US20120114570A1 - Collagen extraction from aquatic animals - Google Patents

Collagen extraction from aquatic animals Download PDF

Info

Publication number
US20120114570A1
US20120114570A1 US13/158,954 US201113158954A US2012114570A1 US 20120114570 A1 US20120114570 A1 US 20120114570A1 US 201113158954 A US201113158954 A US 201113158954A US 2012114570 A1 US2012114570 A1 US 2012114570A1
Authority
US
United States
Prior art keywords
collagen
skin
fish
extracting
skins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/158,954
Inventor
Jamilah Bakar
Umi Hartina Mohamad Razali
Dzulkifly Mat Hashim
Awis Qurni Sazili
Harvinder Kaur
Russly Abdul Rahman
Badlishah Sham Baharin
Kaur Harvinder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universiti Putra Malaysia (UPM)
Original Assignee
Universiti Putra Malaysia (UPM)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universiti Putra Malaysia (UPM) filed Critical Universiti Putra Malaysia (UPM)
Publication of US20120114570A1 publication Critical patent/US20120114570A1/en
Priority to US14/170,396 priority Critical patent/US9751929B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/65Collagen; Gelatin; Keratin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6887Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids from muscle, cartilage or connective tissue

Definitions

  • the present invention relates to a collagen obtained from fishes and a method of producing such fish collagen.
  • the present invention is directed to a collagen obtainable from the skin of fishes and a method of extracting and producing the same.
  • Collagen products have a number of applications in various industries.
  • collagen powders are used in clarification or precipitation processes, for example for clarifying potable liquors such as beer and wine.
  • various particulate materials such as yeasts and proteins become suspended in the liquor and need to be removed.
  • Collagen finings are added to the liquor to clarify it by aiding the precipitation of the suspended materials.
  • Collagen and gelatin can also be used in juice clarification processes.
  • Collagen is generally prepared from fish isinglass, which constitutes a very pure source of collagen prepared from the dried swim bladders of fish.
  • Many investigations have been made into the extraction of collagen from animal and fish skins including cold water fish skins (U.S. Pat. No. 4,295,894, U.S. Pat. No. 5,698,228, U.S. Pat. No. 5,162,506, U.S. Pat. No. 5,420,248, JP 4037679, JP 9-278639, JP 2-291814, PL 312122, RU 2139937).
  • the collagen extraction processes known involve a wide range of chemical and mechanical extractions, or combinations thereof. The properties of the collagen products obtained by these processes vary widely.
  • Collagen is recognized as a difficult and expensive protein to quantify because of the insoluble nature of most collagens. Yet, solubility is a key functional property important in a variety of applications such as healthcare products.
  • the applicants have also determined that the conformation of the native collagen molecule determines molecular functionality, with transition to the random coiled confirmation of gelatin upon denaturing resulting in a significant loss in fining ability.
  • Collagen has also been reported to be extracted from several fish species such as hake ( Merluccius merluccius L.), yellow sea-bream ( Dentex tumiforms ), tiger puffer ( Takifugu rubripes ), carp ( Cyprimus carpio ); squids ( Illex argentinus ) ( Ilona Kolodziejska, 1999); and also jellyfish ( Rhopilema asamushi ) (Takeshi Nagai et. al, 2000). All procedures reported were very similar where non-enzymatic extractions were employed and, if enzymatic reactions were used, then pepsin was the most common enzyme.
  • Collagen exists in several polymorphic forms, the common ones are Type I, III and V; type II and IV which are uncommon and can only be found in certain collagens, which have also been reported (Foegeding et al., 2001).
  • Collagens and their denatured forms, gelatines are composed of long chains of amino acids, connected by peptide bonds (Ockerman and Hansen, 1988; Ward and Courts, 1977). The number and type of chemical covalent bonds between the chains are altered as the animal ages, fewer numbers in younger animals. This influences the molecular properties of the resultant gelatine and glue (Ockerman and Hansen, 1988).
  • collagen is a relatively weak immunogen, at least partially due to the masking of potential antigenic determinants within the collagen structure. Also, it is resistant to proteolysis due to its helical structure. In addition, it is a natural substance for cell adhesion and the major tensile load-bearing component of the musculoskeletal system. Thus, extensive efforts have been devoted to the production of collagen fibers and membranes suitable for use in medical, as well as veterinary applications. Collagens have been actively incorporated in beverage formulations (both instant and traditional), of late.
  • the present invention relates to a process of extracting collagen (type 1 collagen), the collagen is obtained from skins of aquatic animals (preferably Lates calcarifer and Oreochromis nilotica ).
  • the collagen is extracted from fish skin using an enzyme, whereby the enzyme is papain.
  • the process comprises a starting material consisting essentially of fish skin, extracting collagen from said the fish skin, and recovering the collagen.
  • the skin is obtained by removing the skin from fresh or frozen fish.
  • the process further includes: extracting collagen from skins of Lates calcarifer (barramundi) which includes mixing the skin with alkaline solution (such as sodium) for at least 6 hours; washing the skin with water to eliminate residual of alkaline; soaking the skin with an alcohol (such as butyl alcohol) solution for at least 18 hours; washing the skin with a neutral solution; treating the skin with an acidic solution; hydrolyzing the skin with papain; obtaining a mixture and stirring the mixture at a working temperature of 4° C.
  • alkaline solution such as sodium
  • alcohol such as butyl alcohol
  • the process of extracting collagen from skins of Oreochromis nilotica further includes; homogenizing the fish skin with alkaline solution such as sodium; obtaining a suspension and stirring the suspension for at least 24 hours; centrifuging the suspension for at least 20 minutes; obtaining a precipitate; homogenizing the precipitate with alkaline solution; stirring the precipitate for at least 24 hours and for at least 3 repeats; washing the precipitate with water and acetic acid solution; stirring the precipitate with papain at a working temperature of 4-5° C.
  • the collagen obtained from the skin/s of Lates calcarifer and Oreochromis nilotica having a percentage of working yield between 14 and 40% by wet weight.
  • the amino acid which was obtained includes glycine, proline, alanine and arginine.
  • the peptide obtained had an apparent molecular weight distribution of 37 and 205 kilodalton (kDa)
  • the present invention also relates to the use of the collagen for the manufacture of a pharmaceutical composition cosmetic or topical preparation or food product/s.
  • the cosmetic includes cream, eye cream, lotion, ointment or gel, sun-screen, oral administration, face mask cream, anti-inflammatory medicine, and/or anti-irritant medicine.
  • the food product/s include(s) beverages, dairy products, confectionaries, chocolates, and any application in food formulation/s as an ingredient or for any functional properties.
  • FIG. 1 shows SDS-PAGE Patterns of Collagen from Skins of Red Tilapia.
  • FIG. 2 shows SDS-PAGE Patterns of Collagen from Skins of Red Tilapia as Affected by Different Enzyme Extraction and Storage Study.
  • FIG. 3 shows an electrophoretic pattern of collagen samples from barramundi skin with comparison to type 1 collagen from calf skin.
  • FIG. 4 shows Energy Dispersive X-ray (EDX) Chromatogram of Collagen Sample from Red Tilapia Skins.
  • the present invention relates to methods for preparing collagen from aquatic animals.
  • the present invention provides methods for the preparation of collagen suitable as the raw material for biomedical, and pharmaceutical applications; and for food application.
  • Creams are viscous liquids and semisolids emulsions, either oil-in-water or water-in-oil.
  • Cream bases are water-washable, and contain an oil phase, and emulsifier, and an aqueous phase.
  • the aqueous phase usually exceeds the oil phase in volume, and generally contains substance.
  • the emulsifier is a cream composition generally nonionic, anionic, cationic or amphoteric surfactant.
  • the creams, lotions, gels, emulsions and paste or the like may be spread on the affected surface and gently rubbed in.
  • a solution may be applied with a measuring device, swab, or the like, and carefully applied to the affected areas.
  • the present invention relates to the use of fish skin as novel industrial source of collagen.
  • said skin is obtained after the filleting or cutting of the fresh fish and frozen immediately after filleting/cutting, thus guaranteeing a very good quality of the base material, both from the standpoint of bacteriological and the native properties of the protein.
  • Red tilapia ( Oreochromis nilotica ) is a cultured freshwater fish obtained from a local fish farm in Ulu Langat, Selangor. The red tilapia weighed between 500 g to 600 g. Upon arrival at the laboratory, the fish were killed, filleted and the skin was manually removed. The skins were stored at ⁇ 20° C. until to be used.
  • Pepsin (crystallized and lyophilized, EC 3.4.23.1, from porcine stomach mucosa) with a declared activity of 3460 units/mg protein was obtained from Sigma Chemical. Trypsin (crystallized and lyophilized, EC 3.4.21.4 from porcine pancreas) with a declared activity of 40 U/mg protein and Papain (dry powder, EC 3.4.22.2, from Carica papaya ) with a declared activity of 30000 USP-U/mg were obtained from Merck (USA). All other chemicals used were of analytical grade.
  • the suspension was then stirred with enzyme at an enzyme/substrate ratio of 1/1000 (w/w) for 24 h at 5° C. Enzymes used were pepsin, trypsin and papain.
  • the suspension was then centrifuged at 10000 ⁇ g for 20 min. The collagen in the resultant supernatant after centrifugation was salted out by adding NaCl to give a final concentration of 2.0M. After centrifugation at 10000 ⁇ g for 20 min, the resultant precipitate was freeze-dried.
  • Yield is determined by weight of collagen extracted as to weight of wet skins used. Yield is calculated as follows.
  • Yields of dried collagens obtained from red tilapia skins are shown in Table 1. Yield is calculated based on the dry weight of collagen over the wet weight skins. These yields are in the range as those reported by Takeshi and Nobutaka (2000) for Japanese-sea-bass (55.4%), chub mackerel (49.8%) and bullhead shark (50.1%). Nagai et al., (2000) recorded a yield of 35.2% on a dry weight basis of collagen extracted from rhizostomous jellyfish.
  • Pepsin-digested extraction 0-week storage collagen recorded the highest yield of 74.77 ⁇ 11.36% followed by pepsin-digested extraction 4-week storage of 63.62 ⁇ 6.05% and pepsin-digested extraction 8-week storage of 62.98 ⁇ 2.37%. The lowest yield was recorded by trypsin-digested extraction 0-week storage i.e. 31.59 ⁇ 5.95%.
  • Values are the means ⁇ standard deviations of 3 replicates. Means with the same superscripts within each column are not significantly different (p ⁇ 0.05).
  • Protein content was determined by the micro-Kjedhal method (AOAC, 1995) and a nitrogen conversion factor of 5.3 was used. Protein digestion was done with concentrated sulfuric acid to ensure complete hydrolysis of collagen. Analyses were carried out in triplicates. Protein content of trypsin-digested collagen was twice the protein content of pepsin-digested collagen; 30.15% and 14.24% respectively. Papain-digested collagen has a protein content of 25.83% which is lower than trypsin-digested collagen. In the storage study, 0-week storage and 4-weeks storage have the lowest protein content ( ⁇ 15%) whereas 2-weeks storage had the highest protein content of 26.29%.
  • Table 3 shows the Hunter values of collagen extracted by different enzymes and storage study.
  • the L*, a* and b* values were quite similar for all collagen samples.
  • L* value which indicates the lightness value was >93 for all samples. This shows that all samples extracted by different enzymes and subjected to storage study were white in colour and this corresponds with the visual observation made.
  • the negative a* values ( ⁇ a) also shows a slight red hue in all samples whereas the higher b* value indicates more yellowish hue.
  • papain digested collagen sample has the highest b* value, thus more yellowish in appearance.
  • Table 3 illustrates all samples L* value of >95 indicating whiter samples.
  • the b* value of pepsin 6-week collagen sample was the lowest compared to other samples.
  • the amino acids composition in collagen was determined using Waters-Pico Tag Amino Acid Analyzer High Performance Liquid Chromatography, Model: Waters 501 Millipore Corporation, USA with column size 3.9 ⁇ 150 mm. Each sample was hydrolyzed with 6N HCl at 110° C. for 24 hrs. The hydrolysis was analyzed for their free amino acid content on a Waters auto analyzer, as recommended in the Waters-501 Instruments Manual (1991). Table 5 shows the amino acid composition of the collagen from red tilapia skins due to different enzyme extractions and storage periods. The amino acid profile obtained was from an acid hydrolysate. The amino acid content of trypsin and papain-digested collagen are higher than that of pepsin-digested collagen. The amino acid profile of papain and trypsin-digested collagen are not significantly different (p ⁇ 0.05).
  • the total amino acids content increases gradually from 4 th to 8 th week storage.
  • Glycine and proline are the major amino acids, constituting a quarter and a fifth of total amino acid content of the collagen samples respectively. This characteristic distinguishes collagen from other proteins.
  • Proline content in both trypsin (55.81) and papain-digested (51.54) collagens are double than in pepsin-digested 0-week storage (25.95).
  • hydroxyproline content could not be determined.
  • FIGS. 1 and 2 shows the SDS-PAGE patterns of collagen from skins of red tilapia extracted with different enzymes and storage period respectively. Visually 16, 15 and 7 bands were observed for trypsin, papain and pepsin-digested extraction respectively.
  • Apparent molecular weights of peptide detected were in the range of 20,300 Da to 221,900 Da for papain-digested extraction whereas 31,500 Da to 200,000 Da for trypsin-digested extraction. In pepsin-digested extractions (storage study), no peptide bands above 144,200 Da were observed. The molecular weight patterns for the storage study samples are also almost similar. Identification of the molecular bands associated with the types of collagens is the common results report for the SDS-PAGE electrophoresis.
  • FIG. 3 represents an electrophoretic pattern of collagen samples from barramundi skin with comparison to type 1 collagen from calf skin.
  • Apparent molecular weights of peptide detected were in the range of ⁇ 30,000 to 250,000 kDa.
  • Collagen from barramundi skin contained two different ⁇ chain ( ⁇ 1 and ⁇ 2 ) and ⁇ -component. These electrophoretic patterns were similar to calf skin collagen and the kind of dimmer was also observed in collagen samples from other aquatic sources.
  • the acid-soluble collagen and pepsin-soluble collagen had similar electrophoretic pattern with type 1 collagen from calf skin.
  • papain-extracted collagen shows slightly different pattern, the ⁇ dimmer was not observed.
  • Collagen with papain treatment also contained products of enzymatic hydrolysis below 100 kDa. This result suggested that different type of proteases have different cleavage properties of the collagen samples, as shown in the SDS-PAGE chromatogram.
  • Trypsin-digested extraction showed the highest carbon and oxygen content of 48.64% and 7.69% respectively. Chlorine is the major element in all samples except for trypsin-digested extraction (33.61%). Oxygen is the minor element detected in all samples ranging from 1-7%. The carbon content indicates that the collagens are of organic matter. To this date, there are no reported findings of mineral analysis of collagens.
  • Skins were stored frozen ( ⁇ 20° C.) for up to 2 months. Every week, the skins were thawed and subjected to treatment to extract collagen. The collagen obtained was then analyzed as before to determine the effects of frozen storage of skins on the collagen characteristics.

Abstract

The present invention relates to the use of fish skin as novel industrial source of collagen. Advantageously, said skin is obtained after the filleting or cutting of the fresh fish and frozen immediately after filleting/cutting, thus guaranteeing a very good quality of the base material, both from the bacteriological standpoint and from the standpoint of the native property of the protein.

Description

    RELATED APPLICATIONS
  • This application is a continuation of PCT Application No. PCT/MY2009/000122, filed on Aug. 19, 2009, which claims priority to Malaysian Patent Application No. PI 20085247, filed on Dec. 23, 2008, the entirety of which is incorporated herein by reference.
  • FIELD OF INVENTION
  • The present invention relates to a collagen obtained from fishes and a method of producing such fish collagen. In particular, the present invention is directed to a collagen obtainable from the skin of fishes and a method of extracting and producing the same.
  • BACKGROUND OF INVENTION
  • A great amount of waste portions of fish, which are generally considered useless or untapped, had been discarded. This has been one of the major problems that we should address in the modern society to find various ways to use that seemingly unserviceable portion of fishes in many applicable fields. In view of collagen being obtained from mammals and widely available as an edible material, researches are now being made about fish collagen and in particular about salmon and trout skins, in which a collagen is a main ingredient of the tissues. Recent years, thus, have seen some methods proposed to extract and produce a collagen from fish skins, including the skins of salmon and trout in question. The fish skin collagen, however, differs in characteristics from mammalian collagen and requires relatively less harse treatment due to the more delicate matrix of the skin. Collagen products have a number of applications in various industries. In one such application, collagen powders are used in clarification or precipitation processes, for example for clarifying potable liquors such as beer and wine. During the fermentation of liquors various particulate materials such as yeasts and proteins become suspended in the liquor and need to be removed. Collagen finings are added to the liquor to clarify it by aiding the precipitation of the suspended materials. Collagen and gelatin can also be used in juice clarification processes.
  • Collagen is generally prepared from fish isinglass, which constitutes a very pure source of collagen prepared from the dried swim bladders of fish. Many investigations have been made into the extraction of collagen from animal and fish skins including cold water fish skins (U.S. Pat. No. 4,295,894, U.S. Pat. No. 5,698,228, U.S. Pat. No. 5,162,506, U.S. Pat. No. 5,420,248, JP 4037679, JP 9-278639, JP 2-291814, PL 312122, RU 2139937). The collagen extraction processes known involve a wide range of chemical and mechanical extractions, or combinations thereof. The properties of the collagen products obtained by these processes vary widely. Many of the extraction processes applied to fish skins are adaptations and modifications of mammalian collagen extraction techniques. The applicants have identified that many of the processing steps applied to mammalian collagen extraction are not directly applicable for fish skin collagen extraction since the treatment may be quite harsh or too strong for the fish skin matrix. Such steps include chemical washes and extractions with strong acids or alkali, excessive filtering and decantation steps amongst others. A simplified extraction process which eliminates many of these steps would be desirable to increase yield and to reduce denaturation of the extracted collagen.
  • Collagen is recognized as a difficult and expensive protein to quantify because of the insoluble nature of most collagens. Yet, solubility is a key functional property important in a variety of applications such as healthcare products. The applicants have also determined that the conformation of the native collagen molecule determines molecular functionality, with transition to the random coiled confirmation of gelatin upon denaturing resulting in a significant loss in fining ability. Collagen has also been reported to be extracted from several fish species such as hake (Merluccius merluccius L.), yellow sea-bream (Dentex tumiforms), tiger puffer (Takifugu rubripes), carp (Cyprimus carpio); squids (Illex argentinus) (Ilona Kolodziejska, 1999); and also jellyfish (Rhopilema asamushi) (Takeshi Nagai et. al, 2000). All procedures reported were very similar where non-enzymatic extractions were employed and, if enzymatic reactions were used, then pepsin was the most common enzyme.
  • The use of by-products from fish processing for collagen and gelatine production, as an alternative introduces some questions, the diversity of aquatic species and also the higher susceptibility of this collagen to deterioration when compared to those from mammals, which is more stable and facilitates its preservation (Fernandez-Diaz et al., 2003). Moreover, after degutting and filleting of fish, skins are kept with the rest of the discard and they are subjected to rapid enzymatic and microbial damage, which are natural and this may lead to quality variation of the extracted collagen and the gelatins. Enzymatic activities in aquatic animals are known to be higher than land animals.
  • Collagen exists in several polymorphic forms, the common ones are Type I, III and V; type II and IV which are uncommon and can only be found in certain collagens, which have also been reported (Foegeding et al., 2001). Collagens and their denatured forms, gelatines, are composed of long chains of amino acids, connected by peptide bonds (Ockerman and Hansen, 1988; Ward and Courts, 1977). The number and type of chemical covalent bonds between the chains are altered as the animal ages, fewer numbers in younger animals. This influences the molecular properties of the resultant gelatine and glue (Ockerman and Hansen, 1988). Fish collagens, in general, have lower amino acids contents than mammalian collagens and this may be the reason for the lower denaturation temperature (Grossman and Bergman, 1992, Jamilah and Harvinder, 2002). This in turn appears to be related to the body temperature of the species (Johns, 1977). There are many properties of collagen that make it an attractive substance for various medical applications, such as for implants, transplants, organ replacement, tissue equivalents, vitreous replacements, plastic and cosmetic surgery, surgical suture, surgical dressings for wounds, burns, etc. (See e.g., U.S. Pat. Nos. 5,106,949, 5,104,660, 5,081,106, 5,383,930, 4,485,095, 4,485,097, 4,539,716, 4,546,500, 4,409,332, 4,604,346, 4,835,102, 4,837,379, 3,800,792, 3,491,760, 3,113,568, 3,471,598, 2,202,566, and 3,157,524, all of which are incorporated herein by reference; Prudden, Arch. Surg. 89:1046-1059 [1964]; and Peacock et al. Ann. Surg., 161:238-247 [1965]). For example, by itself, collagen is a relatively weak immunogen, at least partially due to the masking of potential antigenic determinants within the collagen structure. Also, it is resistant to proteolysis due to its helical structure. In addition, it is a natural substance for cell adhesion and the major tensile load-bearing component of the musculoskeletal system. Thus, extensive efforts have been devoted to the production of collagen fibers and membranes suitable for use in medical, as well as veterinary applications. Collagens have been actively incorporated in beverage formulations (both instant and traditional), of late.
  • SUMMARY OF INVENTION
  • The present invention relates to a process of extracting collagen (type 1 collagen), the collagen is obtained from skins of aquatic animals (preferably Lates calcarifer and Oreochromis nilotica). The collagen is extracted from fish skin using an enzyme, whereby the enzyme is papain. Furthermore, the process comprises a starting material consisting essentially of fish skin, extracting collagen from said the fish skin, and recovering the collagen. The skin is obtained by removing the skin from fresh or frozen fish. Moreover, the process further includes: extracting collagen from skins of Lates calcarifer (barramundi) which includes mixing the skin with alkaline solution (such as sodium) for at least 6 hours; washing the skin with water to eliminate residual of alkaline; soaking the skin with an alcohol (such as butyl alcohol) solution for at least 18 hours; washing the skin with a neutral solution; treating the skin with an acidic solution; hydrolyzing the skin with papain; obtaining a mixture and stirring the mixture at a working temperature of 4° C. for at least 24 hours; centrifuging the mixture at 4° C.; precipitation of collagen by introducing the collagen into a sodium chloride solution to precipitate collagen fibers; collecting the collagen fibers and centrifuging the collagen for at least 60 minutes thus obtaining collagen pellet; dissolving the collagen pellet into acetic acid solution and/or freeze-drying the dialysed suspension.
  • In addition, the process of extracting collagen from skins of Oreochromis nilotica (red tilapia) further includes; homogenizing the fish skin with alkaline solution such as sodium; obtaining a suspension and stirring the suspension for at least 24 hours; centrifuging the suspension for at least 20 minutes; obtaining a precipitate; homogenizing the precipitate with alkaline solution; stirring the precipitate for at least 24 hours and for at least 3 repeats; washing the precipitate with water and acetic acid solution; stirring the precipitate with papain at a working temperature of 4-5° C. for at least 24 hours; obtaining a mixture; centrifuging the mixture for at least 20 minutes; obtaining collagen fibers; introducing the collagen into a sodium chloride solution; collecting the collagen fibers and centrifuging the collagen for at least 20 minutes; as a result collagen pellet is obtained; and freeze-drying the dialysed suspension. The collagen obtained from the skin/s of Lates calcarifer and Oreochromis nilotica having a percentage of working yield between 14 and 40% by wet weight. The characterization of the properties of the extracted collagen) analysis of the followings: amino acid analysis, peptide in the collagen and type of collagen. The amino acid which was obtained includes glycine, proline, alanine and arginine. The peptide obtained had an apparent molecular weight distribution of 37 and 205 kilodalton (kDa)
  • In addition, the present invention also relates to the use of the collagen for the manufacture of a pharmaceutical composition cosmetic or topical preparation or food product/s. The cosmetic includes cream, eye cream, lotion, ointment or gel, sun-screen, oral administration, face mask cream, anti-inflammatory medicine, and/or anti-irritant medicine. The food product/s include(s) beverages, dairy products, confectionaries, chocolates, and any application in food formulation/s as an ingredient or for any functional properties.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows SDS-PAGE Patterns of Collagen from Skins of Red Tilapia.
  • FIG. 2 shows SDS-PAGE Patterns of Collagen from Skins of Red Tilapia as Affected by Different Enzyme Extraction and Storage Study.
  • FIG. 3 shows an electrophoretic pattern of collagen samples from barramundi skin with comparison to type 1 collagen from calf skin.
  • FIG. 4 shows Energy Dispersive X-ray (EDX) Chromatogram of Collagen Sample from Red Tilapia Skins.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to methods for preparing collagen from aquatic animals. In particular, the present invention provides methods for the preparation of collagen suitable as the raw material for biomedical, and pharmaceutical applications; and for food application.
  • DEFINITIONS
  • Creams, as is a well known arts of pharmaceutical and cosmeceutical composition, are viscous liquids and semisolids emulsions, either oil-in-water or water-in-oil. Cream bases are water-washable, and contain an oil phase, and emulsifier, and an aqueous phase. The aqueous phase usually exceeds the oil phase in volume, and generally contains substance. The emulsifier is a cream composition generally nonionic, anionic, cationic or amphoteric surfactant.
  • The creams, lotions, gels, emulsions and paste or the like may be spread on the affected surface and gently rubbed in. A solution may be applied with a measuring device, swab, or the like, and carefully applied to the affected areas.
  • Unless stated otherwise, the amounts are given in % by weight, based on the total weight of the respective preparations.
  • The present invention relates to the use of fish skin as novel industrial source of collagen. Advantageously, said skin is obtained after the filleting or cutting of the fresh fish and frozen immediately after filleting/cutting, thus guaranteeing a very good quality of the base material, both from the standpoint of bacteriological and the native properties of the protein.
  • EXAMPLES Materials
  • Red tilapia (Oreochromis nilotica) is a cultured freshwater fish obtained from a local fish farm in Ulu Langat, Selangor. The red tilapia weighed between 500 g to 600 g. Upon arrival at the laboratory, the fish were killed, filleted and the skin was manually removed. The skins were stored at −20° C. until to be used.
  • Chemicals
  • Pepsin (crystallized and lyophilized, EC 3.4.23.1, from porcine stomach mucosa) with a declared activity of 3460 units/mg protein was obtained from Sigma Chemical. Trypsin (crystallized and lyophilized, EC 3.4.21.4 from porcine pancreas) with a declared activity of 40 U/mg protein and Papain (dry powder, EC 3.4.22.2, from Carica papaya) with a declared activity of 30000 USP-U/mg were obtained from Merck (USA). All other chemicals used were of analytical grade.
  • BEST MODE TO CARRY OUT THE INVENTION Extraction
  • Storage study of the red tilapia skins was also carried out to determine the effects of frozen storage on collagen characteristics. Skins were stored frozen up to 8 weeks and subjected to treatments at 2 weeks interval. The fish skins were cut into small pieces with scissors and thoroughly rinsed in excess water to remove superfluous material. They were then homogenized with 10 volumes of 0.1M NaOH to remove non-collagenous proteins and to prevent the effect of endogenous proteases on collagen (Sato and others, 1987). The suspension was stirred overnight and centrifuged at 10000×g for 20 min. The resultant precipitate was rehomogenized with 20 volumes of 0.1M NaOH and stirred slowly overnight. This procedure was repeated 3 or 4 times. The residue after alkali extraction was carefully and gently washed with distilled water and then suspended in 0.5M acetic acid.
  • The suspension was then stirred with enzyme at an enzyme/substrate ratio of 1/1000 (w/w) for 24 h at 5° C. Enzymes used were pepsin, trypsin and papain. The suspension was then centrifuged at 10000×g for 20 min. The collagen in the resultant supernatant after centrifugation was salted out by adding NaCl to give a final concentration of 2.0M. After centrifugation at 10000×g for 20 min, the resultant precipitate was freeze-dried.
  • Analyses
  • Yield of collagen (% w/w)
  • Yield is determined by weight of collagen extracted as to weight of wet skins used. Yield is calculated as follows.
  • Yield ( % w / w ) = collagen ( dry weight ) Fish skins ( Wet weight ) × 100 %
  • Visual Observations and Instrumental Colour
  • Visual observations for colour and texture were also noted. Colour measurements were made using Hunterlab Ultrascan Sphere Spectrocolorimeter (model Minolta Cr-300 Series). The samples were filled in a clear plastic and readings were then taken. Readings were carried out in triplicates.
  • Yields of dried collagens obtained from red tilapia skins (Oreochromis nilotica) are shown in Table 1. Yield is calculated based on the dry weight of collagen over the wet weight skins. These yields are in the range as those reported by Takeshi and Nobutaka (2000) for Japanese-sea-bass (55.4%), chub mackerel (49.8%) and bullhead shark (50.1%). Nagai et al., (2000) recorded a yield of 35.2% on a dry weight basis of collagen extracted from rhizostomous jellyfish. Pepsin-digested extraction 0-week storage collagen recorded the highest yield of 74.77±11.36% followed by pepsin-digested extraction 4-week storage of 63.62±6.05% and pepsin-digested extraction 8-week storage of 62.98±2.37%. The lowest yield was recorded by trypsin-digested extraction 0-week storage i.e. 31.59±5.95%.
  • In the storage study, 0-week storage gave the highest yield of 74.77% followed by 4-weeks storage (63.62%) and 8-weeks storage 62.98%. Lowest yield is recorded by 2-weeks storage (37.66%). This lower yield could be due to the loss of extracted collagen through leaching during the series of washings steps. Thus, lower concentrations of collagen were extracted. Another possible reason for the lower yield could be due to the incomplete hydrolysis of the collagen. The extraction time and temperature combination may not be sufficient enough to allow complete hydrolysis of the collagen. Protein composition of the tilapia skins may also influence the yield of collagen obtained.
  • TABLE 1
    Yield (%) and Protein Content (%) of Collagen
    Samples from Red Tilapia Skins
    Yield And Protein Content of Collagen Samples
    Collagen Sample Yield (%) Protein Content (%)
    Papain-digested 40.15 ± 4.55CD 25.83 ± 1.01B
    Trypsin-digested 31.59 ± 8.41D 30.15 ± 0.83A
    Pepsin-0-week 74.77 ± 16.07A 14.24 ± 1.26E
    Pepsin-2-week 37.66 ± 7.58CD 26.29 ± 0.40B
    Pepsin-4-week 63.62 ± 6.05AB 15.65 ± 2.96E
    Pepsin-6-week  51.51 ± 7.81BCD 20.09 ± 0.59D
    Pepsin-8-week 62.98 ± 2.37AB 24.68 ± 0.40B
  • Values are the means±standard deviations of 3 replicates. Means with the same superscripts within each column are not significantly different (p<0.05).
  • Protein Content
  • Protein content was determined by the micro-Kjedhal method (AOAC, 1995) and a nitrogen conversion factor of 5.3 was used. Protein digestion was done with concentrated sulfuric acid to ensure complete hydrolysis of collagen. Analyses were carried out in triplicates. Protein content of trypsin-digested collagen was twice the protein content of pepsin-digested collagen; 30.15% and 14.24% respectively. Papain-digested collagen has a protein content of 25.83% which is lower than trypsin-digested collagen. In the storage study, 0-week storage and 4-weeks storage have the lowest protein content (<15%) whereas 2-weeks storage had the highest protein content of 26.29%.
  • Visual Observation and Instrumental Color
  • The visual observation is as shown in Table 2. All samples except papain digested collagen were of snowy white and light-textured. Papain digested collagen however, has light yellow and was light-textured in appearance. Plate 1 and 2 shows the collagen samples extracted by different enzymes and storage study respectively.
  • TABLE 2
    Visual Observation of Red Tilapia Skin Collagen as
    Extracted By Different Enzymes and Storage Study.
    Collagen Samples Appearance
    Trypsin digested Snowy white and light-textured
    Papain digested Light yellow and light-textured
    Pepsin 0-week Snowy white and light-textured
    Pepsin 2-week Snowy white and light-textured
    Pepsin 4-week Snowy white and light-textured
    Pepsin 6-week Snowy white and light-textured
    Pepsin 8-week Snowy white and light-textured
  • Table 3 shows the Hunter values of collagen extracted by different enzymes and storage study. The L*, a* and b* values were quite similar for all collagen samples. L* value which indicates the lightness value was >93 for all samples. This shows that all samples extracted by different enzymes and subjected to storage study were white in colour and this corresponds with the visual observation made. The negative a* values (−a) also shows a slight red hue in all samples whereas the higher b* value indicates more yellowish hue. However, papain digested collagen sample has the highest b* value, thus more yellowish in appearance. Furthermore, Table 3 illustrates all samples L* value of >95 indicating whiter samples. However, the b* value of pepsin 6-week collagen sample was the lowest compared to other samples. Nevertheless, the L*, a* and b* values for all samples in the storage study were almost similar and not much difference were observed which corresponds with the visual appearance of the thus samples. The colour of the collagen depends on the raw material. However, it does not influence other functional properties (Ockerman and Hansen, 1988).
  • TABLE 3
    Instrumental Color of Collagen Samples As Affected
    by Different Enzyme Extractions and Storage Period
    Instrumental Colour
    Sample L a b
    Trypsin  95.62 ± 0.07BC  −1.10 ± 0.04EF 6.38 ± 0.49BC
    digested
    Papain 94.63 ± 0.30D −0.65 ± 0.04B 7.24 ± 0.37A
    digested
    Pepsin 0-week  95.70 ± 0.67BC −0.49 ± 0.09A 6.77 ± 0.82AB
    Pepsin 2-week  95.85 ± 0.10BC −1.01 ± 0.02E  5.06 ± 0.25DE
    Pepsin 4-week 97.23 ± 0.10A −0.80 ± 0.04C 5.15 ± 0.15DE
    Pepsin 6-week 96.89 ± 0.16A −0.62 ± 0.06B 4.47 ± 0.08E
    Pepsin 8-week 95.94 ± 0.27B −0.90 ± 0.07D 5.73 ± 0.40CD
  • Values are the means±standard deviations of 3 replicates.
  • Means with the same superscripts within each row are not significantly different (p<0.05)
  • Properties Control Pepsin-extracted Papain-extracted
    Yield (%) 2.8 14.0 14.1
    Protein 68.72 ± 0.95 92.82 ± 2.68 111.16 ± 1.05 
    content (%)
    Moisture 18.46 ± 1.23 18.55 ± 0.67 16.05 ± 0.31
    content (%)
    Hunter color
    values
    ‘L’ 65.41 ± 0.08 61.33 ± 0.04 44.76 ± 0.02
    ‘a’  0.14 ± 0.01  2.59 ± 0.02  0.74 ± 0.02
    ‘b’  3.16 ± 0.03  5.35 ± 0.04  2.14 ± 0.04
  • Amino Acids Composition
  • The amino acids composition in collagen was determined using Waters-Pico Tag Amino Acid Analyzer High Performance Liquid Chromatography, Model: Waters 501 Millipore Corporation, USA with column size 3.9×150 mm. Each sample was hydrolyzed with 6N HCl at 110° C. for 24 hrs. The hydrolysis was analyzed for their free amino acid content on a Waters auto analyzer, as recommended in the Waters-501 Instruments Manual (1991). Table 5 shows the amino acid composition of the collagen from red tilapia skins due to different enzyme extractions and storage periods. The amino acid profile obtained was from an acid hydrolysate. The amino acid content of trypsin and papain-digested collagen are higher than that of pepsin-digested collagen. The amino acid profile of papain and trypsin-digested collagen are not significantly different (p<0.05).
  • TABLE 5
    Amino Acids Composition in Various Species of Fish Collagen
    Amino Amino Acid Content (mg/g sample)
    Acids Red Tilapiaa C H Mackerelb Y S Breamb Tiger Pufferb
    Asp  4.5 ± 0.2 42.9 ± 1.4 40.7 ± 0.9 44.6 ± 0.4
    Glu 11.0 ± 0.1 72.5 ± 0.6 72.6 ± 1.2 68.0 ± 0.3
    Ser 11.9 ± 0.4 35.8 ± 0.2 41.2 ± 0.6 42.9 ± 0.4
    Gly 71.9 ± 0.3 361.5 ± 0.3  351.3 ± 2.0  349.9 ± 2.1 
    His ND  4.4 ± 0.0  3.8 ± 0.2  3.6 ± 0.1
    Arg 35.6 ± 0.8 53.0 ± 0.4 52.0 ± 1.3 52.7 ± 0.1
    Thr 10.8 ± 0.1 30.1 ± 0.4 29.8 ± 0.5 29.1 ± 0.5
    Ala 37.3 ± 0.4 120.6 ± 0.7  124.7 ± 1.2  117.5 ± 1.6 
    Pro 55.8 ± 0.9 115.2 ± 2.2  110.7 ± 0.4  112.5 ± 0.3 
    Tyr  3.2 ± 0.4  1.5 ± 0.1  2.0 ± 0.0  1.6 ± 0.1
    Val  8.0 ± 0.0 16.1 ± 0.4 16.3 ± 0.3 21.7 ± 0.0
    Met  6.0 ± 1.1 10.1 ± 0.9 11.4 ± 2.0 14.0 ± 0.2
    Cys ND ND ND ND
    Ile  5.1 ± 0.1  8.2 ± 0.2  6.9 ± 0.1  7.4 ± 0.0
    Leu 11.4 ± 0.2 18.7 ± 0.1 17.0 ± 0.7 15.4 ± 0.2
    Phe  6.5 ± 4.9 11.2 ± 0.0 12.2 ± 0.5 12.3 ± 0.1
    Lys 10.9 ± 0.7 23.7 ± 0.9 25.6 ± 1.3 29.0 ± 1.8
    Total 289.9 925.5 918.2 922.2
    ND—Not Detected
    aTrypsin digested collagen results
    bSourced from Yata et al. (2001)
  • The total amino acids content increases gradually from 4th to 8th week storage. Glycine and proline are the major amino acids, constituting a quarter and a fifth of total amino acid content of the collagen samples respectively. This characteristic distinguishes collagen from other proteins. Proline content in both trypsin (55.81) and papain-digested (51.54) collagens are double than in pepsin-digested 0-week storage (25.95). However, in this present invention, hydroxyproline content could not be determined. These compositions are different from which was reported from horse mackerel, yellow seabream and tiger puffer.
  • TABLE 6
    Amino acid
    (g/100 g) Control Pepsin-extracted Papain-extracted
    Aspartic acid 3.797 ± 0.14 4.075 ± 0.19 4.038 ± 0.05
    Serine 1.927 ± 0.07 1.989 ± 0.09  2.30 ± 0.03
    Glutamic acid 6.847 ± 0.25 7.061 ± 0.35 7.256 ± 0.10
    Glycine 14.992 ± 0.56  15.539 ± 0.76  19.208 ± 0.31 
    Histidine 1.449 ± 0.04 1.298 ± 0.02 Not detected
    Arginine 5.943 ± 0.07  6.38 ± 0.06 8.316 ± 0.08
    Threonine 2.066 ± 0.05 2.171 ± 0.02 2.485 ± 0.02
    Alanine 6.996 ± 0.27 6.865 ± 0.20 8.890 ± 0.12
    Proline 7.887 ± 0.21 7.543 ± 0.18 12.772 ± 0.07 
    Cysteine Not detected Not detected Not detected
    Tyrosine 0.258 ± 0.01 0.4925 ± 0.03  0.298 ± 0.01
    Valine 1.739 ± 0.07 1.8715 ± 0.09  2.080 ± 0.03
    Methionine 1.299 ± 0.06 1.345 ± 0.06 1.676 ± 0.48
    Lysine 2.561 ± 0.09 2.872 ± 0.14 2.338 ± 0.01
    Isoleucine 0.903 ± 0.04 1.063 ± 0.05 1.135 ± 0.02
    Leucine 1.664 ± 0.07 1.931 ± 0.09 2.229 ± 0.03
    Phenylalanine 1.436 ± 0.09 1.369 ± 0.15 1.898 ± 0.02
    Total 61.40 63.862 76.919
  • Molecular Weight Determination
  • Molecular weight was determined by SDS-PAGE (Laemmli, 1970) and the run was made in a 5% T gel containing 0.1% SDS. Molecular weight marker SDS-6H (Sigma) was used as the standard. Samples (4-50 μg/well) were applied to the gel and the gel was stained for protein with Coomassie Brilliant Blue R-250. FIGS. 1 and 2 shows the SDS-PAGE patterns of collagen from skins of red tilapia extracted with different enzymes and storage period respectively. Visually 16, 15 and 7 bands were observed for trypsin, papain and pepsin-digested extraction respectively. Apparent molecular weights of peptide detected were in the range of 20,300 Da to 221,900 Da for papain-digested extraction whereas 31,500 Da to 200,000 Da for trypsin-digested extraction. In pepsin-digested extractions (storage study), no peptide bands above 144,200 Da were observed. The molecular weight patterns for the storage study samples are also almost similar. Identification of the molecular bands associated with the types of collagens is the common results report for the SDS-PAGE electrophoresis.
  • FIG. 3 represents an electrophoretic pattern of collagen samples from barramundi skin with comparison to type 1 collagen from calf skin. Apparent molecular weights of peptide detected were in the range of ˜30,000 to 250,000 kDa. Collagen from barramundi skin contained two different α chain (α1 and α2) and β-component. These electrophoretic patterns were similar to calf skin collagen and the kind of dimmer was also observed in collagen samples from other aquatic sources. The acid-soluble collagen and pepsin-soluble collagen had similar electrophoretic pattern with type 1 collagen from calf skin. However, papain-extracted collagen shows slightly different pattern, the β dimmer was not observed. Collagen with papain treatment also contained products of enzymatic hydrolysis below 100 kDa. This result suggested that different type of proteases have different cleavage properties of the collagen samples, as shown in the SDS-PAGE chromatogram.
  • Mineral Content
  • Mineral analysis was determined using Energy Dispersive X-ray (EDX). The collagen sample was mounted onto the stub and viewed by EDX, using QBSD signal. Table 7 shows the mineral analysis of collagen from tilapia skins by different enzyme extractions and different storage period. Mineral analysis by EDX was carried out to determine the mineral elements of collagen obtained. Four elements were detected in all samples, namely carbon, oxygen, sodium and chlorine as shown by the EDX chromatogram (FIG. 4). Collagen is not a metalloprotein, therefore the absence of heavy metals indicates that these collagens are safe (GRAS). The presence of sodium and chlorine in all collagens are probably due to the effect of salting process (NaCl) to precipitate out collagen after extraction step. Trypsin-digested extraction showed the highest carbon and oxygen content of 48.64% and 7.69% respectively. Chlorine is the major element in all samples except for trypsin-digested extraction (33.61%). Oxygen is the minor element detected in all samples ranging from 1-7%. The carbon content indicates that the collagens are of organic matter. To this date, there are no reported findings of mineral analysis of collagens.
  • TABLE 7
    Mineral Analysis (in Weight %) of Collagen from Red Tilapia
    Skins by Different Enzyme Extraction and Storage Period
    Sample Carbon Oxygen Sodium Chlorine
    Trypsin 48.64 ± 4.03 7.69 ± 0.41 10.05 ± 1.11 33.61 ± 3.15
    0-wk
    Papain  21.54 ± 12.15 2.03 ± 1.49 18.72 ± 2.65  57.79 ± 11.15
    0-wk
    Pepsin 13.56 ± 2.89 1.02 ± 0.36 22.47 ± 0.36 65.95 ± 2.58
    0-wk
    Pepsin 30.04 ± 3.48 4.00 ± 0.99 11.45 ± 4.12 54.50 ± 7.56
    2-wk
    Pepsin 33.30 ± 0.94 4.32 ± 0.15 15.45 ± 0.40 46.92 ± 0.78
    4-wk
    Pepsin 12.07 ± 1.81 1.56 ± 0.35 20.49 ± 2.10 65.88 ± 3.73
    6-wk
    Pepsin 23.25 ± 3.15 2.33 ± 0.47 16.33 ± 1.68 58.09 ± 4.41
    8-wk
  • Values are the means±standard deviations of 3 replicates.
  • Means with the same superscripts within each row are not significantly different (p<0.05)
  • Storage Study
  • Skins were stored frozen (−20° C.) for up to 2 months. Every week, the skins were thawed and subjected to treatment to extract collagen. The collagen obtained was then analyzed as before to determine the effects of frozen storage of skins on the collagen characteristics.
  • Statistical Analysis
  • All data collected were analysed using the analysis of variance (ANOVA) and Duncan's Multiple Range Test to determine the significant differences between means (SAS, 1987). Extraction processes of collagen and the following treatments reflect the different quality of gelatine obtained. Collagen from skins of red tilapia was extracted by a series of washings with 0.1 M NaOH followed by enzyme-aided extraction for 24 hrs at 5° C. The colloidal suspension was salted out with NaCl and freeze-dried. Enzymes used were pepsin, trypsin and papain. Storage study of red tilapia skins was also carried out to determine the effects of frozen storage on collagen characteristics. Visually, all collagen samples were appeared to be similar and the differences could only be detected by chemical analyses such as protein content, amino acid composition, molecular weight profile and mineral content. The collagens from different enzymes extraction and storage period were snowy white and light-textured in appearance. The collagen yield was in the range 32.54% to 74.77% with pepsin digested collagen showing the highest yield. However, the protein content of pepsin digested collagens was much lower compared to trypsin and papain digested collagens. Protein content recorded was in the range 15% to 30%. Amino acid content of trypsin and papain digested collagen are higher than pepsin digested collagen. Apparent molecular weights of peptide detected were in the range 20,000 Da to 222,000 Da. In the mineral analysis, four elements were detected in all collagen samples namely carbon, oxygen, sodium and chlorine. SEM observations of all collagen samples show similar network structure. The collagen fibres are long cylindrical protein embedded in the protein matrix. Based on the results, trypsin digested collagen showed the best results in terms of protein content and amino acid profile but gave a low yield. Pepsin digested collagen on the other hand showed high yields but lower protein and amino acid content. Therefore, papain which showed reasonably high yield, protein and amino acid content will be chosen for the study of effects of enzyme on gelatin extraction and characteristics in the next chapter. Papain, being a plant based enzyme will also overcome the religious issues associated with certain communities such as Islam and Judaism. In the storage study, frozen storage of tilapia skins does not have significant effects on the collagen characteristics. Therefore, skins may be stored frozen for weeks without much affecting the characteristics of the gelatin extracted.

Claims (22)

1. A process of extracting collagen, the collagen is obtained from skins of aquatic animals, wherein the aquatic animals include Lates calcarifer and Oreochromis nilotica.
2. The process of extracting collagen as claimed in claim 1, wherein the collagen is extracted from fish skin using an enzyme.
3. The process of extracting collagen as claimed in claim 1, wherein the enzyme is papain.
4. The process of extracting collagen as claimed in claim 1, wherein the process comprising of a starting material consisting essentially of fish skin, extracting collagen from said the fish skin, and recovering the collagen.
5. The process of extracting collagen as claimed in claim 2, fish skin is a flat fish skin.
6. The process of extracting collagen as claimed in claim 2, wherein said skin is obtained by cutting the skin from fresh or frozen fish.
7. The process as claimed in claim 1, wherein the process of extracting collagen from skins of Lates calcarifer (barramundi) comprising the steps of:
a) mixing the skin with alkaline solution for at least 6 hours;
b) washing the skin with water to eliminate residual the alkaline solution;
c) soaking the skin with alcohol solution for at least 18 hours;
d) washing the skin with a neutral solution;
e) treating the skin from step (d) with an acidic solution;
f) hydrolyzing the skin from step (e) with papain;
g) obtaining a mixture from step (f) and stirring the mixture at a working temperature of 4° C. for at least 24 hours;
h) centrifuging the mixture from step (g) at 4-5° C.;
i) precipitation of collagen by introducing the collagen into a sodium chloride solution to precipitate collagen fibers.
j) collecting the collagen fibers from step (i) and centrifuging the collagen for at least 60 minutes;
k) obtaining collagen pellet;
l) dissolving the collagen pellet into acetic acid solution
m) freeze-drying the dialysed suspension.
8. The process as claimed in claim 1, wherein the process of extracting collagen from skins of Oreochromis nilotica (red tilapia) comprising the steps of:
a) homogenizing the fish skin with sodium;
b) obtaining a suspension from step (a)
c) stirring the suspension for at least 24 hours;
d) centrifuging the suspension from step (c) for at least 20 minutes;
e) obtaining a precipitate from step (d);
f) homogenizing the precipitate from step (e) with alkaline solution;
g) stirring the precipitate from step (f) for at least 24 hours and for at least 3 repeats;
h) washing the precipitate with water and acetic acid solution;
i) stirring the precipitate from step (h) with papain at a working temperature of 5° C. for at least 24 hours;
j) obtaining a mixture from step (i)
k) centrifuging the mixture from step (j) for at least 20 minutes;
l) obtaining collagen fibers from step (k);
m) introducing the collagen into a sodium chloride solution
n) collecting the collagen fibers from step (m) and centrifuging the collagen for at least 20 minutes;
o) obtaining collagen pellet;
p) freeze-drying the dialysed suspension.
9. The process as claimed in claim 7, wherein the collagen obtained from the skin having a percentage of working yield between 14 and 40% by weight.
10. The process as claimed in claim 8, wherein the collagen obtained from the skin having a percentage of working yield between 14 and 40% by weight.
11. A process of analyzing the collagen as claimed in claim 7, wherein the process includes amino acid analysis, peptide in the collagen and type of collagen.
12. The process as claimed in claim 11, wherein the amino acid includes glycine, proline, alanine and arginine.
13. The process as claimed in claim 11, wherein the apparent molecular weights of the peptide in the collagen is between 37 and 205 kilodalton (KDa).
14. The process as claimed in claim 11, wherein the type of collagen is type 1 collagen.
15. A process of analyzing the collagen as claimed in claim 8, wherein the process includes amino acid analysis, peptide in the collagen and type of collagen.
16. The process as claimed in claim 15, wherein the amino acid includes glycine, proline, alanine and arginine.
17. The process as claimed in claim 15, wherein the apparent molecular weights of the peptide in the collagen is between 37 and 205 kilodalton (KDa).
18. The process as claimed in claim 15, wherein the type of collagen is type 1 collagen.
19. A pharmaceutical composition comprising collagen of claim 1 and a cosmetic or topical preparation.
20. The pharmaceutical as claimed in 19, wherein the cosmetic includes cream, lotion eye cream, ointment or gel, sun-screen, oral administration, face mask cream, anti-inflammatory medicine, and/or anti-irritant medicine.
21. A food composition comprising the collagen of claim 1 and a food product.
22. The food as claimed in 21, wherein the food product/s include beverages, dairy products, confectionaries, chocolates, and any application in food formulation/s as an ingredient or for any functional properties.
US13/158,954 2008-12-23 2011-06-13 Collagen extraction from aquatic animals Abandoned US20120114570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/170,396 US9751929B2 (en) 2008-12-23 2014-01-31 Method of using papain to extract collagen from aquatic animals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
MYPI20085247A MY160866A (en) 2008-12-23 2008-12-23 Collagen extraction from aquatic animals
MYPI20085247 2008-12-23
PCT/MY2009/000122 WO2010074552A1 (en) 2008-12-23 2009-08-19 Collagen extraction from aquatic animals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/MY2009/000122 Continuation WO2010074552A1 (en) 2008-12-23 2009-08-19 Collagen extraction from aquatic animals

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/170,396 Continuation US9751929B2 (en) 2008-12-23 2014-01-31 Method of using papain to extract collagen from aquatic animals

Publications (1)

Publication Number Publication Date
US20120114570A1 true US20120114570A1 (en) 2012-05-10

Family

ID=41278503

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/158,954 Abandoned US20120114570A1 (en) 2008-12-23 2011-06-13 Collagen extraction from aquatic animals
US14/170,396 Expired - Fee Related US9751929B2 (en) 2008-12-23 2014-01-31 Method of using papain to extract collagen from aquatic animals

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/170,396 Expired - Fee Related US9751929B2 (en) 2008-12-23 2014-01-31 Method of using papain to extract collagen from aquatic animals

Country Status (6)

Country Link
US (2) US20120114570A1 (en)
EP (1) EP2367847B1 (en)
JP (2) JP5774999B2 (en)
KR (1) KR101640801B1 (en)
MY (1) MY160866A (en)
WO (1) WO2010074552A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178501A1 (en) * 2013-05-01 2014-11-06 (주)청룡수산 Functional cosmetic composition comprising enzymatic hydrolysate of tilapia mossambica scales
RU2533218C1 (en) * 2013-07-10 2014-11-20 Яннис Сергеевич САМАРЧЕВ Method of obtaining collagen from biological material
US20150152135A1 (en) * 2012-08-23 2015-06-04 Jellyfish Research Laboratories, Inc. Method for Fractionally Extracting Mucin and Collagen
US10226422B2 (en) 2013-01-23 2019-03-12 Bottled Science Limited Skin enhancing beverage composition
CN110272485A (en) * 2019-06-20 2019-09-24 江苏大学 The method of ultrasonic low-kappa number auxiliary acid Enzymatic Extraction Silver Carp collagen
US10939690B2 (en) * 2016-05-18 2021-03-09 Gelita Ag Method for producing a collagenous material in particle form
RU2746215C1 (en) * 2020-05-14 2021-04-08 Анатолий Анатольевич Хитров Method for producing high-molecular collagen
CN113024662A (en) * 2021-03-17 2021-06-25 安徽盛美诺生物技术有限公司 Anti-glycation collagen peptide and preparation method thereof
CN114634563A (en) * 2022-02-16 2022-06-17 惠州华阳医疗器械有限公司 Active collagen extracting solution, preparation method and system thereof, skin care product and preparation method thereof
RU2789758C1 (en) * 2021-12-30 2023-02-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Freshwater hydrobiont collagen hydrate solution preparation method
CN117426996A (en) * 2023-11-24 2024-01-23 星购(天津)科技有限公司 Anti-wrinkle peptide composition and preparation method thereof

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753356B2 (en) * 2010-09-13 2015-07-22 株式会社龍泉堂 Method for extracting non-denatured type II collagen having an active epitope
JP5946843B2 (en) * 2010-12-30 2016-07-06 コリア フード リサーチ インスティチュート Method and apparatus for extracting collagen by ultrasound
TWI487711B (en) * 2011-08-26 2015-06-11 Tci Firstech Corp A extraction method of collagen from tuna and product thereof
KR101971291B1 (en) * 2012-12-07 2019-04-22 부경대학교 산학협력단 Cosmetic composition for moisturizing and improving skin elasticity comprising enzyme hydrolysate of fish skin protein
WO2014157854A1 (en) * 2013-03-29 2014-10-02 한국원자력연구원 Method for isolating collagen from jellyfish by using radiation
CN103320485B (en) * 2013-06-03 2015-12-23 王南平 A kind of preparation method of fish-skin collagen for medical biomaterial
CN103504360B (en) * 2013-09-12 2014-11-19 韩山师范学院 Manufacture method of instant fish skin food rich in micromolecular collagen
FR3033564B1 (en) * 2015-03-11 2021-01-29 Ys Lab COMPOSITION OF COLLAGEN FROM FISH SKINS
JP6473024B2 (en) * 2015-03-27 2019-02-20 株式会社ファンケル Melanin production inhibitor
KR101669478B1 (en) * 2015-11-23 2016-10-26 세원셀론텍(주) Method of increasing the yield of collagen
FR3058142B1 (en) * 2016-10-28 2023-11-24 Gelatines Weishardt COMPOSITION OF COLLAGEN PEPTIDES FROM FISH SKIN AND ITS USE AS MEDICINE
KR101864816B1 (en) * 2017-01-31 2018-06-05 주식회사 마린테크노 method for extracting marine collagen from fish skin
GB201708853D0 (en) * 2017-06-02 2017-07-19 Jellagen Pty Ltd Method
CN109265535A (en) * 2017-07-17 2019-01-25 大连海洋大学 The preparation method of collagen
CN107653291A (en) * 2017-11-15 2018-02-02 西藏央金生态农牧科技有限公司 The standby method for hiding Yak-skin Gelatin original albumen and collagen polypeptide of multi-step enzyme method coordinate system
CN107960526A (en) * 2017-11-27 2018-04-27 余雪平 Collagen protein powder and its production technology
JP7157975B2 (en) * 2018-02-06 2022-10-21 学校法人近畿大学 Protein elution inhibitor and method for producing the same
KR102062790B1 (en) * 2018-05-23 2020-02-11 주식회사 라이프 투게더 Collagen of dried yellow pollack and manufacturing method thereof
CN108796019A (en) * 2018-06-28 2018-11-13 余碧芝 The method of extraction functionality dipeptides collagen from the gadus of the Arctic Ocean
CN110079575A (en) * 2019-05-27 2019-08-02 大连金荣草生物科技发展有限公司 A method of extracting low molecular weight collagen from deer sinew
CN110144376B (en) * 2019-06-05 2021-04-06 北京姿美堂生物技术有限公司 Nano-scale collagen peptide and preparation method thereof
KR102221221B1 (en) * 2019-06-11 2021-03-03 농업회사법인 안동제비원전통식품(주) Composition for Skin Care of Yam Extraction and Yam Gochujang Containing the Same
KR102406037B1 (en) * 2019-06-27 2022-06-10 강릉원주대학교산학협력단 Composition for antiaging comprising hydrolysates from Scomberomorus niphonius
CN110760080B (en) * 2019-10-10 2022-06-21 浙江海洋大学 Method for preparing preservative film by using fish scales
CN110713534A (en) * 2019-11-29 2020-01-21 福建农林大学 Collagen peptide with photoaging improvement effect and preparation method thereof
KR102359692B1 (en) * 2020-02-12 2022-02-08 군산대학교 산학협력단 Composition for preventing skin aging and improving skin wrinkle comprising extract of Cynoglosus semilaevis skin as effective component
CN111548409A (en) * 2020-05-21 2020-08-18 内蒙古元本生物医药科技有限公司 Extraction process of animal fresh skin collagen polypeptide
CN112062834B (en) * 2020-11-16 2021-02-23 江西中医药大学 Deep sea fish skin collagen peptide and extraction and preparation method thereof
CN113527467B (en) * 2021-06-21 2023-09-22 福建省水产研究所(福建水产病害防治中心) Sturgeon skin collagen polypeptide extraction method, application, cosmetic raw material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093474A (en) * 1988-08-04 1992-03-03 Bar Ilan University Process for the production of gelatin from fish skins
US6548077B1 (en) * 1997-01-13 2003-04-15 Subramanian Gunasekaran Purifying type I collagen using two papain treatments and reducing and delipidation agents

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3979576B2 (en) * 2002-04-10 2007-09-19 東京都 Production method of raw skin to obtain non-brominated collagen and gelatin derived from aquatic animals
CN1590408A (en) * 2003-08-28 2005-03-09 南京宝生药业有限公司 Preparation technology of globe fish peptide and its medical health care use
JP4587711B2 (en) * 2004-06-04 2010-11-24 ミドリホクヨー株式会社 Soluble fish collagen, method for producing the same and collagen cosmetic
JP2006028138A (en) * 2004-07-21 2006-02-02 Koken Co Ltd Cosmetic collagen solution or cosmetic collagen sponge derived from fish
JP4863433B2 (en) * 2005-03-16 2012-01-25 独立行政法人物質・材料研究機構 Method for obtaining fish scale collagen
WO2007044945A2 (en) * 2005-10-13 2007-04-19 Gu, Jennifer, L. Mineral collagen chelates and methods of making and using same
JP5341299B2 (en) 2005-12-28 2013-11-13 株式会社アールビーエス Method for producing collagen and low molecular weight collagen
JP2007332161A (en) 2007-09-07 2007-12-27 Ota Koji Collagen and cosmetic containing collagen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093474A (en) * 1988-08-04 1992-03-03 Bar Ilan University Process for the production of gelatin from fish skins
US6548077B1 (en) * 1997-01-13 2003-04-15 Subramanian Gunasekaran Purifying type I collagen using two papain treatments and reducing and delipidation agents

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Friedman M., Nature Letters, 10 Jul 2008, Vol. 454, pp. 209-212 *
Jamilah et al., Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica), Food Chemistry, 2002, Vol. 77, pp. 81-84 *
Kaur, H., Extraction and Characterisation of Collagen and Gelatin From Red Tilapia (Oreochromis nilotica) Skin, Master of Science Thesis at the UNIVERSITI PUTRA MALAYSIA, 2006, pp. ii-3 *
Skierka et al., The influence of different acids and pepsin on the extractability of collagen from the skin of Baltic cod (Gadus morhua), Food Chemistry, 2007, Vol. 105, pp. 1302-1306 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150152135A1 (en) * 2012-08-23 2015-06-04 Jellyfish Research Laboratories, Inc. Method for Fractionally Extracting Mucin and Collagen
US10226422B2 (en) 2013-01-23 2019-03-12 Bottled Science Limited Skin enhancing beverage composition
WO2014178501A1 (en) * 2013-05-01 2014-11-06 (주)청룡수산 Functional cosmetic composition comprising enzymatic hydrolysate of tilapia mossambica scales
RU2533218C1 (en) * 2013-07-10 2014-11-20 Яннис Сергеевич САМАРЧЕВ Method of obtaining collagen from biological material
WO2015005830A1 (en) * 2013-07-10 2015-01-15 Samarchev Yannis Sergeevich Collagen from jellyfish and method for producing same
US10939690B2 (en) * 2016-05-18 2021-03-09 Gelita Ag Method for producing a collagenous material in particle form
CN110272485A (en) * 2019-06-20 2019-09-24 江苏大学 The method of ultrasonic low-kappa number auxiliary acid Enzymatic Extraction Silver Carp collagen
RU2746215C1 (en) * 2020-05-14 2021-04-08 Анатолий Анатольевич Хитров Method for producing high-molecular collagen
CN113024662A (en) * 2021-03-17 2021-06-25 安徽盛美诺生物技术有限公司 Anti-glycation collagen peptide and preparation method thereof
RU2789758C1 (en) * 2021-12-30 2023-02-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Freshwater hydrobiont collagen hydrate solution preparation method
CN114634563A (en) * 2022-02-16 2022-06-17 惠州华阳医疗器械有限公司 Active collagen extracting solution, preparation method and system thereof, skin care product and preparation method thereof
CN117426996A (en) * 2023-11-24 2024-01-23 星购(天津)科技有限公司 Anti-wrinkle peptide composition and preparation method thereof

Also Published As

Publication number Publication date
MY160866A (en) 2017-03-31
US20140147400A1 (en) 2014-05-29
JP5774999B2 (en) 2015-09-09
KR101640801B1 (en) 2016-07-19
EP2367847B1 (en) 2016-10-26
EP2367847A1 (en) 2011-09-28
JP2012513461A (en) 2012-06-14
JP2015180622A (en) 2015-10-15
KR20110119652A (en) 2011-11-02
WO2010074552A1 (en) 2010-07-01
US9751929B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
US9751929B2 (en) Method of using papain to extract collagen from aquatic animals
Khong et al. Improved collagen extraction from jellyfish (Acromitus hardenbergi) with increased physical-induced solubilization processes
Jiang et al. Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate
Jamilah et al. Properties of collagen from barramundi (Lates calcarifer) skin.
Zhang et al. Biochemical characterisation and assessment of fibril-forming ability of collagens extracted from Bester sturgeon Huso huso× Acipenser ruthenus
Gómez-Estaca et al. Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin
Benjakul et al. Characteristics of gelatin from the skins of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus
Shanmugam et al. Antioxidative peptide derived from enzymatic digestion of buffalo casein
Gómez-Guillén et al. Structural and physical properties of gelatin extracted from different marine species: a comparative study
Liu et al. Optimum condition of extracting collagen from chicken feet and its characetristics
KR101095698B1 (en) Collagen peptide composition and food or beverage containing the same
KR100862979B1 (en) Composition of Collagen Peptides for Cosmetics and Method Thereof
Liang et al. Hydrolysis kinetics and antioxidant activity of collagen under simulated gastrointestinal digestion
Lin et al. Extraction and characterisation of telopeptide-poor collagen from porcine lung
Cruz-López et al. Comparison of collagen characteristic from the skin and swim bladder of Gulf corvina (Cynoscion othonopterus)
KR20200030779A (en) Chelate collagen peptide and method for preparing the same
Xiao et al. Structural, physicochemical properties and function of swim bladder collagen in promoting fibroblasts viability and collagen synthesis
Fernández-Fernández et al. Evaluation of antioxidant, antiglycant and ACE-inhibitory activity in enzymatic hydrolysates of α-lactalbumin
Ilie et al. Free radical scavenging, redox balance and wound healing activity of bioactive peptides derived from proteinase K-assisted hydrolysis of Hypophthalmichthys molitrix skin collagen
KR100910120B1 (en) Collagen extracted from outer skin of cuttlefish and cosmetic mask pack containing the same
KR101795655B1 (en) medicinal marine collagen using fishes by-product and manufacturing method thereof
JP6456672B2 (en) Collagen peptide complex
KR100970819B1 (en) A method for preparing a collagen isolated from the skin of Thunnus obesus
Nur et al. Characterization, antioxidant and α-glucosidase inhibitory activity of collagen hydrolysate from lamuru (caranx ignobilis) fishbone
KR102240111B1 (en) Cosmetic composition for moisturizing skin and improving skin wrinkles containing nano collagen peptide chelate mineral

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION