US20130013073A1 - Methods and apparatus for intervertebral disc prosthesis - Google Patents

Methods and apparatus for intervertebral disc prosthesis Download PDF

Info

Publication number
US20130013073A1
US20130013073A1 US13/619,352 US201213619352A US2013013073A1 US 20130013073 A1 US20130013073 A1 US 20130013073A1 US 201213619352 A US201213619352 A US 201213619352A US 2013013073 A1 US2013013073 A1 US 2013013073A1
Authority
US
United States
Prior art keywords
prosthesis
space
vertebrae
disc
intervertebral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/619,352
Inventor
Malan de Villiers
Ulrich Hahnle
David Hovda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Simplify Medical Inc
Original Assignee
Spinalmotion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spinalmotion Inc filed Critical Spinalmotion Inc
Priority to US13/619,352 priority Critical patent/US20130013073A1/en
Publication of US20130013073A1 publication Critical patent/US20130013073A1/en
Assigned to SIMPLIFY MEDICAL, INC. reassignment SIMPLIFY MEDICAL, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SPINALMOTION, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/4465Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or kidney shaped cross-section substantially perpendicular to the axis of the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30518Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • A61F2002/443Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4615Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spacers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4622Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof having the shape of a forceps or a clamp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4627Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4628Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about an axis transverse to the instrument axis or to the implantation direction, e.g. clamping

Definitions

  • This invention relates to medical devices and methods. More specifically, the invention relates to intervertebral disc prostheses.
  • Intervertebral discs are the soft tissue structures located between each of the thirty-three vertebral bones that make up the vertebral (spinal) column. Essentially, the discs allow the vertebrae to move relative to one another.
  • the vertebral column and discs are vital anatomical structures, in that they form a central axis that supports the head and torso, allow for movement of the back, and protect the spinal cord, which passes through the vertebrae in proximity to the discs.
  • Discs often become damaged due to wear and tear or acute injury.
  • discs may bulge (herniate), tear, rupture, degenerate or the like.
  • a bulging disc may press against the spinal cord or a nerve exiting the spinal cord, causing “radicular” pain (pain in one or more extremities caused by impingement of a nerve root).
  • Degeneration or other damage to a disc may cause a loss of “disc height,” meaning that the natural space between two vertebrae decreases. Decreased disc height may cause a disc to bulge, facet loads to increase, two vertebrae to rub together in an unnatural way and/or increased pressure on certain parts of the vertebrae and/or nerve roots, thus causing pain.
  • chronic and acute damage to intervertebral discs is a common source of back related pain and loss of mobility.
  • intervertebral discs When one or more damaged intervertebral discs cause a patient pain and discomfort, surgery is often required.
  • surgical procedures for treating intervertebral discs have involved discectomy (partial or total removal of a disc), with or without fusion of the two vertebrae adjacent to the disc. Fusion of the two vertebrae is achieved by inserting bone graft material between the two vertebrae such that the two vertebrae and the graft material grow together.
  • pins, rods, screws, cages and/or the like are inserted between the vertebrae to act as support structures to hold the vertebrae and graft material in place while they permanently fuse together.
  • fusion often treats the back pain, it reduces the patient's ability to move, because the back cannot bend or twist at the fused area.
  • fusion increases stresses at adjacent levels of the spine, potentially accelerating degeneration of these discs.
  • intervertebral disc prostheses are the LINKTM SB CHARITTETM disc prosthesis (provided by DePuy Spine, Inc.) MOBIDISKTM disc prosthesis (provided by LDR Medical), the BRYANTM cervical disc prosthesis (provided by Medtronic Sofamor Danek, Inc.), the PRODISCTM disc prosthesis or PRODISC-CTM disc prosthesis (from Synthes Stratec, Inc.), and the PCMTM disc prosthesis (provided by Cervitech, Inc.).
  • LINKTM SB CHARITTETM disc prosthesis provided by DePuy Spine, Inc.
  • MOBIDISKTM disc prosthesis provided by LDR Medical
  • BRYANTM cervical disc prosthesis provided by Medtronic Sofamor Danek, Inc.
  • PRODISCTM disc prosthesis or PRODISC-CTM disc prosthesis from Synthes Stratec, Inc.
  • PCMTM disc prosthesis provided by Cervitech, Inc.
  • intervertebral disc prostheses require a larger amount of spreading apart (or “distraction”) of the two vertebrae than is optimal. Over-distraction is necessary when using such methods because it is important to insert the disc prosthesis all the way into the disc space, to position the center of rotation of the prosthesis closer to the posterior portion of the vertebrae than to the anterior portion. This allows the vertebrae to move as they were intended and avoids placing undue strain on the facet joints of the vertebrae or on other structures. To push a prosthesis toward the back of a disc space, however, it is typically necessary to spread the two vertebrae apart widely, since the anterior portion of the disc space is usually wider (or higher) than the posterior portion.
  • an artificial disc is placed by placing a first endplate into the space, placing a second endplate into the space, and then spreading the vertebrae wide enough to wedge a core in between the two endplates.
  • the vertebrae are spread apart as far as practicable, the whole prosthesis is inserted while one or more spreading devices are in place, and not until the prosthesis is completely inserted is the spreading device removed.
  • the two vertebrae adjacent the prosthesis are typically spread farther apart than would be desirable for a longer amount of time than would be desirable.
  • the posterior longitudinal ligament (PLL) is released, or “cut,” to enable sufficient distraction for disc placement.
  • Distracting vertebrae can damage muscles, ligaments, nerves and/or other tissues in and around the vertebral column. Such damage may actually cause the patient to experience as much, or even more, pain after surgery than was caused by the original disc problem.
  • intervertebral disc prostheses As the use of intervertebral disc prostheses increases, an increasing need exists for improved methods and apparatus for inserting such prostheses.
  • such intervertebral prosthesis insertion methods and devices would provide for insertion of a prosthesis a desired distance into an intervertebral space while reducing the need for intervertebral distraction, thus preventing or at least reducing trauma to surrounding tissues.
  • such insertion methods and devices would be relatively simple and easy to use, thereby reducing the overall invasiveness of the procedure. At least some of these objectives will be met by the present invention.
  • the present invention generally provides methods for inserting an intervertebral disc prosthesis, as well as devices and systems for performing the methods.
  • One advantage of these improved methods is that a disc prosthesis may be inserted with minimal or reduced intervertebral distraction, thus avoiding trauma to tissues in and around the insertion site.
  • Reduced distraction is generally achieved by inserting a prosthesis into an intervertebral space while allowing endplates of the prosthesis to articulate during at least part of the insertion process.
  • to “articulate” means to move relative to another structure.
  • endplates of an intervertebral prosthesis to articulate means that endplates are free to move relative to each other, relative to a core of the prosthesis, relative to a ball and socket joint of the prosthesis, relative to a mobile or fixed center of rotation of the prosthesis and/or the like.
  • various embodiments of the insertion method may be applied to any other intervertebral disc prosthesis. Articulation of the endplates during insertion allows the prosthesis to be pushed posteriorly into a disc space without excessive intervertebral distraction or significant forces being applied to the vertebrae, thus achieving desirable positioning of the prosthesis while avoiding trauma to surrounding muscles, ligaments, nerves and the like.
  • a method of inserting an intervertebral prosthesis into a space between two adjacent vertebrae involves inserting the prosthesis partway into the space under constraint to prevent endplates of the prosthesis from articulating, releasing the prosthesis from constraint, and inserting the unconstrained prosthesis farther into the space.
  • the endplates of the constrained prosthesis are prevented from articulating about a core of the prosthesis, while the endplates of the unconstrained prosthesis are generally free to articulate about the core to help the prosthesis conform to the space between the two vertebrae.
  • the unconstrained endplates may be free to articulate about a ball and socket joint or other structure.
  • inserting the prosthesis partway under constraint involves grasping the endplates with an insertion tool such that they cannot move relative to the core and pushing the prosthesis partway into the space using the insertion tool.
  • releasing the prosthesis from constraint may involve loosening the insertion tool.
  • the loosened insertion tool may then be used to insert the unconstrained prosthesis farther into the intervertebral space.
  • a separate pusher tool may be used to insert the unconstrained prosthesis farther into the space.
  • inserting the constrained prosthesis partway into the space between the vertebrae involves inserting the prosthesis less than halfway into the space.
  • the constrained prosthesis is inserted about one third of the way into the space and then subsequently inserted farther into the space.
  • the constrained prosthesis may be pushed more than halfway into the space, less than one third of the way into the space, or any other suitable distance into the space.
  • the unconstrained prosthesis is then inserted any desired distance farther into the intervertebral space.
  • the prosthesis is inserted sufficiently far into the space that a center of rotation of the prosthesis is closer to the posterior edges of the vertebrae than to the anterior edges of the vertebrae.
  • the prosthesis is inserted in approximately an anterior to posterior direction. In alternative embodiments, the prosthesis may be inserted in an anterolateral-to-posterior direction, lateral-to-lateral direction or posterior-to-anterior direction.
  • inserting the unconstrained prosthesis farther into the space involves pushing the prosthesis into the space. In other embodiments, however, techniques other than pushing may be used to insert the prosthesis, such as pulling.
  • pushing the prosthesis farther into the space involves individually pushing upper and lower endplates of the prosthesis. Alternatively, or additionally, the upper and lower endplates of the prosthesis may be simultaneously pushed into the intervertebral space. In various embodiments, individual and simultaneous endplate pushing may be performed using the grasping device, a separate pusher device, or both.
  • the method also includes inserting a vertebral spacing device at least partway into the space and manipulating the spacing device to increase a height of the space.
  • a vertebral spacing device is described by the assignees of the present application in PCT Patent Application Number 2004/000171, filed Jan. 26, 2004 (Attorney Docket Number currently being updated with International Bureau to 022031-001100PC), the full disclosure of which is hereby incorporated by reference.
  • the spacing step is typically performed before inserting the constrained prosthesis partway into the intervertebral space.
  • inserting the constrained prosthesis partway into the intervertebral space comprises sliding the prosthesis between two opposing jaws of the spacing device.
  • inserting the constrained prosthesis partway into the space may optionally further involve sliding at least one fin on at least one outer surface of the endplates through at least one corresponding slot in the opposing jaws.
  • such a fin (or fins) may then be slid into a corresponding slot formed in one of the vertebrae.
  • Some embodiments also involve using a vertebral midpoint indicator device to locate a midpoint of at least one of the two vertebrae, and marking the midpoint on one or both of the two vertebrae.
  • a midline indicator device is described by the assignees of the present application in PCT Patent Application Number 2004/000170, filed Jan. 26, 2004 (Attorney Docket Number currently being updated with International Bureau to 022031-000900PC), the full disclosure of which is hereby incorporated by reference.
  • Midline finding and marking are typically performed before inserting the constrained prosthesis partway into the intervertebral space.
  • locating the midpoint involves inserting the vertebral midpoint indicator device into the space between the vertebrae and imaging the midpoint indicator device using a radiographic imaging device.
  • a method of inserting an intervertebral prosthesis into a space between two adjacent vertebrae involves sliding the prosthesis partway into the space between the vertebrae between two opposing jaws of a spacing device, removing the spacing device from the space to release the prosthesis from constraint, and pushing the unconstrained prosthesis farther into the space while allowing endplates of the prosthesis to articulate.
  • the endplates of the prosthesis are constrained from articulating when the prosthesis is disposed between the jaws.
  • the unconstrained endplates articulate about a core of the prosthesis, while in alternative embodiments they may articulate about a ball and socket joint or other structure.
  • Such a method may optionally further include inserting the spacing device at least partway into the space and manipulating the spacing device to increase a height of the space. Any of the additional or alternative features described above may also be applied in various embodiments.
  • a device for inserting an intervertebral prosthesis into a space between two adjacent vertebrae includes: an elongate rigid shaft having a proximal end and a distal end; an adjustable grasping member coupled with the distal end for releasably grasping endplates of the intervertebral prosthesis; and an actuator disposed near the proximal end of the shaft and coupled with the grasping member for adjusting the grasping member to grasp and release the prosthesis.
  • the grasping member is adapted to grasp the prosthesis such that the endplates are constrained from articulating and such that the outer diameter of the grasping member does not extend beyond a largest diameter of the endplates. Additionally, the grasping member is adapted for pushing the prosthesis into the space between the two vertebrae either while grasping the prosthesis or after releasing the prosthesis.
  • the grasping member comprises movable opposing jaws adapted to simultaneously grasp inner rims of the endplates.
  • a grasping member may, for example, be coupled with the actuator via at least one rod extending through the shaft.
  • the grasping member may include a first half coupled with a first movable rod extending from the actuator and a second half coupled with a second movable rod extending from the actuator.
  • the actuator comprises a thumb screw adapted to move the first and second rods closer together and farther apart by turning the thumb screw in opposite directions.
  • the actuator may include, but is not limited to, a trigger, tongs and a movable handle.
  • the device is shaped to pass between two opposable jaws of a vertebral spacing device disposed between the two adjacent vertebrae.
  • the grasping member may be adapted to push the endplates either simultaneously or individually into the space.
  • a system for inserting an intervertebral prosthesis into a space between two adjacent vertebrae includes a prosthesis grasping device for grasping the prosthesis and pushing the prosthesis at least partway into the space and at least one prosthesis pusher device for pushing the prosthesis farther into the space.
  • the grasping device is similar to the device described immediately above and may include any of the described features.
  • the pusher device may include: an elongate shaft having a proximal end and a distal end; a concave pusher portion disposed at the distal end, the pusher portion adapted to push the endplates either simultaneously or individually into the space; and a handle disposed at the proximal end.
  • the system further includes a vertebral spacing device for increasing a height of the space between the two vertebrae.
  • a vertebral spacing device for increasing a height of the space between the two vertebrae.
  • An example of such a spacing device is described in PCT Patent Application Number 2004/000171, which was previously incorporated by reference.
  • the grasping member is adapted to slide through the vertebral spacing device disposed between two adjacent vertebrae.
  • the pusher device may also be adapted to slide through the spacing device.
  • the system may optionally further include a vertebral body midline indicator device for locating a midline on a vertebral body of at least one of the two vertebrae.
  • a midline indicator device for locating a midline on a vertebral body of at least one of the two vertebrae.
  • An example of a midline indicator device is described in PCT Patent Application Number 2004/000170, which was previously incorporated by reference.
  • FIGS. 1A-1E demonstrate a method for inserting an intervertebral disc prosthesis according to one embodiment of the present invention.
  • FIGS. 2A and 2B are top views of a grasping device for inserting an intervertebral disc prosthesis according to one embodiment of the present invention.
  • FIG. 2C is a side view of the distal end of the device in FIGS. 2A and 2B .
  • FIG. 3 is a top view of a pusher device for inserting an intervertebral disc prosthesis according to one embodiment of the present invention.
  • FIGS. 4A-4E are various views of a spreader device for distracting two adjacent vertebrae for inserting an intervertebral disc prosthesis according to one embodiment of the present invention.
  • FIG. 5 demonstrates the spreading action of the spreader device in FIGS. 4A-4E .
  • FIGS. 6A-6D are various views of a vertebral body midline indicator device according to one embodiment of the present invention.
  • FIGS. 7A and 7B demonstrate indication of vertebral midline using the device in FIGS. 6A-6D .
  • a method for inserting an intervertebral disc prosthesis 104 into an intervertebral space IS between two adjacent vertebrae V first involves inserting the disc prosthesis 104 partway into the space IS while the prosthesis 104 is constrained ( FIG. 1A ).
  • constrained it is meant that endplates 106 of the prosthesis 104 are not free to articulate (move) about a core 112 ( FIGS. 1B-1E ) of the prosthesis 104 .
  • an insertion device 102 may be used.
  • Such an insertion device 102 may suitably include a grasping member 110 coupled with an elongate shaft 108 .
  • the insertion device 102 may include a handle, an actuator to control the grasping member 110 and/or any other suitable features, some of which are described further below.
  • the prosthesis 104 may be inserted as far into the intervertebral space IS under constraint as is desired. In some embodiments, for example, the prosthesis 104 is inserted under constraint approximately one-third of the way into the space IS. In other embodiments, the prosthesis 104 may be inserted less than one-third of the way, closer to one-half of the way, or any other suitable distance into the space IS.
  • the insertion device 102 may be removed, thus releasing the prosthesis 104 from constraint. From this point forward, the endplates 106 of the prosthesis 104 are free to move about the prosthesis core 112 . Examples of such a prosthesis 104 with endplates 106 and core 112 are described by the assignees of the present application in U.S. patent application Ser. Nos. 10/855,817 and 10/855,253, previously incorporated by reference, although any other suitable prosthesis may be used in various embodiments.
  • the insertion device 102 may be used to push the unconstrained prosthesis 104 farther into the intervertebral space.
  • one or more separate pusher devices may be used in addition to or instead of the insertion device 102 for pushing the prosthesis 104 farther into the space IS.
  • FIGS. 1C and 1D demonstrate that in one embodiment the grasping member 110 of the insertion device 102 is adapted to push individually against the upper ( FIG. 1C ) and lower ( FIG. 1D ) endplates 106 .
  • the grasping member 110 may also be adapted to push simultaneously against the upper and lower endplates 106 , thus pushing the prosthesis 104 as a unit farther into the intervertebral space IS.
  • the method reduces the need for increasing the height of the intervertebral space IS by distracting the vertebrae V away from each other. Because the endplates 106 are free to articulate, the prosthesis 104 is better able to conform to the intervertebral space IS, thus reducing trauma to the vertebrae V and also limiting trauma to surrounding structures caused by over-distraction.
  • the unconstrained prosthesis 104 may be inserted as far into the intervertebral space IS as is desired.
  • the prosthesis 104 is pushed far enough into the space IS so that a center of rotation of the prosthesis 104 is closer to a posterior edge P ( FIG. 1E ) of the vertebrae V than to an anterior edge A of the vertebrae V.
  • any other suitable insertion distance or depth may be used.
  • the method just described may include fewer steps or additional steps.
  • a spreader device is inserted between the two vertebrae V to spread them apart before inserting the constrained prosthesis 104 .
  • An example of such a spacing device is described in PCT Patent Application Number 2004/000171, previously incorporated by reference.
  • the insertion device 102 is typically sized to fit between opposing jaws of the spreader device.
  • a midline indicator device may be used to facilitate the location of a midline on one or both of the two adjacent vertebrae V.
  • An example of such a midline indicator device is described in PCT Patent Application Number 2004 / 000170 , previously incorporated by reference.
  • the midline indicator is used before the disc prosthesis 104 is inserted.
  • an insertion device 120 for inserting an intervertebral disc prosthesis 140 suitably includes an elongate shaft 126 , a grasping member 122 coupled with the distal end of the shaft 126 , and a handle 128 at the proximal end of the shaft 120 , including one or more actuators 130 for controlling movement of the grasping member 122 .
  • One or more rods 124 or other connectors extend from the grasping member 122 through the shaft 126 to the actuator 130 .
  • the grasping member 122 comprises two opposable tongs or jaws, which may be moved closer together or farther apart (double-headed arrows) via the actuator 130 and rods 124 .
  • the actuator 130 shown is a thumb screw.
  • scissor-type mechanisms, spring loaded tongs, a triggering mechanism or any other suitable grasping and actuating means may be used. Any suitable material or combination of materials may be used to manufacture the insertion device, including but not limited to stainless steel and/or other suitable metals.
  • the insertion device 120 may grasp a disc prosthesis 140 such that the grasping member 122 does not protrude beyond an outer edge 141 of the prosthesis 140 .
  • the grasping member 122 holds onto an inner portion of the prosthesis 140 , so that it will not extend beyond the lateral edges 141 of the prosthesis 140 .
  • This configuration is advantageous during insertion, as the grasping member 122 is essentially out of the way, within the outer edge 141 of the prosthesis 140 .
  • FIG. 2C is a side view of a distal end of the insertion device 120 shown in FIGS. 2A and 2B .
  • the disc prosthesis 140 includes a core 146 and two endplates 142 .
  • Each endplate 142 includes an inner rim 144 that contacts the core 146 and a fin 148 for enhancing attachment to vertebral bone.
  • the grasping member 122 of the insertion device 120 grasps the inner rims 144 of the endplates 142 , thus positioning it within the outer edges 141 of the endplates 142 .
  • any suitable alternative prosthesis may be used, as well as any suitable insertion device (or devices).
  • a separate pusher device 150 may be used to push an unconstrained prosthesis 140 farther into an intervertebral space.
  • the pusher device 150 is typically constructed of stainless steel or other suitable metal and suitably includes an elongate shaft 152 , a pusher member 154 at the distal end of the shaft 152 , and a handle 158 at the proximal end of the shaft 152 .
  • the pusher member 154 includes a concave inner portion 156 for pushing against the inner rims 144 of endplates 142 of the prosthesis 140 .
  • the concave portion 156 may be tapered and/or rounded to facilitate pushing against upper and lower endplates 142 individually while also allowing for simultaneous pushing against both endplates 142 .
  • the pusher device 150 may have any of a number of alternative configurations, shapes, sizes and the like. In some embodiments, multiple pusher devices 150 of different configurations and/or sizes are provided to allow a physician to select one or more desired devices 150 .
  • the spreader device 10 for spreading adjacent vertebrae to facilitate intervertebral disc prosthesis 30 insertion is shown. Again, the device 10 is described in greater detail in PCT Patent Application Number 2004/000171, which was previously incorporated by reference.
  • the spreader device 10 generally includes distally located opposable jaws 12 , a slidable pusher member 45 and an actuator 15 .
  • the opposable jaws 12 are carried by arms 14 which form part of a scissors-type mechanism having a single hinge point 15 .
  • Handles 16 on the proximal end of the device are used to manipulate the opposable jaws 12 . When the handles 16 are actuated, arms 14 translate the actuation motion to the single hinge point scissors type mechanism 15 .
  • the jaws 12 have opposing surfaces 18 formed with ribs 20 and transverse slots 22 which extend for the height of the jaws as seen in FIG. 4B . At their free ends, the jaws 12 are provided with relatively sharp tips or blades 24 having curved extremities 26 .
  • FIGS. 4A and 4B illustrate how the handles 14 are inclined relative to the jaws 12 .
  • Manipulation of the handles 16 by moving them causes the jaws 12 to open or close.
  • Other embodiments include a double hinge instead of the single hinge 15 which would pivot the jaws apart from one another when the handles 16 are displaced towards one another.
  • the insertion device 10 illustrated in FIGS. 4A-4E is designed for placement of an intervertebral prosthetic disc 30 .
  • a prosthetic disc 30 comprises opposing endplates 32 which are located on opposite sides of a central core 34 .
  • the opposing endplates 32 articulate about the central core 34 .
  • the prosthetic disc 30 also comprises projecting fins 36 which are aligned with matching slots 40 in the vertebrae 38 during implantation. Typically slots 40 are saw cut into the vertebrae 38 .
  • FIGS. 4D and 5 A method of inserting the intervertebral prosthesis is illustrated in FIGS. 4D and 5 .
  • the vertebrae 38 are distracted by a distance sufficient for at least partial insertion of the prosthesis 30 .
  • the tips 24 of the opposable jaws 12 are inserted between the vertebrae 38 with the slots 22 in the opposable jaws 12 aligned with the slots in the vertebrae 40 .
  • the handles 16 are then manipulated to force the opposable jaws 12 apart which also forces the vertebrae 38 apart from one another, creating a gap.
  • the prosthesis 30 is then inserted into the gap 42 between the opposable jaws 12 where it is held therein with fins 36 engaged with the corresponding slots 22 .
  • the prosthesis 30 is then slipped distally in the gap while being guided by the fins 36 cooperating with the slots 22 .
  • the prosthesis 30 is moved through the inter jaw gap and past the jaw tips 24 in order to locate the prosthesis 30 between the vertebrae 38 with fins 36 in the vertebral cut slots 40 .
  • the slots 22 in the opposable jaws 12 help to guide the fins 36 into the vertebral cut slots 40 .
  • FIG. 4C illustrates the jaws 12 inclined towards one another, in the direction towards the tips 24 .
  • the gap 42 between the jaws 12 at the top is large enough for insertion of the prosthesis 30 between them at that point. Therefore, in an alternative method of placing the prosthesis, the prosthesis 30 may be located initially in the gap 42 and then it may be pushed down towards the tip 24 , forcing the jaws 12 open and similarly forcing the vertebrae 38 apart from one another.
  • a pusher 45 may be used to hold, position and drive the prosthesis 30 during the placement procedure. A force may be applied manually to pusher 45 or it may be tapped on the upper end to drive the prosthesis downward.
  • the prosthesis placement procedure may be modified so that the initial distraction of the vertebra 38 is achieved by manipulation of the handles 16 and then a force may be applied manually to the pusher 45 or it may be tapped in order to create the final intervertebral gap and placement of the prosthesis 30 .
  • the spreader device 10 serves both to facilitate insertion of the prosthesis 30 between the vertebrae 38 and also to ensure that the prosthesis 30 is accurately guided into position with its fins 36 lined up with the vertebral slots 40 .
  • FIG. 5 shows in greater detail (solid-tipped arrows) the various motions involved in inserting the spreader device 10 into the intervertebral space and manipulating the handles 16 to force open the jaws 12 and thus increased the height of the intervertebral space between the two adjacent vertebrae 38 .
  • this or other spreader devices 10 is optional and is not required in all embodiments.
  • FIGS. 6A-6D show another optional device for use in the insertion methods of the present invention.
  • a midline indicator device 210 such as the one shown is described in greater detail in PCT Patent Application Number 2004/000170, which was previously incorporated by reference.
  • the midline indicator 210 suitably includes an elongate shaft 212 and a body 214 coupled with one end of the shaft 212 .
  • the shaft 212 may be made of one or more radiopaque materials, such as but not limited to stainless steel, titanium or the like. Alternatively, the shaft 212 may be radiolucent.
  • the body 214 is made of one or more radiolucent materials, such as a polymer, so that it is not visible on radiographs.
  • Embedded in the body 214 are two elongate radiopaque markers 216 , also made of any suitable radiopaque material(s).
  • the markers 216 are parallel to the shaft 212 and are located on opposite sides and equidistant from the shaft 212 .
  • FIGS. 7A and 7B demonstrate a method for using the midline indicator to find a vertebral body midline 222 .
  • FIG. 7A shows, in anterior view, adjacent upper 218 and lower 220 vertebrae.
  • the surgeon uses the shaft 212 to insert the body 214 between the vertebrae 218 , 220 .
  • the surgeon attempts to position the shaft 212 at the vertebral midline 222 , and a radiograph is taken of the vertebrae 218 , 220 and indicator 210 from the anterior-posterior (A-P) direction.
  • A-P anterior-posterior
  • the surgeon then examines the radiograph to determine whether the markers 216 are equidistant laterally from the lateral osseous edges 223 of the vertebrae 218 , 220 --i.e., that the distance 225 is the same on both sides, and that the markers 216 are aligned with the pedicles.
  • the shaft 212 and markers 216 are properly aligned in the A-P direction, they will appear as dots on the radiograph. If the midline indicator 210 is turned, however, as is demonstrated by the dotted lines in FIG. 7B , the shaft 212 and markers 216 will show up as lines or stretched-out dots on the radiograph.
  • the A-P direction of the radiograph is shown by 224 , with misalignment of the indicator 210 shown by angles .theta..
  • the surgeon positions the handle 212 of the indicator 210 at the vertebral midline 222 . The surgeon may then make a mark 226 in one or more vertebrae 218 , 220 to indicate the midline 222 .
  • the mark 226 may be made by any suitable means, such as by burning with an electrocautery device, marking with a marking pen, inserting a pin, or the like. After one or more midline marks 226 are made, the midline indicator 210 is removed and the disc prosthesis (not shown) is inserted. Again, the midline finding step is optional.

Abstract

A method for inserting an intervertebral disc prosthesis into a space between two vertebrae involves inserting the prosthesis partway into the space under constraint to prevent endplates of the prosthesis from articulating, releasing the prosthesis from constraint, and inserting the unconstrained prosthesis farther into the space. In some embodiments, the method involves grasping the prosthesis with a grasping device to insert the prosthesis partway under constraint, loosing the grasping device to release the prosthesis from constraint, and pushing the prosthesis farther into the disc space using the grasping device and/or one or more separate pusher devices. A system includes a grasping device, at least one separate pushing device, and optionally a vertebral spreading device and/or a vertebral midline indicator device.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a continuation of U.S. patent application Ser. No. 12/044,175 (Attorney Docket No. 29850-706.402), filed Mar. 7, 2008, which is a divisional of U.S. patent application Ser. No. 10/913,780 (Attorney Docket No. 29850-706.201), filed Aug. 6, 2004, the full disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to medical devices and methods. More specifically, the invention relates to intervertebral disc prostheses.
  • Back pain takes an enormous toll on the health and productivity of people around the world. According to the American Academy of Orthopedic Surgeons, approximately 80 percent of Americans will experience back pain at some time in their life. In just the year 2000, approximately 26 million visits were made to physicians' offices due to back problems in the United States. On any one day, it is estimated that 5% of the working population in America is disabled by back pain.
  • One common cause of back pain is injury, degeneration and/or dysfunction of one or more intervertebral discs. Intervertebral discs are the soft tissue structures located between each of the thirty-three vertebral bones that make up the vertebral (spinal) column. Essentially, the discs allow the vertebrae to move relative to one another. The vertebral column and discs are vital anatomical structures, in that they form a central axis that supports the head and torso, allow for movement of the back, and protect the spinal cord, which passes through the vertebrae in proximity to the discs.
  • Discs often become damaged due to wear and tear or acute injury. For example, discs may bulge (herniate), tear, rupture, degenerate or the like. A bulging disc may press against the spinal cord or a nerve exiting the spinal cord, causing “radicular” pain (pain in one or more extremities caused by impingement of a nerve root). Degeneration or other damage to a disc may cause a loss of “disc height,” meaning that the natural space between two vertebrae decreases. Decreased disc height may cause a disc to bulge, facet loads to increase, two vertebrae to rub together in an unnatural way and/or increased pressure on certain parts of the vertebrae and/or nerve roots, thus causing pain. In general, chronic and acute damage to intervertebral discs is a common source of back related pain and loss of mobility.
  • When one or more damaged intervertebral discs cause a patient pain and discomfort, surgery is often required. Traditionally, surgical procedures for treating intervertebral discs have involved discectomy (partial or total removal of a disc), with or without fusion of the two vertebrae adjacent to the disc. Fusion of the two vertebrae is achieved by inserting bone graft material between the two vertebrae such that the two vertebrae and the graft material grow together. Oftentimes, pins, rods, screws, cages and/or the like are inserted between the vertebrae to act as support structures to hold the vertebrae and graft material in place while they permanently fuse together. Although fusion often treats the back pain, it reduces the patient's ability to move, because the back cannot bend or twist at the fused area. In addition, fusion increases stresses at adjacent levels of the spine, potentially accelerating degeneration of these discs.
  • In an attempt to treat disc related pain without fusion, an alternative approach has been developed, in which a movable, implantable, artificial intervertebral disc (or “disc prosthesis”) is inserted between two vertebrae. A number of different intervertebral disc prostheses are currently being developed. For example, the inventors of the present invention have developed disc prostheses described in U.S. patent application Ser. Nos. 10/855,817 and 10/855,253, previously incorporated by reference. Other examples of intervertebral disc prostheses are the LINK™ SB CHARITTE™ disc prosthesis (provided by DePuy Spine, Inc.) MOBIDISK™ disc prosthesis (provided by LDR Medical), the BRYAN™ cervical disc prosthesis (provided by Medtronic Sofamor Danek, Inc.), the PRODISC™ disc prosthesis or PRODISC-C™ disc prosthesis (from Synthes Stratec, Inc.), and the PCM™ disc prosthesis (provided by Cervitech, Inc.).
  • To insert an artificial intervertebral disc prosthesis, and indeed for performing most disc-related surgeries, it is typically necessary to gain access to the disc and the intervertebral space from an anterior to posterior direction (i.e., through the front of the patient), to avoid coming in contact with the spinal cord. Thus, surgical procedures on a disc are typically approached anteriorly through the neck or abdomen, depending on which disc (or discs) is being repaired. Methods for inserting a disc prosthesis generally involve removing the damaged disc, preparing the surfaces of the two vertebral bones to receive the prosthesis, spreading the two vertebrae apart using one or more spreading devices, and inserting the prosthesis into the space between the two vertebrae. Examples of such methods are described in U.S. Pat. Nos. 6,478,800, 6,235,030, 6,652,533, 6,689,132, 6,261,296 and 6,666,866, and in U.S. Patent Application Nos. 2001/0031969, 2001/0029377, 2003/0153916, 2002/0198532, 2004/0024407, 2003/0216737, 2003/0204261, 2003/0135220 and 2003/0014114. Due to the invasive nature of such procedures, one important goal is to reduce invasiveness, thus causing as little trauma to tissues surrounding the surgical site as possible.
  • The main drawback of currently available methods for inserting intervertebral disc prostheses is that they require a larger amount of spreading apart (or “distraction”) of the two vertebrae than is optimal. Over-distraction is necessary when using such methods because it is important to insert the disc prosthesis all the way into the disc space, to position the center of rotation of the prosthesis closer to the posterior portion of the vertebrae than to the anterior portion. This allows the vertebrae to move as they were intended and avoids placing undue strain on the facet joints of the vertebrae or on other structures. To push a prosthesis toward the back of a disc space, however, it is typically necessary to spread the two vertebrae apart widely, since the anterior portion of the disc space is usually wider (or higher) than the posterior portion. In some methods, an artificial disc is placed by placing a first endplate into the space, placing a second endplate into the space, and then spreading the vertebrae wide enough to wedge a core in between the two endplates. In other methods, the vertebrae are spread apart as far as practicable, the whole prosthesis is inserted while one or more spreading devices are in place, and not until the prosthesis is completely inserted is the spreading device removed. In either case, as well as in other currently available methods, the two vertebrae adjacent the prosthesis are typically spread farther apart than would be desirable for a longer amount of time than would be desirable. In some cases, the posterior longitudinal ligament (PLL) is released, or “cut,” to enable sufficient distraction for disc placement.
  • Distracting vertebrae can damage muscles, ligaments, nerves and/or other tissues in and around the vertebral column. Such damage may actually cause the patient to experience as much, or even more, pain after surgery than was caused by the original disc problem.
  • Therefore, as the use of intervertebral disc prostheses increases, an increasing need exists for improved methods and apparatus for inserting such prostheses. Ideally, such intervertebral prosthesis insertion methods and devices would provide for insertion of a prosthesis a desired distance into an intervertebral space while reducing the need for intervertebral distraction, thus preventing or at least reducing trauma to surrounding tissues. Also ideally, such insertion methods and devices would be relatively simple and easy to use, thereby reducing the overall invasiveness of the procedure. At least some of these objectives will be met by the present invention.
  • 2. Description of the Background Art.
  • A number of exemplary intervertebral disc prostheses are listed above. Published US patent applications 2002/0035400A1 and 2002/0128715A1 describe disc implants which comprise opposing plates with a core between them over which the plates can slide. The core receives one or more central posts, which are carried by the plates and which locate in opposite ends of a central opening in the core. Such arrangements limit the load bearing area available between the plates and core.
  • Other patents related to intervertebral disc prostheses include U.S. Pat. Nos. 4,759,766; 4,863,477; 4,997,432; 5,035,716; 5,071,437; 5,370,697; 5,401,269; 5,507,816; 5,534,030; 5,556,431; 5,674,296; 5,676,702; 5,702,450; 5,824,094; 5,865,846; 5,989,291; 6,001,130; 6,022,376; 6,039,763; 6,139,579; 6,156,067; 6,162,252; 6,315,797; 6,348,071; 6,368,350; 6,416,551; 6,592,624; 6,607,558 and 6,706,068. Other patent applications related to intervertebral disc prostheses include U.S. Patent Application Publication Nos.: 2003/0009224; 2003/0074076; 2003/0191536; 2003/0208271; 2003/0135277; 2003/0199982; 2001/0016773 and 2003/0100951. Other related patents include WO 01/01893A1, EP 1344507, EP 1344506, EP 1250898, EP 1306064, EP 1344508, EP 1344493, EP 1417940, EP 1142544, and EP 0333990.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention generally provides methods for inserting an intervertebral disc prosthesis, as well as devices and systems for performing the methods. One advantage of these improved methods is that a disc prosthesis may be inserted with minimal or reduced intervertebral distraction, thus avoiding trauma to tissues in and around the insertion site. Reduced distraction is generally achieved by inserting a prosthesis into an intervertebral space while allowing endplates of the prosthesis to articulate during at least part of the insertion process. For the purposes of this application, to “articulate” means to move relative to another structure. Thus, allowing endplates of an intervertebral prosthesis to articulate means that endplates are free to move relative to each other, relative to a core of the prosthesis, relative to a ball and socket joint of the prosthesis, relative to a mobile or fixed center of rotation of the prosthesis and/or the like. Although the following description often focuses on disc prostheses having two endplates and a core, various embodiments of the insertion method may be applied to any other intervertebral disc prosthesis. Articulation of the endplates during insertion allows the prosthesis to be pushed posteriorly into a disc space without excessive intervertebral distraction or significant forces being applied to the vertebrae, thus achieving desirable positioning of the prosthesis while avoiding trauma to surrounding muscles, ligaments, nerves and the like.
  • In one aspect of the present invention, a method of inserting an intervertebral prosthesis into a space between two adjacent vertebrae involves inserting the prosthesis partway into the space under constraint to prevent endplates of the prosthesis from articulating, releasing the prosthesis from constraint, and inserting the unconstrained prosthesis farther into the space. As mentioned above, in some embodiments, the endplates of the constrained prosthesis are prevented from articulating about a core of the prosthesis, while the endplates of the unconstrained prosthesis are generally free to articulate about the core to help the prosthesis conform to the space between the two vertebrae. In alternative embodiments, the unconstrained endplates may be free to articulate about a ball and socket joint or other structure.
  • In one embodiment, inserting the prosthesis partway under constraint involves grasping the endplates with an insertion tool such that they cannot move relative to the core and pushing the prosthesis partway into the space using the insertion tool. In such embodiments, releasing the prosthesis from constraint may involve loosening the insertion tool. In some embodiments, the loosened insertion tool may then be used to insert the unconstrained prosthesis farther into the intervertebral space. Additionally, or alternatively, a separate pusher tool may be used to insert the unconstrained prosthesis farther into the space.
  • In some embodiments, inserting the constrained prosthesis partway into the space between the vertebrae involves inserting the prosthesis less than halfway into the space. In one embodiment, for example, the constrained prosthesis is inserted about one third of the way into the space and then subsequently inserted farther into the space. In alternative embodiments, the constrained prosthesis may be pushed more than halfway into the space, less than one third of the way into the space, or any other suitable distance into the space. The unconstrained prosthesis is then inserted any desired distance farther into the intervertebral space. In some embodiments, for example, the prosthesis is inserted sufficiently far into the space that a center of rotation of the prosthesis is closer to the posterior edges of the vertebrae than to the anterior edges of the vertebrae.
  • In some embodiments, the prosthesis is inserted in approximately an anterior to posterior direction. In alternative embodiments, the prosthesis may be inserted in an anterolateral-to-posterior direction, lateral-to-lateral direction or posterior-to-anterior direction. Typically, inserting the unconstrained prosthesis farther into the space involves pushing the prosthesis into the space. In other embodiments, however, techniques other than pushing may be used to insert the prosthesis, such as pulling. In some embodiments, pushing the prosthesis farther into the space involves individually pushing upper and lower endplates of the prosthesis. Alternatively, or additionally, the upper and lower endplates of the prosthesis may be simultaneously pushed into the intervertebral space. In various embodiments, individual and simultaneous endplate pushing may be performed using the grasping device, a separate pusher device, or both.
  • In some embodiments, the method also includes inserting a vertebral spacing device at least partway into the space and manipulating the spacing device to increase a height of the space. An example of such a spacing device is described by the assignees of the present application in PCT Patent Application Number 2004/000171, filed Jan. 26, 2004 (Attorney Docket Number currently being updated with International Bureau to 022031-001100PC), the full disclosure of which is hereby incorporated by reference. The spacing step is typically performed before inserting the constrained prosthesis partway into the intervertebral space. In some embodiments, inserting the constrained prosthesis partway into the intervertebral space comprises sliding the prosthesis between two opposing jaws of the spacing device. In such an embodiment, inserting the constrained prosthesis partway into the space may optionally further involve sliding at least one fin on at least one outer surface of the endplates through at least one corresponding slot in the opposing jaws. In one embodiment, such a fin (or fins) may then be slid into a corresponding slot formed in one of the vertebrae.
  • Some embodiments also involve using a vertebral midpoint indicator device to locate a midpoint of at least one of the two vertebrae, and marking the midpoint on one or both of the two vertebrae. An example of a midline indicator device is described by the assignees of the present application in PCT Patent Application Number 2004/000170, filed Jan. 26, 2004 (Attorney Docket Number currently being updated with International Bureau to 022031-000900PC), the full disclosure of which is hereby incorporated by reference. Midline finding and marking are typically performed before inserting the constrained prosthesis partway into the intervertebral space. In some embodiments, locating the midpoint involves inserting the vertebral midpoint indicator device into the space between the vertebrae and imaging the midpoint indicator device using a radiographic imaging device.
  • In another aspect of the present invention, a method of inserting an intervertebral prosthesis into a space between two adjacent vertebrae involves sliding the prosthesis partway into the space between the vertebrae between two opposing jaws of a spacing device, removing the spacing device from the space to release the prosthesis from constraint, and pushing the unconstrained prosthesis farther into the space while allowing endplates of the prosthesis to articulate. In this method, the endplates of the prosthesis are constrained from articulating when the prosthesis is disposed between the jaws. Again, in some embodiments, the unconstrained endplates articulate about a core of the prosthesis, while in alternative embodiments they may articulate about a ball and socket joint or other structure. Such a method may optionally further include inserting the spacing device at least partway into the space and manipulating the spacing device to increase a height of the space. Any of the additional or alternative features described above may also be applied in various embodiments.
  • In another aspect of the present invention, a device for inserting an intervertebral prosthesis into a space between two adjacent vertebrae includes: an elongate rigid shaft having a proximal end and a distal end; an adjustable grasping member coupled with the distal end for releasably grasping endplates of the intervertebral prosthesis; and an actuator disposed near the proximal end of the shaft and coupled with the grasping member for adjusting the grasping member to grasp and release the prosthesis. The grasping member is adapted to grasp the prosthesis such that the endplates are constrained from articulating and such that the outer diameter of the grasping member does not extend beyond a largest diameter of the endplates. Additionally, the grasping member is adapted for pushing the prosthesis into the space between the two vertebrae either while grasping the prosthesis or after releasing the prosthesis.
  • In some embodiments, the grasping member comprises movable opposing jaws adapted to simultaneously grasp inner rims of the endplates. Such a grasping member may, for example, be coupled with the actuator via at least one rod extending through the shaft. For example, the grasping member may include a first half coupled with a first movable rod extending from the actuator and a second half coupled with a second movable rod extending from the actuator. In some embodiments, the actuator comprises a thumb screw adapted to move the first and second rods closer together and farther apart by turning the thumb screw in opposite directions. In alternative embodiments, the actuator may include, but is not limited to, a trigger, tongs and a movable handle. In a number of embodiments, the device is shaped to pass between two opposable jaws of a vertebral spacing device disposed between the two adjacent vertebrae. Also in some embodiments, the grasping member may be adapted to push the endplates either simultaneously or individually into the space.
  • In another aspect of the present invention, a system for inserting an intervertebral prosthesis into a space between two adjacent vertebrae includes a prosthesis grasping device for grasping the prosthesis and pushing the prosthesis at least partway into the space and at least one prosthesis pusher device for pushing the prosthesis farther into the space. The grasping device is similar to the device described immediately above and may include any of the described features. The pusher device may include: an elongate shaft having a proximal end and a distal end; a concave pusher portion disposed at the distal end, the pusher portion adapted to push the endplates either simultaneously or individually into the space; and a handle disposed at the proximal end.
  • In some embodiments, the system further includes a vertebral spacing device for increasing a height of the space between the two vertebrae. An example of such a spacing device is described in PCT Patent Application Number 2004/000171, which was previously incorporated by reference. In such embodiments, the grasping member is adapted to slide through the vertebral spacing device disposed between two adjacent vertebrae. Optionally, the pusher device may also be adapted to slide through the spacing device.
  • The system may optionally further include a vertebral body midline indicator device for locating a midline on a vertebral body of at least one of the two vertebrae. An example of a midline indicator device is described in PCT Patent Application Number 2004/000170, which was previously incorporated by reference.
  • These and other aspects and embodiments will be described in further detail below, with reference to the drawing figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1E demonstrate a method for inserting an intervertebral disc prosthesis according to one embodiment of the present invention.
  • FIGS. 2A and 2B are top views of a grasping device for inserting an intervertebral disc prosthesis according to one embodiment of the present invention.
  • FIG. 2C is a side view of the distal end of the device in FIGS. 2A and 2B.
  • FIG. 3 is a top view of a pusher device for inserting an intervertebral disc prosthesis according to one embodiment of the present invention.
  • FIGS. 4A-4E are various views of a spreader device for distracting two adjacent vertebrae for inserting an intervertebral disc prosthesis according to one embodiment of the present invention.
  • FIG. 5 demonstrates the spreading action of the spreader device in FIGS. 4A-4E.
  • FIGS. 6A-6D are various views of a vertebral body midline indicator device according to one embodiment of the present invention.
  • FIGS. 7A and 7B demonstrate indication of vertebral midline using the device in FIGS. 6A-6D.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIGS. 1A-1E, in one embodiment a method for inserting an intervertebral disc prosthesis 104 into an intervertebral space IS between two adjacent vertebrae V first involves inserting the disc prosthesis 104 partway into the space IS while the prosthesis 104 is constrained (FIG. 1A). By “constrained” it is meant that endplates 106 of the prosthesis 104 are not free to articulate (move) about a core 112 (FIGS. 1B-1E) of the prosthesis 104. To insert the prosthesis 104 partway under constraint, an insertion device 102 may be used. Such an insertion device 102 may suitably include a grasping member 110 coupled with an elongate shaft 108. At an end opposite the grasping member 110 (not shown), the insertion device 102 may include a handle, an actuator to control the grasping member 110 and/or any other suitable features, some of which are described further below.
  • The prosthesis 104 may be inserted as far into the intervertebral space IS under constraint as is desired. In some embodiments, for example, the prosthesis 104 is inserted under constraint approximately one-third of the way into the space IS. In other embodiments, the prosthesis 104 may be inserted less than one-third of the way, closer to one-half of the way, or any other suitable distance into the space IS.
  • As shown in FIG. 1B, once the prosthesis 104 is inserted partway under constraint, the insertion device 102 may be removed, thus releasing the prosthesis 104 from constraint. From this point forward, the endplates 106 of the prosthesis 104 are free to move about the prosthesis core 112. Examples of such a prosthesis 104 with endplates 106 and core 112 are described by the assignees of the present application in U.S. patent application Ser. Nos. 10/855,817 and 10/855,253, previously incorporated by reference, although any other suitable prosthesis may be used in various embodiments.
  • Referring now to FIGS. 1C-1E, in some embodiments the insertion device 102 may be used to push the unconstrained prosthesis 104 farther into the intervertebral space. In some embodiments, one or more separate pusher devices (not shown) may be used in addition to or instead of the insertion device 102 for pushing the prosthesis 104 farther into the space IS. FIGS. 1C and 1D demonstrate that in one embodiment the grasping member 110 of the insertion device 102 is adapted to push individually against the upper (FIG. 1C) and lower (FIG. 1D) endplates 106. As shown in FIG. 1E, the grasping member 110 may also be adapted to push simultaneously against the upper and lower endplates 106, thus pushing the prosthesis 104 as a unit farther into the intervertebral space IS.
  • By inserting the prosthesis 104 farther into the space IS while it is unconstrained, thus allowing the endplates 106 to articulate about the core 112, the method reduces the need for increasing the height of the intervertebral space IS by distracting the vertebrae V away from each other. Because the endplates 106 are free to articulate, the prosthesis 104 is better able to conform to the intervertebral space IS, thus reducing trauma to the vertebrae V and also limiting trauma to surrounding structures caused by over-distraction.
  • The unconstrained prosthesis 104 may be inserted as far into the intervertebral space IS as is desired. In some embodiments, for example, the prosthesis 104 is pushed far enough into the space IS so that a center of rotation of the prosthesis 104 is closer to a posterior edge P (FIG. 1E) of the vertebrae V than to an anterior edge A of the vertebrae V. In alternative embodiments, any other suitable insertion distance or depth may be used. Once a desired amount of insertion is achieved, the insertion device 102 is removed and the prosthesis 104 is in place between the two adjacent vertebrae V.
  • In various embodiments, the method just described may include fewer steps or additional steps. For example, in one embodiment, a spreader device is inserted between the two vertebrae V to spread them apart before inserting the constrained prosthesis 104. An example of such a spacing device is described in PCT Patent Application Number 2004/000171, previously incorporated by reference. In such embodiments, the insertion device 102 is typically sized to fit between opposing jaws of the spreader device. When the prosthesis 104 is partially inserted, the spreader device is removed from the intervertebral space IS, and the prosthesis 104 is released from constraint and inserted the rest of the way into the space IS. Also in some embodiments, a midline indicator device may be used to facilitate the location of a midline on one or both of the two adjacent vertebrae V. An example of such a midline indicator device is described in PCT Patent Application Number 2004/000170, previously incorporated by reference. Typically, the midline indicator is used before the disc prosthesis 104 is inserted. These and other steps or features may be included in various embodiments of the method without departing from the scope of the invention.
  • Referring now to FIGS. 2A-2C, one embodiment of an insertion device 120 for inserting an intervertebral disc prosthesis 140 suitably includes an elongate shaft 126, a grasping member 122 coupled with the distal end of the shaft 126, and a handle 128 at the proximal end of the shaft 120, including one or more actuators 130 for controlling movement of the grasping member 122. One or more rods 124 or other connectors extend from the grasping member 122 through the shaft 126 to the actuator 130. In the embodiment shown, for example, the grasping member 122 comprises two opposable tongs or jaws, which may be moved closer together or farther apart (double-headed arrows) via the actuator 130 and rods 124. The actuator 130 shown is a thumb screw. In alternative embodiments, scissor-type mechanisms, spring loaded tongs, a triggering mechanism or any other suitable grasping and actuating means may be used. Any suitable material or combination of materials may be used to manufacture the insertion device, including but not limited to stainless steel and/or other suitable metals.
  • As shown in FIG. 2B, the insertion device 120 may grasp a disc prosthesis 140 such that the grasping member 122 does not protrude beyond an outer edge 141 of the prosthesis 140. In other words, the grasping member 122 holds onto an inner portion of the prosthesis 140, so that it will not extend beyond the lateral edges 141 of the prosthesis 140. This configuration is advantageous during insertion, as the grasping member 122 is essentially out of the way, within the outer edge 141 of the prosthesis 140.
  • FIG. 2C is a side view of a distal end of the insertion device 120 shown in FIGS. 2A and 2B. It is more readily seen that the disc prosthesis 140 includes a core 146 and two endplates 142. Each endplate 142 includes an inner rim 144 that contacts the core 146 and a fin 148 for enhancing attachment to vertebral bone. The grasping member 122 of the insertion device 120 grasps the inner rims 144 of the endplates 142, thus positioning it within the outer edges 141 of the endplates 142. Of course, in various embodiments of the methods described herein, any suitable alternative prosthesis may be used, as well as any suitable insertion device (or devices).
  • Referring now to FIG. 3, in some embodiments a separate pusher device 150 may be used to push an unconstrained prosthesis 140 farther into an intervertebral space. The pusher device 150 is typically constructed of stainless steel or other suitable metal and suitably includes an elongate shaft 152, a pusher member 154 at the distal end of the shaft 152, and a handle 158 at the proximal end of the shaft 152. The pusher member 154 includes a concave inner portion 156 for pushing against the inner rims 144 of endplates 142 of the prosthesis 140. The concave portion 156 may be tapered and/or rounded to facilitate pushing against upper and lower endplates 142 individually while also allowing for simultaneous pushing against both endplates 142. In alternative embodiments, the pusher device 150 may have any of a number of alternative configurations, shapes, sizes and the like. In some embodiments, multiple pusher devices 150 of different configurations and/or sizes are provided to allow a physician to select one or more desired devices 150.
  • Referring now to FIGS. 4A-4E, a spreader device 10 for spreading adjacent vertebrae to facilitate intervertebral disc prosthesis 30 insertion is shown. Again, the device 10 is described in greater detail in PCT Patent Application Number 2004/000171, which was previously incorporated by reference. The spreader device 10 generally includes distally located opposable jaws 12, a slidable pusher member 45 and an actuator 15. The opposable jaws 12 are carried by arms 14 which form part of a scissors-type mechanism having a single hinge point 15. Handles 16 on the proximal end of the device are used to manipulate the opposable jaws 12. When the handles 16 are actuated, arms 14 translate the actuation motion to the single hinge point scissors type mechanism 15. This causes the opposable jaws 12 to open or close. The jaws 12 have opposing surfaces 18 formed with ribs 20 and transverse slots 22 which extend for the height of the jaws as seen in FIG. 4B. At their free ends, the jaws 12 are provided with relatively sharp tips or blades 24 having curved extremities 26.
  • FIGS. 4A and 4B illustrate how the handles 14 are inclined relative to the jaws 12. Manipulation of the handles 16 by moving them causes the jaws 12 to open or close. Other embodiments include a double hinge instead of the single hinge 15 which would pivot the jaws apart from one another when the handles 16 are displaced towards one another.
  • The insertion device 10 illustrated in FIGS. 4A-4E is designed for placement of an intervertebral prosthetic disc 30. Such a prosthetic disc 30 comprises opposing endplates 32 which are located on opposite sides of a central core 34. The opposing endplates 32 articulate about the central core 34. The prosthetic disc 30 also comprises projecting fins 36 which are aligned with matching slots 40 in the vertebrae 38 during implantation. Typically slots 40 are saw cut into the vertebrae 38.
  • A method of inserting the intervertebral prosthesis is illustrated in FIGS. 4D and 5. In order to place the prosthesis 30, the vertebrae 38 are distracted by a distance sufficient for at least partial insertion of the prosthesis 30. To achieve this, the tips 24 of the opposable jaws 12 are inserted between the vertebrae 38 with the slots 22 in the opposable jaws 12 aligned with the slots in the vertebrae 40. The handles 16 are then manipulated to force the opposable jaws 12 apart which also forces the vertebrae 38 apart from one another, creating a gap. The prosthesis 30 is then inserted into the gap 42 between the opposable jaws 12 where it is held therein with fins 36 engaged with the corresponding slots 22. The prosthesis 30 is then slipped distally in the gap while being guided by the fins 36 cooperating with the slots 22. The prosthesis 30 is moved through the inter jaw gap and past the jaw tips 24 in order to locate the prosthesis 30 between the vertebrae 38 with fins 36 in the vertebral cut slots 40. The slots 22 in the opposable jaws 12 help to guide the fins 36 into the vertebral cut slots 40.
  • FIG. 4C illustrates the jaws 12 inclined towards one another, in the direction towards the tips 24. The gap 42 between the jaws 12 at the top is large enough for insertion of the prosthesis 30 between them at that point. Therefore, in an alternative method of placing the prosthesis, the prosthesis 30 may be located initially in the gap 42 and then it may be pushed down towards the tip 24, forcing the jaws 12 open and similarly forcing the vertebrae 38 apart from one another. A pusher 45 may be used to hold, position and drive the prosthesis 30 during the placement procedure. A force may be applied manually to pusher 45 or it may be tapped on the upper end to drive the prosthesis downward.
  • Alternatively, the prosthesis placement procedure may be modified so that the initial distraction of the vertebra 38 is achieved by manipulation of the handles 16 and then a force may be applied manually to the pusher 45 or it may be tapped in order to create the final intervertebral gap and placement of the prosthesis 30. The spreader device 10 serves both to facilitate insertion of the prosthesis 30 between the vertebrae 38 and also to ensure that the prosthesis 30 is accurately guided into position with its fins 36 lined up with the vertebral slots 40.
  • FIG. 5 shows in greater detail (solid-tipped arrows) the various motions involved in inserting the spreader device 10 into the intervertebral space and manipulating the handles 16 to force open the jaws 12 and thus increased the height of the intervertebral space between the two adjacent vertebrae 38. As mentioned above, use of this or other spreader devices 10 is optional and is not required in all embodiments.
  • FIGS. 6A-6D show another optional device for use in the insertion methods of the present invention. As mentioned above, a midline indicator device 210 such as the one shown is described in greater detail in PCT Patent Application Number 2004/000170, which was previously incorporated by reference. The midline indicator 210 suitably includes an elongate shaft 212 and a body 214 coupled with one end of the shaft 212. The shaft 212 may be made of one or more radiopaque materials, such as but not limited to stainless steel, titanium or the like. Alternatively, the shaft 212 may be radiolucent. The body 214 is made of one or more radiolucent materials, such as a polymer, so that it is not visible on radiographs. Embedded in the body 214 are two elongate radiopaque markers 216, also made of any suitable radiopaque material(s). The markers 216 are parallel to the shaft 212 and are located on opposite sides and equidistant from the shaft 212.
  • FIGS. 7A and 7B demonstrate a method for using the midline indicator to find a vertebral body midline 222. FIG. 7A shows, in anterior view, adjacent upper 218 and lower 220 vertebrae. To determine the midline 222, the surgeon uses the shaft 212 to insert the body 214 between the vertebrae 218, 220. The surgeon then attempts to position the shaft 212 at the vertebral midline 222, and a radiograph is taken of the vertebrae 218, 220 and indicator 210 from the anterior-posterior (A-P) direction. The surgeon then examines the radiograph to determine whether the markers 216 are equidistant laterally from the lateral osseous edges 223 of the vertebrae 218, 220--i.e., that the distance 225 is the same on both sides, and that the markers 216 are aligned with the pedicles.
  • Additionally, if the shaft 212 and markers 216 are properly aligned in the A-P direction, they will appear as dots on the radiograph. If the midline indicator 210 is turned, however, as is demonstrated by the dotted lines in FIG. 7B, the shaft 212 and markers 216 will show up as lines or stretched-out dots on the radiograph. The A-P direction of the radiograph is shown by 224, with misalignment of the indicator 210 shown by angles .theta.. By consulting one or more radiographs and manipulating the indicator 210, the surgeon positions the handle 212 of the indicator 210 at the vertebral midline 222. The surgeon may then make a mark 226 in one or more vertebrae 218, 220 to indicate the midline 222. The mark 226 may be made by any suitable means, such as by burning with an electrocautery device, marking with a marking pen, inserting a pin, or the like. After one or more midline marks 226 are made, the midline indicator 210 is removed and the disc prosthesis (not shown) is inserted. Again, the midline finding step is optional.
  • Although the foregoing is a complete and accurate description of the invention, any suitable modifications, additions or the like may be made to the various embodiments without departing from the scope of the invention. Therefore, nothing described above should be interpreted as limiting the scope of the invention as it is described in the following claims.

Claims (1)

1. A device for inserting an intervertebral prosthesis into a space between two adjacent vertebrae, the device comprising:
an elongate rigid shaft having a proximal end and a distal end;
an adjustable grasping member coupled with the distal end for releasably grasping endplates of the intervertebral prosthesis such that the endplates are constrained from articulating and such that an outer diameter of the grasping member does not extend beyond a largest diameter of the endplates; and
an actuator disposed near the proximal end of the shaft and coupled with the grasping member for adjusting the grasping member to grasp and release the prosthesis, wherein the grasping member is adapted for pushing the prosthesis into the space between the two vertebrae either while grasping the prosthesis or after releasing the prosthesis.
US13/619,352 2004-08-06 2012-09-14 Methods and apparatus for intervertebral disc prosthesis Abandoned US20130013073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/619,352 US20130013073A1 (en) 2004-08-06 2012-09-14 Methods and apparatus for intervertebral disc prosthesis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/913,780 US7585326B2 (en) 2004-08-06 2004-08-06 Methods and apparatus for intervertebral disc prosthesis insertion
US12/044,175 US20080154301A1 (en) 2004-08-06 2008-03-07 Methods and Apparatus for Intervertebral Disc Prosthesis Insertion
US13/619,352 US20130013073A1 (en) 2004-08-06 2012-09-14 Methods and apparatus for intervertebral disc prosthesis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/044,175 Continuation US20080154301A1 (en) 2004-08-06 2008-03-07 Methods and Apparatus for Intervertebral Disc Prosthesis Insertion

Publications (1)

Publication Number Publication Date
US20130013073A1 true US20130013073A1 (en) 2013-01-10

Family

ID=35758387

Family Applications (13)

Application Number Title Priority Date Filing Date
US10/913,780 Active 2027-06-11 US7585326B2 (en) 2004-08-06 2004-08-06 Methods and apparatus for intervertebral disc prosthesis insertion
US12/044,165 Active 2027-02-04 US8206447B2 (en) 2004-08-06 2008-03-07 Methods and apparatus for intervertebral disc prosthesis insertion
US12/044,175 Abandoned US20080154301A1 (en) 2004-08-06 2008-03-07 Methods and Apparatus for Intervertebral Disc Prosthesis Insertion
US12/650,231 Active US8974531B2 (en) 2004-08-06 2009-12-30 Methods and apparatus for intervertebral disc prosthesis insertion
US13/619,352 Abandoned US20130013073A1 (en) 2004-08-06 2012-09-14 Methods and apparatus for intervertebral disc prosthesis
US14/612,550 Active 2025-06-26 US10085853B2 (en) 2004-08-06 2015-02-03 Methods and apparatus for intervertebral disc prosthesis insertion
US15/151,332 Abandoned US20160250041A1 (en) 2004-08-06 2016-05-10 Methods and apparatus for intervertebral disc prosthesis insertion
US15/151,319 Abandoned US20160250036A1 (en) 2004-08-06 2016-05-10 Methods and apparatus for intervertebral disc prosthesis insertion
US15/387,495 Active US9839532B2 (en) 2004-08-06 2016-12-21 Methods and apparatus for intervertebral disc prosthesis insertion
US15/387,520 Active US10130494B2 (en) 2004-08-06 2016-12-21 Methods and apparatus for intervertebral disc prosthesis insertion
US15/465,451 Active US9956091B2 (en) 2004-08-06 2017-03-21 Methods and apparatus for intervertebral disc prosthesis insertion
US16/122,805 Active 2024-09-15 US10888437B2 (en) 2004-08-06 2018-09-05 Methods and apparatus for intervertebral disc prosthesis insertion
US17/111,357 Active 2025-07-23 US11857438B2 (en) 2004-08-06 2020-12-03 Methods and apparatus for intervertebral disc prosthesis insertion

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/913,780 Active 2027-06-11 US7585326B2 (en) 2004-08-06 2004-08-06 Methods and apparatus for intervertebral disc prosthesis insertion
US12/044,165 Active 2027-02-04 US8206447B2 (en) 2004-08-06 2008-03-07 Methods and apparatus for intervertebral disc prosthesis insertion
US12/044,175 Abandoned US20080154301A1 (en) 2004-08-06 2008-03-07 Methods and Apparatus for Intervertebral Disc Prosthesis Insertion
US12/650,231 Active US8974531B2 (en) 2004-08-06 2009-12-30 Methods and apparatus for intervertebral disc prosthesis insertion

Family Applications After (8)

Application Number Title Priority Date Filing Date
US14/612,550 Active 2025-06-26 US10085853B2 (en) 2004-08-06 2015-02-03 Methods and apparatus for intervertebral disc prosthesis insertion
US15/151,332 Abandoned US20160250041A1 (en) 2004-08-06 2016-05-10 Methods and apparatus for intervertebral disc prosthesis insertion
US15/151,319 Abandoned US20160250036A1 (en) 2004-08-06 2016-05-10 Methods and apparatus for intervertebral disc prosthesis insertion
US15/387,495 Active US9839532B2 (en) 2004-08-06 2016-12-21 Methods and apparatus for intervertebral disc prosthesis insertion
US15/387,520 Active US10130494B2 (en) 2004-08-06 2016-12-21 Methods and apparatus for intervertebral disc prosthesis insertion
US15/465,451 Active US9956091B2 (en) 2004-08-06 2017-03-21 Methods and apparatus for intervertebral disc prosthesis insertion
US16/122,805 Active 2024-09-15 US10888437B2 (en) 2004-08-06 2018-09-05 Methods and apparatus for intervertebral disc prosthesis insertion
US17/111,357 Active 2025-07-23 US11857438B2 (en) 2004-08-06 2020-12-03 Methods and apparatus for intervertebral disc prosthesis insertion

Country Status (6)

Country Link
US (13) US7585326B2 (en)
EP (2) EP3241529B1 (en)
JP (2) JP4580986B2 (en)
KR (1) KR20070048712A (en)
WO (1) WO2006017397A2 (en)
ZA (1) ZA200700943B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9839532B2 (en) 2004-08-06 2017-12-12 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
US20040010317A1 (en) * 1999-08-18 2004-01-15 Gregory Lambrecht Devices and method for augmenting a vertebral disc
US7220281B2 (en) * 1999-08-18 2007-05-22 Intrinsic Therapeutics, Inc. Implant for reinforcing and annulus fibrosis
US6936072B2 (en) * 1999-08-18 2005-08-30 Intrinsic Therapeutics, Inc. Encapsulated intervertebral disc prosthesis and methods of manufacture
US7553329B2 (en) * 1999-08-18 2009-06-30 Intrinsic Therapeutics, Inc. Stabilized intervertebral disc barrier
WO2009033100A1 (en) 2007-09-07 2009-03-12 Intrinsic Therapeutics, Inc. Bone anchoring systems
US8323341B2 (en) * 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US7998213B2 (en) 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
MXPA03003600A (en) * 1999-08-18 2004-12-02 Intrinsic Orthopedics Inc Devices and method for nucleus pulposus augmentation and retention.
EP1624832A4 (en) 1999-08-18 2008-12-24 Intrinsic Therapeutics Inc Devices and method for augmenting a vertebral disc nucleus
US8038713B2 (en) 2002-04-23 2011-10-18 Spinecore, Inc. Two-component artificial disc replacements
US20080027548A9 (en) 2002-04-12 2008-01-31 Ferree Bret A Spacerless artificial disc replacements
US6706068B2 (en) 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
JP4429909B2 (en) 2002-09-19 2010-03-10 ビリアーズ, マラン デ Intervertebral prosthesis
WO2004066884A1 (en) 2003-01-31 2004-08-12 Spinalmotion, Inc. Intervertebral prosthesis placement instrument
JP4398975B2 (en) 2003-01-31 2010-01-13 スパイナルモーション, インコーポレイテッド Spinal cord midline indicator
US6908484B2 (en) 2003-03-06 2005-06-21 Spinecore, Inc. Cervical disc replacement
US10052211B2 (en) 2003-05-27 2018-08-21 Simplify Medical Pty Ltd. Prosthetic disc for intervertebral insertion
US7575599B2 (en) 2004-07-30 2009-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
ZA200509644B (en) 2003-05-27 2007-03-28 Spinalmotion Inc Prosthetic disc for intervertebral insertion
US20090076614A1 (en) * 2007-09-17 2009-03-19 Spinalmotion, Inc. Intervertebral Prosthetic Disc with Shock Absorption Core
US20040260300A1 (en) * 2003-06-20 2004-12-23 Bogomir Gorensek Method of delivering an implant through an annular defect in an intervertebral disc
DK1638485T3 (en) 2003-06-20 2011-05-02 Intrinsic Therapeutics Inc Device for delivery of an implant through an annular defect in an intervertebral disc
US20050177245A1 (en) * 2004-02-05 2005-08-11 Leatherbury Neil C. Absorbable orthopedic implants
US8083797B2 (en) 2005-02-04 2011-12-27 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US7867237B2 (en) * 2005-10-31 2011-01-11 Depuy Spine, Inc. Arthroplasty revision device and method
US20070168040A1 (en) * 2006-01-17 2007-07-19 Douglas Raymond Motion disc spike seating instrument
EP2007322A4 (en) 2006-04-12 2011-10-26 Spinalmotion Inc Posterior spinal device and method
US8062303B2 (en) * 2006-08-16 2011-11-22 K2M, Inc. Apparatus and methods for inserting an implant
US8273124B2 (en) * 2007-05-17 2012-09-25 Depuy Spine, Inc. Self-distracting cage
US8579910B2 (en) 2007-05-18 2013-11-12 DePuy Synthes Products, LLC Insertion blade assembly and method of use
US20090043391A1 (en) 2007-08-09 2009-02-12 Spinalmotion, Inc. Customized Intervertebral Prosthetic Disc with Shock Absorption
EP2209444A4 (en) 2007-10-22 2013-03-27 Spinalmotion Inc Dynamic spacer device and method for spanning a space formed upon removal of an intervertebral disc
US8858563B2 (en) * 2007-10-30 2014-10-14 Hipco, Inc. Device and method for hip distention and access
WO2009094477A1 (en) * 2008-01-25 2009-07-30 Spinalmotion, Inc. Compliant implantable prosthetic joint with preloaded spring
US8088163B1 (en) 2008-02-06 2012-01-03 Kleiner Jeffrey B Tools and methods for spinal fusion
US8343163B1 (en) 2008-02-14 2013-01-01 Nuvasive, Inc. Spinal implant installation device
US8840622B1 (en) 2008-02-14 2014-09-23 Nuvasive, Inc. Implant installation assembly and related methods
US8449554B2 (en) 2008-03-07 2013-05-28 K2M, Inc. Intervertebral implant and instrument with removable section
US8764833B2 (en) * 2008-03-11 2014-07-01 Spinalmotion, Inc. Artificial intervertebral disc with lower height
US8377135B1 (en) * 2008-03-31 2013-02-19 Nuvasive, Inc. Textile-based surgical implant and related methods
US9034038B2 (en) * 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
WO2009137514A1 (en) 2008-05-05 2009-11-12 Spinalmotion, Inc. Polyaryletherketone artificial intervertebral disc
US9220603B2 (en) * 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
EP2299944A4 (en) * 2008-07-17 2013-07-31 Spinalmotion Inc Artificial intervertebral disc placement system
WO2010009153A1 (en) 2008-07-18 2010-01-21 Spinalmotion, Inc. Posterior prosthetic intervertebral disc
USD853560S1 (en) 2008-10-09 2019-07-09 Nuvasive, Inc. Spinal implant insertion device
US8382767B2 (en) * 2008-10-31 2013-02-26 K2M, Inc. Implant insertion tool
US8366748B2 (en) 2008-12-05 2013-02-05 Kleiner Jeffrey Apparatus and method of spinal implant and fusion
US8864654B2 (en) 2010-04-20 2014-10-21 Jeffrey B. Kleiner Method and apparatus for performing retro peritoneal dissection
US9717403B2 (en) 2008-12-05 2017-08-01 Jeffrey B. Kleiner Method and apparatus for performing retro peritoneal dissection
US10045860B2 (en) 2008-12-19 2018-08-14 Amicus Design Group, Llc Interbody vertebral prosthetic device with self-deploying screws
US9247943B1 (en) 2009-02-06 2016-02-02 Kleiner Intellectual Property, Llc Devices and methods for preparing an intervertebral workspace
USD656610S1 (en) 2009-02-06 2012-03-27 Kleiner Jeffrey B Spinal distraction instrument
US8292962B2 (en) * 2009-03-04 2012-10-23 Warsaw Orthopedic, Inc. Spinal nucleus replacement implants
USD723682S1 (en) 2013-05-03 2015-03-03 Spinal Surgical Strategies, Llc Bone graft delivery tool
US20170238984A1 (en) 2009-09-18 2017-08-24 Spinal Surgical Strategies, Llc Bone graft delivery device with positioning handle
US9173694B2 (en) 2009-09-18 2015-11-03 Spinal Surgical Strategies, Llc Fusion cage with combined biological delivery system
US10973656B2 (en) 2009-09-18 2021-04-13 Spinal Surgical Strategies, Inc. Bone graft delivery system and method for using same
US9629729B2 (en) 2009-09-18 2017-04-25 Spinal Surgical Strategies, Llc Biological delivery system with adaptable fusion cage interface
USD750249S1 (en) 2014-10-20 2016-02-23 Spinal Surgical Strategies, Llc Expandable fusion cage
US8685031B2 (en) 2009-09-18 2014-04-01 Spinal Surgical Strategies, Llc Bone graft delivery system
US9060877B2 (en) 2009-09-18 2015-06-23 Spinal Surgical Strategies, Llc Fusion cage with combined biological delivery system
US10245159B1 (en) 2009-09-18 2019-04-02 Spinal Surgical Strategies, Llc Bone graft delivery system and method for using same
US8906028B2 (en) 2009-09-18 2014-12-09 Spinal Surgical Strategies, Llc Bone graft delivery device and method of using the same
US9186193B2 (en) 2009-09-18 2015-11-17 Spinal Surgical Strategies, Llc Fusion cage with combined biological delivery system
US20110112639A1 (en) * 2009-11-06 2011-05-12 Moximed, Inc. Positioning Systems and Methods for Implanting an Energy Absorbing System
PL217567B1 (en) * 2010-03-03 2014-07-31 Lfc Spółka Z Ograniczoną Odpowiedzialnością Prosthesis of anterior spinal column, prosthesis guiding tool and method for the implantation thereof
US8425529B2 (en) 2010-09-30 2013-04-23 Stryker Spine Instrument for inserting surgical implant with guiding rail
US8858637B2 (en) 2010-09-30 2014-10-14 Stryker Spine Surgical implant with guiding rail
US8603175B2 (en) 2010-09-30 2013-12-10 Stryker Spine Method of inserting surgical implant with guiding rail
US8617240B2 (en) * 2010-11-17 2013-12-31 Charles D. Hightower Moldable cushion for implants
US9039710B2 (en) 2010-12-07 2015-05-26 Zimmer, Inc. Prosthetic inserter
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
US8801793B2 (en) 2011-01-18 2014-08-12 Warsaw Orthopedic, Inc. Interbody containment implant
US20120197299A1 (en) * 2011-01-28 2012-08-02 Fabian Jr Henry F Spine surgery method and implant deployment
US8540721B2 (en) 2011-04-04 2013-09-24 Amicus Design Group, Llc Adjustable apparatus and methods for inserting an implant
US8632593B2 (en) * 2011-11-23 2014-01-21 Globus Medical, Inc. Stabilizing vertebrae with expandable spacers
US8685104B2 (en) 2012-03-19 2014-04-01 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9566165B2 (en) 2012-03-19 2017-02-14 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US20140172104A1 (en) * 2012-12-18 2014-06-19 Alphatec Spine, Inc. Instrument for insertion and deployment of an implant
CN105310758B (en) * 2015-03-18 2017-08-01 周军 A kind of intervertebral disk stabilizer and its application method
US10206785B2 (en) 2015-07-03 2019-02-19 Simplify Medical Pty Ltd Methods and systems for enhancing radiographic images of radiolucent implants
USD797290S1 (en) 2015-10-19 2017-09-12 Spinal Surgical Strategies, Llc Bone graft delivery tool
US9943414B2 (en) * 2015-12-30 2018-04-17 Wasas, Llc. System and method for non-binding allograft subtalar joint implant
USD814634S1 (en) * 2017-01-17 2018-04-03 Paragon 28, Inc. Wedge insert
WO2018151859A1 (en) 2017-02-16 2018-08-23 Paragon 28, Inc. Implants, devices, systems, kits and methods of implanting
PT3595668T (en) 2017-03-15 2021-10-21 Silverback Therapeutics Inc Benzazepine compounds, conjugates, and uses thereof
US10932922B2 (en) * 2018-04-20 2021-03-02 JWD Products, LLC Spinal implant insertion tool
US11324609B2 (en) * 2018-04-20 2022-05-10 JWD Products, LLC Spinal implant insertion tool
US11819424B2 (en) 2018-09-24 2023-11-21 Simplify Medical Pty Ltd Robot assisted intervertebral disc prosthesis selection and implantation system
US11648058B2 (en) 2018-09-24 2023-05-16 Simplify Medical Pty Ltd Robotic system and method for bone preparation for intervertebral disc prosthesis implantation
US11160672B2 (en) 2018-09-24 2021-11-02 Simplify Medical Pty Ltd Robotic systems and methods for distraction in intervertebral disc prosthesis implantation
US11219536B2 (en) * 2019-05-01 2022-01-11 Simplify Medical Pty Ltd Intervertebral prosethetic disc placement and removal systems
US11452618B2 (en) 2019-09-23 2022-09-27 Dimicron, Inc Spinal artificial disc removal tool
EP4034002A4 (en) 2019-09-24 2023-11-01 Simplify Medical Pty Limited Surgical cutter instrument with trial
WO2021168274A1 (en) 2020-02-21 2021-08-26 Silverback Therapeutics, Inc. Nectin-4 antibody conjugates and uses thereof
TW202216211A (en) 2020-07-01 2022-05-01 美商希沃爾拜克治療公司 Anti-asgr1 antibody conjugates and uses thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314477A (en) * 1990-03-07 1994-05-24 J.B.S. Limited Company Prosthesis for intervertebral discs and instruments for implanting it
US6159215A (en) * 1997-12-19 2000-12-12 Depuy Acromed, Inc. Insertion instruments and method for delivering a vertebral body spacer
US6319257B1 (en) * 1999-12-20 2001-11-20 Kinamed, Inc. Inserter assembly
US6554864B2 (en) * 2001-07-16 2003-04-29 Spinecore, Inc Surgical method of treating scoliosis
US20040225295A1 (en) * 2001-07-16 2004-11-11 Rafail Zubok Wedge ramp distractor and related methods for use in implanting artificial intervertebral discs
US20050021042A1 (en) * 2003-07-21 2005-01-27 Theirry Marnay Instruments and method for inserting an intervertebral implant
US20050033305A1 (en) * 2003-07-08 2005-02-10 Robert Schultz Surgical instrument for handling an implant
US20050143749A1 (en) * 2003-12-31 2005-06-30 Depuy Spine, Inc. Inserter instrument and implant clip
US20060030860A1 (en) * 2004-07-23 2006-02-09 Sdgi Holdings, Inc. Artificial disc inserter
US8348958B2 (en) * 2001-07-16 2013-01-08 Spinecore, Inc. Insertion tool for use with intervertebral spacers
US8388684B2 (en) * 2002-05-23 2013-03-05 Pioneer Signal Technology, Inc. Artificial disc device

Family Cites Families (364)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486505A (en) 1967-05-22 1969-12-30 Gordon M Morrison Orthopedic surgical instrument
CA992255A (en) * 1971-01-25 1976-07-06 Cutter Laboratories Prosthesis for spinal repair
CH640131A5 (en) 1979-10-03 1983-12-30 Sulzer Ag Complete intervertebral prosthesis
US4309777A (en) * 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4531917A (en) 1984-04-02 1985-07-30 Linkow Leonard I Detachable post for an osseous implant
US4566466A (en) 1984-04-16 1986-01-28 Ripple Dale B Surgical instrument
EP0176728B1 (en) 1984-09-04 1989-07-26 Humboldt-Universität zu Berlin Intervertebral-disc prosthesis
US4619660A (en) 1984-10-15 1986-10-28 Christiansen Jean E Compressible rotational artificial joint
JPS61122859U (en) 1985-01-19 1986-08-02
US4673407A (en) 1985-02-20 1987-06-16 Martin Daniel L Joint-replacement prosthetic device
JPH07121265B2 (en) 1986-12-26 1995-12-25 京セラ株式会社 Cervical artificial disc
CH671691A5 (en) 1987-01-08 1989-09-29 Sulzer Ag
US4834757A (en) * 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
CA1283501C (en) 1987-02-12 1991-04-30 Thomas P. Hedman Artificial spinal disc
JPS63164948U (en) 1987-04-13 1988-10-27
US4863477A (en) 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
CH672589A5 (en) * 1987-07-09 1989-12-15 Sulzer Ag
GB8718627D0 (en) * 1987-08-06 1987-09-09 Showell A W Sugicraft Ltd Spinal implants
JPH01136655A (en) 1987-11-24 1989-05-29 Asahi Optical Co Ltd Movable type pyramid spacer
US4874389A (en) 1987-12-07 1989-10-17 Downey Ernest L Replacement disc
US5195526A (en) 1988-03-11 1993-03-23 Michelson Gary K Spinal marker needle
DE3809793A1 (en) 1988-03-23 1989-10-05 Link Waldemar Gmbh Co SURGICAL INSTRUMENT SET
US5593409A (en) 1988-06-13 1997-01-14 Sofamor Danek Group, Inc. Interbody spinal fusion implants
US5015247A (en) 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5484437A (en) 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5772661A (en) * 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
AU7139994A (en) 1988-06-13 1995-01-03 Karlin Technology, Inc. Apparatus and method of inserting spinal implants
US5609635A (en) 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
CA1318469C (en) 1989-02-15 1993-06-01 Acromed Corporation Artificial disc
JPH067391Y2 (en) 1989-03-31 1994-02-23 武藤工業株式会社 XY plotter with coordinate reading function
DE8912648U1 (en) * 1989-10-23 1990-11-22 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US5057108A (en) 1990-01-12 1991-10-15 Zimmer, Inc. Method of surface finishing orthopedic implant devices
GB9110778D0 (en) 1991-05-18 1991-07-10 Middleton Jeffrey K Apparatus for use in surgery
US5320644A (en) 1991-08-30 1994-06-14 Sulzer Brothers Limited Intervertebral disk prosthesis
US20040015236A1 (en) 1991-11-18 2004-01-22 Sarfarazi Faezeh M. Sarfarazi elliptical accommodative intraocular lens for small incision surgery
GB9125798D0 (en) 1991-12-04 1992-02-05 Customflex Limited Improvements in or relating to spinal vertebrae implants
US5258031A (en) 1992-01-06 1993-11-02 Danek Medical Intervertebral disk arthroplasty
DK0555033T3 (en) 1992-02-07 1999-12-13 Smith & Nephew Inc Surface-cured, biocompatible metal medical implants
US5282861A (en) 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
DE4208115A1 (en) 1992-03-13 1993-09-16 Link Waldemar Gmbh Co DISC ENDOPROTHESIS
DE4208116C2 (en) 1992-03-13 1995-08-03 Link Waldemar Gmbh Co Intervertebral disc prosthesis
DE59206917D1 (en) 1992-04-21 1996-09-19 Sulzer Medizinaltechnik Ag Artificial intervertebral disc body
US5282661A (en) 1992-06-30 1994-02-01 Steyr-Daimler-Puch Ag Collapsible driver's cab for a truck
DE4233978C1 (en) * 1992-10-08 1994-04-21 Leibinger Gmbh Body marking device for medical examinations
US5676701A (en) 1993-01-14 1997-10-14 Smith & Nephew, Inc. Low wear artificial spinal disc
DE69428143T2 (en) 1993-02-09 2002-05-29 Depuy Acromed Inc disc
AU683243B2 (en) * 1993-02-10 1997-11-06 Zimmer Spine, Inc. Spinal stabilization surgical tool set
PT1092395E (en) * 1993-06-10 2004-08-31 Karlin Technology Inc PROTECTIVE DEVICE HAVING A FIRST AND SECOND PASSAGE FOR SPECIAL DISORDER SURGERY
FR2707480B1 (en) 1993-06-28 1995-10-20 Bisserie Michel Intervertebral disc prosthesis.
US5899911A (en) 1993-08-25 1999-05-04 Inlet Medical, Inc. Method of using needle-point suture passer to retract and reinforce ligaments
US5462575A (en) 1993-12-23 1995-10-31 Crs Holding, Inc. Co-Cr-Mo powder metallurgy articles and process for their manufacture
US5458642A (en) 1994-01-18 1995-10-17 Beer; John C. Synthetic intervertebral disc
US6290726B1 (en) 2000-01-30 2001-09-18 Diamicron, Inc. Prosthetic hip joint having sintered polycrystalline diamond compact articulation surfaces
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
TW316844B (en) 1994-12-09 1997-10-01 Sofamor Danek Group Inc
FR2728159B1 (en) 1994-12-16 1997-06-27 Tornier Sa ELASTIC DISC PROSTHESIS
US6245072B1 (en) * 1995-03-27 2001-06-12 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US5782919A (en) 1995-03-27 1998-07-21 Sdgi Holdings, Inc. Interbody fusion device and method for restoration of normal spinal anatomy
US5683391A (en) 1995-06-07 1997-11-04 Danek Medical, Inc. Anterior spinal instrumentation and method for implantation and revision
US5782830A (en) * 1995-10-16 1998-07-21 Sdgi Holdings, Inc. Implant insertion device
US5709683A (en) 1995-12-19 1998-01-20 Spine-Tech, Inc. Interbody bone implant having conjoining stabilization features for bony fusion
US5683465A (en) 1996-03-18 1997-11-04 Shinn; Gary Lee Artificial intervertebral disk prosthesis
US6159214A (en) 1996-07-31 2000-12-12 Michelson; Gary K. Milling instrumentation and method for preparing a space between adjacent vertebral bodies
US5782832A (en) 1996-10-01 1998-07-21 Surgical Dynamics, Inc. Spinal fusion implant and method of insertion thereof
WO1998017209A2 (en) * 1996-10-23 1998-04-30 Sdgi Holdings, Inc. Spinal spacer
US5895428A (en) 1996-11-01 1999-04-20 Berry; Don Load bearing spinal joint implant
US5836948A (en) 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US5728159A (en) 1997-01-02 1998-03-17 Musculoskeletal Transplant Foundation Serrated bone graft
US6712819B2 (en) * 1998-10-20 2004-03-30 St. Francis Medical Technologies, Inc. Mating insertion instruments for spinal implants and methods of use
US6039761A (en) 1997-02-12 2000-03-21 Li Medical Technologies, Inc. Intervertebral spacer and tool and method for emplacement thereof
IL128261A0 (en) 1999-01-27 1999-11-30 Disc O Tech Medical Tech Ltd Expandable element
ATE225150T1 (en) 1997-04-15 2002-10-15 Synthes Ag TELESCOPIC VERTERAL PROSTHESIS
US6022376A (en) 1997-06-06 2000-02-08 Raymedica, Inc. Percutaneous prosthetic spinal disc nucleus and method of manufacture
US6146421A (en) 1997-08-04 2000-11-14 Gordon, Maya, Roberts And Thomas, Number 1, Llc Multiple axis intervertebral prosthesis
WO1999009897A1 (en) 1997-08-22 1999-03-04 Karl Storz Gmbh & Co. Device for destroying or fragmenting concretions
US5865848A (en) 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
US5824094A (en) 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
US20010016773A1 (en) 1998-10-15 2001-08-23 Hassan Serhan Spinal disc
WO1999021501A1 (en) 1997-10-27 1999-05-06 Saint Francis Medical Technologies, Llc Spine distraction implant
US6139579A (en) 1997-10-31 2000-10-31 Depuy Motech Acromed, Inc. Spinal disc
US5888226A (en) 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US6162252A (en) 1997-12-12 2000-12-19 Depuy Acromed, Inc. Artificial spinal disc
US6086613A (en) 1997-12-23 2000-07-11 Depuy Acromed, Inc. Spacer assembly for use in spinal surgeries
US6986788B2 (en) * 1998-01-30 2006-01-17 Synthes (U.S.A.) Intervertebral allograft spacer
US6143033A (en) 1998-01-30 2000-11-07 Synthes (Usa) Allogenic intervertebral implant
US5989291A (en) 1998-02-26 1999-11-23 Third Millennium Engineering, Llc Intervertebral spacer device
WO1999049818A1 (en) 1998-03-30 1999-10-07 Marchosky J Alexander Prosthetic system
US6679915B1 (en) * 1998-04-23 2004-01-20 Sdgi Holdings, Inc. Articulating spinal implant
US6019792A (en) 1998-04-23 2000-02-01 Cauthen Research Group, Inc. Articulating spinal implant
US6132465A (en) 1998-06-04 2000-10-17 Raymedica, Inc. Tapered prosthetic spinal disc nucleus
US6083228A (en) 1998-06-09 2000-07-04 Michelson; Gary K. Device and method for preparing a space between adjacent vertebrae to receive an insert
EP1681021A3 (en) 1998-06-09 2009-04-15 Warsaw Orthopedic, Inc. Abrading element for preparing a space between adjacent vertebral bodies
US6126689A (en) 1998-06-15 2000-10-03 Expanding Concepts, L.L.C. Collapsible and expandable interbody fusion device
US6136031A (en) 1998-06-17 2000-10-24 Surgical Dynamics, Inc. Artificial intervertebral disc
US5989251A (en) 1998-06-17 1999-11-23 Surgical Dynamics, Inc. Apparatus for spinal stabilization
US6296664B1 (en) 1998-06-17 2001-10-02 Surgical Dynamics, Inc. Artificial intervertebral disc
GB2338652A (en) * 1998-06-23 1999-12-29 Biomet Merck Ltd Vertebral body replacement
US6231609B1 (en) 1998-07-09 2001-05-15 Hamid M. Mehdizadeh Disc replacement prosthesis
US5928284A (en) 1998-07-09 1999-07-27 Mehdizadeh; Hamid M. Disc replacement prosthesis
AU748746B2 (en) 1998-07-22 2002-06-13 Spinal Dynamics Corporation Threaded cylindrical multidiscoid single or multiple array disc prosthesis
WO2000007527A1 (en) 1998-08-03 2000-02-17 Synthes Ag Chur Intervertebral allograft spacer
US6336941B1 (en) * 1998-08-14 2002-01-08 G. V. Subba Rao Modular hip implant with shock absorption system
WO2000013619A1 (en) 1998-09-04 2000-03-16 Spinal Dynamics Corporation Peanut spectacle multi discoid thoraco-lumbar disc prosthesis
EP1117335B1 (en) 1998-10-02 2009-03-25 Synthes GmbH Spinal disc space distractor
US6039763A (en) 1998-10-27 2000-03-21 Disc Replacement Technologies, Inc. Articulating spinal disc prosthesis
US6174311B1 (en) * 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
US6193757B1 (en) * 1998-10-29 2001-02-27 Sdgi Holdings, Inc. Expandable intervertebral spacers
FR2787016B1 (en) 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISK PROSTHESIS
FR2787014B1 (en) 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH REDUCED FRICTION
FR2787015B1 (en) 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH COMPRESSIBLE BODY
FR2787017B1 (en) 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR
FR2787018B1 (en) 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH LIQUID ENCLOSURE
US6322567B1 (en) 1998-12-14 2001-11-27 Integrated Surgical Systems, Inc. Bone motion tracking system
US6547823B2 (en) 1999-01-22 2003-04-15 Osteotech, Inc. Intervertebral implant
EP1217961B1 (en) 1999-01-25 2010-04-21 Warsaw Orthopedic, Inc. Instrument for creating an intervertebral space for receiving an implant
DE29901611U1 (en) 1999-01-30 1999-04-22 Aesculap Ag & Co Kg Surgical instrument for inserting intervertebral implants
US6743234B2 (en) * 1999-02-04 2004-06-01 Sdgi Holdings, Inc. Methods and instrumentation for vertebral interbody fusion
US6648895B2 (en) * 2000-02-04 2003-11-18 Sdgi Holdings, Inc. Methods and instrumentation for vertebral interbody fusion
US6368350B1 (en) 1999-03-11 2002-04-09 Sulzer Spine-Tech Inc. Intervertebral disc prosthesis and method
US20050234553A1 (en) 1999-05-17 2005-10-20 Vanderbilt University Intervertebral disc replacement prothesis
US6964686B2 (en) 1999-05-17 2005-11-15 Vanderbilt University Intervertebral disc replacement prosthesis
ATE235863T1 (en) 1999-05-21 2003-04-15 Link Waldemar Gmbh Co INTERVERBARY ENDOPROSTHESIS WITH A TOOTHED CONNECTION PLATE
ES2238290T3 (en) 1999-06-04 2005-09-01 Sdgi Holdings, Inc. IMPLANT OF ARTIFICIAL DISK.
US6520996B1 (en) 1999-06-04 2003-02-18 Depuy Acromed, Incorporated Orthopedic implant
BR9917397A (en) 1999-07-02 2002-03-05 Spine Solutions Inc Intervertebral Implant
US7201776B2 (en) * 1999-10-08 2007-04-10 Ferree Bret A Artificial intervertebral disc replacements with endplates
CN1180751C (en) 1999-08-27 2004-12-22 库尔斯恩蒂斯股份公司 Intervertebral implant
MXPA02002672A (en) 1999-09-14 2003-10-14 Spine Solutions Inc Instrument for inserting intervertebral implants.
US6264695B1 (en) 1999-09-30 2001-07-24 Replication Medical, Inc. Spinal nucleus implant
US6272377B1 (en) 1999-10-01 2001-08-07 Cardiac Pacemakers, Inc. Cardiac rhythm management system with arrhythmia prediction and prevention
US7201774B2 (en) 1999-10-08 2007-04-10 Ferree Bret A Artificial intervertebral disc replacements incorporating reinforced wall sections
FR2799639B1 (en) * 1999-10-18 2002-07-19 Dimso Sa TOOTHED FACED INTERVERTEBRAL DISC PROSTHESIS
US6520967B1 (en) 1999-10-20 2003-02-18 Cauthen Research Group, Inc. Spinal implant insertion instrument for spinal interbody prostheses
WO2001028469A2 (en) * 1999-10-21 2001-04-26 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US6830570B1 (en) 1999-10-21 2004-12-14 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US6592624B1 (en) 1999-11-24 2003-07-15 Depuy Acromed, Inc. Prosthetic implant element
US6827740B1 (en) 1999-12-08 2004-12-07 Gary K. Michelson Spinal implant surface configuration
FR2803741B1 (en) 2000-01-13 2003-04-11 Jean Claude Bouvet INTERSOMATIC CAGE
US7776068B2 (en) 2003-10-23 2010-08-17 Trans1 Inc. Spinal motion preservation assemblies
FR2805733B1 (en) 2000-03-03 2002-06-07 Scient X DISC PROSTHESIS FOR CERVICAL VERTEBRUS
FR2805985B1 (en) 2000-03-10 2003-02-07 Eurosurgical INTERVERTEBRAL DISK PROSTHESIS
AR027685A1 (en) 2000-03-22 2003-04-09 Synthes Ag METHOD AND METHOD FOR CARRYING OUT
EP1142544B1 (en) 2000-04-04 2008-03-26 Link Spine Group, Inc. Intervertebral implant
US6821298B1 (en) * 2000-04-18 2004-11-23 Roger P. Jackson Anterior expandable spinal fusion cage system
US6478800B1 (en) 2000-05-08 2002-11-12 Depuy Acromed, Inc. Medical installation tool
US6533817B1 (en) 2000-06-05 2003-03-18 Raymedica, Inc. Packaged, partially hydrated prosthetic disc nucleus
US6852126B2 (en) * 2000-07-17 2005-02-08 Nuvasive, Inc. Stackable interlocking intervertebral support system
DE20012549U1 (en) 2000-07-20 2000-10-12 Aesculap Ag & Co Kg Insertion tool for an intervertebral implant
US7601174B2 (en) * 2000-08-08 2009-10-13 Warsaw Orthopedic, Inc. Wear-resistant endoprosthetic devices
AU2001281166B2 (en) 2000-08-08 2006-07-20 Warsaw Orthopedic, Inc. Implantable joint prosthesis
US20020035400A1 (en) * 2000-08-08 2002-03-21 Vincent Bryan Implantable joint prosthesis
US20050154463A1 (en) 2000-08-30 2005-07-14 Trieu Hal H. Spinal nucleus replacement implants and methods
US6666866B2 (en) 2000-11-07 2003-12-23 Osteotech, Inc. Spinal intervertebral implant insertion tool
DE10065232C2 (en) * 2000-12-27 2002-11-14 Ulrich Gmbh & Co Kg Implant for insertion between the vertebral body and surgical instrument for handling the implant
CA2436243C (en) 2001-01-30 2009-05-12 Synthes (U.S.A.) Bone implant, in particular, an inter-vertebral implant
US6986772B2 (en) 2001-03-01 2006-01-17 Michelson Gary K Dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine
JP4133331B2 (en) 2001-02-04 2008-08-13 ウォーソー・オーソペディック・インコーポレーテッド Apparatus and method for inserting and deploying an expandable interbody spinal fusion implant
US7169182B2 (en) * 2001-07-16 2007-01-30 Spinecore, Inc. Implanting an artificial intervertebral disc
US6989032B2 (en) 2001-07-16 2006-01-24 Spinecore, Inc. Artificial intervertebral disc
US6607559B2 (en) 2001-07-16 2003-08-19 Spine Care, Inc. Trial intervertebral distraction spacers
US7115132B2 (en) * 2001-07-16 2006-10-03 Spinecore, Inc. Static trials and related instruments and methods for use in implanting an artificial intervertebral disc
US6764515B2 (en) 2001-02-15 2004-07-20 Spinecore, Inc. Intervertebral spacer device utilizing a spirally slotted belleville washer and a rotational mounting
US7235081B2 (en) 2001-07-16 2007-06-26 Spinecore, Inc. Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc
US6673113B2 (en) 2001-10-18 2004-01-06 Spinecore, Inc. Intervertebral spacer device having arch shaped spring elements
US6896680B2 (en) * 2001-03-01 2005-05-24 Gary K. Michelson Arcuate dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine
US6368351B1 (en) * 2001-03-27 2002-04-09 Bradley J. Glenn Intervertebral space implant for use in spinal fusion procedures
EP1250898A1 (en) 2001-04-05 2002-10-23 Waldemar Link (GmbH & Co.) Intervertebral disc prosthesis system
US6440142B1 (en) * 2001-04-27 2002-08-27 Third Millennium Engineering, Llc Femoral ring loader
US6790233B2 (en) 2001-05-01 2004-09-14 Amedica Corporation Radiolucent spinal fusion cage
US6719794B2 (en) * 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
FR2824261B1 (en) * 2001-05-04 2004-05-28 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS
GB2376855A (en) 2001-06-20 2002-12-24 Sony Uk Ltd Determining symbol synchronisation in an OFDM receiver in response to one of two impulse response estimates
US6607558B2 (en) 2001-07-03 2003-08-19 Axiomed Spine Corporation Artificial disc
US6471725B1 (en) 2001-07-16 2002-10-29 Third Millenium Engineering, Llc Porous intervertebral distraction spacers
US6562047B2 (en) 2001-07-16 2003-05-13 Spine Core, Inc. Vertebral bone distraction instruments
US6478801B1 (en) * 2001-07-16 2002-11-12 Third Millennium Engineering, Llc Insertion tool for use with tapered trial intervertebral distraction spacers
JP4073867B2 (en) 2001-07-16 2008-04-09 スパインコア,インコーポレーション Artificial disc with corrugated washer restoring element
US6436102B1 (en) 2001-07-16 2002-08-20 Third Millennium Engineering, Llc Method of distracting vertebral bones
US7153310B2 (en) * 2001-07-16 2006-12-26 Spinecore, Inc. Vertebral bone distraction instruments
US7491241B2 (en) * 2001-07-16 2009-02-17 Spinecore, Inc. Intervertebral spacer device having recessed notch pairs for manipulation using a surgical tool
US7160327B2 (en) * 2001-07-16 2007-01-09 Spinecore, Inc. Axially compressible artificial intervertebral disc having limited rotation using a captured ball and socket joint with a solid ball and compression locking post
US7182784B2 (en) * 2001-07-18 2007-02-27 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
US20030040746A1 (en) * 2001-07-20 2003-02-27 Mitchell Margaret E. Spinal stabilization system and method
US6375682B1 (en) * 2001-08-06 2002-04-23 Lewis W. Fleischmann Collapsible, rotatable and expandable spinal hydraulic prosthetic device
ATE398431T1 (en) 2001-08-24 2008-07-15 Zimmer Gmbh ARTIFICIAL DISC
US20030045884A1 (en) * 2001-09-04 2003-03-06 Bruce Robie Instrument and system for preparing the disc space between two vertebral bodies
US6652533B2 (en) 2001-09-20 2003-11-25 Depuy Acromed, Inc. Medical inserter tool with slaphammer
US6648917B2 (en) 2001-10-17 2003-11-18 Medicinelodge, Inc. Adjustable bone fusion implant and method
EP1306064A1 (en) 2001-10-29 2003-05-02 Waldemar Link (GmbH & Co.) Instrument for inserting an intervertebral prosthesis
CA2460028A1 (en) 2001-10-30 2003-05-08 Osteotech, Inc. Bone implant and insertion tools
US6709439B2 (en) 2001-10-30 2004-03-23 Depuy Spine, Inc. Slaphammer tool
FR2831796B1 (en) * 2001-11-06 2003-12-26 Ldr Medical BONE ANCHORING DEVICE FOR PROSTHESIS
US20030139812A1 (en) 2001-11-09 2003-07-24 Javier Garcia Spinal implant
US7025787B2 (en) * 2001-11-26 2006-04-11 Sdgi Holdings, Inc. Implantable joint prosthesis and associated instrumentation
US7238203B2 (en) 2001-12-12 2007-07-03 Vita Special Purpose Corporation Bioactive spinal implants and method of manufacture thereof
CA2470196A1 (en) 2001-12-13 2003-06-26 Sdgi Holdings, Inc. Instrumentation and method for delivering an implant into a vertebral space
US6740118B2 (en) 2002-01-09 2004-05-25 Sdgi Holdings, Inc. Intervertebral prosthetic joint
US7708776B1 (en) 2002-01-16 2010-05-04 Nuvasive, Inc. Intervertebral disk replacement system and methods
US7011684B2 (en) * 2002-01-17 2006-03-14 Concept Matrix, Llc Intervertebral disk prosthesis
FR2836373B1 (en) 2002-02-26 2005-03-25 Materiel Orthopedique En Abreg CONNECTING INTERSOMATIC IMPLANTS FOR INSERTING BONE GRAFT FOR REALIZING INTERVERTEBRAL FUSION, INSTRUMENTS FOR CONNECTING THESE IMPLANTS
US20040030387A1 (en) 2002-03-11 2004-02-12 Landry Michael E. Instrumentation and procedure for implanting spinal implant devices
DE50213818D1 (en) 2002-03-12 2009-10-15 Cervitech Inc Intrumentarium for the insertion of an intervertebral prosthesis
EP1344507A1 (en) 2002-03-12 2003-09-17 Waldemar Link (GmbH & Co.) Intervertebral prosthesis for the cervical spine
EP1344508B1 (en) 2002-03-12 2007-06-06 Cervitech, Inc. Intervertebral prosthesis especially for the cervical spine
EP1344506A1 (en) 2002-03-12 2003-09-17 Waldemar Link (GmbH & Co.) Intervertebral prosthesis for the cervical spine
US6726720B2 (en) 2002-03-27 2004-04-27 Depuy Spine, Inc. Modular disc prosthesis
CA2375070C (en) 2002-03-28 2004-03-02 4254563 Manitoba Ltd. Patch plug
US20030195631A1 (en) 2002-04-12 2003-10-16 Ferree Bret A. Shape-memory spacers for artificial disc replacements
US8038713B2 (en) * 2002-04-23 2011-10-18 Spinecore, Inc. Two-component artificial disc replacements
US6706068B2 (en) 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US20040030391A1 (en) * 2002-04-24 2004-02-12 Bret Ferree Artificial intervertebral disc spacers
US7179294B2 (en) * 2002-04-25 2007-02-20 Warsaw Orthopedic, Inc. Articular disc prosthesis and method for implanting the same
CA2485015A1 (en) * 2002-05-06 2003-11-13 Sdgi Holdings, Inc. Instrumentation and methods for preparation of an intervertebral space
US7066958B2 (en) 2002-05-10 2006-06-27 Ferree Bret A Prosthetic components with partially contained compressible resilient members
US6689132B2 (en) 2002-05-15 2004-02-10 Spineco, Inc. Spinal implant insertion tool
US6770095B2 (en) 2002-06-18 2004-08-03 Depuy Acroned, Inc. Intervertebral disc
US7016888B2 (en) 2002-06-18 2006-03-21 Bellsouth Intellectual Property Corporation Learning device interaction rules
US6858038B2 (en) 2002-06-21 2005-02-22 Richard R. Heuser Stent system
US7087055B2 (en) 2002-06-25 2006-08-08 Sdgi Holdings, Inc. Minimally invasive expanding spacer and method
US6793678B2 (en) * 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
US6723097B2 (en) 2002-07-23 2004-04-20 Depuy Spine, Inc. Surgical trial implant
US7901407B2 (en) * 2002-08-02 2011-03-08 Boston Scientific Scimed, Inc. Media delivery device for bone structures
BR0313502A (en) * 2002-08-15 2005-07-12 Justin K Coppes Intervertebral disc
WO2004016217A2 (en) 2002-08-15 2004-02-26 David Gerber Controlled artificial intervertebral disc implant
US20060293753A1 (en) * 2002-08-19 2006-12-28 Lanx, Llc Corrective artificial disc
AU2003270524A1 (en) * 2002-09-10 2004-04-30 Bret A. Ferree Shock-absorbing joint and spine replacements
DE10242329B4 (en) 2002-09-12 2005-03-17 Biedermann Motech Gmbh Disc prosthesis
JP4429909B2 (en) * 2002-09-19 2010-03-10 ビリアーズ, マラン デ Intervertebral prosthesis
US6709193B1 (en) 2002-09-20 2004-03-23 Illinois Tool Works Inc. Temporary raised pavement marker (TRPM) applicator machine for automatically applying pavement markers to road surfaces
CA2499183A1 (en) * 2002-09-20 2004-04-01 Sdgi Holdings, Inc. Instrument and method for extraction of an implant
US6899735B2 (en) 2002-10-02 2005-05-31 Sdgi Holdings, Inc. Modular intervertebral prosthesis system
DE10247762A1 (en) * 2002-10-14 2004-04-22 Waldemar Link (Gmbh & Co.) Intervertebral prosthesis
AU2003286531A1 (en) 2002-10-21 2004-05-13 3Hbfm, Llc Intervertebral disk prosthesis
US7267688B2 (en) 2002-10-22 2007-09-11 Ferree Bret A Biaxial artificial disc replacement
WO2004039291A1 (en) * 2002-10-29 2004-05-13 Spinecore, Inc. Instrumentation, methods, and features for use in implanting an artificial intervertebral disc
US6966929B2 (en) 2002-10-29 2005-11-22 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with a spacer
US7497859B2 (en) 2002-10-29 2009-03-03 Kyphon Sarl Tools for implanting an artificial vertebral disk
CA2502292C (en) * 2002-10-31 2011-07-26 Spinal Concepts, Inc. Movable disc implant
US20040133278A1 (en) * 2002-10-31 2004-07-08 Marino James F. Spinal disc implant
US20040093087A1 (en) 2002-11-05 2004-05-13 Ferree Bret A. Fluid-filled artificial disc replacement (ADR)
EP1417940A1 (en) 2002-11-08 2004-05-12 Waldemar Link (GmbH & Co.) Vertebral prosthesis
US6963071B2 (en) 2002-11-25 2005-11-08 Intel Corporation Debris mitigation device
US7204852B2 (en) * 2002-12-13 2007-04-17 Spine Solutions, Inc. Intervertebral implant, insertion tool and method of inserting same
JP4210653B2 (en) 2002-12-17 2009-01-21 ジンテーズ ゲゼルシャフト ミト ベシュレンクテル ハフツング Intervertebral implant
NZ540228A (en) 2002-12-17 2006-04-28 Synthes Gmbh Intervertebral implant comprising joint parts that are mounted to form a universal joint
US6994727B2 (en) * 2002-12-17 2006-02-07 Amedica Corporation Total disc implant
US6758327B1 (en) 2003-01-07 2004-07-06 Rexnord Industries, Inc. Conveyor drive assembly and method of operation
US20040143334A1 (en) 2003-01-08 2004-07-22 Ferree Bret A. Artificial disc replacements (ADRS) with features to enhance longevity and prevent extrusion
US20040167626A1 (en) 2003-01-23 2004-08-26 Geremakis Perry A. Expandable artificial disc prosthesis
JP4398975B2 (en) * 2003-01-31 2010-01-13 スパイナルモーション, インコーポレイテッド Spinal cord midline indicator
WO2004066884A1 (en) * 2003-01-31 2004-08-12 Spinalmotion, Inc. Intervertebral prosthesis placement instrument
US20040158254A1 (en) * 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
US6908484B2 (en) 2003-03-06 2005-06-21 Spinecore, Inc. Cervical disc replacement
US20040186569A1 (en) 2003-03-20 2004-09-23 Berry Bret M. Height adjustable vertebral body and disc space replacement devices
US7303582B2 (en) * 2003-03-21 2007-12-04 Advanced Medical Optics, Inc. Foldable angle-fixated intraocular lens
EP1610740A4 (en) 2003-04-04 2009-04-08 Theken Disc Llc Artificial disc prosthesis
DE20321645U1 (en) 2003-04-14 2008-08-21 Synthes Gmbh Intervertebral implant
US7419505B2 (en) 2003-04-22 2008-09-02 Fleischmann Lewis W Collapsible, rotatable, and tiltable hydraulic spinal disc prosthesis system with selectable modular components
US6981989B1 (en) * 2003-04-22 2006-01-03 X-Pantu-Flex Drd Limited Liability Company Rotatable and reversibly expandable spinal hydraulic prosthetic device
US6969405B2 (en) 2003-04-23 2005-11-29 Loubert Suddaby Inflatable intervertebral disc replacement prosthesis
US7407513B2 (en) * 2003-05-02 2008-08-05 Smart Disc, Inc. Artificial spinal disk
US20050143824A1 (en) 2003-05-06 2005-06-30 Marc Richelsoph Artificial intervertebral disc
US6966931B2 (en) * 2003-05-21 2005-11-22 Tain-Yew Shi Artificial intervertebral disc with reliable maneuverability
US6986771B2 (en) * 2003-05-23 2006-01-17 Globus Medical, Inc. Spine stabilization system
US20090076614A1 (en) * 2007-09-17 2009-03-19 Spinalmotion, Inc. Intervertebral Prosthetic Disc with Shock Absorption Core
US7575599B2 (en) * 2004-07-30 2009-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
ZA200509644B (en) * 2003-05-27 2007-03-28 Spinalmotion Inc Prosthetic disc for intervertebral insertion
US7270679B2 (en) 2003-05-30 2007-09-18 Warsaw Orthopedic, Inc. Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance
WO2004105655A1 (en) 2003-06-02 2004-12-09 Impliant Ltd. Spinal disc prosthesis
US7537612B2 (en) * 2003-06-20 2009-05-26 Warsaw Orthopedic, Inc. Lumbar composite nucleus
DE10330698B4 (en) * 2003-07-08 2005-05-25 Aesculap Ag & Co. Kg Intervertebral implant
WO2005004756A2 (en) 2003-07-12 2005-01-20 Scolio Gmbh Intervertebral disk prosthesis
US20050015095A1 (en) * 2003-07-15 2005-01-20 Cervitech, Inc. Insertion instrument for cervical prostheses
US7695515B2 (en) * 2003-07-15 2010-04-13 Spinal Generations, Llc Spinal disc prosthesis system
US7320689B2 (en) * 2003-07-15 2008-01-22 Cervitech, Inc. Multi-part cervical endoprosthesis with insertion instrument
ES2329897T3 (en) * 2003-07-23 2009-12-02 Ebi, Llc EXPANSIBLE SPINAL IMPLANT.
US7044983B1 (en) 2003-07-24 2006-05-16 Chia Pao Cheng Positioning and buffering device for artificial knee joint
US7621956B2 (en) * 2003-07-31 2009-11-24 Globus Medical, Inc. Prosthetic spinal disc replacement
US7022138B2 (en) * 2003-07-31 2006-04-04 Mashburn M Laine Spinal interbody fusion device and method
US7153325B2 (en) 2003-08-01 2006-12-26 Ultra-Kinetics, Inc. Prosthetic intervertebral disc and methods for using the same
US7806932B2 (en) * 2003-08-01 2010-10-05 Zimmer Spine, Inc. Spinal implant
US7235082B2 (en) 2003-08-12 2007-06-26 Depuy Spine, Inc. Device for insertion of implants
US7255714B2 (en) 2003-09-30 2007-08-14 Michel H. Malek Vertically adjustable intervertebral disc prosthesis
EP1694228B1 (en) 2003-10-23 2011-08-31 TRANS1, Inc. Spinal mobility preservation apparatus
DE502004006648D1 (en) 2003-11-18 2008-05-08 Zimmer Gmbh Intervertebral disc implant
WO2005053580A1 (en) 2003-11-28 2005-06-16 Richard Mervyn Walker An intervertebral prosthesis
US7217291B2 (en) 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
FR2864763B1 (en) 2004-01-07 2006-11-24 Scient X PROSTHETIC DISCALE FOR VERTEBRATES
US7235103B2 (en) 2004-01-13 2007-06-26 Rivin Evgeny I Artificial intervertebral disc
WO2005069957A2 (en) * 2004-01-20 2005-08-04 Alexander Michalow Unicondylar knee implant
US7625379B2 (en) 2004-01-26 2009-12-01 Warsaw Orthopedic, Inc. Methods and instrumentation for inserting intervertebral grafts and devices
US7250060B2 (en) 2004-01-27 2007-07-31 Sdgi Holdings, Inc. Hybrid intervertebral disc system
US20050171550A1 (en) * 2004-01-30 2005-08-04 Sdgi Holdings, Inc. Anatomic implants designed to minimize instruments and surgical techniques
FR2865629B1 (en) 2004-02-04 2007-01-26 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US7214244B2 (en) 2004-02-19 2007-05-08 Spinecore, Inc. Artificial intervertebral disc having an articulating joint
US7083651B2 (en) 2004-03-03 2006-08-01 Joint Synergy, Llc Spinal implant
US7195644B2 (en) 2004-03-02 2007-03-27 Joint Synergy, Llc Ball and dual socket joint
EP1570813A1 (en) 2004-03-05 2005-09-07 Cervitech, Inc. Cervical intervertebral disc prosthesis with anti-luxation means, and instrument
US8070816B2 (en) 2004-03-29 2011-12-06 3Hbfm, Llc Arthroplasty spinal prosthesis and insertion device
FR2869528B1 (en) * 2004-04-28 2007-02-02 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US20050251261A1 (en) 2004-05-05 2005-11-10 Sdgi Holdings, Inc. Artificial intervertebral disc for lateral insertion
US20050256576A1 (en) 2004-05-13 2005-11-17 Moskowitz Nathan C Artificial expansile total lumbar and thoracic discs for posterior placement without supplemental instrumentation and its adaptation for anterior placement of artificial cervical, thoracic and lumbar discs
US8021428B2 (en) * 2004-06-30 2011-09-20 Depuy Spine, Inc. Ceramic disc prosthesis
MX2007000328A (en) * 2004-07-09 2007-06-25 Pioneer Lab Inc Skeletal reconstruction device.
US20060020342A1 (en) * 2004-07-21 2006-01-26 Ferree Bret A Facet-preserving artificial disc replacements
US7585326B2 (en) 2004-08-06 2009-09-08 Spinalmotion, Inc. Methods and apparatus for intervertebral disc prosthesis insertion
US20060041313A1 (en) * 2004-08-19 2006-02-23 Sdgi Holdings, Inc. Intervertebral disc system
US20060041314A1 (en) * 2004-08-20 2006-02-23 Thierry Millard Artificial disc prosthesis
US20060052870A1 (en) * 2004-09-09 2006-03-09 Ferree Bret A Methods and apparatus to prevent movement through artificial disc replacements
US7235085B1 (en) 2004-09-27 2007-06-26 Tahir Shaheen F Hair removal apparatus
US7575600B2 (en) * 2004-09-29 2009-08-18 Kyphon Sarl Artificial vertebral disk replacement implant with translating articulation contact surface and method
WO2006042486A1 (en) 2004-10-18 2006-04-27 Buettner-Janz Karin Intervertebral disk endoprosthesis having a motion-adapted edge for the lumbar and cervical spine
US7887589B2 (en) 2004-11-23 2011-02-15 Glenn Bradley J Minimally invasive spinal disc stabilizer and insertion tool
WO2006066228A2 (en) 2004-12-16 2006-06-22 Innovative Spinal Technologies Expandable implants for spinal disc replacement
US8083797B2 (en) 2005-02-04 2011-12-27 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US7690381B2 (en) 2005-02-10 2010-04-06 Depuy Spine, Inc. Intervertebral prosthetic disc and method for installing using a guidewire
US20060265077A1 (en) * 2005-02-23 2006-11-23 Zwirkoski Paul A Spinal repair
US7722622B2 (en) 2005-02-25 2010-05-25 Synthes Usa, Llc Implant insertion apparatus and method of use
US7575598B2 (en) 2005-03-03 2009-08-18 Cervical Xpand, Llc Anterior lumbar intervertebral stabilizer
EP1863415A4 (en) 2005-03-31 2012-04-04 Life Spine Inc Expandable spinal interbody and intravertebral body devices
US7575580B2 (en) 2005-04-15 2009-08-18 Warsaw Orthopedic, Inc. Instruments, implants and methods for positioning implants into a spinal disc space
US20060235525A1 (en) 2005-04-19 2006-10-19 Sdgi Holdings, Inc. Composite structure for biomedical implants
US20060241766A1 (en) 2005-04-20 2006-10-26 Sdgi Holdings, Inc. Method and apparatus for preventing articulation in an artificial joint
US20060241641A1 (en) 2005-04-22 2006-10-26 Sdgi Holdings, Inc. Methods and instrumentation for distraction and insertion of implants in a spinal disc space
WO2006119092A2 (en) 2005-05-02 2006-11-09 Seaspine, Inc. Motion restoring intervertebral device
US8323342B2 (en) 2005-05-17 2012-12-04 Schwab Frank J Intervertebral implant
US20060287728A1 (en) * 2005-06-21 2006-12-21 Mokhtar Mourad B System and method for implanting intervertebral disk prostheses
US20060293752A1 (en) 2005-06-27 2006-12-28 Missoum Moumene Intervertebral disc prosthesis and associated methods
US20070021837A1 (en) * 2005-07-20 2007-01-25 Ashman Richard B Stabilizing augment for prosthetic disc
GB0516034D0 (en) * 2005-08-04 2005-09-14 Blacklock T Orthopaedic medical device
US7731753B2 (en) 2005-09-01 2010-06-08 Spinal Kinetics, Inc. Prosthetic intervertebral discs
US8882841B2 (en) * 2005-09-16 2014-11-11 Us Spine, Inc. Steerable interbody fusion cage
US20070067036A1 (en) * 2005-09-20 2007-03-22 Zimmer Spine, Inc. Hydrogel total disc prosthesis
EP1942837B1 (en) 2005-09-26 2012-01-04 Warsaw Orthopedic, Inc. Anterior hybrid implant
WO2007035968A2 (en) 2005-09-26 2007-03-29 Warsaw Orthopedic, Inc. Hybrid intervertebral spinal fusion implant
EP1951164A1 (en) * 2005-09-26 2008-08-06 Warsaw Orthopedic, Inc. Transforaminal hybrid implant
US8236058B2 (en) * 2005-09-27 2012-08-07 Fabian Henry F Spine surgery method and implant
US8202320B2 (en) 2005-10-31 2012-06-19 Depuy Spine, Inc. Intervertebral disc prosthesis
US20070123904A1 (en) * 2005-10-31 2007-05-31 Depuy Spine, Inc. Distraction instrument and method for distracting an intervertebral site
US7927373B2 (en) 2005-10-31 2011-04-19 Depuy Spine, Inc. Intervertebral disc prosthesis
US20070123903A1 (en) * 2005-10-31 2007-05-31 Depuy Spine, Inc. Medical Device installation tool and methods of use
US20070135923A1 (en) 2005-12-14 2007-06-14 Sdgi Holdings, Inc. Ceramic and polymer prosthetic device
US20070179615A1 (en) 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
US7708777B2 (en) * 2006-02-03 2010-05-04 Depuy Spine, Inc. Modular intervertebral disc replacements
US8556973B2 (en) 2006-02-10 2013-10-15 DePuy Synthes Products, LLC Intervertebral disc prosthesis having multiple bearing surfaces
US20070233251A1 (en) 2006-02-18 2007-10-04 Abdou M S Use of Magnetic Fields in Orthopedic Implants
US20070270970A1 (en) 2006-03-14 2007-11-22 Sdgi Holdings, Inc. Spinal implants with improved wear resistance
US20070233077A1 (en) 2006-03-31 2007-10-04 Khalili Farid B Dynamic intervertebral spacer assembly
EP2007322A4 (en) * 2006-04-12 2011-10-26 Spinalmotion Inc Posterior spinal device and method
DE102006023248C5 (en) * 2006-05-18 2018-01-25 Air Liquide Global E&C Solutions Germany Gmbh Process and plant for the production of synthesis gas
US20080021557A1 (en) * 2006-07-24 2008-01-24 Warsaw Orthopedic, Inc. Spinal motion-preserving implants
US20080051901A1 (en) * 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Multiple Pillar Anchors
US20080051900A1 (en) * 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Offset Anchors
US8025697B2 (en) * 2006-09-21 2011-09-27 Custom Spine, Inc. Articulating interbody spacer, vertebral body replacement
US20090043391A1 (en) * 2007-08-09 2009-02-12 Spinalmotion, Inc. Customized Intervertebral Prosthetic Disc with Shock Absorption
US8282681B2 (en) * 2007-08-13 2012-10-09 Nuvasive, Inc. Bioresorbable spinal implant and related methods
EP2209444A4 (en) * 2007-10-22 2013-03-27 Spinalmotion Inc Dynamic spacer device and method for spanning a space formed upon removal of an intervertebral disc
WO2009094477A1 (en) * 2008-01-25 2009-07-30 Spinalmotion, Inc. Compliant implantable prosthetic joint with preloaded spring
WO2009094475A1 (en) * 2008-01-25 2009-07-30 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorbing core formed with disc springs
US9034038B2 (en) * 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
WO2009137514A1 (en) 2008-05-05 2009-11-12 Spinalmotion, Inc. Polyaryletherketone artificial intervertebral disc
US9220603B2 (en) * 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
EP2299944A4 (en) * 2008-07-17 2013-07-31 Spinalmotion Inc Artificial intervertebral disc placement system
WO2010009153A1 (en) * 2008-07-18 2010-01-21 Spinalmotion, Inc. Posterior prosthetic intervertebral disc

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314477A (en) * 1990-03-07 1994-05-24 J.B.S. Limited Company Prosthesis for intervertebral discs and instruments for implanting it
US6159215A (en) * 1997-12-19 2000-12-12 Depuy Acromed, Inc. Insertion instruments and method for delivering a vertebral body spacer
US6319257B1 (en) * 1999-12-20 2001-11-20 Kinamed, Inc. Inserter assembly
US6554864B2 (en) * 2001-07-16 2003-04-29 Spinecore, Inc Surgical method of treating scoliosis
US20040225295A1 (en) * 2001-07-16 2004-11-11 Rafail Zubok Wedge ramp distractor and related methods for use in implanting artificial intervertebral discs
US8348958B2 (en) * 2001-07-16 2013-01-08 Spinecore, Inc. Insertion tool for use with intervertebral spacers
US8388684B2 (en) * 2002-05-23 2013-03-05 Pioneer Signal Technology, Inc. Artificial disc device
US20050033305A1 (en) * 2003-07-08 2005-02-10 Robert Schultz Surgical instrument for handling an implant
US20050021042A1 (en) * 2003-07-21 2005-01-27 Theirry Marnay Instruments and method for inserting an intervertebral implant
US20050143749A1 (en) * 2003-12-31 2005-06-30 Depuy Spine, Inc. Inserter instrument and implant clip
US20060030860A1 (en) * 2004-07-23 2006-02-09 Sdgi Holdings, Inc. Artificial disc inserter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9839532B2 (en) 2004-08-06 2017-12-12 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US9956091B2 (en) 2004-08-06 2018-05-01 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US10085853B2 (en) 2004-08-06 2018-10-02 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US10130494B2 (en) 2004-08-06 2018-11-20 Simplify Medical Pty Ltd. Methods and apparatus for intervertebral disc prosthesis insertion
US10888437B2 (en) 2004-08-06 2021-01-12 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion
US11857438B2 (en) 2004-08-06 2024-01-02 Simplify Medical Pty Ltd Methods and apparatus for intervertebral disc prosthesis insertion

Also Published As

Publication number Publication date
JP2010207597A (en) 2010-09-24
US20170100262A1 (en) 2017-04-13
US20210106437A1 (en) 2021-04-15
US8206447B2 (en) 2012-06-26
US20170100261A1 (en) 2017-04-13
US20100100141A1 (en) 2010-04-22
US20190000647A1 (en) 2019-01-03
US10085853B2 (en) 2018-10-02
WO2006017397A2 (en) 2006-02-16
US10130494B2 (en) 2018-11-20
WO2006017397A3 (en) 2007-06-07
EP1778135A2 (en) 2007-05-02
US20160220387A1 (en) 2016-08-04
US20160250036A1 (en) 2016-09-01
US9839532B2 (en) 2017-12-12
US20170086987A9 (en) 2017-03-30
US10888437B2 (en) 2021-01-12
US20060030857A1 (en) 2006-02-09
US20160250041A1 (en) 2016-09-01
US20170189205A1 (en) 2017-07-06
US8974531B2 (en) 2015-03-10
JP2008508941A (en) 2008-03-27
KR20070048712A (en) 2007-05-09
US11857438B2 (en) 2024-01-02
EP3241529A1 (en) 2017-11-08
EP1778135B1 (en) 2020-01-01
ZA200700943B (en) 2008-08-27
US7585326B2 (en) 2009-09-08
US9956091B2 (en) 2018-05-01
JP4580986B2 (en) 2010-11-17
EP3241529B1 (en) 2021-08-25
US20080154301A1 (en) 2008-06-26
US20080154382A1 (en) 2008-06-26
EP1778135A4 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
US11857438B2 (en) Methods and apparatus for intervertebral disc prosthesis insertion
US11229526B2 (en) Customized intervertebral prosthetic disc with shock absorption
AU760821B2 (en) Spinal disc space distractor
US20100160985A1 (en) Spinal implant apparatus, method and system
EP1808133A1 (en) Spinal disc space distractor
JP2017517334A (en) Artificial spinal disc replacement and method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SIMPLIFY MEDICAL, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:SPINALMOTION, INC.;REEL/FRAME:033347/0141

Effective date: 20140702