US20130244911A1 - Foamed Spacer Fluids Containing Cement Kiln Dust and Methods of Use - Google Patents

Foamed Spacer Fluids Containing Cement Kiln Dust and Methods of Use Download PDF

Info

Publication number
US20130244911A1
US20130244911A1 US13/889,398 US201313889398A US2013244911A1 US 20130244911 A1 US20130244911 A1 US 20130244911A1 US 201313889398 A US201313889398 A US 201313889398A US 2013244911 A1 US2013244911 A1 US 2013244911A1
Authority
US
United States
Prior art keywords
fluid
spacer fluid
foamed spacer
foamed
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/889,398
Other versions
US8551923B1 (en
Inventor
James Robert Benkley
Joseph V. Spencer
Zachary Robert Kranz
Christopher Jay Garrison
D. Chad Brenneis
Craig W. Roddy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/223,669 external-priority patent/US7445669B2/en
Priority claimed from US12/264,010 external-priority patent/US8333240B2/en
Priority claimed from US12/895,436 external-priority patent/US8522873B2/en
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Priority to US13/889,398 priority Critical patent/US8551923B1/en
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GARRISON, CHRISTOPHER JAY, KRANZ, ZACHARY ROBERT, SPENCER, JOSEPH V., BENKLEY, JAMES ROBERT, BRENNEIS, D. CHAD, RODDY, CRAIG W.
Publication of US20130244911A1 publication Critical patent/US20130244911A1/en
Application granted granted Critical
Publication of US8551923B1 publication Critical patent/US8551923B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/40Spacer compositions, e.g. compositions used to separate well-drilling from cementing masses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/424Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells using "spacer" compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to foamed spacer fluids comprising cement kiln dust (“CKD”) and methods of use in subterranean formations.
  • CKD cement kiln dust
  • Spacer fluids are often used in subterranean operations to facilitate improved displacement efficiency when introducing new fluids into a well bore.
  • a spacer fluid can be used to displace a fluid in a well bore before introduction of another fluid.
  • spacer fluids can enhance solids removal as well as separate the drilling fluid from a physically incompatible fluid.
  • the spacer fluid may be placed into the well bore to separate the cement composition from the drilling fluid.
  • Spacer fluids may also be placed between different drilling fluids during drilling change outs or between a drilling fluid and a completion brine, for example.
  • the spacer fluid can have certain characteristics.
  • the spacer fluid may be compatible with the drilling fluid and the cement composition. This compatibility may also be present at downhole temperatures and pressures. In some instances, it is also desirable for the spacer fluid to leave surfaces in the well bore water wet, thus facilitating bonding with the cement composition.
  • Rheology of the spacer fluid can also be important. A number of different rheological properties may be important in the design of a spacer fluid, including yield point, plastic viscosity, gel strength, and shear stress, among others. While rheology can be important in spacer fluid design, conventional spacer fluids may not have the desired rheology at downhole temperatures. For instance, conventional spacer fluids may experience undesired theimal thinning at elevated temperatures. As a result, conventional spacer fluids may not provide the desired displacement in some instances.
  • the present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to foamed spacer fluids comprising CKD and methods of use in subterranean formations.
  • An embodiment discloses a method comprising: providing a foamed spacer fluid comprising CKD, a foaming agent, a gas, and water; and introducing the foamed spacer fluid into a well bore to displace at least a portion of a first fluid present in the well bore.
  • Another embodiment discloses a method comprising: providing a foamed spacer fluid comprising a partially calcined kiln feed removed from a gas stream, a foaming agent, a gas, and water, wherein the partially calcined kiln feed comprises SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, SO 3 , Na 2 O, and K 2 O; and introducing the foamed spacer fluid into a well bore to displace at least a portion of a first fluid present in the well bore.
  • foamed spacer fluid comprising: CKD, a foaming agent, a gas, and water, wherein the foamed spacer fluid has: a higher yield point at 130° F. than at 80° F., a higher yield point at 180° F. than at 80° F., and/or a higher plastic viscosity at 180° F. than at 80° F.
  • the present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to foamed spacer fluids that comprise CKD and methods that use CKD for enhancing one or more rheological properties of a spacer fluid.
  • foamed spacer fluids that comprise CKD
  • methods that use CKD for enhancing one or more rheological properties of a spacer fluid There may be several potential advantages to the methods and compositions of the present invention, only some of which may be alluded to herein.
  • One of the many potential advantages of the methods and compositions of the present invention is that the CKD may be used in spacer fluids as a rheology modifier allowing formulation of a spacer fluid with desirable rheological properties.
  • Another potential advantage of the methods and compositions of the present invention is that inclusion of the CKD in the spacer fluids may result in a spacer fluid without undesired thermal thinning. Yet another potential advantage of the present invention is that spacer fluids comprising CKD may be more economical than conventional spacer fluids, which are commonly prepared with higher cost additives. Yet another potential advantage of the present invention is that foamed spacer fluids comprising CKD may be used for displacement of lightweight drilling fluids.
  • Embodiments of the spacer fluids of the present invention may comprise water and CKD.
  • the spacer fluids may be foamed.
  • the foamed spacer fluids may comprise water, CKD, a foaming agent, and a gas.
  • a foamed spacer fluid may be used, for example, where it is desired for the spacer fluid to be lightweight.
  • the spacer fluid may be used to displace a first fluid from a well bore with the spacer fluid having a higher yield point than the first fluid.
  • the spacer fluid may be used to displace at least a portion of a drilling fluid from the well bore.
  • Other optional additives may also be included in embodiments of the spacer fluids as desired for a particular application.
  • the spacer fluids may further comprise viscosifying agents, organic polymers, dispersants, surfactants, weighting agents, and any combination thereof.
  • the spacer fluids generally should have a density suitable for a particular application as desired by those of ordinary skill in the art, with the benefit of this disclosure.
  • the spacer fluids may have a density in the range of from about 4 pounds per gallon (“lb/gal”) to about 24 lb/gal.
  • the spacer fluids may have a density in the range of about 4 lb/gal to about 17 lb/gal.
  • the spacer fluids may have a density in the range of about 8 lb/gal to about 13 lb/gal.
  • Embodiments of the spacer fluids may be foamed or unfoamed or comprise other means to reduce their densities known in the art, such as lightweight additives. Those of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate density for a particular application.
  • the water used in an embodiment of the spacer fluids may include, for example, freshwater, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated saltwater produced from subterranean formations), seawater, or any combination thereof.
  • the water may be from any source, provided that the water does not contain an excess of compounds that may undesirably affect other components in the spacer fluid.
  • the water is included in an amount sufficient to form a pumpable spacer fluid.
  • the water may be included in the spacer fluids in an amount in the range of from about 15% to about 95% by weight of the spacer fluid.
  • the water may be included in the spacer fluids of the present invention in an amount in the range of from about 25% to about 85% by weight of the spacer fluid.
  • the appropriate amount of water to include for a chosen application will recognize the appropriate amount of water to include for a chosen application.
  • the CKD may be included in embodiments of the spacer fluids as a rheology modifier.
  • using CKD in embodiments of the present invention can provide spacer fluids having rheology suitable for a particular application. Desirable rheology may be advantageous to provide a spacer fluid that is effective for drilling fluid displacement, for example.
  • the CKD can be used to, provide a spacer fluid with a low degree of thermal thinning.
  • the spacer fluid may even have a yield point that increases at elevated temperatures such as those encountered downhole.
  • CKD is a material generated during the manufacture of cement that is commonly referred to as cement kiln dust.
  • the term “CKD” is used herein to mean cement kiln dust as described herein and equivalent forms of cement kiln dust made in other ways.
  • the term “CKD” typically refers to a partially calcined kiln feed which can be removed from the gas stream and collected, for example, in a dust collector during the manufacture of cement.
  • large quantities of CKD are collected in the production of cement that are commonly disposed of as waste. Disposal of the waste CKD can add undesirable costs to the manufacture of the cement, as well as the environmental concerns associated with its disposal.
  • CKD is commonly disposed as a waste material
  • spacer fluids prepared with CKD may be more economical than conventional spacer fluids, which are commonly prepared with higher cost additives.
  • the chemical analysis of CKD from various cement manufactures varies depending on a number of factors, including the particular kiln feed, the efficiencies of the cement production operation, and the associated dust collection systems.
  • CKD generally may comprise a variety of oxides, such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, SO 3 , Na 2 O, and K 2 O.
  • the CKD may be included in the spacer fluids in an amount sufficient to provide, for example, the desired rheological properties.
  • the CKD may be present in the spacer fluids in an amount in the range of from about 1% to about 65% by weight of the spacer fluid (e.g., about 1%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, etc.).
  • the CKD may be present in the spacer fluids in an amount in the range of from about 5% to about 60% by weight of the spacer fluid.
  • the CKD may be present in an amount in the range of from about 20% to about 35% by weight of the spacer fluid.
  • the amount of CKD may be expressed by weight of dry solids.
  • the term “by weight dry solids” refers to the amount of a component, such as CKD, relative to the overall amount of dry solids used in preparation of the spacer fluid.
  • the CKD may be present in an amount in a range of from about 1% to 100% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, 100%, etc.).
  • the CKD may be present in an amount in the range of from about 50% to 100% and, alternatively, from about 80% to 100% by weight of dry solids.
  • One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of CKD to include for a chosen application.
  • embodiments of the spacer fluids may comprise lime kiln dust, which is a material that is generated during the manufacture of lime.
  • lime kiln dust typically refers to a partially calcined kiln feed which can be removed from the gas stream and collected, for example, in a dust collector during the manufacture of lime.
  • the chemical analysis of lime kiln dust from various lime manufactures varies depending on a number of factors, including the particular limestone or dolomitic limestone feed, the type of kiln, the mode of operation of the kiln, the efficiencies of the lime production operation, and the associated dust collection systems.
  • Lime kiln dust generally may comprise varying amounts of free lime and free magnesium, lime stone, and/or dolomitic limestone and a variety of oxides, such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, SO 3 , Na 2 O, and K 2 O, and other components, such as chlorides.
  • oxides such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, SO 3 , Na 2 O, and K 2 O, and other components, such as chlorides.
  • embodiments of the spacer fluids may further comprise fly ash.
  • fly ashes may be suitable, including fly ash classified as Class C or Class F fly ash according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements , API Specification 10, Fifth Ed., Jul. 1, 1990.
  • Suitable examples of fly ash include, but are not limited to, POZMIX® A cement additive, commercially available from Halliburton Energy Services, Inc., Duncan, Okla. Where used, the fly ash generally may be included in the spacer fluids in an amount desired for a particular application.
  • the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 60% by weight of the spacer fluid (e.g., about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, etc.). In some embodiments, the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 35% by weight of the spacer fluid. In some embodiments, the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 10% by weight of the spacer fluid. Alternatively, the amount of fly ash may be expressed by weight of dry solids.
  • the fly ash may be present in an amount in a range of from about 1% to about 99% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.). In some embodiments, the fly ash may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids.
  • dry solids e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.
  • the fly ash may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids.
  • embodiments of the spacer fluids may further comprise a free water control additive.
  • a free water control additive refers to an additive included in a liquid for, among other things, reducing (or preventing) the presence of free water in the liquid. Free water control additive may also reduce (or prevent) the settling of solids.
  • suitable free water control additives include, but are not limited to, bentonite, amorphous silica, hydroxyethyl cellulose, and combinations thereof.
  • An example of a suitable free water control additive is SA-1015TM suspending agent, available from Halliburton Energy Services, Inc.
  • Another example of a suitable free water control additive is WG-17TM solid additive, available from Halliburton Energy Services, Inc.
  • the free water control additive may be provided as a dry solid in some embodiments. Where used, the free water control additive may be present in an amount in the range of from about 0.1% to about 16% by weight of dry solids, for example. In alternative embodiments, the free water control additive may be present in an amount in the range of from about 0.1% to about 2% by weight of dry solids.
  • the spacer fluids may further comprise a lightweight additive.
  • the lightweight additive may be included to reduce the density of embodiments of the spacer fluids.
  • the lightweight additive may be used to form a lightweight spacer fluid, for example, having a density of less than about 13 lb/gal.
  • the lightweight additive typically may have a specific gravity of less than about 2.0.
  • suitable lightweight additives may include sodium silicate, hollow microspheres, gilsonite, perlite, and combinations thereof.
  • An example of a suitable sodium silicate is ECONOLITETM additive, available from Halliburton Energy Services, Inc.
  • the lightweight additive may be present in an amount in the range of from about 0.1% to about 20% by weight of dry solids, for example. In alternative embodiments, the lightweight additive may be present in an amount in the range of from about 1% to about 10% by weight of dry solids.
  • embodiments of the spacer fluids may be foamed with a gas, for example, to provide a spacer fluid with a reduced density. It should be understood that reduced densities may be needed for embodiments of the spacer fluids to more approximately match the density of a particular drilling fluid, for example, where lightweight drilling fluids are being used.
  • a drilling fluid may be considered lightweight if it has a density of less than about 13 lb/gal, alternatively, less than about 10 lb/gal, and alternatively less than about 9 lb/gal.
  • the spacer fluids may be foamed to have a density within about 10% of the density of the drilling fluid and, alternatively, within about 5% of the density of the drilling fluid.
  • While techniques such as lightweight additives, may be used to reduce the density of the spacer fluids comprising CKD without foaming, these techniques may have drawbacks. For example, reduction of the spacer fluid's density to below about 13 lb/gal using lightweight additives may produce unstable slurries, which can have problems with settling of solids, floating of lightweight additives, and free water, among others. Accordingly, the spacer fluid may be foamed to provide a spacer fluid having a reduced density that is more stable.
  • the spacer fluids may be foamed and comprise water, CKD, a foaming agent, and a gas.
  • the foamed spacer fluid may further comprise a lightweight additive, for example.
  • a base slurry may be prepared that may then be foamed to provide an even lower density.
  • the foamed spacer fluid may have a density in the range of from about 4 lb/gal to about 13 lb/gal and, alternatively, about 7 lb/gal to about 9 lb/gal.
  • a base slurry may be foamed from a density of in the range of from about 9 lb/gal to about 13 lb/gal to a lower density, for example, in a range of from about 7 lb/gal to about 9 lb/gal.
  • the gas used in embodiments of the foamed spacer fluids may be any suitable gas for foaming the spacer fluid, including, but not limited to air, nitrogen, and combinations thereof.
  • the gas should be present in embodiments of the foamed spacer fluids in an amount sufficient to form the desired foam.
  • the gas may be present in an amount in the range of from about 5% to about 80% by volume of the foamed spacer fluid at atmospheric pressure, alternatively, about 5% to about 55% by volume, and, alternatively, about 15% to about 30% by volume.
  • embodiments of the spacer fluids may comprise a foaming agent for providing a suitable foam.
  • foaming agent refers to a material or combination of materials that facilitate the formation of a foam in a liquid. Any suitable foaming agent for forming a foam in an aqueous liquid may be used in embodiments of the spacer fluids.
  • suitable foaming agents may include, but are not limited to: mixtures of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; mixtures of an ammonium salt of an alkyl ether sulfate surfactant, a cocoamidopropyl hydroxysultaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; hydrolyzed keratin; mixtures of an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, and an alkyl or alkene dimethylamine oxide surfactant; aqueous solutions of an alpha-olefinic sulfonate surfactant and a betaine surfactant; and combinations thereof.
  • Suitable foaming agent is FOAMERTM 760 foamer/stabilizer, available from Halliburton Energy Services, Inc. Suitable foaming agents are described in U.S. Pat. Nos. 6,797,054, 6,547,871, 6,367,550, 6,063,738, and 5,897,699, the entire disclosures of which are incorporated herein by reference.
  • the foaming agent may be present in embodiments of the foamed spacer fluids in an amount sufficient to provide a suitable foam. In some embodiments, the foaming agent may be present in an amount in the range of from about 0.8% to about 5% by volume of the water (“bvow”).
  • additives may be included in the spacer fluids as deemed appropriate by one skilled in the art, with the benefit of this disclosure.
  • additives include, but are not limited to, weighting agents, viscosifying agents (e.g., clays, hydratable polymers, guar gum), fluid loss control additives, lost circulation materials, filtration control additives, dispersants, defoamers, corrosion inhibitors, scale inhibitors, formation conditioning agents.
  • specific examples of these, and other, additives include organic polymers, surfactants, crystalline silica, amorphous silica, fumed silica, salts, fibers, hydratable clays, microspheres, rice husk ash, combinations thereof, and the like.
  • Embodiments of the spacer fluids of the present invention may be prepared in accordance with any suitable technique.
  • the desired quantity of water may be introduced into a mixer (e.g., a cement blender) followed by the dry blend.
  • the dry blend may comprise the CKD and additional solid additives, for example. Additional liquid additives, if any may be added to the water ac desired prior to or after, combination with the dry blend.
  • This mixture may be agitated for a sufficient period of time to form a base slurry.
  • This base slurry may then be introduced into the well bore via pumps, for example.
  • the base slurry may be pumped into the well bore, and a foaming agent may be metered into the base slurry followed by injection of a gas, e.g., at a foam mixing “T,” in an amount sufficient to foam the base slurry thereby forming a foamed spacer fluid, in accordance with embodiments of the present invention.
  • a foaming agent may be metered into the base slurry followed by injection of a gas, e.g., at a foam mixing “T,” in an amount sufficient to foam the base slurry thereby forming a foamed spacer fluid, in accordance with embodiments of the present invention.
  • the foamed spacer fluid may be introduced into a well bore.
  • other suitable techniques for preparing spacer fluids may be used in accordance with embodiments of the present invention.
  • An example method of the present invention includes a method of enhancing rheological properties of a spacer fluid.
  • the method may comprise including CKD in a spacer fluid.
  • the CKD may be included in the spacer fluid in an amount sufficient to provide a higher yield point than a first fluid.
  • the higher yield point may be desirable, for example, to effectively displace the first fluid from the well bore.
  • yield point refers to the resistance of a fluid to initial flow, or representing the stress required to start fluid movement.
  • the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 5 lb/100 ft 2 .
  • the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 10 lb/100 ft 2 . In an embodiment, the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 20 lb/100 ft 2 . It may be desirable for the spacer fluid to not thermally thin to a yield point below the first fluid at elevated temperatures. Accordingly, the spacer fluid may have a higher yield point than the first fluid at elevated temperatures, such as 180° F. or bottom hole static temperature (“BHST”). In one embodiment, the spacer fluid may have a yield point that increases at elevated temperatures. For example, the spacer fluid may have a yield point that is higher at 180° F. than at 80° F. By way of further example. The spacer fluid may have a yield point that is higher at BHST than at 80° F.
  • BHST bottom hole static temperature
  • Another example method of the present invention includes a method of displacing a first fluid from a well bore, the well bore penetrating a subterranean formation.
  • the method may comprise providing a spacer fluid that comprises CKD and water.
  • the method may further comprise introducing the spacer fluid into the well bore to displace at least a portion of the first fluid from the well bore.
  • the spacer fluid may be characterized by having a higher yield point than the first fluid at 80° F.
  • the spacer fluid may be characterized by having a higher yield point than the first fluid at 130° F.
  • the spacer fluid may be characterized by having a higher yield point than the first fluid at 180° F.
  • the first fluid displaced by the spacer fluid comprises a drilling fluid.
  • the spacer fluid may be used to displace the drilling fluid from the well bore.
  • the cement composition may be allowed to set in the well bore.
  • the cement composition may include, for example, cement and water.
  • Another example method of the present invention includes a method of separating fluids in a well bore, the well bore penetrating a subterranean formation.
  • the method may comprise introducing a spacer fluid into the well bore, the well bore having a first fluid disposed therein.
  • the spacer fluid may comprise, for example, CKD and water.
  • the method may further comprise introducing a second fluid into the well bore with the spacer fluid separating the first fluid and the second fluid.
  • the first fluid comprises a drilling fluid and the second fluid comprises a cement composition.
  • the spacer fluid may prevent the cement composition from contacting the drilling fluid.
  • the cement composition comprises cement kiln dust, water, and optionally a hydraulic cementitious material.
  • hydraulic cements may be utilized in accordance with the present invention, including, but not limited to, those comprising calcium, aluminum, silicon, oxygen, iron, and/or sulfur, which set and harden by reaction with water.
  • Suitable hydraulic cements include, but are not limited to, Portland cements, pozzolana cements, gypsum cements, high alumina content cements, slag cements, silica cements, and combinations thereof.
  • the hydraulic cement may comprise a Portland cement.
  • the Portland cements that are suited for use in the present invention are classified as Classes A, C, H, and G cements according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990.
  • the spacer fluid may also remove the drilling fluid, dehydrated/gelled drilling fluid, and/or filter cake solids from the well bore in advance of the cement composition Removal of these compositions from the well bore may enhance bonding of the cement composition to surfaces in the well bore.
  • at least a portion of used and/or unused CKD containing spacer fluid are included in the cement composition that is placed into the well and allowed to set.
  • Sample spacer fluids were prepared to evaluate the rheological properties of spacer fluids containing CKD.
  • the sample spacer fluids were prepared as follows. First, all dry components (e.g., CKD, fly ash, bentonite, FWCA, etc.) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • dry components e.g., CKD, fly ash, bentonite, FWCA, etc.
  • Sample Spacer Fluid No. 1 was an 11 pound per gallon slurry that comprised 60.62% water, 34.17% CKD, 4.63% fly ash, and 0.58% free water control additive (WG-17TM solid additive).
  • Sample Spacer Fluid No. 2 was an 11 pound per gallon slurry that comprised 60.79% water, 30.42% CKD, 4.13% fly ash, 0.17% free water control additive (WG-17TM solid additive), 3.45% bentonite, and 1.04% EconoliteTM additive.
  • the thickening time of the Sample Spacer Fluid No. 1 was also determined in accordance with API Recommended Practice 10B at 205° F. Sample Spacer Fluid No. 1 had a thickening time of more than 6:00+ hours at 35 Bc.
  • the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications.
  • the above example illustrates, inter alia, that CKD may be used to provide a spacer fluid that may not exhibit thermal thinning with the spacer fluid potentially even having a yield point that increases with temperature.
  • Sample Spacer Fluid No. 2 had a higher yield point at 180° F. than at 80° F.
  • the yield point of Sample Spacer Fluid No. 1 had only a slight decrease at 180° F. as compared to 80° F.
  • addition of CKD to a spacer fluid may provide a plastic viscosity that increases with temperature.
  • sample spacer fluids were prepared to further evaluate the rheological properties of spacer fluids containing CKD.
  • the sample spacer fluids were prepared as follows. First, all dry components (e.g., CKD, fly ash) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • dry components e.g., CKD, fly ash
  • Sample Fluid No. 3 was a 12.5 pound per gallon fluid that comprised 47.29% water and 52.71% CKD.
  • Sample Fluid No. 4 was a 12.5 pound per gallon fluid that comprised 46.47% water, 40.15% CKD, and 13.38% fly ash.
  • Sample Fluid No. 5 was a 12.5 pound per gallon fluid that comprised 45.62% water, 27.19% CKD, and 27.19% fly ash.
  • Sample Fluid No. 6 was a 12.5 pound per gallon fluid that comprised 44.75% water, 13.81% CKD, and 41.44% fly ash.
  • Sample Fluid No. 7 (comparative) was a 12.5 pound per gallon fluid that comprised 43.85% water, and 56.15% fly ash.
  • the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications.
  • the above example illustrates, inter alia, that CKD may be used to provide a spacer fluid that may not exhibit thermal thinning with the spacer fluid potentially even having a yield point that increases with temperature.
  • CKD may be used to provide a spacer fluid that may not exhibit thermal thinning with the spacer fluid potentially even having a yield point that increases with temperature.
  • higher yield points were observed for spacer fluids with higher concentrations of CKD.
  • a sample spacer fluid containing CKD was prepared to compare the rheological properties of a spacer fluid containing CKD with an oil-based drilling fluid.
  • the sample spacer fluid was prepared as follows. First, all dry components (e.g., CKD, fly ash, bentonite, etc.) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • dry components e.g., CKD, fly ash, bentonite, etc.
  • Sample Spacer Fluid No. 8 was an 11 pound per gallon slurry that comprised 60.79% water, 30.42% CKD, 4.13% fly ash, 0.17% free water control additive (WG-17TM solid additive), 3.45% bentonite, and 1.04% EconoliteTM additive.
  • the oil-based drilling fluid was a 9.1 pound per gallon oil-based mud.
  • Rheological values were then determined using a Fann Model 35 Viscometer. Dial readings were recorded at speeds of 3, 6, 100, 200, and 300 with a B1 bob, an R1 rotor, and a 1.0 spring. The dial readings, plastic viscosity, and yield points for the spacer fluid and drilling fluid were measured in accordance with API Recommended Practices 10B, Bingham plastic model and are set forth in the table below.
  • the abbreviation “PV” refers to plastic viscosity, while the abbreviation “YP” refers to yield point.
  • OBM refers to oil-based mud.
  • the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications.
  • the above example illustrates, inter alia, that CKD may be used to provide a spacer fluid with a yield point that is greater than a drilling fluid even at elevated temperatures.
  • Sample Spacer Fluid No. 8 has a higher yield point at 180° F. than the oil-based mud.
  • a foamed spacer fluid was prepared that comprised CKD.
  • a base slurry was prepared that had a density of 10 lb/gal and comprised CKD, a free water control additive (0.7% by weight of CKD), a lightweight additive (4% by weight of CKD), and fresh water (32.16 gallons per 94-pound sack of CKD).
  • the free water control additive was SA-1015TM suspending aid.
  • the lightweight additive was ECONOLITETM additive.
  • a foaming agent (FOAMERTM 760 foamer/stabilizer) in an amount of 2% bvow was added, and the base slurry was then mixed in a foam blending jar for 4 seconds at 12,000 rpm.
  • the resulting foamed spacer fluid had a density of 8.4 lb/gal.
  • the “sink” of the resultant foamed spacer fluid was then measured using a free fluid test procedure as specified in API Recommended Practice 10B. However, rather than measuring the free fluid, the amount of “sink” was measured after the foamed spacer fluid remained static for a period of 2 hours.
  • the foamed spacer fluid was initially at 200° and cooled to ambient temperature over the 2-hour period.
  • the measured sink for this foamed spacer fluid was 5 millimeters.
  • Another foamed spacer fluid was prepared that comprised CKD.
  • a base slurry was prepared that had a density of 10.5 lb/gal and comprised CKD, a free water control additive (0.6% by weight of CKD), a lightweight additive (4% by weight of CKD), and fresh water (23.7 gallons per 94-pound sack of CKD).
  • the free water control additive was SA-1015TM suspending aid.
  • the lightweight additive was ECONOLITETM additive.
  • a foaming agent a hexylene glycol/cocobetaine blended surfactant
  • the resulting foamed spacer fluid had a density of 8.304 lb/gal.
  • the resultant foamed spacer fluid had a sink of 0 millimeters, measured as described above for Example 4.
  • compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps.
  • any number and any included range falling within the range is specifically disclosed.
  • every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values.
  • the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Abstract

Disclosed are foamed spacer fluids comprising kiln dust for use in subterranean formations. An embodiment discloses a foamed spacer fluid comprising a partially calcined kiln feed removed from a gas stream comprising SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, and K2O; a foaming agent; a gas; and water.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 13/535,145, entitled “Foamed Spacer Fluids Containing Cement Kiln Dust and Methods of Use,” filed on Jun. 27, 2012, which is a continuation-in-part of U.S. application Ser. No. 12/895,436, entitled “Spacer Fluids Containing Cement Kiln Dust and Methods of Use,” filed on Sep. 30, 2010, which is a continuation-in-part of U.S. application Ser. No. 12/264,010, now U.S. Pat. No. 8,333,240, entitled “Reduced Carbon Footprint Sealing Compositions for Use in Subterranean Formations,” filed on Nov. 3, 2008, which is a continuation-in-part of U.S. application Ser. No. 11/223,669, now U.S. Pat. No. 7,445,669, entitled “Settable Compositions Comprising Cement Kiln Dust and Additive(s),” filed Sep. 9, 2005, the entire disclosures of which are incorporated herein by reference.
  • BACKGROUND
  • The present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to foamed spacer fluids comprising cement kiln dust (“CKD”) and methods of use in subterranean formations.
  • Spacer fluids are often used in subterranean operations to facilitate improved displacement efficiency when introducing new fluids into a well bore. For example, a spacer fluid can be used to displace a fluid in a well bore before introduction of another fluid. When used for drilling fluid displacement, spacer fluids can enhance solids removal as well as separate the drilling fluid from a physically incompatible fluid. For instance, in primary cementing operations, the spacer fluid may be placed into the well bore to separate the cement composition from the drilling fluid. Spacer fluids may also be placed between different drilling fluids during drilling change outs or between a drilling fluid and a completion brine, for example.
  • To be effective, the spacer fluid can have certain characteristics. For example, the spacer fluid may be compatible with the drilling fluid and the cement composition. This compatibility may also be present at downhole temperatures and pressures. In some instances, it is also desirable for the spacer fluid to leave surfaces in the well bore water wet, thus facilitating bonding with the cement composition. Rheology of the spacer fluid can also be important. A number of different rheological properties may be important in the design of a spacer fluid, including yield point, plastic viscosity, gel strength, and shear stress, among others. While rheology can be important in spacer fluid design, conventional spacer fluids may not have the desired rheology at downhole temperatures. For instance, conventional spacer fluids may experience undesired theimal thinning at elevated temperatures. As a result, conventional spacer fluids may not provide the desired displacement in some instances.
  • SUMMARY
  • The present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to foamed spacer fluids comprising CKD and methods of use in subterranean formations.
  • An embodiment discloses a method comprising: providing a foamed spacer fluid comprising CKD, a foaming agent, a gas, and water; and introducing the foamed spacer fluid into a well bore to displace at least a portion of a first fluid present in the well bore.
  • Another embodiment discloses a method comprising: providing a foamed spacer fluid comprising a partially calcined kiln feed removed from a gas stream, a foaming agent, a gas, and water, wherein the partially calcined kiln feed comprises SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, and K2O; and introducing the foamed spacer fluid into a well bore to displace at least a portion of a first fluid present in the well bore.
  • Yet another embodiment discloses a foamed spacer fluid comprising: CKD, a foaming agent, a gas, and water, wherein the foamed spacer fluid has: a higher yield point at 130° F. than at 80° F., a higher yield point at 180° F. than at 80° F., and/or a higher plastic viscosity at 180° F. than at 80° F.
  • The features and advantages of the present invention will be readily apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention relates to spacer fluids for use in subterranean operations and, more particularly, in certain embodiments, to foamed spacer fluids that comprise CKD and methods that use CKD for enhancing one or more rheological properties of a spacer fluid. There may be several potential advantages to the methods and compositions of the present invention, only some of which may be alluded to herein. One of the many potential advantages of the methods and compositions of the present invention is that the CKD may be used in spacer fluids as a rheology modifier allowing formulation of a spacer fluid with desirable rheological properties. Another potential advantage of the methods and compositions of the present invention is that inclusion of the CKD in the spacer fluids may result in a spacer fluid without undesired thermal thinning. Yet another potential advantage of the present invention is that spacer fluids comprising CKD may be more economical than conventional spacer fluids, which are commonly prepared with higher cost additives. Yet another potential advantage of the present invention is that foamed spacer fluids comprising CKD may be used for displacement of lightweight drilling fluids.
  • Embodiments of the spacer fluids of the present invention may comprise water and CKD. In some embodiments, the spacer fluids may be foamed. For example, the foamed spacer fluids may comprise water, CKD, a foaming agent, and a gas. A foamed spacer fluid may be used, for example, where it is desired for the spacer fluid to be lightweight. In accordance with present embodiments, the spacer fluid may be used to displace a first fluid from a well bore with the spacer fluid having a higher yield point than the first fluid. For example, the spacer fluid may be used to displace at least a portion of a drilling fluid from the well bore. Other optional additives may also be included in embodiments of the spacer fluids as desired for a particular application. For example, the spacer fluids may further comprise viscosifying agents, organic polymers, dispersants, surfactants, weighting agents, and any combination thereof.
  • The spacer fluids generally should have a density suitable for a particular application as desired by those of ordinary skill in the art, with the benefit of this disclosure. In some embodiments, the spacer fluids may have a density in the range of from about 4 pounds per gallon (“lb/gal”) to about 24 lb/gal. In other embodiments, the spacer fluids may have a density in the range of about 4 lb/gal to about 17 lb/gal. In yet other embodiments, the spacer fluids may have a density in the range of about 8 lb/gal to about 13 lb/gal. Embodiments of the spacer fluids may be foamed or unfoamed or comprise other means to reduce their densities known in the art, such as lightweight additives. Those of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate density for a particular application.
  • The water used in an embodiment of the spacer fluids may include, for example, freshwater, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated saltwater produced from subterranean formations), seawater, or any combination thereof. Generally, the water may be from any source, provided that the water does not contain an excess of compounds that may undesirably affect other components in the spacer fluid. The water is included in an amount sufficient to form a pumpable spacer fluid. In some embodiments, the water may be included in the spacer fluids in an amount in the range of from about 15% to about 95% by weight of the spacer fluid. In other embodiments, the water may be included in the spacer fluids of the present invention in an amount in the range of from about 25% to about 85% by weight of the spacer fluid. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of water to include for a chosen application.
  • The CKD may be included in embodiments of the spacer fluids as a rheology modifier. Among other things, using CKD in embodiments of the present invention can provide spacer fluids having rheology suitable for a particular application. Desirable rheology may be advantageous to provide a spacer fluid that is effective for drilling fluid displacement, for example. In some instances, the CKD can be used to, provide a spacer fluid with a low degree of thermal thinning. For example, the spacer fluid may even have a yield point that increases at elevated temperatures such as those encountered downhole.
  • CKD is a material generated during the manufacture of cement that is commonly referred to as cement kiln dust. The term “CKD” is used herein to mean cement kiln dust as described herein and equivalent forms of cement kiln dust made in other ways. The term “CKD” typically refers to a partially calcined kiln feed which can be removed from the gas stream and collected, for example, in a dust collector during the manufacture of cement. Usually, large quantities of CKD are collected in the production of cement that are commonly disposed of as waste. Disposal of the waste CKD can add undesirable costs to the manufacture of the cement, as well as the environmental concerns associated with its disposal. Because the CKD is commonly disposed as a waste material, spacer fluids prepared with CKD may be more economical than conventional spacer fluids, which are commonly prepared with higher cost additives. The chemical analysis of CKD from various cement manufactures varies depending on a number of factors, including the particular kiln feed, the efficiencies of the cement production operation, and the associated dust collection systems. CKD generally may comprise a variety of oxides, such as SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, and K2O.
  • The CKD may be included in the spacer fluids in an amount sufficient to provide, for example, the desired rheological properties. In some embodiments, the CKD may be present in the spacer fluids in an amount in the range of from about 1% to about 65% by weight of the spacer fluid (e.g., about 1%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, etc.). In some embodiments, the CKD may be present in the spacer fluids in an amount in the range of from about 5% to about 60% by weight of the spacer fluid. In some embodiments, the CKD may be present in an amount in the range of from about 20% to about 35% by weight of the spacer fluid. Alternatively, the amount of CKD may be expressed by weight of dry solids. As used herein, the term “by weight dry solids” refers to the amount of a component, such as CKD, relative to the overall amount of dry solids used in preparation of the spacer fluid. For example, the CKD may be present in an amount in a range of from about 1% to 100% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, 100%, etc.). In some embodiments, the CKD may be present in an amount in the range of from about 50% to 100% and, alternatively, from about 80% to 100% by weight of dry solids. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of CKD to include for a chosen application.
  • While the preceding description describes CKD, the present invention is broad enough to encompass the use of other partially calcined kiln feeds. For example, embodiments of the spacer fluids may comprise lime kiln dust, which is a material that is generated during the manufacture of lime. The term lime kiln dust typically refers to a partially calcined kiln feed which can be removed from the gas stream and collected, for example, in a dust collector during the manufacture of lime. The chemical analysis of lime kiln dust from various lime manufactures varies depending on a number of factors, including the particular limestone or dolomitic limestone feed, the type of kiln, the mode of operation of the kiln, the efficiencies of the lime production operation, and the associated dust collection systems. Lime kiln dust generally may comprise varying amounts of free lime and free magnesium, lime stone, and/or dolomitic limestone and a variety of oxides, such as SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, and K2O, and other components, such as chlorides.
  • Optionally, embodiments of the spacer fluids may further comprise fly ash. A variety of fly ashes may be suitable, including fly ash classified as Class C or Class F fly ash according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990. Suitable examples of fly ash include, but are not limited to, POZMIX® A cement additive, commercially available from Halliburton Energy Services, Inc., Duncan, Okla. Where used, the fly ash generally may be included in the spacer fluids in an amount desired for a particular application. In some embodiments, the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 60% by weight of the spacer fluid (e.g., about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, etc.). In some embodiments, the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 35% by weight of the spacer fluid. In some embodiments, the fly ash may be present in the spacer fluids in an amount in the range of from about 1% to about 10% by weight of the spacer fluid. Alternatively, the amount of fly ash may be expressed by weight of dry solids. For example, the fly ash may be present in an amount in a range of from about 1% to about 99% by weight of dry solids (e.g., about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 99%, etc.). In some embodiments, the fly ash may be present in an amount in the range of from about 1% to about 20% and, alternatively, from about 1% to about 10% by weight of dry solids. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of the fly ash to include for a chosen application.
  • Optionally, embodiments of the spacer fluids may further comprise a free water control additive. As used herein, the term “free water control additive” refers to an additive included in a liquid for, among other things, reducing (or preventing) the presence of free water in the liquid. Free water control additive may also reduce (or prevent) the settling of solids. Examples of suitable free water control additives include, but are not limited to, bentonite, amorphous silica, hydroxyethyl cellulose, and combinations thereof. An example of a suitable free water control additive is SA-1015™ suspending agent, available from Halliburton Energy Services, Inc. Another example of a suitable free water control additive is WG-17™ solid additive, available from Halliburton Energy Services, Inc. The free water control additive may be provided as a dry solid in some embodiments. Where used, the free water control additive may be present in an amount in the range of from about 0.1% to about 16% by weight of dry solids, for example. In alternative embodiments, the free water control additive may be present in an amount in the range of from about 0.1% to about 2% by weight of dry solids.
  • In some embodiments, the spacer fluids may further comprise a lightweight additive. The lightweight additive may be included to reduce the density of embodiments of the spacer fluids. For example, the lightweight additive may be used to form a lightweight spacer fluid, for example, having a density of less than about 13 lb/gal. The lightweight additive typically may have a specific gravity of less than about 2.0. Examples of suitable lightweight additives may include sodium silicate, hollow microspheres, gilsonite, perlite, and combinations thereof. An example of a suitable sodium silicate is ECONOLITE™ additive, available from Halliburton Energy Services, Inc. Where used, the lightweight additive may be present in an amount in the range of from about 0.1% to about 20% by weight of dry solids, for example. In alternative embodiments, the lightweight additive may be present in an amount in the range of from about 1% to about 10% by weight of dry solids.
  • As previously mentioned, embodiments of the spacer fluids may be foamed with a gas, for example, to provide a spacer fluid with a reduced density. It should be understood that reduced densities may be needed for embodiments of the spacer fluids to more approximately match the density of a particular drilling fluid, for example, where lightweight drilling fluids are being used. A drilling fluid may be considered lightweight if it has a density of less than about 13 lb/gal, alternatively, less than about 10 lb/gal, and alternatively less than about 9 lb/gal. In some embodiments, the spacer fluids may be foamed to have a density within about 10% of the density of the drilling fluid and, alternatively, within about 5% of the density of the drilling fluid. While techniques, such as lightweight additives, may be used to reduce the density of the spacer fluids comprising CKD without foaming, these techniques may have drawbacks. For example, reduction of the spacer fluid's density to below about 13 lb/gal using lightweight additives may produce unstable slurries, which can have problems with settling of solids, floating of lightweight additives, and free water, among others. Accordingly, the spacer fluid may be foamed to provide a spacer fluid having a reduced density that is more stable.
  • Therefore, in some embodiments, the spacer fluids may be foamed and comprise water, CKD, a foaming agent, and a gas. Optionally, to provide a spacer fluid with a lower density and more stable foam, the foamed spacer fluid may further comprise a lightweight additive, for example. With the lightweight additive, a base slurry may be prepared that may then be foamed to provide an even lower density. In some embodiments, the foamed spacer fluid may have a density in the range of from about 4 lb/gal to about 13 lb/gal and, alternatively, about 7 lb/gal to about 9 lb/gal. In one particular embodiment, a base slurry may be foamed from a density of in the range of from about 9 lb/gal to about 13 lb/gal to a lower density, for example, in a range of from about 7 lb/gal to about 9 lb/gal.
  • The gas used in embodiments of the foamed spacer fluids may be any suitable gas for foaming the spacer fluid, including, but not limited to air, nitrogen, and combinations thereof. Generally, the gas should be present in embodiments of the foamed spacer fluids in an amount sufficient to form the desired foam. In certain embodiments, the gas may be present in an amount in the range of from about 5% to about 80% by volume of the foamed spacer fluid at atmospheric pressure, alternatively, about 5% to about 55% by volume, and, alternatively, about 15% to about 30% by volume.
  • Where foamed, embodiments of the spacer fluids may comprise a foaming agent for providing a suitable foam. As used herein, the term “foaming agent” refers to a material or combination of materials that facilitate the formation of a foam in a liquid. Any suitable foaming agent for forming a foam in an aqueous liquid may be used in embodiments of the spacer fluids. Examples of suitable foaming agents may include, but are not limited to: mixtures of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; mixtures of an ammonium salt of an alkyl ether sulfate surfactant, a cocoamidopropyl hydroxysultaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; hydrolyzed keratin; mixtures of an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, and an alkyl or alkene dimethylamine oxide surfactant; aqueous solutions of an alpha-olefinic sulfonate surfactant and a betaine surfactant; and combinations thereof. An example of a suitable foaming agent is FOAMER™ 760 foamer/stabilizer, available from Halliburton Energy Services, Inc. Suitable foaming agents are described in U.S. Pat. Nos. 6,797,054, 6,547,871, 6,367,550, 6,063,738, and 5,897,699, the entire disclosures of which are incorporated herein by reference.
  • Generally, the foaming agent may be present in embodiments of the foamed spacer fluids in an amount sufficient to provide a suitable foam. In some embodiments, the foaming agent may be present in an amount in the range of from about 0.8% to about 5% by volume of the water (“bvow”).
  • A wide variety of additional additives may be included in the spacer fluids as deemed appropriate by one skilled in the art, with the benefit of this disclosure. Examples of such additives include, but are not limited to, weighting agents, viscosifying agents (e.g., clays, hydratable polymers, guar gum), fluid loss control additives, lost circulation materials, filtration control additives, dispersants, defoamers, corrosion inhibitors, scale inhibitors, formation conditioning agents. Specific examples of these, and other, additives include organic polymers, surfactants, crystalline silica, amorphous silica, fumed silica, salts, fibers, hydratable clays, microspheres, rice husk ash, combinations thereof, and the like. A person having ordinary skill in the art, with the benefit of this disclosure, will readily be able to determine the type and amount of additive useful for a particular application and desired result.
  • Embodiments of the spacer fluids of the present invention may be prepared in accordance with any suitable technique. In some embodiments, the desired quantity of water may be introduced into a mixer (e.g., a cement blender) followed by the dry blend. The dry blend may comprise the CKD and additional solid additives, for example. Additional liquid additives, if any may be added to the water ac desired prior to or after, combination with the dry blend. This mixture may be agitated for a sufficient period of time to form a base slurry. This base slurry may then be introduced into the well bore via pumps, for example. In the foamed embodiments, the base slurry may be pumped into the well bore, and a foaming agent may be metered into the base slurry followed by injection of a gas, e.g., at a foam mixing “T,” in an amount sufficient to foam the base slurry thereby forming a foamed spacer fluid, in accordance with embodiments of the present invention. After foaming, the foamed spacer fluid may be introduced into a well bore. As will be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, other suitable techniques for preparing spacer fluids may be used in accordance with embodiments of the present invention.
  • An example method of the present invention includes a method of enhancing rheological properties of a spacer fluid. The method may comprise including CKD in a spacer fluid. The CKD may be included in the spacer fluid in an amount sufficient to provide a higher yield point than a first fluid. The higher yield point may be desirable, for example, to effectively displace the first fluid from the well bore. As used herein, the term “yield point” refers to the resistance of a fluid to initial flow, or representing the stress required to start fluid movement. In an embodiment, the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 5 lb/100 ft2. In an embodiment, the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 10 lb/100 ft2. In an embodiment, the yield point of the spacer fluid at a temperature of up to about 180° F. is greater than about 20 lb/100 ft2. It may be desirable for the spacer fluid to not thermally thin to a yield point below the first fluid at elevated temperatures. Accordingly, the spacer fluid may have a higher yield point than the first fluid at elevated temperatures, such as 180° F. or bottom hole static temperature (“BHST”). In one embodiment, the spacer fluid may have a yield point that increases at elevated temperatures. For example, the spacer fluid may have a yield point that is higher at 180° F. than at 80° F. By way of further example. The spacer fluid may have a yield point that is higher at BHST than at 80° F.
  • Another example method of the present invention includes a method of displacing a first fluid from a well bore, the well bore penetrating a subterranean formation. The method may comprise providing a spacer fluid that comprises CKD and water. The method may further comprise introducing the spacer fluid into the well bore to displace at least a portion of the first fluid from the well bore. In some embodiments, the spacer fluid may be characterized by having a higher yield point than the first fluid at 80° F. In some embodiments, the spacer fluid may be characterized by having a higher yield point than the first fluid at 130° F. In some embodiments, the spacer fluid may be characterized by having a higher yield point than the first fluid at 180° F.
  • In an embodiment, the first fluid displaced by the spacer fluid comprises a drilling fluid. By way of example, the spacer fluid may be used to displace the drilling fluid from the well bore. The drilling fluid may include, for example, any number of fluids, such as solid suspensions, mixtures, and emulsions. Additional steps in embodiments of the method may comprise introducing a pipe string into the well bore, introducing a cement composition into the well bore with the spacer fluid separating the cement composition and the first fluid. In an embodiment, the cement composition may be allowed to set in the well bore. The cement composition may include, for example, cement and water.
  • Another example method of the present invention includes a method of separating fluids in a well bore, the well bore penetrating a subterranean formation. The method may comprise introducing a spacer fluid into the well bore, the well bore having a first fluid disposed therein. The spacer fluid may comprise, for example, CKD and water. The method may further comprise introducing a second fluid into the well bore with the spacer fluid separating the first fluid and the second fluid. In an embodiment, the first fluid comprises a drilling fluid and the second fluid comprises a cement composition. By way of example, the spacer fluid may prevent the cement composition from contacting the drilling fluid. In an embodiment, the cement composition comprises cement kiln dust, water, and optionally a hydraulic cementitious material. A variety of hydraulic cements may be utilized in accordance with the present invention, including, but not limited to, those comprising calcium, aluminum, silicon, oxygen, iron, and/or sulfur, which set and harden by reaction with water. Suitable hydraulic cements include, but are not limited to, Portland cements, pozzolana cements, gypsum cements, high alumina content cements, slag cements, silica cements, and combinations thereof. In certain embodiments, the hydraulic cement may comprise a Portland cement. In some embodiments, the Portland cements that are suited for use in the present invention are classified as Classes A, C, H, and G cements according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990. The spacer fluid may also remove the drilling fluid, dehydrated/gelled drilling fluid, and/or filter cake solids from the well bore in advance of the cement composition Removal of these compositions from the well bore may enhance bonding of the cement composition to surfaces in the well bore. In an additional embodiment, at least a portion of used and/or unused CKD containing spacer fluid are included in the cement composition that is placed into the well and allowed to set.
  • To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the scope of the invention. In the following examples, concentrations are given in weight percent of the overall composition.
  • Example 1
  • Sample spacer fluids were prepared to evaluate the rheological properties of spacer fluids containing CKD. The sample spacer fluids were prepared as follows. First, all dry components (e.g., CKD, fly ash, bentonite, FWCA, etc.) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • Sample Spacer Fluid No. 1 was an 11 pound per gallon slurry that comprised 60.62% water, 34.17% CKD, 4.63% fly ash, and 0.58% free water control additive (WG-17™ solid additive).
  • Sample Spacer Fluid No. 2 was an 11 pound per gallon slurry that comprised 60.79% water, 30.42% CKD, 4.13% fly ash, 0.17% free water control additive (WG-17™ solid additive), 3.45% bentonite, and 1.04% Econolite™ additive.
  • Rheological values were then determined using a Fann Model 35 Viscometer. Dial readings were recorded at speeds of 3, 6, 100, 200, and 300 with a B1 bob, an R1 rotor, and a 1.0 spring. The dial readings, plastic viscosity, and yield points for the spacer fluids were measured in accordance with API Recommended Practices 10B, Bingham plastic model and are set forth in the table below. The abbreviation “PV” refers to plastic viscosity, while the abbreviation “YP” refers to yield point.
  • TABLE 1
    Sample Temp. Viscometer RPM PV YP
    Fluid (° F.) 300 200 100 6 3 (cP) (lb/100 ft2)
    1 80 145 127 90 24 14 113.3 27.4
    180 168 143 105 26 15 154.5 30.3
    2 80 65 53 43 27 22 41.1 26.9
    180 70 61 55 22 18 51.6 25.8
  • The thickening time of the Sample Spacer Fluid No. 1 was also determined in accordance with API Recommended Practice 10B at 205° F. Sample Spacer Fluid No. 1 had a thickening time of more than 6:00+ hours at 35 Bc.
  • Accordingly, the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications. In particular, the above example illustrates, inter alia, that CKD may be used to provide a spacer fluid that may not exhibit thermal thinning with the spacer fluid potentially even having a yield point that increases with temperature. For example, Sample Spacer Fluid No. 2 had a higher yield point at 180° F. than at 80° F. In addition, the yield point of Sample Spacer Fluid No. 1 had only a slight decrease at 180° F. as compared to 80° F. Even further, the example illustrates that addition of CKD to a spacer fluid may provide a plastic viscosity that increases with temperature.
  • Example 2
  • Additional sample spacer fluids were prepared to further evaluate the rheological properties of spacer fluids containing CKD. The sample spacer fluids were prepared as follows. First, all dry components (e.g., CKD, fly ash) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • Sample Fluid No. 3 was a 12.5 pound per gallon fluid that comprised 47.29% water and 52.71% CKD.
  • Sample Fluid No. 4 was a 12.5 pound per gallon fluid that comprised 46.47% water, 40.15% CKD, and 13.38% fly ash.
  • Sample Fluid No. 5 was a 12.5 pound per gallon fluid that comprised 45.62% water, 27.19% CKD, and 27.19% fly ash.
  • Sample Fluid No. 6 was a 12.5 pound per gallon fluid that comprised 44.75% water, 13.81% CKD, and 41.44% fly ash.
  • Sample Fluid No. 7 (comparative) was a 12.5 pound per gallon fluid that comprised 43.85% water, and 56.15% fly ash.
  • Rheological values were then determined using a Fann Model 35 Viscometer. Dial readings were recorded at speeds of 3, 6, 30, 60, 100, 200, 300, and 600 with a B1 bob, an R1 rotor, and a 1.0 spring. The dial readings, plastic viscosity, and yield points for the spacer fluids were measured in accordance with API Recommended Practices 10B, Bingham plastic model and are set forth in the table below. The abbreviation “PV” refers to plastic viscosity, while the abbreviation “YP” refers to yield point.
  • TABLE 2
    CKD-
    Sample Fly YP
    Spacer Ash Temp. Viscometer RPM PV (lb/
    Fluid Ratio (° F.) 600 300 200 100 60 30 6 3 (cP) 100 ft2)
    3 100:0  80 33 23 20 15 13 12 8 6 12 11
    130 39 31 27 23 22 19 16 11 12 19
    180 66 58 51 47 40 38 21 18 16.5 41.5
    4 75:25 80 28 22 19 15 14 11 8 6 10.5 11.5
    130 39 28 25 21 19 16 14 11 10.5 17.5
    180 51 39 36 35 31 26 16 11 6 33
    5 50:50 80 20 11 8 6 5 4 4 3 7.5 3.5
    130 21 15 13 10 9 8 6 5 7.5 7.5
    180 25 20 17 14 13 12 7 5 9 11
    6 25:75 80 16 8 6 3 2 1 0 0 7.5 0.5
    130 15 8 6 4 3 2 1 1 6 2
    180 15 9 7 5 4 4 2 2 6 3
    7  0:100 80 16 7 5 3 1 0 0 0 6 1
    (Comp.) 130 11 4 3 1 0 0 0 0 4.5 −0.5
    180 8 3 2 0 0 0 0 0 4.5 −1.5
  • Accordingly, the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications. In particular, the above example illustrates, inter alia, that CKD may be used to provide a spacer fluid that may not exhibit thermal thinning with the spacer fluid potentially even having a yield point that increases with temperature. In addition, as illustrated in Table 2 above, higher yield points were observed for spacer fluids with higher concentrations of CKD.
  • Example 3
  • A sample spacer fluid containing CKD was prepared to compare the rheological properties of a spacer fluid containing CKD with an oil-based drilling fluid. The sample spacer fluid was prepared as follows. First, all dry components (e.g., CKD, fly ash, bentonite, etc.) were weighed into a glass container having a clean lid and agitated by hand until blended. Tap water was then weighed into a Waring blender jar. The dry components were then mixed into the water with 4,000 rpm stirring. The blender speed was then increased to 12,000 rpm for about 35 seconds.
  • Sample Spacer Fluid No. 8 was an 11 pound per gallon slurry that comprised 60.79% water, 30.42% CKD, 4.13% fly ash, 0.17% free water control additive (WG-17™ solid additive), 3.45% bentonite, and 1.04% Econolite™ additive.
  • The oil-based drilling fluid was a 9.1 pound per gallon oil-based mud.
  • Rheological values were then determined using a Fann Model 35 Viscometer. Dial readings were recorded at speeds of 3, 6, 100, 200, and 300 with a B1 bob, an R1 rotor, and a 1.0 spring. The dial readings, plastic viscosity, and yield points for the spacer fluid and drilling fluid were measured in accordance with API Recommended Practices 10B, Bingham plastic model and are set forth in the table below. The abbreviation “PV” refers to plastic viscosity, while the abbreviation “YP” refers to yield point. The abbreviation “OBM” refers to oil-based mud.
  • TABLE 3
    Sample Temp. Viscometer RPM PV YP
    Fluid (° F.) 300 200 100 6 3 (cP) (lb/100 ft2)
    8 80 59 50 39 22 15 42 21.2
    180 82 54 48 16 13 65.3 17
    OBM 80 83 64 41 11 10 74.6 12.1
    180 46 35 23 10 10 36.7 10.5
  • Accordingly, the above example illustrates that the addition of CKD to a spacer fluid may provide suitable properties for use in subterranean applications. In particular, the above example illustrates, inter alia, that CKD may be used to provide a spacer fluid with a yield point that is greater than a drilling fluid even at elevated temperatures. For example, Sample Spacer Fluid No. 8 has a higher yield point at 180° F. than the oil-based mud.
  • Example 4
  • A foamed spacer fluid was prepared that comprised CKD. First, a base slurry was prepared that had a density of 10 lb/gal and comprised CKD, a free water control additive (0.7% by weight of CKD), a lightweight additive (4% by weight of CKD), and fresh water (32.16 gallons per 94-pound sack of CKD). The free water control additive was SA-1015™ suspending aid. The lightweight additive was ECONOLITE™ additive. Next, a foaming agent (FOAMER™ 760 foamer/stabilizer) in an amount of 2% bvow was added, and the base slurry was then mixed in a foam blending jar for 4 seconds at 12,000 rpm. The resulting foamed spacer fluid had a density of 8.4 lb/gal. The “sink” of the resultant foamed spacer fluid was then measured using a free fluid test procedure as specified in API Recommended Practice 10B. However, rather than measuring the free fluid, the amount of “sink” was measured after the foamed spacer fluid remained static for a period of 2 hours. The foamed spacer fluid was initially at 200° and cooled to ambient temperature over the 2-hour period. The measured sink for this foamed spacer fluid was 5 millimeters.
  • Example 5
  • Another foamed spacer fluid was prepared that comprised CKD. First, a base slurry was prepared that had a density of 10.5 lb/gal and comprised CKD, a free water control additive (0.6% by weight of CKD), a lightweight additive (4% by weight of CKD), and fresh water (23.7 gallons per 94-pound sack of CKD). The free water control additive was SA-1015™ suspending aid. The lightweight additive was ECONOLITE™ additive. Next, a foaming agent (a hexylene glycol/cocobetaine blended surfactant) in an amount of 2% bvow was added, and the base slurry was then mixed in a foam blending jar for 6 seconds at 12,000 rpm. The resulting foamed spacer fluid had a density of 8.304 lb/gal. The resultant foamed spacer fluid had a sink of 0 millimeters, measured as described above for Example 4.
  • Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. Although individual embodiments are discussed, the invention covers all combinations of all those embodiments. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. While compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Claims (20)

What is claimed is:
1. A foamed spacer fluid for displacing at least a portion of a first fluid present in a well bore comprising:
a partially calcined kiln feed removed from a gas stream comprising SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, and K2O;
a foaming agent;
a gas; and
water.
2. The foamed spacer fluid of claim 1, wherein the foamed spacer fluid has a yield point at 80° F. that is higher than a yield point of the first fluid at 80° F.
3. The foamed spacer fluid of claim 1, wherein the foamed spacer fluid has a yield point at 180° F. that is higher than a yield point of the first fluid at 180° F.
4. The foamed spacer fluid of claim 1, wherein the foamed spacer fluid has a higher yield point at bottom hole static temperature of the well bore than at 80° F.
5. The foamed spacer fluid of claim 1, wherein the yield point of the foamed spacer fluid at 180° F. is greater than about 20 lb/100 ft2.
6. The foamed spacer fluid of claim 1, wherein the foamed spacer fluid has a density in the range of from about 4 lb/gal to about 13 lb/gal.
7. The foamed spacer fluid of claim 1, wherein the partially calcined kiln feed is present in the foamed spacer fluid in an amount in a range of from about 1% to about 65% by weight of the foamed spacer fluid.
8. The foamed spacer fluid of claim 1, wherein the gas comprises at least one gas selected from the group consisting of air, nitrogen, and any combination thereof; and wherein the foaming agent comprises at least one additive selected from the group consisting of a mixture of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; a mixture of an ammonium salt of an alkyl ether sulfate surfactant, a cocoamidopropyl hydroxysultaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; hydrolyzed keratin; a mixture of an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, and an alkyl or alkene dimethylamine oxide surfactant; an aqueous solution of an alpha-olefinic sulfonate surfactant and a betaine surfactant; and any combination thereof.
9. The foamed spacer fluid of claim 1, wherein the partially calcined kiln feed is present in the foamed spacer fluid in an amount in a range of from about 80% to 100% by weight of dry solids.
10. The foamed spacer fluid of claim 1, wherein the first fluid comprises a drilling fluid.
11. The foamed spacer fluid of claim 1, wherein a second fluid is present in the well bore and the foamed spacer fluid separates the first fluid from the second fluid.
12. The foamed spacer fluid of claim 11, wherein the second fluid is a cement composition.
13. The foamed spacer fluid of claim 1, wherein the partially calcined kiln feed is from the manufacture of cement.
14. The foamed spacer fluid of claim 1, wherein the partially calcined kiln feed is from the manufacture of lime.
15. The foamed spacer fluid of claim 1, wherein the foamed spacer fluid further comprises at least one additive selected from the group consisting of a free water control additive, a lightweight additive, a weighting agent, a viscosifying agent, a fluid loss control additive, a lost circulation material, a filtration control additive, a dispersant, a corrosion inhibitor, a scale inhibitor, a formation conditioning agent, and any combination thereof.
16. The foamed spacer fluid of claim 1, wherein the foamed spacer fluid further comprises at least one additive selected from the group consisting of fly ash, a clay, a hydratable polymer, guar gum, an organic polymer, a surfactant, crystalline silica, amorphous silica, fumed silica, a salt, a fiber, hydratable clay, a microsphere, rice husk ash, and any combination thereof.
17. The foamed spacer fluid of claim 1, wherein the foamed spacer fluid has:
(a) a higher yield point at 130° F. than at 80° F.,
(b) a higher yield point at 180° F. than at 80° F., and/or
(c) a higher plastic viscosity at 180° F. than at 80° F.
18. A foamed spacer fluid for displacing at least a portion of a first fluid present in a well bore comprising:
cement kiln dust;
a foaming agent;
a gas; and
water,
wherein the foamed spacer fluid has a density in a range of from about 4 lb/gal to about 13 lb/gal.
19. The foamed spacer fluid of claim 18, wherein a second fluid is present in the well bore and the foamed spacer fluid separates the first fluid from the second fluid.
20. A foamed spacer fluid comprising:
cement kiln dust;
a foaming agent;
a gas; and
water,
wherein the foamed spacer fluid has:
(a) a higher yield point at 130° F. than at 80° F.,
(b) a higher yield point at 180° F. than at 80° F., and/or
(c) a higher plastic viscosity at 180° F. than at 80° F.
US13/889,398 2005-09-09 2013-05-08 Foamed spacer fluids containing cement kiln dust and methods of use Active US8551923B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/889,398 US8551923B1 (en) 2005-09-09 2013-05-08 Foamed spacer fluids containing cement kiln dust and methods of use

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US11/223,669 US7445669B2 (en) 2005-09-09 2005-09-09 Settable compositions comprising cement kiln dust and additive(s)
US12/264,010 US8333240B2 (en) 2005-09-09 2008-11-03 Reduced carbon footprint settable compositions for use in subterranean formations
US12/895,436 US8522873B2 (en) 2005-09-09 2010-09-30 Spacer fluids containing cement kiln dust and methods of use
US13/535,145 US8505629B2 (en) 2005-09-09 2012-06-27 Foamed spacer fluids containing cement kiln dust and methods of use
US13/889,398 US8551923B1 (en) 2005-09-09 2013-05-08 Foamed spacer fluids containing cement kiln dust and methods of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/535,145 Division US8505629B2 (en) 2005-09-09 2012-06-27 Foamed spacer fluids containing cement kiln dust and methods of use

Publications (2)

Publication Number Publication Date
US20130244911A1 true US20130244911A1 (en) 2013-09-19
US8551923B1 US8551923B1 (en) 2013-10-08

Family

ID=47020404

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/535,145 Active US8505629B2 (en) 2005-09-09 2012-06-27 Foamed spacer fluids containing cement kiln dust and methods of use
US13/889,398 Active US8551923B1 (en) 2005-09-09 2013-05-08 Foamed spacer fluids containing cement kiln dust and methods of use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/535,145 Active US8505629B2 (en) 2005-09-09 2012-06-27 Foamed spacer fluids containing cement kiln dust and methods of use

Country Status (1)

Country Link
US (2) US8505629B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US8691737B2 (en) 2005-09-09 2014-04-08 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US8895486B2 (en) 2005-09-09 2014-11-25 Halliburton Energy Services, Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8921284B2 (en) 2005-09-09 2014-12-30 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US9796622B2 (en) 2013-09-09 2017-10-24 Saudi Arabian Oil Company Development of high temperature low density cement
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
CN111019622A (en) * 2019-12-23 2020-04-17 中国石油大学(华东) Rice hull ash particle-based reinforced foam system, preparation method and application

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8307899B2 (en) 2005-09-09 2012-11-13 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US8555967B2 (en) 2005-09-09 2013-10-15 Halliburton Energy Services, Inc. Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US8297357B2 (en) * 2005-09-09 2012-10-30 Halliburton Energy Services Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US8327939B2 (en) 2005-09-09 2012-12-11 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8403045B2 (en) 2005-09-09 2013-03-26 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
CN102911654B (en) * 2012-10-31 2014-11-26 中国石油天然气股份有限公司 Foaming agent for efficiently carrying fluid and sand for gas well and preparation method and application of foaming agent
AR094688A1 (en) * 2013-02-18 2015-08-19 Halliburton Energy Services Inc COMPOSITIONS CONTAINING OVEN POWDER AND / OR ASHANE OF BIOLOGICAL WASTE AND METHODS OF USE
US9657218B2 (en) * 2013-07-18 2017-05-23 Halliburton Energy Services, Inc. Predicting properties of well bore treatment fluids
EP3080226A4 (en) 2013-12-12 2017-06-14 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and methods of use
US20150166878A1 (en) * 2013-12-13 2015-06-18 Sk Innovation Co., Ltd. Mobility Control Fluid Composition Comprising Amine Oxide Compound and Enhanced Oil Recovery Method Using the Same
BR112019019496A2 (en) * 2017-03-20 2020-04-28 Baker Hughes A Ge Co Llc viscosity modifiers and methods of using them
CN109321225B (en) * 2018-08-31 2021-01-29 中国石油天然气股份有限公司 CO suitable for high-temperature high-salinity oil reservoir2Foaming agent system and preparation method thereof
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
US10752823B1 (en) 2019-09-06 2020-08-25 Halliburton Energy Services, Inc. Wellbore servicing composition with controlled gelation of cement kiln dust and methods of making and using same
US20230167351A1 (en) * 2021-12-01 2023-06-01 Rockwater Energy Solutions, Llc Compositions of aphron sealing lost circulation spacer

Family Cites Families (321)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2021956A (en) 1932-07-25 1935-11-26 Marshall S Hanrahan Cellular aggregate and process
US2133622A (en) 1934-06-12 1938-10-18 Yosemite Portland Cement Corp Cement process and product
US2045899A (en) 1935-04-30 1936-06-30 Texas Co Method of increasing production from wells
US2094316A (en) 1936-03-06 1937-09-28 Kansas City Testing Lab Method of improving oil well drilling muds
US2193807A (en) 1938-01-04 1940-03-19 Dow Chemical Co Cementing practice for earth wells
US2193775A (en) 1938-06-18 1940-03-12 Texaco Development Corp Method of treating a well
US2329940A (en) 1940-12-12 1943-09-21 Missouri Portland Cement Co Manufacture of cement
US2848051A (en) 1954-03-22 1958-08-19 Atlantic Refining Co Method for improving well cementing jobs
US2772739A (en) 1954-09-24 1956-12-04 Shell Dev Method of temporarily closing portion of well and composition therefor
US2880096A (en) 1954-12-06 1959-03-31 Phillips Petroleum Co Cement compositions and process of cementing wells
US2871133A (en) 1956-12-10 1959-01-27 Peerless Cement Corp Inorganic dust treatment process
US2842205A (en) 1956-12-24 1958-07-08 Exxon Research Engineering Co Method of servicing wells
US2945769A (en) 1957-08-08 1960-07-19 Bj Service Inc Cement composition
US3066031A (en) 1959-10-21 1962-11-27 Joseph J Coney Cementitious material and method of preparation thereof
US3168139A (en) 1961-05-08 1965-02-02 Great Lakes Carbon Corp Converting drilling muds to slurries suitable for cementing oil and gas wells
US3407193A (en) 1965-03-09 1968-10-22 Horner Frank W Ltd Substituted biurets
US3320077A (en) 1966-01-19 1967-05-16 William L Prior Inorganic plastic cements and process for the preparation thereof
US3467193A (en) 1966-04-04 1969-09-16 Mobil Oil Corp Method for achieving turbulence in cementing wells
US3411580A (en) 1966-09-28 1968-11-19 Byron Jackson Inc Mud removal method
US3473939A (en) 1967-04-10 1969-10-21 Kaiser Aluminium Chem Corp Direct-bonded periclase refractories and process of preparing same
FR1535495A (en) 1967-04-28 1968-08-09 Rice husk treatment process and material obtained by this process
US3454095A (en) 1968-01-08 1969-07-08 Mobil Oil Corp Oil recovery method using steam stimulation of subterranean formation
US3499491A (en) 1968-06-28 1970-03-10 Dresser Ind Method and composition for cementing oil well casing
US3557876A (en) 1969-04-10 1971-01-26 Western Co Of North America Method and composition for drilling and cementing of wells
US3876005A (en) 1972-01-24 1975-04-08 Halliburton Co High temperature, low density cementing method
US3748159A (en) 1972-04-20 1973-07-24 Halliburton Co High temperature cementing compositions containing a lignosulfonic acid salt and a pentaboric acid salt
US3749173A (en) 1972-05-30 1973-07-31 Dow Chemical Co Displacement of drilling fluids from boreholes
US3959007A (en) 1972-07-28 1976-05-25 Structural Materials Process for the preparation of siliceous ashes
NL7306868A (en) 1973-05-17 1974-11-19
US4105459A (en) 1974-01-28 1978-08-08 The Regents Of The University Of California Siliceous ashes and hydraulic cements prepared therefrom
US3863718A (en) 1974-03-27 1975-02-04 Shell Oil Co Cementing procedure for avoiding mud channeling
US3887009A (en) 1974-04-25 1975-06-03 Oil Base Drilling mud-cement compositions for well cementing operations
US4018619A (en) 1974-09-23 1977-04-19 Iu Technology Corporation Highly activated mixtures for constructing load bearing surfaces and method of making the same
US4036301A (en) 1974-10-29 1977-07-19 Standard Oil Company (Indiana) Process and composition for cementing casing in a well
US4031184A (en) 1976-01-14 1977-06-21 Donald L. Christensen Process for reclaiming cement kiln dust and recovering chemical values therefrom
USRE31190E (en) 1976-02-02 1983-03-29 Halliburton Company Oil well cementing process
US4101332A (en) 1976-02-02 1978-07-18 Nicholson Realty Ltd. Stabilized mixture
US4018617A (en) 1976-02-02 1977-04-19 Nicholson Realty Ltd. Mixture for pavement bases and the like
US4141843A (en) 1976-09-20 1979-02-27 Halliburton Company Oil well spacer fluids
US4083407A (en) 1977-02-07 1978-04-11 The Dow Chemical Company Spacer composition and method of use
US4176720A (en) 1978-07-27 1979-12-04 Atlantic Richfield Company Well cementing in permafrost
US4268316A (en) 1979-07-27 1981-05-19 Martin Marietta Corporation Masonry cement composition
US4304300A (en) 1979-08-09 1981-12-08 Halliburton Company Method of using gelled aqueous well treating fluids
US4274881A (en) 1980-01-14 1981-06-23 Langton Christine A High temperature cement
US4341562A (en) 1980-03-21 1982-07-27 N-Viro Energy Systems, Ltd. Lightweight aggregate
DE3132928C1 (en) 1981-08-20 1983-01-13 Degussa Ag, 6000 Frankfurt Process for accelerating the setting of hydraulic cement mixtures
US4436850A (en) 1981-10-19 1984-03-13 Allied Corporation Stabilizing SBR latex in cement formulations with low molecular weight polymers
US4407677A (en) 1982-04-05 1983-10-04 Martin Marietta Corporation Concrete masonry units incorporating cement kiln dust
US4460292A (en) 1982-07-15 1984-07-17 Agritec, Inc. Process for containment of liquids as solids or semisolids
US4432800A (en) 1982-08-16 1984-02-21 N-Viro Energy Systems Ltd. Beneficiating kiln dusts utilized in pozzolanic reactions
US4470463A (en) 1983-01-27 1984-09-11 The Dow Chemical Company Well treating process and composition
US4494990A (en) 1983-07-05 1985-01-22 Ash Grove Cement Company Cementitious composition
US4555269A (en) 1984-03-23 1985-11-26 Halliburton Company Hydrolytically stable polymers for use in oil field cementing methods and compositions
US4515635A (en) 1984-03-23 1985-05-07 Halliburton Company Hydrolytically stable polymers for use in oil field cementing methods and compositions
US4519452A (en) 1984-05-31 1985-05-28 Exxon Production Research Co. Method of drilling and cementing a well using a drilling fluid convertible in place into a settable cement slurry
US4668128A (en) 1984-07-05 1987-05-26 Soli-Tech, Inc. Rigidification of semi-solid agglomerations
US4676832A (en) 1984-10-26 1987-06-30 Halliburton Company Set delayed cement compositions and methods of using the same
US4741782A (en) 1984-11-07 1988-05-03 Resource Technology, Inc. Process for forming a light-weight aggregate
US4624711A (en) 1984-11-07 1986-11-25 Resource Technology, Inc. Light-weight aggregate
US4614599A (en) 1985-04-01 1986-09-30 Texaco Inc. Encapsulated lime as a lost circulation additive for aqueous drilling fluids
US4633950A (en) 1985-05-28 1987-01-06 Texaco Inc. Method for controlling lost circulation of drilling fluids with hydrocarbon absorbent polymers
GB8531866D0 (en) 1985-12-30 1986-02-05 Shell Int Research Forming impermeable coating on borehole wall
US4676317A (en) 1986-05-13 1987-06-30 Halliburton Company Method of reducing fluid loss in cement compositions which may contain substantial salt concentrations
SU1373781A1 (en) 1986-05-15 1988-02-15 Брянский технологический институт Method of producing prestrained ferroconcrete articles
US4883125A (en) 1987-12-11 1989-11-28 Atlantic Richfield Company Cementing oil and gas wells using converted drilling fluid
US4829107A (en) 1988-02-24 1989-05-09 W. R. Grace & Co.-Conn. Rice hull ash concrete admixture
US4992102A (en) 1988-08-08 1991-02-12 Barbour Ronald L Synthetic class C fly ash and use thereof as partial cement replacement in general purpose concrete
US5266111A (en) 1988-08-08 1993-11-30 Barbour Ronald L Class F. fly ash containing settable composition for general purpose concrete having high early strength and method of making same
US5520730A (en) 1988-08-08 1996-05-28 Barbour; Ronald L. Settable composition for general purpose concrete and method of making same
US4941536A (en) 1989-06-27 1990-07-17 Halliburton Company Set retarded cement compositions and methods for well cementing
US5049288A (en) 1989-06-27 1991-09-17 Halliburton Company Set retarded cement compositions and methods for well cementing
US5030366A (en) 1989-11-27 1991-07-09 Atlantic Richfield Company Spacer fluids
US5113943A (en) 1989-11-27 1992-05-19 Atlantic Richfield Company Spacer fluids
US5515921A (en) 1989-12-27 1996-05-14 Shell Oil Company Water-base mud conversion for high tempratice cementing
US5423379A (en) 1989-12-27 1995-06-13 Shell Oil Company Solidification of water based muds
US5673753A (en) 1989-12-27 1997-10-07 Shell Oil Company Solidification of water based muds
US5464060A (en) 1989-12-27 1995-11-07 Shell Oil Company Universal fluids for drilling and cementing wells
US5058679A (en) 1991-01-16 1991-10-22 Shell Oil Company Solidification of water based muds
US5346548A (en) 1990-06-25 1994-09-13 The Regents Of The University Of California Highly durable cement products containing siliceous ashes
US5123487A (en) 1991-01-08 1992-06-23 Halliburton Services Repairing leaks in casings
US5127473A (en) 1991-01-08 1992-07-07 Halliburton Services Repair of microannuli and cement sheath
US5086850A (en) 1991-01-08 1992-02-11 Halliburton Company Well bore drilling direction changing method
US5238064A (en) 1991-01-08 1993-08-24 Halliburton Company Squeeze cementing
US5125455A (en) 1991-01-08 1992-06-30 Halliburton Services Primary cementing
US5121795A (en) 1991-01-08 1992-06-16 Halliburton Company Squeeze cementing
CA2131906A1 (en) 1991-03-29 1992-10-15 Raymond S. Chase Silica-containing cement and concrete composition
CA2064682A1 (en) 1991-04-02 1992-10-03 Kirk L. Harris Well bore drilling direction changing method
US5213160A (en) 1991-04-26 1993-05-25 Shell Oil Company Method for conversion of oil-base mud to oil mud-cement
US5382290A (en) 1991-04-26 1995-01-17 Shell Oil Company Conversion of oil-base mud to oil mud-cement
US5542782A (en) 1991-06-24 1996-08-06 Halliburton Nus Environmental Corp. Method and apparatus for in situ installation of underground containment barriers under contaminated lands
NL9101655A (en) 1991-10-01 1993-05-03 Pelt & Hooykaas FIXING AGENT FOR MIXED ORGANIC AND INORGANICALLY CONTAMINATED MATERIALS AND METHOD FOR PREPARING AND USING THE SAME
US5215585A (en) 1991-10-25 1993-06-01 W. R. Grace & Co.-Conn. Hydration retarder
US5290355A (en) 1992-04-16 1994-03-01 Jakel Karl W Roofing shingle composition, method of formulation, and structure
US5183505A (en) 1992-05-27 1993-02-02 Concrete Technology, Inc. Cellular concrete
US5641584A (en) 1992-08-11 1997-06-24 E. Khashoggi Industries Highly insulative cementitious matrices and methods for their manufacture
RU2026959C1 (en) 1992-08-19 1995-01-20 Волго-Уральский научно-исследовательский и проектный институт по добыче и переработке сероводородсодержащих газов Grouting mortar for cementing oil and gas wells
US5252128A (en) 1992-09-04 1993-10-12 Basf Corporation Additive composition for oil well cementing formulations
US5536311A (en) 1992-10-02 1996-07-16 Halliburton Company Set retarded cement compositions, additives and methods
US5476144A (en) 1992-10-15 1995-12-19 Shell Oil Company Conversion of oil-base mud to oil mud-cement
US5314022A (en) 1992-10-22 1994-05-24 Shell Oil Company Dilution of drilling fluid in forming cement slurries
MY112090A (en) 1992-10-22 2001-04-30 Shell Int Research Method for drilling and cementing a well
US5327968A (en) 1992-12-30 1994-07-12 Halliburton Company Utilizing drilling fluid in well cementing operations
US5316083A (en) 1992-12-31 1994-05-31 Shell Oil Company Blast furnace slag spacer
US5305831A (en) 1993-02-25 1994-04-26 Shell Oil Company Blast furnace slag transition fluid
US5383521A (en) 1993-04-01 1995-01-24 Halliburton Company Fly ash cementing compositions and methods
US5339902A (en) 1993-04-02 1994-08-23 Halliburton Company Well cementing using permeable cement
US5372641A (en) 1993-05-17 1994-12-13 Atlantic Richfield Company Cement slurries for wells
US5361841A (en) 1993-05-27 1994-11-08 Shell Oil Company Drilling and cementing with blast furnace slag/polyalcohol fluid
US5361842A (en) 1993-05-27 1994-11-08 Shell Oil Company Drilling and cementing with blast furnace slag/silicate fluid
US5358044A (en) 1993-05-27 1994-10-25 Shell Oil Company Drilling and cementing with blast furnace slag/soluble/insoluble alcohol
US5352288A (en) 1993-06-07 1994-10-04 Dynastone Lc Low-cost, high early strength, acid-resistant pozzolanic cement
US5439056A (en) 1993-06-28 1995-08-08 Shell Oil Company Coal slag solidification of drilling fluid
US5337824A (en) 1993-06-28 1994-08-16 Shell Oil Company Coal slag universal fluid
US5866516A (en) 1993-08-17 1999-02-02 Costin; C. Richard Compositions and methods for solidifying drilling fluids
US5456751A (en) 1993-09-03 1995-10-10 Trustees Of The University Of Pennsylvania Particulate rubber included concrete compositions
US5370185A (en) 1993-09-08 1994-12-06 Shell Oil Company Mud solidification with slurry of portland cement in oil
US5368103A (en) 1993-09-28 1994-11-29 Halliburton Company Method of setting a balanced cement plug in a borehole
US5398758A (en) 1993-11-02 1995-03-21 Halliburton Company Utilizing drilling fluid in well cementing operations
US5518996A (en) 1994-04-11 1996-05-21 Dowell, A Division Of Schlumberger Technology Corporation Fluids for oilfield use having high-solids content
US5529624A (en) 1994-04-12 1996-06-25 Riegler; Norbert Insulation material
US5417759A (en) 1994-06-23 1995-05-23 Nalco Chemical Company Set retarding additive for cement slurries
CA2153372A1 (en) 1994-07-08 1996-01-09 Patrick Brown Zeolite-hydraulic cement containment medium
US5458195A (en) 1994-09-28 1995-10-17 Halliburton Company Cementitious compositions and methods
US5585333A (en) 1994-10-12 1996-12-17 Halliburton Company Hydrocarbon base cementitious drilling fluids and methods
US5472051A (en) 1994-11-18 1995-12-05 Halliburton Company Low temperature set retarded well cement compositions and methods
US5499677A (en) 1994-12-23 1996-03-19 Shell Oil Company Emulsion in blast furnace slag mud solidification
US5529123A (en) 1995-04-10 1996-06-25 Atlantic Richfield Company Method for controlling fluid loss from wells into high conductivity earth formations
US5681384A (en) 1995-04-24 1997-10-28 New Jersey Institute Of Technology Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash
US5554352A (en) 1995-05-09 1996-09-10 Construction Material Resources Processed silica as a natural pozzolan for use as a cementitious component in concrete and concrete products
FR2735465B1 (en) 1995-06-13 1997-08-29 Schlumberger Cie Dowell CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE
US5494513A (en) 1995-07-07 1996-02-27 National Research Council Of Canada Zeolite-based lightweight concrete products
US5728654A (en) 1995-08-25 1998-03-17 Texas United Chemical Company, Llc. Stabilized fluids containing soluble zinc
EP0848689A1 (en) 1995-09-08 1998-06-24 Fmc Corporation Cement compositions for controlling alkali-silica reactions in concrete and processes for making same
US5716910A (en) 1995-09-08 1998-02-10 Halliburton Company Foamable drilling fluid and methods of use in well drilling operations
US5588489A (en) 1995-10-31 1996-12-31 Halliburton Company Lightweight well cement compositions and methods
US5711383A (en) 1996-04-19 1998-01-27 Halliburton Company Cementitious well drilling fluids and methods
FR2749844B1 (en) 1996-06-18 1998-10-30 Schlumberger Cie Dowell CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE
MY119906A (en) 1996-06-18 2005-08-30 Sofitech Nv Cementing compositions and applications of such compositions to cementing oil (or similar) wells.
US5789352A (en) 1996-06-19 1998-08-04 Halliburton Company Well completion spacer fluids and methods
US5874387A (en) 1996-06-19 1999-02-23 Atlantic Richfield Company Method and cement-drilling fluid cement composition for cementing a wellbore
US5866517A (en) 1996-06-19 1999-02-02 Atlantic Richfield Company Method and spacer fluid composition for displacing drilling fluid from a wellbore
US5688844A (en) 1996-07-01 1997-11-18 Halliburton Company Resilient well cement compositions and methods
US5795924A (en) 1996-07-01 1998-08-18 Halliburton Company Resilient well cement compositions and methods
FR2753963B1 (en) 1996-09-30 1998-12-24 Schlumberger Cie Dowell GROUT CEMENT AND METHOD OF DESIGNING A FORMULATION
US6258757B1 (en) 1997-03-14 2001-07-10 Halliburton Energy Services, Inc. Water based compositions for sealing subterranean zones and methods
US6060434A (en) 1997-03-14 2000-05-09 Halliburton Energy Services, Inc. Oil based compositions for sealing subterranean zones and methods
US5913364A (en) 1997-03-14 1999-06-22 Halliburton Energy Services, Inc. Methods of sealing subterranean zones
CN1054620C (en) 1997-04-29 2000-07-19 枣庄矿务局水泥厂 Fire-fighting soaking prevention and leaking stoppage expansion powder for grouting coal abscission layer zone
EP0881559B1 (en) 1997-05-28 2003-08-20 Siemens Aktiengesellschaft Computer system for protecting software and a method for protecting software
US5897699A (en) 1997-07-23 1999-04-27 Halliburton Energy Services, Inc. Foamed well cement compositions, additives and methods
US5900053A (en) 1997-08-15 1999-05-04 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US6796378B2 (en) 1997-08-15 2004-09-28 Halliburton Energy Services, Inc. Methods of cementing high temperature wells and cement compositions therefor
AU738096B2 (en) 1997-08-15 2001-09-06 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US5988279A (en) 1997-11-05 1999-11-23 Fritz Industries, Inc. Method for control of fluid loss and gas migration in well cementing
US6145591A (en) 1997-12-12 2000-11-14 Bj Services Company Method and compositions for use in cementing
US6230804B1 (en) 1997-12-19 2001-05-15 Bj Services Company Stress resistant cement compositions and methods for using same
US6555307B2 (en) 1997-12-24 2003-04-29 Fuji Photo Film, Co., Ltd. Silver halide photographic emulsion and silver halide photographic light-sensitive material containing the emulsion
US6409819B1 (en) 1998-06-30 2002-06-25 International Mineral Technology Ag Alkali activated supersulphated binder
US6098711A (en) 1998-08-18 2000-08-08 Halliburton Energy Services, Inc. Compositions and methods for sealing pipe in well bores
AU1241999A (en) 1998-11-13 2000-06-05 Sofitech N.V. Cementation product and use for cementing oil wells or the like
US6170575B1 (en) 1999-01-12 2001-01-09 Halliburton Energy Services, Inc. Cementing methods using dry cementitious materials having improved flow properties
US6660080B2 (en) 1999-01-12 2003-12-09 Halliburton Energy Services, Inc. Particulate flow enhancing additives
US6245142B1 (en) 1999-01-12 2001-06-12 Halliburton Energy Services, Inc. Flow properties of dry cementitious materials
US6379456B1 (en) 1999-01-12 2002-04-30 Halliburton Energy Services, Inc. Flow properties of dry cementitious and non-cementitious materials
US6184287B1 (en) 1999-01-26 2001-02-06 Omnova Solutions Inc. Polymeric latexes prepared in the presence of 2-acrylamido-2-methylpropanesulfonate
US6328106B1 (en) 1999-02-04 2001-12-11 Halliburton Energy Services, Inc. Sealing subterranean zones
FR2790258B1 (en) 1999-02-25 2001-05-04 Dowell Schlumberger Services CEMENTING PROCESS AND APPLICATION OF THIS METHOD TO REPAIR CEMENTINGS
US6063738A (en) 1999-04-19 2000-05-16 Halliburton Energy Services, Inc. Foamed well cement slurries, additives and methods
GB2351986B (en) 1999-07-13 2002-12-24 Sofitech Nv Latex additive for water-based drilling fluids
CA2316059A1 (en) 1999-08-24 2001-02-24 Virgilio C. Go Boncan Methods and compositions for use in cementing in cold environments
US6277189B1 (en) 1999-08-31 2001-08-21 The Board Of Trustees Of Southern Illinois University Coal combustion by-products-based lightweight structural materials and processes for making them
CA2318703A1 (en) 1999-09-16 2001-03-16 Bj Services Company Compositions and methods for cementing using elastic particles
US6308777B2 (en) 1999-10-13 2001-10-30 Halliburton Energy Services, Inc. Cementing wells with crack and shatter resistant cement
US6138759A (en) 1999-12-16 2000-10-31 Halliburton Energy Services, Inc. Settable spotting fluid compositions and methods
JP2001226155A (en) 2000-01-27 2001-08-21 Dow Corning Corp Method for manufacturing fluid clay slurry
US6451104B2 (en) 2000-02-08 2002-09-17 Rha Technology, Inc. Method for producing a blended cementitious composition
SE522352C2 (en) 2000-02-16 2004-02-03 Sandvik Ab Elongated element for striking rock drilling and use of steel for this
US6244343B1 (en) 2000-03-09 2001-06-12 Halliburton Energy Services, Inc. Cementing in deep water offshore wells
JP5025872B2 (en) 2000-03-14 2012-09-12 ジェイムズ ハーディー テクノロジー リミテッド Fiber cement building materials with low density additives
US6502634B1 (en) 2000-03-17 2003-01-07 Halliburton Energy Services, Inc. Interface monitoring placement system
FR2806717B1 (en) 2000-03-23 2002-05-24 Dowell Schlumberger Services CEMENTING COMPOSITIONS AND APPLICATION THEREOF FOR CEMENTING OIL WELLS OR THE LIKE
FR2808794B1 (en) 2000-05-15 2002-06-28 Dowell Schlumberger Services PERMEABLE CEMENT, PROCESS FOR OBTAINING SAME AND APPLICATION OF SAME IN OIL WELLS OR THE LIKE
WO2002002135A1 (en) 2000-06-30 2002-01-10 Tokyo Metropolitan Institute Of Gerontology Preventives and remedies for diseases in association with demyelination
US6416574B1 (en) 2000-07-12 2002-07-09 Southern Ionica Incorporated Method and apparatus for recycling cement kiln dust
US6402833B1 (en) 2000-07-13 2002-06-11 Lafarge Canada Inc. Binder for mine tailings
US6315042B1 (en) 2000-07-26 2001-11-13 Halliburton Energy Services, Inc. Oil-based settable spotting fluid
US6716282B2 (en) 2000-07-26 2004-04-06 Halliburton Energy Services, Inc. Methods and oil-based settable spotting fluid compositions for cementing wells
US6668929B2 (en) 2000-07-26 2003-12-30 Halliburton Energy Services, Inc. Methods and oil-based settable spotting fluid compositions for cementing wells
US6666268B2 (en) 2000-07-26 2003-12-23 Halliburton Energy Services, Inc. Methods and oil-based settable drilling fluid compositions for drilling and cementing wells
JP5080714B2 (en) 2000-09-13 2012-11-21 電気化学工業株式会社 Cement composition
US6457524B1 (en) 2000-09-15 2002-10-01 Halliburton Energy Services, Inc. Well cementing compositions and methods
US6562122B2 (en) 2000-09-18 2003-05-13 Halliburton Energy Services, Inc. Lightweight well cement compositions and methods
FR2814459B1 (en) 2000-09-22 2002-12-06 Lafarge Platres SURFACTANT COMPOSITION FOR PLASTERBOARDS
US6220354B1 (en) 2000-10-24 2001-04-24 Halliburton Energy Services, Inc. High strength foamed well cement compositions and methods
US6367550B1 (en) 2000-10-25 2002-04-09 Halliburton Energy Service, Inc. Foamed well cement slurries, additives and methods
US6767398B2 (en) 2000-10-30 2004-07-27 James H. Trato Cementitious compositions and cementitious slurries for permanently plugging abandoned wells and processes and methods therefor
NL1016892C2 (en) 2000-12-15 2002-06-19 Mega Tech Holding Bv Composition intended as an additive for cement.
US6729405B2 (en) 2001-02-15 2004-05-04 Bj Services Company High temperature flexible cementing compositions and methods for using same
EP1236701A1 (en) 2001-02-15 2002-09-04 Schlumberger Technology B.V. Very low-density cement slurry
US20020117090A1 (en) 2001-02-20 2002-08-29 Richard Ku Super high strength concrete
CA2443222C (en) 2001-04-13 2009-09-15 Co2 Solution Inc. A process and a plant for the production of portland cement clinker
US7627870B1 (en) 2001-04-28 2009-12-01 Cisco Technology, Inc. Method and apparatus for a data structure comprising a hierarchy of queues or linked list data structures
US6561273B2 (en) 2001-06-19 2003-05-13 Halliburton Energy Services, Inc. Oil based compositions and method for temporarily sealing subterranean zones
US6706108B2 (en) 2001-06-19 2004-03-16 David L. Polston Method for making a road base material using treated oil and gas waste material
US20030116887A1 (en) 2001-08-10 2003-06-26 Scott J. Blake Incorporation of drilling cuttings into stable load-bearing structures
US6645290B1 (en) 2001-10-09 2003-11-11 Ronald Lee Barbour Settable composition containing cement kiln dust
US6755905B2 (en) 2002-02-15 2004-06-29 Lafarge Canada Inc. Use of high carbon coal ash
US6644405B2 (en) 2002-03-21 2003-11-11 Halliburton Energy Services, Inc. Storable water-microsphere suspensions for use in well cements and methods
US6702044B2 (en) 2002-06-13 2004-03-09 Halliburton Energy Services, Inc. Methods of consolidating formations or forming chemical casing or both while drilling
US6565647B1 (en) 2002-06-13 2003-05-20 Shieldcrete Ltd. Cementitious shotcrete composition
US6840318B2 (en) 2002-06-20 2005-01-11 Schlumberger Technology Corporation Method for treating subterranean formation
US6516884B1 (en) 2002-07-23 2003-02-11 Halliburton Energy Services, Inc. Stable well cementing methods and compositions
US6516883B1 (en) 2002-07-25 2003-02-11 Halliburton Energy Services, Inc. Methods of cementing pipe in well bores and low density cement compositions therefor
NZ538497A (en) 2002-08-23 2007-03-30 James Hardie Int Finance Bv Synthetic hollow microspheres
US6708760B1 (en) 2002-11-19 2004-03-23 Halliburton Energy Services, Inc. Methods and cement compositions for cementing in subterranean zones
US7544640B2 (en) 2002-12-10 2009-06-09 Halliburton Energy Services, Inc. Zeolite-containing treating fluid
US7140439B2 (en) 2002-12-10 2006-11-28 Halliburton Energy Services, Inc. Zeolite-containing remedial compositions
US7147067B2 (en) 2002-12-10 2006-12-12 Halliburton Energy Services, Inc. Zeolite-containing drilling fluids
US6989057B2 (en) 2002-12-10 2006-01-24 Halliburton Energy Services, Inc. Zeolite-containing cement composition
US7140440B2 (en) 2002-12-10 2006-11-28 Halliburton Energy Services, Inc. Fluid loss additives for cement slurries
US6964302B2 (en) 2002-12-10 2005-11-15 Halliburton Energy Services, Inc. Zeolite-containing cement composition
US7150321B2 (en) 2002-12-10 2006-12-19 Halliburton Energy Services, Inc. Zeolite-containing settable spotting fluids
US7048053B2 (en) 2002-12-10 2006-05-23 Halliburton Energy Services, Inc. Zeolite compositions having enhanced compressive strength
EP1431368A1 (en) 2002-12-18 2004-06-23 Eliokem Fluid loss reducer for high temperature high pressure water-based mud application
US6874353B2 (en) 2003-01-30 2005-04-05 Halliburton Energy Services, Inc. Yield point adaptation for rotating viscometers
US6889767B2 (en) 2003-02-28 2005-05-10 Halliburton E{umlaut over (n)}ergy Services, Inc. Cementing compositions and methods of cementing in a subterranean formation using an additive for preventing the segregation of lightweight beads.
US7143827B2 (en) * 2003-03-21 2006-12-05 Halliburton Energy Services, Inc. Well completion spacer fluids containing fibers and methods
US6668927B1 (en) * 2003-03-21 2003-12-30 Halliburton Energy Services, Inc. Well completion foamed spacer fluids and methods
US20040187740A1 (en) 2003-03-27 2004-09-30 Research Incubator, Ltd. Cementitious composition
US7217441B2 (en) 2003-03-28 2007-05-15 Halliburton Energy Services, Inc. Methods for coating pipe comprising using cement compositions comprising high tensile strength fibers and/or a multi-purpose cement additive
US7147055B2 (en) 2003-04-24 2006-12-12 Halliburton Energy Services, Inc. Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
US6904971B2 (en) 2003-04-24 2005-06-14 Halliburton Energy Services, Inc. Cement compositions with improved corrosion resistance and methods of cementing in subterranean formations
US20070137528A1 (en) 2003-05-14 2007-06-21 Sylvaine Le Roy-Delage Self adaptive cement systems
US6908508B2 (en) 2003-06-04 2005-06-21 Halliburton Energy Services, Inc. Settable fluids and methods for use in subterranean formations
US6689208B1 (en) 2003-06-04 2004-02-10 Halliburton Energy Services, Inc. Lightweight cement compositions and methods of cementing in subterranean formations
US7658796B2 (en) 2003-06-04 2010-02-09 Headwaters Resources, Inc. Cementitious mixtures and methods of use thereof
US7073585B2 (en) 2003-06-27 2006-07-11 Halliburton Energy Services, Inc. Cement compositions with improved fluid loss characteristics and methods of cementing in surface and subterranean applications
US7198104B2 (en) 2003-08-12 2007-04-03 Halliburton Energy Services, Inc. Subterranean fluids and methods of cementing in subterranean formations
US6832652B1 (en) 2003-08-22 2004-12-21 Bj Services Company Ultra low density cementitious slurries for use in cementing of oil and gas wells
US7055603B2 (en) 2003-09-24 2006-06-06 Halliburton Energy Services, Inc. Cement compositions comprising strength-enhancing lost circulation materials and methods of cementing in subterranean formations
US6899177B2 (en) 2003-10-10 2005-05-31 Halliburton Energy Services, Inc. Methods of cementing subterranean zones with cement compositions having enhanced compressive strengths
CA2445675A1 (en) 2003-10-20 2005-04-20 Yanzhong Wu Composition and method for forming a sprayable materials cover
US7073584B2 (en) 2003-11-12 2006-07-11 Halliburton Energy Services, Inc. Processes for incorporating inert gas in a cement composition containing spherical beads
RU2262497C2 (en) 2003-12-15 2005-10-20 Зубехин Сергей Алексеевич Method of manufacture of foam concrete and installation for its realization
US7413014B2 (en) 2003-12-19 2008-08-19 Halliburton Energy Services, Inc. Foamed fly ash cement compositions and methods of cementing
US20060166834A1 (en) 2004-02-10 2006-07-27 Halliburton Energy Services, Inc. Subterranean treatment fluids comprising substantially hydrated cement particulates
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US7341104B2 (en) 2004-02-10 2008-03-11 Halliburton Energy Services, Inc. Methods of using substantially hydrated cement particulates in subterranean applications
US7607482B2 (en) 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and swellable particles
US7445669B2 (en) 2005-09-09 2008-11-04 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and additive(s)
US7096944B2 (en) 2004-03-02 2006-08-29 Halliburton Energy Services, Inc. Well fluids and methods of use in subterranean formations
US7137446B2 (en) 2004-03-22 2006-11-21 Halliburton Energy Services Inc. Fluids comprising reflective particles and methods of using the same to determine the size of a wellbore annulus
US7297664B2 (en) 2004-07-28 2007-11-20 Halliburton Energy Services, Inc. Cement-free zeolite and fly ash settable fluids and methods therefor
US7886823B1 (en) 2004-09-09 2011-02-15 Burts Jr Boyce D Well remediation using downhole mixing of encapsulated plug components
US7182137B2 (en) 2004-09-13 2007-02-27 Halliburton Energy Services, Inc. Cementitious compositions containing interground cement clinker and zeolite
US7219733B2 (en) 2004-09-29 2007-05-22 Halliburton Energy Services, Inc. Zeolite compositions for lowering maximum cementing temperature
US20100044057A1 (en) 2004-10-20 2010-02-25 Dealy Sears T Treatment Fluids Comprising Pumicite and Methods of Using Such Fluids in Subterranean Formations
US7293609B2 (en) 2004-10-20 2007-11-13 Halliburton Energy Services, Inc. Treatment fluids comprising vitrified shale and methods of using such fluids in subterranean formations
US7303008B2 (en) 2004-10-26 2007-12-04 Halliburton Energy Services, Inc. Methods and systems for reverse-circulation cementing in subterranean formations
US7404855B2 (en) 2005-02-04 2008-07-29 Halliburton Energy Services, Inc. Resilient cement compositions and methods of cementing
US7022755B1 (en) 2005-02-04 2006-04-04 Halliburton Energy Services, Inc. Resilient cement compositions and methods of cementing
US7350573B2 (en) 2005-02-09 2008-04-01 Halliburton Energy Services, Inc. Servicing a wellbore with wellbore fluids comprising perlite
US7353870B2 (en) 2005-09-09 2008-04-08 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust and additive(s)
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US7387675B2 (en) 2005-09-09 2008-06-17 Halliburton Energy Services, Inc. Foamed settable compositions comprising cement kiln dust
US8522873B2 (en) 2005-09-09 2013-09-03 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US7213646B2 (en) 2005-09-09 2007-05-08 Halliburton Energy Services, Inc. Cementing compositions comprising cement kiln dust, vitrified shale, zeolite, and/or amorphous silica utilizing a packing volume fraction, and associated methods
US7631692B2 (en) 2005-09-09 2009-12-15 Halliburton Energy Services, Inc. Settable compositions comprising a natural pozzolan and associated methods
US7077203B1 (en) 2005-09-09 2006-07-18 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US7607484B2 (en) 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Foamed cement compositions comprising oil-swellable particles and methods of use
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US8333240B2 (en) 2005-09-09 2012-12-18 Halliburton Energy Services, Inc. Reduced carbon footprint settable compositions for use in subterranean formations
US20120328377A1 (en) 2005-09-09 2012-12-27 Halliburton Energy Services, Inc. Resin-Based Sealant Compositions Comprising Cement Kiln Dust and Methods of Use
US7789150B2 (en) 2005-09-09 2010-09-07 Halliburton Energy Services Inc. Latex compositions comprising pozzolan and/or cement kiln dust and methods of use
US7335252B2 (en) 2005-09-09 2008-02-26 Halliburton Energy Services, Inc. Lightweight settable compositions comprising cement kiln dust
US8403045B2 (en) 2005-09-09 2013-03-26 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US7478675B2 (en) 2005-09-09 2009-01-20 Halliburton Energy Services, Inc. Extended settable compositions comprising cement kiln dust and associated methods
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US8327939B2 (en) 2005-09-09 2012-12-11 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8297357B2 (en) 2005-09-09 2012-10-30 Halliburton Energy Services Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US20070056479A1 (en) 2005-09-09 2007-03-15 Gray Lonnie J Concrete mixtures incorporating high carbon pozzolans and foam admixtures
US8733440B2 (en) 2009-07-02 2014-05-27 Halliburton Energy Services, Inc. Well cement compositions comprising biowaste ash and methods of use
US8505630B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US7174962B1 (en) 2005-09-09 2007-02-13 Halliburton Energy Services, Inc. Methods of using lightweight settable compositions comprising cement kiln dust
US7743828B2 (en) 2005-09-09 2010-06-29 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content
US8307899B2 (en) 2005-09-09 2012-11-13 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
WO2007041841A1 (en) 2005-10-11 2007-04-19 Mud King Drilling Fluids (2001) Ltd. Water-based polymer drilling fluid and method of use
US7337842B2 (en) 2005-10-24 2008-03-04 Halliburton Energy Services, Inc. Methods of using cement compositions comprising high alumina cement and cement kiln dust
US7381263B2 (en) 2005-10-24 2008-06-03 Halliburton Energy Services, Inc. Cement compositions comprising high alumina cement and cement kiln dust
US7199086B1 (en) 2005-11-10 2007-04-03 Halliburton Energy Services, Inc. Settable spotting compositions comprising cement kiln dust
US7284609B2 (en) 2005-11-10 2007-10-23 Halliburton Energy Services, Inc. Methods of using settable spotting compositions comprising cement kiln dust
CA2577564C (en) 2006-02-15 2011-07-12 Lafarge Canada Inc. Binder for mine tailings, alluvial sand and rock fill, or combinations thereof
US7204310B1 (en) 2006-04-11 2007-04-17 Halliburton Energy Services, Inc. Methods of use settable drilling fluids comprising cement kiln dust
US7338923B2 (en) 2006-04-11 2008-03-04 Halliburton Energy Services, Inc. Settable drilling fluids comprising cement kiln dust
US7341105B2 (en) 2006-06-20 2008-03-11 Holcim (Us) Inc. Cementitious compositions for oil well cementing applications
US20080066652A1 (en) 2006-09-14 2008-03-20 Michael Fraser Low density cements for use in cementing operations
US9096466B2 (en) 2007-03-22 2015-08-04 Halliburton Energy Services, Inc. Particulate flow enhancing additives and associated methods
US8162055B2 (en) 2007-04-02 2012-04-24 Halliburton Energy Services Inc. Methods of activating compositions in subterranean zones
US8342242B2 (en) 2007-04-02 2013-01-01 Halliburton Energy Services, Inc. Use of micro-electro-mechanical systems MEMS in well treatments
US7712527B2 (en) 2007-04-02 2010-05-11 Halliburton Energy Services, Inc. Use of micro-electro-mechanical systems (MEMS) in well treatments
US8586512B2 (en) 2007-05-10 2013-11-19 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US7784542B2 (en) 2007-05-10 2010-08-31 Halliburton Energy Services, Inc. Cement compositions comprising latex and a nano-particle and associated methods
US8586508B2 (en) * 2007-05-30 2013-11-19 Halliburton Energy Services, Inc. Polysaccharide based cement additives
US7993451B2 (en) 2007-08-13 2011-08-09 Texas Industries, Inc. Cement stabilization of soils using a proportional cement slurry
US7665523B2 (en) 2007-10-16 2010-02-23 Halliburton Energy Services, Inc. Compositions and methods for treatment of well bore tar
US7867954B2 (en) 2007-10-22 2011-01-11 Sanjel Limited Partnership Pumice containing compositions for cementing a well
US7963323B2 (en) 2007-12-06 2011-06-21 Schlumberger Technology Corporation Technique and apparatus to deploy a cement plug in a well
EP2075303A1 (en) 2007-12-18 2009-07-01 PRAD Research and Development N.V. Spacer fluid additive
US7741841B2 (en) 2007-12-28 2010-06-22 Schlumberger Technology Corporation Time-lapsed diffusivity logging for monitoring enhanced oil recovery
US7748454B2 (en) 2008-04-28 2010-07-06 Halliburton Energy Services, Inc. Gelation inhibiting retarders for highly reactive calcium silicate based binder compositions and methods of making and using same
US7708071B2 (en) 2008-08-14 2010-05-04 Halliburton Energy Services, Inc. Cement compositions comprising aluminum chloride and associated methods
US7757766B2 (en) 2008-11-19 2010-07-20 Halliburton Energy Services, Inc. Density-matched suspensions and associated methods
CA2703604C (en) 2009-05-22 2017-06-20 Lafarge Low density cementitious compositions
US8540025B2 (en) * 2010-06-08 2013-09-24 Halliburton Energy Services, Inc. Wellbore servicing compositions and methods of making and using same
US8627888B2 (en) * 2011-05-13 2014-01-14 Halliburton Energy Services, Inc. Settable compositions containing metakaolin having reduced portland cement content
CA2876482C (en) 2011-11-16 2019-04-09 Weatherford/Lamb, Inc. Managed pressure cementing
US20130126159A1 (en) 2011-11-18 2013-05-23 Hnatiuk Bryan Method and composition for cementing a casing in a wellbore

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US8895486B2 (en) 2005-09-09 2014-11-25 Halliburton Energy Services, Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8895485B2 (en) 2005-09-09 2014-11-25 Halliburton Energy Services, Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US8921284B2 (en) 2005-09-09 2014-12-30 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US8691737B2 (en) 2005-09-09 2014-04-08 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US9903184B2 (en) 2005-09-09 2018-02-27 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US9796622B2 (en) 2013-09-09 2017-10-24 Saudi Arabian Oil Company Development of high temperature low density cement
CN111019622A (en) * 2019-12-23 2020-04-17 中国石油大学(华东) Rice hull ash particle-based reinforced foam system, preparation method and application
WO2021128683A1 (en) * 2019-12-23 2021-07-01 中国石油大学(华东) Reinforced foam system based on rice hull ash particles, preparation method therefor and use thereof

Also Published As

Publication number Publication date
US20120267107A1 (en) 2012-10-25
US8505629B2 (en) 2013-08-13
US8551923B1 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
US8551923B1 (en) Foamed spacer fluids containing cement kiln dust and methods of use
US8921284B2 (en) Spacer fluids containing cement kiln dust and methods of use
US9903184B2 (en) Consolidating spacer fluids and methods of use
US8950486B2 (en) Acid-soluble cement compositions comprising cement kiln dust and methods of use
CA2646172C (en) Cements for use across formations containing gas hydrates
US7517836B2 (en) Defoaming methods and compositions
WO2007048999A1 (en) Cement compositions comprising high alumina cement and cement kiln dust and method of using them
NZ587396A (en) Extended settable compositions comprising cement kiln dust and associated methods
US7308938B1 (en) Defoaming methods and compositions
CA2572658A1 (en) Methods of reducing the impact of a formate-based drilling fluid comprising an alkaline buffering agent on a cement slurry
EP2867326B1 (en) Foamed spacer fluids containing cement kiln dust and methods of use
US7861782B2 (en) Foamed cement compositions, additives, and associated methods
NZ331387A (en) Light weight high temperature well cement compositions and methods for use in the presence of carbon dioxide and brines at high temperature and pressure

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENKLEY, JAMES ROBERT;SPENCER, JOSEPH V.;KRANZ, ZACHARY ROBERT;AND OTHERS;SIGNING DATES FROM 20120622 TO 20120627;REEL/FRAME:030370/0941

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8