US20130106588A1 - Sport Event Transducer - Google Patents

Sport Event Transducer Download PDF

Info

Publication number
US20130106588A1
US20130106588A1 US13/700,059 US201113700059A US2013106588A1 US 20130106588 A1 US20130106588 A1 US 20130106588A1 US 201113700059 A US201113700059 A US 201113700059A US 2013106588 A1 US2013106588 A1 US 2013106588A1
Authority
US
United States
Prior art keywords
team
event
sport
transducer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/700,059
Inventor
Jeffrey C. Cho
Bruce J. Barker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/896,989 external-priority patent/US8320870B2/en
Application filed by Individual filed Critical Individual
Priority to US13/700,059 priority Critical patent/US20130106588A1/en
Publication of US20130106588A1 publication Critical patent/US20130106588A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0237Switching ON and OFF the backlight within one frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/10Use of a protocol of communication by packets in interfaces along the display data pipeline
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/16Use of wireless transmission of display information
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/02Flexible displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators

Definitions

  • the present invention relates generally to sport team merchandise and in particular to sport garments such as caps and jerseys that bear team logos or other graphic images relating to a sport team, such as popular national sports teams as well as local or regional sports teams and the like.
  • sport garments such as caps and jerseys that bear team logos or other graphic images relating to a sport team, such as popular national sports teams as well as local or regional sports teams and the like.
  • Such merchandise is typically worn or carried by fans to show their loyalty to and interest in a particular team or player.
  • U.S. Pat. No. 6,511,198 describes a jersey having a fabric made of light emitting polymers for electronically displaying a team logo or other sports related message.
  • the message can be modified to remain up to date.
  • the patent says that the “user may alter the display to read ‘New York Yankees’-‘World Universities 1999.
  • the invention relates generally to a Sport Event Transducer and a method of operating the transducer so that it emits a perceivable output in response to an event relating to a sport team or player, such as for example, by emitting an audio-visual output when a particular football team or player scores a touchdown.
  • the Sport Event Transducer receives and decodes a signal that carries team event messages. If a team event message relates to a team or player affiliated with that transducer, the transducer emits an audio and/or visual output signal in response to the message.
  • FIG. 1 illustrates a garment having output elements and an intelligent controller with an FM radio receiver.
  • FIG. 2 is a block diagram of a radio-data receiver/decoder.
  • FIG. 3 is a diagram of a transmission system for preparing and transmitting RDS team event messages.
  • FIGS. 4 a and 4 b are diagrams of the structure of an RDS data group specified in the RBDS standard.
  • FIG. 5 is a diagram of a type “3A” group for notifying Sport Event Transducers of a selected group type for use in carrying team event messages.
  • FIG. 6 is a diagram of an RDS data group of type 11A that carries a team event message.
  • FIG. 7 is a flow chart of a controller module within a Sport Event Transducer for receiving and decoding an RDS team event message.
  • FIG. 8 is a diagram of a transmission system that includes a plurality of FM stations under the control of a central server.
  • the system also includes cable TV networks, and “hot spots,” under the control of a central server
  • FIG. 9 is a flow chart of the general operation of a central server of FIG. 8 .
  • FIG. 10 is flow chart of the general operation of a station server of FIG. 8 .
  • FIG. 1 depicts a Sport Event Transducer in the form of a garment 10 that includes one or more display elements 11 and one or more speaker elements 12 , as well as a controller 13 for controlling the output of these elements.
  • the garment includes a portable power source, such as a lithium-ion battery, that has the capacity to supply power to the electronics, the display and the speaker elements.
  • the power source supplies the output elements with sufficient energy that they can be seen and heard in either an indoor environment or in an outdoor setting such as a sports stadium where the ambient light and sound can be substantially greater.
  • Garment 10 will typically bear a logo or other marking or indicia of a sport team or player (To avoid the need to repeatedly use the phrase “sport team or player,” the word “team” will be used herein when referring to a team or player that is affiliated with a Sport Event Transducer).
  • the garment includes a team identifier for electronically identifying a sport team associated with the garment.
  • the controller 13 includes memory 18 that can be loaded with an identification code that corresponds to a particular sport team.
  • the team identifier can be in the form of a predetermined memory location or register that stores the identification code. It can also be embedded in processor instructions or micro-code for the garment's controller. Any type of team identifier can be used, as long as it can specify the garment's team affiliation to the controller.
  • a display element can be a single light emitting diode (“LED”) or multiple LEDs. Alternatively, it can be implemented using any material that glows or emits light under electronic control.
  • a garment that is associated with a particular sport team is partly made of light emitting polymers such as described in U.S. Pat. No. 6,511,198, incorporated herein by reference.
  • a garment can be made using a light emitting weave as described in U.S. Pat. No. 6,490,402, also incorporated herein by reference.
  • Other known display technologies can be used, such as for example electrophoretic ink displays.
  • a speaker element 12 can be any known acoustic transducer for emitting a sound signal in response to a signal, such as known piezoelectric transducers or electromagnetic speakers.
  • the main controller 13 includes a micro-controller 17 with a related memory 18 for controlling the display element 11 and speaker element 12 .
  • the micro-controller 17 supplies control signals to a display driver 15 to thereby turn the display element on and off, as well as to control the intensity and/or the color of the element.
  • the entire display element 11 operates as a single pixel.
  • all light emitting units within the display element operate together, turning on and off at the same time so as to behave as a single light source.
  • multiple light emitting units within the display element operate as individual pixels that can be controlled independently of each other.
  • the micro-controller 17 also supplies a control signal to a multiplexer 16 for selecting an input to an audio driver 14 that controls the sound that is output by speaker element 12 .
  • the micro-controller can retrieve from memory 18 a selected sound pattern and forward it to the audio driver via multiplexer 16 for reproduction by the speaker element 12 .
  • Memory 18 can be loaded with a plurality of stored sound patterns, such as a pattern that emits a siren sound, a sound of an explosion, or any of a variety of other stored sound patterns. Those skilled in the art will understand that such patterns can be stored in a memory and can be compressed to reduce the amount of memory required to store the pattern.
  • the controller can direct multiplexer 16 to drive speaker 12 with the audio content of a radio signal received by a receiver 19 within the controller 13 .
  • the micro-controller includes a module that causes the output elements to emit a random sequence of popping sounds and light flashes. More specifically, when a transducer receives a command to implement this module, it's controller waits a random period of time before driving the speaker 12 with a pop or crack sound, and driving the display with a quick bright flash. The controller repeats this output several times, each time separated by a random delay. The controller thereby drives the speaker and display with a sequence of randomly separated pulses. Thus, if this module is executed by a group of sports transducers that are in the same vicinity, they will collectively emit an audio/visual show similar to that of fireworks.
  • the controller 13 also includes a receiver 19 for receiving a broadcast RF signal that contains commands for controlling the display element 11 and/or speaker element 12 .
  • the receiver is designed to receive RF signals that are transmitted over long distances that span a wide area (such as over an entire metropolitan area), and can penetrate buildings and other structures to thereby reach many garments for a popular sport team in the area covered by the RF transmission.
  • the receiver can be compatible with commercial transmitters for FM radio, AM radio, Digital Radio, terrestrial television or other signal formats used to reach audiences over a wide area.
  • any suitable technique for wireless communication can be used.
  • the receiver 19 is designed to receive and demodulate FM radio transmissions from a commercial radio station, which typically span many square miles and can penetrate homes and other buildings. More specifically, the receiver is compatible with FM station radio-data equipment that complies with the Radio Broadcast Data System I“RBDS”).
  • RBDS Radio Broadcast Data System
  • the National Radio Systems Committee (“NRSC”) has defined a standard for RBDS that specifies how to embed data in FM radio transmissions to thereby communicate the data (herein “RDS data”) using the same radio signals that earn music or other sound content.
  • the receiver 19 includes an antenna 20 and an FM tuner 22 for receiving the RF signal and isolating a particular FM channel.
  • the tuner isolates an FM channel that is selected by micro-controller 17 , as indicated by the “channel” signal from the microcontroller.
  • An FM demodulator 24 demodulates the selected channel to extract the audio content for the FM channel that is then provided to an audio decoder/amplifier 26 .
  • the FM demodulator 24 also extracts from the FM channel a subcarrier signal that is encoded with the RDS data and supplies that subcarrier signal to an RDS decoder 28 .
  • RDS decoder 28 A general example of an RDS decoder 28 is shown in the current RBDS standard, wherein the standard depicts what it calls a “typical” decoder for extracting RDS data from such a subcarrier signal.
  • any RDS decoder that is compatible with a corresponding FM radio-data transmitter can be used.
  • the raw RDS data extracted by the RDS decoder is provided to the micro-controller 17 , for example via a digital bus.
  • the controller 17 then extracts from the raw RDS data a message that corresponds to an event relating to a sports team, herein a “learn event message.”
  • the controller 17 includes a decoder module that determines whether the received team event message relates to the team associated with that garment, as specified by the garment's team identifier. If so, a message interpretation module within the controller causes the garment's display element 11 and/or its speaker elements 12 to emit a corresponding output based upon the content of the team message.
  • a plurality of garments each bear the logo for a popular football team, herein “Team A.”
  • Team A scores during a game
  • a broadcast transmission system broadcasts an FM radio-data signal that contains an embedded team event message that notifies all Team A garments within the vicinity that a score has occurred.
  • Each of the garments that receive the transmission extract the team event message from the radio broadcast.
  • the garments' controllers cause the garments' display elements and/or their speaker elements to emit a corresponding output in celebration of the touchdown.
  • a sport event transducer (“SET”) controller system transmits team event messages over a wide area (such as an area that encompasses the geographic market for a popular sport team) using a signal format that can penetrate homes and other buildings with sufficient strength to permit them to be decoded by Sport Event Transducers within those structures.
  • the system includes an FM radio station antenna 30 that is coupled to the transmitter of conventional FM station 31 that complies with the Radio Broadcast Data System (“RBDS”).
  • RBDS Radio Broadcast Data System
  • the National Radio Systems Committee (“NRSC”) has defined a standard for RBDS that specifies how to embed data in FM radio transmissions to thereby communicate the data (herein “RDS data”) using the same radio signals that earn music or other sound content.
  • the system of FIG. 3 includes a Broadcast Control Module 35 for supplying RDS data to the FM station 31 .
  • the server 35 prepares the RDS data for transmission by the FM station 31 and its antenna 30 .
  • the Broadcast Control Module 35 includes a data-gathering module 34 for obtaining real-time information concerning the status of certain sporting events.
  • the module includes a user console 32 ( a ) for accepting user input of sports information.
  • a user observes a sporting event (live or remotely) and enters selected status information into the console as events occur, such as when a football team scores a touchdown.
  • this information can be used to trigger the broadcast of a corresponding team event message.
  • the user of console 32 ( a ) can also issue a team event message that is independent of any particular scoring event.
  • the user can issue a team event message directing all team garments and other sports transducers to light up or issue a sound blast at any moment that the user deems appropriate, such as at a moment during a game that the user considers critical or exciting.
  • the system includes a remote user console 32 ( b ) that operates in essentially the same way as local console 32 ( a ), except that it supplies its input to the data-gathering module 34 from a remote location.
  • the transmissions between the remote console and data gathering module are secured to prevent unauthorized persons from triggering team event messages, for example using known cryptographic techniques to identify authorized users, or by otherwise encrypting communications between the remote console and the control server.
  • the module 34 automatically gathers sporting information from one or more remote servers, for example via the Internet.
  • the Internet there are several Real-Time Sports Data Servers 37 accessible via the Internet that provide real-time sports information, such as current scores of baseball games and other real-time game statistics.
  • the gathering module receives such information from one or more such servers, and supplies it to a messaging module 33 .
  • the messaging module 33 detects from this input the occurrence of certain predefined events and, in response, instructs the FM station 31 to broadcast a corresponding team event message to Sport Event Transducers of a specified type, thereby simultaneously notifying a plurality of Sport Event Transducers of the event in real-time.
  • the data-gathering module 34 quickly learns of that event and promptly notifies the messaging module 33 .
  • the messaging module prepares a corresponding team event message and forwards the message to the FM station 31 for transmission in a format that is compliant with RBDS.
  • the RBDS standard allows FM radio stations to transmit data on an FM channel by encoding the data into a subcarrier signal that is injected into an FM audio signal to thereby form a composite FM signal.
  • the standard specifies how to encode several pre-defined types of data into the composite signal. For example, it defines how to encode data that tunes radio receivers, and data called “radio text” that is displayed by the receiver, such as the name of a song currently playing on the FM channel.
  • the RBDS standard also describes a protocol for encoding data for undefined applications called “Open Data Applications.”
  • the standard allows for over 65,000 open data applications, each of which can be assigned a unique sixteen-bit identification code called the “Application Identifier” or “AID.”
  • AID numbers are assigned by an RDS Registration Office in response to requests from those wishing to transmit data for an application that is not pre-defined in the RBDS standard.
  • a user obtains from an RDS Registration Office, an AID code for the sports event transducer application. This AID code is then used to identify team event messages broadcast in accordance with the RDS system as explained below.
  • RDS data is formatted in “groups” of 104 bits that are arranged in four “blocks” of twenty-six bits each, as shown in FIGS. 4 a and 4 b (reproduced from the industry standard).
  • the second block of each group includes a five-bit “group type” code that specifies the group's purpose, as shown in table 3 of the RBDS specification.
  • group type “OA” is used to transmit data for tuning FM receivers
  • group type “2A” is used for transmitting radio text.
  • the RBDS specification allocates only nineteen group types for use by Open Data Applications (“ODAs”). Since there are far more than nineteen possible ODAs, the ODAs must share the nineteen ODA group types.
  • ODAs Open Data Applications
  • the messaging module 33 uses ODA group types for carrying team event messages as follows. First, the messaging module 33 (and/or the FM station 31 ) selects one of the available ODA group types. It then notifies all sports event transducers in the area of the selection by broadcasting a type “3A” group as shown in FIG. 5 .
  • Field 56 of the type 3A group contains the AID that is registered for the Sport Event Transducer Application, thereby indicating to all receivers that this type 3A group is for the Sport Event Transducer Application.
  • Field 52 provides an Application Group Type Code that identifies the ODA group type that was selected for the Sport Event Transducer Application. In this example, the Application Group Type Code equals 10110, thereby indicating that group type 11A was chosen. Thus, the type 3A group shown in FIG. 5 notifies all receivers that ODA group type 11A will carry data for the Sport Event Transducer Application.
  • the type 3A group also includes a field 54 that can carry other information for sports event transducers.
  • the field 54 contains a team class identifier that identifies a team or a group of teams to whom this type 3A group is directed. For example, if a given radio station is using type 11A groups to carry team event messages for all of the major teams in the area around Boston, Mass., then field 54 contains a team class identifier indicating this fact. Alternatively, if the radio station uses group type 11A only to carry messages for one team (such as the New England Patriots), then the patriots team identifier would be placed in field 54 . In this manner, a radio station can assign one or more teams to a selected ODA group.
  • FIG. 6 depicts the format of a type 11A group that is encoded with a team event message.
  • field 60 of the group contains the code for type 11A, i.e., 10110, and field 62 carries the team event message.
  • the message is thirty-seven bits long because type 11A groups have a thirty-seven-bit payload.
  • type B groups can also be used to carry messages, in which case the team event message would have only twenty-one bits.
  • the team event message 62 includes a team identifier code 64 (or “garment type code” for garment-type transducers) that identifies a particular team to which the message is directed, such as Team A in the above examples.
  • the message also includes a function code 66 that specifies the type of event that has occurred (or a particular function to be performed), such as for example a code that indicates that a touchdown has occurred.
  • sports event transducers receive and decode such team event messages and perform a corresponding function or action.
  • FIG. 7 depicts the general steps performed by the garment's micro-controller 17 for receiving and decoding such embedded RDS messages.
  • the controller 13 Once the controller 13 is powered on (step 700 ), the FM receiver 19 and micro-controller 17 together begin scanning the FM radio channels (step 702 ) to locate one earning team event messages.
  • the micro-controller first directs the FM receiver 19 to tune to a particular channel. It then listens to the channel's signal to determine if it contains a type 3A RDS group for the Sports Event Transducer Application (steps 704 - 708 ).
  • Step 708 it monitors the RDS stream for a group whose type field contains the code for type 3A (i.e., 00110) and whose AID field contains the code registered for the Sport Event Transducer application (Step 708 ).
  • the controller determines if field 54 contains a team class code for that transducer (Step 708 )). If no such group arrives within a specified period of time, the controller 17 directs the receiver 19 to scan to another channel (Steps 702 - 706 ). If the controller detects such a type 3A group, then it extracts the “Application Group Type Code” which species the group type chosen to carry data for this type of transducer, in this example group type 11A. (Step 710 ).
  • the controller then begins listening for a type 11A group (Step 712 ). If no type 11A group is received within a predetermined period of time, the controller returns to scanning the channels (Step 714 , 702 ). However, if a type 11A group arrives, the controller extracts the team event message (Step 716 ) and compares the message's team identifier to the controller's team identifier (Step 718 ). If they match, the controller decodes the function code and directs the display element 11 and/or speaker element 12 to emit a corresponding output for that function (Step 720 ). It they do not match, the controller returns to scanning the FM channels. (Steps 718 - 702 ).
  • the controller assumes that the selected FM channel uses type 11A groups to carry messages for only a single team and therefore returns to scanning channels if a message is received for some other team.
  • the controller returns to listening for the next type 11A group (step 712 ) if the latest message is addressed to a different team.
  • the controller 17 should resume scanning the FM channels to determine if a different channel is carrying team event messages in the new territory. For example, the controller 17 can return to the scanning step 702 if no team event message is received over a predetermined period of time, or it can periodically repeat the scanning step.
  • a sport event transducer control system can include multiple radio stations 31 that collectively reach a much larger geographic region than any single station.
  • FIG. 8 depicts a system having a large number of radio stations (“FM 1 -FM n ”) that are located in different sites. For example, they can all be located within a market for a particular sports team. In some embodiments, the radio stations can be located in different countries throughout the world, depending on the geographic coverage that is desired.
  • FM 1 -FM n radio stations
  • the system includes a Central Control Server 38 that receives sports related data from a variety of sources, such as from a Real-Time Sports Data Server 37 coupled to the internet 36 or from an operator console 32 .
  • the embodiment shown in FIG. 8 also includes a mobile operator console 32 c that communicates with the Central Control Server 38 via a wireless cell interface 39 , to thereby provide real-time sports data and operator generated team event messages via a cell phone interface as shown.
  • the Central Control Server receives real-time sports event data from these sources, analyzes the data to identify the occurrence of certain predefined events, and in response, instructs selected FM stations to broadcast team event messages via their FM broadcasts.
  • the system For each FM station, the system includes a Broadcast Control Module 35 that couples the station to the Internet 36 (or other network) for receiving data that instructs the station to emit team event messages via that station's FM transmission, and for controlling the FM station 31 to implement these instructions.
  • a Broadcast Control Module 35 that couples the station to the Internet 36 (or other network) for receiving data that instructs the station to emit team event messages via that station's FM transmission, and for controlling the FM station 31 to implement these instructions.
  • the server receives real-time sports data from any of a variety of sources (Step 900 ). In response, it analyzes the data to determine if a predetermined type of event has occurred (Step 902 ).
  • These predefined events include particular types of events for which the Central Control Server will cause a team event message to be broadcast. For example, for a football team, events that could trigger a team event message might include a score by the team (e.g. touchdown, field goal etc.), a turnover in favor of the team, or a penalty call against the opposing team. For a baseball team, the events could include a home run, strike-out of an opposing player, or the victorious end to the game.
  • the Central Control Server If the Central Control Server detects the occurrence of such a predefined event for a team, it sends a message to selected FM stations to cause them to broadcast a team event message as explained below (steps 906 - 910 ). Similarly, the Central Control Server will cause a team event messages to be broadcast if an operator manually requests one (Step 904 ).
  • the Central Control Server Upon detection of such an event for a team, e.g., Team A, the Central Control Server determines the identity of all stations that are designated for broadcasting messages for Team A (Step 906 ). It prepares an instruction packet or packets for each such station and transmits the packet(s) to the station's Broadcast Control Module 35 via the Internet or other network (Steps 908 - 910 ).
  • FIG. 10 depicts the operation of each Broadcast Control Module 35 in response to the receipt of such a team event packet or packets.
  • the Broadcast Control Module determines the identity of the team or teams to which the packet relates (Step 1002 ). If an Open Data Application group type has already been selected for that team's event messages, the Broadcast Control Module encodes data from the packet into a team event message using the selected group type (Step 1012 ) and instructions the station 31 to broadcast the group as described above (step 1014 ).
  • the Broadcast Control Module selects an available ODA group type for use in communicating with the sport event transducers (Step 1006 ) and notifies all transducers of the selection by broadcasting a type 3A group as demonstrated in FIG. 4 (Step 1008 ).
  • the Broadcast Control Module then encodes the team event message in the selected group type (as demonstrated in FIG. 6 ) and instructs the station's radio-data equipment 31 to broadcast the encoded message (Step 1001 ).
  • each selected Broadcast Control Module receives a packet containing instructions for forming a team event message and processes it in this manner.
  • the selected group of stations collectively broadcast the team event message over a wide area determined by the combined ranges of the selected FM stations.
  • the system of FIG. 8 also includes other types of broadcast networks, such as one or more cable TV networks 40 .
  • the cable company supplies its customers with cable TV decoder boxes 42 that include a local wireless transmitter 42 ( a ) for emitting local wireless signals into the customer's home or business, such as for example in the WIFI or Bluetooth format.
  • the cable boxes can use any wireless format that is compatible with the wireless receivers found in sports event transducers.
  • the Central Control Server 38 can send packets to a cable company server 44 via the internet, instructing the cable company server to broadcast team event messages via the wireless transmitters 42 ( a ) of selected cable boxes 42 .
  • the packet contains a team event message that indicates that Team A has scored in a game
  • the cable company instructs all cable boxes 42 that are tuned to a televised broadcast of the game to transmit the team event message on their wireless transmitters.
  • the transmission system of FIG. 8 can also transmit packets to selected hot spot wireless transmitters 48 that emit localized wireless signals that span a small region or “hot spot,” such as signals in the WIFI or Bluetooth formats.
  • Each hot spot location includes a server 47 for receiving packets from the Central Control Server 38 via the Internet.
  • the server 47 instructs a wireless transmitter 48 to emit a wireless signal embedded with the team event message.
  • a hot spot could be the home of a sports fan, a business location such as a sports bar, or a sports arena where a game is played.
  • the system of FIG. 8 also includes a mobile hot spot 46 .
  • Mobile device 46 includes a cell phone receiver for receiving a cell phone transmission from the Central Control Server 38 .
  • the mobile device also includes a local wireless transmitter for transmitting wireless signals such as those emitted by transmitters 42 ( a ) and 48 , but preferably in a very short-range wireless format such as Bluetooth.
  • mobile device 46 receives from Central Control Server 38 a cell phone transmission instructing the device to emit a team event message.
  • the mobile device emits a team event message via its wireless transmitter for sports event transducers in close proximity to the device 46 .
  • the mobile device 46 is itself a sports event transducer that responds directly to a team event message from central server 38 .
  • the system can also include mechanisms for discouraging unauthorized Sport Event Transducers from responding to team event messages.
  • a Broadcast Control Module 35 or the Central Control Server 38 can encrypt each team event message so that only devices with a proper cryptographic key can decipher the team event messages.
  • these servers can occasionally emit decoy RDS groups that have the selected group type for a team event message, but whose data field 62 lacks a legitimate team event message, to thereby make it more difficult for unauthorized devices to know when legitimate team event messages are being issued.
  • the same architecture can be used to broadcast team event messages for all kinds of sporting events, wherein each Sport Event Transducer responds only to those broadcasts that relate to a particular team or player of interest.
  • the team identifiers can include a bit that indicates whether the team of interest is a local team (known only in the region of an FM transmitter, such as a little league team) or a more widely known team (such as a national football team). This allows the system to efficiently distinguish between a very large number of teams throughout the country or world.
  • team event messages can be emitted for events other than sporting competitions. For example, during a parade, team event messages can be emitted to control garments worn by persons marching in the parade as well as persons watching the parade, to thereby generate an audio/visual demonstration.

Abstract

A sport event transducer having an output element that can emit a perceivable output in response to an event that relates to a sport team, for example by emitting an audio-visual output when a particular football team scores. The transducer can be removable attached to a sport garment such as a cap or jersey, or can be an integral part of the garment. A transmission system remotely controls such transducers in response to sport team events by broadcasting an RF signal carrying team event messages, for example by transmitting an FM radio-data broadcast that carries a team event message embedded in the FM signal as RDS data. The sport event transducer receives and decodes such RF broadcast signals. If the transducer receives a team event message that relates to the transducer's affiliated team, the transducer's output element emits an audio and/or visual output signal in response to the message.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to sport team merchandise and in particular to sport garments such as caps and jerseys that bear team logos or other graphic images relating to a sport team, such as popular national sports teams as well as local or regional sports teams and the like. Such merchandise is typically worn or carried by fans to show their loyalty to and interest in a particular team or player.
  • BACKGROUND
  • Many sports fans wear caps or other items that bear the logos or other indicia of a team or player they support. When attending games, some fans carry posters, signs or flags bearing pictures or text for display to others in the audience or to television cameras that broadcast the event. These items often bear a team logo or other indicia.
  • U.S. Pat. No. 6,511,198 describes a jersey having a fabric made of light emitting polymers for electronically displaying a team logo or other sports related message. The message can be modified to remain up to date. For example, the patent says that the “user may alter the display to read ‘New York Yankees’-‘World Champions 1999.
  • DISCLOSURE OF THE INVENTION
  • The invention relates generally to a Sport Event Transducer and a method of operating the transducer so that it emits a perceivable output in response to an event relating to a sport team or player, such as for example, by emitting an audio-visual output when a particular football team or player scores a touchdown. In one embodiment, the Sport Event Transducer receives and decodes a signal that carries team event messages. If a team event message relates to a team or player affiliated with that transducer, the transducer emits an audio and/or visual output signal in response to the message.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 illustrates a garment having output elements and an intelligent controller with an FM radio receiver.
  • FIG. 2 is a block diagram of a radio-data receiver/decoder.
  • FIG. 3 is a diagram of a transmission system for preparing and transmitting RDS team event messages.
  • FIGS. 4 a and 4 b are diagrams of the structure of an RDS data group specified in the RBDS standard.
  • FIG. 5 is a diagram of a type “3A” group for notifying Sport Event Transducers of a selected group type for use in carrying team event messages.
  • FIG. 6 is a diagram of an RDS data group of type 11A that carries a team event message.
  • FIG. 7 is a flow chart of a controller module within a Sport Event Transducer for receiving and decoding an RDS team event message.
  • FIG. 8 is a diagram of a transmission system that includes a plurality of FM stations under the control of a central server. The system also includes cable TV networks, and “hot spots,” under the control of a central server
  • FIG. 9 is a flow chart of the general operation of a central server of FIG. 8.
  • FIG. 10 is flow chart of the general operation of a station server of FIG. 8.
  • MODES FOR CARRYING OUT THE INVENTION
  • FIG. 1 depicts a Sport Event Transducer in the form of a garment 10 that includes one or more display elements 11 and one or more speaker elements 12, as well as a controller 13 for controlling the output of these elements. The garment includes a portable power source, such as a lithium-ion battery, that has the capacity to supply power to the electronics, the display and the speaker elements. The power source supplies the output elements with sufficient energy that they can be seen and heard in either an indoor environment or in an outdoor setting such as a sports stadium where the ambient light and sound can be substantially greater.
  • Garment 10 will typically bear a logo or other marking or indicia of a sport team or player (To avoid the need to repeatedly use the phrase “sport team or player,” the word “team” will be used herein when referring to a team or player that is affiliated with a Sport Event Transducer). Regardless of whether the garment bears such markings of a particular team, the garment includes a team identifier for electronically identifying a sport team associated with the garment. For example, the controller 13 includes memory 18 that can be loaded with an identification code that corresponds to a particular sport team. The team identifier can be in the form of a predetermined memory location or register that stores the identification code. It can also be embedded in processor instructions or micro-code for the garment's controller. Any type of team identifier can be used, as long as it can specify the garment's team affiliation to the controller.
  • A display element can be a single light emitting diode (“LED”) or multiple LEDs. Alternatively, it can be implemented using any material that glows or emits light under electronic control. For example, in one embodiment, a garment that is associated with a particular sport team is partly made of light emitting polymers such as described in U.S. Pat. No. 6,511,198, incorporated herein by reference. Similarly, a garment can be made using a light emitting weave as described in U.S. Pat. No. 6,490,402, also incorporated herein by reference. Other known display technologies can be used, such as for example electrophoretic ink displays.
  • A speaker element 12 can be any known acoustic transducer for emitting a sound signal in response to a signal, such as known piezoelectric transducers or electromagnetic speakers.
  • The main controller 13 includes a micro-controller 17 with a related memory 18 for controlling the display element 11 and speaker element 12. The micro-controller 17 supplies control signals to a display driver 15 to thereby turn the display element on and off, as well as to control the intensity and/or the color of the element. In one embodiment, the entire display element 11 operates as a single pixel. In this embodiment, all light emitting units within the display element operate together, turning on and off at the same time so as to behave as a single light source. However, in other embodiments, multiple light emitting units within the display element operate as individual pixels that can be controlled independently of each other.
  • The micro-controller 17 also supplies a control signal to a multiplexer 16 for selecting an input to an audio driver 14 that controls the sound that is output by speaker element 12. For example, the micro-controller can retrieve from memory 18 a selected sound pattern and forward it to the audio driver via multiplexer 16 for reproduction by the speaker element 12. Memory 18 can be loaded with a plurality of stored sound patterns, such as a pattern that emits a siren sound, a sound of an explosion, or any of a variety of other stored sound patterns. Those skilled in the art will understand that such patterns can be stored in a memory and can be compressed to reduce the amount of memory required to store the pattern. Alternatively, the controller can direct multiplexer 16 to drive speaker 12 with the audio content of a radio signal received by a receiver 19 within the controller 13.
  • In one example, the micro-controller includes a module that causes the output elements to emit a random sequence of popping sounds and light flashes. More specifically, when a transducer receives a command to implement this module, it's controller waits a random period of time before driving the speaker 12 with a pop or crack sound, and driving the display with a quick bright flash. The controller repeats this output several times, each time separated by a random delay. The controller thereby drives the speaker and display with a sequence of randomly separated pulses. Thus, if this module is executed by a group of sports transducers that are in the same vicinity, they will collectively emit an audio/visual show similar to that of fireworks.
  • As shown in FIG. 1, the controller 13 also includes a receiver 19 for receiving a broadcast RF signal that contains commands for controlling the display element 11 and/or speaker element 12. Preferably, the receiver is designed to receive RF signals that are transmitted over long distances that span a wide area (such as over an entire metropolitan area), and can penetrate buildings and other structures to thereby reach many garments for a popular sport team in the area covered by the RF transmission. For example, the receiver can be compatible with commercial transmitters for FM radio, AM radio, Digital Radio, terrestrial television or other signal formats used to reach audiences over a wide area. In other embodiments, any suitable technique for wireless communication can be used.
  • In the embodiment shown in FIG. 1, the receiver 19 is designed to receive and demodulate FM radio transmissions from a commercial radio station, which typically span many square miles and can penetrate homes and other buildings. More specifically, the receiver is compatible with FM station radio-data equipment that complies with the Radio Broadcast Data System I“RBDS”). The National Radio Systems Committee (“NRSC”) has defined a standard for RBDS that specifies how to embed data in FM radio transmissions to thereby communicate the data (herein “RDS data”) using the same radio signals that earn music or other sound content.
  • Referring to FIG. 2, the receiver 19 includes an antenna 20 and an FM tuner 22 for receiving the RF signal and isolating a particular FM channel. In the example shown, the tuner isolates an FM channel that is selected by micro-controller 17, as indicated by the “channel” signal from the microcontroller.
  • An FM demodulator 24 demodulates the selected channel to extract the audio content for the FM channel that is then provided to an audio decoder/amplifier 26. The FM demodulator 24 also extracts from the FM channel a subcarrier signal that is encoded with the RDS data and supplies that subcarrier signal to an RDS decoder 28.
  • A general example of an RDS decoder 28 is shown in the current RBDS standard, wherein the standard depicts what it calls a “typical” decoder for extracting RDS data from such a subcarrier signal. However, any RDS decoder that is compatible with a corresponding FM radio-data transmitter can be used. For example, several companies currently supply IC chips for use in making RDS compatible FM receivers and RDS decoders, including chips from ST Microelectronics N.V, Silicon Laboratories Inc., and NXP Semiconductors Co.
  • The raw RDS data extracted by the RDS decoder is provided to the micro-controller 17, for example via a digital bus. The controller 17 then extracts from the raw RDS data a message that corresponds to an event relating to a sports team, herein a “learn event message.” The controller 17 includes a decoder module that determines whether the received team event message relates to the team associated with that garment, as specified by the garment's team identifier. If so, a message interpretation module within the controller causes the garment's display element 11 and/or its speaker elements 12 to emit a corresponding output based upon the content of the team message. For example, in one application of the invention, a plurality of garments each bear the logo for a popular football team, herein “Team A.” When Team A scores during a game, a broadcast transmission system broadcasts an FM radio-data signal that contains an embedded team event message that notifies all Team A garments within the vicinity that a score has occurred. Each of the garments that receive the transmission extract the team event message from the radio broadcast. For those garments affiliated with Team A, the garments' controllers cause the garments' display elements and/or their speaker elements to emit a corresponding output in celebration of the touchdown.
  • Referring to FIG. 3, a sport event transducer (“SET”) controller system transmits team event messages over a wide area (such as an area that encompasses the geographic market for a popular sport team) using a signal format that can penetrate homes and other buildings with sufficient strength to permit them to be decoded by Sport Event Transducers within those structures. In the example shown, the system includes an FM radio station antenna 30 that is coupled to the transmitter of conventional FM station 31 that complies with the Radio Broadcast Data System (“RBDS”). The National Radio Systems Committee (“NRSC”) has defined a standard for RBDS that specifies how to embed data in FM radio transmissions to thereby communicate the data (herein “RDS data”) using the same radio signals that earn music or other sound content.
  • Those skilled in the art know that the standard for RBDS specifies in detail the formal for RDS data, and that it shows a general technique for encoding and modulating an FM signal so that the signal carries a pair of audio signals as well as an RDS data stream. Any technique and corresponding circuitry/software can be used to prepare such FM radio-data signals that are compatible with the receivers 19 of Sport Event Transducers.
  • The system of FIG. 3 includes a Broadcast Control Module 35 for supplying RDS data to the FM station 31. As explained in greater detail below, the server 35 prepares the RDS data for transmission by the FM station 31 and its antenna 30.
  • The Broadcast Control Module 35 includes a data-gathering module 34 for obtaining real-time information concerning the status of certain sporting events. For example, in one embodiment, the module includes a user console 32(a) for accepting user input of sports information. In this example, a user observes a sporting event (live or remotely) and enters selected status information into the console as events occur, such as when a football team scores a touchdown. As explained below, this information can be used to trigger the broadcast of a corresponding team event message. Furthermore, the user of console 32(a) can also issue a team event message that is independent of any particular scoring event. For example, the user can issue a team event message directing all team garments and other sports transducers to light up or issue a sound blast at any moment that the user deems appropriate, such as at a moment during a game that the user considers critical or exciting.
  • In another embodiment, the system includes a remote user console 32(b) that operates in essentially the same way as local console 32(a), except that it supplies its input to the data-gathering module 34 from a remote location. In such embodiments, the transmissions between the remote console and data gathering module are secured to prevent unauthorized persons from triggering team event messages, for example using known cryptographic techniques to identify authorized users, or by otherwise encrypting communications between the remote console and the control server.
  • In other embodiments, the module 34 automatically gathers sporting information from one or more remote servers, for example via the Internet. In the example shown, there are several Real-Time Sports Data Servers 37 accessible via the Internet that provide real-time sports information, such as current scores of baseball games and other real-time game statistics. The gathering module receives such information from one or more such servers, and supplies it to a messaging module 33.
  • The messaging module 33 detects from this input the occurrence of certain predefined events and, in response, instructs the FM station 31 to broadcast a corresponding team event message to Sport Event Transducers of a specified type, thereby simultaneously notifying a plurality of Sport Event Transducers of the event in real-time. Returning to the example above, if Team A scores a goal, the data-gathering module 34 quickly learns of that event and promptly notifies the messaging module 33. In response, the messaging module prepares a corresponding team event message and forwards the message to the FM station 31 for transmission in a format that is compliant with RBDS.
  • The RBDS standard allows FM radio stations to transmit data on an FM channel by encoding the data into a subcarrier signal that is injected into an FM audio signal to thereby form a composite FM signal. The standard specifies how to encode several pre-defined types of data into the composite signal. For example, it defines how to encode data that tunes radio receivers, and data called “radio text” that is displayed by the receiver, such as the name of a song currently playing on the FM channel.
  • The RBDS standard also describes a protocol for encoding data for undefined applications called “Open Data Applications.” The standard allows for over 65,000 open data applications, each of which can be assigned a unique sixteen-bit identification code called the “Application Identifier” or “AID.” Such AID numbers are assigned by an RDS Registration Office in response to requests from those wishing to transmit data for an application that is not pre-defined in the RBDS standard.
  • In one embodiment of the present invention, a user obtains from an RDS Registration Office, an AID code for the sports event transducer application. This AID code is then used to identify team event messages broadcast in accordance with the RDS system as explained below.
  • RDS data is formatted in “groups” of 104 bits that are arranged in four “blocks” of twenty-six bits each, as shown in FIGS. 4 a and 4 b (reproduced from the industry standard). The second block of each group includes a five-bit “group type” code that specifies the group's purpose, as shown in table 3 of the RBDS specification. For example, the group type “OA” is used to transmit data for tuning FM receivers, while group type “2A” is used for transmitting radio text. The RBDS specification allocates only nineteen group types for use by Open Data Applications (“ODAs”). Since there are far more than nineteen possible ODAs, the ODAs must share the nineteen ODA group types.
  • The messaging module 33 uses ODA group types for carrying team event messages as follows. First, the messaging module 33 (and/or the FM station 31) selects one of the available ODA group types. It then notifies all sports event transducers in the area of the selection by broadcasting a type “3A” group as shown in FIG. 5.
  • Field 56 of the type 3A group contains the AID that is registered for the Sport Event Transducer Application, thereby indicating to all receivers that this type 3A group is for the Sport Event Transducer Application. Field 52 provides an Application Group Type Code that identifies the ODA group type that was selected for the Sport Event Transducer Application. In this example, the Application Group Type Code equals 10110, thereby indicating that group type 11A was chosen. Thus, the type 3A group shown in FIG. 5 notifies all receivers that ODA group type 11A will carry data for the Sport Event Transducer Application.
  • The type 3A group also includes a field 54 that can carry other information for sports event transducers. For example, in the embodiment shown, the field 54 contains a team class identifier that identifies a team or a group of teams to whom this type 3A group is directed. For example, if a given radio station is using type 11A groups to carry team event messages for all of the major teams in the area around Boston, Mass., then field 54 contains a team class identifier indicating this fact. Alternatively, if the radio station uses group type 11A only to carry messages for one team (such as the New England Patriots), then the patriots team identifier would be placed in field 54. In this manner, a radio station can assign one or more teams to a selected ODA group.
  • Once the selected group type 11A has been broadcast to the sports event transducers in the region, message module 33 and FM station 31 begin transmitting type 11A groups filled with team event messages. FIG. 6 depicts the format of a type 11A group that is encoded with a team event message.
  • Referring to FIG. 6, field 60 of the group contains the code for type 11A, i.e., 10110, and field 62 carries the team event message. In this example, the message is thirty-seven bits long because type 11A groups have a thirty-seven-bit payload. However, type B groups can also be used to carry messages, in which case the team event message would have only twenty-one bits.
  • The team event message 62 includes a team identifier code 64 (or “garment type code” for garment-type transducers) that identifies a particular team to which the message is directed, such as Team A in the above examples. The message also includes a function code 66 that specifies the type of event that has occurred (or a particular function to be performed), such as for example a code that indicates that a touchdown has occurred. As explained below, sports event transducers receive and decode such team event messages and perform a corresponding function or action.
  • FIG. 7 depicts the general steps performed by the garment's micro-controller 17 for receiving and decoding such embedded RDS messages. Once the controller 13 is powered on (step 700), the FM receiver 19 and micro-controller 17 together begin scanning the FM radio channels (step 702) to locate one earning team event messages. The micro-controller first directs the FM receiver 19 to tune to a particular channel. It then listens to the channel's signal to determine if it contains a type 3A RDS group for the Sports Event Transducer Application (steps 704-708).
  • Toward this end, it monitors the RDS stream for a group whose type field contains the code for type 3A (i.e., 00110) and whose AID field contains the code registered for the Sport Event Transducer application (Step 708). (If the team class option is used, the controller also determines if field 54 contains a team class code for that transducer (Step 708)). If no such group arrives within a specified period of time, the controller 17 directs the receiver 19 to scan to another channel (Steps 702-706). If the controller detects such a type 3A group, then it extracts the “Application Group Type Code” which species the group type chosen to carry data for this type of transducer, in this example group type 11A. (Step 710).
  • The controller then begins listening for a type 11A group (Step 712). If no type 11A group is received within a predetermined period of time, the controller returns to scanning the channels (Step 714, 702). However, if a type 11A group arrives, the controller extracts the team event message (Step 716) and compares the message's team identifier to the controller's team identifier (Step 718). If they match, the controller decodes the function code and directs the display element 11 and/or speaker element 12 to emit a corresponding output for that function (Step 720). It they do not match, the controller returns to scanning the FM channels. (Steps 718-702). In this example, the controller assumes that the selected FM channel uses type 11A groups to carry messages for only a single team and therefore returns to scanning channels if a message is received for some other team. However, in other embodiments wherein the channel uses type 11A groups to carry messages for multiple teams, the controller returns to listening for the next type 11A group (step 712) if the latest message is addressed to a different team.
  • It is possible that a garment that has been tuned to a particular FM channel and a particular selected RDS group type will move beyond the territory of the corresponding FM transmitter. If so, the controller 17 should resume scanning the FM channels to determine if a different channel is carrying team event messages in the new territory. For example, the controller 17 can return to the scanning step 702 if no team event message is received over a predetermined period of time, or it can periodically repeat the scanning step.
  • A sport event transducer control system can include multiple radio stations 31 that collectively reach a much larger geographic region than any single station. FIG. 8, for example, depicts a system having a large number of radio stations (“FM1-FMn”) that are located in different sites. For example, they can all be located within a market for a particular sports team. In some embodiments, the radio stations can be located in different countries throughout the world, depending on the geographic coverage that is desired.
  • The system includes a Central Control Server 38 that receives sports related data from a variety of sources, such as from a Real-Time Sports Data Server 37 coupled to the internet 36 or from an operator console 32. The embodiment shown in FIG. 8 also includes a mobile operator console 32 c that communicates with the Central Control Server 38 via a wireless cell interface 39, to thereby provide real-time sports data and operator generated team event messages via a cell phone interface as shown.
  • In general, the Central Control Server receives real-time sports event data from these sources, analyzes the data to identify the occurrence of certain predefined events, and in response, instructs selected FM stations to broadcast team event messages via their FM broadcasts.
  • For each FM station, the system includes a Broadcast Control Module 35 that couples the station to the Internet 36 (or other network) for receiving data that instructs the station to emit team event messages via that station's FM transmission, and for controlling the FM station 31 to implement these instructions.
  • The general operation of the Central Control Server is depicted in FIG. 9. The server receives real-time sports data from any of a variety of sources (Step 900). In response, it analyzes the data to determine if a predetermined type of event has occurred (Step 902). These predefined events include particular types of events for which the Central Control Server will cause a team event message to be broadcast. For example, for a football team, events that could trigger a team event message might include a score by the team (e.g. touchdown, field goal etc.), a turnover in favor of the team, or a penalty call against the opposing team. For a baseball team, the events could include a home run, strike-out of an opposing player, or the victorious end to the game.
  • If the Central Control Server detects the occurrence of such a predefined event for a team, it sends a message to selected FM stations to cause them to broadcast a team event message as explained below (steps 906-910). Similarly, the Central Control Server will cause a team event messages to be broadcast if an operator manually requests one (Step 904).
  • Upon detection of such an event for a team, e.g., Team A, the Central Control Server determines the identity of all stations that are designated for broadcasting messages for Team A (Step 906). It prepares an instruction packet or packets for each such station and transmits the packet(s) to the station's Broadcast Control Module 35 via the Internet or other network (Steps 908-910).
  • FIG. 10 depicts the operation of each Broadcast Control Module 35 in response to the receipt of such a team event packet or packets. Upon receipt of such a packet (Step 1000), the Broadcast Control Module determines the identity of the team or teams to which the packet relates (Step 1002). If an Open Data Application group type has already been selected for that team's event messages, the Broadcast Control Module encodes data from the packet into a team event message using the selected group type (Step 1012) and instructions the station 31 to broadcast the group as described above (step 1014).
  • If an ODA group type has not been previously selected, the Broadcast Control Module selects an available ODA group type for use in communicating with the sport event transducers (Step 1006) and notifies all transducers of the selection by broadcasting a type 3A group as demonstrated in FIG. 4 (Step 1008). The Broadcast Control Module then encodes the team event message in the selected group type (as demonstrated in FIG. 6) and instructs the station's radio-data equipment 31 to broadcast the encoded message (Step 1001).
  • Thus, each selected Broadcast Control Module receives a packet containing instructions for forming a team event message and processes it in this manner. Thus the selected group of stations collectively broadcast the team event message over a wide area determined by the combined ranges of the selected FM stations.
  • The system of FIG. 8 also includes other types of broadcast networks, such as one or more cable TV networks 40. In this embodiment, the cable company supplies its customers with cable TV decoder boxes 42 that include a local wireless transmitter 42(a) for emitting local wireless signals into the customer's home or business, such as for example in the WIFI or Bluetooth format. However, the cable boxes can use any wireless format that is compatible with the wireless receivers found in sports event transducers.
  • With this arrangement, the Central Control Server 38 can send packets to a cable company server 44 via the internet, instructing the cable company server to broadcast team event messages via the wireless transmitters 42(a) of selected cable boxes 42. For example, if the packet contains a team event message that indicates that Team A has scored in a game, the cable company instructs all cable boxes 42 that are tuned to a televised broadcast of the game to transmit the team event message on their wireless transmitters. In this situation, there will likely be sports event transducers in the room where game is being televised, and any such sport event transducers will therefore receive the team event message and respond accordingly.
  • The transmission system of FIG. 8 can also transmit packets to selected hot spot wireless transmitters 48 that emit localized wireless signals that span a small region or “hot spot,” such as signals in the WIFI or Bluetooth formats. Each hot spot location includes a server 47 for receiving packets from the Central Control Server 38 via the Internet. In response, the server 47 instructs a wireless transmitter 48 to emit a wireless signal embedded with the team event message. For example, a hot spot could be the home of a sports fan, a business location such as a sports bar, or a sports arena where a game is played.
  • The system of FIG. 8 also includes a mobile hot spot 46. Mobile device 46 includes a cell phone receiver for receiving a cell phone transmission from the Central Control Server 38. The mobile device also includes a local wireless transmitter for transmitting wireless signals such as those emitted by transmitters 42(a) and 48, but preferably in a very short-range wireless format such as Bluetooth. Thus, mobile device 46 receives from Central Control Server 38 a cell phone transmission instructing the device to emit a team event message. In response, the mobile device emits a team event message via its wireless transmitter for sports event transducers in close proximity to the device 46. In some embodiments, the mobile device 46 is itself a sports event transducer that responds directly to a team event message from central server 38.
  • The system can also include mechanisms for discouraging unauthorized Sport Event Transducers from responding to team event messages. For example, a Broadcast Control Module 35 or the Central Control Server 38 can encrypt each team event message so that only devices with a proper cryptographic key can decipher the team event messages. Furthermore, these servers can occasionally emit decoy RDS groups that have the selected group type for a team event message, but whose data field 62 lacks a legitimate team event message, to thereby make it more difficult for unauthorized devices to know when legitimate team event messages are being issued.
  • The same architecture can be used to broadcast team event messages for all kinds of sporting events, wherein each Sport Event Transducer responds only to those broadcasts that relate to a particular team or player of interest. For example, the team identifiers can include a bit that indicates whether the team of interest is a local team (known only in the region of an FM transmitter, such as a little league team) or a more widely known team (such as a national football team). This allows the system to efficiently distinguish between a very large number of teams throughout the country or world. Furthermore, in other embodiments, team event messages can be emitted for events other than sporting competitions. For example, during a parade, team event messages can be emitted to control garments worn by persons marching in the parade as well as persons watching the parade, to thereby generate an audio/visual demonstration.
  • While the invention has been described in conjunction with the above embodiments, numerous alternatives, modifications, variations and uses will be apparent to those skilled in the art.

Claims (21)

1-16. (canceled)
17. A sport event transducer comprising:
indicia of a sport team, that appears on said sport event transducer,
at least one presentation element that emits perceivable outputs,
an output controller that controls said presentation element's emission of said perceivable outputs, and
a receiver circuit that receives from a wireless transmitter a wireless signal that is encoded with a plurality of different types of event codes for the sport team whose indicia appears on the sport event transducer, wherein said wireless transmitter is a of a type that transmits said plurality of different types of event codes in real-time upon the occurrence of corresponding types of events relating to said sport team, and wherein
said output controller, in response to the receipt of a first type of event code for said sport team, causes said presentation element to emit a corresponding first type of celebratory output; and, in response to the receipt of a second type of event code for said sport team, causes said presentation element to emit a corresponding second type of celebratory output.
18. The sport event transducer of claim 17 wherein said first type of event code corresponds to a scoring event for said sport team whose indicia appears on said transducer and wherein said second type of event code corresponds to the occurrence of a non-scoring event for said team.
19. The sport event transducer of claim 17 wherein
said sport team whose indicia appears on said transducer is a particular football team, and wherein
said first type of event code is an event code that is transmitted in real time upon the occurrence the scoring of a touchdown by said football team, and wherein
said second type of event code is an event code that is transmitted in real time upon the occurrence of a turnover in favor of said football team.
20. The sport event transducer of claim 19 wherein said plurality of different types of team event codes to which said output controller responds includes an event code transmitted upon the occurrence of a penalty call against an opposing team.
21. The sport event transducer of claim 17 wherein
said sport team whose indicia appears on said transducer is a particular baseball team, and wherein
said first type of event code is an event code that is transmitted in real-time upon the occurrence of a home run by said baseball team, and
said second type of event code is a strike out thrown by a pitcher of said baseball team.
22. The sport event transducer of claim 17 further comprising a security mechanism for detecting whether said received team event codes are from an authorized source and wherein said output controller causes said presentation element to emit said perceivable output only if said mechanism determines that a received team event code is authorized.
23. The sport event transducer of claim 17 further comprising:
a team identifier that identifies said sport team to said output controller, and
a decoder for determining if the team event message relates to said team identified by said team identifier, wherein said sport event transducer output controller causes the presentation element to emit a perceivable output in response to a team event message only if the decoder determines that the team event message is related to said team identified by said team identifier.
24. The sport event transducer of claim 17 wherein said receiver circuit receives said wireless signal and team event codes in a format and protocol user by a wide area RF broadcast transmitter than embeds said team even codes in RF transmissions that are capable of nearly simultaneously reaching a plurality of sport event transducers located over a region that spans a substantial portion of the geographic market for that sport team.
25. The sport even transducer of claim 25 wherein the received wide area RF broadcast transmission is a commercial RF broadcast that includes embedded data that represents team event codes.
26. The sport event transducer of claim 25 wherein the received wide area RF commercial broadcast transmission is an FM radio-data signal in accordance with the radio broadcast data standard, and wherein sport event transducer further comprises and RDS decoder for extracting RDS data from the FM radio-data signal and determining whether said extracted RDS data includes a team event code directed to said sport team whose indicia appears on said sport event transducer.
27. A sports-fan garment comprising:
indicia of a sport team, that appears on said garment,
at least one presentation element that emits perceivable outputs,
an output controller that controls said presentation element's emission of said perceivable outputs, and
a receiver circuit that receives from a wireless transmitter a wireless signal that is encoded with a plurality of different types of event codes for the sport team whose indicia appears on the garment, wherein said wireless transmitter is of a type that transmits said plurality of different types of event codes in real-time upon the occurrence of corresponding types of events relating to said sport team, and wherein
said output controller, in response to the receipt of a first type of event code for said sport team, causes said presentation element to emit a corresponding first type of celebratory output; and, in response to the receipt of a second type of event code for said sport team, causes said presentation element to emit a corresponding second type of celebratory output.
28. The sport-fan garment of claim 27 wherein said first type of event code corresponds to a scoring event for said sport team whose indicia appears on said garment and wherein said second type of event code corresponds to the occurrence of a non-scoring event for said sport team.
29. The sport-fan garment of claim 27 wherein
said sport team whose indicia appears on said garment is a particular football team, and wherein
said first type of event code is an event code that is transmitted in real time upon the occurrence the scoring of a touchdown by said football team, and wherein
said second type of event code is an event code that is transmitted in real time upon the occurrence of a turnover in favor of said football team.
30. The sport-fan garment of claim 29 wherein said plurality of different types of team events codes to which said output controller responds includes an event code transmitted upon the occurrence of a penalty call against an opposing team.
31. The sport-fan garment of claim 27 wherein
said sport team whose indicia appears on said garment is a particular baseball team, and wherein
said first type of event code is an event code that is transmitted in real-time upon the occurrence of a home run by said baseball team, and
said second type of event code is a strike out thrown by a pitcher of said baseball team.
32. The sport-fan garment of claim 27 further comprising a security mechanism for detecting whether said received team event codes are from an authorized source and wherein said output controller causes said presentation element to emit said perceivable output only if said mechanism determines that a received team event code is authorized.
33. The sport-fan garment of claim 27 further comprising:
a team identifier that identifies said sport team to said output controller, and
a decoder for determining if the team event message relates to said team identified by said team identifier, wherein said output controller causes the presentation element to emit a perceivable output in response to a received team event code only if the decoder determines that the team event code is related to said team identified by said team identifier.
34. The sport-fan garment of claim 27 wherein said receiver circuit receives said wireless signal and team event codes in a format and protocol used by a wide area RF broadcast transmitter that embeds said team event codes in RF transmissions that are capable of nearly simultaneously reaching a plurality of sport-fan garments located over a region that spans a substantial portion of the geographic market for that sport team.
35. The sport-fan garment of claim 34 wherein the received wide area RF broadcast transmission is a commercial RF broadcast that includes embedded data that represents team event codes.
36. The sport-fan garment of claim 35 wherein the received wide area RF commercial broadcast transmission is an FM radio-data signal in accordance with the radio broadcast data standard, and wherein said sport fan garment further comprises an RDS decoder for extracting RDS data from the FM radio-data signal and determining whether said extracted RDS data includes a team event code directed to said sport team whose indicia appears on said garment.
US13/700,059 2010-08-06 2011-08-02 Sport Event Transducer Abandoned US20130106588A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/700,059 US20130106588A1 (en) 2010-08-06 2011-08-02 Sport Event Transducer

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US85236110A 2010-08-06 2010-08-06
US12852361 2010-08-06
US12896989 2010-10-04
US12/896,989 US8320870B2 (en) 2010-08-06 2010-10-04 Sport event transducer
US12/944,149 US20120032816A1 (en) 2010-08-06 2010-11-11 System And Method For Controlling Sport Event Transducers
US12944149 2010-11-11
US13/700,059 US20130106588A1 (en) 2010-08-06 2011-08-02 Sport Event Transducer
PCT/US2011/046257 WO2012018807A1 (en) 2010-08-06 2011-08-02 Sport event transducer

Publications (1)

Publication Number Publication Date
US20130106588A1 true US20130106588A1 (en) 2013-05-02

Family

ID=45555750

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/944,149 Abandoned US20120032816A1 (en) 2010-08-06 2010-11-11 System And Method For Controlling Sport Event Transducers
US13/700,059 Abandoned US20130106588A1 (en) 2010-08-06 2011-08-02 Sport Event Transducer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/944,149 Abandoned US20120032816A1 (en) 2010-08-06 2010-11-11 System And Method For Controlling Sport Event Transducers

Country Status (2)

Country Link
US (2) US20120032816A1 (en)
WO (1) WO2012018807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210286423A1 (en) * 2020-03-11 2021-09-16 John Correia Augmented audio conditioning system

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
EP3827747A1 (en) 2005-04-28 2021-06-02 Otsuka Pharmaceutical Co., Ltd. Pharma-informatics system
KR101611240B1 (en) 2006-10-25 2016-04-11 프로테우스 디지털 헬스, 인코포레이티드 Controlled activation ingestible identifier
MY165532A (en) 2007-02-01 2018-04-02 Proteus Digital Health Inc Ingestible event marker systems
EP2111661B1 (en) 2007-02-14 2017-04-12 Proteus Digital Health, Inc. In-body power source having high surface area electrode
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
WO2010005877A2 (en) 2008-07-08 2010-01-14 Proteus Biomedical, Inc. Ingestible event marker data framework
WO2013012869A1 (en) 2011-07-21 2013-01-24 Proteus Digital Health, Inc. Mobile communication device, system, and method
MX2011011506A (en) 2009-04-28 2012-05-08 Proteus Biomedical Inc Highly reliable ingestible event markers and methods for using the same.
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
AU2011210648B2 (en) 2010-02-01 2014-10-16 Otsuka Pharmaceutical Co., Ltd. Data gathering system
WO2011127252A2 (en) 2010-04-07 2011-10-13 Proteus Biomedical, Inc. Miniature ingestible device
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
EP2642983A4 (en) 2010-11-22 2014-03-12 Proteus Digital Health Inc Ingestible device with pharmaceutical product
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US11149123B2 (en) 2013-01-29 2021-10-19 Otsuka Pharmaceutical Co., Ltd. Highly-swellable polymeric films and compositions comprising the same
JP6498177B2 (en) 2013-03-15 2019-04-10 プロテウス デジタル ヘルス, インコーポレイテッド Identity authentication system and method
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
JP6511439B2 (en) 2013-06-04 2019-05-15 プロテウス デジタル ヘルス, インコーポレイテッド Systems, devices, and methods for data collection and outcome assessment
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
MX356850B (en) 2013-09-20 2018-06-15 Proteus Digital Health Inc Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping.
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US20150149375A1 (en) * 2013-11-22 2015-05-28 Proteus Digital Health, Inc. Crowd endorsement system
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
CN109843149B (en) 2016-07-22 2020-07-07 普罗秋斯数字健康公司 Electromagnetic sensing and detection of ingestible event markers
US10575580B2 (en) * 2016-08-30 2020-03-03 Mareo Alexander Harris Illuminating helmet
JP2019535377A (en) 2016-10-26 2019-12-12 プロテウス デジタル ヘルス, インコーポレイテッド Method for producing capsules with ingestible event markers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090014536A1 (en) * 1998-09-11 2009-01-15 Metrologic Instruments, Inc. Consumer product package bearing a remotely-alterable Radio-Frequency (RF) powered eletronic display label employing an electronic ink layer integrated within a stacked-layer architecture
US20090221230A1 (en) * 2000-10-26 2009-09-03 Ortiz Luis M Transmitting sports and entertainment data to wireless hand held devices over a telecommunications network
US20090264149A1 (en) * 2008-04-21 2009-10-22 Jason Miller Cellular handheld device with fm radio data system receiver
US20100154000A1 (en) * 2002-11-18 2010-06-17 United Video Properties Inc. Systems and methods for providing real-time services in an interactive television program guide application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW548940B (en) * 1999-11-29 2003-08-21 Gen Instrument Corp Generation of a mathematically constrained key using a one-way function
US6198204B1 (en) * 2000-01-27 2001-03-06 Michael D. Pottenger Piezoelectrically controlled active wear
US20020166123A1 (en) * 2001-03-02 2002-11-07 Microsoft Corporation Enhanced television services for digital video recording and playback
WO2006096854A2 (en) * 2005-03-08 2006-09-14 E-Radio Usa, Inc. Systems and methods for modifying power usage
AU2006272401B2 (en) * 2005-07-22 2011-03-31 Fanvision Entertainment Llc System and methods for enhancing the experience of spectators attending a live sporting event
US20090221430A1 (en) * 2006-03-10 2009-09-03 Cytyc Corporation Proteomic Methods For The Identification And Use Of Putative Biomarkers Associated With The Dysplastic State In Cervical Cells Or Other Cell Types
US7664474B2 (en) * 2006-09-08 2010-02-16 Sony Ericsson Mobile Communications Ab Portable electronic device and a method in a portable electronic device
US7942543B2 (en) * 2008-03-25 2011-05-17 Michael Larry Ritter Light emitting head accessory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090014536A1 (en) * 1998-09-11 2009-01-15 Metrologic Instruments, Inc. Consumer product package bearing a remotely-alterable Radio-Frequency (RF) powered eletronic display label employing an electronic ink layer integrated within a stacked-layer architecture
US20090221230A1 (en) * 2000-10-26 2009-09-03 Ortiz Luis M Transmitting sports and entertainment data to wireless hand held devices over a telecommunications network
US7620426B2 (en) * 2000-10-26 2009-11-17 Ortiz Luis M Providing video of a venue activity to a hand held device through a cellular communications network
US20100154000A1 (en) * 2002-11-18 2010-06-17 United Video Properties Inc. Systems and methods for providing real-time services in an interactive television program guide application
US20090264149A1 (en) * 2008-04-21 2009-10-22 Jason Miller Cellular handheld device with fm radio data system receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210286423A1 (en) * 2020-03-11 2021-09-16 John Correia Augmented audio conditioning system
US11561610B2 (en) * 2020-03-11 2023-01-24 Moea Technologies, Inc. Augmented audio conditioning system

Also Published As

Publication number Publication date
US20120032816A1 (en) 2012-02-09
WO2012018807A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
US20130106588A1 (en) Sport Event Transducer
CN101286265B (en) Remote controller, electronic apparatus and remote control system
US6850285B2 (en) Method and apparatus for providing additional information to a selective call device about a broadcast
ES2227254T3 (en) RECEIVER.
US8677420B2 (en) Personal monitoring and information apparatus
US5504476A (en) Method and apparatus for generating alerts based upon content of messages received by a radio receiver
US10545719B2 (en) Method and system for real-time audio broadcast
JP2004502354A (en) Remote control and broadcast receiving set having electronic program guide function and service system and method using the same
US20070094680A1 (en) Emergency alert signaling method and DTV receiver
CN104811774B (en) Advertisement, the accurate put-on method of information and system in a kind of audio and video live TV stream
US20140229962A1 (en) Television Viewers Interaction and Voting Method
EP1926237A3 (en) Apparatus for identifying the members of an audience which are watching a television programme or are listening to a broadcast programme
US11297253B2 (en) Control system for controlling plurality of user terminals
KR20040096014A (en) Advertisement method in the digital broadcasting
KR102107668B1 (en) Wireless village broadcasting system for disaster broadcasting
US20040045038A1 (en) System and method for the synchronized activation of external devices in association with video programs
US8320870B2 (en) Sport event transducer
KR101987856B1 (en) Wireless village broadcasting system for disaster broadcasting
KR20190119557A (en) Crowd control system for controlling plurality of user devices
KR20070027224A (en) Mobile terminal for digital multimedia broadcasting and method for providing skin for brand advertizing of thereof and system providing skin for brand advertizing
KR20220123501A (en) Crowd control system for controlling plurality of user devices
JP4392690B2 (en) Remote controller type controller for TV receiver
KR200330753Y1 (en) remote wireless in a voice, a sound, and a letter a relations and warning system
CA2196083C (en) Method and apparatus for generating alerts based upon content of messages received by a radio receiver
JP2010166284A (en) Method of advertisement in television broadcast using mobile terminal

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION