US20130075928A1 - Integrated circuit and method of making - Google Patents

Integrated circuit and method of making Download PDF

Info

Publication number
US20130075928A1
US20130075928A1 US13/443,401 US201213443401A US2013075928A1 US 20130075928 A1 US20130075928 A1 US 20130075928A1 US 201213443401 A US201213443401 A US 201213443401A US 2013075928 A1 US2013075928 A1 US 2013075928A1
Authority
US
United States
Prior art keywords
die
dielectric layer
circuit
encapsulant
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/443,401
Inventor
Bernardo Gallegos
Abram Castro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Priority to US13/443,401 priority Critical patent/US20130075928A1/en
Assigned to TEXAS INSTRUMENTS INCORPORATED reassignment TEXAS INSTRUMENTS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CASTRO, ABRAM, GALLEGOS, BERNARDO
Priority to US13/563,345 priority patent/US20130075894A1/en
Priority to CN2012103564609A priority patent/CN103021981A/en
Publication of US20130075928A1 publication Critical patent/US20130075928A1/en
Priority to US14/582,349 priority patent/US9875930B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76858After-treatment introducing at least one additional element into the layer by diffusing alloying elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • H01L2224/02311Additive methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • H01L2224/02313Subtractive methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • H01L2224/02319Manufacturing methods of the redistribution layers by using a preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/0343Manufacturing methods by blanket deposition of the material of the bonding area in solid form
    • H01L2224/03436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/0346Plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • Conventional integrated circuits have a die, which is a small circuit, electrically and/or mechanically connected to a lead frame or other connection mechanism.
  • the electrical connection between the die and the lead frame typically consists of wire bonds connected between conductive pads on the die and conductors on the lead frame.
  • the wire bonds are very small and delicate such that a small force applied to a wire bond can damage it. Therefore, extreme care must be taken when handling a circuit having wire bonds connected thereto. In addition to being very delicate, the wire bonds take time to connect, so they add to the cost and manufacturing time of the integrated circuit.
  • Short leads reduce the chance of the die encountering electromagnetic interference and they affect the parasitic inductance and capacitance associated with the leads.
  • Wire bonds are relatively long and add to the parasitic capacitance and inductance of the connection between the die and the lead frame of an integrated circuit. Wire bonds are also susceptible to electromagnetic interference.
  • the integrated circuit is encapsulated with an encapsulant.
  • the encapsulation process is typically the final or near the final stage of fabrication of the integrated circuit.
  • the encapsulant prevents contaminants from interfering with the integrated circuit. For example, the encapsulant prevents moisture from contaminating the die.
  • the encapsulant also prevents the wire bonds from being damaged. Until the integrated circuit is encapsulated, the die, wire bonds, and other components are subject to failure by contact with contaminants. It follows that great care must be taken during the fabrication process in order to prevent the integrated circuits from being damaged prior to encapsulation.
  • FIG. 1 is a side, cutaway view of an embodiment of an integrated circuit.
  • FIG. 2 is an enlarged view of a portion of the printed wiring board of the circuit of FIG. 1 .
  • FIG. 3 is a flow chart describing an embodiment of a method of fabricating the circuit of FIG. 1 .
  • FIG. 4 is a side elevation view of the circuit of FIG. 1 in the process of being fabricated wherein the die therein has been encapsulated.
  • FIG. 5 is a bottom plan view of the circuit of FIG. 4 .
  • FIG. 6 is a flow chart describing an embodiment of a method of affixing the first dielectric layer to the circuit of FIG. 1 .
  • FIG. 7 is a side elevation view of a first dielectric layer adhered to a sacrificial carrier.
  • FIG. 8 is a side elevation view of the dielectric layer and the sacrificial carrier of FIG. 7 affixed to the circuit of FIG. 4 .
  • FIG. 9 is a side elevation view of the circuit of FIG. 8 with the sacrificial carrier removed and with holes for vias formed in the first dielectric layer.
  • FIG. 10 is a side elevation view of the circuit of FIG. 9 with a conductive layer applied to the first dielectric layer wherein the conductive layer is connected to the vias.
  • FIG. 11 is a side elevation view of the circuit of FIG. 10 with the addition of a second dielectric layer.
  • FIG. 12 is a side elevation view of the circuit of FIG. 11 with vias formed through the second dielectric layer.
  • One embodiment of an integrated circuit includes a die having a side, wherein a connection point is located on the side.
  • a dielectric layer having a first side, a second side, and at least one first via extending between the first side and the second side is attached to the side of the die so that the first side of the dielectric layer is located adjacent the side of the die.
  • a conductive layer is located adjacent the second side of the dielectric layer and the first via is electrically connected between the connection point and the conductive layer.
  • FIG. 1 is a side, cutaway view of a circuit 100 .
  • the circuit 100 includes an encapsulant 106 , a die 108 , a printed wiring board 110 , and a connection mechanism 112 . Embodiments of methods for fabricating the circuit 100 are described in greater detail further below.
  • the encapsulant 106 may be a conventional encapsulant commonly used to encapsulate integrated circuits or electronic devices. In some embodiments, the encapsulant 106 is applied by a transfer mold process. The encapsulant 106 has a first side 120 and a second side 122 located opposite the first side 120 . A void 124 that is sized to receive the die 108 , as described in greater detail below, is located in the first side 120 . In many embodiments, the encapsulant 106 is molded around the die 108 , so the void 124 is a recessed portion of the encapsulant 106 that is formed at the location of the die 108 during the encapsulation process.
  • the die 108 may be a conventional die that is commonly used in integrated circuits.
  • the die 108 has a first side 126 and an opposite second side 128 .
  • the first side 126 of the die 108 forms a substantially continuous flat surface with the first side 120 of the encapsulant 106 .
  • Circuits and/or electronic devices may be located in or on the die 108 in a conventional manner.
  • electronic devices may be fabricated on the second side 128 .
  • a plurality of conductive pads 130 is located on the first side 126 .
  • the conductive pads 130 serve to electrically connect the die 108 to external devices or conductors.
  • the conductive pads 130 may be very thin relative to other components of the circuit 100 , however, for illustration purposes, they are shown as being substantially thick.
  • the printed wiring board 110 is adhered to or fabricated to the first side 126 of the die 108 and may also be adhered to or fabricated to the first side 120 of the encapsulant 106 .
  • the printed wiring board 110 may contain several layers. In the embodiment of FIG. 1 , the printed wiring board 110 has three layers, a first dielectric layer 134 , a conductive layer 136 , and a second dielectric layer 138 .
  • the printed wiring board 110 may be fabricated separate from the circuit 100 and applied to the die 108 and the encapsulant 106 as a completed assembly. In other embodiments, the printed wiring board 110 is fabricated onto the die 108 and the encapsulant 106 . Both fabrication methods are described below.
  • the first dielectric layer 134 has a first side 140 and a second side 142 .
  • the first side 140 is attached to or adhered to the first side 126 of the die 108 , FIG. 1 , and may also be attached to or adhered to the first side 120 of the encapsulant 106 .
  • the conductive layer 136 may be substantially similar to a redistribution layer in a die.
  • the conductive layer 136 includes conductive material 144 , such as copper, that serves as traces and nonconductive material 146 that is located between the conductive traces.
  • the conductive material 144 may be metal, such as a copper foil similar or identical to copper foil used in subtractive processing, or plated in semi-additive or full additive form.
  • An example of a copper foil includes a one half to two ounce copper foil.
  • the conductive material 144 may be a foil having several layers, such as a copper/aluminum/copper foil.
  • the conductive layer 136 has a first side 148 and a second side 150 , wherein the first side 148 is attached to or adhered to the second side 142 of the first dielectric layer 134 .
  • the nonconductive material 146 may be portions of either the first dielectric layer or the second dielectric layer 138 .
  • the second dielectric layer 138 has a first side 152 and a second side 154 , wherein the first side 152 is attached to or adhered to the second side 150 of the conductive layer 136 .
  • Both the first dielectric layer 134 and the second dielectric layer 138 may be insulating materials that are commonly used in circuits.
  • the printed wiring board 110 serves to electrically and/or mechanically connect the die 108 to the connection mechanism 112 .
  • a plurality of traces and vias may be located within the printed wiring board 110 to electrically connect the die 108 to the connection mechanism 112 .
  • the first dielectric layer 134 has a plurality of vias 156 extending between the first side 140 and the second side 142 .
  • the vias 156 electrically connect the conductive pads 130 on the die 108 to the conductive material 144 in the conductive layer 136 of the printed wiring board 110 .
  • the conductive layer 136 provides electrical conducting points at specific locations for the connection mechanism 112 by way of the conductive material 144 . In the embodiment of FIGS.
  • vias 158 extend through the second dielectric layer 138 between the conductive layer 136 and the second side 154 of the second dielectric layer 138 . It is noted that the connection mechanism 112 is electrically connected to the vias 158 . Therefore, the connection mechanism 112 is electrically connected to the conductive pads 130 on the die 108 .
  • the connection mechanism 112 may include a plurality of solder balls 160 that are electrically and mechanically connected to a plurality of conductors 162 .
  • the conductors 162 may be substantially similar to under bump metal layers used in semiconductor fabrication.
  • the conductors 162 are electrically connected to the vias 158 . It follows that electrical connections extend between the solder balls 160 and the conductive pads 130 on the die 108 . It is noted that the solder balls 160 and conductors 162 are examples of devices for connecting the vias 158 to external devices and that other devices, such as pins or wire bonds, may be used to electrically connect the vias 158 to external devices.
  • the fabrication of the circuit 100 commences with providing the die 108 as described at step 304 of the flow chart 300 .
  • the die 108 is a conventional circuit that is fabricated onto a wafer or substrate.
  • the die 108 may be of a type commonly used in integrated circuits.
  • the die 108 may be a complete circuit meaning that no further circuit fabrication is required.
  • the die 108 does need to be electrically connected to the connection mechanism 112 in order to power the die 108 and to send and receive signals as described below.
  • the die 108 has connection points or conductive pads 130 that serve to electrically connect the die 108 to the connection mechanism 112 .
  • the die 108 is encapsulated with the encapsulant 106 as described in step 306 .
  • the encapsulated die 108 is shown in FIG. 4 , which is a side, cutaway, elevation view of the die 108 and the encapsulant 106 .
  • a bottom plan view of the encapsulated circuit 100 of FIG. 4 is shown in FIG. 5 .
  • the encapsulant 106 may be a conventional encapsulant used in the fabrication of integrated circuits. In some embodiments, a transfer mold technique is used to encapsulate the die 108 . Encapsulating the die 108 at this stage of fabrication is unique. In conventional circuits, dies are not encapsulated until they are electrically connected to a connector or other connection device.
  • the encapsulation process does not occur until a printed wiring board has been attached to the die.
  • the die 108 may be handled or otherwise maneuvered with a lower probability of being damaged.
  • the encapsulated die 108 is also less likely to become damaged by contaminants.
  • the entire die 108 except for the first side 126 is encapsulated.
  • the die 108 is protected and the pads 130 are accessible in order to connect the die 108 to the connection mechanism 112 .
  • the encapsulant 106 may extend beyond the first side 126 of the die 108 , which enables the completed circuit 100 to fit into larger packages.
  • a first edge 172 of the encapsulant and a first edge 125 of the die 108 are spaced apart a distance 170 .
  • a second edge 176 of the encapsulant 106 and a second edge 127 of the die 108 are separated by a distance 174 as shown in FIG. 5 .
  • the distances 170 , 174 determine the size of the first side 120 of the encapsulant 106 , which may be substantially planar.
  • the die 108 may be located in the encapsulant 106 in such a manner that the first side 126 of the die 108 and the first side 120 of the encapsulant 106 form a substantially planar and continuous surface.
  • the encapsulant 106 may be applied to the die 108 by different methods. For example, a liquid encapsulant may be molded over the die 108 and cured in a conventional manner. In other embodiments, a solid encapsulant may be formed with the void 124 located therein. The die 108 may be secured within the void 124 so that the die 108 is effectively encapsulated by the encapsulant 106 . In yet other embodiments, the encapsulant 106 is cured simultaneously with the curing of the printed wiring board 110 or components in the printed wiring board 110 . In such embodiments, the encapsulant 106 may be cured to a stage-B or jell state at this stage of fabrication.
  • the encapsulant 106 and components in the printed wiring board 110 may then be cured simultaneously.
  • the simultaneous curing may enhance the bond between the printed wiring board 110 and the encapsulant 106 .
  • the encapsulant 106 and the first dielectric layer 134 are able to flow together in their jell state and then fully cure together.
  • the printed wiring board 110 replaces conventional wire bonds. Therefore, none of the embodiments of the circuit 100 described herein require wire bonds or the like between the die 108 and the connection mechanism 112 . Accordingly, all the embodiments of the printed wiring board 110 enable very short distances between the die 108 and the connection mechanism 112 , which reduces the parasitic capacitance and inductance associated with the electrical connection between the die 108 and the connection mechanism 112 .
  • a first embodiment of applying the printed wiring board 110 to the circuit 100 commences with applying the first dielectric layer 134 to the circuit as described at step 308 of the flow chart 300 .
  • the application of the first dielectric layer 134 is described in greater detail by the flow chart 350 of FIG. 6 .
  • FIG. 7 shows the first dielectric layer 134 adhered to a sacrificial carrier 177 as described in step 352 of the flowchart 350 .
  • the first dielectric layer 134 may be laminated to the sacrificial carrier 177 by a conventional low temperature vacuum lamination process.
  • the first dielectric layer 134 may be a non-fibrous dielectric material, such as an Ajinomoto build-up film (ABF), produced by Ajinomoto Fine-Techno Co, Inc of Japan and Ajinomoto North America, Inc. of Fort Lee, N.J., USA.
  • the first dielectric layer 134 may have a thickness of between ten and fifty microns.
  • the material used in the first dielectric layer 134 may have a low viscosity prior to being cured.
  • the first dielectric layer 134 may be cured to a B-stage wherein the first dielectric layer 134 has the viscosity of a jell. Such a curing enables the first dielectric layer 134 to be transported by way of the sacrificial carrier 177 and be adhered to the encapsulant 105 and die 108 as described below.
  • the sacrificial carrier 177 may be a metal, such as a copper foil. In some embodiments, the sacrificial carrier 177 is a one half to two ounce copper foil. In other embodiments, the sacrificial layer 177 may be a foil having several layers, such as a copper/aluminum/copper foil.
  • the sacrificial carrier 177 has a first side 178 and a second side 179 , wherein the first side 178 is adhered to or located adjacent the second side 142 of the first dielectric layer 134 .
  • the sacrificial carrier 177 is used to apply the first dielectric layer 134 to the encapsulant 106 and the die 108 by forming a rigid carrier to support the first dielectric layer 134 so that it can be pressed against the encapsulant 106 and the die 108 .
  • the first dielectric layer 134 is adhered to the sacrificial carrier 177 .
  • the first dielectric layer 134 may then be transported or handled by using the sacrificial carrier 177 , which reduces the likelihood of damage to the first dielectric layer 134 during handling.
  • the jell state of the first dielectric layer 134 enables it to be applied to the circuit 100 as described at step 354 of the flow chart 350 , which yields the circuit 100 as shown in FIG. 8 .
  • the die 108 and the encapsulant 106 may be pressed onto the first dielectric layer 134 . It is noted that in some embodiments, a large sheet of a first dielectric layer is adhered to a plurality of dies, which are singulated during a later stage of fabrication.
  • the partially cured jell state of the first dielectric layer 134 enables it to be easily adhered to or located adjacent all the die 108 and the encapsulant 106 and reduces or eliminates the potential for voids between surfaces. More specifically, if the encapsulant 106 is in a jell state, first dielectric layer 134 and the encapsulant 106 may flow together for better adhesion. The conductive pads 130 may be embedded into the jelled first dielectric layer 134 . The first dielectric layer 134 and the encapsulant 106 may then be cured simultaneously as described at step 356 of the flow chart 350 .
  • the circuit 100 at this point in the fabrication process has the first dielectric layer 134 and the encapsulant 108 cured with the first dielectric layer 134 adhered to the die 108 and/or the encapsulant 108 .
  • the sacrificial carrier 177 is then removed as described in step 358 of the flow chart 350 .
  • the sacrificial carrier 177 is etched away by a conventional etching process.
  • the resulting circuit 100 is shown in FIG. 9 . As shown, the circuit 100 has the first dielectric layer 134 affixed thereto and the sacrificial layer 177 has been removed. As further shown in FIG.
  • holes for the vias 156 are formed into the first dielectric layer 134 proximate the conductive pads 130 as described in step 360 of the flow chart 350 .
  • a laser is used to form the holes.
  • the holes for the vias 156 are drilled or formed using chemicals.
  • the holes for the vias 156 are plated or otherwise filled with a conductive material as described in step 362 of the flow chart 350 .
  • a plating material may be applied to the first dielectric layer 134 in order to form conductive paths in the vias 156 .
  • Other methods may also be used to provide a conductive material to form the vias 156 .
  • the conductive material for the vias 156 is formed when the conductive layer 136 is applied to the first dielectric layer 134 .
  • the conductive layer 136 is applied to the first dielectric layer as described in step 310 of the flow chart 300 of FIG. 3 .
  • the conductive layer 136 may be applied in a manner similar to the manner in which a redistribution layer is applied to an integrated circuit.
  • a resist (not shown) may be applied to the second side 142 of the first dielectric layer 134 . It is noted that if the holes for the vias 156 have not been plated, no resist may be applied proximate the holes.
  • the conductive layer 136 may then be applied to the second side 142 of the first dielectric layer 134 by a conventional technique, such as plating.
  • the conductive material 144 FIG.
  • FIG. 10 shows the conductive material 144 in the conductive layer 136 connected to the vias 156 .
  • the circuit 100 as shown in FIG. 10 is complete.
  • the circuit 100 is functional and may be connected to other devices by way of the printed wiring board 110 .
  • conductors may be connected to the conductive layer 136 in order to electrically connect the circuit 100 to other components.
  • the second dielectric layer 138 is affixed to the conductive layer 136 as described in step 312 of the flow chart 300 and as shown in FIG. 11 .
  • the second dielectric layer 138 has a first side 152 and a second side 154 , wherein the first side 152 is adhered to or attached to the conductive layer 136 .
  • the second dielectric layer 138 may be substantially the same material as the first dielectric layer 134 .
  • the second dielectric layer 138 serves to protect the conductive layer 136 from damage during handling and from debris or other matter that may short or otherwise damage the conductive layer 134 .
  • the second dielectric layer 138 serves to support the connection mechanism 112 .
  • the vias 158 are formed in the second dielectric layer 138 as described in step 314 of the flow chart 300 and as shown in FIG. 12 .
  • the vias 158 extend between the first side 152 and the second side 154 of the second dielectric layer 138 .
  • the vias 158 are fabricated by forming holes through the second dielectric layer 138 wherein the holes contact specific portions of the conductive material 144 of the conductive layer 136 .
  • the holes may be formed in the same way as the holes that are formed in the first dielectric layer 134 to fabricate the vias 156 .
  • the holes may be filled with or plated with a conductive material to form the vias 158 in a manner similar to the way the vias 156 are formed.
  • the circuit 100 now has an encapsulated die 108 with electrical connections from the die 108 to the second side 154 of the second dielectric material 138 .
  • the connection mechanism 112 may now be affixed to the second side 154 of the second dielectric material 138 as described in step 316 of the flow chart 300 and as shown in FIG. 1 .
  • the connection. mechanism 112 electrically and/or mechanically connects the circuit 100 to other devices.
  • the connection mechanism 112 may provide input and output signals to and from the die 108 .
  • the connection mechanism 112 may also enable the circuit 100 to be physically attached to a substrate (not shown), such as a printed circuit board, or other physical structure.
  • connection mechanism 112 may include a plurality of conductors 162 that are attached to the second side 154 of the second dielectric layer 138 .
  • the conductors 162 are electrically connected to the vias 158 in order to provide electrical connections to the die 108 .
  • the conductors 162 may be conventional metal layers, such as under bump metal layers that are commonly used to support solder balls 160 .
  • the solder balls 160 may be attached to the conductors 162 in a conventional manner.
  • the circuit 100 has many advantages over conventional integrated circuits. For example, the circuit 100 was encapsulated early in the production process. Therefore, the circuit 100 may be handled and maneuvered with a lower probability of becoming damaged during the remaining production processes. In addition, the circuit 100 is less susceptible to damage from contaminants during production.
  • the circuit 100 has many benefits over conventional integrated circuits.
  • the circuit 100 does not require any wire bonds. Therefore, the circuit 100 is not subject to the increased parasitic capacitance or inductance associated with wire bonds.
  • the conductive layer 136 enables the lead lengths between the conductive pads 130 on the die 108 and the connection mechanism 112 to be very short. The short distance reduces the electromagnetic interference that the circuit 100 is subject to. It follows that the circuit 100 is better suited to operate in high frequency, high speed, and low power applications.
  • the first dielectric layer 134 is applied directly to the die 108 and the encapsulant 106 without the use of the sacrificial carrier 177 , FIG. 7 .
  • the circuit 100 may be positioned so that the first side 120 of the encapsulant 106 and the first side 126 of the die 108 are facing up.
  • the first dielectric layer 134 may then be applied to the first surface 120 of the encapsulant 106 and the first surface 126 of the die 108 .
  • the first dielectric layer 134 may then be cured wherein the curing may also simultaneously cure the encapsulant 106 . Fabrication of the circuit 100 may continue from step 360 of the flow chart 350 as described above.
  • the first dielectric layer 134 is adhered directly to the conductive layer 136 instead of being adhered to the sacrificial carrier 177 , FIG. 7 .
  • No sacrificial carrier 177 is required to be removed in this embodiment.
  • the conductive layer 136 and, more specifically, the conductive material 144 of the conductive layer 136 serves as a carrier for the first dielectric layer 134 .
  • the conductive material 144 may then be etched to form the conductive layer 136 .
  • the vias 156 may be formed as described above.
  • the vias 156 may also be plated so that they electrically connect with the conductive material 144 of the conductive layer 136 .
  • heat spreaders are used in conjunction with or as an alternative to the encapsulant 106 .
  • the die 108 may be located in a heat spreader prior to encapsulation.
  • the die 108 may be located in a heat spreader in lieu of encapsulation.

Abstract

Circuits and methods of fabricating circuits are disclosed herein. An embodiment of the circuit includes a die having a side, wherein a connection point is located on the side. A dielectric layer having a first side, a second side, and at least one via extending between the first side and the second side, is located proximate the side of the die. The via is electrically connected to the connection point. A conductive layer is located adjacent the second side of the first dielectric layer, wherein at least a portion of the conductive layer is electrically connected to the via.

Description

  • This patent application claims priority to U.S. provisional patent application 61/538,365 filed on Sep. 23, 2011 for PERMANENT CARRIER AND PACKAGE INTERCONNECT METHOD USING MOLD AND DISTRIBUTE APPROACH and U.S. provisional patent application 61/596,617 for INTEGRATED CIRCUIT AND METHOD OF MAKING filed on Feb. 8, 2012, which are both incorporated by reference for all that is disclosed therein.
  • BACKGROUND
  • Conventional integrated circuits have a die, which is a small circuit, electrically and/or mechanically connected to a lead frame or other connection mechanism. The electrical connection between the die and the lead frame typically consists of wire bonds connected between conductive pads on the die and conductors on the lead frame. The wire bonds are very small and delicate such that a small force applied to a wire bond can damage it. Therefore, extreme care must be taken when handling a circuit having wire bonds connected thereto. In addition to being very delicate, the wire bonds take time to connect, so they add to the cost and manufacturing time of the integrated circuit.
  • Many high speed and high frequency circuit applications require short leads connecting a die to a lead frame. Short leads reduce the chance of the die encountering electromagnetic interference and they affect the parasitic inductance and capacitance associated with the leads. Wire bonds are relatively long and add to the parasitic capacitance and inductance of the connection between the die and the lead frame of an integrated circuit. Wire bonds are also susceptible to electromagnetic interference.
  • After a conventional die is connected to a lead frame, the integrated circuit is encapsulated with an encapsulant. The encapsulation process is typically the final or near the final stage of fabrication of the integrated circuit. The encapsulant prevents contaminants from interfering with the integrated circuit. For example, the encapsulant prevents moisture from contaminating the die. The encapsulant also prevents the wire bonds from being damaged. Until the integrated circuit is encapsulated, the die, wire bonds, and other components are subject to failure by contact with contaminants. It follows that great care must be taken during the fabrication process in order to prevent the integrated circuits from being damaged prior to encapsulation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side, cutaway view of an embodiment of an integrated circuit.
  • FIG. 2 is an enlarged view of a portion of the printed wiring board of the circuit of FIG. 1.
  • FIG. 3 is a flow chart describing an embodiment of a method of fabricating the circuit of FIG. 1.
  • FIG. 4 is a side elevation view of the circuit of FIG. 1 in the process of being fabricated wherein the die therein has been encapsulated.
  • FIG. 5 is a bottom plan view of the circuit of FIG. 4.
  • FIG. 6 is a flow chart describing an embodiment of a method of affixing the first dielectric layer to the circuit of FIG. 1.
  • FIG. 7 is a side elevation view of a first dielectric layer adhered to a sacrificial carrier.
  • FIG. 8 is a side elevation view of the dielectric layer and the sacrificial carrier of FIG. 7 affixed to the circuit of FIG. 4.
  • FIG. 9 is a side elevation view of the circuit of FIG. 8 with the sacrificial carrier removed and with holes for vias formed in the first dielectric layer.
  • FIG. 10 is a side elevation view of the circuit of FIG. 9 with a conductive layer applied to the first dielectric layer wherein the conductive layer is connected to the vias.
  • FIG. 11 is a side elevation view of the circuit of FIG. 10 with the addition of a second dielectric layer.
  • FIG. 12 is a side elevation view of the circuit of FIG. 11 with vias formed through the second dielectric layer.
  • SUMMARY
  • Integrated circuits and methods of fabricating circuits are disclosed herein. One embodiment of an integrated circuit includes a die having a side, wherein a connection point is located on the side. A dielectric layer having a first side, a second side, and at least one first via extending between the first side and the second side is attached to the side of the die so that the first side of the dielectric layer is located adjacent the side of the die. A conductive layer is located adjacent the second side of the dielectric layer and the first via is electrically connected between the connection point and the conductive layer.
  • DETAILED DESCRIPTION
  • Integrated circuits (referred to herein simply as “circuits”) and methods of making circuits are disclosed herein. FIG. 1 is a side, cutaway view of a circuit 100. The circuit 100 includes an encapsulant 106, a die 108, a printed wiring board 110, and a connection mechanism 112. Embodiments of methods for fabricating the circuit 100 are described in greater detail further below.
  • The encapsulant 106 may be a conventional encapsulant commonly used to encapsulate integrated circuits or electronic devices. In some embodiments, the encapsulant 106 is applied by a transfer mold process. The encapsulant 106 has a first side 120 and a second side 122 located opposite the first side 120. A void 124 that is sized to receive the die 108, as described in greater detail below, is located in the first side 120. In many embodiments, the encapsulant 106 is molded around the die 108, so the void 124 is a recessed portion of the encapsulant 106 that is formed at the location of the die 108 during the encapsulation process.
  • The die 108 may be a conventional die that is commonly used in integrated circuits. The die 108 has a first side 126 and an opposite second side 128. The first side 126 of the die 108 forms a substantially continuous flat surface with the first side 120 of the encapsulant 106. Circuits and/or electronic devices (not shown) may be located in or on the die 108 in a conventional manner. For example, electronic devices may be fabricated on the second side 128. A plurality of conductive pads 130 is located on the first side 126. The conductive pads 130 serve to electrically connect the die 108 to external devices or conductors. The conductive pads 130 may be very thin relative to other components of the circuit 100, however, for illustration purposes, they are shown as being substantially thick.
  • The printed wiring board 110 is adhered to or fabricated to the first side 126 of the die 108 and may also be adhered to or fabricated to the first side 120 of the encapsulant 106. The printed wiring board 110 may contain several layers. In the embodiment of FIG. 1, the printed wiring board 110 has three layers, a first dielectric layer 134, a conductive layer 136, and a second dielectric layer 138. The printed wiring board 110 may be fabricated separate from the circuit 100 and applied to the die 108 and the encapsulant 106 as a completed assembly. In other embodiments, the printed wiring board 110 is fabricated onto the die 108 and the encapsulant 106. Both fabrication methods are described below.
  • An enlarged view of the printed wiring board 110 is shown in FIG. 2. The first dielectric layer 134 has a first side 140 and a second side 142. The first side 140 is attached to or adhered to the first side 126 of the die 108, FIG. 1, and may also be attached to or adhered to the first side 120 of the encapsulant 106. The conductive layer 136 may be substantially similar to a redistribution layer in a die. The conductive layer 136 includes conductive material 144, such as copper, that serves as traces and nonconductive material 146 that is located between the conductive traces. The conductive material 144 may be metal, such as a copper foil similar or identical to copper foil used in subtractive processing, or plated in semi-additive or full additive form. An example of a copper foil includes a one half to two ounce copper foil. In other embodiments, the conductive material 144 may be a foil having several layers, such as a copper/aluminum/copper foil. The conductive layer 136 has a first side 148 and a second side 150, wherein the first side 148 is attached to or adhered to the second side 142 of the first dielectric layer 134. The nonconductive material 146 may be portions of either the first dielectric layer or the second dielectric layer 138. The second dielectric layer 138 has a first side 152 and a second side 154, wherein the first side 152 is attached to or adhered to the second side 150 of the conductive layer 136. Both the first dielectric layer 134 and the second dielectric layer 138 may be insulating materials that are commonly used in circuits.
  • The printed wiring board 110 serves to electrically and/or mechanically connect the die 108 to the connection mechanism 112. In order to achieve the electrical connections, a plurality of traces and vias may be located within the printed wiring board 110 to electrically connect the die 108 to the connection mechanism 112. As shown in FIGS. 1 and 2, the first dielectric layer 134 has a plurality of vias 156 extending between the first side 140 and the second side 142. The vias 156 electrically connect the conductive pads 130 on the die 108 to the conductive material 144 in the conductive layer 136 of the printed wiring board 110. The conductive layer 136 provides electrical conducting points at specific locations for the connection mechanism 112 by way of the conductive material 144. In the embodiment of FIGS. 1 and 2, vias 158 extend through the second dielectric layer 138 between the conductive layer 136 and the second side 154 of the second dielectric layer 138. It is noted that the connection mechanism 112 is electrically connected to the vias 158. Therefore, the connection mechanism 112 is electrically connected to the conductive pads 130 on the die 108.
  • The connection mechanism 112 may include a plurality of solder balls 160 that are electrically and mechanically connected to a plurality of conductors 162. The conductors 162 may be substantially similar to under bump metal layers used in semiconductor fabrication. The conductors 162 are electrically connected to the vias 158. It follows that electrical connections extend between the solder balls 160 and the conductive pads 130 on the die 108. It is noted that the solder balls 160 and conductors 162 are examples of devices for connecting the vias 158 to external devices and that other devices, such as pins or wire bonds, may be used to electrically connect the vias 158 to external devices.
  • Having described the structure of the circuit 100, methods of fabricating the circuit 100 will now be described. Reference is made to the flow chart 300 of FIG. 3, which describes a method of fabricating the circuit 100. Other fabrication methods are described further below.
  • The fabrication of the circuit 100 commences with providing the die 108 as described at step 304 of the flow chart 300. The die 108 is a conventional circuit that is fabricated onto a wafer or substrate. The die 108 may be of a type commonly used in integrated circuits. The die 108 may be a complete circuit meaning that no further circuit fabrication is required. However, the die 108 does need to be electrically connected to the connection mechanism 112 in order to power the die 108 and to send and receive signals as described below. As described above, the die 108 has connection points or conductive pads 130 that serve to electrically connect the die 108 to the connection mechanism 112.
  • The die 108 is encapsulated with the encapsulant 106 as described in step 306. The encapsulated die 108 is shown in FIG. 4, which is a side, cutaway, elevation view of the die 108 and the encapsulant 106. A bottom plan view of the encapsulated circuit 100 of FIG. 4 is shown in FIG. 5. The encapsulant 106 may be a conventional encapsulant used in the fabrication of integrated circuits. In some embodiments, a transfer mold technique is used to encapsulate the die 108. Encapsulating the die 108 at this stage of fabrication is unique. In conventional circuits, dies are not encapsulated until they are electrically connected to a connector or other connection device. For example, in flip-chip fabrication, the encapsulation process does not occur until a printed wiring board has been attached to the die. By encapsulating the die 108 at this stage of fabrication of the circuit 100, the die 108 may be handled or otherwise maneuvered with a lower probability of being damaged. The encapsulated die 108 is also less likely to become damaged by contaminants.
  • In the embodiments described herein, the entire die 108 except for the first side 126 is encapsulated. By encapsulating the die 108, except for the first side 126, at this point during fabrication, the die 108 is protected and the pads 130 are accessible in order to connect the die 108 to the connection mechanism 112. As shown in FIGS. 4 and 5, the encapsulant 106 may extend beyond the first side 126 of the die 108, which enables the completed circuit 100 to fit into larger packages. A first edge 172 of the encapsulant and a first edge 125 of the die 108 are spaced apart a distance 170. A second edge 176 of the encapsulant 106 and a second edge 127 of the die 108 are separated by a distance 174 as shown in FIG. 5. The distances 170, 174 determine the size of the first side 120 of the encapsulant 106, which may be substantially planar. The die 108 may be located in the encapsulant 106 in such a manner that the first side 126 of the die 108 and the first side 120 of the encapsulant 106 form a substantially planar and continuous surface.
  • The encapsulant 106 may be applied to the die 108 by different methods. For example, a liquid encapsulant may be molded over the die 108 and cured in a conventional manner. In other embodiments, a solid encapsulant may be formed with the void 124 located therein. The die 108 may be secured within the void 124 so that the die 108 is effectively encapsulated by the encapsulant 106. In yet other embodiments, the encapsulant 106 is cured simultaneously with the curing of the printed wiring board 110 or components in the printed wiring board 110. In such embodiments, the encapsulant 106 may be cured to a stage-B or jell state at this stage of fabrication. After the printed wiring board 110 is attached to the die 108 and the encapsulant 106, the encapsulant 106 and components in the printed wiring board 110 may then be cured simultaneously. The simultaneous curing may enhance the bond between the printed wiring board 110 and the encapsulant 106. For example, the encapsulant 106 and the first dielectric layer 134 are able to flow together in their jell state and then fully cure together.
  • Several different embodiments of applying the printed wiring board 110 to the die 108 will be described below. It is noted that the printed wiring board 110 replaces conventional wire bonds. Therefore, none of the embodiments of the circuit 100 described herein require wire bonds or the like between the die 108 and the connection mechanism 112. Accordingly, all the embodiments of the printed wiring board 110 enable very short distances between the die 108 and the connection mechanism 112, which reduces the parasitic capacitance and inductance associated with the electrical connection between the die 108 and the connection mechanism 112.
  • A first embodiment of applying the printed wiring board 110 to the circuit 100 commences with applying the first dielectric layer 134 to the circuit as described at step 308 of the flow chart 300. The application of the first dielectric layer 134 is described in greater detail by the flow chart 350 of FIG. 6. Reference is made to FIG. 7, which shows the first dielectric layer 134 adhered to a sacrificial carrier 177 as described in step 352 of the flowchart 350. The first dielectric layer 134 may be laminated to the sacrificial carrier 177 by a conventional low temperature vacuum lamination process. The first dielectric layer 134 may be a non-fibrous dielectric material, such as an Ajinomoto build-up film (ABF), produced by Ajinomoto Fine-Techno Co, Inc of Japan and Ajinomoto North America, Inc. of Fort Lee, N.J., USA. The first dielectric layer 134 may have a thickness of between ten and fifty microns. The material used in the first dielectric layer 134 may have a low viscosity prior to being cured. In order to keep the first dielectric layer 134 from sliding off the sacrificial layer 177 when it is in a state having a low viscosity, the first dielectric layer 134 may be cured to a B-stage wherein the first dielectric layer 134 has the viscosity of a jell. Such a curing enables the first dielectric layer 134 to be transported by way of the sacrificial carrier 177 and be adhered to the encapsulant 105 and die 108 as described below.
  • The sacrificial carrier 177 may be a metal, such as a copper foil. In some embodiments, the sacrificial carrier 177 is a one half to two ounce copper foil. In other embodiments, the sacrificial layer 177 may be a foil having several layers, such as a copper/aluminum/copper foil. The sacrificial carrier 177 has a first side 178 and a second side 179, wherein the first side 178 is adhered to or located adjacent the second side 142 of the first dielectric layer 134. The sacrificial carrier 177 is used to apply the first dielectric layer 134 to the encapsulant 106 and the die 108 by forming a rigid carrier to support the first dielectric layer 134 so that it can be pressed against the encapsulant 106 and the die 108.
  • At this stage of fabrication, the first dielectric layer 134 is adhered to the sacrificial carrier 177. The first dielectric layer 134 may then be transported or handled by using the sacrificial carrier 177, which reduces the likelihood of damage to the first dielectric layer 134 during handling. The jell state of the first dielectric layer 134 enables it to be applied to the circuit 100 as described at step 354 of the flow chart 350, which yields the circuit 100 as shown in FIG. 8. For example, the die 108 and the encapsulant 106 may be pressed onto the first dielectric layer 134. It is noted that in some embodiments, a large sheet of a first dielectric layer is adhered to a plurality of dies, which are singulated during a later stage of fabrication.
  • The partially cured jell state of the first dielectric layer 134 enables it to be easily adhered to or located adjacent all the die 108 and the encapsulant 106 and reduces or eliminates the potential for voids between surfaces. More specifically, if the encapsulant 106 is in a jell state, first dielectric layer 134 and the encapsulant 106 may flow together for better adhesion. The conductive pads 130 may be embedded into the jelled first dielectric layer 134. The first dielectric layer 134 and the encapsulant 106 may then be cured simultaneously as described at step 356 of the flow chart 350.
  • The circuit 100 at this point in the fabrication process has the first dielectric layer 134 and the encapsulant 108 cured with the first dielectric layer 134 adhered to the die 108 and/or the encapsulant 108. The sacrificial carrier 177 is then removed as described in step 358 of the flow chart 350. In some embodiments, the sacrificial carrier 177 is etched away by a conventional etching process. The resulting circuit 100 is shown in FIG. 9. As shown, the circuit 100 has the first dielectric layer 134 affixed thereto and the sacrificial layer 177 has been removed. As further shown in FIG. 9, holes for the vias 156 are formed into the first dielectric layer 134 proximate the conductive pads 130 as described in step 360 of the flow chart 350. In one embodiment, a laser is used to form the holes. In other embodiments, the holes for the vias 156 are drilled or formed using chemicals.
  • The holes for the vias 156 are plated or otherwise filled with a conductive material as described in step 362 of the flow chart 350. For example, a plating material may be applied to the first dielectric layer 134 in order to form conductive paths in the vias 156. Other methods may also be used to provide a conductive material to form the vias 156. For example, in some embodiments, the conductive material for the vias 156 is formed when the conductive layer 136 is applied to the first dielectric layer 134.
  • The conductive layer 136 is applied to the first dielectric layer as described in step 310 of the flow chart 300 of FIG. 3. The conductive layer 136 may be applied in a manner similar to the manner in which a redistribution layer is applied to an integrated circuit. For example, a resist (not shown) may be applied to the second side 142 of the first dielectric layer 134. It is noted that if the holes for the vias 156 have not been plated, no resist may be applied proximate the holes. The conductive layer 136 may then be applied to the second side 142 of the first dielectric layer 134 by a conventional technique, such as plating. The conductive material 144, FIG. 2, will adhere to the first dielectric layer 134 in locations where the resist is not present, which may include the holes for the vias 156. The resulting circuit 100 is shown in FIG. 10, which shows the conductive material 144 in the conductive layer 136 connected to the vias 156.
  • In some embodiments, the circuit 100 as shown in FIG. 10 is complete. The circuit 100 is functional and may be connected to other devices by way of the printed wiring board 110. For example conductors may be connected to the conductive layer 136 in order to electrically connect the circuit 100 to other components.
  • In other embodiments of the circuit 100, the second dielectric layer 138 is affixed to the conductive layer 136 as described in step 312 of the flow chart 300 and as shown in FIG. 11. As described above, the second dielectric layer 138 has a first side 152 and a second side 154, wherein the first side 152 is adhered to or attached to the conductive layer 136. The second dielectric layer 138 may be substantially the same material as the first dielectric layer 134. The second dielectric layer 138 serves to protect the conductive layer 136 from damage during handling and from debris or other matter that may short or otherwise damage the conductive layer 134. In addition, the second dielectric layer 138 serves to support the connection mechanism 112.
  • The vias 158 are formed in the second dielectric layer 138 as described in step 314 of the flow chart 300 and as shown in FIG. 12. The vias 158 extend between the first side 152 and the second side 154 of the second dielectric layer 138. The vias 158 are fabricated by forming holes through the second dielectric layer 138 wherein the holes contact specific portions of the conductive material 144 of the conductive layer 136. The holes may be formed in the same way as the holes that are formed in the first dielectric layer 134 to fabricate the vias 156. Likewise, the holes may be filled with or plated with a conductive material to form the vias 158 in a manner similar to the way the vias 156 are formed.
  • The circuit 100 now has an encapsulated die 108 with electrical connections from the die 108 to the second side 154 of the second dielectric material 138. The connection mechanism 112 may now be affixed to the second side 154 of the second dielectric material 138 as described in step 316 of the flow chart 300 and as shown in FIG. 1. The connection. mechanism 112 electrically and/or mechanically connects the circuit 100 to other devices. For example, the connection mechanism 112 may provide input and output signals to and from the die 108. The connection mechanism 112 may also enable the circuit 100 to be physically attached to a substrate (not shown), such as a printed circuit board, or other physical structure.
  • As briefly described above, the connection mechanism 112 may include a plurality of conductors 162 that are attached to the second side 154 of the second dielectric layer 138. The conductors 162 are electrically connected to the vias 158 in order to provide electrical connections to the die 108. The conductors 162 may be conventional metal layers, such as under bump metal layers that are commonly used to support solder balls 160. The solder balls 160 may be attached to the conductors 162 in a conventional manner.
  • The circuit 100 has many advantages over conventional integrated circuits. For example, the circuit 100 was encapsulated early in the production process. Therefore, the circuit 100 may be handled and maneuvered with a lower probability of becoming damaged during the remaining production processes. In addition, the circuit 100 is less susceptible to damage from contaminants during production.
  • Electrically, the circuit 100 has many benefits over conventional integrated circuits. The circuit 100 does not require any wire bonds. Therefore, the circuit 100 is not subject to the increased parasitic capacitance or inductance associated with wire bonds. In addition, the conductive layer 136 enables the lead lengths between the conductive pads 130 on the die 108 and the connection mechanism 112 to be very short. The short distance reduces the electromagnetic interference that the circuit 100 is subject to. It follows that the circuit 100 is better suited to operate in high frequency, high speed, and low power applications.
  • Having described some embodiments of fabricating the circuit 100, other embodiments, will now be described. In some embodiments, the first dielectric layer 134 is applied directly to the die 108 and the encapsulant 106 without the use of the sacrificial carrier 177, FIG. 7. In such an application, the circuit 100 may be positioned so that the first side 120 of the encapsulant 106 and the first side 126 of the die 108 are facing up. The first dielectric layer 134 may then be applied to the first surface 120 of the encapsulant 106 and the first surface 126 of the die 108. The first dielectric layer 134 may then be cured wherein the curing may also simultaneously cure the encapsulant 106. Fabrication of the circuit 100 may continue from step 360 of the flow chart 350 as described above.
  • In another embodiment of the fabrication process, the first dielectric layer 134 is adhered directly to the conductive layer 136 instead of being adhered to the sacrificial carrier 177, FIG. 7. No sacrificial carrier 177 is required to be removed in this embodiment. Rather, the conductive layer 136 and, more specifically, the conductive material 144 of the conductive layer 136, serves as a carrier for the first dielectric layer 134. The conductive material 144 may then be etched to form the conductive layer 136. The vias 156 may be formed as described above. The vias 156 may also be plated so that they electrically connect with the conductive material 144 of the conductive layer 136.
  • In other embodiments, heat spreaders are used in conjunction with or as an alternative to the encapsulant 106. For example, the die 108 may be located in a heat spreader prior to encapsulation. Alternatively, the die 108 may be located in a heat spreader in lieu of encapsulation.
  • While illustrative and presently preferred embodiments of the invention have been described in detail herein, it is to be understood that the inventive concepts may be otherwise variously embodied and employed and that the appended claims are intended to be construed to include such variations except insofar as limited by the prior art.

Claims (20)

What is claimed is:
1. A circuit comprising:
a die having a side, wherein a connection point is located on said side;
a first dielectric layer having a first side, a second side, and at least one first via extending between said first side and said second side, wherein said first side of said first dielectric layer is located proximate said side of said die, and wherein said first via is electrically connected to said connection point; and
a conductive layer having a first side and a second side, wherein said first side is located adjacent said second side of said first dielectric layer, at least a portion of said conductive layer being electrically connected to said first via.
2. The circuit of claim 1, wherein said first dielectric layer is adhered to said side of said die.
3. The circuit of claim 1, and further comprising a connection mechanism electrically connected to at least a portion of said conductive layer.
4. The circuit of claim 1, wherein at least a portion of said die is encapsulated with an encapsulant.
5. The circuit of claim 4, wherein at least a portion of a said first dielectric layer contacts said encapsulant.
6. The circuit of claim 1 and further comprising a second dielectric layer having a first side and a second side, wherein said first side is located adjacent said conductive layer, wherein said second dielectric layer has a second via extending between said first side and said second side, and wherein said second via is electrically connected to said conductive layer.
7. The circuit of claim 6, and further comprising a connection mechanism electrically connected to at said second via.
8. The circuit of claim 7, wherein said connection mechanism is mechanically connected to said second dielectric layer.
9. A method of fabricating a circuit, said method comprising:
providing a die, said die having a side, wherein a connection point is located on said side;
affixing a first dielectric layer to said first side of said die, said first dielectric layer having a first side and a second side, wherein said first side of said first dielectric layer is affixed to said side of said die; and
forming a first via through said first dielectric layer between said first side and said second side, wherein said first via is electrically connected to said connection point.
10. The method of claim 9 and further comprising encapsulating said die prior to said affixing said first dielectric layer to said side of said die wherein said encapsulating comprises substantially encapsulating said die, except for said side.
11. The method of claim 9, and further comprising locating said die proximate a heat spreader.
12. The method of claim 9 and wherein said first dielectric layer is affixed to said die in an uncured state and further comprising:
applying an uncured encapsulant to said die; and
curing said encapsulant and said first dielectric layer simultaneously.
13. The method of claim 9, wherein said first dielectric layer has a conductive layer affixed to said second side and further comprising electrically connecting said conductive layer to said first via.
14. The method of claim 13 and further comprising:
affixing a second dielectric layer to said conductive layer, said second dielectric layer having a first side and a second side, wherein said first side of said second dielectric layer is located adjacent said conductive layer; and
forming a second via between said conductive layer and said second side of said second dielectric layer.
15. The method of claim 14 and further comprising affixing a connection mechanism to said second side of said second dielectric layer, said connection mechanism being electrically connected to said second via.
16. The method of claim 9, wherein said affixing a first dielectric layer comprises affixing a first dielectric material to a carrier and applying said dielectric material with said carrier to said side of said die.
17. The method of claim 16 and further comprising removing said carrier.
18. A method of fabricating a circuit, said method comprising:
encapsulating a die with encapsulant except for a first side of said die; and
after said encapsulating, attaching a dielectric substrate to said die and said encapsulant.
19. The method of claim 18, and further comprising electrically connecting said die to a connection mechanism using conductive material that extends through said dielectric substrate.
20. The method of claim 19 wherein said electrically connecting comprises attaching a conductive layer to one side of said dielectric substrate after said attaching said dielectric substrate to said die and said encapsulant.
US13/443,401 2011-09-23 2012-04-10 Integrated circuit and method of making Abandoned US20130075928A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/443,401 US20130075928A1 (en) 2011-09-23 2012-04-10 Integrated circuit and method of making
US13/563,345 US20130075894A1 (en) 2011-09-23 2012-07-31 Integrated circuit and method of making
CN2012103564609A CN103021981A (en) 2011-09-23 2012-09-21 Integrated circuits and method of fabricating same
US14/582,349 US9875930B2 (en) 2011-09-23 2014-12-24 Method of packaging a circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161538365P 2011-09-23 2011-09-23
US201261596617P 2012-02-08 2012-02-08
US13/443,401 US20130075928A1 (en) 2011-09-23 2012-04-10 Integrated circuit and method of making

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/481,275 Continuation-In-Part US9142472B2 (en) 2011-09-23 2012-05-25 Integrated circuit and method of making

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/563,345 Continuation-In-Part US20130075894A1 (en) 2011-09-23 2012-07-31 Integrated circuit and method of making

Publications (1)

Publication Number Publication Date
US20130075928A1 true US20130075928A1 (en) 2013-03-28

Family

ID=47910367

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/443,401 Abandoned US20130075928A1 (en) 2011-09-23 2012-04-10 Integrated circuit and method of making
US13/481,275 Active 2033-10-27 US9142472B2 (en) 2011-09-23 2012-05-25 Integrated circuit and method of making
US14/831,163 Active 2032-06-29 US9536781B2 (en) 2011-09-23 2015-08-20 Method of making integrated circuit

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/481,275 Active 2033-10-27 US9142472B2 (en) 2011-09-23 2012-05-25 Integrated circuit and method of making
US14/831,163 Active 2032-06-29 US9536781B2 (en) 2011-09-23 2015-08-20 Method of making integrated circuit

Country Status (2)

Country Link
US (3) US20130075928A1 (en)
CN (2) CN103021982B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974445B2 (en) 2009-01-09 2015-03-10 Recor Medical, Inc. Methods and apparatus for treatment of cardiac valve insufficiency
US20210305064A1 (en) * 2016-11-29 2021-09-30 Pep Innovation Pte. Ltd. Method of packaging chip and chip package structure

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9559056B2 (en) * 2014-09-18 2017-01-31 Infineon Technologies Austria Ag Electronic component
US9721799B2 (en) * 2014-11-07 2017-08-01 Advanced Semiconductor Engineering, Inc. Semiconductor package with reduced via hole width and reduced pad patch and manufacturing method thereof
US10079156B2 (en) 2014-11-07 2018-09-18 Advanced Semiconductor Engineering, Inc. Semiconductor package including dielectric layers defining via holes extending to component pads
FR3040534A1 (en) * 2015-08-28 2017-03-03 St Microelectronics Sa ELECTRONIC DEVICE WITH CONDUCTIVE LAYER AND METHOD OF MANUFACTURE
US9831147B2 (en) * 2015-11-30 2017-11-28 Infineon Technologies Austria Ag Packaged semiconductor device with internal electrical connections to outer contacts
TWI723140B (en) * 2016-08-10 2021-04-01 台灣積體電路製造股份有限公司 Packaged device and method for manufacturing the same
CN107170731A (en) * 2017-05-05 2017-09-15 华为技术有限公司 Embedded substrate and its manufacture method
CN110010597B (en) * 2019-03-29 2021-06-18 上海中航光电子有限公司 Chip packaging structure and packaging method thereof
DE102019115369A1 (en) * 2019-06-06 2020-12-10 Infineon Technologies Ag METHOD OF MANUFACTURING A SEMICONDUCTOR FLIP CHIP PACKAGE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8237259B2 (en) * 2007-06-13 2012-08-07 Infineon Technologies Ag Embedded chip package

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586822B1 (en) * 2000-09-08 2003-07-01 Intel Corporation Integrated core microelectronic package
US7307348B2 (en) * 2005-12-07 2007-12-11 Micron Technology, Inc. Semiconductor components having through wire interconnects (TWI)
US7830004B2 (en) * 2006-10-27 2010-11-09 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging with base layers comprising alloy 42
US20080246126A1 (en) * 2007-04-04 2008-10-09 Freescale Semiconductor, Inc. Stacked and shielded die packages with interconnects
CN201667333U (en) * 2009-06-26 2010-12-08 江阴长电先进封装有限公司 Novel wafer level fan-out chip packaging structure
US8258633B2 (en) * 2010-03-31 2012-09-04 Infineon Technologies Ag Semiconductor package and multichip arrangement having a polymer layer and an encapsulant
DE102010045390A1 (en) * 2010-09-15 2012-03-15 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
US20130075894A1 (en) * 2011-09-23 2013-03-28 Texas Instruments Incorporated Integrated circuit and method of making

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8237259B2 (en) * 2007-06-13 2012-08-07 Infineon Technologies Ag Embedded chip package

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974445B2 (en) 2009-01-09 2015-03-10 Recor Medical, Inc. Methods and apparatus for treatment of cardiac valve insufficiency
US20210305064A1 (en) * 2016-11-29 2021-09-30 Pep Innovation Pte. Ltd. Method of packaging chip and chip package structure
US11881415B2 (en) * 2016-11-29 2024-01-23 Pep Innovation Pte Ltd Method of packaging chip and chip package structure

Also Published As

Publication number Publication date
US20130075890A1 (en) 2013-03-28
US9536781B2 (en) 2017-01-03
CN103021982A (en) 2013-04-03
CN103021982B (en) 2018-05-18
CN103021981A (en) 2013-04-03
US9142472B2 (en) 2015-09-22
US20150357238A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
US9536781B2 (en) Method of making integrated circuit
US8826527B2 (en) Electronic component-embedded printed circuit board and method of manufacturing the same
US8597983B2 (en) Semiconductor device packaging having substrate with pre-encapsulation through via formation
KR100851072B1 (en) Electronic package and manufacturing method thereof
US20120049366A1 (en) Package structure having through-silicon-via (tsv) chip embedded therein and fabrication method thereof
US9179549B2 (en) Packaging substrate having embedded passive component and fabrication method thereof
KR101204233B1 (en) A printed circuit board comprising embeded electronic component within and a method for manufacturing
US10002825B2 (en) Method of fabricating package structure with an embedded electronic component
KR101104210B1 (en) Electro device embedded printed circuit board and manufacturing method thereof
US9875930B2 (en) Method of packaging a circuit
US9324683B2 (en) Semiconductor package and method of manufacturing the same
KR101043328B1 (en) Electro device embedded printed circuit board and manufacturing method thereof
US20230187402A1 (en) Electronic package and manufacturing method thereof
US20230017445A1 (en) Scalable Extreme Large Size Substrate Integration
US20090212444A1 (en) Semiconductor package and method of manufacturing the same
KR100963201B1 (en) Substrate embedded chip and method of manufactruing the same
JP4593444B2 (en) Manufacturing method of electronic component mounting structure
US20130292832A1 (en) Semiconductor package and fabrication method thereof
US8556159B2 (en) Embedded electronic component
US9084341B2 (en) Fabrication method of packaging substrate
JP2015018934A (en) Printed circuit board and method of manufacturing the same
TWI541952B (en) Semiconductor package and manufacturing method thereof
US20230317653A1 (en) Hybrid bonding a die to a substrate with vias connecting metal pads on both sides of the die
US9466553B2 (en) Package structure and method for manufacturing package structure
KR101378311B1 (en) Packaging substrate and fabrication method therof

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GALLEGOS, BERNARDO;CASTRO, ABRAM;REEL/FRAME:028132/0584

Effective date: 20120409

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION