US20130152740A1 - Metallurgical method for refining grains of steel by modifying inclusions through addition of magnesium and aluminum - Google Patents

Metallurgical method for refining grains of steel by modifying inclusions through addition of magnesium and aluminum Download PDF

Info

Publication number
US20130152740A1
US20130152740A1 US13/606,500 US201213606500A US2013152740A1 US 20130152740 A1 US20130152740 A1 US 20130152740A1 US 201213606500 A US201213606500 A US 201213606500A US 2013152740 A1 US2013152740 A1 US 2013152740A1
Authority
US
United States
Prior art keywords
molten steel
magnesium
steel
aluminum
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/606,500
Inventor
Weng-Sing Hwang
Jian-Xun Fu
Yen-Hao Su
Muh-Jung Lu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Cheng Kung University NCKU
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to NATIONAL CHENG KUNG UNIVERSITY reassignment NATIONAL CHENG KUNG UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FU, Jian-xun, HWANG, WENG-SING, LU, MUH-JUNG, SU, YEN-HAO
Publication of US20130152740A1 publication Critical patent/US20130152740A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

A metallurgical method for refining grains of steel includes adding aluminum into molten steel obtained from a secondary refining process. Aluminum reacts with oxygen and sulfur in the molten steel to reduce the total oxygen content in the molten steel to 15-120 ppm, to reduce a sulfur content in the molten steel to 15-150 ppm, and to produce aluminum oxide, obtaining cleaner molten steel. Magnesium is added into the cleaner molten steel and reacts with oxygen, sulfur, and aluminum oxide in the cleaner molten steel to reduce the total oxygen content in the molten steel to 10-60 ppm, to reduce the sulfur content in the molten steel to 5-100 ppm, and to produce inclusions including magnesium oxide, magnesium sulfide, and magnesium-aluminum spinel. Precipitates of the inclusions can serve as crystalline cores in a subsequent crystallization process to obtain fine-grained steel.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a metallurgical method and, more particularly, to a metallurgical method for refining grains of steel by modifying inclusions in the molten steel through addition of magnesium and aluminum.
  • 2. Description of the Related Art
  • Molten steel obtained from converter steelmaking and electric arc furnaces is generally refined by ladle furnaces (LF), vacuum degassers (VD), recirculating degassers (RH), vacuum oxygen degassers (VOD), or vacuum arc degassers (VAD) to reduce the content of phosphorus, sulfur, oxygen, nitrogen, and hydrogen. Appropriate adjustment of the content of carbon and alloy is allowable to obtain ideal content ranges to meet requirements of specific properties of steel.
  • Conventional steelmaking methods includes making steel by using an electric arc furnace S91 or converter steelmaking S91′, and a secondary refining process S92 (see FIG. 1). Decarbonization of the molten steel obtained from the electric arc furnace S91 or converter steelmaking S91′ can be carried out by blowing oxygen into the molten steel, generating a gas such as carbon monoxide or carbon dioxide, and the gas is then exhausted. The resultant molten steel includes a higher total oxygen content (including dissolved oxygen and oxygen in oxides) and more inclusions. The quality of the steel will be affected if the molten steel with higher oxygen content is directly continuous casting. The quality of the steel can be significantly improved by the secondary refining process S92 including deoxygenization, desulfurization, degassing, lowering carbon, etc. The refined molten steel can be continuous casting and then rolled into steel products.
  • High technology industries have strict standards for steel products due to explosive development of current technologies. Thus, in addition to development of ultra clean steel, the performances of the clean steel are enhanced in the expectation of finding steel with higher strength and higher toughness. The development focuses on the properties of the molten steel after the second refining process S92, seeking super steel (particularly steel slab) having a yield strength higher than 1000 Mpa to meet the market demands.
  • Currently, the tissue and arrangement of the grains of the steel are improved by grain refining strengthening, solid solution strengthening, precipitation strengthening, and secondary strengthening according to the material refining principles to increase the material strength of the steel. As an example, alloy elements, such as chromium, manganese, nickel, rare earth metal, etc., are added into the molten steel obtained above the secondary refining process S92 in an alloyization process S93 to increase the strength, toughness, and other properties of steel through solid solution strengthening or precipitation strengthening. In another example, the grains of steel can be refined by a thermo mechanical control process (TMCP) S94 that controls the rolling temperature, cooling speed, and rolling speed to obtain fine grains. Finer grains are obtained (the diameters of the grains are about 5-10 μm) to enhance the strength and toughness of steel.
  • However, these conventional methods are expensive while providing limited improvement in properties. Taking alloyization as an example, it replies on the expensive alloy elements to enhance the strength of steel, and the improvement of the strength is limited by the properties of the alloy elements per se. The costs are, thus, increased, and the properties of steel are usually enhanced by not more than 20%. Taking TMCP that can produce high strength steel having a yield strength of 700-900 Mpa as another example, during the thermo mechanical control process (TMCP) S94, the conditions for controlling phase change of steel, such as rolling temperature, rolling speed, or cooling speed, must be strictly controlled so as to precisely refine the grains of steel. This requires a vast sum of money to expand the equipment, and the refining procedures are costly, leading to limitation to the development of TMCP.
  • Thus, a need exists for a metallurgical method for refining grains of steel obtained from the secondary refining process through interaction between magnesium/aluminum and molten steel to solve the above problems.
  • SUMMARY OF THE INVENTION
  • An objective of the present invention is to provide a metallurgical method for refining grains of steel by modifying the inclusions of the molten steel through addition of magnesium and aluminum. The metallurgical method can directly modify the inclusions of the molten steel obtained from the secondary refining process to increase the cleanness. At the same time, by using the thermodynamic conditions of the molten steel, the compositions, sizes, forms, and distribution of the inclusions are modified to increase the amount of crystalline cores in steel, enhancing refining of the steel grains and, hence, enhancing the strength and toughness of steel.
  • Another objective of the present invention is to provide a metallurgical method for refining grains of molten steel by modifying the inclusions of the molten steel through addition of magnesium and aluminum, reducing the costs of the procedures and improving the properties of steel.
  • The present invention fulfills the above objectives by providing a metallurgical method for refining grains of steel obtained from the secondary refining process. The metallurgical method includes a pre-processing step and a modification step. In the pre-processing step, aluminum is added into the molten steel obtained from the secondary refining process. Aluminum reacts with oxygen and sulfur in the molten steel to reduce the total oxygen content in the molten steel to 15-120 ppm, to reduce sulfur content in the molten steel to 15-150 ppm, and to produce aluminum oxide (Al2O3), obtaining cleaner molten steel. In the modification step, magnesium is added into the cleaner molten steel. Magnesium reacts with oxygen, sulfur, and aluminum oxide in the cleaner molten steel to reduce the total oxygen content in the molten steel to 10-60 ppm, to reduce the sulfur content in the molten steel to 5-100 ppm, and to produce inclusions. The inclusions include magnesium oxide, magnesium sulfide, and magnesium-aluminum spinel. The magnesium-aluminum spinel has a melting point higher than 2000° C., and the diameters of the grains of the magnesium-aluminum spinel are in a range of 0-3 μm, mostly 1 μm. Magnesium sulfide is in the form of particles and has a high melting point, which is advantageous to clean the grain boundary. The tiny inclusions having high melting points are uniformly distributed in the molten steel. Aggregation and growth of the inclusions are less likely to occur. In subsequent procedure of continuous casting and rolling of steel, precipitated inclusions can serve as crystalline cores during a crystallization process of the molten steel, obtaining fine-grained steel.
  • In the modification step, 0.01-0.6 kilograms of magnesium per ton of cleaner molten steel is added. Furthermore, a magnesium-iron alloy wire including 5-80 wt % of magnesium is added into the cleaner molten steel.
  • Each of the pre-processing step and the modification step is carried out in a temperature range of 1843K to 1903K (1873±30K). The molten steel obtained from the secondary refining process is medium carbon steel or low carbon steel.
  • The present invention will become clearer in light of the following detailed description of illustrative embodiments of this invention described in connection with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The illustrative embodiments may best be described by reference to the accompanying drawings where:
  • FIG. 1 shows a flow block diagram of a conventional method for refining steel.
  • FIG. 2 shows a flow block diagram of a method for refining molten steel according to a preferable embodiment of the present invention.
  • FIG. 3 shows a thermodynamic equilibrium diagram of oxygen and aluminum in the molten steel according to a preferable embodiment of the present invention.
  • FIG. 4 shows a thermodynamic equilibrium diagram of magnesium/aluminum/Mg—Al spinel and magnesium oxide/aluminum oxide/Mg—Al spinel in the molten steel according to a preferable embodiment of the present invention.
  • FIG. 5 shows a thermodynamic equilibrium diagram of aluminum and magnesium in the molten steel according to a preferable embodiment of the present invention.
  • FIG. 6 shows a thermodynamic equilibrium diagram of magnesium/oxygen and magnesium/aluminum oxide in the molten steel according to a preferable embodiment of the present invention.
  • FIG. 7 shows a phase diagram of the Mg—Al spinel in the molten steel obtained from the method according to a preferable embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 2 shows an example of a metallurgical method for refining grains of steel by modifying inclusions through addition of magnesium and aluminum according to a preferable embodiment of the present invention. The metallurgical method according to the preferable embodiment of the present invention includes a pre-processing step S1 and a modification step S2. The metallurgical method according to the preferable embodiment of the present invention is used to refine the molten steel obtained from a secondary refining process. The term “molten steel” used hereinafter refers to the molten steel obtained from the secondary refining process having a higher cleanness.
  • In the pre-processing step S1, aluminum is added into the molten steel obtained from the secondary refining process, with aluminum reacting with oxygen and sulfur in the molten steel to reduce the total oxygen content in the molten steel to 15-120 ppm, to reduce sulfur content in the molten steel to 15-150 ppm, and to produce aluminum oxide (Al2O3), obtaining cleaner molten steel. More specifically, due to good deoxidization effect, aluminum is generally used in steelmaking procedures as a deoxidizer to reduce oxygen in the molten steel to a low extent meeting strict standards. According to the thermodynamic equilibrium principle, the oxygen content in the molten steel decreases as the amount of aluminum added into the molten steel is increased, and aluminum reacts with oxygen to produce aluminum oxide (Al2O3) (see Equation (1) below). At the same time, the total oxygen content in the molten steel is preferably in a range of 15-120 ppm. Due to mutual affection between aluminum and sulfur, the sulfur content in the molten steel is approximately in a range of 15-150 ppm, for obtaining the molten steel containing a large amount of aluminum oxide (Al2O3).

  • 2[Al]+3[O]═Al2O3(s) ΔG 1 θ=−1202070+386.28 T   (1)
  • It is noted that ΔGθ indicates a change of the free energy after chemical reaction in a standard status, and a indicates the activity of each element in the standard status. The equilibrium relationship between [Al] and [O] can be calculated by Equation (1) and the Activity Theory, as shown in the following expression:

  • [% O]3.[% Al]2=1.22×10−12
  • Thus, the thermodynamic equilibrium relationship between [Al] and [O] in the molten steel shown in FIG. 3 is obtained.
  • In an example, reaction of the aluminum in the pre-processing step S1 underwent in a temperature range of 1843K to 1903K, particularly at 1873K. 0.02-2 kilograms of magnesium (based on the total oxygen content in the molten steel) was added into the molten steel, allowing reaction between aluminum and oxygen in the molten steel to produce a large amount of aluminum oxide (Al2O3). Thus, the total oxygen content in the molten steel was reduced to 15-150 ppm, and the sulfur content in the molten steel was reduced to 15-150 ppm, obtaining cleaner molten steel containing extremely small amount of oxygen and sulfur and containing a large amount of aluminum oxide (Al2O3), which is suitable for the subsequent modification step S2.
  • However, the grains of aluminum oxide (Al2O3) are apt to aggregate to sizes that may block the ladle nozzle by the large amount of aluminum oxide (Al2O3) in the cleaner molten steel, in the subsequent casting procedure of the molten steel. Thus, the modification step S2 must be carried out on the cleaner molten steel.
  • In the modification step S2, magnesium is added into the cleaner molten steel. Magnesium reacts with oxygen, sulfur, and aluminum oxide in the cleaner molten steel to reduce the total oxygen content in the molten steel to 10-60 ppm, to reduce the sulfur content in the molten steel to 5-100 ppm, and to produce inclusions. The inclusions include magnesium oxide, magnesium sulfide, and magnesium-aluminum spinel. Precipitated inclusions are adapted to serve as crystalline cores in a subsequent crystallization process following the modification step S2, obtaining fine-grained steel in the crystallization process. Specifically, the tiny inclusions having high melting points are uniformly distributed in the molten steel. Aggregation and growth of the non-metallic inclusions are less likely to occur. Thus, the precipitated of the inclusions can serve as crystalline cores of steel in subsequent continuous casting and rolling procedures, enhancing crystallization of steel grains that turn into tiny steel grains.
  • To assure achievement of the above objectives, thermodynamic analytic calculation was carried out to verify the feasibility.
  • Magnesium reacted with oxygen and sulfur residing in the cleaner molten steel to produce magnesium oxide and magnesium sulfide (see Equations (2) and (3) below). Mutual transformation between magnesium oxide and magnesium sulfide occurred when the thermodynamic reaction reaches equilibrium (see Equation (4) below). Formation, amount, size, and forms of the inclusions were controlled by thermodynamic conditions to obtain mutual restriction between [Mg]—[O] and [Mg]—[S], maintaining the equilibrium between [Mg], [Al], [O], [S], magnesium oxide, and magnesium sulfide.

  • Mg(g)+[O]═MgO(s) ΔG 2 θ=−614000+208.28 T   (2)
  • The equilibrium relationship between [Mg] and [O] can be calculated according to the Activity Theory, as shown in the following expression:

  • a [Mg] ·a [O]=1.31×10−8 Mg(g)+[S]═MgS(s) ΔG 3 θ=−419858.5+174.3 T   (3)
  • The equilibrium relationship between [Mg] and [S] can be calculated according to the Activity Theory, as shown in the following expression:

  • a [Mg] ·a [S]=5.79×10−5
  • Of more importance, not only magnesium reacts with aluminum, oxygen, and sulfur, but also magnesium oxide can react with aluminum oxide in the cleaner molten steel to produce magnesium-aluminum spinel (MgO—Al2O3) having tiny grains (see Equations (5) and (6) below). Due to magnesium-aluminum spinel (MgO—Al2O3) having tiny grains and magnesium oxide and magnesium sulfide (both having tiny grains), inclusions were precipitated from the molten steel to form the crystalline cores of the cleaner molten steel. The precipitated inclusions enhance formation of the cores of Acicular Ferrite (AF) in the grains in a subsequent crystallization process, changing the formation of the steel crystalline. Thus, the grain tissue of steel was refined.

  • MgO(s)+Al2O3(s)→MgO.Al2O3(s) ΔG 4 θ=−35600−2.09 T   (4)
  • The following expression can be obtained from Equations (2) and (4):
  • [ % Al ] 2 [ % Mg ] 3 = 2.64 × 10 9 [ Mg ] + 4 [ O ] + 2 [ Al ] -> MgO · Al 2 O 3 ( s ) Δ G 5 θ = - 1969070 + 623.87 T ( 5 )
  • A free energy equilibrium equation showing the relationship between [Mg] and [Al] can be obtained according to the thermodynamic principle:
  • Δ G 5 = Δ G 5 θ + RT ln a MgO · Al 2 O 3 a [ O ] 3 a [ Al ] 2 a [ Mg ] = 0 as a MgO · Al 2 O 3 = 1 , [ % Mg ] 3 [ % Al ] 2 = 1.5 × 10 - 14
  • FIG. 4 showing a thermodynamic equilibrium diagram of Mg—Al—Mg—Al spinel and MgO—Al2O3—Mg—Al spinel in the molten steel was obtained from the above analysis. Precisely, curves 1 and 2 in FIG. 4 indicate the relationship of mutual transformation between the inclusions under a thermodynamic equilibrium of chemical reaction at 1837K.
  • Curve 1 in FIG. 4 represents a critical condition of transformation of magnesium oxide and magnesium-aluminum spinel (Mg—Al spinel) (Corresponding to the left side axes). Specifically, after treating the molten steel with magnesium and aluminum, the activity a of each element was substituted into the above free energy equilibrium equation. In a case that [% Al]2/[% Mg]3>2.64×109, the reaction fell in area B below curve 1, and magnesium-aluminum spinel was formed. On the other hand, if [% Al]2/[% Mg]3<2.64×109, the reaction fell in area B below curve 1, and magnesium oxide was formed. Furthermore, curve 2 represents a critical condition of transformation of aluminum, magnesium, and magnesium-aluminum spinel (Corresponding to the right side axes). Specifically, after treating the molten steel with magnesium and aluminum, the activity a of each element was substituted into the free energy equilibrium equation. In a case that [% Mg]3/[% Al]2<1.5×10−14 the reaction fell in area B above curve 2, and magnesium-aluminum spinel was form. On the other hand, if [% Mg]3/[% Al]2>1.5×10−14, the reaction fell in area B below curve 1, and alumim oxide (Al2O3) was form.
  • According to the thermodynamic principle, if magnesium and aluminum existed in the molten steel at the same time, the equilibrium condition of mutual transformation of alumunim oxide (Al2O3) and magnesium oxide is shown as below:

  • 3[Mg]+Al2O3(s)=3MgO(s)+2[Al] ΔG 6 θ=−992130+332.76 T [Mg]3/[Al]2=5.1×10−11   (6)
  • With reference to FIG. 5, after treating molten steel with magnesium and aluminum, [Mg]3/[Al]2 of molten steel reaches a number of >5.1×10−11, and accordingly aluminum oxide reacts with magnesium to produce magnesium oxide, and to reduce aluminum oxide into aluminum, as shown in Equation (6). The total oxygen content in the molten steel was reduced after treatment.
  • With reference to FIGS. 5-7, during the pre-processing step S1 and the modification step S2, the content of aluminum and magnesium in the molten steel must be maintained above curve 1 in FIG. 1 (i.e., [Mg]3/[Al]2>5.1×10−11). According to thermodynamic calculation, the continuous reaction after addition of magnesium and aluminum fell in area B of FIG. 6 (curve 1 in FIG. 6 represents equilibrium between aluminum and oxygen, curve 2 in FIG. 6 represents equilibrium between magnesium and oxygen) to fulfill the formation condition of magnesium-aluminum spinel shown in FIG. 7 (i.e., the ratio of aluminum oxide to magnesium oxide is 20-29%) so as to allow simultaneous reaction between magnesium and oxygen and between magnesium and aluminum oxide to produce magnesium oxide with tiny grains and magnesium-aluminum spinel with tiny grains, which, in turn, can precipitate inclusions from steel (including magnesium sulfide in Equation (2)) that serve as crystalline cores in the cleaner molten steel. The tiny inclusions having high melting points were solid and uniformly distributed in the molten steel. Since aggregation and growth of the tiny inclusions are less likely to occur, the precipitated inclusions can serve as the crystalline cores in a subsequent crystallization process, enhancing formation of the cores of Acicular Ferrite (AF) in the grains and, hence, enhancing crystallization of steel, refining the grain tissue of steel and improving the strength and toughness of steel.
  • In an example, 0.01-0.6 kilograms of magnesium per ton of cleaner molten steel was added at 1873K. Specifically, a magnesium-iron alloy wire including 5-80 wt % of magnesium was added into the cleaner molten steel. Magnesium reacted with oxygen and sulfur to produce magnesium oxygen and magnesium sulfide under mutual restriction according to thermodynamic equilibrium. At the same time, the formed magnesium oxide further reacted with aluminum oxide to produce magnesium-aluminum spinel. Formation of magnesium-aluminum spinel having tiny grains was conditioned according to the thermodynamic equilibrium principle (see FIG. 4) to reduce the total oxygen content in the molten steel to 10-60 ppm and to reduce the sulfur content in the molten steel to 5-100 ppm. Thus, the non-metallic oxides including the above-mentioned magnesium oxide, magnesium sulfide and magnesium-aluminum spinel were distributed in a uniform, non-aggregation, and scattered manner according to the thermodynamic equilibrium principle. The diameters of most of the grains of the non-metallic oxides were smaller than 3 mm. When using the precipitated inclusions as the crystalline cores of the molten steel during crystallization, formation of the cores of Acicular Ferrite (AF) in the grains can be enhanced to refine the grains of steel. Due to large-angle grain boundary between adjacent two pins of the Acicular Ferrite on any one of the crystalline cores in the grains, the grains of steel deflected and were refined while the pattern of the tiny cracks in steel goes across the crystalline cores of the Acicular Ferrite in the grains. The strength and toughness of steel were improved. Thus, it is sufficient to develop steel having yield strength larger than 1000 Mpa.
  • Conclusively, the main features of the metallurgical method for refining grains of molten steel by modifying inclusions of the molten steel through addition of magnesium and aluminum according to the preferable embodiment of the present invention are as follows: using aluminum as the basic deoxidizer in the pre-processing step S1 to reduce the total oxygen content in the molten steel. Then, magnesium is added in the modification step S2 to react with residual oxygen and sulfur in the cleaner molten steel to produce non-metallic oxides (including magnesium oxide and magnesium sulfide) under proper conditions according to the thermodynamic principle. The oxygen content and the sulfur content in the molten steel are reduced to achieve better deoxidization effect and better desulfurization effect. Furthermore, due to mutual restriction between the dissolved magnesium oxide and aluminum oxide, magnesium-aluminum spinel in a co-crystal form (that is less likely to aggregate and grow) is produced and uniformly distributed in the molten steel. In a subsequent continuous casting and rolling process, precipitated inclusions, such as magnesium-aluminum spinel, magnesium sulfide, and magnesium oxide, serve as non-homogenous crystalline cores of steel for enhancing growth of Acicular Ferrite in the grains to modify the crystallization pattern of the steel grains and to effectively divide and refine the grain tissue of steel. The properties of steel are, thus, enhanced, with a significant improvement in the strength and toughness thereof.
  • The metallurgical method for refining grains of molten steel by modifying inclusions of the molten steel through addition of magnesium and aluminum according to the preferable embodiment of the present invention directly modifies the inclusions of the molten steel obtained from the secondary refining process to increase the cleanness of the molten steel. At the same time, the compositions, sizes, forms, and distribution of the inclusions are modified according to the thermodynamic conditions to increase the amount of crystalline cores in the steel, achieving refining of the steel grains and, further, enhancing the strength and toughness of the steel.
  • The metallurgical method for refining grains of steel by modifying the inclusions of the molten steel through addition of magnesium and aluminum can reduce the costs of the procedures and improve the properties of the steel.
  • Thus since the invention disclosed herein may be embodied in other specific forms without departing from the spirit or general characteristics thereof, some of which forms have been indicated, the embodiments described herein are to be considered in all respects illustrative and not restrictive. The scope of the invention is to be indicated by the appended claims, rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.

Claims (5)

What is claimed is:
1. A metallurgical method for refining grains of steel obtained from a secondary refining process, with the method comprising:
a pre-processing step, with the pre-processing step including adding aluminum into the molten steel obtained from the secondary refining process, with aluminum reacting with oxygen and sulfur in the molten steel to reduce a total oxygen content in the molten steel to 15-120 ppm, to reduce a sulfur content in the molten steel to 15-150 ppm, and to produce aluminum oxide, obtaining a cleaner molten steel; and
a modification step, with the modification step including adding magnesium into the cleaner molten steel, with magnesium reacting with oxygen, sulfur, and aluminum oxide in the cleaner molten steel to reduce the total oxygen content in the molten steel to 10-60 ppm, to reduce the sulfur content in the molten steel to 5-100 ppm, and to produce inclusions, with the inclusions including magnesium oxide, magnesium sulfide, and magnesium-aluminum spinel, with precipitated inclusions serving as crystalline cores in a subsequent crystallization process following the modification step, obtaining fine-grained steel in the crystallization process.
2. The metallurgical method as claimed in claim 1, wherein 0.01-0.06 kilograms of magnesium per ton of the cleaner molten steel is added in the modification step.
3. The metallurgical method as claimed in claim 1, wherein a magnesium-iron alloy wire is added into the cleaner molten steel in the modification step, with the magnesium-iron alloy wire including 5-80 wt % of magnesium.
4. The metallurgical method as claimed in claim 1, wherein each of the pre-processing step and the modification step is carried out at 1843K to 1903K.
5. The metallurgical method as claimed in claim 1, wherein the molten steel obtained from the secondary refining process is medium carbon steel or low carbon steel.
US13/606,500 2011-12-20 2012-09-07 Metallurgical method for refining grains of steel by modifying inclusions through addition of magnesium and aluminum Abandoned US20130152740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100147429A TWI464271B (en) 2011-12-20 2011-12-20 A metallurgical method by adding mg-al to modify the inclusions and grain refinement of steel
TW100147429 2011-12-20

Publications (1)

Publication Number Publication Date
US20130152740A1 true US20130152740A1 (en) 2013-06-20

Family

ID=48608777

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/606,500 Abandoned US20130152740A1 (en) 2011-12-20 2012-09-07 Metallurgical method for refining grains of steel by modifying inclusions through addition of magnesium and aluminum

Country Status (4)

Country Link
US (1) US20130152740A1 (en)
JP (1) JP5526437B2 (en)
CN (1) CN103215409B (en)
TW (1) TWI464271B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531760B (en) * 2018-04-17 2020-06-16 青岛科技大学 New application of magnesium aluminate spinel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585799B1 (en) * 1999-04-08 2003-07-01 Nippon Steel Corporation Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
JP2005089775A (en) * 2003-09-12 2005-04-07 Nippon Steel Corp Method for adding rare-earth element into molten steel
US7776162B2 (en) * 2002-07-23 2010-08-17 Nippon Steel Corporation Steels with few alumina clusters

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2978038B2 (en) * 1993-08-16 1999-11-15 新日本製鐵株式会社 Oxide inclusion ultrafine dispersion steel
JP4287974B2 (en) * 2000-03-27 2009-07-01 新日本製鐵株式会社 Method for processing molten steel with finely solidified structure characteristics
JP4283434B2 (en) * 2000-01-31 2009-06-24 新日本製鐵株式会社 Treatment method of molten steel with excellent solidification structure characteristics
JP4265066B2 (en) * 2000-02-02 2009-05-20 三菱電機株式会社 Multiple power system interchange control means
JP2001303191A (en) * 2000-04-19 2001-10-31 Nippon Steel Corp Ultrahigh strength steel pipe for line pipe, excellent in haz toughness in weld zone, and its manufacturing method
JP2003027180A (en) * 2001-07-18 2003-01-29 Nippon Steel Corp Cast slab of high carbon steel with fine solidification structure and pearlite transformation structure
JP3746045B2 (en) * 2002-03-27 2006-02-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel slabs and steel plates and methods for producing them
JP2008266706A (en) * 2007-04-19 2008-11-06 Nisshin Steel Co Ltd Method for continuously casting ferritic stainless steel slab
CN101392308B (en) * 2007-09-22 2011-03-09 鞍钢股份有限公司 Molten steel deoxygenation method for thinning solidification structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585799B1 (en) * 1999-04-08 2003-07-01 Nippon Steel Corporation Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
US7776162B2 (en) * 2002-07-23 2010-08-17 Nippon Steel Corporation Steels with few alumina clusters
JP2005089775A (en) * 2003-09-12 2005-04-07 Nippon Steel Corp Method for adding rare-earth element into molten steel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Classification of Carbon and Low-Alloy Steels." KEY to METALS Articles. Key to Metals AG, 1999. Web. 25 Sept. 2013. . *
Machine translation of JP 2005-089775 A by Mikasa et al, publsihed 04-07-2005 *

Also Published As

Publication number Publication date
JP2013129906A (en) 2013-07-04
CN103215409A (en) 2013-07-24
CN103215409B (en) 2015-10-07
TW201326409A (en) 2013-07-01
TWI464271B (en) 2014-12-11
JP5526437B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5529341B2 (en) Control method of ultra-low carbon, ultra-low Ti aluminum silicon killed steel
KR101787179B1 (en) Method for smelting high-aluminum-low-silicon ultrapure ferritic stainless steel
CN105256095A (en) Method for smelting steel plate with excellent performance in high-heat-input-welding heat affected zone
JP2009120899A (en) Steel for steel pipe excellent in sour resistance and production method therefor
CN110343954A (en) A kind of connection rod of automobile engine steel and its manufacturing method
CN102248142A (en) Method for producing medium and low carbon aluminum killed steel
JP2016222970A (en) Superclean steel and method of refining the same
JP6642174B2 (en) Continuous casting method of high carbon molten steel
JP5398329B2 (en) Manufacturing method of high strength steel wire steel with excellent fatigue characteristics
CN115807196B (en) High-metallurgical-quality high-strength and high-toughness nitrogenous wind power gear steel and manufacturing method and application thereof
JP4873921B2 (en) Method for producing ultra-low carbon steel sheet and ultra-low carbon cast slab excellent in surface properties, workability and formability
US20130152740A1 (en) Metallurgical method for refining grains of steel by modifying inclusions through addition of magnesium and aluminum
JPH10237533A (en) Production of hic resistant steel
JP4510787B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP2007270178A (en) Method for manufacturing extra-low sulfur steel
CN109023021B (en) Steel plate with toughness improved by regulating Al element and manufacturing method thereof
JP3250459B2 (en) HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same
JP4107801B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP2008266706A (en) Method for continuously casting ferritic stainless steel slab
JPH09227989A (en) Calcium-treated steel and treatment of molten steel with calcium
CN114934232B (en) Steel billet for welding wire, preparation method of steel billet, preparation method of wire rod for welding wire and wire rod
JP3036361B2 (en) Manufacturing method of Al-Mn oxide dispersed steel
JPS5922765B2 (en) Manufacturing method for low-oxygen, low-sulfur steel that controls sulfide formation
JP7031634B2 (en) Manufacturing method of sour resistant steel
JP4418119B2 (en) Method for dispersing fine oxides in molten steel

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL CHENG KUNG UNIVERSITY, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HWANG, WENG-SING;FU, JIAN-XUN;SU, YEN-HAO;AND OTHERS;REEL/FRAME:028925/0771

Effective date: 20120419

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION