US20120233950A1 - Concrete wall systems and methods and spacers therefor - Google Patents

Concrete wall systems and methods and spacers therefor Download PDF

Info

Publication number
US20120233950A1
US20120233950A1 US13/050,472 US201113050472A US2012233950A1 US 20120233950 A1 US20120233950 A1 US 20120233950A1 US 201113050472 A US201113050472 A US 201113050472A US 2012233950 A1 US2012233950 A1 US 2012233950A1
Authority
US
United States
Prior art keywords
wall
panels
concrete
spacers
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/050,472
Inventor
Jerry R. Carr
Michael W. McClure
Lloyd E. Weaver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CEMWALL SYSTEMS LLC
CEMWALL SYSTEMS
Original Assignee
CEMWALL SYSTEMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CEMWALL SYSTEMS filed Critical CEMWALL SYSTEMS
Priority to US13/050,472 priority Critical patent/US20120233950A1/en
Assigned to CEMWALL SYSTEMS LLC reassignment CEMWALL SYSTEMS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARR, JERRY R., MCCLURE, MICHAEL W., WEAVER, LLOYD E.
Publication of US20120233950A1 publication Critical patent/US20120233950A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/20Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups of material other than metal or with only additional metal parts, e.g. concrete or plastics spacers with metal binding wires
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8635Walls made by casting, pouring, or tamping in situ made in permanent forms with ties attached to the inner faces of the forms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/34Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2002/867Corner details

Definitions

  • This invention relates generally to concrete wall systems, methods for making concrete wall systems, and spacers used in concrete wall systems.
  • Australian Patent Application No. 2000101212 discloses another type of concrete wall that comprises an opposing pair of formwork boards and a plurality of wall spacers located between the formwork boards. Reinforcing bars are placed through respective openings formed in the spacers, and the cavity between the formwork boards is then filled with concrete. The formwork boards remain in place, acting as the finished internal or external wall surface.
  • Australian Patent Application No. 2000101212 has several drawbacks. For instance, the spacers are box-shaped and thus occupy a considerable volume when packed for shipping, thereby resulting in relatively high shipping cost. Australian Patent Application No. 2000101212 also does not disclose techniques for efficiently assembling the formwork boards and spacers. Nor does Australian Patent Application No. 2000101212 teach how to build high structures or columns or efficiently incorporate electrical conduits and the like within the pre-filled wall prior to pouring concrete.
  • the present invention provides a concrete wall system comprising first and second opposing wall panels and a plurality of spacers disposed between the first and second wall panels.
  • a plurality of reinforcing bars is placed between the first and second wall panels and supported by the spacers, and a concrete core is disposed between the first and second wall panels such that the spacers and the reinforcing bars are embedded in the concrete core.
  • Each one of the spacers has a cup-like body defining a closed first end and an open second end with a flange formed on the second end.
  • the spacer bodies are tapered so that the spacers are stackable.
  • FIG. 1 is a perspective view of a first embodiment of a spacer for positioning two opposing wall panels relative to one another.
  • FIG. 2 is a cross-sectional view of the spacer taken along line 2 - 2 of FIG. 1
  • FIG. 3 is a perspective view (in partial cut-away) of a concrete wall system.
  • FIG. 4 is a cross-sectional view of a portion of the concrete wall system of FIG. 3 .
  • FIG. 5 is a perspective view of a portion of a building constructed with concrete wall systems.
  • FIG. 6 is a perspective view of an integrated concrete column.
  • FIG. 7 is a diagram depicting a process for making shell assemblies for concrete wall systems.
  • the present invention includes integrated concrete wall systems that comprise two opposing wall panels separated by a plurality of spacers and a concrete core located between the two wall panels.
  • the spacers position the two wall panels relative to one another. Specifically, the spacers maintain the two wall panels parallel to one another and spaced apart a particular distance to insure that the resulting wall system has a uniform and desired thickness.
  • the spacers are also adapted to support reinforcing bars, as well as other items such as electrical conduit, in place between the wall panels before the concrete is poured into the inter-panel space.
  • FIGS. 1 and 2 show one embodiment of a spacer 10 for use in a concrete wall system.
  • the spacer 10 comprises a cup-like body 12 having a closed end 14 , an open end 16 and an interior that defines a hollow cavity.
  • the body 12 is shown in the drawings as having a box-shaped configuration by way of example, but it should be noted that other shapes (such as a circular cross-section) are possible.
  • the body 12 comprises four side walls 18 joined together in mutually orthogonal fashion to define four corners. Each side wall 18 is joined to a rectangular base piece 20 at the closed end 14 of the body 12 .
  • the body 12 includes a rectangular flange 22 formed along the perimeter thereof at the open end 16 .
  • the rectangular flange 22 extends outward from each of the four side walls 18 and is substantially parallel to the base piece 20 .
  • the exterior or outwardly-facing surface of the base piece 20 can be attached to the one of the wall panels, and the outwardly-facing surface of the flange 22 can be attached to the other wall panel. These surfaces can be attached via any suitable means, such as adhesive or the like. Because the flange 22 and the base piece 20 are substantially parallel, an attached spacer 10 functions to maintain the opposing wall panels in parallel relation and at the desired spacing (which is determined by the length of the spacer 10 ).
  • the body 12 includes an opening 24 formed in each one of the four side walls 18 for receiving reinforcing bars (vertical and horizontal) as well as other items such as electrical conduit. As described in more detail below, a number of spacers 10 are deployed to hold the reinforcing bars in the proper positions during construction of a concrete wall system.
  • the body 12 is tapered with the four side walls 18 converging slightly so that the cross-sectional area of the closed end 14 is smaller than the cross-sectional area of the open end 16 .
  • the tapered configuration and hollow cavity of the body 12 make the spacer 10 stackable; that is, multiple spacers 10 can be stacked together. This stackable spacer configuration greatly reduces packing and shipping costs as large volumes of the spacers can be packed and shipped in a minimum of space.
  • the spacers 10 can be made as a one-piece construction, such as with an injection molding process. Injection molding is highly automated, and the spacers 10 can be molded and stacked as they are produced, which further lowers packing costs.
  • the spacers 10 can be made of any suitable material, including plastic. Plastic materials are generally lightweight and will not corrode when set in concrete.
  • the concrete wall system 30 shows a first wall panel 32 and an opposing second panel wall 34 (shown partially cut-away in FIG. 3 ) arranged in parallel, spaced-apart relation so as to define an inter-panel space 36 therebetween.
  • the bottom portion of each wall panel 32 , 34 abuts a corresponding side of a channel 38 that is attached to the floor and is typically made of metal.
  • the wall panels 32 , 34 are secured to the channel 38 by any suitable fastener 40 . While the panels 32 , 34 could be placed inside the channel 38 , they are preferably positioned externally of the channel 38 , as depicted in the drawings, so as to present a continuous surface finish.
  • a plurality of spacers 10 is disposed in the inter-panel space 36 between the first and second wall panels 32 , 34 .
  • the base piece 20 of each spacer 10 is attached to the first wall panel 32
  • the flange 22 of each spacer 10 is attached to the second wall panel 34 in any suitable manner.
  • the base pieces 20 and the flanges 22 can be attached to the respective wall panels using a fast-drying urethane glue.
  • the spacers 10 are arranged in a grid-like layout of vertical columns and horizontal rows. The number and spacing of the spacers 10 will depend on the structural design.
  • spacers 10 For example, about forty spacers 10 would typically be equidistantly spaced on a four-foot by ten-foot panel as would be used for most home or commercial construction.
  • This assemblage of the first and second wall panels 32 , 34 and the spacers 10 referred to hereinafter as the shell assembly, is typically made at a factory and then transported to the construction site. At the construction site, the shell assembly is slip fit over its floor channel 38 and the wall panels 32 , 34 are fastened thereto as described above. Reinforcing bars are then interlaced with the spacers 10 .
  • a vertically-extending reinforcing bar 42 is placed to extend through the openings 24 formed in the horizontally-oriented side walls 18 of each column of spacers 10
  • a horizontally-extending reinforcing bar 44 is placed to extend through the openings 24 formed in the vertically-oriented side walls 18 of each row of spacers 10 .
  • the concrete wall system 30 is completed by pouring concrete into the inter-panel space 36 of the shell assembly.
  • the concrete cures and forms a concrete core 46 (shown in FIG. 4 ) that provides structural integrity to the concrete wall system 30 .
  • the spacers 10 and the reinforcing bars 42 , 44 are embedded in the concrete core 46 .
  • the two wall panels 32 , 34 remain and function as the inner and outer wall surfaces of the concrete wall system 30 .
  • FIG. 5 a portion of a building constructed with the concrete wall systems is depicted.
  • FIG. 5 shows a corner of a building formed by two concrete wall systems 30 A, 30 B arranged perpendicularly to one another.
  • Each concrete wall system 30 A, 30 B includes a floor channel (not shown in FIG. 5 ), and a shell assembly comprising a first or inner wall panel 32 and a second or outer wall panel 34 arranged in parallel, spaced-apart relation with the inner wall panel 32 so as to define the inter-panel space 36 therebetween.
  • the wall panels 32 , 34 can be made from any suitable materials approved by the structural engineer and meeting applicable fire and building codes.
  • the inner wall panels 32 could comprise any wood (e.g., plywood or other composition board material), composite material or the like having adequate strength for attaching the spacers 10 and retaining the poured concrete.
  • the outer wall panels 34 could comprise a board of an insulating material (such as polyurethane (PU) closed-cell foam or expanded polystyrene (EPS)) having an outer finish surface of wood, metal or plastic clad thereto.
  • PU polyurethane
  • EPS expanded polystyrene
  • Pre-finished outer wall panels 34 with an insulating foam board would provide thermal insulation for the building, thereby eliminating the need for a separate layer of insulation and consequently saving labor costs and speeding up overall construction time.
  • Any number of exterior sidings, including horizontal or vertical metal clad sidings, can be applied to the outer surface of the insulating foam board using pressure sensitive adhesives.
  • foam panels can be purchased pre-finished with vacuum bag applied exterior sidings such as aluminum and steel.
  • tape adhesives can be used and can withstand temperatures to 200 F. Concrete adheres well to PU foam, which has an R-value of 6.5 per inch compared to an R-value of 4 per inch for EPS foam.
  • the concrete wall systems 30 A, 30 B could be provided with a third wall panel (not shown) arranged in parallel, spaced-apart relation outside of the outer wall panels 34 (which would thus become intermediate wall panels). The spaces between these sets of panels would be filled with insulating material.
  • Each concrete wall system 30 A, 30 B further includes a plurality of spacers disposed in the inter-panel space 36 between the wall panels 32 , 34 .
  • One of the wall systems 30 A uses the tapered, cup-like spacers 10 shown in FIGS. 1 and 2 .
  • the other wall system 30 B uses a plurality of alternative spacers 48 .
  • the alternative spacers 48 can be custom made from a length of PVC pipe 50 having a thin end cap 52 secured to each end thereof.
  • the outer surfaces of the end caps 52 present surfaces that can be attached to the respective wall panel 32 , 34 by any suitable means, such as adhesive or the like.
  • the PVC pipe 50 is provided with several openings 54 spaced around the circumference thereof so as to be aligned in pairs for receiving reinforcing bars (vertical and horizontal) as well as other items such as electrical conduit.
  • the alternative spacers 48 can be custom cut to length and generally would be used for thicker walls and columns.
  • the construction further includes a corner assembly 56 , described in more detail below, which connects the two perpendicular concrete wall systems 30 A, 30 B and completes the building corner.
  • a corner assembly 56 Prior to installing the corner assembly 56 , the vertical and horizontal reinforcing bars 42 , 44 are interlaced with the spacers 10 / 48 .
  • electrical conduit 58 can be installed by insertion through the openings 24 / 54 of selected spacers 10 / 48 .
  • additional spacers 10 / 48 are located between columns and rows of spacers 10 / 48 that hold vertical and horizontal reinforcing bars 42 , 44 in order to support electrical conduit 58 at a desired height or heights.
  • each such additional spacer is centered between a two adjacent columns of reinforcing bar-holding spacers and between two adjacent rows of reinforcing bar-holding spacers.
  • Openings for doors and windows can be zip cut in the shell assemblies at the factory where they are made or on site, with pre-assembled rough opening spacers (not shown) inserted and fastened in place to the wall panels prior to pouring concrete.
  • the corner assembly 56 comprises two corner pieces 60 joined together at a 90 degree angle and two pre-glued strips 62 that are used to attach the corner pieces 60 to the corresponding outer wall panels 34 once the reinforcing bars 42 , 44 and conduit 58 are all installed.
  • the corner pieces 60 and the pre-glued strips 62 would be used with fiber cement panels, which are chamfered on the outer edges to apply finishing tape for application of other finish coatings.
  • outer wall panels 34 have insulating foam thickness pre-applied inside, a slot would be cut in the foam adjacent to the inside surface of each wall panel to accommodate the pre-glued strips 62 .
  • Any number of combinations of wall panels 32 , 34 can be used providing they are engineer approved for the particular construction system.
  • junction boxes 64 can be installed prior to the pour of concrete into inter-panel space 36 .
  • junction boxes 64 can be installed. Because junction boxes are located at an engineered height from the floor, the conduit 58 is placed at this height. Junction box panel openings can thus be rotary zip cut into the inner wall panel 32 anywhere along the conduit length, and the conduit 58 is cut to produce a gap equal to the exact outside width of the junction box 64 and aligned with the junction box panel opening.
  • Glue is applied to the fittings 66 formed in the sides of the junction box 64 , and the junction box 64 is then inserted into the opening in the inner wall panel 32 and the gap in the conduit 58 such that tabs 68 on the junction box abut the inner wall panel 32 .
  • Conduit that does not have a well-defined location can have junction boxes and fittings pre-installed as wall panels are set, which, with location rough-marked on the inner wall panel 32 and/or with a iron washer (not shown) taped to the inside a plastic junction box, can also be quickly and exactly located later with a magnet to rotary zip cut the junction box opening into the inner wall panel 32 .
  • Channels (not shown in FIG. 5 ) for positioning inner and outer wall panels would be secured to poured concrete floors, with the slip fit of panels over the pre-installed channel and fastened though the outside of the panel to the channel to hold in the concrete from the pour. All panel walls are buttressed as needed before filing with concrete to maintain the desired position. Straight, angled, curved, or irregular wall panel configurations are possible.
  • the wall panels can also be tilted or positioned at an angle, such as for decoration or special architectural effect.
  • the column 70 is a specialized concrete wall system that comprises four panels 72 - 75 arranged in mutually orthogonal fashion to form a rectangular configuration.
  • the first and third panels 72 , 74 are arranged parallel to each other, and the second and fourth panels 73 , 75 are arranged parallel to each other.
  • Adjacent panels 72 - 75 are joined together with pre-glued corner pieces 76 that are set in place and the whole assembly is banded together (not shown) for glue drying so as to maintain the integrity and dimensions of the assembly prior to filling with concrete.
  • Two spacers 48 (of the alternate type described above) extend horizontally between the first and third panels 72 , 74 .
  • Each spacer 48 comprises a length of PVC pipe 50 having a thin end cap 52 secured to each end thereof. Horizontal reinforcing bars 44 are inserted lengthwise in the PVC pipe 50 prior to securing the end caps 52 .
  • the outer surface of each end cap 52 is attached to the respective panel 72 , 74 by any suitable means, such as adhesive or the like.
  • Vertical reinforcing bars 42 are inserted through openings 54 in the PVC pipe 50 and tied to the horizontal reinforcing bars 44 .
  • the openings 54 are larger than the reinforcing bars 42 in order to receive the reinforcing bars 42 and still have clearance to allow the PVC pipe 50 to fill with concrete.
  • the amount and size of the vertical and horizontal reinforcing bars 42 , 44 depends on the size of the column 70 with as many horizontal layers of reinforcing bars 44 as needed to meet code.
  • Each layer of spacers 48 and horizontal reinforcing bars 44 would be shifted 90 degrees with respect to its adjacent layers. In other words, the layer of spacers 48 and horizontal reinforcing bars 44 located directly below the layer shown in FIG. 6 would be rotated 90 degrees so that the spacers 48 extend between, and are attached to, the second and fourth panels 73 , 75 .
  • FIG. 7 is a diagram depicting how shell assemblies for concrete wall systems can be economically assembled at a factory or the like for future field assembly of concrete wall systems at a construction site.
  • the first step is to shear the panels to size at a station 80 .
  • the panels are conveyed to the next station 82 via rollers 84 located between stations 80 and 82 . Although not shown, there are similar rollers located between all of the subsequent stations. If fiber cement panels are used, the next station 82 provides a radial saw for cutting and removing a small amount of panel material at the edges thereof, to accommodate adding tape and joint compound for finishing wall joints flat on the exposed sides of the panels.
  • the next station 86 provides a template positioned onto a panel to facilitate placing spacers.
  • Glue is then applied at the next station 88 and panels sandwiched together as needed. As previously noted, there could be two panels joined together or as many as three panels making two spaces, one for concrete and one for insulation.
  • the assembled panels are then conveyed to the next station 90 to be clamped and compressed until the glue sets. After removing from the clamp assembly, the assembled panels can be further processed by installing window and door rough opening inserts and then delivered to the job site for final assembly prior to pouring concrete.
  • wall system thickness at the ground floor will start at a relative thick value, say twelve inches thick.
  • the wall system thickness will be gradually reduced for higher and higher floors, such as to ten inches, then to eight inches, then to six inches, then to four inches thick per the structural engineer's design for a twenty-four story building, for example, to create an earthquake and fire proof building of high quality.
  • stackable spacers could be mass produced at the various widths and panel assemblies fit over and secured to the standard width channels that are attached to the concrete floors at each story to accommodate securing and lining up panels for pouring concrete.
  • PVC fabricated spacers could also be produced as necessary for thicker starting walls.
  • either PU or EPS insulated foam board outer panel can be used, or a second outside insulating space can be created with a third panel and filled with approved insulating materials to construct a strong, airtight structure enabling good air quality control and being well insulated. Everything combines to make highly energy efficient, quality buildings.

Abstract

A concrete wall system includes first and second opposing wall panels and a plurality of spacers disposed between the first and second wall panels. A plurality of reinforcing bars is placed between the first and second wall panels and supported by the spacers, and a concrete core is disposed between the first and second wall panels such that the spacers and the reinforcing bars are embedded in the concrete core. Each one of the spacers has a cup-like body defining a closed first end and an open second end with a flange formed on the second end. The spacer bodies are tapered so that the spacers are stackable.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates generally to concrete wall systems, methods for making concrete wall systems, and spacers used in concrete wall systems.
  • Many structures and buildings are made with concrete walls. Traditionally, this type of construction involves setting up forms, pouring concrete between the forms, and then removing the forms after the concrete hardens. It is also common to utilize reinforcing bars (commonly referred to as “rebar”) in the concrete.
  • Australian Patent Application No. 2000101212 discloses another type of concrete wall that comprises an opposing pair of formwork boards and a plurality of wall spacers located between the formwork boards. Reinforcing bars are placed through respective openings formed in the spacers, and the cavity between the formwork boards is then filled with concrete. The formwork boards remain in place, acting as the finished internal or external wall surface.
  • The concept disclosed by Australian Patent Application No. 2000101212 has several drawbacks. For instance, the spacers are box-shaped and thus occupy a considerable volume when packed for shipping, thereby resulting in relatively high shipping cost. Australian Patent Application No. 2000101212 also does not disclose techniques for efficiently assembling the formwork boards and spacers. Nor does Australian Patent Application No. 2000101212 teach how to build high structures or columns or efficiently incorporate electrical conduits and the like within the pre-filled wall prior to pouring concrete.
  • SUMMARY OF THE INVENTION
  • The above-mentioned need is met by the present invention, which provides a concrete wall system comprising first and second opposing wall panels and a plurality of spacers disposed between the first and second wall panels. A plurality of reinforcing bars is placed between the first and second wall panels and supported by the spacers, and a concrete core is disposed between the first and second wall panels such that the spacers and the reinforcing bars are embedded in the concrete core. Each one of the spacers has a cup-like body defining a closed first end and an open second end with a flange formed on the second end. The spacer bodies are tapered so that the spacers are stackable.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a first embodiment of a spacer for positioning two opposing wall panels relative to one another.
  • FIG. 2 is a cross-sectional view of the spacer taken along line 2-2 of FIG. 1
  • FIG. 3 is a perspective view (in partial cut-away) of a concrete wall system.
  • FIG. 4 is a cross-sectional view of a portion of the concrete wall system of FIG. 3.
  • FIG. 5 is a perspective view of a portion of a building constructed with concrete wall systems.
  • FIG. 6 is a perspective view of an integrated concrete column.
  • FIG. 7 is a diagram depicting a process for making shell assemblies for concrete wall systems.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention includes integrated concrete wall systems that comprise two opposing wall panels separated by a plurality of spacers and a concrete core located between the two wall panels. The spacers position the two wall panels relative to one another. Specifically, the spacers maintain the two wall panels parallel to one another and spaced apart a particular distance to insure that the resulting wall system has a uniform and desired thickness. The spacers are also adapted to support reinforcing bars, as well as other items such as electrical conduit, in place between the wall panels before the concrete is poured into the inter-panel space.
  • Referring to the drawings wherein identical reference numerals denote the same elements throughout the various views, FIGS. 1 and 2 show one embodiment of a spacer 10 for use in a concrete wall system. The spacer 10 comprises a cup-like body 12 having a closed end 14, an open end 16 and an interior that defines a hollow cavity. The body 12 is shown in the drawings as having a box-shaped configuration by way of example, but it should be noted that other shapes (such as a circular cross-section) are possible. In the illustrated embodiment, the body 12 comprises four side walls 18 joined together in mutually orthogonal fashion to define four corners. Each side wall 18 is joined to a rectangular base piece 20 at the closed end 14 of the body 12. The body 12 includes a rectangular flange 22 formed along the perimeter thereof at the open end 16. The rectangular flange 22 extends outward from each of the four side walls 18 and is substantially parallel to the base piece 20.
  • The exterior or outwardly-facing surface of the base piece 20 can be attached to the one of the wall panels, and the outwardly-facing surface of the flange 22 can be attached to the other wall panel. These surfaces can be attached via any suitable means, such as adhesive or the like. Because the flange 22 and the base piece 20 are substantially parallel, an attached spacer 10 functions to maintain the opposing wall panels in parallel relation and at the desired spacing (which is determined by the length of the spacer 10).
  • The body 12 includes an opening 24 formed in each one of the four side walls 18 for receiving reinforcing bars (vertical and horizontal) as well as other items such as electrical conduit. As described in more detail below, a number of spacers 10 are deployed to hold the reinforcing bars in the proper positions during construction of a concrete wall system.
  • The body 12 is tapered with the four side walls 18 converging slightly so that the cross-sectional area of the closed end 14 is smaller than the cross-sectional area of the open end 16. The tapered configuration and hollow cavity of the body 12 make the spacer 10 stackable; that is, multiple spacers 10 can be stacked together. This stackable spacer configuration greatly reduces packing and shipping costs as large volumes of the spacers can be packed and shipped in a minimum of space.
  • The spacers 10 can be made as a one-piece construction, such as with an injection molding process. Injection molding is highly automated, and the spacers 10 can be molded and stacked as they are produced, which further lowers packing costs. The spacers 10 can be made of any suitable material, including plastic. Plastic materials are generally lightweight and will not corrode when set in concrete.
  • Referring to FIGS. 3 and 4, one embodiment of a concrete wall system 30 is shown. The concrete wall system 30 shows a first wall panel 32 and an opposing second panel wall 34 (shown partially cut-away in FIG. 3) arranged in parallel, spaced-apart relation so as to define an inter-panel space 36 therebetween. The bottom portion of each wall panel 32, 34 abuts a corresponding side of a channel 38 that is attached to the floor and is typically made of metal. The wall panels 32, 34 are secured to the channel 38 by any suitable fastener 40. While the panels 32, 34 could be placed inside the channel 38, they are preferably positioned externally of the channel 38, as depicted in the drawings, so as to present a continuous surface finish.
  • A plurality of spacers 10 is disposed in the inter-panel space 36 between the first and second wall panels 32, 34. The base piece 20 of each spacer 10 is attached to the first wall panel 32, and the flange 22 of each spacer 10 is attached to the second wall panel 34 in any suitable manner. For example, the base pieces 20 and the flanges 22 can be attached to the respective wall panels using a fast-drying urethane glue. In the illustrated embodiment, the spacers 10 are arranged in a grid-like layout of vertical columns and horizontal rows. The number and spacing of the spacers 10 will depend on the structural design. For example, about forty spacers 10 would typically be equidistantly spaced on a four-foot by ten-foot panel as would be used for most home or commercial construction. This assemblage of the first and second wall panels 32, 34 and the spacers 10, referred to hereinafter as the shell assembly, is typically made at a factory and then transported to the construction site. At the construction site, the shell assembly is slip fit over its floor channel 38 and the wall panels 32, 34 are fastened thereto as described above. Reinforcing bars are then interlaced with the spacers 10. Specifically, a vertically-extending reinforcing bar 42 is placed to extend through the openings 24 formed in the horizontally-oriented side walls 18 of each column of spacers 10, and a horizontally-extending reinforcing bar 44 is placed to extend through the openings 24 formed in the vertically-oriented side walls 18 of each row of spacers 10.
  • Once the wall panels 32, 34, channel 38, spacers 10 and reinforcing bars 42, 44 are assembled as shown in FIG. 3, the concrete wall system 30 is completed by pouring concrete into the inter-panel space 36 of the shell assembly. The concrete cures and forms a concrete core 46 (shown in FIG. 4) that provides structural integrity to the concrete wall system 30. The spacers 10 and the reinforcing bars 42, 44 are embedded in the concrete core 46. The two wall panels 32, 34 remain and function as the inner and outer wall surfaces of the concrete wall system 30.
  • Referring to FIG. 5, a portion of a building constructed with the concrete wall systems is depicted. Specifically, FIG. 5 shows a corner of a building formed by two concrete wall systems 30A, 30B arranged perpendicularly to one another. Each concrete wall system 30A, 30B includes a floor channel (not shown in FIG. 5), and a shell assembly comprising a first or inner wall panel 32 and a second or outer wall panel 34 arranged in parallel, spaced-apart relation with the inner wall panel 32 so as to define the inter-panel space 36 therebetween. The wall panels 32, 34 can be made from any suitable materials approved by the structural engineer and meeting applicable fire and building codes. For example, the inner wall panels 32 could comprise any wood (e.g., plywood or other composition board material), composite material or the like having adequate strength for attaching the spacers 10 and retaining the poured concrete.
  • The outer wall panels 34 could comprise a board of an insulating material (such as polyurethane (PU) closed-cell foam or expanded polystyrene (EPS)) having an outer finish surface of wood, metal or plastic clad thereto. Pre-finished outer wall panels 34 with an insulating foam board would provide thermal insulation for the building, thereby eliminating the need for a separate layer of insulation and consequently saving labor costs and speeding up overall construction time. Any number of exterior sidings, including horizontal or vertical metal clad sidings, can be applied to the outer surface of the insulating foam board using pressure sensitive adhesives. For example, foam panels can be purchased pre-finished with vacuum bag applied exterior sidings such as aluminum and steel. To quickly apply finish-lapping strips to joints (not shown), tape adhesives can be used and can withstand temperatures to 200 F. Concrete adheres well to PU foam, which has an R-value of 6.5 per inch compared to an R-value of 4 per inch for EPS foam.
  • As an alternative to insulated outer wall panels, the concrete wall systems 30A, 30B could be provided with a third wall panel (not shown) arranged in parallel, spaced-apart relation outside of the outer wall panels 34 (which would thus become intermediate wall panels). The spaces between these sets of panels would be filled with insulating material.
  • Each concrete wall system 30A, 30B further includes a plurality of spacers disposed in the inter-panel space 36 between the wall panels 32, 34. One of the wall systems 30A uses the tapered, cup-like spacers 10 shown in FIGS. 1 and 2. The other wall system 30B uses a plurality of alternative spacers 48. The alternative spacers 48 can be custom made from a length of PVC pipe 50 having a thin end cap 52 secured to each end thereof. The outer surfaces of the end caps 52 present surfaces that can be attached to the respective wall panel 32, 34 by any suitable means, such as adhesive or the like. The PVC pipe 50 is provided with several openings 54 spaced around the circumference thereof so as to be aligned in pairs for receiving reinforcing bars (vertical and horizontal) as well as other items such as electrical conduit. The alternative spacers 48 can be custom cut to length and generally would be used for thicker walls and columns.
  • The construction further includes a corner assembly 56, described in more detail below, which connects the two perpendicular concrete wall systems 30A, 30B and completes the building corner. Prior to installing the corner assembly 56, the vertical and horizontal reinforcing bars 42, 44 are interlaced with the spacers 10/48. In addition, electrical conduit 58 can be installed by insertion through the openings 24/54 of selected spacers 10/48. In the illustrated embodiment, additional spacers 10/48 are located between columns and rows of spacers 10/48 that hold vertical and horizontal reinforcing bars 42, 44 in order to support electrical conduit 58 at a desired height or heights. Preferably, each such additional spacer is centered between a two adjacent columns of reinforcing bar-holding spacers and between two adjacent rows of reinforcing bar-holding spacers.
  • Openings for doors and windows can be zip cut in the shell assemblies at the factory where they are made or on site, with pre-assembled rough opening spacers (not shown) inserted and fastened in place to the wall panels prior to pouring concrete. The corner assembly 56 comprises two corner pieces 60 joined together at a 90 degree angle and two pre-glued strips 62 that are used to attach the corner pieces 60 to the corresponding outer wall panels 34 once the reinforcing bars 42, 44 and conduit 58 are all installed. Generally, the corner pieces 60 and the pre-glued strips 62 would be used with fiber cement panels, which are chamfered on the outer edges to apply finishing tape for application of other finish coatings. If the outer wall panels 34 have insulating foam thickness pre-applied inside, a slot would be cut in the foam adjacent to the inside surface of each wall panel to accommodate the pre-glued strips 62. Any number of combinations of wall panels 32, 34 can be used providing they are engineer approved for the particular construction system.
  • Reinforcing bars, conduit, junction boxes and all interior plumbing are installed prior to the pour of concrete into inter-panel space 36. Once the wall panel assemblies are all in place with reinforcing bars secured and connected and all conduit is secured and connectors glued, junction boxes 64 can be installed. Because junction boxes are located at an engineered height from the floor, the conduit 58 is placed at this height. Junction box panel openings can thus be rotary zip cut into the inner wall panel 32 anywhere along the conduit length, and the conduit 58 is cut to produce a gap equal to the exact outside width of the junction box 64 and aligned with the junction box panel opening. Glue is applied to the fittings 66 formed in the sides of the junction box 64, and the junction box 64 is then inserted into the opening in the inner wall panel 32 and the gap in the conduit 58 such that tabs 68 on the junction box abut the inner wall panel 32. Thus, as many junction boxes as needed can be quickly and efficiently located anywhere along the length of the conduit with a tight and secure fit made to the junction box 64, the conduit 58 and the inner wall panel 32 before pouring concrete. Conduit that does not have a well-defined location can have junction boxes and fittings pre-installed as wall panels are set, which, with location rough-marked on the inner wall panel 32 and/or with a iron washer (not shown) taped to the inside a plastic junction box, can also be quickly and exactly located later with a magnet to rotary zip cut the junction box opening into the inner wall panel 32. Channels (not shown in FIG. 5) for positioning inner and outer wall panels would be secured to poured concrete floors, with the slip fit of panels over the pre-installed channel and fastened though the outside of the panel to the channel to hold in the concrete from the pour. All panel walls are buttressed as needed before filing with concrete to maintain the desired position. Straight, angled, curved, or irregular wall panel configurations are possible. The wall panels can also be tilted or positioned at an angle, such as for decoration or special architectural effect.
  • Turning to FIG. 6, one embodiment of a column 70 made with the principles of the present invention is shown. The column 70 is a specialized concrete wall system that comprises four panels 72-75 arranged in mutually orthogonal fashion to form a rectangular configuration. The first and third panels 72, 74 are arranged parallel to each other, and the second and fourth panels 73, 75 are arranged parallel to each other. Adjacent panels 72-75 are joined together with pre-glued corner pieces 76 that are set in place and the whole assembly is banded together (not shown) for glue drying so as to maintain the integrity and dimensions of the assembly prior to filling with concrete. Two spacers 48 (of the alternate type described above) extend horizontally between the first and third panels 72, 74. Each spacer 48 comprises a length of PVC pipe 50 having a thin end cap 52 secured to each end thereof. Horizontal reinforcing bars 44 are inserted lengthwise in the PVC pipe 50 prior to securing the end caps 52. The outer surface of each end cap 52 is attached to the respective panel 72, 74 by any suitable means, such as adhesive or the like.
  • Vertical reinforcing bars 42 are inserted through openings 54 in the PVC pipe 50 and tied to the horizontal reinforcing bars 44. The openings 54 are larger than the reinforcing bars 42 in order to receive the reinforcing bars 42 and still have clearance to allow the PVC pipe 50 to fill with concrete. The amount and size of the vertical and horizontal reinforcing bars 42, 44 depends on the size of the column 70 with as many horizontal layers of reinforcing bars 44 as needed to meet code. Each layer of spacers 48 and horizontal reinforcing bars 44 would be shifted 90 degrees with respect to its adjacent layers. In other words, the layer of spacers 48 and horizontal reinforcing bars 44 located directly below the layer shown in FIG. 6 would be rotated 90 degrees so that the spacers 48 extend between, and are attached to, the second and fourth panels 73, 75.
  • Once the panels 72-75, spacers 48 and reinforcing bars 42, 44 are assembled, concrete is poured into the assembly. The concrete fills the interior of the assembly and also flows into the spacers 48 via the openings 54. The concrete cures and forms a concrete core that provides structural integrity to the column 70.
  • FIG. 7 is a diagram depicting how shell assemblies for concrete wall systems can be economically assembled at a factory or the like for future field assembly of concrete wall systems at a construction site. The first step is to shear the panels to size at a station 80. The panels are conveyed to the next station 82 via rollers 84 located between stations 80 and 82. Although not shown, there are similar rollers located between all of the subsequent stations. If fiber cement panels are used, the next station 82 provides a radial saw for cutting and removing a small amount of panel material at the edges thereof, to accommodate adding tape and joint compound for finishing wall joints flat on the exposed sides of the panels. The next station 86 provides a template positioned onto a panel to facilitate placing spacers. Glue is then applied at the next station 88 and panels sandwiched together as needed. As previously noted, there could be two panels joined together or as many as three panels making two spaces, one for concrete and one for insulation. The assembled panels are then conveyed to the next station 90 to be clamped and compressed until the glue sets. After removing from the clamp assembly, the assembled panels can be further processed by installing window and door rough opening inserts and then delivered to the job site for final assembly prior to pouring concrete.
  • For supporting concrete wall systems in multi-story structures, wall system thickness at the ground floor will start at a relative thick value, say twelve inches thick. The wall system thickness will be gradually reduced for higher and higher floors, such as to ten inches, then to eight inches, then to six inches, then to four inches thick per the structural engineer's design for a twenty-four story building, for example, to create an earthquake and fire proof building of high quality. To accomplish this, stackable spacers could be mass produced at the various widths and panel assemblies fit over and secured to the standard width channels that are attached to the concrete floors at each story to accommodate securing and lining up panels for pouring concrete. Alternatively, PVC fabricated spacers could also be produced as necessary for thicker starting walls. And regardless of climate, as noted previously, either PU or EPS insulated foam board outer panel can be used, or a second outside insulating space can be created with a third panel and filled with approved insulating materials to construct a strong, airtight structure enabling good air quality control and being well insulated. Everything combines to make highly energy efficient, quality buildings.
  • While specific embodiments of the present invention have been described, it should be noted that various modifications thereto can be made without departing from the spirit and scope of the invention as defined in the appended claims.

Claims (23)

1. A spacer for positioning two opposing wall panels relative to one another, said spacer comprising:
a cup-like body defining a first end and an open second end and having a base piece at said first end and a flange formed on said second end;
wherein said base piece presents a surface that is attachable to a first one of said two wall panels and said flange presents a surface that is attachable to a second one of said two wall panels; and
wherein said body is tapered such that said first end has a smaller cross-sectional area than said second end.
2. The spacer of claim 1 wherein said body comprises four side walls arranged in mutually orthogonal fashion, said base piece is rectangular in shape and is connected to said four side walls at said first end of said body, and said flange is rectangular in shape and extends outward from each of said four side walls.
3. The spacer of claim 2 further comprising at least one opening formed in each one of said four side walls.
4. The spacer of claim 1 wherein said spacer is of a single-piece construction.
5. The spacer of claim 1 wherein said spacer is made of injection molded plastic.
6. A concrete wall system comprising:
first and second opposing wall panels;
a plurality of spacers disposed between said first and second wall panels, each one of said spacers comprising a cup-like body defining a first end and an open second end and having a base piece at said first end and a flange formed on said second end, said body being tapered such that said first end has a smaller cross-sectional area than said second end;
wherein each base piece is attached to said first wall panel and each flange is attached to said second wall panel;
a plurality of reinforcing bars placed between said first and second wall panels and supported by said spacers; and
a concrete core disposed between said first and second wall panels such that said spacers and said reinforcing bars are embedded in said concrete core.
7. The concrete wall system of claim 6 wherein each cup-like body comprises four side walls arranged in mutually orthogonal fashion, said base piece is rectangular in shape and is connected to said four side walls at said first end of said body, and said flange is rectangular in shape and extends outward from each of said four side walls.
8. The concrete wall system of claim 7 wherein each cup-like body has at least one opening formed in each one of said four side walls, and wherein said reinforcing bars extend through corresponding openings.
9. The concrete wall system of claim 6 wherein each base piece is attached to said first wall panel with an adhesive and each flange is attached to said second wall panel with an adhesive.
10. The concrete wall system of claim 6 further comprising a channel attached to a floor, and wherein a bottom portion of said first wall panel abuts and is fastened to one side of said channel and a bottom portion of said second wall panel abuts and is fastened to another side of said channel.
11. The concrete wall system of claim 6 wherein one of said first and second wall panels comprises a board of insulating material with an outer finish surface clad thereto.
12. A method of constructing a concrete wall system comprising:
providing a shell assembly comprising first and second opposing wall panels in parallel, spaced-apart relation so as to define an inter-panel space therebetween with a plurality of spacers disposed in said inter-panel space, each one of said spacers comprising a cup-like body defining a first end and an open second end and having a base piece at said first end and a flange formed on said second end, said body being tapered such that said first end has a smaller cross-sectional area than said second end;
inserting reinforcing bars through openings formed in said spacers; and
pouring concrete into said inter-panel space.
13. The method of claim 12 further comprising:
attaching a channel to a floor;
fitting said shell assembly over said channel with a bottom portion of said first wall panel abutting a first side of said channel and a bottom portion of said second wall panel abutting a second side of said channel; and
fastening said first wall panel to said first side of said channel and said second wall panel to said second side of said channel prior to pouring concrete into said inter-panel space.
14. The method of claim 12 further comprising inserting at least one electrical conduit through openings formed in said spacers prior to pouring concrete into said inter-panel space.
15. The method of claim 14 further comprising installing a junction box in said shell assembly prior to pouring concrete into said inter-panel space.
16. The method of claim 15 wherein installing a junction box includes:
cutting an opening in said first wall panel;
cutting a gap is said conduit, wherein said gap is aligned with said opening in said first wall panel; and
inserting said junction box into said opening in said first wall panel and said gap such that tabs on said junction box abut said first wall panel.
17. A column comprising:
first, second, third and fourth panels arranged in mutually orthogonal fashion to form a rectangular configuration, wherein said first and third panels are arranged parallel to each other and said second and fourth panels are arranged parallel to each other;
at least one spacer extending between said first and third panels, said spacer comprising a length of pipe having an end cap attached to each and multiple openings formed therein;
a horizontal reinforcing bar inserted lengthwise in said length of pipe;
at least one vertical reinforcing bar inserted through a pair of said openings formed in said length of pipe; and
a concrete core disposed between said first, second, third and fourth panels such that said spacer and said reinforcing bars are embedded in said concrete core.
18. The column of claim 17 wherein said length of pipe is PVC pipe.
19. The column of claim 17 further comprising a second vertical reinforcing bar inserted through a second pair of said openings formed in said length of pipe.
20. The column of claim 17 further comprising:
a second spacer extending between said first and third panels, said second spacer comprising a second length of pipe having an end cap attached to each and multiple openings formed therein;
a second horizontal reinforcing bar inserted lengthwise in second said length of pipe; and
a second vertical reinforcing bar inserted through a pair of said openings formed in said second length of pipe.
21. The column of claim 17 further comprising:
a second spacer extending between said second and fourth panels, said second spacer comprising a second length of pipe having an end cap attached to each and multiple openings formed therein; and
a second horizontal reinforcing bar inserted lengthwise in second said length of pipe.
22. The column of claim 21 wherein said at least one vertical reinforcing bar is inserted through a pair of said openings formed in said second length of pipe.
23. The column of claim 21 further comprising a second vertical reinforcing bar inserted through a pair of said openings formed in said second length of pipe.
US13/050,472 2011-03-17 2011-03-17 Concrete wall systems and methods and spacers therefor Abandoned US20120233950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/050,472 US20120233950A1 (en) 2011-03-17 2011-03-17 Concrete wall systems and methods and spacers therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/050,472 US20120233950A1 (en) 2011-03-17 2011-03-17 Concrete wall systems and methods and spacers therefor

Publications (1)

Publication Number Publication Date
US20120233950A1 true US20120233950A1 (en) 2012-09-20

Family

ID=46827329

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/050,472 Abandoned US20120233950A1 (en) 2011-03-17 2011-03-17 Concrete wall systems and methods and spacers therefor

Country Status (1)

Country Link
US (1) US20120233950A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720160B1 (en) * 2011-09-14 2014-05-13 Alan Brian Cooper Process for forming concrete walls and other vertically positioned shapes
CN104100025A (en) * 2013-04-07 2014-10-15 程松林 Double-sided positive pouring production method of cold bridge-free gypsum compound insulation wallboard
US20150068146A1 (en) * 2013-05-30 2015-03-12 Defender Technologies, LLC Pre fabricated wall form and system
US20150275462A1 (en) * 2012-02-02 2015-10-01 Empire Technology Development Llc Modular concrete reinforcement
CN105369976A (en) * 2015-12-03 2016-03-02 文登蓝岛建筑工程有限公司 Building material wallboard
US9493946B2 (en) * 2013-12-13 2016-11-15 Iconx, Llc Tie system for insulated concrete panels
ITUB20160199A1 (en) * 2016-01-14 2017-07-14 Flex House Srl SPACER ELEMENT FOR CASSERO TO LOSE FOR THE CONSTRUCTION OF WALLS AND DRAINAGE TO LOSE INCORPORATING SUCH SPACER ELEMENT
CN109577524A (en) * 2019-01-02 2019-04-05 常州市米尼特机械有限公司 A kind of cast-in-place foamed concrete wall
CN110284634A (en) * 2019-06-03 2019-09-27 上海港城建筑安装工程有限公司 A kind of insulated wall pouring molding construction technology
CN112627032A (en) * 2020-12-02 2021-04-09 江苏中锐华东建筑设计研究院有限公司 Manufacturing method of T-shaped building structure beam
USD920090S1 (en) * 2018-07-18 2021-05-25 Aus Chairs Pty Ltd Reinforcing spacer
US11156007B2 (en) * 2019-08-08 2021-10-26 Pedro Juan Quiles-Perez Secure holding spacer units for permanent formworks
US11377863B1 (en) * 2019-11-13 2022-07-05 Predl Systems North America Inc. Aggregate panel system
USD970329S1 (en) * 2019-11-07 2022-11-22 Aus Chairs Pty Ltd Reinforcing spacer
US11530522B2 (en) 2018-04-05 2022-12-20 Geneva Pipe And Precast Company Manhole assembly
WO2023056488A1 (en) * 2021-09-29 2023-04-06 Sanjo Fabtech Sterling (Pty) Limited Prefabricated wall and associated method of wall construction
US11649603B2 (en) 2018-11-20 2023-05-16 Geneva Pipe And Precast Company Manhole rehabilitation system

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US941080A (en) * 1908-02-17 1909-11-23 Ludwig B Larsen Bond for two-membered concrete building-blocks.
US1841887A (en) * 1929-03-12 1932-01-19 Goldsmith Metal Lath Company Structural insert
US2101001A (en) * 1935-02-23 1937-11-30 United States Gypsum Co Building construction
US2775019A (en) * 1953-02-02 1956-12-25 Thomas F Bemis Disposable cardboard pan, end forms, and inserts
US2792164A (en) * 1951-08-10 1957-05-14 Cauffiel John Preformed structural units
US3543458A (en) * 1967-12-27 1970-12-01 Kenneth E Guritz Monolithic floor structure with air passages
US3745737A (en) * 1970-11-18 1973-07-17 A Keller Spacer member for reinforcing rods in reinforced concrete construction
US3863416A (en) * 1969-11-28 1975-02-04 Georgi Oroschakoff Concrete reinforcement
US4226061A (en) * 1978-06-16 1980-10-07 Day Jr Paul T Reinforced masonry construction
US4243200A (en) * 1977-12-16 1981-01-06 Beer-Zaz Building Systems, Inc. Form pan structure
US4498270A (en) * 1982-04-12 1985-02-12 Preco Industries Limited Support for positioning reinforcing rods or mesh in concrete or the like
US4832308A (en) * 1986-01-31 1989-05-23 Ontario Inc. Panel for concrete formwork
US4831803A (en) * 1986-10-23 1989-05-23 Nicola Leonardis Foundation form work
US4835933A (en) * 1988-02-11 1989-06-06 Yung Fernand P Rebar spacer assembly
US4881714A (en) * 1988-07-05 1989-11-21 Koppenberg Bruce G Concrete molding system with tubs
US4905444A (en) * 1989-06-12 1990-03-06 Connection Specialties Inc. Method and system for mounting building wall panels to building frames, incorporating mounting means elements with two degrees of motion freedom
US5657588A (en) * 1994-11-07 1997-08-19 Axon; Micheal G. Earthquake shock damper for roadway pillars
US5855808A (en) * 1994-06-08 1999-01-05 Damage Prevention Products Corp. Concrete forming member
US5930970A (en) * 1997-03-14 1999-08-03 De Le Fevre; Patrick Y. Panel construction use as a forming device for settable fluids in construction
US6003278A (en) * 1997-12-11 1999-12-21 We-Mar, Inc. Monolithic stud form for concrete wall production
US6219981B1 (en) * 2000-05-01 2001-04-24 Philip R. Bergelt Lightweight support pier
US20010015040A1 (en) * 2000-02-18 2001-08-23 Sergio Zambelli Prefabricated concrete panel for industrialized building with high thermal and/or acoustic insulation
US20040031229A1 (en) * 2002-08-16 2004-02-19 Jian-Rung Cheng Apparatus for reinforcing concrete construction
US20040098942A1 (en) * 2002-11-21 2004-05-27 Aztec Concrete Accessories, Inc. Post-tension intersection chair
USD500243S1 (en) * 2004-01-15 2004-12-28 James N. Turek, Sr. Rebar, beam and mesh highchair
US20050050825A1 (en) * 2003-03-31 2005-03-10 Joel Foderberg Channel-reinforced concrete wall panel system
US20050166533A1 (en) * 2004-01-09 2005-08-04 Leroy Strickland Residential construction method and apparatus
US7104018B2 (en) * 2003-08-18 2006-09-12 Guardian Fiberglass, Inc. System for insulating vertical wall
USD558473S1 (en) * 2007-01-10 2008-01-01 Cosco Management, Inc. Step stool
US7681368B1 (en) * 2007-08-21 2010-03-23 Edward Rubio Concrete composite wall panel
US20100229482A1 (en) * 2006-03-14 2010-09-16 Jae-ho Lee Connecting Structure
US20110179736A1 (en) * 2008-07-14 2011-07-28 Construction Innovation Limited Concrete matrix structure
US20120137613A1 (en) * 2010-12-02 2012-06-07 Schurmann Stephan E Insulated Concrete Walls
US20120167504A1 (en) * 2011-01-04 2012-07-05 Mckinney John Precast insulated concrete wall assembly

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US941080A (en) * 1908-02-17 1909-11-23 Ludwig B Larsen Bond for two-membered concrete building-blocks.
US1841887A (en) * 1929-03-12 1932-01-19 Goldsmith Metal Lath Company Structural insert
US2101001A (en) * 1935-02-23 1937-11-30 United States Gypsum Co Building construction
US2792164A (en) * 1951-08-10 1957-05-14 Cauffiel John Preformed structural units
US2775019A (en) * 1953-02-02 1956-12-25 Thomas F Bemis Disposable cardboard pan, end forms, and inserts
US3543458A (en) * 1967-12-27 1970-12-01 Kenneth E Guritz Monolithic floor structure with air passages
US3863416A (en) * 1969-11-28 1975-02-04 Georgi Oroschakoff Concrete reinforcement
US3745737A (en) * 1970-11-18 1973-07-17 A Keller Spacer member for reinforcing rods in reinforced concrete construction
US4243200A (en) * 1977-12-16 1981-01-06 Beer-Zaz Building Systems, Inc. Form pan structure
US4226061A (en) * 1978-06-16 1980-10-07 Day Jr Paul T Reinforced masonry construction
US4498270A (en) * 1982-04-12 1985-02-12 Preco Industries Limited Support for positioning reinforcing rods or mesh in concrete or the like
US4832308A (en) * 1986-01-31 1989-05-23 Ontario Inc. Panel for concrete formwork
US4831803A (en) * 1986-10-23 1989-05-23 Nicola Leonardis Foundation form work
US4835933A (en) * 1988-02-11 1989-06-06 Yung Fernand P Rebar spacer assembly
US4881714A (en) * 1988-07-05 1989-11-21 Koppenberg Bruce G Concrete molding system with tubs
US4905444A (en) * 1989-06-12 1990-03-06 Connection Specialties Inc. Method and system for mounting building wall panels to building frames, incorporating mounting means elements with two degrees of motion freedom
US5855808A (en) * 1994-06-08 1999-01-05 Damage Prevention Products Corp. Concrete forming member
US5657588A (en) * 1994-11-07 1997-08-19 Axon; Micheal G. Earthquake shock damper for roadway pillars
US5930970A (en) * 1997-03-14 1999-08-03 De Le Fevre; Patrick Y. Panel construction use as a forming device for settable fluids in construction
US6003278A (en) * 1997-12-11 1999-12-21 We-Mar, Inc. Monolithic stud form for concrete wall production
US20010015040A1 (en) * 2000-02-18 2001-08-23 Sergio Zambelli Prefabricated concrete panel for industrialized building with high thermal and/or acoustic insulation
US6219981B1 (en) * 2000-05-01 2001-04-24 Philip R. Bergelt Lightweight support pier
US20040031229A1 (en) * 2002-08-16 2004-02-19 Jian-Rung Cheng Apparatus for reinforcing concrete construction
US20040098942A1 (en) * 2002-11-21 2004-05-27 Aztec Concrete Accessories, Inc. Post-tension intersection chair
US20050050825A1 (en) * 2003-03-31 2005-03-10 Joel Foderberg Channel-reinforced concrete wall panel system
US7104018B2 (en) * 2003-08-18 2006-09-12 Guardian Fiberglass, Inc. System for insulating vertical wall
US20050166533A1 (en) * 2004-01-09 2005-08-04 Leroy Strickland Residential construction method and apparatus
USD500243S1 (en) * 2004-01-15 2004-12-28 James N. Turek, Sr. Rebar, beam and mesh highchair
US20100229482A1 (en) * 2006-03-14 2010-09-16 Jae-ho Lee Connecting Structure
USD558473S1 (en) * 2007-01-10 2008-01-01 Cosco Management, Inc. Step stool
US7681368B1 (en) * 2007-08-21 2010-03-23 Edward Rubio Concrete composite wall panel
US20110179736A1 (en) * 2008-07-14 2011-07-28 Construction Innovation Limited Concrete matrix structure
US20120137613A1 (en) * 2010-12-02 2012-06-07 Schurmann Stephan E Insulated Concrete Walls
US20120167504A1 (en) * 2011-01-04 2012-07-05 Mckinney John Precast insulated concrete wall assembly

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720160B1 (en) * 2011-09-14 2014-05-13 Alan Brian Cooper Process for forming concrete walls and other vertically positioned shapes
US20150275462A1 (en) * 2012-02-02 2015-10-01 Empire Technology Development Llc Modular concrete reinforcement
US9725867B2 (en) * 2012-02-02 2017-08-08 Empire Technology Development Llc Modular concrete reinforcement
CN104100025A (en) * 2013-04-07 2014-10-15 程松林 Double-sided positive pouring production method of cold bridge-free gypsum compound insulation wallboard
US20150068146A1 (en) * 2013-05-30 2015-03-12 Defender Technologies, LLC Pre fabricated wall form and system
US9695589B2 (en) * 2013-05-30 2017-07-04 Defender Technologies, LLC Pre fabricated wall form and system
US9493946B2 (en) * 2013-12-13 2016-11-15 Iconx, Llc Tie system for insulated concrete panels
US10704260B2 (en) * 2013-12-13 2020-07-07 Iconx, Llc Tie system for insulated concrete panels
US20190136526A1 (en) * 2013-12-13 2019-05-09 Iconx, Llc Tie system for insulated concrete panels
CN105369976A (en) * 2015-12-03 2016-03-02 文登蓝岛建筑工程有限公司 Building material wallboard
WO2017122082A1 (en) * 2016-01-14 2017-07-20 Flex House Srl Spacer element for a disposable formwork for the construction of walls and disposable formwork incorporating the spacer element
ITUB20160199A1 (en) * 2016-01-14 2017-07-14 Flex House Srl SPACER ELEMENT FOR CASSERO TO LOSE FOR THE CONSTRUCTION OF WALLS AND DRAINAGE TO LOSE INCORPORATING SUCH SPACER ELEMENT
US10837171B2 (en) 2016-01-14 2020-11-17 Flex House Srl Spacer element for a disposable formwork for the construction of walls and disposable formwork incorporating the spacer element
US11530522B2 (en) 2018-04-05 2022-12-20 Geneva Pipe And Precast Company Manhole assembly
USD920090S1 (en) * 2018-07-18 2021-05-25 Aus Chairs Pty Ltd Reinforcing spacer
US11649603B2 (en) 2018-11-20 2023-05-16 Geneva Pipe And Precast Company Manhole rehabilitation system
CN109577524A (en) * 2019-01-02 2019-04-05 常州市米尼特机械有限公司 A kind of cast-in-place foamed concrete wall
CN110284634A (en) * 2019-06-03 2019-09-27 上海港城建筑安装工程有限公司 A kind of insulated wall pouring molding construction technology
US11156007B2 (en) * 2019-08-08 2021-10-26 Pedro Juan Quiles-Perez Secure holding spacer units for permanent formworks
USD970329S1 (en) * 2019-11-07 2022-11-22 Aus Chairs Pty Ltd Reinforcing spacer
US11377863B1 (en) * 2019-11-13 2022-07-05 Predl Systems North America Inc. Aggregate panel system
CN112627032A (en) * 2020-12-02 2021-04-09 江苏中锐华东建筑设计研究院有限公司 Manufacturing method of T-shaped building structure beam
WO2023056488A1 (en) * 2021-09-29 2023-04-06 Sanjo Fabtech Sterling (Pty) Limited Prefabricated wall and associated method of wall construction

Similar Documents

Publication Publication Date Title
US20120233950A1 (en) Concrete wall systems and methods and spacers therefor
US5353560A (en) Building structure and method of use
US5765330A (en) Pre-insulated prefab wall panel
US6041562A (en) Composite wall construction and dwelling therefrom
US7415805B2 (en) Wall system with masonry external surface and associated method
US20100107536A1 (en) Thermo tech mark ii limited
US9447578B2 (en) Modular block wall system
US5377470A (en) Modular insulating wall panel system
US6931806B2 (en) Concrete forming system and method
US20100269439A1 (en) Insulated panel and system for construction of a modular building and method of fabrication thereof
US20100287864A1 (en) Pre-cast rain screen wall panel
US20160237683A1 (en) Building Panels - Systems Components & Methods
US20040020147A1 (en) Sandwich wall construction and dwelling
WO2012135954A1 (en) Building method using multi-storey panels
AU2020101810A4 (en) Insulated and prefinished wall panel and wall cladding assembly
US20100199586A1 (en) Insulation system for cement walls
US20020184846A1 (en) Insulated building panel and method
US20220018118A1 (en) System and method for insulating an intermodal container
JPH02186037A (en) Structural block and wall
KR101220211B1 (en) Modular coordination design method using discontinuous double track line grid and house using the modular coordination design method
WO2012060863A2 (en) Wall panel construction and method for in situ assembly
US20060059793A1 (en) Quickwall integrated building shell system
EP4310266A1 (en) Layered building board and a method for manufacturing thereof
US11913228B2 (en) Building panel assembly and method of manufacturing
JPH07279313A (en) Stone column, stone wall, and form-less executing method for constructing them

Legal Events

Date Code Title Description
AS Assignment

Owner name: CEMWALL SYSTEMS LLC, ALABAMA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARR, JERRY R.;MCCLURE, MICHAEL W.;WEAVER, LLOYD E.;REEL/FRAME:025975/0954

Effective date: 20110316

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION