US20120163753A1 - Method and apparatus for confirming optical fibers connection in optical connector - Google Patents

Method and apparatus for confirming optical fibers connection in optical connector Download PDF

Info

Publication number
US20120163753A1
US20120163753A1 US13/335,160 US201113335160A US2012163753A1 US 20120163753 A1 US20120163753 A1 US 20120163753A1 US 201113335160 A US201113335160 A US 201113335160A US 2012163753 A1 US2012163753 A1 US 2012163753A1
Authority
US
United States
Prior art keywords
optical fiber
base
optical
cover
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/335,160
Inventor
Khee Yen Serin Tan
Kazuhiro Takizawa
Daigo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to US13/335,160 priority Critical patent/US20120163753A1/en
Publication of US20120163753A1 publication Critical patent/US20120163753A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3846Details of mounting fibres in ferrules; Assembly methods; Manufacture with fibre stubs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/088Testing mechanical properties of optical fibres; Mechanical features associated with the optical testing of optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3154Details of the opto-mechanical connection, e.g. connector or repeater
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3806Semi-permanent connections, i.e. wherein the mechanical means keeping the fibres aligned allow for removal of the fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/385Accessories for testing or observation of connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3898Tools, e.g. handheld; Tuning wrenches; Jigs used with connectors, e.g. for extracting, removing or inserting in a panel, for engaging or coupling connectors, for assembling or disassembling components within the connector, for applying clips to hold two connectors together or for crimping

Definitions

  • the present invention relates to a method and an apparatus for confirming a connection state of optical fibers butted and connected to each other in a connector.
  • Patent Document 1 discloses a method for confirming whether or not an optical fiber built in an optical connector and an optical fiber inserted into the optical connector are properly butted and connected to each other.
  • an optical connector 115 is connected to an optical connector 101 .
  • a short optical fiber 116 for a test is attached to the optical connector 115 .
  • Light from a light source 117 passes through the optical fiber 116 .
  • the light from the optical fiber 116 enters one end of an optical fiber 102 built in the optical connector 101 and exits from the other end thereof.
  • the method described above uses an assembling tool (opening member) 118 having a light transmissive insertion member 111 integrally formed therein.
  • the insertion member 111 stably opens a portion between a base 106 and covers 107 and 108 in the optical connector 101 , and maintains the opened state.
  • a concave part 112 is formed by the base 106 and the covers 107 and 108 .
  • the insertion member 111 is inserted into the concave part 112 in a state where the concave part 112 faces downward. Since the insertion member 111 is light transmissive, light that exits from the optical fiber 102 is observed from the insertion member 111 .
  • FIG. 1B shows a state where a bare optical fiber 110 a obtained by peeling off an external sheath of the optical fiber 110 faces the optical fiber 102 .
  • the optical fiber 102 and the optical fiber 110 are in an appropriate connection state, most of the light from the optical fiber 102 enters the optical fiber 110 .
  • intensity of the light 35 leaking from a connection part P is small.
  • connection state when the connection state is incomplete, the light from the optical fiber 102 leaks from the connection part P. Therefore, the intensity of the light leaking from the connection part P is increased.
  • the light entering the optical fiber from the light source enters not only a core but also a cladding, thereby generating cladding mode light.
  • the cladding mode light is easily emitted to the outside from the cladding of the optical fiber. Accordingly, even when the butt-connection state is good, the cladding mode light appears as background light, and makes it difficult to confirm the connection state.
  • the present invention has been made in consideration of the foregoing circumstances. It is an object of the present invention to provide a method and an apparatus for confirming a connection state of optical fibers connected in a connector even in a bright environment.
  • a first aspect of the present invention is a method for confirming optical fibers connection in a connection part in an optical connector, the method including: allowing light to pass through a first optical fiber while causing cladding mode light to disappear; and detecting a difference in light intensity in the connection part between before and after the light from the first optical fiber enters a second optical fiber disposed in the optical connector.
  • the first optical fiber may be bent when light passes therethrough.
  • a wavelength of light entering the first optical fiber is 650 nm and a length of the first optical fiber is 100 cm to 200 cm.
  • the first optical fiber may be a single-mode optical fiber.
  • the difference in light intensity is detected through a light transmissive member located in the connection. part.
  • the optical connector may include a ferrule and a third optical fiber inserted into the ferrule. In this case, light that exits from the first optical fiber enters the second optical fiber through the third optical fiber.
  • the optical connector may have a connection mechanism extending in a direction opposite to that toward a connection end face of the ferrule.
  • the connection mechanism includes: a base; first and second covers openably and closably facing the base; and a flat spring for elastically clamping the base and all the covers.
  • a positioning groove for the optical fiber is formed in the base.
  • the first cover is located so as to open and close the connection part.
  • the second cover is located so as to cover a sheath portion of the second optical fiber.
  • the light transmissive member is an insertion member and is inserted between the base and the first and second covers so as to open and close the base and the covers.
  • the optical connector may have a connection mechanism extending in a direction opposite to that toward a connection end face of the ferrule.
  • the connection mechanism includes: a base; first and second covers openably and closably facing the base and a flat spring for elastically clamping the base and all the covers.
  • the light transmissive member is at least one of the base and the first cover.
  • a positioning groove for the optical fiber is formed in the base. The first cover is located so as to open and close the connection part, and the second cover is located so as to cover a sheath portion of the second optical fiber.
  • the optical connector may include: a base; first, second, and third covers openably and closably facing the base; and a flat spring for elastically clamping the base and all the covers.
  • a positioning groove for the optical fiber is formed in the base.
  • the first cover is located so as to open and close the connection part
  • the second cover is located so as to cover a sheath portion of the first optical fiber
  • the third cover is located so as to cover a sheath portion of the second optical. fiber.
  • the light transmissive member is an insertion member and is inserted between the base and the first to third covers so as to open and close the base and the first, second and third covers.
  • the optical connector may include: a base; first, second, and third covers openably; and closably facing the base and a flat spring for elastically clamping the base and all the covers.
  • a positioning groove for the optical fiber is formed in the base.
  • the first cover is located so as to open and close the connection part
  • the second cover is located so as to cover a sheath portion of the first optical fiber
  • the third cover is located so as to cover a sheath portion of the second optical fiber.
  • the light transmissive member is the base and the first cover.
  • a second aspect of the present invention is an apparatus for confirming optical fibers connection in an optical connector, apparatus including: a light source; an optical connector; an optical adapter configured to detachably hold the optical connector and another optical connector and to connect the optical connectors to each other; and an optical fiber connecting the light source to the optical connector.
  • the optical fiber has a length enough to cause cladding mode light generated by light from the light source to disappear.
  • the optical fiber between the light source and the optical connector may be bent so as to enhance attenuation of the cladding mode light.
  • the light source may be a laser diode which emits light having a wavelength of 650 nm. It is preferable that the length of the optical fiber between the light source and the optical connector is 100 cm to 200 cm.
  • the optical fiber between the light source and the optical connector may be a single-mode optical fiber.
  • the cladding mode light disappears. Accordingly, the difference in light intensity between before and after the abutting connection, which depends on the connection state, is emphasized. Thus, it is possible to clearly confirm the butt-connection state of the optical fibers even in a bright environment.
  • FIGS. 1A and 1B are views for explaining a conventional method for confirming a connection state of optical fibers in an optical connector, FIG. 1A showing a state before the optical fibers abut on each other, FIG. 1B showing a state after the optical fibers abut on each other.
  • FIG. 2 is a cross-sectional view of a main part of the optical connector shown in FIGS. 1A and 1B , showing a situation where leak light is detected through an insertion member.
  • FIG. 3 is a perspective view of an optical connector according to an 30 embodiment of the present invention.
  • FIG. 4 is a side view of the optical connector shown in FIG. 3 .
  • FIG. 5 is a longitudinal cross-sectional view of the optical connector shown in FIG. 3 .
  • FIG. 6 is an exploded plan view of a main part of the optical connector 35 shown in FIG. 3 .
  • FIGS. 7A and 7B are views each showing a state in confirming an butt-connection state of optical fibers in the optical connector shown in FIG. 3 , FIG. 7A showing a state before the optical fibers abut on each other, FIG. 7B showing a state after the optical fibers abut on each other.
  • FIG. 8 is an enlarged cross-sectional view taken along the line A-A in FIG. 7A (equivalent to a cross-sectional view taken along the line A-A in FIG. 5 ).
  • FIG. 9 is a cross-sectional view showing a state where the optical. connector shown in FIG. 3 is used.
  • FIG. 10 is a longitudinal cross-sectional view of an optical connector 10 according to an embodiment of the present invention.
  • FIG. 11 is a transverse cross-sectional view of the optical connector shown in FIG. 10 .
  • an optical connector 1 includes: an optical fiber 2 ; a ferrule 3 having a connection end face 3 b where an end face of the optical fiber 2 is exposed; and a connection mechanism 4 extending from the ferrule 3 in a direction opposite to the connection end face 3 b .
  • the optical fiber 2 built in the optical connector 1 an optical fiber formed of only a core and a cladding, a so-called bare optical fiber is preferable.
  • the connection mechanism 4 includes: a base 6 ; covers 7 and 8 facing the base 6 ; and a flat spring 9 formed into, for example, a C-shape or squared C-shape for elastically clamping the covers 7 and 8 .
  • the base 6 is formed integrally with a cylindrical ferrule fitting part 13 and a brim-shaped flange part 14 .
  • the ferrule fitting part 13 is fitted to the ferrule 3 .
  • the base 6 extends from the flange part 14 in the direction opposite to the connection end face 3 b of the ferrule 3 .
  • a positioning groove 5 is formed, which is continuous with an optical fiber insertion hole 3 a in the ferrule 3 .
  • the positioning groove 5 is constituted of a positioning groove 5 a and a positioning groove 5 b .
  • the positioning groove 5 a is formed so as to accommodate the optical fiber 2 and an optical fiber 10 a which are butted and connected to each other.
  • the positioning groove 5 b is formed so as to accommodate a sheath portion 10 b of an optical fiber 10 to be inserted into the optical connector 1 .
  • the cover 7 is positioned so as to open and close a butt-connection part P of the optical fibers. In other words, the cover 7 is positioned so as to cover the butt-connection part P.
  • the cover 8 is positioned so as to open and close the sheath portion 10 b of the optical fiber 10 . In other words, the cover 8 is positioned so as to cover the sheath portion 10 b .
  • An insertion member 11 is formed in a wedge shape and opens and closes the covers 7 and 8 with respect to the base 6 against reaction force of the flat spring 9 .
  • concave parts 12 are formed, into which the insertion member 11 is inserted when the base 6 and the covers 7 and 8 face each other. Note that the insertion member 11 is used for installation of the optical connector.
  • the optical connector 1 can also clamp the sheath portion 10 b of the 15 optical fiber 10 .
  • this optical connector is also called a Field-Installable Connector since field installation thereof is easy.
  • the insertion member 11 is inserted into the concave parts 12 formed between the base 6 and the covers 7 and 8 .
  • the covers 7 and 8 are slightly opened.
  • the optical fiber 10 is inserted from the outside and then the optical fiber 2 and the bare optical fiber 10 a of the optical fiber 10 are allowed to abut on each other. Note that a tip of the optical fiber 10 has its sheath previously peeled off and the bare optical fiber 10 a is exposed.
  • the insertion member 11 is removed and the butt-connection part P of the optical fibers as well as the sheath portion 10 b of the optical fiber 10 are sandwiched between the base 6 and the covers 7 and 8 by using the flat spring 9 .
  • a drive mechanism of the insertion member 11 As a drive mechanism of the insertion member 11 , drive mechanisms disclosed in Patent Document 1 and U.S. Pat. No. 7,346,255 can be suitably used. This drive mechanism is also called a wedge unit. In this case, the insertion member 11 , as one of assembling tools, stably maintains an opened state between the base 6 and the covers 7 and 8 without being touched.
  • the insertion member 11 is made of a light transmissive material.
  • the member made of the light transmissive material is not limited to the insertion. member 11 .
  • the insertion member 11 integrally includes wedge parts 11 a and 11 b .
  • the wedge part 11 a is used to open the cover 7 .
  • the wedge part 11 b is used to open the cover 8 .
  • the wedge parts 11 a and 11 b are inserted into the concave parts 12 defined between the base 6 and the covers 7 and S.
  • FIG. 6 shows surfaces of the respective covers 7 and 8 facing the base 6 .
  • the surface of the cover 7 facing the base 6 is flat.
  • the positioning groove 5 a configured to receive the bare optical fiber 10 a of the optical fiber 10
  • the positioning groove 5 b configured to receive the sheath portion 10 b of the optical fiber 10 are formed.
  • a refractive index matching material is injected on the end faces of the optical fibers.
  • the insertion member 11 is removed and consequently the flat spring 9 urges the base 6 and the covers 7 and 8 thereby to hold the butt-connection part P of the optical fibers as well as the sheath portion 10 b of the optical fiber 10 .
  • an apparatus for confirming connection of the optical fibers in the optical connector includes a light source 20 , an optical connector 22 , an optical adapter (optical connector adapter) 40 and an optical fiber 21 .
  • the optical fiber (first optical fiber) 21 has its one end connected to the light source 20 and has the other end connected to the optical connector 22 .
  • the optical fiber 21 may have a length at which a cladding mode caused by incident light disappears.
  • the exemplary length thereof is 100 cm to 200 cm in consideration of operability and the like.
  • the optical connector fits to the optical connector 1 into which the optical fiber 10 a is not inserted yet.
  • the optical adaptor 40 detachably holds the optical connectors 1 , 22 so as to coincide the optical axes of the optical connectors 1 , 22 , and thus the optical connectors 1 , 22 is connected to each other in the optical adaptor 40 .
  • optical fiber 21 an optical fiber which easily attenuates cladding mode light is preferably used.
  • the optical fiber having such a characteristic is, for example, a standard single-mode optical fiber which is made of quartz glass.
  • the optical fiber 21 is sheathed with, for example, resin or the like and a diameter thereof is, for example, 0.9 mm. Furthermore, the optical fiber 21 may be bent to enhance attenuation of the cladding mode light, as long as light propagation is not disturbed.
  • the light source 20 it is preferable to use a laser diode (LD) 5 light source which emits light having a wavelength of 650 nm for optical communication or the like.
  • LD laser diode
  • the light emitted from the light source 20 passes through the optical fiber 21 and enters the optical fiber 2 in the optical connector 1 .
  • the light that has entered the optical fiber 2 exits from a whole area of the end face (core) of the optical fiber 2 .
  • the insertion member 11 is light transmissive, the light leaks to the outside of the optical connector 1 through the insertion. member 11 . This leak light has high intensity and the insertion member 11 is visually observed to be considerably bright.
  • the members that make up the optical connector other than the 15 insertion member 11 may be made of light transmissive resin or the like. In this case, the light can also be confirmed from those other members.
  • the members that make up the optical connector are made of a white resin
  • red light wavelength of 650 nm
  • the cladding mode light is emitted from an outer surface of the optical fiber 21 and mostly, disappears around the connection between the optical connectors in the optical adapter 40 . Therefore, no or significantly attenuated cladding mode light enters the optical fiber 2 and no or a very small amount of light is emitted from a peripheral surface of the optical fiber 2 .
  • the word “mostly” means that it is difficult to completely remove the cladding mode light and thus the cladding mode light that does not virtually affect brightness confirmation that is the object of the present invention may be left. This can be set as a definition of a term “disappearance of the cladding mode light” in the present invention.
  • the optical fiber 10 is inserted into the optical connector 1 and the optical fiber 2 and the bare optical fiber 10 a are allowed to abut on each other.
  • optical power 35 propagated to the optical fiber 2 from the light source 20 is propagated to the optical fiber 10 a without leaking in the butt-connection part P. Therefore, leakage of the optical power to the outside of the optical connector 1 is very small.
  • no or significantly attenuated cladding mode light enters the optical fiber 2 and most of the optical power exists in the core. Moreover, no or a very small amount of light is emitted from the peripheral surface of the optical fiber 2 that is the bare optical fiber.
  • the butt-connection part P there is almost no light (that is background light) other than the leak light from the optical fiber 2 .
  • the insertion member 11 is visually observed to be dark (note that the observation focuses on the wedge part 11 a ).
  • the insertion member 11 is pulled out, and the base 6 and the covers 7 and 8 facing the base 6 in the connection mechanism 4 are closed. Moreover, an urging force of the flat spring 9 mechanically fixes the part between the optical fiber 2 and the bare optical fiber 10 a and the vicinity thereof.
  • the butt-connection state is considered to be bad in any one of the following states: the bare optical fiber 10 a is not sufficiently pressed against the optical fiber 2 ; there is a gap between the end faces of the optical fibers; and any of the end faces of the optical fibers is in bad condition.
  • connection state When the connection state is bad, the light from the optical fiber 2 leaks from the butt-connection part P. Thus, the light leaks to the outside of the optical connector 1 through the insertion member 11 . Therefore, since the insertion member 11 is observed to be bright, the bad butt-connection state of the optical fiber 2 and the bare optical fiber 10 a can be confirmed.
  • the insertion member 11 described above integrally includes the two wedge parts 11 a and 11 b .
  • the wedge parts 11 a and 11 b may be configured to move independently of each other.
  • the insertion member corresponding to the wedge part 11 a is made of a transparent material.
  • FIG. 9 shows an example of an optical connector apparatus 50 using the optical connector 1 .
  • the optical connector apparatus 50 includes a spring 51 , a stop ring 52 and a housing 53 in addition to the optical connector 1 .
  • the spring 51 is disposed on a rear end face of the connection mechanism 4 so as to allow the optical fiber 10 to be inserted thereinto.
  • the stop ring 52 is placed over the optical connector 1 from behind the optical connector 1 in a state where the spring 51 is disposed. Therefore, the optical connector 1 is urged forward (in other words, toward the ferrule 3 ) by the spring 51 .
  • the housing 53 is placed over the ferrule 3 and a front portion of the connection mechanism 4 .
  • the optical connector apparatus 50 is detachably held by the optical adapter 40 , for example, or the like and is connected to another optical connector in the adapter.
  • FIG. 10 is a longitudinal cross-sectional view of an optical connector according to a second embodiment of the present invention.
  • An optical connector 31 of this embodiment has a connection mechanism configured to mechanically butt and connect two optical B.bers 10 to each other. This connection mechanism is called a mechanical splice.
  • the optical connector 31 includes: a base 36 having a positioning groove 35 formed therein; a cover 37 and covers 38 which are all facing the base 36 ; and a C-shaped or squared C-shaped flat spring 39 for elastically clamping the base 36 and the covers 37 and 38 .
  • the positioning groove 35 is constituted of a positioning groove 35 a and a positioning groove 35 b .
  • the optical fiber 10 is disposed in the positioning groove 35 b .
  • a bare optical fiber 10 a is disposed, which is exposed by peeling off a sheath of the optical fiber 10 .
  • the cover 37 is disposed between the covers 38 .
  • the cover 37 opens and closes a butt-connection part P of the bare optical fibers 10 a .
  • the covers 38 are disposed respectively on the two sides of the cover 37 , and each open and close a portion in which a sheath portion 10 b of the corresponding optical fiber 10 is disposed, the sheath portion 10 b being inserted from a corresponding side of the optical connector 31 .
  • an insertion member 41 is inserted so as to open and 5 close a portion between the base 36 and the covers 37 and 38 , 38 .
  • the insertion member 41 is made of a light transmissive material.
  • Procedures for confirming a butt-connection state of the optical fiber 10 a in installation of the optical connector 31 are basically the same as those described in the first embodiment. Leak light from the butt-connection part P is detected through the insertion member 41 .
  • the insertion member 11 is made of a light transmissive material, and the leak light from the insertion member 11 is detected to confirm the butt-connection state.
  • the leak light is not necessarily limited to that from the insertion member 11 .
  • At least one of the base 6 and the cover 7 in the connection mechanism 4 is made of the light transmissive material and leak light from the butt-connection part P can be observed therefrom.
  • Such an observation can be implemented in the second embodiment by forming at least one of the base 36 and the covers 38 of the light transmissive material.
  • the present invention can be applied to an optical connector which has a portion configured to communicate leak light to the outside or which has at least a part thereof formed of an optically transparent material allowing transmission of the leak light.
  • the light source of 650 nm is used to visually observe the light intensity of the leak light as bright and dark.
  • the light intensity can also be detected by a light intensity meter.
  • the light to be detected is not limited to visible light.
  • a quartz optical fiber can be applied as the optical fiber.
  • a surface of the optical fiber may be sheathed with a polyvinyl chloride resin and the like to improve mechanical strength.
  • the optical fiber 21 connecting the light source 20 to the optical connector 22 may have its periphery reinforced with a tensile fiber.
  • the optical fiber interposed between the optical connector and the light source attenuates cladding mode light. Specifically, while the light from the light source passes through the optical fiber, the cladding mode light is emitted from cladding to the outside. Thus, the cladding mode light does not reach the inside of the optical connector or is significantly attenuated.
  • the leak light from the cladding is significantly reduced.
  • the butt-connection state is good, loss of optical power transmitted from a core of one optical fiber to a core of the other optical fiber and light reflection are significantly reduced. Accordingly, leak light from an abutting end face of the optical fibers is significantly reduced.
  • a difference in light intensity in the butt-connection part between good and bad butt-connection states is relatively increased.

Abstract

Provided is a method for confirming optical fibers connection in a connection part in an optical connector, including: allowing light to pass through a first optical fiber and allowing cladding mode light to disappear; and detecting a difference in light intensity in the connection part between before and after the light from the first optical fiber enters a second optical fiber disposed in the optical connector.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is a Divisional of U.S. application Ser. No. 12/488,832 filed Jun. 22, 2009 which claims priority
  • from Japanese Patent Application No. 2008-165009, filed Jun. 24, 2008. The entire contents of all documents cited in the specification are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a method and an apparatus for confirming a connection state of optical fibers butted and connected to each other in a connector.
  • 2. Description of the Related Art
  • Japanese Patent Application Laid-Open. Publication No. 2005-292429 (Patent Document 1) discloses a method for confirming whether or not an optical fiber built in an optical connector and an optical fiber inserted into the optical connector are properly butted and connected to each other.
  • According to the method disclosed in Patent Document 1, as shown in FIG. 151A, an optical connector 115 is connected to an optical connector 101. A short optical fiber 116 for a test is attached to the optical connector 115. Light from a light source 117 passes through the optical fiber 116. Furthermore, the light from the optical fiber 116 enters one end of an optical fiber 102 built in the optical connector 101 and exits from the other end thereof.
  • The method described above uses an assembling tool (opening member) 118 having a light transmissive insertion member 111 integrally formed therein. The insertion member 111 stably opens a portion between a base 106 and covers 107 and 108 in the optical connector 101, and maintains the opened state. Note that, in the optical connector 101, a concave part 112 is formed by the base 106 and the covers 107 and 108. The insertion member 111 is inserted into the concave part 112 in a state where the concave part 112 faces downward. Since the insertion member 111 is light transmissive, light that exits from the optical fiber 102 is observed from the insertion member 111.
  • Next, as shown in FIG. 1B, an optical fiber 110 is inserted into the optical connector 101 so as to abut on the optical fiber 102. Note that FIG. 1B shows a state where a bare optical fiber 110 a obtained by peeling off an external sheath of the optical fiber 110 faces the optical fiber 102. When the optical fiber 102 and the optical fiber 110 are in an appropriate connection state, most of the light from the optical fiber 102 enters the optical fiber 110. Thus, intensity of the light 35 leaking from a connection part P is small.
  • On the other hand, when the connection state is incomplete, the light from the optical fiber 102 leaks from the connection part P. Therefore, the intensity of the light leaking from the connection part P is increased.
  • SUMMARY OF THE INVENTION
  • In the above method for confirming optical fibers connection, in the case of confirming a butt-connection state in a bright place, for example (a particularly bright place in the daytime, for example), a difference in brightness between good and bad butt-connection states may not be clear.
  • This is because the light entering the optical fiber from the light source enters not only a core but also a cladding, thereby generating cladding mode light. Specifically, the cladding mode light is easily emitted to the outside from the cladding of the optical fiber. Accordingly, even when the butt-connection state is good, the cladding mode light appears as background light, and makes it difficult to confirm the connection state.
  • The present invention has been made in consideration of the foregoing circumstances. It is an object of the present invention to provide a method and an apparatus for confirming a connection state of optical fibers connected in a connector even in a bright environment.
  • A first aspect of the present invention is a method for confirming optical fibers connection in a connection part in an optical connector, the method including: allowing light to pass through a first optical fiber while causing cladding mode light to disappear; and detecting a difference in light intensity in the connection part between before and after the light from the first optical fiber enters a second optical fiber disposed in the optical connector.
  • The first optical fiber may be bent when light passes therethrough.
  • It is preferable that a wavelength of light entering the first optical fiber is 650 nm and a length of the first optical fiber is 100 cm to 200 cm.
  • The first optical fiber may be a single-mode optical fiber.
  • It is preferable that the difference in light intensity is detected through a light transmissive member located in the connection. part.
  • The optical connector may include a ferrule and a third optical fiber inserted into the ferrule. In this case, light that exits from the first optical fiber enters the second optical fiber through the third optical fiber.
  • The optical connector may have a connection mechanism extending in a direction opposite to that toward a connection end face of the ferrule. In this case, the connection mechanism includes: a base; first and second covers openably and closably facing the base; and a flat spring for elastically clamping the base and all the covers. Furthermore, a positioning groove for the optical fiber is formed in the base. The first cover is located so as to open and close the connection part. The second cover is located so as to cover a sheath portion of the second optical fiber. Moreover, the light transmissive member is an insertion member and is inserted between the base and the first and second covers so as to open and close the base and the covers.
  • The optical connector may have a connection mechanism extending in a direction opposite to that toward a connection end face of the ferrule. In this case, the connection mechanism includes: a base; first and second covers openably and closably facing the base and a flat spring for elastically clamping the base and all the covers. Moreover, the light transmissive member is at least one of the base and the first cover. A positioning groove for the optical fiber is formed in the base. The first cover is located so as to open and close the connection part, and the second cover is located so as to cover a sheath portion of the second optical fiber.
  • The optical connector may include: a base; first, second, and third covers openably and closably facing the base; and a flat spring for elastically clamping the base and all the covers. In this case, a positioning groove for the optical fiber is formed in the base. Moreover, the first cover is located so as to open and close the connection part, the second cover is located so as to cover a sheath portion of the first optical fiber, and the third cover is located so as to cover a sheath portion of the second optical. fiber. Furthermore, the light transmissive member is an insertion member and is inserted between the base and the first to third covers so as to open and close the base and the first, second and third covers.
  • The optical connector may include: a base; first, second, and third covers openably; and closably facing the base and a flat spring for elastically clamping the base and all the covers. In this case, a positioning groove for the optical fiber is formed in the base. Moreover, the first cover is located so as to open and close the connection part, the second cover is located so as to cover a sheath portion of the first optical fiber, and the third cover is located so as to cover a sheath portion of the second optical fiber. Furthermore, the light transmissive member is the base and the first cover.
  • A second aspect of the present invention is an apparatus for confirming optical fibers connection in an optical connector, apparatus including: a light source; an optical connector; an optical adapter configured to detachably hold the optical connector and another optical connector and to connect the optical connectors to each other; and an optical fiber connecting the light source to the optical connector. The optical fiber has a length enough to cause cladding mode light generated by light from the light source to disappear.
  • The optical fiber between the light source and the optical connector may be bent so as to enhance attenuation of the cladding mode light.
  • The light source may be a laser diode which emits light having a wavelength of 650 nm. It is preferable that the length of the optical fiber between the light source and the optical connector is 100 cm to 200 cm.
  • The optical fiber between the light source and the optical connector may be a single-mode optical fiber.
  • According to the present invention, in the butt-connection part of the optical fiber in the optical connector, the cladding mode light disappears. Accordingly, the difference in light intensity between before and after the abutting connection, which depends on the connection state, is emphasized. Thus, it is possible to clearly confirm the butt-connection state of the optical fibers even in a bright environment.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B are views for explaining a conventional method for confirming a connection state of optical fibers in an optical connector, FIG. 1A showing a state before the optical fibers abut on each other, FIG. 1B showing a state after the optical fibers abut on each other.
  • FIG. 2 is a cross-sectional view of a main part of the optical connector shown in FIGS. 1A and 1B, showing a situation where leak light is detected through an insertion member.
  • FIG. 3 is a perspective view of an optical connector according to an 30 embodiment of the present invention.
  • FIG. 4 is a side view of the optical connector shown in FIG. 3.
  • FIG. 5 is a longitudinal cross-sectional view of the optical connector shown in FIG. 3.
  • FIG. 6 is an exploded plan view of a main part of the optical connector 35 shown in FIG. 3.
  • FIGS. 7A and 7B are views each showing a state in confirming an butt-connection state of optical fibers in the optical connector shown in FIG. 3, FIG. 7A showing a state before the optical fibers abut on each other, FIG. 7B showing a state after the optical fibers abut on each other.
  • FIG. 8 is an enlarged cross-sectional view taken along the line A-A in FIG. 7A (equivalent to a cross-sectional view taken along the line A-A in FIG. 5).
  • FIG. 9 is a cross-sectional view showing a state where the optical. connector shown in FIG. 3 is used.
  • FIG. 10 is a longitudinal cross-sectional view of an optical connector 10 according to an embodiment of the present invention.
  • FIG. 11 is a transverse cross-sectional view of the optical connector shown in FIG. 10.
  • DESCRIPTION OF THE EMBODIMENTS
  • With reference to the drawings, description will be given below of a method and an apparatus for confirming optical fibers connection according to embodiments of the present invention.
  • First Embodiment
  • As shown in FIGS. 3 to 6, an optical connector 1 according to a first embodiment of the present invention includes: an optical fiber 2; a ferrule 3 having a connection end face 3 b where an end face of the optical fiber 2 is exposed; and a connection mechanism 4 extending from the ferrule 3 in a direction opposite to the connection end face 3 b. Note that, as the optical fiber 2 built in the optical connector 1, an optical fiber formed of only a core and a cladding, a so-called bare optical fiber is preferable.
  • The connection mechanism 4 includes: a base 6; covers 7 and 8 facing the base 6; and a flat spring 9 formed into, for example, a C-shape or squared C-shape for elastically clamping the covers 7 and 8. The base 6 is formed integrally with a cylindrical ferrule fitting part 13 and a brim-shaped flange part 14. The ferrule fitting part 13 is fitted to the ferrule 3. The base 6 extends from the flange part 14 in the direction opposite to the connection end face 3 b of the ferrule 3.
  • As shown in FIG. 6, in the base 6, a positioning groove 5 is formed, which is continuous with an optical fiber insertion hole 3 a in the ferrule 3. The positioning groove 5 is constituted of a positioning groove 5 a and a positioning groove 5 b. The positioning groove 5 a is formed so as to accommodate the optical fiber 2 and an optical fiber 10 a which are butted and connected to each other. The positioning groove 5 b is formed so as to accommodate a sheath portion 10 b of an optical fiber 10 to be inserted into the optical connector 1.
  • The cover 7 is positioned so as to open and close a butt-connection part P of the optical fibers. In other words, the cover 7 is positioned so as to cover the butt-connection part P. The cover 8 is positioned so as to open and close the sheath portion 10 b of the optical fiber 10. In other words, the cover 8 is positioned so as to cover the sheath portion 10 b. An insertion member 11 is formed in a wedge shape and opens and closes the covers 7 and 8 with respect to the base 6 against reaction force of the flat spring 9. In the base 6 and the covers 7 and 8, concave parts 12 are formed, into which the insertion member 11 is inserted when the base 6 and the covers 7 and 8 face each other. Note that the insertion member 11 is used for installation of the optical connector.
  • The optical connector 1 can also clamp the sheath portion 10 b of the 15 optical fiber 10. Note that this optical connector is also called a Field-Installable Connector since field installation thereof is easy.
  • In installation of the optical connector 1, first, the insertion member 11 is inserted into the concave parts 12 formed between the base 6 and the covers 7 and 8. Thus, the covers 7 and 8 are slightly opened. In this state, the optical fiber 10 is inserted from the outside and then the optical fiber 2 and the bare optical fiber 10 a of the optical fiber 10 are allowed to abut on each other. Note that a tip of the optical fiber 10 has its sheath previously peeled off and the bare optical fiber 10 a is exposed. Next, after connection is confirmed, the insertion member 11 is removed and the butt-connection part P of the optical fibers as well as the sheath portion 10 b of the optical fiber 10 are sandwiched between the base 6 and the covers 7 and 8 by using the flat spring 9. Note that, as a drive mechanism of the insertion member 11, drive mechanisms disclosed in Patent Document 1 and U.S. Pat. No. 7,346,255 can be suitably used. This drive mechanism is also called a wedge unit. In this case, the insertion member 11, as one of assembling tools, stably maintains an opened state between the base 6 and the covers 7 and 8 without being touched.
  • In this embodiment, the insertion member 11 is made of a light transmissive material. However, as described later, the member made of the light transmissive material is not limited to the insertion. member 11.
  • As shown in FIG. 6, the insertion member 11 integrally includes wedge parts 11 a and 11 b. The wedge part 11 a is used to open the cover 7. The wedge part 11 b is used to open the cover 8. Specifically, the wedge parts 11 a and 11 b are inserted into the concave parts 12 defined between the base 6 and the covers 7 and S.
  • FIG. 6 shows surfaces of the respective covers 7 and 8 facing the base 6. The surface of the cover 7 facing the base 6 is flat. On the other hand, in the surface of the cover 8 facing the base 6, the positioning groove 5 a configured to receive the bare optical fiber 10 a of the optical fiber 10 and the positioning groove 5 b configured to receive the sheath portion 10 b of the optical fiber 10 are formed.
  • A refractive index matching material is injected on the end faces of the optical fibers.
  • Next, the insertion member 11 is removed and consequently the flat spring 9 urges the base 6 and the covers 7 and 8 thereby to hold the butt-connection part P of the optical fibers as well as the sheath portion 10 b of the optical fiber 10.
  • With reference to FIGS. 7A and 7B, description will be given of procedures for confirming whether or not the optical fiber 2 and the bare optical fiber 10 a are properly butted and connected to each other in installation of the optical connector 1.
  • As shown in FIG. 7A, an apparatus for confirming connection of the optical fibers in the optical connector according to this embodiment of the present invention includes a light source 20, an optical connector 22, an optical adapter (optical connector adapter) 40 and an optical fiber 21.
  • As shown in FIG. 7A, the optical fiber (first optical fiber) 21 has its one end connected to the light source 20 and has the other end connected to the optical connector 22. The optical fiber 21 may have a length at which a cladding mode caused by incident light disappears. The exemplary length thereof is 100 cm to 200 cm in consideration of operability and the like. The optical connector fits to the optical connector 1 into which the optical fiber 10 a is not inserted yet. The optical adaptor 40 detachably holds the optical connectors 1, 22 so as to coincide the optical axes of the optical connectors 1, 22, and thus the optical connectors 1, 22 is connected to each other in the optical adaptor 40.
  • As the optical fiber 21, an optical fiber which easily attenuates cladding mode light is preferably used. The optical fiber having such a characteristic is, for example, a standard single-mode optical fiber which is made of quartz glass.
  • Moreover, the optical fiber 21 is sheathed with, for example, resin or the like and a diameter thereof is, for example, 0.9 mm. Furthermore, the optical fiber 21 may be bent to enhance attenuation of the cladding mode light, as long as light propagation is not disturbed.
  • Moreover, as the light source 20, it is preferable to use a laser diode (LD) 5 light source which emits light having a wavelength of 650 nm for optical communication or the like.
  • The light emitted from the light source 20 passes through the optical fiber 21 and enters the optical fiber 2 in the optical connector 1. In this state, the light that has entered the optical fiber 2 exits from a whole area of the end face (core) of the optical fiber 2. Since the insertion member 11 is light transmissive, the light leaks to the outside of the optical connector 1 through the insertion. member 11. This leak light has high intensity and the insertion member 11 is visually observed to be considerably bright.
  • Note that the members that make up the optical connector other than the 15 insertion member 11 may be made of light transmissive resin or the like. In this case, the light can also be confirmed from those other members.
  • For example, when the members that make up the optical connector are made of a white resin, not only the light transmitted through the insertion member but also red light (wavelength of 650 nm) can be confirmed through the members made of the white resin.
  • While the light from the light source 20 passes through the optical fiber 21, the cladding mode light is emitted from an outer surface of the optical fiber 21 and mostly, disappears around the connection between the optical connectors in the optical adapter 40. Therefore, no or significantly attenuated cladding mode light enters the optical fiber 2 and no or a very small amount of light is emitted from a peripheral surface of the optical fiber 2. Note that the word “mostly” means that it is difficult to completely remove the cladding mode light and thus the cladding mode light that does not virtually affect brightness confirmation that is the object of the present invention may be left. This can be set as a definition of a term “disappearance of the cladding mode light” in the present invention.
  • Next, as shown in FIG. 7B, the optical fiber 10 is inserted into the optical connector 1 and the optical fiber 2 and the bare optical fiber 10 a are allowed to abut on each other.
  • In this case, when a butt-connection state is good, optical power 35 propagated to the optical fiber 2 from the light source 20 is propagated to the optical fiber 10 a without leaking in the butt-connection part P. Therefore, leakage of the optical power to the outside of the optical connector 1 is very small.
  • Specifically, as described above, no or significantly attenuated cladding mode light enters the optical fiber 2 and most of the optical power exists in the core. Moreover, no or a very small amount of light is emitted from the peripheral surface of the optical fiber 2 that is the bare optical fiber.
  • Therefore, in the butt-connection part P, there is almost no light (that is background light) other than the leak light from the optical fiber 2. When the butt-connection state of the optical fiber 2 and the bare optical fiber 10 a is good, the insertion member 11 is visually observed to be dark (note that the observation focuses on the wedge part 11 a).
  • When it can be confirmed that the butt-connection state is good, the insertion member 11 is pulled out, and the base 6 and the covers 7 and 8 facing the base 6 in the connection mechanism 4 are closed. Moreover, an urging force of the flat spring 9 mechanically fixes the part between the optical fiber 2 and the bare optical fiber 10 a and the vicinity thereof.
  • Meanwhile, the butt-connection state is considered to be bad in any one of the following states: the bare optical fiber 10 a is not sufficiently pressed against the optical fiber 2; there is a gap between the end faces of the optical fibers; and any of the end faces of the optical fibers is in bad condition.
  • When the connection state is bad, the light from the optical fiber 2 leaks from the butt-connection part P. Thus, the light leaks to the outside of the optical connector 1 through the insertion member 11. Therefore, since the insertion member 11 is observed to be bright, the bad butt-connection state of the optical fiber 2 and the bare optical fiber 10 a can be confirmed.
  • In this case, considering that there is almost no background light in the butt-connection part P, there is a significantly large difference in light intensity observed between the good and bad butt-connection states. Therefore, it is possible to clearly confirm whether the butt-connection state is good or bad even in a bright environment.
  • The insertion member 11 described above integrally includes the two wedge parts 11 a and 11 b. However, the wedge parts 11 a and 11 b may be configured to move independently of each other. Specifically, there may be provided two insertion members, each having one wedge part. In this case, the insertion member corresponding to the wedge part 11 a is made of a transparent material.
  • FIG. 9 shows an example of an optical connector apparatus 50 using the optical connector 1. The optical connector apparatus 50 includes a spring 51, a stop ring 52 and a housing 53 in addition to the optical connector 1. The spring 51 is disposed on a rear end face of the connection mechanism 4 so as to allow the optical fiber 10 to be inserted thereinto. The stop ring 52 is placed over the optical connector 1 from behind the optical connector 1 in a state where the spring 51 is disposed. Therefore, the optical connector 1 is urged forward (in other words, toward the ferrule 3) by the spring 51. Furthermore, the housing 53 is placed over the ferrule 3 and a front portion of the connection mechanism 4.
  • The optical connector apparatus 50 is detachably held by the optical adapter 40, for example, or the like and is connected to another optical connector in the adapter.
  • When an assembling tool (opening member) integrally including an insertion member is used as in the case of U.S. Pat. No. 7,346,255, a butt-connection state can also be confirmed in a state where the optical connector 1 is housed in the optical connector apparatus 50. In this case, a slit (not shown) which allows an opening and closing member to pass therethrough is provided in the housing 53.
  • Second Embodiment
  • FIG. 10 is a longitudinal cross-sectional view of an optical connector according to a second embodiment of the present invention. An optical connector 31 of this embodiment has a connection mechanism configured to mechanically butt and connect two optical B.bers 10 to each other. This connection mechanism is called a mechanical splice. The optical connector 31 includes: a base 36 having a positioning groove 35 formed therein; a cover 37 and covers 38 which are all facing the base 36; and a C-shaped or squared C-shaped flat spring 39 for elastically clamping the base 36 and the covers 37 and 38. Furthermore, the positioning groove 35 is constituted of a positioning groove 35 a and a positioning groove 35 b. In the positioning groove 35 b, the optical fiber 10 is disposed. In the positioning groove 35 a, a bare optical fiber 10 a is disposed, which is exposed by peeling off a sheath of the optical fiber 10.
  • The cover 37 is disposed between the covers 38. The cover 37 opens and closes a butt-connection part P of the bare optical fibers 10 a. The covers 38 are disposed respectively on the two sides of the cover 37, and each open and close a portion in which a sheath portion 10 b of the corresponding optical fiber 10 is disposed, the sheath portion 10 b being inserted from a corresponding side of the optical connector 31.
  • As shown in FIG. 11, an insertion member 41 is inserted so as to open and 5 close a portion between the base 36 and the covers 37 and 38, 38. The insertion member 41 is made of a light transmissive material.
  • Procedures for confirming a butt-connection state of the optical fiber 10 a in installation of the optical connector 31 are basically the same as those described in the first embodiment. Leak light from the butt-connection part P is detected through the insertion member 41.
  • Other Embodiments
  • In both of the embodiments described above, the insertion member 11 is made of a light transmissive material, and the leak light from the insertion member 11 is detected to confirm the butt-connection state. However, as described above, the leak light is not necessarily limited to that from the insertion member 11.
  • For example, in the first embodiment, at least one of the base 6 and the cover 7 in the connection mechanism 4 is made of the light transmissive material and leak light from the butt-connection part P can be observed therefrom. Such an observation can be implemented in the second embodiment by forming at least one of the base 36 and the covers 38 of the light transmissive material. Specifically, the present invention can be applied to an optical connector which has a portion configured to communicate leak light to the outside or which has at least a part thereof formed of an optically transparent material allowing transmission of the leak light.
  • Moreover, in the above embodiment, the light source of 650 nm is used to visually observe the light intensity of the leak light as bright and dark. The light intensity can also be detected by a light intensity meter. In the case of using the light intensity meter, the light to be detected is not limited to visible light.
  • Moreover, in the present invention, a quartz optical fiber can be applied as the optical fiber. Furthermore, a surface of the optical fiber may be sheathed with a polyvinyl chloride resin and the like to improve mechanical strength. In the first embodiment, in particular, the optical fiber 21 connecting the light source 20 to the optical connector 22 may have its periphery reinforced with a tensile fiber.
  • According to the method and apparatus for confirming optical fibers connection according to the present invention, the optical fiber interposed between the optical connector and the light source attenuates cladding mode light. Specifically, while the light from the light source passes through the optical fiber, the cladding mode light is emitted from cladding to the outside. Thus, the cladding mode light does not reach the inside of the optical connector or is significantly attenuated.
  • Therefore, in the abutting part of the optical fibers in the optical connector, the leak light from the cladding is significantly reduced. When the butt-connection state is good, loss of optical power transmitted from a core of one optical fiber to a core of the other optical fiber and light reflection are significantly reduced. Accordingly, leak light from an abutting end face of the optical fibers is significantly reduced. Thus, a difference in light intensity in the butt-connection part between good and bad butt-connection states is relatively increased.
  • Consequently, it becomes possible to clearly confirm the butt-connection state even in a bright environment during the day.

Claims (10)

1. An apparatus for confirming optical fibers connection in an optical connector, comprising:
a light source; and
a first optical fiber connecting the light source to a second optical fiber disposed in the optical connector; wherein
the light passes through a first optical fiber while causing cladding mode light to substantially disappear, and
light intensity in the connection part between the first optical fiber and the second optical fiber is detected.
2. The apparatus according to claim 1, wherein the first optical fiber is bent when light passes therethrough.
3. The apparatus according to claim 2, wherein
a wavelength of light entering the first optical fiber is 650 nm, and a length of the first optical fiber is 100 cm to 200 cm.
4. The apparatus according to claim 3, wherein the first optical fiber is a single-mode optical fiber.
5. The apparatus according to claim 1, wherein
the difference in light intensity is detected through a light transmissive member located in the connection part.
6. The apparatus according to claim 5, wherein
the optical connector includes a ferrule and a third optical fiber inserted into the ferrule, and
light that exits from the first optical fiber enters the second optical fiber through the third optical fiber.
7. The apparatus according to claim 6, wherein
the optical connector has a connection mechanism extending in a direction opposite to that toward a connection end face of the ferrule,
the connection mechanism includes
a base,
first and second covers openably and closably facing the base and a flat spring for elastically clamping the base and all the covers,
a positioning groove for the optical fiber is formed in the base,
the first cover is located so as to open and close the connection part,
the second cover is located so as to cover a sheath portion of the second optical fiber,
and
the light transmissive member is an insertion member and is inserted between the base and the first and second covers so as to open and close the base and the covers.
8. The apparatus according to claim 6, wherein
the optical connector has a connection mechanism extending in a direction opposite to that toward a connection end face of the ferrule,
the connection mechanism includes
a base,
first and second covers openably and closably facing the base and
a flat spring for elastically clamping the base and all the covers, the light transmissive member is at least one of the base and the first cover, a positioning groove for the optical fiber is formed in the base, the first cover is located so as to open and close the connection part, and
the second cover is located so as to cover a sheath portion of the second optical fiber.
9. The apparatus according to claim 5, wherein
the optical connector includes
a base,
first, second, and third covers openably and closably facing the base and a flat spring for elastically clamping the base and all the covers,
a positioning groove for the optical fiber is formed in the base,
the first cover is located so as to open and close the connection part,
the second cover is located so as to cover a sheath portion of the first optical fiber,
the third cover is located so as to cover a sheath portion of the second optical fiber, and
the light transmissive member is an insertion member and is inserted between the base and the first to third covers so as to open and close the base and the first, second and third covers.
10. The apparatus according to claim 5, wherein
the optical connector includes
a base,
first, second, and third covers openably and closably facing the base and a flat spring for elastically clamping the base and all the covers,
a positioning groove for the optical fiber is formed in the base,
the first cover is located so as to open and close the connection part,
the second cover is located so as to cover a sheath portion of the first optical fiber,
the third cover is located so as to cover a sheath portion of the second optical fiber, and
the light transmissive member is the base and the first cover.
US13/335,160 2008-06-24 2011-12-22 Method and apparatus for confirming optical fibers connection in optical connector Abandoned US20120163753A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/335,160 US20120163753A1 (en) 2008-06-24 2011-12-22 Method and apparatus for confirming optical fibers connection in optical connector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008165009 2008-06-24
JP2008-165009 2008-06-24
US12/488,832 US8111956B2 (en) 2008-06-24 2009-06-22 Method and apparatus for confirming optical fibers connection in optical connector
US13/335,160 US20120163753A1 (en) 2008-06-24 2011-12-22 Method and apparatus for confirming optical fibers connection in optical connector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/488,832 Division US8111956B2 (en) 2008-06-24 2009-06-22 Method and apparatus for confirming optical fibers connection in optical connector

Publications (1)

Publication Number Publication Date
US20120163753A1 true US20120163753A1 (en) 2012-06-28

Family

ID=41037862

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/488,832 Active 2029-07-17 US8111956B2 (en) 2008-06-24 2009-06-22 Method and apparatus for confirming optical fibers connection in optical connector
US13/335,160 Abandoned US20120163753A1 (en) 2008-06-24 2011-12-22 Method and apparatus for confirming optical fibers connection in optical connector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/488,832 Active 2029-07-17 US8111956B2 (en) 2008-06-24 2009-06-22 Method and apparatus for confirming optical fibers connection in optical connector

Country Status (4)

Country Link
US (2) US8111956B2 (en)
EP (1) EP2138879B1 (en)
JP (1) JP5164271B2 (en)
CN (1) CN101614845B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092654A1 (en) * 2009-02-12 2010-08-19 株式会社フジクラ Optical connector
JP5594083B2 (en) * 2010-11-19 2014-09-24 ソニー株式会社 Optical fiber adapter and laser device
JP5677182B2 (en) * 2011-04-26 2015-02-25 株式会社フジクラ Optical connector
US8981961B2 (en) 2013-01-21 2015-03-17 International Business Machines Corporation Validation of mechanical connections
EP3080650A1 (en) * 2013-12-09 2016-10-19 Koninklijke Philips N.V. Optical fiber connector validation
JP6057940B2 (en) * 2014-04-01 2017-01-11 株式会社フジクラ Optical fiber connector
CN106461880B (en) * 2014-06-12 2018-05-18 株式会社岛津制作所 Fiber coupling module
WO2016201387A1 (en) * 2015-06-12 2016-12-15 Pacific Biosciences Of California, Inc. Integrated target waveguide devices and systems for optical coupling
CN110361817A (en) * 2019-08-20 2019-10-22 江苏宇特光电科技股份有限公司 A kind of fiber alignment detection method and device applied to optical fiber connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030174948A1 (en) * 1998-12-04 2003-09-18 Davis Michael A. Large diameter optical waveguide having blazed grating therein
US20070036499A1 (en) * 2004-04-22 2007-02-15 Fujitsu Limited Optical fiber connecting portion structure and light monitor apparatus
US7346255B2 (en) * 2004-11-15 2008-03-18 Fujikura Ltd. Tool for optical connector and tool equipped optical connector
US20080279516A1 (en) * 2007-05-11 2008-11-13 Xin Chen Low bend loss coated optical fiber

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8706929D0 (en) * 1987-03-24 1987-04-29 British Telecomm Optical coupling device
JPH03269505A (en) * 1990-03-20 1991-12-02 Mitsubishi Electric Corp Optical fiber connector
JPH05226759A (en) * 1992-02-10 1993-09-03 Sumitomo Electric Ind Ltd Light source for measuring light
US5367594A (en) * 1992-09-01 1994-11-22 The Whitaker Corporation Fiber optic splicer-connector
US5278932A (en) * 1992-09-30 1994-01-11 At&T Bell Laboratories Optical fiber splice verification system
EP0846965B1 (en) * 1995-08-24 2002-03-13 Fujikura Ltd. Optical fiber connector
JP3768278B2 (en) * 1996-01-17 2006-04-19 株式会社フジクラ Optical fiber connector and optical fiber connection method
JPH1078526A (en) * 1996-05-09 1998-03-24 Daewoo Telecommun Ltd Splicer for optical waveguide
JP3602339B2 (en) * 1997-06-16 2004-12-15 株式会社フジクラ Optical connector
US7467896B2 (en) * 2000-05-26 2008-12-23 Corning Cable Systems Llc Fiber optic drop cables and preconnectorized assemblies
US7104702B2 (en) * 2004-03-24 2006-09-12 Corning Cable Systems Llc Field installable optical fiber connector
JP4083696B2 (en) 2004-03-30 2008-04-30 株式会社フジクラ Optical connector, optical connector assembly method
JP4347115B2 (en) * 2004-03-31 2009-10-21 株式会社フジクラ Optical fiber connection opening member, optical connector, optical fiber connector and optical fiber butt connection confirmation method
US7264401B2 (en) * 2004-05-28 2007-09-04 Corning Cable Systems Llc Panel-mountable optical fiber splice
CA2626776A1 (en) * 2005-10-24 2007-05-03 3M Innovative Properties Company Optical connector, fiber distribution unit, and fiber termination platform for optical connectors
US8094988B2 (en) 2005-12-15 2012-01-10 Corning Cable Systems Llc Apparatus and methods for verifying an acceptable splice termination
JP2007225961A (en) 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Method of splicing optical fibers
CN102047162B (en) * 2008-05-29 2014-05-28 泛达公司 Method and apparatus for verifying the termination quality of an optical fiber interface in a fiber optic cable connector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030174948A1 (en) * 1998-12-04 2003-09-18 Davis Michael A. Large diameter optical waveguide having blazed grating therein
US20070036499A1 (en) * 2004-04-22 2007-02-15 Fujitsu Limited Optical fiber connecting portion structure and light monitor apparatus
US7346255B2 (en) * 2004-11-15 2008-03-18 Fujikura Ltd. Tool for optical connector and tool equipped optical connector
US20080279516A1 (en) * 2007-05-11 2008-11-13 Xin Chen Low bend loss coated optical fiber

Also Published As

Publication number Publication date
JP5164271B2 (en) 2013-03-21
US8111956B2 (en) 2012-02-07
CN101614845A (en) 2009-12-30
EP2138879A1 (en) 2009-12-30
JP2010033039A (en) 2010-02-12
EP2138879B1 (en) 2015-05-06
CN101614845B (en) 2014-09-24
US20090317074A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US8111956B2 (en) Method and apparatus for confirming optical fibers connection in optical connector
CA2635563C (en) Splice connector for verifying an acceptable splice termination
JP5710481B2 (en) Optical fiber adapter with integrated shutter
USRE46270E1 (en) Optical fiber connector and associated methods of validating optical fiber continuity
WO2006019161A1 (en) Optical connector and method of assembling optical connector
US20150063761A1 (en) Test system for checking a splice connection between a fiber optic connector and one or more optical fibers
WO2004092795A1 (en) Optical connector and housing for optical connector
JP4832401B2 (en) Optical connector adapter
JP4347115B2 (en) Optical fiber connection opening member, optical connector, optical fiber connector and optical fiber butt connection confirmation method
JP6684461B2 (en) Optical visualization filter and communication optical visualization device using the same
JP5342262B2 (en) Optical connector
JP4684182B2 (en) Optical connector
JP3544263B2 (en) Receptacle module for optical coupling
JP2011150279A (en) Optical fiber connector for use in communication light detection
WO2018179679A1 (en) Optical fiber connecting tool and optical connector provided with optical fiber connecting tool
US7004640B2 (en) Low profile local injection and detection system for optical fiber waveguides
JP5436148B2 (en) Optical connector
JP2013015787A (en) Optical connector and assembling method of the same
JP2006284897A (en) Adaptor for optical connector and optical connecting device
JP2012088437A (en) Optical fiber splicer
JP2007240867A (en) Optical connector
JP2010211074A (en) Optical connector and assembling wedge
JP2008145855A (en) Structure and method of connecting optical fibers
JP2005099172A (en) Optical fiber connecting device and its constructing method
JPH11305045A (en) Optical connector

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION