particularly useful in a multi-pair cable. The delay skew of the cable may be thought of as the difference in signal speed between the fastest twisted pair and the slowest twisted pair. By increasing the cross-sectional area of the channels in the insulation of the slowest twist pair, its signal speed can be increased and thus more closely matched to the signal speed of the fastest twisted pair. The closer the match, the smaller the delay skew.
  • As compared to un-channeled insulation, channeled insulation has a reduced dissipation factor. The dissipation factor reflects the amount of energy that is absorbed by the insulation over the length of the wire and relates to the signal speed and strength. As the dissipation factor increases, the signal speed and strength decrease. The skin effect means that a signal on the wire travels near the surface of the conductor. This also happens to be where the dissipation factor of the insulation is the lowest so the signal speed is fastest here. As the distance from the conductor increases, the dissipation factor increases and the signal speed begins to slow. In an insulated conductor without channels, the difference in the dissipation factor is nominal. With the addition of channels to the insulation, the dissipation factor of the insulation dramatically decreases because of the lower DK of the medium through which the signal travels. Thus, incorporation of channels creates a situation where the signal speed in the channels is significantly different, i.e. faster, than the signal speed in the rest of the insulation. Effectively, an insulated conductor is created with two different signal speeds where the signal speeds can differ by more than about 10%.
  • Placement of the channels 16, 16′ adjacent to the outer peripheral surface 19 of the conductor 12 also does not compromise the physical characteristics of the insulated conductor, which in turn preserves the electrical properties of the insulated conductor. Because the exterior surface of the insulated conductor is intact, there is no opportunity for contaminants to become lodged in the channels. The consequence is that the DK of the insulation does not vary over the length of the cable and the DK is not negatively affected by the contaminants.
  • By placing the channels near the conductor, the crush strength of the insulated conductor is not compromised. Namely, sufficient insulation is in place so that the channels are not easily collapsed. Further, the insulation also prevents the shape of the channels from being significantly distorted when torsional stress is applied to the insulated conductor. Consequently, normal activities, i.e., manufacture, storage and installation, do adversely affect the physical properties, and be extension, the electrical properties, of insulated conductor of the present invention.
  • Besides the desirable effects on the electrical properties of the wire 10, the insulation 14, 14′ has economic and fire prevention benefits as well. The channels 16, 16′ and 22 in the insulation 14, 14′ reduce the materials cost of manufacturing the wire 10. The amount of insulation material used for the insulation 14, 14′ is significantly reduced compared to non-channeled insulation and the cost of the filler gas is free. Stated alternately, more length of the insulation 14, 14′ can be manufactured from a predetermined amount of starting material when compared to non-channeled insulation. The number and cross-sectional area of the channels 16, 16′ and 22 will ultimately determine the size of the reduction in material costs.
  • The reduction in the amount of material used in the insulation 14, 14′ also reduces the fuel load of the wire 10. Insulation 14, 14′ gives off fewer decomposition by-products because it has comparatively less insulation material per unit length. With a decreased fuel load, the amount of smoke given off and the rate of flame spread and the amount of heat generated during burning are all significantly decreased and the likelihood of passing the pertinent fire safety codes, such as NFPA 255, 259 and 262, is significantly increased. A comparison of the amount of smoke given off and the rate of flame spread may be accomplished through subjecting the wire to be compared to a UL 910 Steiner Tunnel burn test. The Steiner Tunnel burn test serves as the basis for the NFPA 255 and 262 standards. In every case, a wire with channeled insulation where the channels contain air will produce at least 10% less smoke then wire with un-channeled insulation. Likewise, the rate of flame spread will be at least 10% less than that of un-channeled insulation.
  • A preferred embodiment of the present invention is a wire 10 with insulation 14, 14′ made of fluoropolymers where the insulation is less than about 0.010 in thick, while the insulated conductor has a diameter of less than about 0.042 in. Also, the overall DK of the wire is preferably less than about 2.0, while the channels have a cross-sectional are of at least 2.0×10−5 in2.
  • The preferred embodiment was subjected to a variety of tests. In a test of water invasion, a length of channeled insulated conductor was placed in water heated to 90° C. and held there for 30 days. Even under these adverse conditions, there was no evidence of water invasion into the channels. In a torsional test, a 12 inch length of channeled insulated conductor was twisted 180° about the axis of the conductor. The channels retained more than 95% of their untwisted cross-sectional area. Similar results were found when two insulated conductors were twisted together. In a crush strength test, the DK of a length of channeled insulated conductor was measured before and after crushing. The before and after DK of the insulated conductor varied by less the 0.01.
  • While the insulation is typically made of a single color of material, a multi-colored material may be desirable. For instance, a stripe of colored material may be included in the insulation. The colored stripe primarily serves as a visual indicator so that several insulated conductors may be identified. Typically, the insulation material is uniform with only the color varying between stripes, although this need not be the case. Preferably, the stripe does not interfere with the channels.
  • Examples of some acceptable conductors 12 include solid conductors and several conductors twisted together. The conductors 12 may be made of copper, aluminum, copper-clad steel and plated copper. It has been found that copper is the optimal conductor material. In addition, the conductor may be glass or plastic fiber, such that fiber optic cable is produced.
  • The wire may include a conductor 72 that has one or more channels 74 in its outer peripheral surface 76, as seen in FIG. 7. In this particular aspect of the invention, the channeled conductor 72 is surrounded by insulation 78 to form an insulated, channeled conductor 80. The individual insulated conductors may be twisted together to form a twisted pair. Twisted pairs, in turn, may be twisted together to form a multi-pair cable. Any plural number of twisted pairs may be utilized in a cable.
  • The one or more channels 74 generally run parallel to the longitudinal axis of the wire, although this is not necessarily the case. With a plurality of channels 74 arrayed on the outer peripheral surface 76 of the conductor 72, a series of ridges 82 and troughs 84 are created on the conductor.
  • As seen in FIG. 7, the channeled conductor 72 may be combined with channeled insulation 78, although this is not necessarily the case. The legs 86 of the channeled insulation 78 preferably contact the channeled conductor 72 at the ridges 82. This alignment effectively combines the channels 88 of the insulation 78 with the channels 74 of the conductor, creating a significantly larger channel. The larger channel may result in a synergistic effect that enhances the wire beyond the enhancements provided by either channeled insulation or channeled conductor individually.
  • A channeled conductor has two significant advantages over smooth conductors. First, the surface area of the conductor is increased without increasing the overall diameter of the conductor. Increased surface area is important because of the skin effect, where the signal travels at or near the outer peripheral surface of the conductor. By increasing the surface area of the conductor, the signal is able to travel over more area while the size of the conductor remains the same. Compared to a smooth conductor, more signal can travel on the channeled conductor. Stated alternatively, a channeled conductor has more capacity to transmit data than a smooth conductor. Second, the use of air or other low DK material in the channels of the conductor reduces the effective DK of the wire including channeled conductors. As discussed above with the channeled insulation, the lower overall DK of the wire is advantageous for several reasons including increased signal speed and lower attenuation and delay skew. Furthermore, the use of a low DK material, e.g., air, in the channels of the conductor also enhances the skin effect of signal travel. This means that the signal travel faster and with less attenuation. Taken together, the two advantages of channeled conductors over smooth conductors create a wire that has more capacity and a faster signal speed.
  • Channeled conductors also have other incidental advantages over smooth conductors such as reduced material cost because more length of the channeled conductor can be manufactured from a predetermined amount of starting material when compared to non-channeled or smooth conductor. The number and cross-sectional area of the channels will ultimately determine the size of the reduction in material costs.
  • The outer jacket 20 may be formed over the twisted wire pairs and as can a foil shield by any conventional process. Examples of some of the more common processes that may be used to form the outer jacket include injection molding and extrusion molding. Preferably, the jacket is comprised of a plastic material, such as fluoropolymers, polyvinyl chloride (PVC), or a PVC equivalent that is suitable for communication cable use.
  • As noted above the wire of the present invention is designed to have a minimized DK. In addition to the use of channeled insulation and conductor, a wire with a minimized DK can be achieved through the utilization of an improved isolated core. Like the insulation and conductor, the wire may include an outer jacket 50 that includes channels 52, as seen in FIG. 6. In this particular aspect of the invention, the channeled jacket 50 surrounds a core element 54 to form an isolated core 56. The core element is at least one insulated conductor; typically, the core element includes a plurality of twisted-pairs. Additionally, the core element may include any combination of conductors, insulation, shielding and separators as previously discussed. For example, FIG. 6 shows an isolated core 56 with four twisted pairs 58, 60, 62 and 64 twisted around each other and surrounded by a channeled jacket 50.
  • Generally, the entire discussion above concerning the chemical and structural advantages for channeled insulation also pertains to channeled jackets; that is, a jacket with a low DK is desirable for the same reasons an insulation with a low DK is desirable. The low DK of the jacket imparts to the wire similar advantageous physical, electrical and transmission properties as the channeled insulation does. For example, the channels in the jacket lower the overall DK of the jacket, which increases signal speed and decreases attenuation for the jacketed wire as a whole. Likewise, the dissipation factor of the jacket is significantly reduced through the use of channels, thus increasing signal speed near the core element. The signal speed away from the core element is not increased as much, thus giving a wire that effectively has two different signal speeds; an inner signal speed and an outer signal speed. The difference in signal speed may be significant; e.g. the inner signal speed may be may be more than about 2% faster than the outer signal speed. Preferably, the difference in signal speed is on the order of about 5%, 10% or more. Stately alternatively, the channeled jacket may have more than one DK such that the jacket includes concentric portions that have different DKs and thus different signal speeds. In addition to the speed differences observed in the jacket, differences in signal speed may also be observed between inner and outer portions of channeled insulation.
  • The dissipation factor of the jacket or insulation may be adjusted by selecting a composite density of the materials for the inner portion and the outer portion. As the name suggests, the composite density is the weight of material, either insulation or jacket, for a given volume of material. A material with a lower composite density will have a lower dissipation factor as compared with a higher composite density. For example, a channeled jacket where the channels contain air will have a much lower composite density than an un-channeled jacket. In the channeled jacket, significant portions of the jacket material is replaced by much lighter air, thus reducing the composite density of the jacket, which in turn reduces the dissipation factor of the jacket. Differences in composite density may be accomplished with means other than channels in the jacket or insulation.
  • As with the channeled insulation, it is desirable to maximize cross-sectional area of the channels in the jacket, minimize the area the legs of the jacket occupy on the core element, all the while maintaining the physical integrity of the wire. Fire protection and economic advantages are also seen with channeled jackets as compared un-channeled jackets.
  • In a wire with a preferred balance of properties, the channeled jacket has a plurality of channels, but no one of the channels has a cross-sectional of greater than about 30% of the cross-sectional area of the jacket. Furthermore, the preferred channel has a cross-sectional area of at least 2.0×10−5 in2. One useful wire has an isolated core diameter of less than about 0.25 in, while the preferred channeled jacket thickness is less than about 0.030 in.
  • In a preferred aspect of the present invention, the wire includes one or more components with channels, such that the wire includes a channeled conductor, channeled insulation or a channeled jacket. In a most preferred aspect, the wire includes a combination of channeled components, including those embodiments where all three of the conductor, insulation and jacket are channeled. When the channeled components are used in combination, a wire is achieved that has a DK that is significantly less than a comparably sized wire without channels.
  • The present invention also includes methods and apparatuses for manufacturing wires with channeled insulation. The insulation is preferably extruded onto the conductor using conventional extrusion processes, although other manufacturing processes are suitable. In a typical insulation extrusion apparatus, the insulation material is in a plastic state, not fully solid and not fully liquid, when it reaches the crosshead of the extruder. The crosshead includes a tip that defines the interior diameter and physical features of the extruded insulation. The crosshead also includes a die that defines the exterior diameter of the extruded insulation. Together the tip and die help place the insulation material around the conductor. Known tip and die combinations have only provided an insulation material with a relatively uniform thickness at a cross-section with a tip that is an unadulterated cylinder. The goal of known tip and die combinations is to provide insulation with a uniform and consistent thickness. In the present invention, the tip provides insulation with interior physical features; for example, channels. The die, on the other hand, will provide an insulation relatively constant exterior diameter. Together, the tip and die combination of the present invention provides an insulation that has several thicknesses.
  • The insulation 14 shown in FIG. 2 is achieved through the use of an extrusion tip 30 as depicted in FIG. 4. The tip 30 includes a bore 32 through which the conductor may be fed during the extrusion process. A land 34 on the tip 30 includes a number of grooves 36. In the extrusion process, the tip 30, in combination with the die, fashions the insulation 14 that then may be applied to the conductor 12. Specifically, in this embodiment, the grooves 36 of the land 34 create the legs 18 of the insulation 14 such that the legs 18 contact the conductor 12 (or a layer of an un-channeled insulation). The prominences 38 between the grooves 36 on the land 34 effectively block the insulation material, thus creating the channels 16 in the insulation material as it is extruded.
  • The insulation 14′ shown in FIG. 3 is achieved through the use of an extrusion tip as depicted in FIG. 5. The tip 30′ includes a bore 32 through which the conductor may be fed during the extrusion process. Like the tip of FIG. 4, the land 34 of the tip 30′ includes a number of grooves 36′ separated by prominences 38′. In this embodiment, the grooves 36′ are concave, while the prominences 38′ are flat topped. Together, the grooves 36′ and prominences 38′ of the land 34 form convex legs 18′ and flat-topped channels 16′ of the insulation. In addition, the tip 30′ also includes a number of rods 40 spaced from the land 34. The rods 40 act similar to the prominences 38′ and effectively block the insulation material, thus creating long channels 22 surrounded by insulation 14′, as seen in FIG. 3.
  • While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.

Claims (10)

1. A data transmission cable comprising:
four or fewer twisted pairs of data transmission conductors; and
a jacket within which the four or fewer twisted pairs of data transmission conductors are located, the jacket defining interior channels that are circumferentially spaced relative to one another about the four or fewer of twisted pairs of data transmission conductors, the interior channels defining legs thereinbetween that project inwardly toward a central axis of the jacket, the legs being attached to the jacket at outer ends and the legs having free, unattached inner ends, the interior channels each having an open end that faces inwardly toward the central axis of the jacket and a closed end, wherein at least a portion of the closed end defines at least one rounded corner adjoining two intersecting sides of the channel, the rounded corner formed by being extruded through an extrusion tip that includes at least one rounded tip surface, the four or fewer twisted pairs of data transmission conductors being exposed to air within the interior channels, the four or fewer twisted pairs of data transmission conductors generally not occupying the interior channels.
2. The cable of claim 1, wherein each of the data transmission conductors of the four or fewer twisted pairs of data transmission conductors is covered by a separate insulation layer.
3. The cable of claim 1, wherein number of interior channels is greater than the number of twisted pairs of data transmission conductors.
4. The cable of claim 1, wherein each of the interior channels has a cross-sectional area less than about 30 percent of a total cross-sectional area of the jacket.
5. A method of extruding an outer jacket of a data transmission cable having a plurality of twisted pairs of conductors, wherein the outer jacket defines a central passage in which the plurality of twisted pairs of conductors is located, the central passage including air, the air in the central passage occupying a volume between the plurality of twisted pairs of conductors, the jacket including legs that project inwardly toward the central axis of the cable, the jacket defining channels located between the legs, the channels including air, the air in the channels being in fluid communication with the air in the central passage that occupies the volume between the plurality of twisted pairs of conductors, wherein each of the channels is defined by at least one curved surface, the method comprising:
providing an extrusion tip that includes a bore and a land defining a number of radially arranged grooves and a number of radially arranged prominences, wherein each prominence defines at least one curved surface;
feeding the conductors through the bore; and
extruding jacket material through the radially arranged grooves, wherein the at least one curved surface defining each channel is formed by the at least one curved surface of each prominence.
6. A cable having a central axis, the cable comprising:
a plurality of twisted pairs of conductors; and
an extruded jacket defining a central passage in which the plurality of twisted pairs of conductors is located, the central passage including air, the air in the central passage occupying a volume between the plurality of twisted pairs of conductors, the jacket including legs that project inwardly toward the central axis of the cable, the jacket defining channels located between the legs, the channels including air, the air in the channels being in fluid communication with the air in the central passage that occupies the volume between the plurality of twisted pairs of conductors, wherein when the cable is viewed in a transverse cross-section, each of the channels is defined by a surface provided with a curvature that is formed during the extrusion process, the channels having lengths that run along a length of the jacket, and the number of channels being greater than the number of twisted pairs of conductors.
7. The cable of claim 6, wherein the plurality of twisted pairs of conductors includes 4 twisted pairs of conductors.
8. The cable of claim 6, wherein each of the conductors of the plurality of twisted pairs of conductors is covered by a separate insulation layer.
9. The cable of claim 6, wherein the twisted pairs of conductors generally do not occupy the channels.
10. The cable of claim 6, wherein the plurality of twisted pairs of conductors are twisted around each other to define a core, the core including a separator.
US13/222,476 2002-09-24 2011-08-31 Communication wire Abandoned US20110315427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/222,476 US20110315427A1 (en) 2002-09-24 2011-08-31 Communication wire

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US10/253,212 US20040055777A1 (en) 2002-09-24 2002-09-24 Communication wire
US10/321,296 US6743983B2 (en) 2002-09-24 2002-12-16 Communication wire
US10/389,254 US7214880B2 (en) 2002-09-24 2003-03-14 Communication wire
US11/800,038 US7560648B2 (en) 2002-09-24 2007-05-03 Communication wire
US12/154,284 US7759578B2 (en) 2002-09-24 2008-05-20 Communication wire
US12/562,752 US8237054B2 (en) 2002-09-24 2009-09-18 Communication wire
US13/222,476 US20110315427A1 (en) 2002-09-24 2011-08-31 Communication wire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/562,752 Continuation US8237054B2 (en) 2002-09-24 2009-09-18 Communication wire

Publications (1)

Publication Number Publication Date
US20110315427A1 true US20110315427A1 (en) 2011-12-29

Family

ID=31993127

Family Applications (7)

Application Number Title Priority Date Filing Date
US10/253,212 Abandoned US20040055777A1 (en) 2002-09-24 2002-09-24 Communication wire
US10/321,296 Expired - Lifetime US6743983B2 (en) 2002-09-24 2002-12-16 Communication wire
US12/154,284 Expired - Fee Related US7759578B2 (en) 2002-09-24 2008-05-20 Communication wire
US12/562,752 Expired - Fee Related US8237054B2 (en) 2002-09-24 2009-09-18 Communication wire
US13/222,394 Expired - Lifetime US8525030B2 (en) 2002-09-24 2011-08-31 Communication wire
US13/222,476 Abandoned US20110315427A1 (en) 2002-09-24 2011-08-31 Communication wire
US13/222,438 Expired - Lifetime US8624116B2 (en) 2002-09-24 2011-08-31 Communication wire

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US10/253,212 Abandoned US20040055777A1 (en) 2002-09-24 2002-09-24 Communication wire
US10/321,296 Expired - Lifetime US6743983B2 (en) 2002-09-24 2002-12-16 Communication wire
US12/154,284 Expired - Fee Related US7759578B2 (en) 2002-09-24 2008-05-20 Communication wire
US12/562,752 Expired - Fee Related US8237054B2 (en) 2002-09-24 2009-09-18 Communication wire
US13/222,394 Expired - Lifetime US8525030B2 (en) 2002-09-24 2011-08-31 Communication wire

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/222,438 Expired - Lifetime US8624116B2 (en) 2002-09-24 2011-08-31 Communication wire

Country Status (6)

Country Link
US (7) US20040055777A1 (en)
CN (1) CN101266846A (en)
EA (1) EA007750B1 (en)
MY (1) MY138176A (en)
RS (1) RS20050243A (en)
ZA (1) ZA200502303B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105632601A (en) * 2015-12-31 2016-06-01 齐鲁电缆有限公司 Coal cutter soft cable for coal mine
CN110136885A (en) * 2018-02-08 2019-08-16 深圳市秋叶原实业有限公司 A kind of production technology of cable

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074503A (en) 1997-04-22 2000-06-13 Cable Design Technologies, Inc. Making enhanced data cable with cross-twist cabled core profile
US7405360B2 (en) * 1997-04-22 2008-07-29 Belden Technologies, Inc. Data cable with cross-twist cabled core profile
US7154043B2 (en) 1997-04-22 2006-12-26 Belden Technologies, Inc. Data cable with cross-twist cabled core profile
US8101862B2 (en) * 1999-01-11 2012-01-24 Southwire Company Self-sealing electrical cable using rubber resins
US8470108B2 (en) 1999-01-11 2013-06-25 Southwire Company Self-sealing electrical cable using rubber resins
US7367373B2 (en) * 2000-12-06 2008-05-06 Southwire Company Multi-layer extrusion head for self-sealing cable
US7214880B2 (en) * 2002-09-24 2007-05-08 Adc Incorporated Communication wire
US20040055777A1 (en) 2002-09-24 2004-03-25 David Wiekhorst Communication wire
US7511225B2 (en) * 2002-09-24 2009-03-31 Adc Incorporated Communication wire
US20040256139A1 (en) * 2003-06-19 2004-12-23 Clark William T. Electrical cable comprising geometrically optimized conductors
EP1649610B1 (en) 2003-07-11 2014-02-19 Panduit Corp. Alien crosstalk suppression with enhanced patch cord
US20050133246A1 (en) * 2003-12-22 2005-06-23 Parke Daniel J. Finned Jackets for lan cables
EP1585144A3 (en) * 2004-04-08 2006-02-08 ERNST & ENGBRING GmbH & Co. KG Cable and audio cable assembly
WO2006050612A1 (en) * 2004-11-15 2006-05-18 Belden Cdt (Canada) Inc. High performance telecommunications cable
US7317163B2 (en) * 2004-12-16 2008-01-08 General Cable Technology Corp. Reduced alien crosstalk electrical cable with filler element
US7157644B2 (en) * 2004-12-16 2007-01-02 General Cable Technology Corporation Reduced alien crosstalk electrical cable with filler element
US7064277B1 (en) * 2004-12-16 2006-06-20 General Cable Technology Corporation Reduced alien crosstalk electrical cable
US7238885B2 (en) * 2004-12-16 2007-07-03 Panduit Corp. Reduced alien crosstalk electrical cable with filler element
US7205479B2 (en) * 2005-02-14 2007-04-17 Panduit Corp. Enhanced communication cable systems and methods
US7145080B1 (en) * 2005-11-08 2006-12-05 Hitachi Cable Manchester, Inc. Off-set communications cable
EP1958212A1 (en) 2005-12-09 2008-08-20 Belden Technologies, Inc. Twisted pair cable having improved crosstalk isolation
CA2538637A1 (en) 2006-03-06 2007-09-06 Belden Technologies, Inc. Web for separating conductors in a communication cable
US7271344B1 (en) * 2006-03-09 2007-09-18 Adc Telecommunications, Inc. Multi-pair cable with channeled jackets
US7411131B2 (en) * 2006-06-22 2008-08-12 Adc Telecommunications, Inc. Twisted pairs cable with shielding arrangement
US7696437B2 (en) * 2006-09-21 2010-04-13 Belden Technologies, Inc. Telecommunications cable
KR101610885B1 (en) * 2007-01-17 2016-04-08 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Optical systems fabricated by printing-based assembly
AU2007201114B2 (en) * 2007-03-14 2011-04-07 Tyco Electronics Services Gmbh Electrical Connector
AU2007201106B9 (en) * 2007-03-14 2011-06-02 Tyco Electronics Services Gmbh Electrical Connector
AU2007201113B2 (en) 2007-03-14 2011-09-08 Tyco Electronics Services Gmbh Electrical Connector
AU2007201105B2 (en) 2007-03-14 2011-08-04 Tyco Electronics Services Gmbh Electrical Connector
AU2007201108B2 (en) * 2007-03-14 2012-02-09 Tyco Electronics Services Gmbh Electrical Connector
AU2007201107B2 (en) 2007-03-14 2011-06-23 Tyco Electronics Services Gmbh Electrical Connector
AU2007201109B2 (en) 2007-03-14 2010-11-04 Tyco Electronics Services Gmbh Electrical Connector
AU2007201102B2 (en) * 2007-03-14 2010-11-04 Tyco Electronics Services Gmbh Electrical Connector
US8579886B2 (en) * 2007-05-01 2013-11-12 Covidien Lp Accordion style cable stand-off
US7560646B2 (en) * 2007-05-31 2009-07-14 Nexans Profiled insulation and method for making the same
US7816606B2 (en) * 2007-07-12 2010-10-19 Adc Telecommunications, Inc. Telecommunication wire with low dielectric constant insulator
US20090119901A1 (en) * 2007-11-13 2009-05-14 Commscope, Inc. Of North Carolina Foam skin insulation with support members
CA2724528C (en) 2008-07-03 2017-03-28 Adc Telecommunications, Inc. Telecommunications wire having a channeled dielectric insulator and methods for manufacturing the same
US8344255B2 (en) 2009-01-16 2013-01-01 Adc Telecommunications, Inc. Cable with jacket including a spacer
CA2749932C (en) * 2009-01-30 2017-03-14 General Cable Technologies Corporation Separator for communication cable with geometric features
MX2011008431A (en) 2009-02-11 2011-11-18 Gen Cable Technologies Corp Separator for communication cable with shaped ends.
MX2010011741A (en) 2009-03-02 2010-11-22 Coleman Cable Inc Flexible cable having a dual layer jacket.
JP5758087B2 (en) * 2010-06-02 2015-08-05 矢崎総業株式会社 Wire harness
US8853540B2 (en) * 2011-04-19 2014-10-07 Commscope, Inc. Of North Carolina Carbon nanotube enhanced conductors for communications cables and related communications cables and methods
CN102570077B (en) * 2011-12-29 2014-05-28 杭州航天电子技术有限公司 Wire connector and assembling method of shielded twisted pair
US8881245B2 (en) * 2012-09-28 2014-11-04 Avaya Inc. System and method for enhancing self-service security applications
CN105679438B (en) * 2014-08-30 2017-06-27 福泰克(连云港)电子有限公司 A kind of improved structure cable and manufacture method
CN104200910B (en) * 2014-08-30 2016-08-17 国网山东省电力公司菏泽供电公司 A kind of cable and manufacture method
JP6045616B2 (en) * 2015-01-28 2016-12-14 矢崎総業株式会社 Mounting structure of exterior member and retrofit parts
US9824794B1 (en) 2016-04-14 2017-11-21 Superior Essex International LP Communication cables incorporating twisted pair separators with cooling channels
US9734940B1 (en) 2016-04-14 2017-08-15 Superior Essex International LP Communication cables incorporating twisted pair components
US10312000B2 (en) 2016-07-07 2019-06-04 Nexans Heat dissipating cable jacket
US10573431B2 (en) * 2016-08-24 2020-02-25 Ls Cable & System Ltd. Communication cable
US10121571B1 (en) 2016-08-31 2018-11-06 Superior Essex International LP Communications cables incorporating separator structures
US10068685B1 (en) 2016-11-08 2018-09-04 Superior Essex International LP Communication cables with separators having alternating projections
CN106920580A (en) * 2017-05-04 2017-07-04 湖北宇洪光电实业有限公司 A kind of data cable of communication equipment for being applied to 4G frequency ranges and preparation method thereof
US10438726B1 (en) 2017-06-16 2019-10-08 Superior Essex International LP Communication cables incorporating separators with longitudinally spaced radial ridges
US10381137B2 (en) * 2017-06-19 2019-08-13 Dell Products, Lp System and method for mitigating signal propagation skew between signal conducting wires of a signal conducting cable
US10566110B2 (en) * 2017-06-29 2020-02-18 Sterlite Technologies Limited Channeled insulation for telecommunication cable
US10741305B2 (en) * 2017-08-24 2020-08-11 Sterlite Technologies Limited Double P jacket for telecommunications cable
CN110379546B (en) * 2019-07-13 2021-03-05 神宇通信科技股份公司 Production process of insulated wire with inner conductor communicated with air channel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941157A (en) * 1974-07-24 1976-03-02 Barnett Louis H High strength multiple passageway plastic conduit
US6222130B1 (en) * 1996-04-09 2001-04-24 Belden Wire & Cable Company High performance data cable
US6639152B2 (en) * 2001-08-25 2003-10-28 Cable Components Group, Llc High performance support-separator for communications cable

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US504397A (en) * 1893-09-05 Electric conductor
CA524452A (en) 1956-05-01 Anaconda Wire And Cable Company High frequency cable
US326021A (en) 1885-09-08 cruickshank
BE539772A (en) 1900-01-01
US1008370A (en) 1909-12-01 1911-11-14 Louis Robillot Automatic fire-alarm.
US2386818A (en) 1942-12-12 1945-10-16 Olin Ind Inc Coating method and apparatus
BE480485A (en) 1945-09-07
US2583026A (en) 1949-08-12 1952-01-22 Simplex Wire & Cable Co Cable with interlocked insulating layers
US2690592A (en) 1951-04-27 1954-10-05 Goodrich Co B F Method of and apparatus for extruding tubing
US2708176A (en) 1951-06-14 1955-05-10 Us Rubber Co Coaxial cable and method of making same
US2766481A (en) 1952-08-28 1956-10-16 Western Electric Co Methods of and apparatus for extruding cellular plastics
US2804494A (en) 1953-04-08 1957-08-27 Charles F Fenton High frequency transmission cable
BE529685A (en) 1953-06-22
GB811703A (en) 1954-07-12 1959-04-08 Shardlow Electrical Wires Ltd Electric cables and method of and means for manufacturing same
US3086557A (en) 1957-09-30 1963-04-23 Thomas F Peterson Conduit with preformed elements
US3035115A (en) 1958-08-28 1962-05-15 Rea Magnet Wire Company Inc Electrical component having a serrated core construction and method of making the component
US3064073A (en) 1960-07-27 1962-11-13 Du Pont Insulated electrical conductor
US3422648A (en) 1961-10-02 1969-01-21 Jerome H Lemelson Extrusion apparatus
FR1500843A (en) 1966-05-25 1967-11-10 Gen Alimentaire Machine for coating an elongated body with a perforated or reticulated sheath
US3650862A (en) * 1969-01-27 1972-03-21 Anaconda Wire & Cable Co Marking apparatus and method
US3771934A (en) 1969-02-18 1973-11-13 Int Standard Electric Corp Apparatus for extending water-blocked cartwheel cable
US3644659A (en) 1969-11-21 1972-02-22 Xerox Corp Cable construction
US3905853A (en) 1970-05-21 1975-09-16 Creators Ltd Reinforced plastics tubes
US3678177A (en) 1971-03-29 1972-07-18 British Insulated Callenders Telecommunication cables
US3983313A (en) 1972-09-05 1976-09-28 Lynenwerk Kg Electric cables
DE2261530C3 (en) 1972-12-15 1976-01-02 Fraenkische Isolierrohr- & Metallwaren-Werke, Gebr. Kirchner, 8729 Koenigsberg Plastic insulating tube
US3812282A (en) 1973-01-11 1974-05-21 Int Standard Electric Corp Tearable insulation sheath for cables
US3911070A (en) 1973-04-25 1975-10-07 Grace W R & Co Profile extension process for thermoplastic resins and ceramic thermoplastic resin binder compositions
US3972970A (en) 1974-02-07 1976-08-03 Western Electric Company, Inc. Method for extruding cellular thermoplastic products
ES217858Y (en) 1974-12-20 1977-01-01 Industrie Pirelli, S. P. A. FILMING MACHINE HEAD FOR EXTRUDING PLASTOMER OR ELASTOMER MATERIAL AROUND FILAMENTS.
US4132756A (en) 1974-12-20 1979-01-02 Industrie Pirelli, S.P.A. Process for extruding plastomeric or elastomeric material on filaments
US4138457A (en) 1976-08-13 1979-02-06 Sherwood Medical Industries Inc. Method of making a plastic tube with plural lumens
JPS53141486A (en) 1977-05-17 1978-12-09 Sumitomo Electric Ind Ltd Manufacturing device of coaxial cable insulating body
NL178063C (en) 1979-03-27 1986-01-16 Wavin Bv EXTRUSION HEAD WITH RING-SHAPED EXTRUSION CHANNEL AND A PLASTIC TUBE WITH LONG-WINDING HOLLOW CHANNELS OBTAINED IN THE WALL USING SUCH EXTRUSION HEAD.
US4394705A (en) * 1982-01-04 1983-07-19 The Polymer Corporation Anti-static hose assemblies
DE3447225C1 (en) 1984-12-22 1986-02-06 Kabelwerke Reinshagen Gmbh, 5600 Wuppertal Floatable, flexible electrical and / or optical cable
US4731505A (en) 1987-03-31 1988-03-15 General Instrument Corporation Impact absorbing jacket for a concentric interior member and coaxial cable provided with same
US4777325A (en) 1987-06-09 1988-10-11 Amp Incorporated Low profile cables for twisted pairs
FR2669143B1 (en) 1990-11-14 1995-02-10 Filotex Sa HIGH SPREAD SPEED ELECTRIC CABLE.
US5132488A (en) 1991-02-21 1992-07-21 Northern Telecom Limited Electrical telecommunications cable
US5162120A (en) 1991-11-29 1992-11-10 Northern Telecom Limited Method and apparatus for providing jackets on cable
US5742002A (en) 1995-07-20 1998-04-21 Andrew Corporation Air-dielectric coaxial cable with hollow spacer element
US5767441A (en) 1996-01-04 1998-06-16 General Cable Industries Paired electrical cable having improved transmission properties and method for making same
US5789711A (en) * 1996-04-09 1998-08-04 Belden Wire & Cable Company High-performance data cable
FR2747832B1 (en) 1996-04-23 1998-05-22 Filotex Sa METHOD AND DEVICE FOR MANUFACTURING A VENTILATED SHEATH IN AN INSULATING MATERIAL AROUND A CONDUCTOR, AND COAXIAL CABLE EQUIPPED WITH SUCH SHEATH
US5796046A (en) 1996-06-24 1998-08-18 Alcatel Na Cable Systems, Inc. Communication cable having a striated cable jacket
US5990419A (en) 1996-08-26 1999-11-23 Virginia Patent Development Corporation Data cable
US5821467A (en) 1996-09-11 1998-10-13 Belden Wire & Cable Company Flat-type communication cable
US5796044A (en) 1997-02-10 1998-08-18 Medtronic, Inc. Coiled wire conductor insulation for biomedical lead
US6064008A (en) * 1997-02-12 2000-05-16 Commscope, Inc. Of North Carolina Conductor insulated with foamed fluoropolymer using chemical blowing agent
US6150612A (en) 1998-04-17 2000-11-21 Prestolite Wire Corporation High performance data cable
US20020079126A1 (en) * 1998-08-27 2002-06-27 Valenzuela Eduardo Dominguez Insulated electrical cables
FR2783082B1 (en) 1998-09-09 2000-11-24 Siemens Automotive Sa OVER-MOLDED ELECTRIC CABLE AND METHOD FOR PRODUCING SUCH A CABLE
US6573456B2 (en) 1999-01-11 2003-06-03 Southwire Company Self-sealing electrical cable having a finned inner layer
US6162992A (en) 1999-03-23 2000-12-19 Cable Design Technologies, Inc. Shifted-plane core geometry cable
FR2794477B1 (en) 1999-06-02 2001-09-14 Freyssinet Int Stup CONSTRUCTION OPENING STRUCTURE CABLE, SHEATH SECTION OF SUCH CABLE, AND LAYING METHOD
EP1081720B1 (en) * 1999-08-30 2007-01-24 Pirelli & C. S.p.A. Electrical cable with self-repairing proctection and apparatus for manufacturing the same
US6534715B1 (en) * 1999-08-30 2003-03-18 Pirelli Cavi E Sistemi S.P.A. Electrical cable with self-repairing protection and apparatus for manufacturing the same
US6452105B2 (en) 2000-01-12 2002-09-17 Meggitt Safety Systems, Inc. Coaxial cable assembly with a discontinuous outer jacket
WO2002068741A2 (en) 2001-02-26 2002-09-06 Federal-Mogul Powertrain, Inc. Rigidized protective sleeving
US6815617B1 (en) 2002-01-15 2004-11-09 Belden Technologies, Inc. Serrated cable core
US7214880B2 (en) * 2002-09-24 2007-05-08 Adc Incorporated Communication wire
US7511225B2 (en) * 2002-09-24 2009-03-31 Adc Incorporated Communication wire
US20040055777A1 (en) 2002-09-24 2004-03-25 David Wiekhorst Communication wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941157A (en) * 1974-07-24 1976-03-02 Barnett Louis H High strength multiple passageway plastic conduit
US6222130B1 (en) * 1996-04-09 2001-04-24 Belden Wire & Cable Company High performance data cable
US6639152B2 (en) * 2001-08-25 2003-10-28 Cable Components Group, Llc High performance support-separator for communications cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105632601A (en) * 2015-12-31 2016-06-01 齐鲁电缆有限公司 Coal cutter soft cable for coal mine
CN110136885A (en) * 2018-02-08 2019-08-16 深圳市秋叶原实业有限公司 A kind of production technology of cable

Also Published As

Publication number Publication date
US20040055771A1 (en) 2004-03-25
US7759578B2 (en) 2010-07-20
US20100132977A1 (en) 2010-06-03
EA200500485A1 (en) 2005-12-29
US20110308838A1 (en) 2011-12-22
US8624116B2 (en) 2014-01-07
MY138176A (en) 2009-05-29
US8237054B2 (en) 2012-08-07
US20090025958A1 (en) 2009-01-29
EA007750B1 (en) 2006-12-29
US20110308837A1 (en) 2011-12-22
US6743983B2 (en) 2004-06-01
US8525030B2 (en) 2013-09-03
RS20050243A (en) 2008-06-05
ZA200502303B (en) 2005-09-19
CN101266846A (en) 2008-09-17
US20040055777A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US11355262B2 (en) Communication wire
US8624116B2 (en) Communication wire
US7238886B2 (en) Communication wire
US6323427B1 (en) Low delay skew multi-pair cable and method of manufacture

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COMMSCOPE EMEA LIMITED;REEL/FRAME:037012/0001

Effective date: 20150828