US20120095278A1 - Beta Radiotherapy Emitting Surgical Device And Methods of Use Thereof - Google Patents

Beta Radiotherapy Emitting Surgical Device And Methods of Use Thereof Download PDF

Info

Publication number
US20120095278A1
US20120095278A1 US13/336,281 US201113336281A US2012095278A1 US 20120095278 A1 US20120095278 A1 US 20120095278A1 US 201113336281 A US201113336281 A US 201113336281A US 2012095278 A1 US2012095278 A1 US 2012095278A1
Authority
US
United States
Prior art keywords
cannula
beta
radiation
radiotherapy
emitting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/336,281
Inventor
Eugene deJuan, Jr.
Paul Hallen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/336,281 priority Critical patent/US20120095278A1/en
Assigned to GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT reassignment GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT SECURITY AGREEMENT Assignors: NEOVISTA, INC.
Assigned to NEOVISTA, INC. reassignment NEOVISTA, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT
Publication of US20120095278A1 publication Critical patent/US20120095278A1/en
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY AGREEMENT Assignors: NEOVISTA, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1014Intracavitary radiation therapy
    • A61N5/1017Treatment of the eye, e.g. for "macular degeneration"
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1089Electrons

Definitions

  • the present invention relates to a device and method for localized delivery of beta radiation in surgical procedures, particularly ophthalmic procedures. More particularly, the present invention relates to a device and method for localized delivery of beta radiation to treat Age Related Macular Degeneration (AMD).
  • AMD Age Related Macular Degeneration
  • the slow, progressive loss of central vision is known as macular degeneration.
  • Macular degeneration affects the macula, a small portion of the retina.
  • the retina is a fine layer of light-sensing nerve cells that covers the inside back portion of the eye.
  • the macula is the central, posterior part of the retina and contains the largest concentration of photoreceptors.
  • the macula is typically 5 to 6 mm in diameter, and its central portion is known as the fovea. While all parts of the retina contribute to sight, only the macula provides the sharp, central vision that is required to see objects clearly and for daily activities including reading and driving
  • Macular degeneration is generally caused by age (Age Related Macular Degeneration, “AMD”) or poor circulation in the eyes. Smokers and individuals with circulatory problems have an increased risk for developing the condition.
  • AMD Age Related Macular Degeneration
  • AMD AMD is the leading cause of blindness in people older than 50 years in developed countries. Between the ages of 52-64 approximately 2% of the population are affected. This rises to an astonishing 28% over the age of 75.
  • the two forms of macular degeneration are known as “wet” and “dry” macular degeneration.
  • Dry macular degeneration blurs the central vision slowly over time. Individuals with this form of macular degeneration may experience a dimming or distortion of vision that is particularly noticeable when trying to read.
  • yellowish deposits called drusen develop beneath the macula. Drusen are accumulations of fatty deposits, and most individuals older than 50 years have at least one small druse. These fatty deposits are usually carried away by blood vessels that transport nutrients to the retina. However, this process is diminished in macular degeneration and the deposits build up. Dry macular degeneration may also result when the layer of light-sensitive cells in the macula becomes thinner as cells break down over time. Generally, a person with dry form macular degeneration in one eye eventually develops visual problems in both eyes. However, dry macular degeneration rarely causes total loss of reading vision.
  • Wet macular degeneration (the neovascular form of the disease) is more severe than dry macular degeneration.
  • the loss of vision due to wet macular degeneration also comes much more quickly than dry macular degeneration.
  • unwanted new blood vessels grow beneath the macula (Choroidal Neo-Vascularization (CNV) endothelial cells).
  • CNV Cho-Vascularization
  • These choroidal blood vessels are fragile and leak fluid and blood, which causes separation of tissues and damages light sensitive cells in the retina.
  • Individuals with this form of macular degeneration typically experience noticeable distortion of vision such as, for example, seeing straight lines as wavy, and seeing blank spots in their field of vision. Early diagnosis of this form of macular degeneration is vital.
  • Photo-Dynamic Therapy is used to treat individuals with wet macular degeneration.
  • a photo-sensitive drug is first delivered to the patient's system, typically by injecting the drug into the patient's bloodstream through a vein.
  • the photo-sensitive drug attaches to molecules in the blood called lipoproteins.
  • the choroidal blood vessels require a greater amount of lipoproteins than normal vessels, the drug is delivered more quickly and in higher concentrations to the choroidal blood vessels.
  • a non-thermal diode laser light is aimed into the eye to activate the photo-sensitive drug.
  • the activated drug subsequently causes the conversion of normal oxygen found in tissue to a highly energized form called “singlet oxygen.”
  • the singlet oxygen causes cell death by disrupting normal cellular functions, resulting in the closure of the choroidal blood vessels while leaving normal vessels still functional. While PDT cannot restore vision, it reduces the risk of vision loss by restricting the growth of abnormal choroidal blood vessels.
  • Laser therapy (“Laser Photocoagulation”), as opposed to Photo-Dynamic Therapy (PDT), uses heat. Basically, a “hot” laser is aimed at the choroidal blood vessels, resulting in the formation of heat when the laser contacts the vessels. This stops the growth, leakage, and bleeding of the choroidal blood vessels. However, the laser destroys surrounding healthy tissue in the process (collateral damage). Further, the “hot” laser forms scars, which may cause blind spots.
  • PDT thus, is particularly advantageous because it does not use heat, so less collateral damage results, and the procedure can be repeated as many times as necessary.
  • PDT has shown some efficacy, the population of patients in which it shows efficacy is small (less than 20%).
  • PDT does not typically restore lost vision, but rather, only slows the progression of vision loss.
  • PDT although successful, is not aggressive enough to provide satisfying results for affected patients.
  • Radiation is a promising medical technology that may be effective for the treatment of choroidal neovascularization due to age related macular degeneration.
  • alpha particle is simply a helium nucleus. It has the lowest power, penetration, and danger associated with it of the three types of radiation. Several sheets of paper would serve as a shield against alpha radiation.
  • Gamma radiation is the most powerful, most penetrating, and most dangerous type of radiation.
  • Gamma radiation is an energy wave, not just a particle.
  • Gamma sources are photons. Several meters of rock or many centimeters of lead are required to shield gamma radiation.
  • Gamma radiotherapy has been shown to be effective in vascular radiation therapy, particularly for the treatment of in-stent restenosis.
  • Randomized data from the Scripps Trial ( The SCRIPPS Trial—Catheter - Based Radiotherapy to Inhibit Coronary Restenosis ; J Invas Cardiol 12(6):330-332 (2000) a randomized, double blind, placebo-controlled study demonstrated a reduction in restenosis rates from 54% in the placebo group to 17% in patients treated with gamma radiation ( 192 Ir).
  • Gamma sources penetrate human tissues deeply. This makes gamma energy ideal for treating large vessels. Gamma sources have been used in the clinical arena for decades and hospital radiotherapy departments have significant years of experiences using gamma sources.
  • the present invention provides new surgical devices and methods for use thereof. Devices and methods of the invention are particularly useful for treatment of eye disorders such as Age Related Macular Degeneration
  • the present invention provides a device for localized delivery of beta radiation during surgical procedures and methods of use thereof.
  • the device is particularly suitable for the localized delivery of beta radiation for the treatment of macular degeneration.
  • the device delivers beta radiation to the affected sub-macular region afflicted with the condition.
  • Beta radiation is a high-speed electron.
  • a typical source of beta radiation may be, for example, radioisotope Phosphorus 32 ( 32 P). Beta source electrons only penetrate 1 to 2 mm into human tissue. Even thick plastics easily shield beta energy.
  • the fact that exposure from beta sources is limited allows the specific activity to be much higher than that of gamma sources. This translates into very short dwell times, for example, approximately 3 to 8 minutes of exposure is estimated for ophthalmic applications using a beta source, as opposed to the longer long dwell time associated with the use of a gamma source (8 to 20 minutes). Radiation safety concerns surrounding the use of beta sources are vastly reduced compared to that of gamma radiation.
  • beta radiotherapy can be an optimal balance of power, penetration, and safety for many medical applications and specifically for the treatment of choroidal neo-vascularization (CNV) caused by AMD and other diseases of the eye.
  • CNV choroidal neo-vascularization
  • Such therapy in accordance with the invention can potentially restore visual acuity, extend retention of visual acuity, or slow the progressive loss of visual acuity.
  • the surgical device includes a radiotherapy emitting material positioned on the device, such as a cannula, typically a distal end or portion of the cannula.
  • the radiotherapy emitting material is preferably shielded.
  • the cannula may be straight or curved.
  • the cannula preferably has a bend or curve.
  • the beta radiotherapy emitting material is housed in and partially shielded in the distal end of the cannula by a thin wall metal, such as stainless steel, and/or by a thin wall polymer, plastic, or similar material.
  • the shield may also be designed to be retracted to provide a pathway during the exposure period.
  • the cannula may have a handle extending its proximal end for providing the surgeon with a better grip on the device and for allowing the surgeon to easily reach the surgical site.
  • the radiotherapy emitting material preferably emits purely beta radiation, however, the radiotherapy emitting material may also be a material that emits very low and insignificant doses of gamma radiation in addition to beta radiation. Any conventional beta radiation emitting materials used in surgical settings may be used in the present device.
  • some suitable pure beta radiation emitting materials may include: 206 Tl (half-life of about 4.20 min), 60m Co (half-life of about 10.47 min), 69 Zn (half-life of about 55.6 min), 209 Pb (half-life of about 3.253 hours), 143 Pr (half-life of about 13.58 days), 32 P (half-life of about 14.282 days), 33 P (half-life of about 25.34 days), 45 Ca (a half-life of about 165 days), 90 Sr (half-life of about 28.5 years), 99 Te (half-life of about 2.13 ⁇ 10 5 years) and 36 S (half-life of about 3.08 ⁇ 10 5 years).
  • the duration of radiation emission required during a single treatment for Age Related Macular Degeneration using the device can be quite short, e.g. less than 10 or 15 minutes, or even less than 5 minutes. Typical treatments will range from about 1 to 15 minutes, more typically 2 to ten minutes. Thus, for a single-use device, is it possible to use beta radiation emitting materials having short half-lives. However, in some cases, it is desirable to provide a device with a long shelf-life if, for example, the device is not immediately used or if the device is reusable. Thus, in some cases, it is preferred that the beta radiation emitting material is selected from materials that have a half-life of at least about 2 years. Further, when used for the treatment of Age Related Macular Degeneration, it is preferable that the beta emitting material is selected from materials having an energy ranging from about 50 cGr/sec to about 100 cGr/sec.
  • the present invention also provides device kits, which preferably comprise one or more of the described beta radiotherapy emitting surgical devices, preferably packaged in sterile condition.
  • FIG. 1 is an isometric view of one embodiment of the surgical device in accordance with the present invention.
  • FIG. 2 shows a diagram of a normal, healthy eye.
  • FIG. 1 a view of a surgical device 1 in accordance with the invention.
  • the surgical device 1 includes a cannula 2 , having a proximal end 4 and a distal end 6 .
  • Cannulas are well known and, thus, although described below with reference to a preferred embodiment, the general features (e.g. size, shape, materials) of the cannula 2 may be in accordance with conventional cannulas.
  • a radiotherapy emitting material 8 is located at the distal end 6 of a cannula 2 .
  • the radiotherapy emitting material 8 preferably emits pure beta radiation because beta radiation is easily blocked and, if not shielded, does not penetrate more than about 1-2 mm in human tissue. However, it is possible to use a radiotherapy emitting material 8 that emits very low and insignificant doses of gamma radiation in addition to beta radiation.
  • some suitable pure beta radiation emitting materials may include: 206 Tl (half-life of about 4.20 min), 60m Co (half-life of about 10.47 min), 69 Zn (half-life of about 55.6 min), 209 Pb (half-life of about 3.253 hours), 143 Pr (half-life of about 13.58 days), 32 P (half-life of about 14.282 days), 33 P (half-life of about 25.34 days), 45 Ca (half-life of about 165 days), 90 Sr (half-life of about 28.5 years), 99 Te (half-life of about 2.13 ⁇ 10 5 years), 36 S (half-life of about 3.08 ⁇ 10 5 years).
  • the half-life of the beta emitting material may vary depending on the use of the device. For example, when used to treat Age Related Macular Degeneration (AMD), one treatment using the device will typically require radiation emission for a period of time ranging from about two to about ten minutes. Thus, single-use devices that are disposed of between treatments may be fabricated using radiotherapy emitting materials 8 with a relatively short half-life. In some circumstances, it is preferable to provide a device having a long shelf-life. In such circumstances, it is preferable to fabricate the device using radiotherapy emitting materials 8 that are continuously active for a very long time (e.g. with a half-life of at least 2 years).
  • ALD Age Related Macular Degeneration
  • the energy of the beta emitting material may vary depending on the use of the device.
  • the beta emitting material when used to treat Age Related Macular Degeneration (AMD), is preferably selected from materials having an energy ranging from about 50 cGr/sec to about 100 cGr/sec.
  • the radiotherapy emitting material 8 is at least partially shielded.
  • the radiotherapy emitting material 8 may be is housed in and partially shielded in, for example, a thin wall metal, such as stainless steel, or by a thin wall polymer, plastic, or similar material. This may be accomplished by providing a thin wall or shield 10 at the distal end 6 of the cannula 2 about the radiotherapy emitting material 8 .
  • at least a portion the radiotherapy emitting material 8 is housed in and partially shielded in the distal end 6 of the cannula 2 .
  • the distal end 6 of the cannula 2 is fabricated of, for example, a thin wall metal, such as stainless steel, or by a thin wall polymer, plastic, or similar material.
  • a thin wall metal such as stainless steel
  • the entire cannula 2 may be fabricated of a thin wall metal, such as stainless steel or similar material, or by a thin wall polymer, plastic, or similar material.
  • the shield 10 may also be designed to be retractable to provide further ease in handling the device and shielding of the radiotherapy emitting material 8 when desired.
  • the thickness of the wall or shield 10 or the thickness of the distal end 6 of the cannula in which the radiotherapy emitting material 8 is housed preferably ranges from about 0.5 to about 3 mm, and more preferably, from about 1 mm to about 2 mm. While thicknesses above about 3 mm may be used, it is believed that thicknesses above about 3 mm will not provide significant additional protection from the beta radiation and would make the surgical device 1 bulky and more difficult to handle.
  • the cannula 2 may have a handle 14 extending its proximal end 4 for providing the surgeon with a better grip on the surgical device 1 and for allowing the surgeon to easily reach the surgical site.
  • Such handles are known and, thus, the handle 14 of the present invention may be in accordance with conventional handles.
  • the handle may be attached to the cannula 2 by a frictional fit and/or conventional fastening means.
  • the connecting means such as a hub 16 portion may further be included and designed so as to assist in connecting the cannula 2 to the handle 14 via a frictional fit and, if desired, conventional fastening means may be used to assist the hub 16 in connecting the cannula 2 to the handle 14 .
  • the surgical device 1 is gripped by the handle 14 or a portion of the proximal end 4 of the cannula 2 , and the distal end 6 of the cannula 2 with the radiotherapy emitting material 8 is introduced into the surgical site.
  • the present procedure involves making a standard vitrectomy port incision (typically about a 20 gage—approximately 0.89 mm—incision) in the eye to provide access to the macula, located at the back of the eye.
  • the distal end 6 of the cannula 2 and the radiotherapy emitting material 8 are then inserted through the incision towards the macula.
  • This approach will provide the surgeon with a superior ability to locate the radiotherapy emitting material directly in the affected area. This superior positioning approach provides for more effective therapy and enhanced safety for the lens and optic disc. The surgeon will then perform a vitrectomy and pre-detach the macula by injecting saline beneath the retina with a 41 gage needle to gain “direct access” to the sub macular membrane.
  • the radiotherapy emitting material 8 is preferably positioned within about 1 mm to about 3 mm of the choroidal blood vessels being treated. In some cases, however, the tip may be placed directly on the choroidal blood vessels.
  • the surgeon can view the interior of the eye using a standard procedure for viewing the macula through the cornea with an illuminated operating microscope and a lens placed on the cornea.
  • the surgeon can alternatively view the interior of the eye by making a second 20 gage incision to provide access for a fiber optic illuminator, which is a standard practice in retinal surgery.
  • the cannula 2 is preferably elongate in shape to provide easy access to the surgical site.
  • the body portion is designed so as to conform with the incision made in the eye, such that as the cannula 2 is inserted in the eye through the incision, the incision molds around the body portion and prevents leakage around the cannula 2 .
  • the cannula 2 is preferably designed with a smooth surface so as to prevent further trauma to the eye as it is entered through the incision.
  • the cannula 2 has an elongate cylindrical shape.
  • the cannula 2 may have a substantially uniform cross sectional diameter or may taper.
  • the cannula 2 tapers towards the distal end 6 to provide precision in placement of the radiotherapy emitting material 8 and to allow for targeted treatment of only the defective, leaking vessels.
  • the cannula 2 is depicted as cylindrical in shape, other shapes may be used as desired. Additionally, the cannula 2 may include a bend to provide enhanced access to areas that are difficult to reach.
  • the cannula preferably has a curve.
  • the dimensions of the surgical device 1 may vary depending on its ultimate use.
  • the length of the cannula 2 would be designed so that the radiotherapy emitting material 8 would reach the appropriate distance to back of the eye while allowing only the cannula 2 , and not the hub 16 , handle 14 or other apparatus connected to the proximal end 6 of the cannula 2 , to enter the incision.
  • the portion of the cannula that enters the incision in the eye preferably has a length ranging from about 28 to about 32 mm.
  • the radiotherapy emitting material 8 portion of the device preferably has a length that ranges from about 2 mm to about 6 mm.
  • the length of the radiotherapy emitting material 8 portion of the device ranges from about 2 mm to about 3 mm.
  • the handle 14 of the device preferably ranges from about 3-6 inches to provide a suitable gripping means for the surgeon.
  • the hub 16 which connects the cannula 2 to the handle 14 , preferably has a length ranging from about 10 mm to about 12 mm.
  • the diameter or thickness of the cannula 2 preferably conforms to the size of the incision so that the incision molds around the cannula 2 and prevents leakage around the cannula 2 .
  • the diameter or thickness of the cannula 2 ranges from about 0.6 mm to about 1.2 mm. More preferably, the diameter or thickness of the cannula 2 ranges from about 0.8 to about 1.0 mm. However, it is to be understood that the diameter or thickness of the cannula 2 and the length of the portion of the cannula 2 that enters the incision may vary depending on the particular procedure performed, the size of the incision made and the distance from the incision to the treatment area.
  • the cannula 2 may be fabricated of any conventional materials used in forming similar surgical devices.
  • the material is lightweight and strong. Some conventional materials are plastics and stainless steel. Further, because the cannula 2 is inserted in the eye area in some applications, the materials used in forming the cannula 2 must be medically approved for such contact.
  • the radiotherapy emitting material 8 may be fixedly or removably connected to the distal end 6 of the cannula 2 .
  • Known means such as, for example, adhesives may be used to fixedly secure the radiotherapy emitting material 8 to the cannula 2 .
  • the radiotherapy emitting material 8 may also be removably connected to the cannula 2 by known means such as, for example, forming the radiotherapy emitting material 8 and the cannula 2 to have corresponding threaded portions that allows removable attachment of the radiotherapy emitting material 8 to the cannula 2 so that the device may be reused by simply sterilizing the cannula 2 with ethelene oxide gas or similar means, and replacing the radiotherapy emitting material 8 .
  • the entire surgical device 1 is disposed of and replaced between uses to maintain sterility and prevent cross-contamination between uses.
  • kits that comprise one or more beta radiotherapy emitting surgical devices of the invention, preferably packaged in sterile condition. Kits of the invention may also include written instructions for use of the beta radiotherapy emitting surgical devices and other components of the kit.

Abstract

A surgical device for localized delivery of beta radiation in surgical procedures, particularly ophthalmic procedures. Preferred surgical devices include a cannula with a beta radiotherapy emitting material at the distal end of the cannula. The surgical device is particularly suitable for use in the treatment of treat Age Related Macular Degeneration (AMD).

Description

  • The present invention relates to a device and method for localized delivery of beta radiation in surgical procedures, particularly ophthalmic procedures. More particularly, the present invention relates to a device and method for localized delivery of beta radiation to treat Age Related Macular Degeneration (AMD).
  • BACKGROUND
  • The slow, progressive loss of central vision is known as macular degeneration. Macular degeneration affects the macula, a small portion of the retina. The retina is a fine layer of light-sensing nerve cells that covers the inside back portion of the eye. The macula is the central, posterior part of the retina and contains the largest concentration of photoreceptors. The macula is typically 5 to 6 mm in diameter, and its central portion is known as the fovea. While all parts of the retina contribute to sight, only the macula provides the sharp, central vision that is required to see objects clearly and for daily activities including reading and driving
  • Macular degeneration is generally caused by age (Age Related Macular Degeneration, “AMD”) or poor circulation in the eyes. Smokers and individuals with circulatory problems have an increased risk for developing the condition.
  • AMD is the leading cause of blindness in people older than 50 years in developed countries. Between the ages of 52-64 approximately 2% of the population are affected. This rises to an astounding 28% over the age of 75.
  • The two forms of macular degeneration are known as “wet” and “dry” macular degeneration.
  • Dry macular degeneration blurs the central vision slowly over time. Individuals with this form of macular degeneration may experience a dimming or distortion of vision that is particularly noticeable when trying to read. In dry macular degeneration, yellowish deposits called drusen develop beneath the macula. Drusen are accumulations of fatty deposits, and most individuals older than 50 years have at least one small druse. These fatty deposits are usually carried away by blood vessels that transport nutrients to the retina. However, this process is diminished in macular degeneration and the deposits build up. Dry macular degeneration may also result when the layer of light-sensitive cells in the macula becomes thinner as cells break down over time. Generally, a person with dry form macular degeneration in one eye eventually develops visual problems in both eyes. However, dry macular degeneration rarely causes total loss of reading vision.
  • Wet macular degeneration (the neovascular form of the disease) is more severe than dry macular degeneration. The loss of vision due to wet macular degeneration also comes much more quickly than dry macular degeneration. In this form of the disease, unwanted new blood vessels grow beneath the macula (Choroidal Neo-Vascularization (CNV) endothelial cells). These choroidal blood vessels are fragile and leak fluid and blood, which causes separation of tissues and damages light sensitive cells in the retina. Individuals with this form of macular degeneration typically experience noticeable distortion of vision such as, for example, seeing straight lines as wavy, and seeing blank spots in their field of vision. Early diagnosis of this form of macular degeneration is vital. If the leakage and bleeding from the choroidal blood vessels is allowed to continue, much of the nerve tissue in the macula may be killed or damaged, and such damage cannot be repaired because the nerve cells of the macula do not grow back once they have been destroyed. While wet AMD comprises only about 20% of the total AMD cases, it is responsible for approximately 90% of vision loss attributable to AMD.
  • Currently, Photo-Dynamic Therapy (PDT) is used to treat individuals with wet macular degeneration. During PDT, a photo-sensitive drug is first delivered to the patient's system, typically by injecting the drug into the patient's bloodstream through a vein. The photo-sensitive drug attaches to molecules in the blood called lipoproteins. Because the choroidal blood vessels require a greater amount of lipoproteins than normal vessels, the drug is delivered more quickly and in higher concentrations to the choroidal blood vessels. Next, a non-thermal diode laser light is aimed into the eye to activate the photo-sensitive drug. The activated drug subsequently causes the conversion of normal oxygen found in tissue to a highly energized form called “singlet oxygen.” The singlet oxygen, in turn, causes cell death by disrupting normal cellular functions, resulting in the closure of the choroidal blood vessels while leaving normal vessels still functional. While PDT cannot restore vision, it reduces the risk of vision loss by restricting the growth of abnormal choroidal blood vessels.
  • Laser therapy (“Laser Photocoagulation”), as opposed to Photo-Dynamic Therapy (PDT), uses heat. Basically, a “hot” laser is aimed at the choroidal blood vessels, resulting in the formation of heat when the laser contacts the vessels. This stops the growth, leakage, and bleeding of the choroidal blood vessels. However, the laser destroys surrounding healthy tissue in the process (collateral damage). Further, the “hot” laser forms scars, which may cause blind spots.
  • PDT, thus, is particularly advantageous because it does not use heat, so less collateral damage results, and the procedure can be repeated as many times as necessary. However, while PDT has shown some efficacy, the population of patients in which it shows efficacy is small (less than 20%). Furthermore, PDT does not typically restore lost vision, but rather, only slows the progression of vision loss. In the attempt to design a selective disruption therapy, it appears that PDT, although groundbreaking, is not aggressive enough to provide satisfying results for affected patients.
  • Radiation is a promising medical technology that may be effective for the treatment of choroidal neovascularization due to age related macular degeneration. There are basically three types of nuclear radiation: Alpha, Beta, and Gamma.
  • An alpha particle is simply a helium nucleus. It has the lowest power, penetration, and danger associated with it of the three types of radiation. Several sheets of paper would serve as a shield against alpha radiation.
  • Gamma radiation is the most powerful, most penetrating, and most dangerous type of radiation. Gamma radiation is an energy wave, not just a particle. Gamma sources are photons. Several meters of rock or many centimeters of lead are required to shield gamma radiation.
  • Gamma radiotherapy has been shown to be effective in vascular radiation therapy, particularly for the treatment of in-stent restenosis. Randomized data from the Scripps Trial (The SCRIPPS Trial—Catheter-Based Radiotherapy to Inhibit Coronary Restenosis; J Invas Cardiol 12(6):330-332 (2000) a randomized, double blind, placebo-controlled study demonstrated a reduction in restenosis rates from 54% in the placebo group to 17% in patients treated with gamma radiation (192Ir). Gamma sources penetrate human tissues deeply. This makes gamma energy ideal for treating large vessels. Gamma sources have been used in the clinical arena for decades and hospital radiotherapy departments have significant years of experiences using gamma sources.
  • There are, however, numerous disadvantages to using gamma sources. Photons are not blocked by the “usual” lead shields. A 1 inch lead shield is required. This is usually provided in the form of a very cumbersome heavy lead device attached to rollers that allow it to be wheeled into the catheterization laboratory. Due to the presence of deeply penetrating ionizing radiation, when high-energy gamma radiation is used in the catheterization laboratory, the procedure room must be cleared of all “nonessential” personnel. The patient is observed from a “control room” which is protected by lead shielding. Also, the patient receives more radiation from a gamma radiation procedure as compared to other radiation procedures. The radiation oncologist, who delivers the actual radiation sources, also receives additional radiation exposure. This problem of radiation exposure in the catheterization laboratory environment limits the maximal specific activity of the radiation sources. If the sources are of very high activity, the exposure to health care personnel in the control room will be higher than background exposure. This would be unacceptable. To circumvent this problem, lower specific activity sources must be used. This requires a long dwell time (8 to 20 minutes) to achieve therapeutic doses.
  • SUMMARY OF THE INVENTION
  • The present invention provides new surgical devices and methods for use thereof. Devices and methods of the invention are particularly useful for treatment of eye disorders such as Age Related Macular Degeneration
  • More particularly, the present invention provides a device for localized delivery of beta radiation during surgical procedures and methods of use thereof. The device is particularly suitable for the localized delivery of beta radiation for the treatment of macular degeneration. The device delivers beta radiation to the affected sub-macular region afflicted with the condition.
  • Beta radiation is a high-speed electron. A typical source of beta radiation may be, for example, radioisotope Phosphorus 32 (32P). Beta source electrons only penetrate 1 to 2 mm into human tissue. Even thick plastics easily shield beta energy. The fact that exposure from beta sources is limited allows the specific activity to be much higher than that of gamma sources. This translates into very short dwell times, for example, approximately 3 to 8 minutes of exposure is estimated for ophthalmic applications using a beta source, as opposed to the longer long dwell time associated with the use of a gamma source (8 to 20 minutes). Radiation safety concerns surrounding the use of beta sources are vastly reduced compared to that of gamma radiation. Health care personnel are able to remain in the operating room and additional exposure to the patient and surgeon is negligible. The dose of beta radiation received during macular radiotherapy will be less than that received during a conventional chest x-ray. We have found that beta radiotherapy can be an optimal balance of power, penetration, and safety for many medical applications and specifically for the treatment of choroidal neo-vascularization (CNV) caused by AMD and other diseases of the eye.
  • In particular, we believe that the exposure of the new blood vessels formed during wet type macular degeneration to the beta radiation provides sufficient disruption of the cellular structures of the new blood cell lesions to reverse, prevent, or minimize the progression of the macular degeneration disease process. Such therapy in accordance with the invention can potentially restore visual acuity, extend retention of visual acuity, or slow the progressive loss of visual acuity.
  • In a preferred embodiment, the surgical device includes a radiotherapy emitting material positioned on the device, such as a cannula, typically a distal end or portion of the cannula. For added safety, the radiotherapy emitting material is preferably shielded. The cannula may be straight or curved. Preferably, to provide access to the macula from a retinotomy peripheral to the macula, the cannula preferably has a bend or curve. Preferably, the beta radiotherapy emitting material is housed in and partially shielded in the distal end of the cannula by a thin wall metal, such as stainless steel, and/or by a thin wall polymer, plastic, or similar material. The shield may also be designed to be retracted to provide a pathway during the exposure period.
  • The cannula may have a handle extending its proximal end for providing the surgeon with a better grip on the device and for allowing the surgeon to easily reach the surgical site.
  • The radiotherapy emitting material preferably emits purely beta radiation, however, the radiotherapy emitting material may also be a material that emits very low and insignificant doses of gamma radiation in addition to beta radiation. Any conventional beta radiation emitting materials used in surgical settings may be used in the present device. For example, some suitable pure beta radiation emitting materials may include: 206Tl (half-life of about 4.20 min), 60mCo (half-life of about 10.47 min), 69Zn (half-life of about 55.6 min), 209Pb (half-life of about 3.253 hours), 143Pr (half-life of about 13.58 days), 32P (half-life of about 14.282 days), 33P (half-life of about 25.34 days), 45Ca (a half-life of about 165 days), 90Sr (half-life of about 28.5 years), 99Te (half-life of about 2.13×105 years) and 36S (half-life of about 3.08×105 years).
  • The duration of radiation emission required during a single treatment for Age Related Macular Degeneration using the device can be quite short, e.g. less than 10 or 15 minutes, or even less than 5 minutes. Typical treatments will range from about 1 to 15 minutes, more typically 2 to ten minutes. Thus, for a single-use device, is it possible to use beta radiation emitting materials having short half-lives. However, in some cases, it is desirable to provide a device with a long shelf-life if, for example, the device is not immediately used or if the device is reusable. Thus, in some cases, it is preferred that the beta radiation emitting material is selected from materials that have a half-life of at least about 2 years. Further, when used for the treatment of Age Related Macular Degeneration, it is preferable that the beta emitting material is selected from materials having an energy ranging from about 50 cGr/sec to about 100 cGr/sec.
  • The present invention also provides device kits, which preferably comprise one or more of the described beta radiotherapy emitting surgical devices, preferably packaged in sterile condition.
  • Other aspects and embodiments of the invention are discussed infra.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an isometric view of one embodiment of the surgical device in accordance with the present invention.
  • FIG. 2 shows a diagram of a normal, healthy eye.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the various figures of the drawing, wherein like reference characters refer to like parts, there is shown in FIG. 1 a view of a surgical device 1 in accordance with the invention.
  • In a preferred embodiment, the surgical device 1 includes a cannula 2, having a proximal end 4 and a distal end 6. Cannulas are well known and, thus, although described below with reference to a preferred embodiment, the general features (e.g. size, shape, materials) of the cannula 2 may be in accordance with conventional cannulas.
  • A radiotherapy emitting material 8 is located at the distal end 6 of a cannula 2. The radiotherapy emitting material 8 preferably emits pure beta radiation because beta radiation is easily blocked and, if not shielded, does not penetrate more than about 1-2 mm in human tissue. However, it is possible to use a radiotherapy emitting material 8 that emits very low and insignificant doses of gamma radiation in addition to beta radiation. For example, some suitable pure beta radiation emitting materials may include: 206Tl (half-life of about 4.20 min), 60mCo (half-life of about 10.47 min), 69Zn (half-life of about 55.6 min), 209Pb (half-life of about 3.253 hours), 143Pr (half-life of about 13.58 days), 32P (half-life of about 14.282 days), 33P (half-life of about 25.34 days), 45Ca (half-life of about 165 days), 90Sr (half-life of about 28.5 years), 99Te (half-life of about 2.13×105 years), 36S (half-life of about 3.08×105 years).
  • The half-life of the beta emitting material may vary depending on the use of the device. For example, when used to treat Age Related Macular Degeneration (AMD), one treatment using the device will typically require radiation emission for a period of time ranging from about two to about ten minutes. Thus, single-use devices that are disposed of between treatments may be fabricated using radiotherapy emitting materials 8 with a relatively short half-life. In some circumstances, it is preferable to provide a device having a long shelf-life. In such circumstances, it is preferable to fabricate the device using radiotherapy emitting materials 8 that are continuously active for a very long time (e.g. with a half-life of at least 2 years).
  • The energy of the beta emitting material may vary depending on the use of the device. For example, when used to treat Age Related Macular Degeneration (AMD), the beta emitting material is preferably selected from materials having an energy ranging from about 50 cGr/sec to about 100 cGr/sec.
  • Preferably, for added safety during use of the surgical device 1, the radiotherapy emitting material 8 is at least partially shielded. Because beta radiation is easily shielded, the radiotherapy emitting material 8 may be is housed in and partially shielded in, for example, a thin wall metal, such as stainless steel, or by a thin wall polymer, plastic, or similar material. This may be accomplished by providing a thin wall or shield 10 at the distal end 6 of the cannula 2 about the radiotherapy emitting material 8. In one embodiment, at least a portion the radiotherapy emitting material 8 is housed in and partially shielded in the distal end 6 of the cannula 2. Thus, at least a portion of the distal end 6 of the cannula 2 is fabricated of, for example, a thin wall metal, such as stainless steel, or by a thin wall polymer, plastic, or similar material. Alternatively, if desired, the entire cannula 2 may be fabricated of a thin wall metal, such as stainless steel or similar material, or by a thin wall polymer, plastic, or similar material. The shield 10 may also be designed to be retractable to provide further ease in handling the device and shielding of the radiotherapy emitting material 8 when desired.
  • To provide a surgeon, patient and others in the operating area with adequate protection from the beta radiation, the thickness of the wall or shield 10 or the thickness of the distal end 6 of the cannula in which the radiotherapy emitting material 8 is housed preferably ranges from about 0.5 to about 3 mm, and more preferably, from about 1 mm to about 2 mm. While thicknesses above about 3 mm may be used, it is believed that thicknesses above about 3 mm will not provide significant additional protection from the beta radiation and would make the surgical device 1 bulky and more difficult to handle.
  • The cannula 2 may have a handle 14 extending its proximal end 4 for providing the surgeon with a better grip on the surgical device 1 and for allowing the surgeon to easily reach the surgical site. Such handles are known and, thus, the handle 14 of the present invention may be in accordance with conventional handles. The handle may be attached to the cannula 2 by a frictional fit and/or conventional fastening means. The connecting means, such as a hub 16 portion may further be included and designed so as to assist in connecting the cannula 2 to the handle 14 via a frictional fit and, if desired, conventional fastening means may be used to assist the hub 16 in connecting the cannula 2 to the handle 14.
  • In use, the surgical device 1 is gripped by the handle 14 or a portion of the proximal end 4 of the cannula 2, and the distal end 6 of the cannula 2 with the radiotherapy emitting material 8 is introduced into the surgical site. In contrast to prior methods in which access to the macula is provided by inserting devices between the eyelid and sclera, the present procedure involves making a standard vitrectomy port incision (typically about a 20 gage—approximately 0.89 mm—incision) in the eye to provide access to the macula, located at the back of the eye. The distal end 6 of the cannula 2 and the radiotherapy emitting material 8 are then inserted through the incision towards the macula. This approach will provide the surgeon with a superior ability to locate the radiotherapy emitting material directly in the affected area. This superior positioning approach provides for more effective therapy and enhanced safety for the lens and optic disc. The surgeon will then perform a vitrectomy and pre-detach the macula by injecting saline beneath the retina with a 41 gage needle to gain “direct access” to the sub macular membrane.
  • The radiotherapy emitting material 8 is preferably positioned within about 1 mm to about 3 mm of the choroidal blood vessels being treated. In some cases, however, the tip may be placed directly on the choroidal blood vessels.
  • During the procedure, the surgeon can view the interior of the eye using a standard procedure for viewing the macula through the cornea with an illuminated operating microscope and a lens placed on the cornea. The surgeon can alternatively view the interior of the eye by making a second 20 gage incision to provide access for a fiber optic illuminator, which is a standard practice in retinal surgery.
  • The cannula 2 is preferably elongate in shape to provide easy access to the surgical site. Preferably, the body portion is designed so as to conform with the incision made in the eye, such that as the cannula 2 is inserted in the eye through the incision, the incision molds around the body portion and prevents leakage around the cannula 2. Further, the cannula 2 is preferably designed with a smooth surface so as to prevent further trauma to the eye as it is entered through the incision. In one preferred embodiment, as shown in FIG. 1, the cannula 2 has an elongate cylindrical shape. The cannula 2 may have a substantially uniform cross sectional diameter or may taper. In one preferred embodiment, the cannula 2 tapers towards the distal end 6 to provide precision in placement of the radiotherapy emitting material 8 and to allow for targeted treatment of only the defective, leaking vessels. Although the cannula 2 is depicted as cylindrical in shape, other shapes may be used as desired. Additionally, the cannula 2 may include a bend to provide enhanced access to areas that are difficult to reach. Preferably, to provide access to the macula from a retinotomy peripheral to the macula, the cannula preferably has a curve.
  • The dimensions of the surgical device 1 may vary depending on its ultimate use. For example, to treat AMD, in cases where the cannula 2 is inserted into the eye through an incision, the length of the cannula 2 would be designed so that the radiotherapy emitting material 8 would reach the appropriate distance to back of the eye while allowing only the cannula 2, and not the hub 16, handle 14 or other apparatus connected to the proximal end 6 of the cannula 2, to enter the incision. As such, the portion of the cannula that enters the incision in the eye preferably has a length ranging from about 28 to about 32 mm. The radiotherapy emitting material 8 portion of the device preferably has a length that ranges from about 2 mm to about 6 mm. More preferably, the length of the radiotherapy emitting material 8 portion of the device ranges from about 2 mm to about 3 mm. The handle 14 of the device preferably ranges from about 3-6 inches to provide a suitable gripping means for the surgeon. If included, the hub 16, which connects the cannula 2 to the handle 14, preferably has a length ranging from about 10 mm to about 12 mm. Further, in applications where a portion of the cannula 2 is inserted into the eye through an incision, the diameter or thickness of the cannula 2 preferably conforms to the size of the incision so that the incision molds around the cannula 2 and prevents leakage around the cannula 2. For example, in preferred embodiments, the diameter or thickness of the cannula 2 ranges from about 0.6 mm to about 1.2 mm. More preferably, the diameter or thickness of the cannula 2 ranges from about 0.8 to about 1.0 mm. However, it is to be understood that the diameter or thickness of the cannula 2 and the length of the portion of the cannula 2 that enters the incision may vary depending on the particular procedure performed, the size of the incision made and the distance from the incision to the treatment area.
  • The cannula 2 may be fabricated of any conventional materials used in forming similar surgical devices. Preferably, the material is lightweight and strong. Some conventional materials are plastics and stainless steel. Further, because the cannula 2 is inserted in the eye area in some applications, the materials used in forming the cannula 2 must be medically approved for such contact.
  • The radiotherapy emitting material 8 may be fixedly or removably connected to the distal end 6 of the cannula 2. Known means such as, for example, adhesives may be used to fixedly secure the radiotherapy emitting material 8 to the cannula 2. The radiotherapy emitting material 8 may also be removably connected to the cannula 2 by known means such as, for example, forming the radiotherapy emitting material 8 and the cannula 2 to have corresponding threaded portions that allows removable attachment of the radiotherapy emitting material 8 to the cannula 2 so that the device may be reused by simply sterilizing the cannula 2 with ethelene oxide gas or similar means, and replacing the radiotherapy emitting material 8. Preferably, the entire surgical device 1 is disposed of and replaced between uses to maintain sterility and prevent cross-contamination between uses.
  • The present invention also includes kits that comprise one or more beta radiotherapy emitting surgical devices of the invention, preferably packaged in sterile condition. Kits of the invention may also include written instructions for use of the beta radiotherapy emitting surgical devices and other components of the kit.
  • The foregoing description of the invention is merely illustrative thereof, and it is understood that variations and modifications can be effected without departing from the scope or spirit of the invention as set forth in the following claims. For example, although the present invention is described in detail in connection with ophthalmic surgical procedures, particularly in connection with the treatment of AMD, the present invention is not limited to use on the eye. Rather, the present invention may be used on other areas of the body to treat various conditions such as, for example, the prevention of restenosis.

Claims (5)

1-42. (canceled)
43. A kit for performing a radiotherapy ophthalmic treatment procedure comprising:
at least one surgical device adapted for insertion into the vitreous chamber of the eye for administering ionizing radiotherapy to a target tissue and packaged in a sterile condition; and
written instructions for use of the device.
44. A kit in accordance with claim 43 in which the surgical device includes a cannula suited for insertion into the vitreous chamber of the eye.
45. A kit in accordance with claim 44 in which the cannula is configured for cooperation with a radiotherapy source.
46. A kit in accordance with claim 43 further comprising additional components used in the procedure.
US13/336,281 2001-02-22 2011-12-23 Beta Radiotherapy Emitting Surgical Device And Methods of Use Thereof Abandoned US20120095278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/336,281 US20120095278A1 (en) 2001-02-22 2011-12-23 Beta Radiotherapy Emitting Surgical Device And Methods of Use Thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/790,486 US6875165B2 (en) 2001-02-22 2001-02-22 Method of radiation delivery to the eye
US11/075,098 US7276019B2 (en) 2001-02-22 2005-03-08 Ophthalmic treatment apparatus
US11/282,408 US7223225B2 (en) 2001-02-22 2005-11-18 Intraocular radiotherapy treatment for macular degeneration
US11/780,159 US8100818B2 (en) 2001-02-22 2007-07-19 Beta radiotherapy emitting surgical device and methods of use thereof
US13/336,281 US20120095278A1 (en) 2001-02-22 2011-12-23 Beta Radiotherapy Emitting Surgical Device And Methods of Use Thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/780,159 Division US8100818B2 (en) 2001-02-22 2007-07-19 Beta radiotherapy emitting surgical device and methods of use thereof

Publications (1)

Publication Number Publication Date
US20120095278A1 true US20120095278A1 (en) 2012-04-19

Family

ID=46277349

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/790,486 Expired - Fee Related US6875165B2 (en) 2001-02-22 2001-02-22 Method of radiation delivery to the eye
US11/075,098 Expired - Fee Related US7276019B2 (en) 2001-02-22 2005-03-08 Ophthalmic treatment apparatus
US11/282,408 Expired - Fee Related US7223225B2 (en) 2001-02-22 2005-11-18 Intraocular radiotherapy treatment for macular degeneration
US11/407,498 Expired - Fee Related US7220225B2 (en) 2001-02-22 2006-04-20 Intraocular radiotherapy treatment
US11/780,159 Expired - Fee Related US8100818B2 (en) 2001-02-22 2007-07-19 Beta radiotherapy emitting surgical device and methods of use thereof
US13/336,281 Abandoned US20120095278A1 (en) 2001-02-22 2011-12-23 Beta Radiotherapy Emitting Surgical Device And Methods of Use Thereof

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US09/790,486 Expired - Fee Related US6875165B2 (en) 2001-02-22 2001-02-22 Method of radiation delivery to the eye
US11/075,098 Expired - Fee Related US7276019B2 (en) 2001-02-22 2005-03-08 Ophthalmic treatment apparatus
US11/282,408 Expired - Fee Related US7223225B2 (en) 2001-02-22 2005-11-18 Intraocular radiotherapy treatment for macular degeneration
US11/407,498 Expired - Fee Related US7220225B2 (en) 2001-02-22 2006-04-20 Intraocular radiotherapy treatment
US11/780,159 Expired - Fee Related US8100818B2 (en) 2001-02-22 2007-07-19 Beta radiotherapy emitting surgical device and methods of use thereof

Country Status (1)

Country Link
US (6) US6875165B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130123648A1 (en) * 2011-11-11 2013-05-16 Leontios Stampoulidis Medical diagnosis and treatment using multi-core optical fibers

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875165B2 (en) * 2001-02-22 2005-04-05 Retinalabs, Inc. Method of radiation delivery to the eye
WO2004026347A2 (en) * 2002-09-17 2004-04-01 Iscience Surgical Corporation Apparatus and method for surgical bypass of aqueous humor
US7220224B1 (en) * 2003-03-07 2007-05-22 Minu, Llc Retinal translocation and fixation using adhesive material
WO2004084400A1 (en) * 2003-03-17 2004-09-30 Matsushita Electric Industrial Co., Ltd. Method of driving brushless dc motor and device therefor
EP2298412A1 (en) * 2004-02-12 2011-03-23 Neovista, Inc. Apparatus for intraocular brachytherapy
US7563222B2 (en) * 2004-02-12 2009-07-21 Neovista, Inc. Methods and apparatus for intraocular brachytherapy
US20090043321A1 (en) * 2004-04-29 2009-02-12 Iscience Interventional Corporation Apparatus And Method For Surgical Enhancement Of Aqueous Humor Drainage
US20100173866A1 (en) * 2004-04-29 2010-07-08 Iscience Interventional Corporation Apparatus and method for ocular treatment
EP1951372A4 (en) * 2005-11-15 2011-06-22 Neovista Inc Methods and apparatus for intraocular brachytherapy
US20080033328A1 (en) * 2006-08-02 2008-02-07 Horng-Jiun Chang Mask assembly for massage chairs
US7535991B2 (en) * 2006-10-16 2009-05-19 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US7620147B2 (en) 2006-12-13 2009-11-17 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
KR100939458B1 (en) 2007-05-28 2010-02-05 서울대학교병원 Ophthalmic applicator for pterygium treatment using 32? and/or 103?? radioisotope
US8512236B2 (en) 2008-01-11 2013-08-20 Oraya Therapeutics, Inc. System and method for positioning and stabilizing an eye
US8363783B2 (en) 2007-06-04 2013-01-29 Oraya Therapeutics, Inc. Method and device for ocular alignment and coupling of ocular structures
US7792249B2 (en) 2007-12-23 2010-09-07 Oraya Therapeutics, Inc. Methods and devices for detecting, controlling, and predicting radiation delivery
US7801271B2 (en) 2007-12-23 2010-09-21 Oraya Therapeutics, Inc. Methods and devices for orthovoltage ocular radiotherapy and treatment planning
US9056201B1 (en) 2008-01-07 2015-06-16 Salutaris Medical Devices, Inc. Methods and devices for minimally-invasive delivery of radiation to the eye
US10022558B1 (en) 2008-01-07 2018-07-17 Salutaris Medical Devices, Inc. Methods and devices for minimally-invasive delivery of radiation to the eye
EP3108933B1 (en) 2008-01-07 2019-09-18 Salutaris Medical Devices, Inc. Devices for minimally-invasive extraocular delivery of radiation to the posterior portion of the eye
US9873001B2 (en) 2008-01-07 2018-01-23 Salutaris Medical Devices, Inc. Methods and devices for minimally-invasive delivery of radiation to the eye
US8602959B1 (en) 2010-05-21 2013-12-10 Robert Park Methods and devices for delivery of radiation to the posterior portion of the eye
US8608632B1 (en) 2009-07-03 2013-12-17 Salutaris Medical Devices, Inc. Methods and devices for minimally-invasive extraocular delivery of radiation and/or pharmaceutics to the posterior portion of the eye
AU2009256236A1 (en) 2008-06-04 2009-12-10 Neovista, Inc. Handheld radiation delivery system for advancing a radiation source wire
USD691268S1 (en) 2009-01-07 2013-10-08 Salutaris Medical Devices, Inc. Fixed-shape cannula for posterior delivery of radiation to eye
USD691270S1 (en) 2009-01-07 2013-10-08 Salutaris Medical Devices, Inc. Fixed-shape cannula for posterior delivery of radiation to an eye
USD691269S1 (en) 2009-01-07 2013-10-08 Salutaris Medical Devices, Inc. Fixed-shape cannula for posterior delivery of radiation to an eye
USD691267S1 (en) 2009-01-07 2013-10-08 Salutaris Medical Devices, Inc. Fixed-shape cannula for posterior delivery of radiation to eye
US8425473B2 (en) 2009-01-23 2013-04-23 Iscience Interventional Corporation Subretinal access device
US20100191177A1 (en) * 2009-01-23 2010-07-29 Iscience Interventional Corporation Device for aspirating fluids
EP2496304A4 (en) * 2009-11-02 2013-04-17 Salutaris Medical Devices Inc Methods and devices for delivering appropriate minimally-invasive extraocular radiation
US10525281B2 (en) * 2009-11-05 2020-01-07 National University Corporation Kobe University Spacer for ionized radiation therapy
US8343106B2 (en) 2009-12-23 2013-01-01 Alcon Research, Ltd. Ophthalmic valved trocar vent
MX2012006598A (en) 2009-12-23 2012-06-19 Alcon Res Ltd Ophthalmic valved trocar cannula.
WO2011100586A1 (en) * 2010-02-12 2011-08-18 Vivaray, Inc. Brachytherapy applicator
WO2011137162A1 (en) 2010-04-27 2011-11-03 Neovista, Inc. Radiotherapy delivery cannula with visual confirmation window
US9428254B1 (en) 2010-09-24 2016-08-30 Katalyst Surgical, Llc Microsurgical handle and instrument
US8821444B2 (en) 2011-10-03 2014-09-02 Katalyst Surgical, Llc Multi-utility surgical instrument
US9138346B2 (en) 2012-01-26 2015-09-22 Katalyst Surgical, Llc Surgical instrument sleeve
US9629645B2 (en) 2012-10-30 2017-04-25 Katalyst Surgical, Llc Atraumatic microsurgical forceps
US9226762B2 (en) 2012-11-07 2016-01-05 Katalyst Surgical, Llc Atraumatic microsurgical forceps
US10022267B2 (en) 2014-04-21 2018-07-17 Katalyst Surgical, Llc Method of manufacturing a microsurgical instrument tip
US9775943B2 (en) 2014-10-10 2017-10-03 Katalyst Surgical, Llc Cannula ingress system
USD789536S1 (en) * 2015-04-16 2017-06-13 Katalyst Surgical, Llc Ophthalmic surgical manipulator
USD781420S1 (en) * 2015-04-16 2017-03-14 Katalyst Surgical, Llc Ophthalmic surgical manipulator
USD795427S1 (en) * 2015-04-16 2017-08-22 Katalyst Surgical, Llc Ophthalmic surgical manipulator
USD789537S1 (en) * 2015-04-16 2017-06-13 Katalyst Surgical, Llc Ophthalmic surgical manipulator
USD814637S1 (en) 2016-05-11 2018-04-03 Salutaris Medical Devices, Inc. Brachytherapy device
USD815285S1 (en) 2016-05-11 2018-04-10 Salutaris Medical Devices, Inc. Brachytherapy device
USD814638S1 (en) 2016-05-11 2018-04-03 Salutaris Medical Devices, Inc. Brachytherapy device
WO2017218161A1 (en) 2016-06-16 2017-12-21 Katalyst Surgical, Llc Reusable instrument handle with single- use tip
USD808528S1 (en) 2016-08-31 2018-01-23 Salutaris Medical Devices, Inc. Holder for a brachytherapy device
USD808529S1 (en) 2016-08-31 2018-01-23 Salutaris Medical Devices, Inc. Holder for a brachytherapy device
US10695043B2 (en) 2017-02-21 2020-06-30 Katalyst Surgical, Llc Surgical instrument subcomponent integration by additive manufacturing
GB201714392D0 (en) 2017-09-07 2017-10-25 Marsteller Laurence Methods and devices for treating glaucoma
WO2021142255A1 (en) * 2020-01-08 2021-07-15 Radiance Therapeutics, Inc. Methods, systems, and compositions for maintaining functioning drainage blebs associated with foreign bodies
US11273325B2 (en) 2018-11-29 2022-03-15 Radlance Therapeutics, Inc. Ophthalmic brachytherapy systems and devices for application of beta radiation
US10849640B2 (en) 2018-05-23 2020-12-01 Katalyst Surgical, Llc Membrane aggregating forceps
WO2020069217A1 (en) * 2018-09-28 2020-04-02 Radiance Therapeutics, Inc. Methods, systems, and compositions for maintaining functioning drainage blebs associated with minimally invasive micro sclerostomy
USD933226S1 (en) 2018-11-29 2021-10-12 Radiance Therapeutics, Inc. Ophthalmic brachytherapy set
USD933225S1 (en) 2018-11-29 2021-10-12 Radiance Therapeutics, Inc. Ophthalmic brachytherapy device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5931829A (en) * 1997-01-21 1999-08-03 Vasca, Inc. Methods and systems for establishing vascular access
US7276019B2 (en) * 2001-02-22 2007-10-02 Retinalabs, Inc. Ophthalmic treatment apparatus
US7803102B2 (en) * 2004-02-12 2010-09-28 Neovista, Inc. Methods and apparatus for intraocular brachytherapy

Family Cites Families (243)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US839061A (en) 1905-02-23 1906-12-18 Henri Farjas Apparatus for application of salts of radium.
US2517568A (en) 1948-09-04 1950-08-08 Radium Chemical Company Inc Eye applicator
US2559793A (en) * 1949-01-27 1951-07-10 Canadian Radium And Uranium Co Beta irradiation method and means
FR1585443A (en) 1968-07-23 1970-01-23
US3528410A (en) * 1968-09-16 1970-09-15 Surgical Design Corp Ultrasonic method for retinal attachment
US3982541A (en) * 1974-07-29 1976-09-28 Esperance Jr Francis A L Eye surgical instrument
CA1102018A (en) * 1978-01-09 1981-05-26 Philip Mchugh Unitary self shielded, self filtered and flattened bremsstrahlung photon source assembly for radiotherapy use
US4584991A (en) 1983-12-15 1986-04-29 Tokita Kenneth M Medical device for applying therapeutic radiation
US4662869A (en) * 1984-11-19 1987-05-05 Wright Kenneth W Precision intraocular apparatus
DE3686927T2 (en) 1985-02-26 1993-03-25 Univ Johns Hopkins NEOVASCULARIZATION INHIBITORS AND THEIR PRODUCTION.
US5322499A (en) 1985-09-20 1994-06-21 Liprie Sam F Continuous sheated low dose radioactive core adapted for cutting into short sealed segments
US5141487A (en) 1985-09-20 1992-08-25 Liprie Sam F Attachment of radioactive source and guidewire in a branchy therapy source wire
NL8601808A (en) 1986-07-10 1988-02-01 Hooft Eric T METHOD FOR TREATING A BODY PART WITH RADIOACTIVE MATERIAL AND CART USED THEREIN
US4846172A (en) * 1987-05-26 1989-07-11 Berlin Michael S Laser-delivery eye-treatment method
US5074861A (en) * 1988-05-23 1991-12-24 Schneider Richard T Medical laser device and method
US4891165A (en) * 1988-07-28 1990-01-02 Best Industries, Inc. Device and method for encapsulating radioactive materials
US5084002A (en) 1988-08-04 1992-01-28 Omnitron International, Inc. Ultra-thin high dose iridium source for remote afterloader
DE3831141A1 (en) 1988-09-13 1990-03-22 Zeiss Carl Fa METHOD AND DEVICE FOR MICROSURGERY ON EYE BY LASER RADIATION
US5183455A (en) 1988-10-07 1993-02-02 Omnitron International, Inc. Apparatus for in situ radiotherapy
US4861520A (en) 1988-10-28 1989-08-29 Eric van't Hooft Capsule for radioactive source
US4957476A (en) 1989-01-09 1990-09-18 University Of Pittsburgh Afterloading radioactive spiral implanter
US5147282A (en) 1989-05-04 1992-09-15 William Kan Irradiation loading apparatus
US4921327A (en) 1989-05-24 1990-05-01 Zito Richard R Method of transmitting an ionizing radiation
SG49267A1 (en) * 1989-08-14 1998-05-18 Photogenesis Inc Surgical instrument and cell isolation and transplantation
US5203353A (en) 1989-10-24 1993-04-20 Surgical Technologies, Inc. Method of penetrating and working in the vitreous humor of the eye
US5199939B1 (en) * 1990-02-23 1998-08-18 Michael D Dake Radioactive catheter
US5267960A (en) 1990-03-19 1993-12-07 Omnitron International Inc. Tissue engaging catheter for a radioactive source wire
US5129895A (en) 1990-05-16 1992-07-14 Sunrise Technologies, Inc. Laser sclerostomy procedure
AU8407291A (en) 1990-07-13 1992-02-04 Mallinckrodt Medical, Inc. Device for introducing a radioactive source into the body
US6099457A (en) 1990-08-13 2000-08-08 Endotech, Inc. Endocurietherapy
US5342283A (en) 1990-08-13 1994-08-30 Good Roger R Endocurietherapy
US5422926A (en) 1990-09-05 1995-06-06 Photoelectron Corporation X-ray source with shaped radiation pattern
US5282781A (en) * 1990-10-25 1994-02-01 Omnitron International Inc. Source wire for localized radiation treatment of tumors
US5160790A (en) 1990-11-01 1992-11-03 C. R. Bard, Inc. Lubricious hydrogel coatings
US5354257A (en) 1991-01-29 1994-10-11 Med Institute, Inc. Minimally invasive medical device for providing a radiation treatment
US20010021382A1 (en) 1991-03-29 2001-09-13 Genentech, Inc. Vascular endothelial cell growth factor antagonists
JP2573753B2 (en) * 1991-04-01 1997-01-22 矢崎総業株式会社 connector
US5257988A (en) 1991-07-19 1993-11-02 L'esperance Medical Technologies, Inc. Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment
DE69331381T2 (en) 1992-04-10 2002-08-08 Surgilight Inc DEVICE FOR PERFORMING EYE SURGERY
US5275593A (en) 1992-04-30 1994-01-04 Surgical Technologies, Inc. Ophthalmic surgery probe assembly
CA2161242A1 (en) * 1993-05-04 1994-11-10 Anthony J. Bradshaw Radioactive source wire, apparatus and treatment methods
EP0813894B1 (en) 1993-07-01 2001-12-05 Schneider (Europe) GmbH Medical appliances for the treatment of blood vessels by means of ionizing radiation
DE69432148T2 (en) 1993-07-01 2003-10-16 Boston Scient Ltd CATHETER FOR IMAGE DISPLAY, DISPLAY OF ELECTRICAL SIGNALS AND ABLATION
US5540659A (en) 1993-07-15 1996-07-30 Teirstein; Paul S. Irradiation catheter and method of use
US5445637A (en) * 1993-12-06 1995-08-29 American Cyanamid Company Method and apparatus for preventing posterior capsular opacification
US5707332A (en) 1994-01-21 1998-01-13 The Trustees Of Columbia University In The City Of New York Apparatus and method to reduce restenosis after arterial intervention
US5503613A (en) * 1994-01-21 1996-04-02 The Trustees Of Columbia University In The City Of New York Apparatus and method to reduce restenosis after arterial intervention
US5425730A (en) * 1994-02-16 1995-06-20 Luloh; K. P. Illumination cannula system for vitreous surgery
US5618266A (en) * 1994-03-31 1997-04-08 Liprie; Samuel F. Catheter for maneuvering radioactive source wire to site of treatment
US5556389A (en) 1994-03-31 1996-09-17 Liprie; Samuel F. Method and apparatus for treating stenosis or other constriction in a bodily conduit
US5426662A (en) 1994-04-28 1995-06-20 Coherent, Inc. Laser system selectively operable at two competing wavelengths
US5487725A (en) * 1994-05-12 1996-01-30 Syntec, Inc. Pneumatic vitrectomy for retinal attachment
US5503614A (en) * 1994-06-08 1996-04-02 Liprie; Samuel F. Flexible source wire for radiation treatment of diseases
US5857956A (en) * 1994-06-08 1999-01-12 United States Surgical Corporation Flexible source wire for localized internal irradiation of tissue
US5528651A (en) * 1994-06-09 1996-06-18 Elekta Instrument Ab Positioning device and method for radiation treatment
DE69413209T2 (en) 1994-06-10 1999-03-04 Schneider Europ Gmbh Medicinal device for the treatment of a part of body vessels by means of ionizing radiation
EP0965363B1 (en) 1994-06-24 2002-02-13 Schneider (Europe) GmbH Medical appliance for the treatment of a portion of body vessel by ionizing radiation
US5431907A (en) 1994-08-03 1995-07-11 Abelson; Mark B. Treatment of vascular disorders of the posterior segment of the eye by topical administration of calcium channel blocking agents
DE19535114B4 (en) 1994-09-21 2013-09-05 Hoya Corp. Endoscope system with fluorescence diagnosis
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
US5899882A (en) 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US6059752A (en) * 1994-12-09 2000-05-09 Segal; Jerome Mechanical apparatus and method for dilating and irradiating a site of treatment
US5725493A (en) 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
US5570408A (en) 1995-02-28 1996-10-29 X-Ray Optical Systems, Inc. High intensity, small diameter x-ray beam, capillary optic system
US5624437A (en) 1995-03-28 1997-04-29 Freeman; Jerre M. High resolution, high speed, programmable laser beam modulating apparatus for microsurgery
US5596011A (en) 1995-04-06 1997-01-21 Repine; Karen M. Method for the treatment of macular degeneration
US5851172A (en) 1995-05-08 1998-12-22 Omnitron International, Inc. Afterloader with active force feedback
US6041252A (en) * 1995-06-07 2000-03-21 Ichor Medical Systems Inc. Drug delivery system and method
DE69516679T2 (en) * 1995-06-22 2000-11-23 Schneider Europ Gmbh Buelach Medicinal device for the treatment of a part of a body vessel by means of ionizing radiation
US7338487B2 (en) 1995-08-24 2008-03-04 Medtronic Vascular, Inc. Device for delivering localized x-ray radiation and method of manufacture
US6377846B1 (en) * 1997-02-21 2002-04-23 Medtronic Ave, Inc. Device for delivering localized x-ray radiation and method of manufacture
US6799075B1 (en) * 1995-08-24 2004-09-28 Medtronic Ave, Inc. X-ray catheter
US5637073A (en) * 1995-08-28 1997-06-10 Freire; Jorge E. Radiation therapy for treating macular degeneration and applicator
US5947958A (en) 1995-09-14 1999-09-07 Conceptus, Inc. Radiation-transmitting sheath and methods for its use
US5729583A (en) 1995-09-29 1998-03-17 The United States Of America As Represented By The Secretary Of Commerce Miniature x-ray source
US5833593A (en) 1995-11-09 1998-11-10 United States Surgical Corporation Flexible source wire for localized internal irradiation of tissue
US5840008A (en) * 1995-11-13 1998-11-24 Localmed, Inc. Radiation emitting sleeve catheter and methods
US5713828A (en) * 1995-11-27 1998-02-03 International Brachytherapy S.A Hollow-tube brachytherapy device
EP0778051B1 (en) 1995-12-05 2003-04-09 Schneider (Europe) GmbH Filament for irradiating a living body and method for producing a filament for irradiating a living body
WO1997022379A2 (en) * 1995-12-18 1997-06-26 Kerisma Medical Products, L.L.C. Fiberoptic-guided interstitial seed manual applicator and seed cartridge
US5651783A (en) * 1995-12-20 1997-07-29 Reynard; Michael Fiber optic sleeve for surgical instruments
NL1002044C2 (en) * 1996-01-08 1997-07-09 Optische Ind De Oude Delft Nv Radioactive source that has clinically relevant beta radiation
US6004279A (en) 1996-01-16 1999-12-21 Boston Scientific Corporation Medical guidewire
US6203524B1 (en) * 1997-02-10 2001-03-20 Emx, Inc. Surgical and pharmaceutical site access guide and methods
US5855546A (en) * 1996-02-29 1999-01-05 Sci-Med Life Systems Perfusion balloon and radioactive wire delivery system
US6234951B1 (en) * 1996-02-29 2001-05-22 Scimed Life Systems, Inc. Intravascular radiation delivery system
US6059828A (en) * 1996-03-18 2000-05-09 Peyman; Gholam A. Macular indentor for use in the treatment of subretinal neovascular membranes
US5904144A (en) * 1996-03-22 1999-05-18 Cytotherapeutics, Inc. Method for treating ophthalmic diseases
IL126837A0 (en) 1996-05-01 1999-09-22 Lilly Co Eli Therapeutic treatment for vegf related diseases
US5797889A (en) 1996-06-19 1998-08-25 Becton Dickinson And Company Medical device having a connector portion with an improved surface finish
NL1003542C2 (en) * 1996-07-08 1998-01-12 Optische Ind Oede Oude Delftoe Needle kit for brachytherapy.
NL1003543C2 (en) 1996-07-08 1998-01-12 Optische Ind Oede Oude Delftoe Brachytherapy capsule and brachytherapy capsule assembly and guide.
US5782740A (en) 1996-08-29 1998-07-21 Advanced Cardiovascular Systems, Inc. Radiation dose delivery catheter with reinforcing mandrel
US6120460A (en) 1996-09-04 2000-09-19 Abreu; Marcio Marc Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions
US5882291A (en) * 1996-12-10 1999-03-16 Neocardia, Llc Device and method for controlling dose rate during intravascular radiotherapy
US6491619B1 (en) 1997-01-31 2002-12-10 Endologix, Inc Radiation delivery catheters and dosimetry methods
US6458069B1 (en) 1998-02-19 2002-10-01 Endology, Inc. Multi layer radiation delivery balloon
US6134294A (en) 1998-02-13 2000-10-17 University Of Utah Research Foundation Device and method for precision macular X-irradiation
US5772642A (en) * 1997-02-19 1998-06-30 Medtronic, Inc. Closed end catheter
EP0860181B1 (en) 1997-02-21 2004-04-28 Medtronic Ave, Inc. X-ray device having a dilatation structure for delivering localized radiation to an interior of a body
US5984853A (en) 1997-02-25 1999-11-16 Radi Medical Systems Ab Miniaturized source of ionizing radiation and method of delivering same
US20020172829A1 (en) 1997-02-28 2002-11-21 Yuichi Mori Coating composition, coating product and coating method
US6312374B1 (en) 1997-03-06 2001-11-06 Progenix, Llc Radioactive wire placement catheter
US6676590B1 (en) * 1997-03-06 2004-01-13 Scimed Life Systems, Inc. Catheter system having tubular radiation source
US6059713A (en) * 1997-03-06 2000-05-09 Scimed Life Systems, Inc. Catheter system having tubular radiation source with movable guide wire
US5865720A (en) * 1997-03-06 1999-02-02 Scimed Life Systems, Inc. Expandable and retrievable radiation delivery system
US6635008B1 (en) 1997-03-11 2003-10-21 Interventional Therapies Llc System and method for delivering a medical treatment to a treatment site
US5836882A (en) 1997-03-17 1998-11-17 Frazin; Leon J. Method and apparatus of localizing an insertion end of a probe within a biotic structure
AU6762198A (en) 1997-03-18 1998-10-12 Focused X-Rays Llc Medical uses of focused and imaged x-rays
US6033357A (en) * 1997-03-28 2000-03-07 Navius Corporation Intravascular radiation delivery device
US6309339B1 (en) * 1997-03-28 2001-10-30 Endosonics Corporation Intravascular radiation delivery device
US6210312B1 (en) * 1997-05-20 2001-04-03 Advanced Cardiovascular Systems, Inc. Catheter and guide wire assembly for delivery of a radiation source
US6019718A (en) * 1997-05-30 2000-02-01 Scimed Life Systems, Inc. Apparatus for intravascular radioactive treatment
US6106454A (en) 1997-06-17 2000-08-22 Medtronic, Inc. Medical device for delivering localized radiation
US6024690A (en) 1997-07-01 2000-02-15 Endosonics Corporation Radiation source with delivery wire
US6048300A (en) 1997-07-03 2000-04-11 Guidant Corporation Compact cartridge for afterloader
US5913813A (en) * 1997-07-24 1999-06-22 Proxima Therapeutics, Inc. Double-wall balloon catheter for treatment of proliferative tissue
US6482142B1 (en) 1997-07-24 2002-11-19 Proxima Therapeutics, Inc. Asymmetric radiation dosing apparatus and method
US5854822A (en) 1997-07-25 1998-12-29 Xrt Corp. Miniature x-ray device having cold cathode
US6508754B1 (en) 1997-09-23 2003-01-21 Interventional Therapies Source wire for radiation treatment
EP0904798B1 (en) 1997-09-26 2002-11-06 Schneider ( Europe) GmbH Carbon dioxide inflated radio-therapy balloon catheter
DE19744367C1 (en) 1997-10-08 1998-11-05 Schott Glas Simple application of thin, uniform silicone oil coating free from particles to medical cannula
US6471630B1 (en) 1998-03-24 2002-10-29 Radiomed Corporation Transmutable radiotherapy device
US6419621B1 (en) 1997-10-24 2002-07-16 Radiomed Corporation Coiled brachytherapy device
US6030333A (en) * 1997-10-24 2000-02-29 Radiomed Corporation Implantable radiotherapy device
AU743819B2 (en) * 1997-10-27 2002-02-07 California Institute Of Technology Methods and pharmaceutical compositions for the closure of retinal breaks
US6273850B1 (en) 1997-10-29 2001-08-14 Medtronic Ave, Inc. Device for positioning a radiation source at a stenosis treatment site
IL122094A (en) * 1997-11-03 2003-07-06 Israel Atomic Energy Comm In situ-generated solid radiation source based on tungsten<188>/rhenium<188> and the use thereof
US6409651B1 (en) * 1997-11-07 2002-06-25 Gmp/Vascular, Inc. Device for intravascular delivery of beta emitting isotopes
AU737378B2 (en) 1997-12-05 2001-08-16 Cook Incorporated Medical radiation treatment device
US6561967B2 (en) * 1997-12-12 2003-05-13 Bruno Schmidt Interstitial brachytherapy device and method
US6213932B1 (en) * 1997-12-12 2001-04-10 Bruno Schmidt Interstitial brachytherapy device and method
US5957829A (en) 1997-12-17 1999-09-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for radiotherapy using a radioactive source wire having a magnetic insert
US6149574A (en) 1997-12-19 2000-11-21 Radiance Medical Systems, Inc. Dual catheter radiation delivery system
US6108402A (en) 1998-01-16 2000-08-22 Medtronic Ave, Inc. Diamond vacuum housing for miniature x-ray device
US6159140A (en) 1998-02-17 2000-12-12 Advanced Cardiovascular Systems Radiation shielded catheter for delivering a radioactive source and method of use
US6338709B1 (en) 1998-02-19 2002-01-15 Medtronic Percusurge, Inc. Intravascular radiation therapy device and method of use
WO1999042177A1 (en) * 1998-02-19 1999-08-26 Radiance Medical Systems, Inc. Radioactive stent
WO1999045563A1 (en) 1998-03-06 1999-09-10 Xrt Corp. Method and x-ray device using adaptable power source
US6496561B1 (en) 1998-03-06 2002-12-17 Medtronic Ave, Inc. Devices, methods and systems for delivery of X-ray
US6069938A (en) * 1998-03-06 2000-05-30 Chornenky; Victor Ivan Method and x-ray device using pulse high voltage source
US6036631A (en) 1998-03-09 2000-03-14 Urologix, Inc. Device and method for intracavitary cancer treatment
US5928130A (en) * 1998-03-16 1999-07-27 Schmidt; Bruno Apparatus and method for implanting radioactive seeds in tissue
US6293899B1 (en) 1998-03-24 2001-09-25 Radiomed Corporation Transmutable radiotherapy device
US6433012B1 (en) 1998-03-25 2002-08-13 Large Scale Biology Corp. Method for inhibiting inflammatory disease
US6099499A (en) 1998-04-28 2000-08-08 Medtronic, Inc. Device for in vivo radiation delivery and method for delivery
US6093142A (en) 1998-04-30 2000-07-25 Medtronic Inc. Device for in vivo radiation delivery and method for delivery
US6238332B1 (en) 1998-05-07 2001-05-29 Uni-Cath Inc. Radiation device with shield portion
US6050930A (en) * 1998-06-02 2000-04-18 Teirstein; Paul S. Irradiation catheter with expandable source
US6053858A (en) 1998-06-04 2000-04-25 Advanced Cardiovascular Systems, Inc. Radiation source
US6673341B2 (en) 1998-07-06 2004-01-06 Beth Israel Deaconness Medical Center Methods of inhibiting proliferative diseases by inhibiting TGF-β-mediated angiogenesis
JP2003516768A (en) * 1998-07-20 2003-05-20 クック ウロロジカル インク. Brachytherapy device with antistatic handle
US6164281A (en) 1998-07-20 2000-12-26 Zhao; Iris Ginron Method of making and/or treating diseases characterized by neovascularization
US6378526B1 (en) 1998-08-03 2002-04-30 Insite Vision, Incorporated Methods of ophthalmic administration
WO2000010643A1 (en) * 1998-08-21 2000-03-02 Xrt Corp. Cathode structure with getter material and diamond film, and methods of manufacture thereof
US6391026B1 (en) 1998-09-18 2002-05-21 Pro Duct Health, Inc. Methods and systems for treating breast tissue
IL126341A0 (en) 1998-09-24 1999-05-09 Medirad I R T Ltd Radiation delivery devices and methods of making same
DE69931006T2 (en) * 1998-10-14 2007-01-04 Terumo K.K. Wired radiation source and catheter assembly for radiotherapy
DE19850203C1 (en) 1998-10-23 2000-05-31 Eurotope Entwicklungsgesellsch Medical radioactive iodine-125 miniature source comprises a radioactive carrier matrix enclosed in a corrosion resistant and body-compatible material
US7312050B2 (en) 1998-10-29 2007-12-25 University Of Iowa Research Foundation Nucleic acids encoding interphotoreceptor matrix proteins
US6689043B1 (en) 1998-11-06 2004-02-10 Amersham Plc Products and methods for brachytherapy
DE69930140T2 (en) 1998-11-06 2006-11-23 Ge Healthcare Ltd., Little Chalfont DEVICES AND METHODS FOR BRACHYTHERAPY
EP1143953A3 (en) 1998-11-20 2002-02-06 Genentech, Inc. Method of inhibiting angiogenesis
WO2000033916A1 (en) 1998-12-10 2000-06-15 Gilbert Gaussens Method and apparatus for irradiating senile macular degeneration
US6245047B1 (en) 1998-12-10 2001-06-12 Photoelectron Corporation X-Ray probe sheath apparatus
US6181770B1 (en) 1998-12-11 2001-01-30 Photoelectron Corporation X-ray source interlock apparatus
US6111932A (en) 1998-12-14 2000-08-29 Photoelectron Corporation Electron beam multistage accelerator
US6402676B2 (en) 1999-01-20 2002-06-11 Advanced Cardiovascular Systems, Inc. Tip configuration for radiation source wires
US6224536B1 (en) * 1999-02-08 2001-05-01 Advanced Cardiovascular Systems Method for delivering radiation therapy to an intravascular site in a body
US20020015957A1 (en) 2000-04-29 2002-02-07 Hageman Gregory S. Diagnostics and therapeutics for macular degeneration-related disorders
US6196963B1 (en) 1999-03-02 2001-03-06 Medtronic Ave, Inc. Brachytherapy device assembly and method of use
US6289079B1 (en) * 1999-03-23 2001-09-11 Medtronic Ave, Inc. X-ray device and deposition process for manufacture
DE19914914B4 (en) 1999-04-01 2016-10-06 Carl Zeiss Meditec Ag Method and arrangement for the targeted application of a therapy beam, in particular for the treatment of diseased areas in the eye
US6183410B1 (en) 1999-05-06 2001-02-06 Precision Vascular Systems, Inc. Radiation exposure device for blood vessels, body cavities and the like
US6195411B1 (en) 1999-05-13 2001-02-27 Photoelectron Corporation Miniature x-ray source with flexible probe
ATE285819T1 (en) 1999-06-18 2005-01-15 Aea Tech Qsa Gmbh RADIATION SOURCE FOR ENDOVASCULAR RADIATION
ATE321586T1 (en) 1999-06-18 2006-04-15 Aea Tech Qsa Gmbh RADIATION SOURCE FOR ENDOVASCULAR RADIATION
DE19933284A1 (en) 1999-07-15 2001-01-18 Friedrich Schiller Uni Jena Bu Solid body phantom for dosimetry of brachytherapy radiation sources in near field region has simple means for placing radiation source in solid body adjacent to radiation detector
US6551291B1 (en) 1999-08-04 2003-04-22 Johns Hopkins University Non-traumatic infusion cannula and treatment methods using same
US6238374B1 (en) 1999-08-06 2001-05-29 Proxima Therapeutics, Inc. Hazardous fluid infuser
US6264599B1 (en) * 1999-08-10 2001-07-24 Syntheon, Llc Radioactive therapeutic seeds having fixation structure
ATE260692T1 (en) 1999-09-20 2004-03-15 Aea Tech Qsa Gmbh WIRE-SHAPED RADIATION SOURCE FOR ENDOVASCULAR RADIATION
US6582417B1 (en) * 1999-09-22 2003-06-24 Advanced Cardiovascular Systems, Inc. Methods and apparatuses for radiation treatment
US6352501B1 (en) 1999-09-23 2002-03-05 Scimed Life Systems, Inc. Adjustable radiation source
US6464626B1 (en) 1999-09-30 2002-10-15 Advanced Cardiovascular Systems, Inc. Catheter assembly incorporating radiation shielding and related method of use
US6436026B1 (en) 1999-10-22 2002-08-20 Radiomed Corporation Flexible, continuous, axially elastic interstitial brachytherapy source
EP1235598A2 (en) * 1999-11-12 2002-09-04 Angiotech Pharmaceuticals, Inc. Compositions of a combination of radioactive therapy and cell-cycle inhibitors
US20030144570A1 (en) 1999-11-12 2003-07-31 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating disease utilizing a combination of radioactive therapy and cell-cycle inhibitors
US6443976B1 (en) 1999-11-30 2002-09-03 Akorn, Inc. Methods for treating conditions and illnesses associated with abnormal vasculature
JP2001161838A (en) 1999-12-07 2001-06-19 Radiomed Corp Wire-like radiation source member for cancer treatment and feeding device of the same
US6450937B1 (en) 1999-12-17 2002-09-17 C. R. Bard, Inc. Needle for implanting brachytherapy seeds
WO2001049227A1 (en) 2000-01-03 2001-07-12 Johns Hopkins University Surgical devices and methods of use thereof for enhanced tactile perception
EP1267935A2 (en) 2000-01-12 2003-01-02 Light Sciences Corporation Novel treatment for eye disease
US6395294B1 (en) * 2000-01-13 2002-05-28 Gholam A. Peyman Method of visualization of the vitreous during vitrectomy
US6575888B2 (en) 2000-01-25 2003-06-10 Biosurface Engineering Technologies, Inc. Bioabsorbable brachytherapy device
US7361643B2 (en) 2000-02-09 2008-04-22 University Of Puerto Rico Methods for inhibiting angiogenesis
CA2398901C (en) 2000-02-10 2010-11-16 Massachusetts Eye And Ear Infirmary Methods and compositions for treating conditions of the eye
US6302581B1 (en) 2000-02-11 2001-10-16 Photoelectron Corporation Support system for a radiation treatment apparatus
US6285735B1 (en) 2000-02-11 2001-09-04 Photoelectron Corporation Apparatus for local radiation therapy
US6421416B1 (en) 2000-02-11 2002-07-16 Photoelectron Corporation Apparatus for local radiation therapy
US6301328B1 (en) 2000-02-11 2001-10-09 Photoelectron Corporation Apparatus for local radiation therapy
US6320935B1 (en) * 2000-02-28 2001-11-20 X-Technologies, Ltd. Dosimeter for a miniature energy transducer for emitting X-ray radiation
US6652935B1 (en) * 2000-02-28 2003-11-25 Owens-Brookway Glass Container Inc. Flint/amber laminated glass container and method of manufacture
US6416457B1 (en) 2000-03-09 2002-07-09 Scimed Life Systems, Inc. System and method for intravascular ionizing tandem radiation therapy
US6755776B1 (en) 2000-03-20 2004-06-29 Louis Rogelio Granados Angioplasty radiation therapy to prevent restenosis
US6450938B1 (en) 2000-03-21 2002-09-17 Promex, Llc Brachytherapy device
WO2001085255A1 (en) 2000-05-09 2001-11-15 Radi Medical Technologies Ab Radiation therapy device with miniaturized radiation source
US6749553B2 (en) 2000-05-18 2004-06-15 Theragenics Corporation Radiation delivery devices and methods for their manufacture
US6443881B1 (en) * 2000-06-06 2002-09-03 Paul T. Finger Ophthalmic brachytherapy device
US6692759B1 (en) 2000-06-28 2004-02-17 The Regents Of The University Of California Methods for preparing and using implantable substance delivery devices
JP4138227B2 (en) * 2000-06-29 2008-08-27 富士通株式会社 Data recording method, data recording apparatus, and optical recording medium
US6458068B1 (en) * 2000-07-21 2002-10-01 Real World Design And Development Company Apparatus for determining the position of radioactive seeds in needles used for radioactive seed therapy for prostate cancer
US6497645B1 (en) 2000-08-28 2002-12-24 Isotron, Inc. Remote afterloader
ES2312456T3 (en) * 2000-08-30 2009-03-01 Johns Hopkins University DEVICES FOR INTRAOCULAR SUPPLY OF PHARMACOS.
EP1351946A2 (en) 2000-09-01 2003-10-15 Icos Corporation Materials and methods to potentiate cancer treatment
JP2004508048A (en) 2000-09-05 2004-03-18 カロリンスカ イノベーションズ アクティーエボラーグ Materials and Methods for Endothelial Cell Growth Inhibitors
US6714620B2 (en) 2000-09-22 2004-03-30 Numerix, Llc Radiation therapy treatment method
US6530875B1 (en) 2000-10-20 2003-03-11 Imagyn Medical Technologies, Inc. Brachytherapy seed deployment system
US6438206B1 (en) * 2000-10-20 2002-08-20 X-Technologies, Ltd. Continuously pumped miniature X-ray emitting device and system for in-situ radiation treatment
TW499664B (en) * 2000-10-31 2002-08-21 Au Optronics Corp Drive circuit of liquid crystal display panel and liquid crystal display
IL155740A0 (en) 2000-11-08 2003-12-23 Theragenics Corp Radioactive source wire and dual lumen catheter system for brachytherapy
EP1205216A3 (en) 2000-11-09 2004-01-02 Radi Medical Technologies AB Miniature x-ray source insulation structure
EP1205217A3 (en) 2000-11-09 2004-01-02 Radi Medical Technologies AB Structure of miniature X-ray source
US6514193B2 (en) * 2000-11-16 2003-02-04 Microspherix Llc Method of administering a therapeutically active substance
US6638205B1 (en) 2000-11-17 2003-10-28 Mds (Canada) Inc. Radioactive medical device for radiation therapy
US20020110220A1 (en) 2000-11-22 2002-08-15 Zilan Shen Method and apparatus for delivering localized X-ray radiation to the interior of a body
DE10058163C2 (en) 2000-11-22 2003-07-10 Bebig Isotopen Und Medizintech Method and applicator for positioning and / or ejecting radiation sources via hollow needles into biological tissue
US6866624B2 (en) * 2000-12-08 2005-03-15 Medtronic Ave,Inc. Apparatus and method for treatment of malignant tumors
US6415016B1 (en) * 2001-01-09 2002-07-02 Medtronic Ave, Inc. Crystal quartz insulating shell for X-ray catheter
US6546077B2 (en) * 2001-01-17 2003-04-08 Medtronic Ave, Inc. Miniature X-ray device and method of its manufacture
US7060695B2 (en) 2001-02-06 2006-06-13 Qlt, Inc. Method to prevent vision loss
ATE224218T1 (en) 2001-02-09 2002-10-15 Radi Medical Technologies Ab MEDICAL SYSTEM WITH A MINIATURIZED X-RAY TUBE
US20020183253A1 (en) 2001-02-22 2002-12-05 Brazzell Romulus Kimbro Method of treating ocular neovascularization
US7244576B2 (en) 2001-04-18 2007-07-17 Rigel Pharmaceuticals, Inc. Modulators of angiogenesis
US6771737B2 (en) * 2001-07-12 2004-08-03 Medtronic Ave, Inc. X-ray catheter with miniature emitter and focusing cup
US6810109B2 (en) * 2001-07-13 2004-10-26 Medtronic Ave, Inc. X-ray emitting system and method
US20060025800A1 (en) 2001-09-05 2006-02-02 Mitta Suresh Method and device for surgical ventricular repair
US6985557B2 (en) 2002-03-20 2006-01-10 Minnesota Medical Physics Llc X-ray apparatus with field emission current stabilization and method of providing x-ray radiation therapy
NL1020740C2 (en) 2002-06-03 2003-12-08 Nucletron Bv Method and device for the temporary introduction and placement of at least one energy-emitting source in an animal body.
US20040218721A1 (en) 2003-04-30 2004-11-04 Chornenky Victor I. Miniature x-ray apparatus
US6914960B2 (en) * 2003-04-30 2005-07-05 Medtronic Vascular, Inc. Miniature x-ray emitter having independent current and voltage control
US20040218724A1 (en) 2003-04-30 2004-11-04 Chornenky Victor I. Miniature x-ray emitter
US20060204535A1 (en) 2005-02-25 2006-09-14 Johnson Johnnie M Cell-friendly cannula and needle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5931829A (en) * 1997-01-21 1999-08-03 Vasca, Inc. Methods and systems for establishing vascular access
US7276019B2 (en) * 2001-02-22 2007-10-02 Retinalabs, Inc. Ophthalmic treatment apparatus
US7803102B2 (en) * 2004-02-12 2010-09-28 Neovista, Inc. Methods and apparatus for intraocular brachytherapy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130123648A1 (en) * 2011-11-11 2013-05-16 Leontios Stampoulidis Medical diagnosis and treatment using multi-core optical fibers

Also Published As

Publication number Publication date
US20020115902A1 (en) 2002-08-22
US20070265485A1 (en) 2007-11-15
US8100818B2 (en) 2012-01-24
US6875165B2 (en) 2005-04-05
US20060142629A1 (en) 2006-06-29
US20060189838A1 (en) 2006-08-24
US20050177019A1 (en) 2005-08-11
US7276019B2 (en) 2007-10-02
US7220225B2 (en) 2007-05-22
US7223225B2 (en) 2007-05-29

Similar Documents

Publication Publication Date Title
US8100818B2 (en) Beta radiotherapy emitting surgical device and methods of use thereof
US5637073A (en) Radiation therapy for treating macular degeneration and applicator
JP5721169B2 (en) Method and apparatus for minimally invasive extraocular radiation delivery to the back of the eye
US7744520B2 (en) Method and apparatus for intraocular brachytherapy
US7563222B2 (en) Methods and apparatus for intraocular brachytherapy
Char et al. Helium ion therapy for choroidal melanoma
Foote et al. External beam irradiation for retinoblastoma: patterns of failure and dose-response analysis
Journee-de Korver et al. Thermotherapy in the management of choroidal melanoma
US5487394A (en) Tungsten eye shields for electron beam treatment
Weiss et al. Visual outcomes of macular retinoblastoma after external beam radiation therapy
Abdukarimovich USE OF PHOTODYNAMIC THERAPY IN CHEMICAL BURNS OF DIFFERENT ETIOLOGIES OF THE SURFACE OF THE EYE
Journée-de Korver Transpupillary thermotherapy: a new laser treatment of choroidal melanoma
Young et al. MACUIAR UVEAL MELANOMA TREATED WITH PROTON BEAM IRRADIATION: 10-year Follow-Up Observation with Histopathologic Correlation
Takizawa et al. A Case of Circumscribed Choroidal Hemangioma Treated With Proton Beam Therapy and Followed Up for 15 Years
Oralov USE OF PHOTODYNAMIC THERAPY IN CHEMICAL BURNS OF DIFFERENT ETIOLOGIES OF THE SURFACE OF THE EYE
RU2236207C1 (en) Method for treating the cases of central retinal dystrophy
Schefler et al. Brachytherapy for Posterior Uveal Melanomas
RU2098056C1 (en) Method for treating dystrophic changes in posterior eye region
Canaan Jr Photocoagulation in retinal diseases
TWI607748B (en) Methods and devices for minimally-invasive extraocular delivery of radiation to the posterior portion of the eye
Hernandez et al. Plaque brachytherapy in the treatment of retinoblastoma
Sheils et al. Radiation therapy for age-related macular degeneration
Newnham An overview of age-related macular degeneration and its management using external beam radiotherapy
Franken et al. HAEMATOPORPHYRIN DERIVATIVE PHOTORADIATION TREATMENT OF MALIGNANT MELANOMA IN THE ANTERIOR EYE CHAMBER OF RABBITS
Masuda Treatment of Age-related Macular Degeneration

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, CO

Free format text: SECURITY AGREEMENT;ASSIGNOR:NEOVISTA, INC.;REEL/FRAME:027646/0271

Effective date: 20120113

AS Assignment

Owner name: NEOVISTA, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT;REEL/FRAME:027808/0246

Effective date: 20120305

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:NEOVISTA, INC.;REEL/FRAME:028768/0769

Effective date: 20120808

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION