US20130282059A1 - Methods, systems and devices for cardiac valve repair - Google Patents

Methods, systems and devices for cardiac valve repair Download PDF

Info

Publication number
US20130282059A1
US20130282059A1 US13/852,459 US201313852459A US2013282059A1 US 20130282059 A1 US20130282059 A1 US 20130282059A1 US 201313852459 A US201313852459 A US 201313852459A US 2013282059 A1 US2013282059 A1 US 2013282059A1
Authority
US
United States
Prior art keywords
leaflet
heart
tether
distal
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/852,459
Inventor
Ted Ketai
Chris Bender
Steven A. Tyler
Troy L. Thornton
Eric A. Goldfarb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evalve Inc
Original Assignee
Evalve Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36477759&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20130282059(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US12/883,095 external-priority patent/US20110060407A1/en
Application filed by Evalve Inc filed Critical Evalve Inc
Priority to US13/852,459 priority Critical patent/US20130282059A1/en
Publication of US20130282059A1 publication Critical patent/US20130282059A1/en
Priority to US15/082,137 priority patent/US20160242909A1/en
Priority to US15/943,758 priority patent/US10667911B2/en
Priority to US16/526,092 priority patent/US20190350710A1/en
Priority to US17/319,808 priority patent/US20210393404A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2454Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
    • A61F2/2457Chordae tendineae prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2454Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/246Devices for obstructing a leak through a native valve in a closed condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2463Implants forming part of the valve leaflets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2/2487Devices within the heart chamber, e.g. splints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0487Suture clamps, clips or locks, e.g. for replacing suture knots; Instruments for applying or removing suture clamps, clips or locks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • A61B2017/00783Valvuloplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00876Material properties magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0409Instruments for applying suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0412Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from suture anchor body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0414Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having a suture-receiving opening, e.g. lateral opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0417T-fasteners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0427Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0427Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body
    • A61B2017/0435Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors having anchoring barbs or pins extending outwardly from the anchor body the barbs being separate elements mechanically linked to the anchor, e.g. by pivots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0445Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors cannulated, e.g. with a longitudinal through-hole for passage of an instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0454Means for attaching and blocking the suture in the suture anchor the anchor being crimped or clamped on the suture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0464Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors for soft tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B2017/0496Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials for tensioning sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/009Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes

Definitions

  • the present invention relates generally to medical methods, devices, and systems.
  • the present invention relates to methods, devices, and systems for the endovascular or minimally invasive surgical repair of the atrioventricular valves of the heart, particularly the mitral valve.
  • Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of a heart through an incompetent mitral valve into the left atrium.
  • the mitral valve acts as a check valve to prevent flow of oxygenated blood back into the left atrium. In this way, the oxygenated blood is pumped into the aorta through the aortic valve.
  • Regurgitation of the valve can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.
  • Mitral valve regurgitation can result from a number of different mechanical defects in the mitral valve.
  • the valve leaflets, the valve chordae which connect the leaflets to the papillary muscles, or the papillary muscles themselves may be damaged or otherwise dysfunctional.
  • the valve annulus may be damaged, dilated, or weakened limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle.
  • the mitral valve leaflets detach from the chordae tendinae, the structure that tethers them to the ventricular wall so that they are positioned to coapt or close against the other valve leaflet during systole.
  • mitral valve disease can include functional mitral valve disease which is usually characterized by the failure of the mitral valve leaflets to coapt due to an enlarged ventricle, or other impediment to the leaflets rising up far enough toward each other to close the gap or seal against each other during systole.
  • valve annuloplasty A recent technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the “bow-tie” or “edge-to-edge” technique. While all these techniques can be very effective, they usually rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated morbidity.
  • methods and devices may be deployed directly into the heart chambers via a trans-thoracic approach, utilizing a small incision in the chest wall, or the placement of a cannula or a port.
  • methods, devices, and systems may not require open chest access and be capable of being performed endovascularly, i.e., using devices which are advanced to the heart from a point in the patient's vasculature remote from the heart.
  • the methods, devices, and systems should not require that the heart be bypassed, although the methods, devices, and systems should be useful with patients who are bypassed and/or whose heart may be temporarily stopped by drugs or other techniques. At least some of these objectives will be met by the inventions described hereinbelow.
  • a chordal replacement device having a proximal anchor including a flexible patch and a leaflet attachment device.
  • the flexible patch is affixed to an upper surface of a portion of a flailing leaflet with the leaflet attachment device.
  • the device also includes a distal anchor extending and affixed to a distal attachment site in a ventricle; and a flexible tether coupled to and tensioned between the proximal and distal anchors.
  • chordal replacement device having a proximal anchor including a flexible crimp clip having one or more barbs that embed into and affix to a portion of a flailing leaflet; a distal anchor extending and affixed to a distal attachment site in a ventricle; and a flexible tether coupled to and tensioned between the proximal and distal anchors.
  • the device can include a leaflet attachment device having a pair of expandable elements interconnected by a central attachment rod.
  • the pair of expandable elements can sandwich the flexible patch and the leaflet.
  • the leaflet attachment device can include an expandable element.
  • the expandable element can be self-deploying and can include a star-shaped barb, a mesh web, or a mesh ball.
  • the proximal anchor can further include a mesh stent deployable within an atrium.
  • the mesh stent can be coupled to a flexible rod that extends through a valve commissure into the ventricle.
  • the distal end of the flexible rod can couple to the distal anchor and provide consistent tension on the tether during a heart cycle.
  • the flexible rod can have a deflectable, spring-formed shape.
  • the flexible rod can be jointed.
  • the distal anchor and tensioned flexible tether can apply a downward force on the flailing leaflet.
  • the distal anchor can include a weight, barb, adhesive, screw, or fluid-filled element.
  • the distal attachment site can include a portion of the ventricle wall, ventricular septum or papillary muscle.
  • the distal anchor can fine-tune the tension of the tether after the distal anchor is affixed to the distal attachment site.
  • the distal anchor can include a coil screw and wherein rotation of the coil screw fine-tunes the tension on the tether.
  • the distal anchor can include a balloon and wherein infusion of fluid into the balloon increases tension on the tether.
  • the flexible tether can have a length that can be adjusted to a desired tension to apply a downward force on the flailing leaflet.
  • the flexible tether can include one or more loops of a flexible material.
  • the one or more loops can be drawn together at a distal end region with an enclosed element.
  • the enclosed element can couple the one or more loops to the distal anchor.
  • the one or more loops can be coupled to the proximal and distal anchors such that the one or more loops self-equalize and evenly distribute tension on the flailing leaflets and on distal attachment site.
  • a chordal replacement device including a proximal anchor comprising a flexible crimp clip having one or more barbs that embed into and affix to a portion of a flailing leaflet; a distal anchor extending and affixed to a distal attachment site in a ventricle; and a flexible tether coupled to and tensioned between the proximal and distal anchors.
  • the distal anchor and flexible tether can hold down the flailing leaflet.
  • the distal anchor can include a weight, barb, adhesive, screw, or fluid-filled element.
  • the distal attachment site can include a portion of the ventricle wall, ventricular septum or papillary muscle.
  • the distal anchor can fine-tune the tension of the tether after the distal anchor is affixed to the distal attachment site.
  • the distal anchor can include a coil screw and wherein rotation of the coil screw fine-tunes the tension on the tether.
  • the distal anchor can include a balloon and wherein infusion of fluid into the balloon increases tension on the tether.
  • the tether can have a length that can be adjusted to a desired tension to hold the leaflet down.
  • a method for repairing a cardiac valve including accessing a patient's vasculature remote from the heart; advancing an interventional tool through an access sheath to a location near the cardiac valve, the interventional tool comprising a distal flange; affixing a chordal replacement device to a portion of a flailing leaflet, the chordal replacement device including a flexible patch; one or more leaflet attachment devices; a distal anchor; and a flexible tether coupled to and tensioned between the flexible patch and the distal anchor.
  • the method also includes coupling the distal anchor to a distal attachment site in a ventricle; and applying a downward force on the flailing leaflet with the tether and distal anchor so as to prevent flail of the leaflet into the atrium.
  • Affixing a chordal replacement device can further include positioning the flexible patch on an upper surface of a flailing leaflet, piercing the patch and the leaflet with the one or more leaflet attachment devices, and sandwiching the leaflet and the patch between a pair of expandable elements.
  • the pair of expandable elements can be self-deploying.
  • the distal anchor can include a weight, barb, adhesive, coil screw or fluid-filled element.
  • the distal attachment site can include a portion of the ventricle wall, ventricular septum or papillary muscle.
  • the method can further include observing flow through the cardiac valve to determine if leaflet flail, valve prolapse or valve regurgitation are inhibited.
  • the method can further include adjusting tension of the tether coupled to and tensioned between the flexible patch and the distal anchor.
  • the distal anchor can include a coil screw and wherein adjusting the tension of the tether comprises rotating the coil screw.
  • the distal anchor can include a balloon and wherein adjusting the tension of the tether comprises infusing fluid into the balloon.
  • the method can further include sensing contact between the distal anchor and the distal attachment site.
  • FIG. 1A is a schematic illustration of the left ventricle of a heart showing blood flow during systole with arrows.
  • FIG. 1B shows a cross-sectional view of the heart wherein a flexible stent is positioned at or near the mitral valve.
  • FIG. 2A shows a cross-sectional view of the heart showing one or more magnets positioned around the annulus of the mitral valve.
  • FIG. 2B shows an annular band with magnets that can be positioned on the mitral valve annulus.
  • FIG. 3 shows a cross-sectional view of the heart identifying locations for placement of valves.
  • FIG. 4 show a cross-sectional view of the heart with a pair of flaps mounted at or near the mitral valve.
  • FIG. 5A shows a schematic side view of the mitral valve leaflets with a flap positioned immediately below each leaflet.
  • FIG. 5B shows a downward view of the mitral valve with a pair of exemplary flaps superimposed over the leaflets.
  • FIG. 5C shows a pair of mitral valve leaflet flaps having complementary shapes.
  • FIG. 6A shows a cross-sectional view of the heart with a membrane ring positioned at the mitral valve annulus.
  • FIG. 6B shows a schematic view of the membrane ring, which includes an annular ring on which is mounted a membrane.
  • FIG. 7A shows a cross-sectional view of a heart with a bladder device positioned partially within the left ventricle and partially within the left atrium.
  • FIG. 7B shows a schematic side view of the mitral valve leaflets failing to coapt.
  • FIG. 7C shows a schematic side view of the mitral valve leaflets with a bladder positioned between the leaflets.
  • FIG. 7D shows a plan view of the mitral valve with the leaflets in an abnormal closure state such that a gap is present between the leaflets.
  • FIG. 8 shows a cross-sectional view of the heart wherein a one-way valve device is located in the left atrium.
  • FIG. 9A shows a prosthetic ring that is sized to fit within a mitral valve.
  • FIG. 9B shows another embodiment of a prosthetic ring wherein a one-way valve is positioned inside the ring.
  • FIG. 10 shows a prosthetic with one or more tongues or flaps that are configured to be positioned adjacent the flaps of the mitral valve.
  • FIG. 11A shows an exemplary embodiment of one or more clips that are positioned on free edges of the leaflets.
  • FIG. 11B shows pair of leaflets with a magnetic clip attached to the underside of each leaflet.
  • FIG. 11C shows the leaflets coapted as a result of the magnetic attraction between the magnetic clips.
  • FIG. 11D shows a pair of leaflets with a single clip attached to one of the leaflets.
  • FIG. 12 shows a schematic, cross-sectional view of the heart with a wedge positioned below at least one of the leaflets of the mitral valve.
  • FIG. 13A shows an artificial chordae tendon.
  • FIGS. 13B and 13C show attachment devices for attaching the artificial chordae tendon to a heart wall.
  • FIG. 14 shows a cross-sectional view of the heart with a first and second anchor attached to a wall of the heart.
  • FIG. 15 shows a catheter that has been introduced into the heart.
  • FIG. 16 shows a schematic view of a papillary muscle with a ring positioned over the muscle.
  • FIG. 17 shows a cross-sectional view of the heart with one or more magnets attached to a wall of the left ventricle.
  • FIG. 18A shows another embodiment of a procedure wherein magnets are implanted in the heart to geometrically reshape the annulus or the left ventricle.
  • FIG. 18B shows the heart wherein tethered magnets are implanted in various locations to geometrically reshape the annulus or the left ventricle.
  • FIG. 18C shows the heart wherein magnets are implanted in various locations to geometrically reshape the annulus or the left ventricle.
  • FIG. 19 shows another embodiment of a procedure wherein magnets are implanted in the heart to geometrically reshape the annulus or the left ventricle.
  • FIG. 20 shows a cross-sectional view of the left ventricle with a tether positioned therein.
  • FIG. 21 shows a cross-sectional view of the left ventricle with a delivery catheter positioned therein.
  • FIG. 22 shows a cross-sectional view of the left ventricle with the delivery catheter penetrating a wall of the left ventricle.
  • FIG. 23 shows a cross-sectional view of the left ventricle with the delivery catheter delivering a patch to the wall of the left ventricle.
  • FIG. 24 shows a cross-sectional view of the left ventricle with the delivery penetrating delivering a second patch.
  • FIG. 25 shows a cross-sectional view of the left ventricle with two tethers attached together at opposite ends from the patches mounted in the heart.
  • FIG. 26 shows a cross-sectional view of the left ventricle with a needle or delivery catheter passed transthoracically into the left ventricle LV to deliver a patch to the exterior of the ventricular wall.
  • FIG. 27 shows a schematic, cross-sectional view of the left ventricle in a healthy state with the mitral valve closed.
  • FIG. 28 shows the left ventricle in a dysfunctional state.
  • FIG. 29 shows the left ventricle with a biasing member mounted between the papillary muscles.
  • FIG. 30 shows the left ventricle with a suture mounted between the papillary muscles.
  • FIG. 31 shows the left ventricle with a snare positioned around the chordae at or near the location where the chordae attach with the papillary muscles.
  • FIG. 32 shows a leaflet grasping device that is configured to grasp and secure the leaflets of the mitral valve.
  • FIGS. 33A-33C show the leaflet grasping device grasping leaflets of the mitral valve.
  • FIG. 34 shows the left ventricle with a needle being advanced from the left atrium into the left ventricle via the leaflet grasping device.
  • FIG. 35 shows the left ventricle with sutures holding the papillary muscles in a desired position.
  • FIG. 36 shows a cross-sectional view of the heart with one or more clips clipped to each of the papillary muscles.
  • FIG. 37 shows a cross-sectional view of the heart with tethered clips attached to opposed walls of the left ventricle.
  • FIGS. 38A-38C show an embodiment of a chordal replacement device.
  • FIGS. 39A-39M show another embodiment of a chordal replacement device.
  • FIGS. 39N-39O show an embodiment of a dual function clamp and deployment of an embodiment of a chordal replacement device.
  • FIGS. 40A-40B show another embodiment of a chordal replacement device.
  • FIGS. 41A-41B show a cross-sectional view of the chordal replacement device of FIGS. 40A-40B being deployed.
  • FIGS. 41C-41E show an embodiment of an attachment device fixing a chordal replacement device to a valve leaflet.
  • FIG. 41F shows an embodiment of an expandable feature of an attachment device having a star-shaped design.
  • FIGS. 41G-41P show embodiments of a leaflet stabilizing mechanism.
  • FIGS. 42A-42D show various embodiments of an expandable feature of an attachment device.
  • FIGS. 43A-43B show an embodiment of attachment devices fixing a patch to a valve leaflet.
  • FIGS. 44A-44D show various steps in the deployment of an embodiment of a chordal replacement device.
  • FIGS. 45A-45D show various embodiments of a distal attachment assembly deployed in the ventricle wall.
  • FIGS. 46A-46B show an embodiment of a sensor used in the adjustment of artificial chordae tension.
  • FIG. 47 illustrates an embodiment of fine-tuning the tension on the artificial chordae.
  • FIGS. 48A-48B illustrate another embodiment of fine-tuning the tension on the artificial chordae.
  • FIGS. 49A-49B show another embodiment of an attachment assembly for a chordal replacement device.
  • FIGS. 50A-50B show another embodiment of an attachment assembly for a chordal replacement device.
  • FIGS. 50C-50E show an embodiment of a jointed rod having mechanical locking feature.
  • FIG. 50F illustrates the independent pivot axes of a jointed rod system.
  • FIGS. 51A-51B show another embodiment of an attachment assembly for a chordal replacement device.
  • FIGS. 52A-52C show an embodiment of a leaflet extension device blocking valve leaflet flail.
  • the present invention provides methods, systems, and devices for the endovascular repair of cardiac valves, particularly the atrioventricular valves which inhibit back flow of blood from a heart ventricle during contraction (systole), most particularly the mitral valve between the left atrium and the left ventricle.
  • endovascular it is meant that the procedure(s) of the present invention are performed with interventional tools, guides and supporting catheters and other equipment introduced to the heart chambers from the patient's arterial or venous vasculature remote from the heart.
  • the interventional tools and other equipment may be introduced percutaneously, i.e., through an access sheath, or may be introduced via a surgical cut down, and then advanced from the remote access site through the vasculature until they reach the heart.
  • the procedures of the present invention will generally not require penetrations made directly through the exterior heart muscle, i.e., myocardium, although there may be some instances where penetrations will be made interior to the heart, e.g., through the interatrial septum to provide for a desired access route.
  • the procedures of the present invention will usually be percutaneous and intravascular, many of the tools will find use in minimally invasive and open surgical procedures as well that includes a surgical incision or port access through the heart wall.
  • the tools for capturing the valve leaflets prior to attachment can find use in virtually any type of procedure for modifying cardiac valve function.
  • the atrioventricular valves are located at the junctions of the atria and their respective ventricles.
  • the atrioventricular valve between the right atrium and the right ventricle has three valve leaflets (cusps) and is referred to as the tricuspid or right atrioventricular valve.
  • the atrioventricular valve between the left atrium and the left ventricle is a bicuspid valve having only two leaflets (cusps) and is generally referred to as the mitral valve.
  • the valve leaflets are connected to the base of the atrial chamber in a region referred to as the valve annulus, and the valve leaflets extend generally downwardly from the annulus into the associated ventricle. In this way, the valve leaflets open during diastole when the heart atria fill with blood, allowing the blood to pass into the ventricle.
  • valve leaflets are pushed together and closed to prevent back flow of blood into the atria.
  • the lower ends of the valve leaflets are connected through tendon-like tissue structures called the chordae, which in turn are connected at their lower ends to the papillary muscles.
  • Interventions according to the present invention may be directed at any one of the leaflets, chordae, annulus, or papillary muscles, or combinations thereof. It will be the general purpose of such interventions to modify the manner in which the valve leaflets coapt or close during systole so that back flow or regurgitation is minimized or prevented.
  • the left ventricle LV of a normal heart H in systole is illustrated in FIG. 1A .
  • the left ventricle LV is contracting and blood flows outwardly through the tricuspid (aortic) valve AV in the direction of the arrows.
  • Back flow of blood or “regurgitation” through the mitral valve MV is prevented since the mitral valve is configured as a “check valve” which prevents back flow when pressure in the left ventricle is higher than that in the left atrium LA.
  • the mitral valve MV comprises a pair of leaflets having free edges FE which meet evenly to close, as illustrated in FIG. 1A .
  • the opposite ends of the leaflets LF are attached to the surrounding heart structure along an annular region referred to as the annulus AN.
  • chordae tendineae CT (referred to hereinafter as the chordae) which include plurality of branching tendons secured over the lower surfaces of each of the valve leaflets LF.
  • the chordae CT in turn, are attached to the papillary muscles PM which extend upwardly from the lower portions of the left ventricle and interventricular septum IVS.
  • atrioventricular valves While the procedures of the present invention will be most useful with the atrioventricular valves, at least some of the tools described hereinafter may be useful in the repair of other cardiac valves, such as peripheral valves or valves on the venous side of the cardiac circulation, or the aortic valve.
  • the methods of the present invention can comprise accessing a patient's vasculature at a location remote from the heart, advancing an interventional tool through the vasculature to a ventricle and/or atrium, and engaging the tool against a tissue structure which forms or supports the atrioventricular valve.
  • tissue structure By engaging the tool against the tissue structure, the tissue structure is modified in a manner that reduces valve leakage or regurgitation during ventricular systole.
  • the tissue structure may be any of one or more of the group consisting of the valve leaflets, chordae, the valve annulus, and the papillary muscles, atrial wall, ventricular wall or adjacent structures.
  • the interventional tool will be oriented relative to the atrioventricular valve and/or tissue structure prior to engaging the tool against the tissue structure.
  • the interventional tool may be self-orienting (e.g., pre-shaped) or may include active mechanisms to steer, adjust, or otherwise position the tool.
  • orientation of the interventional tool may be accomplished in whole or in part using a separate guide catheter, where the guide catheter may be pre-shaped and/or include active steering or other positioning means such as those devices set forth in United States Patent Publication Numbers 2004/0044350, 2004/0092962, and 2004/0087975, all of which are expressly incorporated by reference herein. In all cases, it will usually be desirable to confirm the position prior to engaging the valve leaflets or other tissue structures.
  • Such orienting step may comprise positioning the tool relative to a line of coaptation in the atrioventricular valve, e.g., engaging positioning elements in the valve commissures and confirming the desired location using a variety of imaging means such as magnetic resonant imaging (MRI), intracardiac echocardiography (ICE), transesophageal echo (TEE), fluoroscopy, endoscopy, intravascular ultrasound (IVUS) and the like.
  • imaging means such as magnetic resonant imaging (MRI), intracardiac echocardiography (ICE), transesophageal echo (TEE), fluoroscopy, endoscopy, intravascular ultrasound (IVUS) and the like.
  • heart disease in general, and valve repair in particular are treated by targeting the pacing of the heartbeat.
  • heart disease is treated by introducing one or more pacing leads into a heart chamber.
  • the pacing leads are placed in contact with a heart muscle and are in electrical communication with a power source.
  • the power source provides paced electrical stimuli to the heart muscle.
  • the electrical stimuli are provided during or immediately after systole to extend systolic contraction of the heart, thereby extending the range of systole during each heartbeat. This extension of systole extends the amount of time in which the heart muscle tightens when it would otherwise be relaxing, when there is most mitral regurgitation in diseased mitral valves.
  • FIG. 1B shows a cross-sectional view of the heart wherein a flexible stent 100 is positioned at or near the mitral valve MV.
  • the stent 100 is annular and is sized and shaped to be positioned on the annulus of the mitral valve.
  • the stent 100 can transition between a collapsed state of reduced size and an expanded state of enlarged size relative to the collapsed state.
  • the flexible stent 100 can be percutaneously introduced into an individual's heart while being biased toward the collapsed state.
  • the stent is advanced partially through the annulus of the mitral valve so that it is coaxially positioned within the annulus, as shown in FIG. 1B .
  • the stent 100 is then secured to the annulus such that the stent exerts an inward force on the annulus thereby causing the annulus to resist dilation during diastole of the heart.
  • a device for treating the mitral valve.
  • the device can be a stent, such as the stent 100 , that is sized to fit coaxially within an annulus of a mitral valve.
  • the stent includes a hollow frame.
  • the frame can be annular such that it has a cross-sectional diameter that is sized such that an outer surface of the frame is in continuous coaxial contact with the annulus.
  • the frame also includes one or more anchors protruding from it for securing the stent to the annulus.
  • the anchors can be prongs, barbs, protrusions, or any structure adapted to secure the stent to the annulus.
  • the stent is flexible between an expanded configuration and a contracted configuration and is biased toward the contracted configuration so that it exerts an inward force on the annulus.
  • the stent 100 is delivered using a delivery catheter 10 that is advanced from the inferior vena cava IVC into the right atrium RA. Once the catheter 10 reaches the anterior side of the interatrial septum IAS, a needle 12 may be advanced so that it penetrates through the septum at the fossa ovalis FO or the foramen ovale into the left atrium LA. At this point, a delivery device can be exchanged for the needle and the delivery device used to deliver the stent 100 . The catheter 10 can also approach the heart in other manners.
  • FIG. 2A shows a cross-sectional view of the heart showing one or more magnets 205 positioned around the annulus of the mitral valve MV.
  • a corresponding method of treating heart disease involves the use of magnets. The method includes percutaneously introducing at least a first magnet 205 into an individual's heart and securing it to the mitral valve MV annulus. At least a second magnet 205 is percutaneously introduced into the heart and advanced so that it is within a magnetic field of the first magnet. The second magnet is secured to the heart. The polarity of one of the two magnets is then cyclically changed in synchronization with the heart beat so that the magnets attract and repel each other in synchronization with the heart beat.
  • the first magnet therefore moves in relation to the second magnet and exerts an inward closing force on the mitral valve during systole.
  • the magnets 205 can be positioned on an annular band 215 (shown in FIG. 2B ) that is sized and shaped to be implanted on the annulus of the mitral valve.
  • the band 215 can be, for example, a stent.
  • the magnets 205 or the annular band 215 are delivered using a delivery catheter 10 that is advanced from the inferior vena cava IVC into the right atrium RA, as described above with reference to FIG. 1 .
  • a delivery catheter 10 that is advanced from the inferior vena cava IVC into the right atrium RA, as described above with reference to FIG. 1 .
  • Any of the devices described herein can be percutaneously delivered into the heart by coupling the device to a delivery device, such as a steerable delivery catheter.
  • two or more magnets are percutaneously introduced into an individual's coronary sinus such that they attract or repel each other to reshape the coronary sinus and an underlying mitral valve annulus.
  • a method of treatment includes placing one or more one-way valves in one or more pulmonary veins of an individual either near the ostium of the vein or at some point along the length of the PV.
  • Valves that may be used may be stentless valves such as designs similar to the TORONTO SPV® (Stentless Porcine Valve) valve, mechanical or tissue heart valves or percutaneous heart valves as are known in the art provided they are sized appropriately to fit within the lumen of the pulmonary vein, as shown in FIG. 3 .
  • FIG. 3 In FIG.
  • valves in the left atrium LA where valves can be positioned in pulmonary vein orifices are represented by an “X”.
  • X the locations in the left atrium LA where valves can be positioned in pulmonary vein orifices are represented by an “X”.
  • certain venous valve devices and techniques may be employed such as those described in U.S. Pat. Nos. 6,299,637 and 6,585,761, and United States Patent Publication Numbers 2004/0215339 and 2005/0273160, the entire contents of which are incorporated herein by reference.
  • a valve prosthesis for placement in the ostia of the pulmonary vein from the left atrium may be in the range of 6-20 mm in diameter.
  • Placement of individual valves in the pulmonary vein ostia may be achieved by obtaining trans septal access to the left atrium with a steerable catheter, positioning a guidewire through the catheter and into the targeted pulmonary vein, and deploying a valve delivery catheter over the guidewire and deploying the valve out of the delivery catheter.
  • the valve may be formed of a deformable material, such as stainless steel, or of a self-expanding material such as NiTi, and include tissue leaflets or leaflets formed of a synthetic material, such as is known in the art.
  • a line of +++++ symbols in FIG. 3 represents a mid-atrial location above the mitral valve where a single valve can be positioned as disclosed later in this specification.
  • FIG. 4 show a cross-sectional view of the heart with a pair of flaps mounted at or near the mitral valve.
  • FIG. 5A shows a schematic side view of the mitral valve leaflets LF with a flap 300 positioned immediately below each leaflet.
  • the flap 300 can be contoured so as to conform at least approximately to the shape of a leaflet, or the flap 300 can be straight as shown in FIG. 4 .
  • FIG. 5B shows a downward view of the mitral valve with a pair of exemplary flaps superimposed over the leaflets LF.
  • the flaps can have complementary shapes with a first flap having a protrusion that mates with a corresponding recess in a second flap.
  • a first flap 300 with an attachment end 305 and a free end 310 is provided.
  • the attachment end 305 of the first flap 300 is secured to the inside wall of the ventricle below the mitral valve.
  • a second flap 315 with an attachment end 320 and a free end 330 is provided and is also secured to the inside wall of the ventricle below the mitral valve.
  • the first and second flaps 300 , 315 are oriented so that they face each other and the free ends 310 , 330 are biased toward each other and approximate against each other during systole. This system provides a redundant valving system to assist the function of the native mitral valve.
  • FIG. 6A shows a cross-sectional view of the heart with a membrane ring 610 positioned at the mitral valve annulus.
  • FIG. 6B shows a schematic view of the membrane ring 610 , which includes an annular ring on which is mounted a membrane.
  • the membrane includes a series of perforations 615 extending through the membrane surface.
  • One or more anchor devices, such as prongs, can be located on the ring for securing the ring to the mitral valve.
  • a device for treating heart disease in general and defective or diseased mitral valves in particular includes a disc having a ring, a membrane stretched across an opening of the ring, and one or more anchors for securing the disc to an annulus of a mitral valve.
  • the disc is sized to cover the annulus of the mitral valve, and the membrane includes one or more perforations that permit one way fluid flow through the disc.
  • FIG. 7A shows a cross-sectional view of a heart with a bladder device positioned partially within the left ventricle and partially within the left atrium.
  • a device for treating heart disease in general and defective or diseased mitral valves in particular includes a fluid-filled bladder 600 .
  • the bladder 600 is placed across the mitral valve between the left atrium and the left ventricle. Upon compression of the left ventricle, the volume of the bladder is expanded on the left atrial side of the heart, providing a baffle or sealing volume to which the leaflets of the mitral valve coapt.
  • the bladder may also act as a blocking device in the case of flail of a leaflet, blocking said flailing leaflet from billowing into the left atrium causing regurgitation.
  • the bladder also includes one or more anchors for securing the bladder to an annulus of a mitral valve, or may be formed on a cage or other infrastructure to position it within the line of coaptation of the mitral valve.
  • a bladder can also be used to treat functional mitral valve disease.
  • functional mitral valve disease is usually characterized by the failure of the mitral valve leaflets to coapt due to an enlarged ventricle, or other impediment to the leaflets rising up far enough toward each other to close the gap or seal against each other during systole.
  • FIG. 7B shows a schematic side view of the mitral valve leaflets LF failing to coapt such that regurgitation can occur (as represented by the arrow RF.)
  • a baffle or bladder 630 is positioned between the leaflets LF along the line of coaptation of the leaflets.
  • the bladder 630 provides a surface against which at least a portion of the leaflets LF can seal against.
  • the bladder 630 thus serves as a coaptation device for the leaflets.
  • the bladder can be attached to various locations adjacent to or on the mitral valve.
  • FIG. 7D shows a plan view of the mitral valve with the leaflets LF in an abnormal closure state such that a gap G is present between the leaflets.
  • the bladder is attached or anchored to the mitral valve at opposite edges E of the gap G.
  • Methods of treatment using the bladder include providing the bladder and inserting it through an annulus of a mitral valve such that the bladder is coaxially positioned through the mitral valve.
  • An atrial portion of the bladder extends into the left atrium, and a ventricular portion of the bladder extends into the left ventricle.
  • a mid portion of the bladder may be secured to the annulus of the mitral valve such that the mid portion remains stationery while the atrial and ventricular portions expand and contract passively between the atrium and ventricle based on pressure differentials during systole and diastole.
  • FIG. 8 shows a cross-sectional view of the heart wherein a one-way valve device 700 is located in the left atrium.
  • the valve device is represented schematically in FIG. 8 .
  • a corresponding method of treating heart disease includes introducing a one-way valve device 700 into the left atrium of an individual's heart proximal the mitral valve.
  • the valve device 700 is configured to permit fluid flow in one direction while preventing fluid flow in an opposite direction.
  • the valve device can have various structures.
  • the device can comprise a valve that is mounted on a stent that is sized to be positioned in the left atrium.
  • Valves that may be used, for example may be stentless valves such as the TORONTO SPV® (Stentless Porcine Valve) valve, mechanical or tissue heart valves or percutaneous heart valves as are known in the art.
  • the outer wall of the one-way valve device is sealed to the inner wall of the atrium so that a fluid-tight seal is formed between the outer wall of the one-way valve device and the inner wall of the left atrium.
  • the valve device can include a seal member that is configured to seal to the inner wall of the atrium.
  • FIG. 9A shows a prosthetic ring 800 that is sized to fit within a mitral valve annulus
  • the ring includes one or more anchors 805 that extend around the periphery of the ring 800 .
  • one or more struts 810 struts extend across the diameter of the ring, and can be made of a material that includes Nitinol or magnetic wires for selectively adjusting the shape of the ring.
  • the struts can also be instrumental in baffling mitral valve leaflet “flail”.
  • FIG. 9B shows another embodiment of a prosthetic ring 807 wherein a one-way valve 815 is positioned inside the ring such that blood flow BF can flow through the valve in only one direction.
  • the valve can be manufactured of various materials, such as silicone.
  • FIG. 10 shows a prosthetic with one or more tongues or flaps that are configured to be positioned adjacent the flaps of the mitral valve.
  • the prosthetic includes a ring 900 sized to fit within a mitral valve annulus.
  • At least two tongues 910 project from the ring 900 in a caudal direction when the ring is implanted into a heart of an individual.
  • the ring is flexible between an expanded configuration and a contracted configuration and is biased toward the contracted configuration.
  • One or more anchors 920 protrude from the flexible ring for coupling the ring coaxially to the annulus such that the contracted configuration of the ring exerts an inward force to the annulus.
  • the two tongues can each have a length sufficient to prevent prolapse of a mitral valve when the ring is placed atop the leaflets of the mitral valve.
  • the tongue elements may be attached at a central point.
  • a prosthetic for treating heart disease in general and a defective or diseased mitral valve in particular includes a wedge.
  • the wedge has a length that is about equal to a length of the line of coaptation of a mitral valve.
  • the wedge has a depth sufficient to prevent prolapse of a mitral valve when the wedge is placed atop an annulus of the mitral valve along the line of coaptation, and may provide a point of coaptation for each leaflet.
  • One or more anchors protrude from the wedge for coupling the wedge to the annulus of the mitral valve.
  • Methods of treatment using the wedge are also disclosed. The methods include inserting the wedge into an individual's heart, placing the wedge lengthwise along the line of coaptation of the mitral valve. The wedge is then secured to an annulus of the mitral valve along the line of coaptation.
  • the wedge may be positioned also just under one segment of the leaflet (likely P 2 in the case of functional MR).
  • a device for treating heart disease includes a clip for attachment to a free end of a heart valve leaflet.
  • FIG. 11A shows an exemplary embodiment of one or more clips 1101 that are positioned on free edges of the leaflets LF.
  • Each of the clips 1101 has a shape that prevents flail of the leaflet by catching against an underside of an opposing leaflet.
  • Methods of treatment using the clip are also disclosed. The methods include introducing the clip into an individual's heart and attaching the clip to a free end of a heart valve leaflet opposite the free end of an opposing leaflet of the heart valve so that the clip catches to the underside of the opposing leaflet during systole.
  • a clip may be placed on both leaflets such that the clips meet or catch when the leaflets are in proximity.
  • the clips may attach momentarily during systole, and then detach during diastole, or may clip permanently resulting in a double orifice mitral valve anatomy.
  • the clips of this embodiment may include a magnetic element, or one may be magnetic and the other of a metal material attracted to said electromagnetic field of the magnetic clip.
  • the clip elements may be placed on the underside of the leaflets (e.g. not necessarily on the free edge of the leaflet), provided that the magnetic field of the clip is sufficient to attract the opposing magnetic or metal clip element.
  • FIG. 11B shows pair of leaflets LF with a clip 1101 attached to the underside of each leaflet.
  • At least one of the clips is magnetic, while the other clip is of an opposite magnetic polarity than the first clip or of a metal attracted to the magnetic field of the first clip.
  • the magnetic field is sufficiently strong such that the clips 1101 can attach to one another either momentarily or permanently to coapt the leaflets, as shown in FIG. 11C .
  • a single clip 1101 is attached to one of the leaflets.
  • the clip 1101 is sufficiently long to increase the likelihood that the clip 1101 will coapt with the opposite leaflet.
  • a device for treating heart disease includes a wedge for placement under a heart valve leaflet.
  • FIG. 12 shows a schematic, cross-sectional view of the heart with a wedge 1205 positioned below at least one of the leaflets of the mitral valve.
  • the wedge 1205 can be positioned below one or both of the leaflets.
  • the wedge 1205 is sized to fit under the valve leaflet and caudal the annulus of the heart valve.
  • the wedge 1205 can have a shape that is contoured so as to provide support to a lower surface of the leaflet.
  • LA left atrium
  • the left ventricle is labeled LV.
  • An anchor is attached to the wedge for coupling the wedge to a wall of the heart chamber adjacent the heart valve.
  • the wedge forms a fixed backstop against the bottom side of the heart valve leaflet, thereby providing a location for the leaflet to coapt against, and/or providing support or “pushing up” a restricted leaflet.
  • a method of treating heart disease includes obtaining access to a heart valve leaflet and injecting a stiffening agent into the leaflet to stiffen the leaflet and minimize flail.
  • a method of treating heart disease includes obtaining access to a heart valve chord and cutting it mechanically or with energy such as a laser, or by heating the chordae to elongate them, thereby allowing the previously restricted leaflet to be less restricted so that it can coapt with the opposing leaflet.
  • a cam-shaped ring is disclosed.
  • the cam-shaped ring is sized to fit within a left ventricle of a heart.
  • the ring forms a hole that is sized to receive two or more chordae tendineae.
  • the ring is formed by connecting two detachable ends of the ring.
  • One method in particular includes introducing the ring into a left ventricle of a heart.
  • One or more chordae tendineae are then surrounded by the ring, and the two ends of the ring are then attached to form a closed ring around the chordae tendineae.
  • the ring is then rotated such that one or more of the chordae tendineae are shifted away from their initial orientation by the rotation of the cam-shaped ring.
  • the ring may then be fixed in the rotated or tightened position.
  • FIG. 13A shows a device that can be used to alter a chordae.
  • a method includes obtaining access to a chordae tendinea (chord) within an individual's heart chamber. The chordae is then cut at a point along its length so that a length of the chordae tendinea is freed from the heart chamber leaving behind a length of chordae tendinea having a free end and an end attached to an edge of a heart valve.
  • a synthetic chord 1005 of greater length than the free length of chordae is introduced into the heart chamber.
  • One end of the synthetic chordae 1005 is connected to a wall 1305 of the heart chamber or to a muscle attached to the wall of the heart chamber.
  • Another end of the synthetic chord is attached to the free end of the chorda tendinea or to the leaflet.
  • FIGS. 13B and 13C show enlarged views of attachment devices contained within box 13 of FIG. 13A .
  • the attachment devices can be used to attach the chord 1005 to the wall 1305 .
  • the attachment device 1310 is an enlarged ball having a distal trocar for penetrating the wall 1305 .
  • the attachment device 1310 is a hook that is configured to penetrate through the wall 1305 .
  • the attachment device 1310 can have other structures and it not limited to the structures shown in FIGS. 13B and 13C . In variations of these embodiments, it may be advantageous to adjust the length of the chordae (synthetic, or modified), determine the therapeutic effect of the shortening or lengthening, and then fix the chordae at the most efficacious location.
  • Valve regurgitation due to flail or broken chordae can occur.
  • Such valve impairments can be treated percutaneously through chordal replacement or the supplementing of the chordae tendineae of the mitral valve.
  • chordal replacement devices described herein can vary.
  • Features of the various devices and their anchoring systems can be used in combination with any of the embodiments described herein.
  • chordal replacement devices described herein can be delivered using interventional tools, guides and supporting catheters and other equipment introduced to the heart chambers from the patient's arterial or venous vasculature remote from the heart.
  • the chordal replacement devices described herein can be compressed to a low profile for minimally-invasive or percutaneous delivery. They can be advanced from the remote access site through the vasculature until they reach the heart.
  • the chordal replacement devices can be advanced from a venous site such as the femoral vein, jugular vein, or another portion of the patient's vasculature. It is also appreciated that chordal replacement devices can be inserted directly into the body through a chest incision.
  • a guidewire can be steered from a remote site through the patient's vasculature into the inferior vena cava (IVC) through the right atrium so that the guidewire pierces the interatrial septum.
  • the guidewire can then extend across the left atrium and then downward through the mitral valve MV to the left ventricle.
  • a catheter can be passed over the guidewire and used for delivery of a chordal replacement device.
  • chordal replacement devices described herein can also be delivered using a catheter advanced through retrograde access through, for example an artery, across the aortic arch and the aortic valve and to the mitral valve by way of the ventricle.
  • Alternative delivery methods of chordal replacement device embodiments described herein can include inserting the device through a small access port such as a mini-thoracotomy in the chest wall and into the left ventricle apex. From there, the chordal replacement device can be advanced through the left ventricle into the left atrium. It should be appreciated the device can also be delivered via the left atrial apex as well.
  • Imaging means such as magnetic resonant imaging (MRI), intracardiac echocardiography (ICE), transesophageal echo (TEE), fluoroscopy, endoscopy, intravascular ultrasound (IVUS) and the like.
  • MRI magnetic resonant imaging
  • ICE intracardiac echocardiography
  • TEE transesophageal echo
  • fluoroscopy endoscopy
  • IVUS intravascular ultrasound
  • a chordal replacement device 3805 can include a laterally-stabilized spring or flexible rod.
  • the device 3805 can include a first portion 3810 that receives and/or is movable with respect to a second portion 3815 .
  • the first and second portions 3810 , 3815 can be surrounded by a spring 3820 .
  • Each of the first and second portions 3810 , 3815 of the device 3805 can have a platform region 3825 , 3830 , respectively between which the spring 3820 extends.
  • the platform regions 3825 , 3830 can be of sufficient surface area or diameter that they can push against the heart wall and the leaflet surface without damaging or puncturing the surfaces.
  • the platform regions 3825 , 3830 can also each have one or more barbs 3835 or another fixation device on an external surface that can implant and attach the device 3805 between the valve leaflet and the roof of the atrium (see FIG. 38C ).
  • the platform sections 3825 , 3830 can also include one or more barbs 3835 or another fixation device on an external surface that can implant and attach the device 3805 between the valve leaflet and the roof of the atrium (see FIG. 38C ).
  • other attachment mechanisms for attaching one or more of the platform sections to the valve leaflet and/or the roof of the atrium are possible and that the device is not limited to including barbs.
  • one or more of the platforms can include clips such as a clip similar to the Mitraclip® to grasp the leaflet, and an adhesive or screw to attach to the roof of the atrium.
  • the chordal replacement device 3805 can be delivered into the left atrium through a guide catheter 3840 (see FIG. 38B ).
  • a tether 3845 can hold the device 3805 normal to the tip of the guide catheter 3840 .
  • the tether 3845 can be threaded through the guide catheter 3840 , through the implant 3805 , and back out the guide catheter 3840 .
  • the tether 3845 can be pulled out of the guide catheter 3840 from either end releasing the implant, allowing deployment.
  • Other mechanisms of attachment to the implant 3805 are considered herein.
  • the tether 3845 can be replaced by a flexible rod having, for example threads at a distal end. The threads of the rod can attach to corresponding threads on the implant 3805 .
  • the threaded region of the implant can be rotatable such that the implant 3805 can rotate perpendicular to the guide catheter 3840 (see the position shown in FIG. 38B ) in order to couple and uncouple with the rod through rotational threading and unthreading.
  • a second tether 3850 can be used to longitudinally compress the spring 3820 between the platforms 3825 , 3830 such that they approximate one another and the first portion 3810 receives a greater length of the second portion 3815 than it receives in the uncompressed state and the overall length of the device 3805 is reduced as defined by the distance between the barbs.
  • This second tether 3850 can thread through the guide catheter 3840 in a similar manner as the first tether 3845 as described above.
  • the second tether 3850 can be tensioned to compress the spring 3820 and after removal can be withdrawn similarly as the first tether 3845 .
  • a barb 3835 can be planted into a portion of the flailing valve leaflet and another barb 3835 can be planted into the roof of the left atrium LA.
  • the barbs can be planted by actuating the distal curved section of the guide catheter so as to guide the barbs 3835 into the desired locations.
  • the device 3805 can exert a force between the atrium roof and the valve leaflet through the spring 3820 to hold the leaflet down and prevent flail up into the left atrium LA.
  • the tension can be adjusted by varying the spring coupled to the device prior to inserting it into the body.
  • the desired length of the device after implantation can be adjusted and tuned prior to introduction with an adjustable bolt and nut type design that limits how far one platform can move in relation to the other. It should be appreciated that the embodiments of chordal replacement devices described herein are exemplary and that variations are possible.
  • a chordal replacement device 3905 can include a clip 3910 , a distal anchor 3915 and a tether 3920 extending therebetween.
  • the clip 3910 can attach to a portion of a flailing leaflet LF and the distal anchor 3915 can extend into the ventricle such that the flailing leaflet is held down.
  • the anchor 3915 can be implanted in the left ventricular wall or septum or papillary head or other appropriate tissue site.
  • the length of the tether 3920 can be variable and/or adjusted such that the tension applied to the leaflet LF by the chordal replacement device 3905 is tailored to an individual patient's needs. For example, once the clip 3910 is positioned, the tether 3920 can be tensioned, tied and trimmed as will be described in more detail below.
  • the clip 3910 can be an elastic element that can be deformed to attach it to a portion of the leaflet LF, such as by crimping.
  • the clip 3910 can be attached to a portion of the valve leaflet LF where flail occurs, for example it can be fastened to an edge of the anterior or posterior mitral valve leaflet with the damaged chord.
  • the clip 3910 can have surface feature 3950 , such as small barbs or a textured surface, that aids in the capture of the leaflet LF upon deforming the clip 3910 to the leaflet LF. As best shown in FIG.
  • the clip 3910 can also include an eyelet, aperture or other attachment feature 3945 that provides a location for coupling to or extending the tether 3920 through a portion of the clip 3910 .
  • the distal anchor 3915 can similarly include an eyelet, aperture or attachment feature 3945 that provides a location for the tether 3920 to couple to or extend through a portion of the anchor 3915 (see FIG. 39A , for example).
  • the anchor 3915 can vary in configuration and can include a weight, barb, corkscrew, adhesive or other mechanism such that the tether 3920 extends down and is secured in place within the ventricle.
  • the anchor 3915 extends into the ventricle from the clip 3910 and is secured to the bottom of the ventricle or toward the ventricular septum or papillary head.
  • the barbs of the anchor 3915 can be collapsible such that they conform to a narrow configuration and fit within the lumen of the guide catheter and expand upon being advanced out of the guide catheter (see FIGS. 39B-39C ).
  • the tether 3920 can attach to the clip 3910 in a variety of ways.
  • the clip 3910 can include an attachment feature 3945 that provides a location for coupling the clip 3910 to the tether 3920 .
  • a knot or crimp 3930 can be applied to one end of the tether 3920 such that end will lodge into a portion of the clip 3910 or will lodge into the attachment feature 3945 .
  • the opposite, unknotted end of the tether 3920 can extend through the delivery catheter 3960 and be retracted until the crimp 3930 lodges with the attachment feature 3945 on the clip 3910 , which is attached to the leaflet LF.
  • the delivery catheter 3960 can be used to deploy the clip 3910 to the leaflet ( FIG. 39E ) and can then be withdrawn ( FIG. 39F ). At this stage the tether 3920 can still have both ends extending outside the body ( FIG. 39G ). An anchor 3915 also coupled to the tether 3920 can be loaded over the tether 3920 and delivered to the ventricle as will be described in more detail below.
  • the delivery system 3955 for the chordal replacement device 3905 can include a guide catheter 3966 having a lumen 3965 for a clip delivery catheter 3970 and a lumen 3975 for an anchor pusher or mandrel 3980 used to push the anchor 3915 out of the delivery system 3955 .
  • the anchor 3915 is shown as a barbed anchor, but it should be appreciated that other configurations are considered herein.
  • the anchor 3915 can be attached to a distal end of the mandrel 3980 such as by corresponding threads 3990 or another coupling mechanism.
  • the anchor 3915 Upon being pushed out the distal end of the guide catheter 3966 , the anchor 3915 can be uncoupled from the mandrel 3980 (such as by an unthreading rotation) and released in its position within the heart. Alternatively, the anchor 3915 can be unattached to the mandrel 3980 and simply pushed out the distal end of the guide catheter 3966 . Once the anchor 3915 is implanted, the mandrel 3980 can be withdrawn.
  • FIGS. 39D-39H and FIG. 39K illustrate the deployment of the clip 3910 prior to the anchor 3915 being delivered.
  • FIGS. 39L-39M illustrate an embodiment in which the clip 3910 is deployed after the anchor 3915 is delivered.
  • the tether 3920 can be tensioned.
  • the tether 3920 can be pulled manually to tension an end of the tether 3920 extending outside the body, to the desired tension to hold the leaflet LF down.
  • Tension on the tether 3920 can be tuned and adjusted until an appropriate tension on the leaflet LF is achieved evidenced by the tether 3920 simulating the tension of a healthy chord.
  • the appropriate tension can be assessed as is known in the art. For example, an echocardiogram can be performed to assess leaflet flail or prolapse as well as the effect on mitral regurgitation.
  • FIGS. 39N-390 illustrate an embodiment of a dual-function cutting clamp 3935 having the tether 3920 extending therethrough.
  • the cutting clamp 3935 can have dual functions and can be used to clamp onto the tether 3920 to secure it near the distal end and it can also be used to cut the tether 3920 proximal of the secured section.
  • the cutting clamp 3935 can have an outer shell 3937 that can be coupled or attached to the anchor 3915 .
  • the shell 3937 of the cutting clamp 3935 can have apertures or slots 3939 at opposite ends through which the tether 3920 can extend into an inner region of the shell 3937 . From one end of the shell 3937 , the tether 3920 extends towards the clip 3910 . At the opposite end of the shell 3937 , the tether 3920 extends back through the delivery catheter 3970 to the outside of the body.
  • the cutting clamp 3935 can also include an aperture or slot 3941 through which an actuator line 3943 can pass and extend to the outside of the body. The actuator line 3943 can be actuated to effect clamping and/or cutting of the tether 3920 with the cutting clamp 3935 .
  • the cutting clamp 3935 which may or may not already be coupled to the anchor 3915 can be actuated such that the tether 3920 is engaged by a ratcheting clamp mechanism.
  • the ratcheting clamp mechanism prevents the release of the tension on the tether 3920 .
  • the ratcheting clamp mechanism can include opposing clamp elements 3946 that extend inward from a ratchet recess 3947 open at an inner surface of the shell 3937 .
  • the opposing clamp elements 3946 have textured surfaces at one end that are designed to come together to releasably engage the tether 3920 .
  • the opposing clamp elements 3946 can have a ratchet mechanism 3949 that engages corresponding features in the ratchet recess 3947 of the shell 3937 .
  • the opposing clamp elements 3946 can be actuated by pulling the actuator line 3943 at the outside of the body.
  • the actuator line 3943 engages the opposing clamp elements 3946 such that they extend out from the ratchet recess 3947 and approach one another until the tether 3920 is caught between their textured surfaces.
  • the actuation line 3943 can be actuated further until the opposing cutting elements 3951 are engaged by the actuation line 3943 , extend from their respective ratchet recess 3947 until their cutting surfaces come in contact to cut the tether 3920 therebetween. Once the tether 3920 is cut by the opposing cutting elements 3951 the actuation line 3943 can be released and the loose end of the tether 3920 can be removed from outside the body.
  • multiple chordal replacement devices 3905 can be used to attach to the chordae on the opposite or same side as the flailing leaflet.
  • the second chordal replacement device 3905 can incorporate a similar cutting clamp as described above.
  • a chordal replacement device 4005 can include a flexible material or patch 4010 that can be attached to the valve leaflet LF.
  • a single strand of artificial chordae 4015 can loop through and underneath the patch 4010 .
  • the strand of artificial chordae 4015 can include one, two, three or more individual loops and can be made of suture or another flexible material.
  • the loops of artificial chordae 4015 can be drawn together at one end with a ring 4020 or other enclosed shape going through the loops of artificial chordae 4015 .
  • the ring 4020 can be attached to the ventricle wall or papillary muscle or ventricular septum with a distal attachment assembly as described in more detail below.
  • the loops of artificial chordae 4015 can be a single strand of material that freely slides through the patch 4010 and the ring 4020 such that the loops 4015 can self-equalize to evenly distribute the load.
  • a single loop 4015 can thread through the patch 4010 and the ring 4020 , for example three times, such that one loop is short and there are two other loops that are long. Pulling the ring 4020 away from the patch 4010 will engage the short loop and redistribute the long loops to the length of the shortest loop such that the three loops are equally long and equally distribute the force.
  • the loops of artificial chordae 4015 are not fixed such that they can slip and distribute the force equally between them. This self-equalizing characteristic along with the flexible patch 4010 reduces the stress on the leaflet LF.
  • the device 4005 can be delivered to the valve leaflet (posterior or anterior).
  • the patch 4010 can be folded and loaded into a delivery catheter 4025 such that the artificial chordae 4015 trail behind and are delivered through a guide catheter 4030 to the vicinity of the valve.
  • a mandrel or pusher tube 4035 can push the patch 4010 out the distal end of the delivery catheter 4025 (see FIG. 41C ).
  • the leaflet LF can be stabilized using a vacuum or a hook attached to a guidewire or another stabilizing device.
  • the leaflet LF can be captured and/or stabilized using a guidewire 4141 having a distal end that has a needle point.
  • the needle point guidewire 4141 can be delivered using a protective sheath or delivery catheter 4143 that prevents pricking of the vessel as it is passed therethrough.
  • the sheath or delivery catheter 4143 can be retracted slightly exposing the distal needle point to the leaflet LF.
  • the distal needle point can be urged through the leaflet LF near an edge or positioned closer to the valve annulus.
  • the needle point guidewire 4141 can be pre-formed to have a hook shape such that when it is advanced out of the sheath 4143 and extends through the leaflet LF it can curve upward back toward the sheath 4143 to form a hook.
  • the guidewire 4141 can include a thicker needle point 4145 attached to a more flexible cable 4147 or guidewire or thinner wire.
  • the needle point 4145 can also be preformed such that it takes on a sharper curve or hook shape when advanced beyond the distal end of the delivery catheter 4143 .
  • the needle point 4145 can be formed of a variety of materials such as Nitinol or other shape memory alloy or other suitable material.
  • Tension can be applied to the needle point guidewire 4141 such that the leaflet LF remains hooked and stabilized.
  • the chordae can provide the resistance allowing the needle point guidewire 4141 to puncture the leaflet LF.
  • the needle point guidewire 4141 as it forms the hook shape can penetrate the leaflet LF a second time (see FIG. 41K ) although it should be appreciated that the guidewire need only penetrate the leaflet LF a single time to effect capture and stabilization (see FIG. 41M ).
  • the sheath 4143 can be advanced distally back over the needle point as shown in FIG. 41N .
  • the portion of the guidewire 4141 penetrating the leaflet LF is slowly withdrawn as the sheath 4143 is advanced distally.
  • the patch 4010 can be affixed to the valve leaflet LF by activating a leaflet attachment device 4040 through the guide catheter 4030 .
  • the leaflet attachment device 4040 can include a pair of expandable elements 4045 connected centrally by a rod 4050 .
  • One or more of the expandable elements 4045 can have a sharp needle point 4055 .
  • the patch 4010 can lie on top of the valve leaflet LF and the sharp needle point 4055 of the leading expandable element 4045 can pierce through the patch 4010 and the leaflet LF such that the leading expandable element 4045 emerges from the underneath side of the leaflet LF and the rod 4050 extends through the leaflet (see FIGS. 41D and 41E ).
  • the patch 4010 on the upper surface of the leaflet LF can be sandwiched between the leading and trailing expandable elements 4045 of the leaflet attachment device 4040 .
  • the leaflet attachment device 4040 and each of the expandable elements 4045 can be a shape-memory metal (e.g. Nitinol, Nitinol alloys) or some other spring material.
  • the spring material of the expandable elements 4045 allows them to spring out as the leaflet attachment device 4040 is advanced from the distal end of the delivery catheter 4025 .
  • the leaflet attachment can be facilitated by stabilizing the leaflet as described above.
  • the position of the patch prior to securement of the expandable element 4045 can be maintained for example, by attaching the patch to the first expandable element prior to being deployed from the delivery catheter. The delivery catheter can then be used to maneuver into position the patch prior to deploying the first expandable element.
  • FIG. 41F shows a top view of an expandable element 4045 deployed on the upper surface of the leaflet.
  • the embodiment is shown having barbed arms in a star-shaped configuration although it should be appreciated that other shapes and configurations are considered.
  • the leaflet attachment device 4040 can include expandable elements 4045 of a spring metal mesh.
  • the spring metal mesh expandable element 4045 can form a web shape and flatten out as it is deployed.
  • the Nitinol or other spring material can spring into an expandable element 4045 shaped like a mesh ball (see FIG. 42C ).
  • the mesh ball expandable element 4045 can protectively cover the sharp needle point 4055 on the underneath side of the valve leaflet.
  • the leaflet attachment device 4040 can include expandable elements 4045 that are a combination of configurations including flat mesh design, ball mesh design, a star-shaped design or other configuration.
  • one expandable element 4045 can have a star-shaped design and the other expandable element 4045 can have a mesh ball design (see FIG. 42D ).
  • the expandable devices such as the mesh ball design can be collapsed sufficiently small to pass through a needle hole without ripping the leaflet.
  • the needle bore can be a larger hypotube such that insertion of the tube needle can punch a hole in the leaflet.
  • the patch 4010 can cover the hole such that leaks are avoided. Further, the hypotube can be dull at the base of the bore such that punched out tissue remains attached to avoid creation of an embolism.
  • leaflet attachment device 4040 can be used to affix a patch 4010 to the valve leaflet LF.
  • the patch 4010 can be attached to the atrial side of the valve leaflet LF with multiple leaflet attachment devices 4040 oriented side-by-side on the upper and lower surface of the leaflet LF.
  • Using multiple leaflet attachment devices 4040 to affix the patch 4010 reduces stress in the leaflet LF, in part, due to distribution of forces across multiple attachment locations.
  • the multiple leaflet attachment devices 4040 can be stacked and deployed in series from a delivery catheter 4025 .
  • the multiple leaflet attachment devices 4040 can be deployed using a guide wire between deployments of each leaflet attachment device 4040 .
  • the patch 4010 can be deployed followed by the first leaflet attachment device 4040 .
  • the delivery catheter 4025 can be withdrawn leaving a guide wire 4060 in place.
  • Another catheter with the second leaflet attachment device 4040 can then be advanced along the guide wire 4060 and the second leaflet attachment device 4040 deployed. The process can be repeated depending on the number of attachment devices desired to be deployed.
  • the loops of artificial chordae 4015 can be deployed distally within the ventricle such as to the ventricular wall, septum or papillary muscle.
  • the delivery catheter 4025 that deployed the patch 4010 and leaflet attachment device(s) 4040 can be removed from the guide catheter 4030 leaving a guide wire 4060 attached to a ring 4020 through which the artificial chordae 4015 loop (attachment device(s) are not shown in the figure for simplicity).
  • the guide wire 4060 can be previously looped through the ring 4020 , for example, during manufacturing.
  • Another catheter can be advanced over the guide wire 4060 through the guide catheter 4030 .
  • the ring 4020 is attached to the distal end of the catheter 4030 as shown in FIG. 44B-44C .
  • the ring 4020 can be inserted or snapped into a flanged channel 4065 near the distal end of the catheter 4030 using the guide wire 4060 looped through the ring 4020 .
  • the catheter 4030 with the ring 4020 in the channel 4065 can advance through the valve distally into the ventricle (see FIG. 44D ).
  • the ring 4020 with the attached loops of artificial chordae 4015 can be anchored to the ventricular wall or papillary muscle forming a distal attachment assembly 4070 of the chordal replacement device.
  • a coil screw 4075 is coupled to the distal attachment assembly 4070 .
  • the coil screw 4075 can be advanced like a cork screw through the distal end of the catheter 4030 into the ventricular tissue, for example, by rotating an actuator knob on the proximal end of the catheter. The rotation of the actuator knob can rotate the coil screw, advancing it out of the catheter and into the ventricular tissue.
  • the distal attachment assembly 4070 can be coupled to or can include a fillable element 4080 delivered through a hollow needle 4085 that pierces the ventricular wall (See FIGS. 45B-45C ).
  • the fillable element 4080 can include a balloon or mesh bag or other expandable element.
  • a hardening agent or other material can be used to fill the element 4080 expanding it such that it anchors the artificial chordae 4015 and the distal attachment assembly 4070 to the ventricle.
  • the needle 4085 can be retracted leaving the filled element 4080 inserted in the ventricle wall and coupled to the distal attachment assembly 4070 .
  • the hardening agent can be a two-part hardening agent, such that a small quantity of a second agent can be delivered through another smaller tube in the catheter to activate the first part and main bulk of the hardening agent.
  • the distal attachment assembly 4070 can be released from the guide catheter 4030 .
  • the assembly 4070 can be released, for example, using a mandrel that runs through the catheter and has a threaded end that threads into the distal attachment assembly.
  • the distal end of the catheter can be a sleeve that pinches circumferentially onto the attachment assembly and then by retracting a lever proximally, a mandrel is retracted which pulls the pinching sleeve backwards over the catheter slightly, expanding the pinching sleeve and releasing the attachment assembly.
  • the two ends of the guide wire 4060 can extend all the way up through the guide catheter 4030 . As the delivery catheter 4025 is removed, the guide wire 4060 can still be looped through the ring 4020 . The guide wire 4060 can be removed before, during or after the delivery catheter 4025 is removed. The guide wire 4060 can be removed by pulling one end, allowing the trailing end to pull through the ring 4020 and then out of the guide catheter 4030 leaving the distal attachment assembly 4070 anchored in the ventricle and the artificial chordae 4015 extending up to the valve leaflet LF where the patch 4010 is affixed to the leaflet LF with the leaflet attachment device(s) 4040 .
  • a sensor 4090 such as a pin or pressure sensor can be used to adjust tension in the artificial chordae 4015 .
  • the sensor 4090 can provide the user with information regarding contact between the guide catheter 4030 and the ventricular wall.
  • the sensor 4090 can include a pin 4095 near the distal tip of the catheter 4030 .
  • the pin 4095 is shown in FIG. 46A as fully extended indicating no contact with the ventricular wall. Upon contact with the wall as shown in FIG.
  • the pin 4095 can compress and activate delivery of a signal to the user such as an electrical signal or visual signal indicating that contact is made with the wall of the ventricle. If the sensor 4090 indicates contact with the ventricular wall and an echocardiogram suggests no flail or prolapse and mitral regurgitation (MR) is reduced then the distal anchor (e.g. coil screw 4075 or element 4080 ) can be advanced into the ventricular wall to secure attachment. If the sensor 4090 indicates contact with the ventricular wall, but the echocardiogram suggests flail and/or prolapse and poor MR results, the catheter 4030 can be moved further down into the ventricle to increase tension on the artificial chordae 4015 and the test repeated.
  • MR mitral regurgitation
  • the leaflet is pulled down too far and the catheter 4030 can be moved proximally to release tension on the artificial chordae 4015 .
  • the test can be repeated until desirable results are achieved.
  • the distal anchor can be a coil screw 4075 that is advanced and locked.
  • the distal attachment assembly 4070 can be rotated clockwise by the catheter 4030 to draw the ring 4020 slightly closer to the ventricular wall.
  • the distal attachment assembly 4070 can also be rotated by the catheter 4030 in a counter-clockwise direction to push the ring 4020 away such that the valve leaflet LF can rise up slightly.
  • the distal anchor can be an expandable element, such as a balloon anchor filled with a two-part epoxy as described above.
  • This embodiment can also be fine-tuned.
  • the expandable element 4080 expands within the ventricular wall, the distal attachment assembly 4070 attached to the expandable element 4080 is pulled toward the ventricular wall.
  • the material of the expandable element 4080 can be finitely expanded such that fine-tuning of the distance between the distal attachment assembly 4070 and the ventricular wall can be performed.
  • the artificial chordae 4015 can pull the distal attachment assembly 4070 away from ventricular wall and the valve leaflet can rise slightly.
  • the first part epoxy (i.e. prior to hardening) can be used to fill the expandable element 4080 and also fine-tune the positioning and tension on the chordae 4015 .
  • the second part of the epoxy can be infused such that it hardens and sets in place the chordae. It should be appreciated that the epoxy can be embedded directly into the attachment site or can be used to fill a expandable element pre-embedded in the distal attachment site. Ideally, very little of the second part epoxy is used so as not to interfere with the fine-tuning achieved.
  • the chordal replacement device need not include a distal attachment assembly 4070 (see FIGS. 49A-49B ).
  • the chordal replacement device can be attached to an attachment assembly that is deployed proximal to the valve.
  • the chordal replacement device can include a ring 4020 and loops of artificial chordae 4015 attached to a rod 4105 extending from a spring material (e.g. shape-memory metal such as Nitinol or other material) that forms a stent-like mesh 4100 deployed in the left atrium, just above the mitral valve.
  • the rod 4105 can be attached to the mesh 4100 and extend from the mesh 4100 through the mitral valve such as at one of the commissures into the ventricle.
  • the rod 4105 can be straight or curved or jointed.
  • the distal end of the rod 4105 can be attached to the ring 4020 such as by extending through the ring 4020 .
  • Rod 4105 and mesh 4100 can be moved to adjust tension on the artificial chordae 4015 .
  • the mesh 4100 and rod 4105 can be secured within the atrium or to the valve leaflets, for example using the leaflet attachment devices 4040 discussed above (see FIG. 49B ; note the rod, ring and replacement chordae are not shown).
  • the rod 4105 and mesh 4100 can be delivered through a delivery catheter 4025 in which the mesh 4100 is collapsed.
  • the rod 4105 can be jointed.
  • the joints 4110 can lock in place once the rod 4105 is deployed and/or can have limited travel around the joint 4110 .
  • one or more of the rod joints 4110 can lock into place using a mechanical/physical feature incorporated within the joint 4110 .
  • one or more of the joints 4110 can have a surface feature 4112 such that when the rod 4105 rotates over the surface feature 4112 on the adjacent portion of the joint 4110 it can pop over and lock in place relative to the adjacent portion of the joint 4110 .
  • one or more of the joints 4110 can have limited travel around the joint 4110 to provide the artificial chordae 4015 with some degree of slack (see FIG. 50B ).
  • the rod 4105 and mesh 4100 can passively rise and fall with the mitral annulus during the cardiac cycle. In diastole, when the annulus rises, excessive tension on the artificial chordae 4015 can be avoided due to this limited travel around the joint 4110 .
  • the top joint 4110 can lock and the bottom joint does not lock.
  • the lower joint can pivot without detriment to the system as the annulus rises during diastole.
  • the lower joint can pivot in the opposite direction due to tension on the chordae until the physical stop incorporated in the joint limits the travel. In this position the rod system can then provide tension to the chordae and hold the leaflets down.
  • the top joint 4110 rather than being fixed can pivot about an axis that is orthogonal to the axis of the bottom joint. This arrangement can prevent the forces of the cardiac cycle from bending the top joint once deployed.
  • the rod 4105 can be flexible so that it can fit in a delivery catheter 4025 and expand to its spring-formed shape when deployed from the delivery catheter 4025 . Flexibility of rod 4105 can be designed so that it provides a predictable spring force on the artificial chordae 4015 . The rod 4105 can deflect and provide consistent tension on the artificial chordae 4015 .
  • the leaflet attachment devices 4040 described above can be used to attach a leaflet extension patch for the treatment of mitral valve prolapse or flail.
  • the leaflet extension patch 5210 can be attached to the atrial side of the valve leaflet.
  • the leaflet extension patch 5210 can be a stiff or a flexible material.
  • the leaflet extension patch 5210 can prevent mitral regurgitation in the case of prolapse or flail in that it can block the leaflet from flailing upwards into the atrium.
  • the leaflet extension patch 5210 can bridge any coaptation gap between the leaflets.
  • FIG. 52A shows the leaflet extension patch 5210 during diastole.
  • the patch 5210 can follow the leaflet downwards such that flow through the valve is not impeded.
  • the leaflet extension patch 5210 can block flow by coapting with the opposite leaflet LF as well as prevent flail or prolapse by physically blocking it from moving upwards into the atrium (see FIGS. 52B and 52C ).
  • FIG. 14 shows a cross-sectional view of the heart with a first and second anchor attached to a wall of the heart.
  • the system includes a first anchor 1410 a having a screw portion 1415 for screwing into a wall of the heart and a connector portion.
  • the connector portion is rotatable around an axis of rotation.
  • the first anchor includes a power source to power rotation of the connector portion and a receiver for receiving telemetric signals from an external controller for controlling the rotation of the connector portion.
  • the system includes a second anchor 1410 b having a screw portion 1415 b for screwing into a wall of the heart and a connector portion.
  • a tether 1420 having two free ends. One of the free ends is coupled to the connector portion of the first anchor, and the other free end is coupled to the connector portion of the second anchor.
  • An external controller is also included. The external controller has a telemetric transmitter for communicating with the receiver and controls the rotation of the connector portion. Alternatively, the anchors may be placed with a torqueable catheter.
  • a method of altering a geometry of a heart includes introducing a first coupler into a heart chamber.
  • the first coupler has an anchor portion and a connector portion.
  • the connector portion is rotatable around an axis of rotation and is connected to a power source to power rotation of the connector portion.
  • the power source is in communication with a telemetric signal receiver.
  • the first coupler is secured to the wall of the heart chamber by anchoring the anchor portion to the wall.
  • a second coupler is introduced into the heart chamber.
  • the second coupler includes an anchor portion and a connector portion. The second coupler is secured to the wall of the heart chamber by anchoring the anchor portion to the wall at a distance from the first coupler.
  • a tensile member is introduced into the heart chamber.
  • One end of the tensile member is connected to the connector portion of the first coupler, and another end of the tensile member is connected to the connector portion of the second coupler.
  • the distance between the first and second couplers is adjusted by transmitting a telemetric signal to the receiver, thus causing the connector portion to rotate around the axis of rotation and threading the tensile member around the connector portion to reduce the distance between the first and second couplers.
  • a system for altering the geometry of a heart chamber includes a planar tensile member having substantially inelastic material. At least two anchors are included for anchoring the planar tensile member to an inner wall of a heart chamber.
  • the planar tensile member is substantially shorter in length than a left ventricle of a heart so that when the planar tensile member is anchored in a caudal direction along a length of the left ventricle a tensile force exerted by the planar tensile member between the two anchors prevents the left ventricle from dilating caudally.
  • a method for altering the geometry of a heart includes providing a tensile member having a substantially inelastic material.
  • the tensile member is substantially shorter in length than a left ventricle of a heart.
  • the tensile member is inserted into the left ventricle of the heart and a proximal end of the tensile member is anchored to the left ventricle adjacent the mitral valve.
  • a distal end of the tensile member is anchored to the left ventricle caudal the proximal end so that a tensile force exerted by the tensile member between the two anchors prevents the left ventricle from dilating caudally.
  • a method of reinforcing the left ventricle includes injecting a strengthening agent into a wall of the left ventricle in an enlarged region of the ventricle, as shown in FIG. 15 .
  • FIG. 15 shows a catheter 1510 that has been introduced into the heart.
  • the catheter 1510 has an internal lumen through which the strengthening agent 1512 can be injected.
  • a proximal end of the catheter is connected to a source of the strengthening agent and a distal end of the catheter is configured to release the strengthening agent.
  • the distal end of the catheter is positioned at or near a wall of the heart and the strengthening agent 1512 is injected into the wall of the heart.
  • a method is directed to altering the geometry of a heart.
  • the method includes injecting a polymerizing agent into a pericardial space adjacent a left ventricle, thereby exerting a medial (inward) force against the left ventricle.
  • a method of altering the geometry of a heart includes inserting a balloon into a pericardial space adjacent to a left ventricle of the heart, or extend into the pericardium of the heart.
  • the balloon is inflated by injecting it with a fluid, and it exerts a medial force against the left ventricle upon inflation.
  • the balloon can be inflated at the time of implantation, or at a later time. If inflated at a later time, the balloon would be self-sealing, and may be inflated by accessing the balloon with a needle placed through the chest wall.
  • FIG. 16 shows a schematic view of the heart showing the papillary muscles PM.
  • a method of treating heart disease includes inserting an anchor, cuff or sleeve 1205 into the left ventricle of an individual's heart, and sliding a cuff or sleeve around a papillary muscle PM. The size of the cuff or sleeve is reduced so that the cuff or sleeve squeezes the papillary muscle. As the size of the cuff or sleeve is reduced, the papillary muscle stretches and increased in length.
  • a method of treating heart disease includes obtaining access to a papillary muscle in a left ventricle of the heart.
  • the papillary muscle is cut and reattached at a new location on an inner wall of the ventricle closer to the mitral valve.
  • FIGS. 17-19 show cross-sectional views of the heart.
  • one or more magnets 1705 are implanted or otherwise attached to a wall 1710 of the left ventricle LV.
  • One or more other magnets 1715 are implanted or otherwise attached to a wall 1720 of the right ventricle.
  • the magnets 1705 and 1715 are attached to the walls 1710 and 1720 such that they assert an attractive magnetic force (as represented by the arrows 1725 in FIG. 17 ) toward each other.
  • the magnetic force 1725 assists in remodeling of the left ventricle during pumping of the heart.
  • the magnets 1705 and 1715 are urged toward one another (thereby also urging the walls 1710 and 1720 toward one another) to re-shape either the annulus AN or the left ventricle LV.
  • the annulus or the left ventricle LV are re-shaped in a manner that reduces or eliminates backflow through the mitral valve MV. It should be appreciated that a similar procedure can be performed on the right ventricle RV and associated valves.
  • FIG. 18A shows another embodiment of a procedure wherein magnets are implanted in the heart to geometrically reshape the annulus or the left ventricle.
  • One or more magnets 1705 are implanted or otherwise attached to a first wall 1710 a of the left ventricle LV.
  • One or more magnets 1705 are also implanted or otherwise attached to a second, opposed wall 1710 b of the left ventricle.
  • the magnets on the opposed walls 1710 a , 1710 b exert an attractive magnetic force toward one another to draw the walls 1710 a , 1710 b toward one another and re-shape the left ventricle LV or the annulus AN.
  • Another embodiment of a procedure uses magnets to anchor tethers within the heart at various locations to optimize the shape of cardiac structures to improve cardiac function.
  • the tethers are placed to either reshape the cardiac structure or to prevent dilatation of the structure over time.
  • the tethers must be securely anchored to the heart structures.
  • a method of anchoring which enables tethering in various positions and directions within the cardiac structures is important for the clinician to optimize cardiac reshaping based on each individual patient anatomy and disease state.
  • a method of anchoring which is atraumatic is also desirable.
  • FIG. 18B shows a side view of the heart with sets of magnets A, A 1 , B, and B 1 positioned to various locations of the heart or to anatomical structures adjacent the heart.
  • at least one magnet A is placed on the interventricular septum within the right ventricle RV.
  • At least one magnet A 1 is placed within the left ventricle LV opposite magnet A.
  • the magnetic force between A and A 1 maintains the position of the magnets.
  • the magnets may be enclosed in materials that will promote tissue in-growth and healing to the interventricular septum to ensure stability of location and to eliminate the need for long term anti-coagulation. Additionally, the enclosure material which is flexible and can be delivered in a low profile can be significantly larger in size than the magnets to increase the surface area of contact with the heart wall which will increase the tension that can ultimately be placed on the anchor over time.
  • a second set of magnets B and B 1 are then delivered to another location selected within or adjacent to the heart.
  • the set of magnets A/A 1 are attached to the set of magnets B/B 1 using at least one tether 1805 , as shown in FIG. 18B .
  • the tether 1805 can be attached to either or both of the magnets A/A 1 at one end and to either of both of the magnets B/B 1 at an opposite end.
  • FIG. 18B shows magnet B positioned in the LV and B 1 positioned in a blood vessel BV adjacent to the heart.
  • Magnets B and B 1 are delivered on or within materials and structures which promote healing and increase the amount of tension that can be placed on the anchor over time.
  • magnet B 1 can be delivered on a stent which is of a length, diameter and material which will heal within the BV to provide sufficient resistance to forces placed on it by the tethers.
  • the tethers may be pre-attached to the magnets A and B 1 or they may be attached after A and B 1 have been positioned.
  • the tether length may be shortened and/or adjusted after placement of the anchors.
  • the final tether length may be pre-selected based on the patient's cardiac structure geometry and the effect the clinician desires. Placing sets of magnets in this method, enables anchoring of tethers within the heart in various positions and angles which provides increased flexibility and variation for clinicians to select optimal re-shaping of the cardiac structures based on specific patient characteristics.
  • Examples which demonstrate the flexibility of this approach include placing anchors at the annulus and at the apex of the heart and tethered to shorten the length of the LV; anchors can be placed in the around the annulus and tethered to change the shape of the annulus. More specifically, one or more sets of magnets can be placed in the RA and LA at the level of the mitral valve annulus (on the anterior side of the annulus) and one or more sets of magnets can be placed in the LA and LV on opposite sides of the annulus on the posterior portion of the annulus. The posterior sets of magnets can then be tethered to the anterior sets of magnets to change the shape of the annulus. Alternatively, the magnet anchors can be placed at the level of the annulus in the LA and in a BV adjacent to the heart at the level of the annulus and these then tethered to the anterior annulus magnet anchor described above.
  • the magnets A and A 1 can also be a single magnet that extends through the interventricular septum. Moreover, only one of the magnets A or A 1 need be implanted.
  • One or more magnets B and/or B 2 are located opposite the location of the magnet(s) A and/or A 1 .
  • the magnet(s) B is located within the left ventricle opposite the magnets A/A 1 , such as on the left ventricular wall.
  • the magnet B 1 is located on an anatomical structure adjacent the heart, such as on a blood vessel BV.
  • the magnets A, A 1 , B, and B 1 are implanted in the heart without tethers.
  • the magnets A, A 1 , B, and B 1 can be positioned in various combinations so as to exert magnetic attractions to one another to re-shape the left ventricle or the mitral valve annulus.
  • the magnets A and B can be implanted such that they exert an attractive magnetic force relative to one another.
  • the magnets A and B 2 can alternately be implanted. Other possible combinations are the magnets A 1 and B or the magnets A 1 and B 2 .
  • the magnets can be implanted without tethers such that an attractive magnetic force F causes the magnets and the attached region of the heart to move toward one another to re-shape the heart.
  • the magnets can be attached to one another with tethers.
  • one or more magnets 1705 are implanted in the walls 1710 of the left ventricle LV and/or the right ventricle RV, as shown in FIG. 19 .
  • the magnets 1705 are positioned in opposed locations on the walls 1710 and one or more tethers 1905 attach opposed pairs of magnets 1705 to one another.
  • One or more of the tethers 1905 extend through the interventricular septum to connect a first magnet disposed in the left ventricle and a second magnet disposed in the right ventricle.
  • magnet elements do not include tethers, but rely on the magnetic attraction to each other to remodel the tissue between them.
  • a magnetic element may be placed on either side of the interventricular septum, or one element within the septum.
  • Another magnetic element may be placed on or within the opposite left ventricular wall, or in an adjacent vessel on the left ventricular wall. The electromagnetic field of such elements can then interact to cause a remodeling of the left ventricle to assist with ventricular function.
  • the tethers 1905 can be elastic so to exert an attractive force between the attached magnets 1705 and re-shape the left ventricle LV or annulus AN. Alternately, or in combination with elastic tethers, the tethers 1905 can be shortened in length after placement to thereby pull the walls of the left ventricle LV toward one another and re-shape the left ventricle LV or the annulus AN. In combination with the force provided by the tethers 1905 , the magnets 1705 exert an attractive magnetic force toward one another to assist in pulling the heart walls toward each other.
  • one or more magnets can be positioned in other locations of the heart or adjacent anatomical structures for re-shaping of the heart.
  • one or more magnets can be positioned around the annulus AN or can be positioned in the coronary sinus in such a manner that the magnets exert attractive forces toward one another to cause re-shaping of a desired portion of the heart.
  • cardiac re-shaping is achieved through percutaneous placement of one or more tethers that are cinched or anchored in the walls of the left ventricle LV.
  • the tethers provide tension between the walls of the left ventricle to reshape the left ventricle LV in a desired manner.
  • FIG. 20 shows a cross-sectional view of the left ventricle LV with a tether 2010 positioned therein.
  • the tether 2010 has a first end anchored to a first wall of the left ventricle LV and a second end anchored to an opposed wall of the left ventricle LV.
  • the tether 2010 is tensioned to pull the walls toward one another (as represented by the phantom lines 2012 in FIG.
  • the left ventricle LV can be re-shaped in various manners and the amount of re-shaping can vary depending on the tension applied to the tether 2010 and the location of attachment to the walls of the left ventricle LV.
  • the tether may be inelastic or somewhat elastic.
  • the tether 2010 can be anchored or otherwise attached to the walls in various manners.
  • a patch 2015 shown in FIG. 20
  • a similar patch can also be positioned on the opposed wall and attached to the opposite end of the tether.
  • the patch is delivered to a desired location using a catheter 2105 having a sharpened distal end 2110 that is positioned within the left ventricle LV.
  • the catheter 2105 can be delivered to the left ventricle LV in various manners, including trans-aortically (via the aorta), trans-septally (by piercing the interventricular septum), and trans-atrially (via the left atrium LA) pursuant to well-known methods.
  • the sharpened distal end 2110 pierces the ventricular wall such that the distal end 2110 is positioned exterior to the ventricular wall.
  • the catheter 2105 has an internal delivery lumen having an opening at the distal end 2110 .
  • the patch 2015 is configured to be transported in a contracted state through the delivery lumen and delivered out of the opening at the distal end 2110 , where the patch 2015 expands into an expanded state at the exterior of the ventricular wall to seal against the exterior of the left ventricular wall.
  • the patch 2015 When positioned at the exterior of the ventricular wall, the patch 2015 is configured to act as a reservoir that receives a fluid material that can be delivered to the patch via the delivery lumen of the catheter 2105 .
  • the fluid material has a first viscous state of sufficient fluidity such that the material can flow through the delivery lumen of the catheter 2105 and out of the distal end 2110 to the location of the patch 2015 .
  • the fluid material changes to a second viscous state when positioned exterior to the ventricular wall at the patch 2015 .
  • the second viscous state is of greater viscosity (i.e., more resistant to flow) than the first viscous state such that the fluid material provides support and a level of rigidity to the patch 2015 and to the left ventricular wall.
  • the fluid material can change to the second viscous state after a predetermined time period, after contact with the patch, or when the patch is completely filled.
  • a catalyst can be injected into the fluid material to cause it to change to the second viscous state.
  • the catheter 2105 can then be disengaged from the patch 2015 such that the patch 2015 is disposed exterior to the ventricular wall.
  • the patch 2015 can be firmly attached to the ventricular wall (such as using an adhesive) to minimize wear or friction between the patch and the ventricular wall.
  • an end of the tether 2010 is attached to the patch 2015 .
  • the catheter 2105 can be used to deliver the tether 2010 to the patch 2015 or, alternately, a second catheter can be used.
  • the tether 2010 is already positioned in a delivery lumen of the catheter 2105 while the patch 2015 is being delivered.
  • the catheter 2105 is then pulled back while the end of the tether 2010 remains attached to the patch 2015 to thereby let the tether 2010 out from the catheter 2105 , as shown in FIG. 23 .
  • a second patch 2415 is deployed in or exterior to an opposed ventricular wall in a manner similar to that described above.
  • the opposite end of the tether 2010 is then attached to the second patch 2415 such that the tether 2010 extends between the two patches, as shown in FIG. 20 .
  • a second tether 2420 is attached at a first end to the second patch 2415 .
  • the two tethers 2010 and 2420 can then be attached together at opposite ends from the patches, such as by using a clip 2510 , to form a single attachment tether between the patches 2015 and 2415 .
  • the tethers 2010 and 2420 can be twisted or adjusted within the clip 2510 to tension the resulting attachment tether between the patches 2415 and 2015 and pull the ventricular walls toward one another via the tether. Once properly tensioned, the tether can be clipped or clamped to maintain its position.
  • a needle 2610 or delivery catheter is passed trans-thoracically into the left ventricle LV to deliver a patch 2615 to the exterior of the ventricular wall, as described above.
  • a sealing means such as a sealing balloon, can be used to seal one or more puncture holes in the wall of the left ventricle caused by the needle 2610 during delivery of the patch 2615 .
  • Visualization means such as fluoroscopy, can be used to visualize proper placement of the needle 2610 .
  • a second patch is attached to an opposed wall to form a tether attachment between the walls, as shown in FIG. 20 . The tether is then tensioned to pull the walls together and re-shape the left ventricle or annulus of the mitral valve in a desired manner.
  • FIG. 27 shows a schematic, cross-sectional view of the left ventricle LV in a healthy state with the mitral valve closed.
  • the valve chordae CH connect the leaflets LF of the mitral valve to the papillary muscles PM.
  • the papillary muscles PM and the and chordae CH are positioned such that at least a portion of the leaflets LF contact one another when the mitral valve is in the closed state, resulting in functional coaptation of the leaflets.
  • FIG. 28 shows the left ventricle LV in a dysfunctional state.
  • the valve chordae CH or the papillary muscles PM are damaged or otherwise dysfunctional such that the leaflets LF do not properly coapt (contact one another).
  • the dysfunction can be manifested by excess tension in the chordae CH such that a gap is located between the leaflets LF, or in some cases one leaflet may function at a different level from the other (e.g. lower (prolapse) or higher (flail)) thereby limiting the ability of the mitral valve to close resulting in mitral regurgitation.
  • the dysfunctional left ventricle LV and in some cases leaflet prolapse or flail can be treated by manipulating papillary muscles PM to adjust the position of the leaflets LF.
  • the papillary muscles PM are repositioned toward one another to reduce the distance between the papillary muscles PM.
  • a biasing member such as a rod of adjustable length, or a spring 2910
  • a spring 2910 is mounted between the papillary muscles PM with a first end of the spring 2910 attached to a first papillary muscle and a second end of the spring 2910 attached to a second papillary muscle.
  • the spring 2910 has a pre-load such that the spring 2910 provides a biasing force (represented by the arrows 2915 in FIG. 29 ) that pulls the papillary muscles PM toward one another.
  • a spring may be covered with polyester fabric or other coating to promote ingrowth into the muscle tissue and minimize the potential for clot formation.
  • the repositioning of the papillary muscles PM re-shapes the left ventricle and/or changes the distance that the leaflets need to move on the chordae CH such that the leaflets LF contact one another to close the mitral valve.
  • the tension provided by the spring 2910 can be varied or different springs can be used to achieve a proper repositioning of the papillary muscles PM. The tension may be modified at the time of the procedure or during a subsequent procedure if it is determined that additional coaptation is required.
  • a suture 3010 is mounted between the papillary muscles PM with a first end of the suture 3010 attached to a first papillary muscle and a second end of the suture 3010 attached to a second papillary muscle.
  • the suture 3010 can be attached to the papillary muscles in various manners.
  • an attachment device 3015 such as an anchor, cuff or sleeve, can be positioned around or partially around each of the papillary muscles.
  • the ends of the suture 3010 are attached to the attachment devices 3015 to secure the suture 3010 to the suture to the papillary muscles.
  • the suture 3010 is tensioned such that it provides a force that pulls the papillary muscles PM toward one another.
  • the suture 3010 can be tensioned, for example, by twisting the suture 3010 to reduce its the overall length and thereby reduce the distance between the papillary muscles PM, and fixing the suture with a crimping element or other stay element.
  • the amount of twisting or shortening can be varied to vary the tension provided by the suture 3010 .
  • a crimping member may be used to fix the sutures once a desired tension between the muscles is reached. Exemplary crimping members are described in International Patent Publication Number WO 2003/073913, which is incorporated herein by reference in its entirety.
  • the repositioning of the papillary muscles PM re-shapes the left ventricle and/or changes the tension on the chordae CH such that the leaflets LF contact one another to close the mitral valve.
  • Cuffs or sleeves may be placed around the papillary muscles PM to such as those previously described, to affect the repositioning.
  • the papillary muscles PM can also be repositioned by snaring the papillary muscles.
  • a snare 3110 comprised of a looped strand of material is positioned around the chordae CH at or near the location where the chordae attach with the papillary muscles PM.
  • the snare 3110 is tightened to draw the papillary muscles PM toward one another and re-shape the left ventricle and/or changes the distance that the leaflets need to travel during systole such that the leaflets LF contact one another to close the mitral valve.
  • one or more clips 3610 are clipped to each of the papillary muscles PM.
  • the structure of the clips 3610 can vary.
  • a tether 3615 attaches the clips 3610 to one another.
  • the tether 3615 is cinched to shorten the length of the tether 3615 and pull the papillary muscles PM toward one another and re-shape the left ventricle and/or changes the distance that the leaflets need to travel during systole such that the leaflets LF contact one another to close the mitral valve.
  • one or more clips 3610 are clipped to opposed walls of the left ventricle LV.
  • the clips 3610 can be delivered to the left ventricle using a delivery catheter 2105 .
  • a tether attaches the clips to one another.
  • the tether is cinched to shorten the length of the tether and pull the ventricular walls toward one another and re-shape the left ventricle and/or changes the distance that the leaflets need to travel during systole such that the leaflets LF contact one another to close the mitral valve.
  • a mitral valve clip may be deployed to augment the desired valve function, either before papillary or chordal manipulation, or after, if the desired leaflet coaptation is not achieved with one particular approach.
  • a dysfunctional left ventricle can be manifested by excess tension in the chordae CH such that a gap is positioned between the valve leaflets LF. It can be desirable to eliminate or relieve the excess tension by cutting the chordae CH, and/or cutting the chordae and replacing them with artificial chordae. Prior to cutting the chordae, it can be desirable to evaluate the placement of the artificial chordae to confirm that implantation of the chordae will indeed provide the desired clinical result. This process is now described with reference to FIGS. 32-35 .
  • FIG. 32 shows a leaflet grasping device 1100 that is configured to grasp and secure the leaflets of the mitral valve.
  • the device 1100 and corresponding methods of use are described in more detail in U.S. Patent Publication No. 2004/0030382, entitled “Methods and Apparatus For Cardiac Valve Repair”, which is incorporated herein by reference in its entirety. Additional leaflet grasping devices are described in U.S. Patent Publication No. 2004/0092962, U.S. Pat. No. 6,269,819, issued Aug. 7, 2001, and U.S. U.S. Pat. No. 6,461,366, issued Oct. 8, 2002, all of which are expressly incorporated by reference herein.
  • the device 1100 is comprised of a catheter shaft 1102 having a distal end 1104 and a proximal end 1106 .
  • the catheter shaft 1102 is comprised of, among others, a conduit 1108 , a coaxial outer sheath 1110 , a central lumen 1111 through which a double-jaw grasper 1113 may be inserted, and a central guidewire lumen 1105 .
  • the catheter shaft 1102 can have additional lumens for the passage of one or more needles, as described more fully below.
  • an optional pair of stabilizers 1112 are fixedly mounted on the outer sheath 1110 at their proximal end 1114 and fixedly attached to extenders 1116 at their distal end 1118 .
  • the stabilizers 1112 are shown in an outwardly bowed position, however they may be inwardly collapsed by either extending the extenders 1116 or retracting the outer sheath 1110 . Bowing may be achieved by the reverse process.
  • the double-jaw grasper 1113 is comprised of two articulating jaw arms 1120 which may be opened and closed against the central shaft 1122 (movement depicted by arrows) either independently or in tandem.
  • the grasper 1113 is shown in the open position in FIG. 32 .
  • the surfaces of the jaw arms 1120 and central shaft 1122 may be toothed, as shown, or may have differing surface textures for varying degrees of friction.
  • the jaw arms 1120 each include a needle passageway 1121 comprised of a cutout or a slot that extends at least partially along the length of each jaw arm 1120 . As described in more detail below, the needle passageway provides a location where a needle can pass through the jaw arm 1120 during manipulation of the papillary muscle.
  • the above described components may be manipulated and controlled by a handle 1126 connected to the proximal end 1106 of the catheter shaft 1102 , as shown in FIG. 32 the handle 1026 permits independent control of the components described above.
  • the device 1100 may be used at least temporarily grasp and restrain the valve leaflets LF of the mitral valve MV.
  • the double-jaw grasper 1113 extends through the valve such that the leaflets LF 1 , LF 2 are grasped from below.
  • the device 1100 is termed “atrial-ventricular.”
  • the atrial device 1100 may be stabilized against the mitral valve MV.
  • the stabilizers 1112 may be positioned on the superior surface of the valve leaflets LF 1 , LF 2 at a 90 degree angle to the line of coaptation.
  • the grasper 1113 may be advanced in its closed position from the conduit 1108 between the leaflets LF 1 , LF 2 until the jaw arms 1120 are fully below the leaflets in the ventricle. At this point, the grasper 1113 may be opened and retracted so that the jaw arms 1120 engage the inferior surface of the leaflets LF 1 , LF 2 . In this manner, the leaflets are secured between the stabilizers 1112 and the jaw arms 1120 .
  • the grasper 1113 will gradually close, drawing the leaflets LF 1 , LF 2 together while maintaining a secure hold on the leaflets between the jaw arms 1120 and the stabilizers 1112 .
  • the stabilizers 1112 may be gradually collapsed by either extending the extenders 1116 or retracting the outer sheath 1110 .
  • the jaw arms 1120 may collapse due to spring loading to gradually close the grasper 1113 .
  • the jaw arms 1120 may be actuated to close against the central shaft 1122 applying force to the stabilizers 1112 causing them to collapse.
  • a needle 3410 is advanced from the left atrium into the left ventricle.
  • the needle 3410 can be passed through a lumen in the device 1100 or it can be passed external to the device 1100 .
  • the needle 3410 passes through a leaflet LF and into a papillary muscle PM.
  • the jaw arms 1120 have needle passageways 1121 (shown in FIG. 32 ) that permit passage of the needle through the jaw arms 1120 .
  • the needle 3410 is attached to a suture 3415 that extends distally through the device 1100 .
  • the suture 3415 is then anchored to the papillary muscle PM such that the suture 3415 provides an attachment for holding, pulling, or otherwise manipulating the papillary muscle PM.
  • the tension in the suture 3415 can be adjusted to re-position the papillary muscle PM such that the leaflets LF contact one another to close the mitral valve. The same process can be performed with the other papillary muscle.
  • chordae CH may be cut.
  • the sutures 3415 function as artificial chordae that retain the leaflets LF and papillary muscles PM in a desired orientation.
  • a fixation device such as a clip can then be attached to the leaflets using methods and device described in U.S. Patent Publication Nos. 2004/0030382, filed Aug. 5, 2003, and 2004/0092962, filed May 19, 2003, U.S. Pat. No. 6,269,819, issued Aug. 7, 2001, and U.S. Pat. No. 6,461,366, issued Oct. 8, 2002, all of which are expressly incorporated by reference herein.
  • the sutures 3415 can be attached to the clip 3510 or directly to the leaflets LF. It should be appreciated that any quantity of sutures 3415 can be used as artificial chordae between the leaflets and the papillary muscles. It should be appreciated that the leaflet clips can also be used in conjunction with cutting, elongating, or shortening of the chordae pursuant to the methods described above.
  • the result Prior to permanently placing the chordae or clips, the result can be previewed on ultrasound (TEE, ICE, echocardiography), to determine if the appropriate valve coaptation is restored.
  • TEE ultrasound
  • ICE echocardiography

Abstract

Disclosed are methods, systems, and devices for the endovascular repair of cardiac valves, particularly the atrioventricular valves which inhibit back flow of blood from a heart ventricle during contraction. The procedures described herein can be performed with interventional tools, guides and supporting catheters and other equipment introduced to the heart chambers from the patient's arterial or venous vasculature remote from the heart. The interventional tools and other equipment may be introduced percutaneously or may be introduced via a surgical cut down, and then advanced from the remote access site through the vasculature until they reach the heart.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a divisional of U.S. patent application Ser. No. 12/883,095 filed Sep. 15, 2010, which claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/243,459, filed Sep. 17, 2009. This application is also a continuation-in-part of co-pending U.S. patent application Ser. No. 11/349,742, filed on Feb. 7, 2006, which claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/650,918 entitled “Methods, Systems and Devices for Cardiac Valve Repair,” filed Feb. 7, 2005, and U.S. Provisional Patent Application Ser. No. 60/692,802 entitled “Methods, Systems and Devices for Cardiac Valve Repair,” filed Jun. 21, 2005. Priority of the aforementioned filing dates is hereby claimed, and the full disclosures of the aforementioned applications are hereby incorporated by reference in their entirety.
  • BACKGROUND
  • The present invention relates generally to medical methods, devices, and systems. In particular, the present invention relates to methods, devices, and systems for the endovascular or minimally invasive surgical repair of the atrioventricular valves of the heart, particularly the mitral valve.
  • Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of a heart through an incompetent mitral valve into the left atrium. During a normal cycle of heart contraction (systole), the mitral valve acts as a check valve to prevent flow of oxygenated blood back into the left atrium. In this way, the oxygenated blood is pumped into the aorta through the aortic valve. Regurgitation of the valve can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.
  • Mitral valve regurgitation can result from a number of different mechanical defects in the mitral valve. The valve leaflets, the valve chordae which connect the leaflets to the papillary muscles, or the papillary muscles themselves may be damaged or otherwise dysfunctional. Commonly, the valve annulus may be damaged, dilated, or weakened limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle. In some cases the mitral valve leaflets detach from the chordae tendinae, the structure that tethers them to the ventricular wall so that they are positioned to coapt or close against the other valve leaflet during systole. In this case, the leaflet “flails” or billows into the left atrium during systole instead of coapting or sealing against the neighboring leaflet allowing blood from the ventricle to surge into the left atrium during systole. In addition, mitral valve disease can include functional mitral valve disease which is usually characterized by the failure of the mitral valve leaflets to coapt due to an enlarged ventricle, or other impediment to the leaflets rising up far enough toward each other to close the gap or seal against each other during systole.
  • The most common treatments for mitral valve regurgitation rely on valve replacement or strengthening of the valve annulus by implanting a mechanical support ring or other structure. The latter is generally referred to as valve annuloplasty. A recent technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the “bow-tie” or “edge-to-edge” technique. While all these techniques can be very effective, they usually rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated morbidity.
  • SUMMARY
  • For the foregoing reasons, it would be desirable to provide alternative and additional methods, devices, and systems for performing the repair of mitral and other cardiac valves, including the tricuspid valve, which is the other atrioventricular valve. In some embodiments of the present invention, methods and devices may be deployed directly into the heart chambers via a trans-thoracic approach, utilizing a small incision in the chest wall, or the placement of a cannula or a port. In other embodiments, such methods, devices, and systems may not require open chest access and be capable of being performed endovascularly, i.e., using devices which are advanced to the heart from a point in the patient's vasculature remote from the heart. Still more preferably, the methods, devices, and systems should not require that the heart be bypassed, although the methods, devices, and systems should be useful with patients who are bypassed and/or whose heart may be temporarily stopped by drugs or other techniques. At least some of these objectives will be met by the inventions described hereinbelow.
  • In an aspect, disclosed herein is a chordal replacement device having a proximal anchor including a flexible patch and a leaflet attachment device. The flexible patch is affixed to an upper surface of a portion of a flailing leaflet with the leaflet attachment device. The device also includes a distal anchor extending and affixed to a distal attachment site in a ventricle; and a flexible tether coupled to and tensioned between the proximal and distal anchors.
  • In another aspect, there is a chordal replacement device having a proximal anchor including a flexible crimp clip having one or more barbs that embed into and affix to a portion of a flailing leaflet; a distal anchor extending and affixed to a distal attachment site in a ventricle; and a flexible tether coupled to and tensioned between the proximal and distal anchors.
  • The device can include a leaflet attachment device having a pair of expandable elements interconnected by a central attachment rod. The pair of expandable elements can sandwich the flexible patch and the leaflet. The leaflet attachment device can include an expandable element. The expandable element can be self-deploying and can include a star-shaped barb, a mesh web, or a mesh ball. The proximal anchor can further include a mesh stent deployable within an atrium. The mesh stent can be coupled to a flexible rod that extends through a valve commissure into the ventricle. The distal end of the flexible rod can couple to the distal anchor and provide consistent tension on the tether during a heart cycle. The flexible rod can have a deflectable, spring-formed shape. The flexible rod can be jointed. The distal anchor and tensioned flexible tether can apply a downward force on the flailing leaflet. The distal anchor can include a weight, barb, adhesive, screw, or fluid-filled element. The distal attachment site can include a portion of the ventricle wall, ventricular septum or papillary muscle. The distal anchor can fine-tune the tension of the tether after the distal anchor is affixed to the distal attachment site. The distal anchor can include a coil screw and wherein rotation of the coil screw fine-tunes the tension on the tether. The distal anchor can include a balloon and wherein infusion of fluid into the balloon increases tension on the tether.
  • The flexible tether can have a length that can be adjusted to a desired tension to apply a downward force on the flailing leaflet. The flexible tether can include one or more loops of a flexible material. The one or more loops can be drawn together at a distal end region with an enclosed element. The enclosed element can couple the one or more loops to the distal anchor. The one or more loops can be coupled to the proximal and distal anchors such that the one or more loops self-equalize and evenly distribute tension on the flailing leaflets and on distal attachment site.
  • In another aspect, disclosed is a chordal replacement device including a proximal anchor comprising a flexible crimp clip having one or more barbs that embed into and affix to a portion of a flailing leaflet; a distal anchor extending and affixed to a distal attachment site in a ventricle; and a flexible tether coupled to and tensioned between the proximal and distal anchors.
  • The distal anchor and flexible tether can hold down the flailing leaflet. The distal anchor can include a weight, barb, adhesive, screw, or fluid-filled element. The distal attachment site can include a portion of the ventricle wall, ventricular septum or papillary muscle. The distal anchor can fine-tune the tension of the tether after the distal anchor is affixed to the distal attachment site. The distal anchor can include a coil screw and wherein rotation of the coil screw fine-tunes the tension on the tether. The distal anchor can include a balloon and wherein infusion of fluid into the balloon increases tension on the tether. The tether can have a length that can be adjusted to a desired tension to hold the leaflet down.
  • In another aspect, disclosed is a method for repairing a cardiac valve including accessing a patient's vasculature remote from the heart; advancing an interventional tool through an access sheath to a location near the cardiac valve, the interventional tool comprising a distal flange; affixing a chordal replacement device to a portion of a flailing leaflet, the chordal replacement device including a flexible patch; one or more leaflet attachment devices; a distal anchor; and a flexible tether coupled to and tensioned between the flexible patch and the distal anchor. The method also includes coupling the distal anchor to a distal attachment site in a ventricle; and applying a downward force on the flailing leaflet with the tether and distal anchor so as to prevent flail of the leaflet into the atrium.
  • Affixing a chordal replacement device can further include positioning the flexible patch on an upper surface of a flailing leaflet, piercing the patch and the leaflet with the one or more leaflet attachment devices, and sandwiching the leaflet and the patch between a pair of expandable elements. The pair of expandable elements can be self-deploying. The distal anchor can include a weight, barb, adhesive, coil screw or fluid-filled element. The distal attachment site can include a portion of the ventricle wall, ventricular septum or papillary muscle. The method can further include observing flow through the cardiac valve to determine if leaflet flail, valve prolapse or valve regurgitation are inhibited. The method can further include adjusting tension of the tether coupled to and tensioned between the flexible patch and the distal anchor. The distal anchor can include a coil screw and wherein adjusting the tension of the tether comprises rotating the coil screw. The distal anchor can include a balloon and wherein adjusting the tension of the tether comprises infusing fluid into the balloon. The method can further include sensing contact between the distal anchor and the distal attachment site.
  • Other features and advantages should be apparent from the following description of various embodiments, which illustrate, by way of example, the principles of the disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a schematic illustration of the left ventricle of a heart showing blood flow during systole with arrows.
  • FIG. 1B shows a cross-sectional view of the heart wherein a flexible stent is positioned at or near the mitral valve.
  • FIG. 2A shows a cross-sectional view of the heart showing one or more magnets positioned around the annulus of the mitral valve.
  • FIG. 2B shows an annular band with magnets that can be positioned on the mitral valve annulus.
  • FIG. 3 shows a cross-sectional view of the heart identifying locations for placement of valves.
  • FIG. 4 show a cross-sectional view of the heart with a pair of flaps mounted at or near the mitral valve.
  • FIG. 5A shows a schematic side view of the mitral valve leaflets with a flap positioned immediately below each leaflet.
  • FIG. 5B shows a downward view of the mitral valve with a pair of exemplary flaps superimposed over the leaflets.
  • FIG. 5C shows a pair of mitral valve leaflet flaps having complementary shapes.
  • FIG. 6A shows a cross-sectional view of the heart with a membrane ring positioned at the mitral valve annulus.
  • FIG. 6B shows a schematic view of the membrane ring, which includes an annular ring on which is mounted a membrane.
  • FIG. 7A shows a cross-sectional view of a heart with a bladder device positioned partially within the left ventricle and partially within the left atrium.
  • FIG. 7B shows a schematic side view of the mitral valve leaflets failing to coapt.
  • FIG. 7C shows a schematic side view of the mitral valve leaflets with a bladder positioned between the leaflets.
  • FIG. 7D shows a plan view of the mitral valve with the leaflets in an abnormal closure state such that a gap is present between the leaflets.
  • FIG. 8 shows a cross-sectional view of the heart wherein a one-way valve device is located in the left atrium.
  • FIG. 9A shows a prosthetic ring that is sized to fit within a mitral valve.
  • FIG. 9B shows another embodiment of a prosthetic ring wherein a one-way valve is positioned inside the ring.
  • FIG. 10 shows a prosthetic with one or more tongues or flaps that are configured to be positioned adjacent the flaps of the mitral valve.
  • FIG. 11A shows an exemplary embodiment of one or more clips that are positioned on free edges of the leaflets.
  • FIG. 11B shows pair of leaflets with a magnetic clip attached to the underside of each leaflet.
  • FIG. 11C shows the leaflets coapted as a result of the magnetic attraction between the magnetic clips.
  • FIG. 11D shows a pair of leaflets with a single clip attached to one of the leaflets.
  • FIG. 12 shows a schematic, cross-sectional view of the heart with a wedge positioned below at least one of the leaflets of the mitral valve.
  • FIG. 13A shows an artificial chordae tendon.
  • FIGS. 13B and 13C show attachment devices for attaching the artificial chordae tendon to a heart wall.
  • FIG. 14 shows a cross-sectional view of the heart with a first and second anchor attached to a wall of the heart.
  • FIG. 15 shows a catheter that has been introduced into the heart.
  • FIG. 16 shows a schematic view of a papillary muscle with a ring positioned over the muscle.
  • FIG. 17 shows a cross-sectional view of the heart with one or more magnets attached to a wall of the left ventricle.
  • FIG. 18A shows another embodiment of a procedure wherein magnets are implanted in the heart to geometrically reshape the annulus or the left ventricle.
  • FIG. 18B shows the heart wherein tethered magnets are implanted in various locations to geometrically reshape the annulus or the left ventricle.
  • FIG. 18C shows the heart wherein magnets are implanted in various locations to geometrically reshape the annulus or the left ventricle.
  • FIG. 19 shows another embodiment of a procedure wherein magnets are implanted in the heart to geometrically reshape the annulus or the left ventricle.
  • FIG. 20 shows a cross-sectional view of the left ventricle with a tether positioned therein.
  • FIG. 21 shows a cross-sectional view of the left ventricle with a delivery catheter positioned therein.
  • FIG. 22 shows a cross-sectional view of the left ventricle with the delivery catheter penetrating a wall of the left ventricle.
  • FIG. 23 shows a cross-sectional view of the left ventricle with the delivery catheter delivering a patch to the wall of the left ventricle.
  • FIG. 24 shows a cross-sectional view of the left ventricle with the delivery penetrating delivering a second patch.
  • FIG. 25 shows a cross-sectional view of the left ventricle with two tethers attached together at opposite ends from the patches mounted in the heart.
  • FIG. 26 shows a cross-sectional view of the left ventricle with a needle or delivery catheter passed transthoracically into the left ventricle LV to deliver a patch to the exterior of the ventricular wall.
  • FIG. 27 shows a schematic, cross-sectional view of the left ventricle in a healthy state with the mitral valve closed.
  • FIG. 28 shows the left ventricle in a dysfunctional state.
  • FIG. 29 shows the left ventricle with a biasing member mounted between the papillary muscles.
  • FIG. 30 shows the left ventricle with a suture mounted between the papillary muscles.
  • FIG. 31 shows the left ventricle with a snare positioned around the chordae at or near the location where the chordae attach with the papillary muscles.
  • FIG. 32 shows a leaflet grasping device that is configured to grasp and secure the leaflets of the mitral valve.
  • FIGS. 33A-33C show the leaflet grasping device grasping leaflets of the mitral valve.
  • FIG. 34 shows the left ventricle with a needle being advanced from the left atrium into the left ventricle via the leaflet grasping device.
  • FIG. 35 shows the left ventricle with sutures holding the papillary muscles in a desired position.
  • FIG. 36 shows a cross-sectional view of the heart with one or more clips clipped to each of the papillary muscles.
  • FIG. 37 shows a cross-sectional view of the heart with tethered clips attached to opposed walls of the left ventricle.
  • FIGS. 38A-38C show an embodiment of a chordal replacement device.
  • FIGS. 39A-39M show another embodiment of a chordal replacement device.
  • FIGS. 39N-39O show an embodiment of a dual function clamp and deployment of an embodiment of a chordal replacement device.
  • FIGS. 40A-40B show another embodiment of a chordal replacement device.
  • FIGS. 41A-41B show a cross-sectional view of the chordal replacement device of FIGS. 40A-40B being deployed.
  • FIGS. 41C-41E show an embodiment of an attachment device fixing a chordal replacement device to a valve leaflet.
  • FIG. 41F shows an embodiment of an expandable feature of an attachment device having a star-shaped design.
  • FIGS. 41G-41P show embodiments of a leaflet stabilizing mechanism.
  • FIGS. 42A-42D show various embodiments of an expandable feature of an attachment device.
  • FIGS. 43A-43B show an embodiment of attachment devices fixing a patch to a valve leaflet.
  • FIGS. 44A-44D show various steps in the deployment of an embodiment of a chordal replacement device.
  • FIGS. 45A-45D show various embodiments of a distal attachment assembly deployed in the ventricle wall.
  • FIGS. 46A-46B show an embodiment of a sensor used in the adjustment of artificial chordae tension.
  • FIG. 47 illustrates an embodiment of fine-tuning the tension on the artificial chordae.
  • FIGS. 48A-48B illustrate another embodiment of fine-tuning the tension on the artificial chordae.
  • FIGS. 49A-49B show another embodiment of an attachment assembly for a chordal replacement device.
  • FIGS. 50A-50B show another embodiment of an attachment assembly for a chordal replacement device.
  • FIGS. 50C-50E show an embodiment of a jointed rod having mechanical locking feature.
  • FIG. 50F illustrates the independent pivot axes of a jointed rod system.
  • FIGS. 51A-51B show another embodiment of an attachment assembly for a chordal replacement device.
  • FIGS. 52A-52C show an embodiment of a leaflet extension device blocking valve leaflet flail.
  • DETAILED DESCRIPTION
  • The present invention provides methods, systems, and devices for the endovascular repair of cardiac valves, particularly the atrioventricular valves which inhibit back flow of blood from a heart ventricle during contraction (systole), most particularly the mitral valve between the left atrium and the left ventricle. By “endovascular,” it is meant that the procedure(s) of the present invention are performed with interventional tools, guides and supporting catheters and other equipment introduced to the heart chambers from the patient's arterial or venous vasculature remote from the heart. The interventional tools and other equipment may be introduced percutaneously, i.e., through an access sheath, or may be introduced via a surgical cut down, and then advanced from the remote access site through the vasculature until they reach the heart. Thus, the procedures of the present invention will generally not require penetrations made directly through the exterior heart muscle, i.e., myocardium, although there may be some instances where penetrations will be made interior to the heart, e.g., through the interatrial septum to provide for a desired access route.
  • While the procedures of the present invention will usually be percutaneous and intravascular, many of the tools will find use in minimally invasive and open surgical procedures as well that includes a surgical incision or port access through the heart wall. In particular, the tools for capturing the valve leaflets prior to attachment can find use in virtually any type of procedure for modifying cardiac valve function.
  • The atrioventricular valves are located at the junctions of the atria and their respective ventricles. The atrioventricular valve between the right atrium and the right ventricle has three valve leaflets (cusps) and is referred to as the tricuspid or right atrioventricular valve. The atrioventricular valve between the left atrium and the left ventricle is a bicuspid valve having only two leaflets (cusps) and is generally referred to as the mitral valve. In both cases, the valve leaflets are connected to the base of the atrial chamber in a region referred to as the valve annulus, and the valve leaflets extend generally downwardly from the annulus into the associated ventricle. In this way, the valve leaflets open during diastole when the heart atria fill with blood, allowing the blood to pass into the ventricle.
  • During systole, however, the valve leaflets are pushed together and closed to prevent back flow of blood into the atria. The lower ends of the valve leaflets are connected through tendon-like tissue structures called the chordae, which in turn are connected at their lower ends to the papillary muscles. Interventions according to the present invention may be directed at any one of the leaflets, chordae, annulus, or papillary muscles, or combinations thereof. It will be the general purpose of such interventions to modify the manner in which the valve leaflets coapt or close during systole so that back flow or regurgitation is minimized or prevented.
  • The left ventricle LV of a normal heart H in systole is illustrated in FIG. 1A. The left ventricle LV is contracting and blood flows outwardly through the tricuspid (aortic) valve AV in the direction of the arrows. Back flow of blood or “regurgitation” through the mitral valve MV is prevented since the mitral valve is configured as a “check valve” which prevents back flow when pressure in the left ventricle is higher than that in the left atrium LA. The mitral valve MV comprises a pair of leaflets having free edges FE which meet evenly to close, as illustrated in FIG. 1A. The opposite ends of the leaflets LF are attached to the surrounding heart structure along an annular region referred to as the annulus AN. The free edges FE of the leaflets LF are secured to the lower portions of the left ventricle LV through chordae tendineae CT (referred to hereinafter as the chordae) which include plurality of branching tendons secured over the lower surfaces of each of the valve leaflets LF. The chordae CT in turn, are attached to the papillary muscles PM which extend upwardly from the lower portions of the left ventricle and interventricular septum IVS.
  • While the procedures of the present invention will be most useful with the atrioventricular valves, at least some of the tools described hereinafter may be useful in the repair of other cardiac valves, such as peripheral valves or valves on the venous side of the cardiac circulation, or the aortic valve.
  • The methods of the present invention can comprise accessing a patient's vasculature at a location remote from the heart, advancing an interventional tool through the vasculature to a ventricle and/or atrium, and engaging the tool against a tissue structure which forms or supports the atrioventricular valve. By engaging the tool against the tissue structure, the tissue structure is modified in a manner that reduces valve leakage or regurgitation during ventricular systole. The tissue structure may be any of one or more of the group consisting of the valve leaflets, chordae, the valve annulus, and the papillary muscles, atrial wall, ventricular wall or adjacent structures. Optionally, the interventional tool will be oriented relative to the atrioventricular valve and/or tissue structure prior to engaging the tool against the tissue structure. The interventional tool may be self-orienting (e.g., pre-shaped) or may include active mechanisms to steer, adjust, or otherwise position the tool.
  • Alternatively, orientation of the interventional tool may be accomplished in whole or in part using a separate guide catheter, where the guide catheter may be pre-shaped and/or include active steering or other positioning means such as those devices set forth in United States Patent Publication Numbers 2004/0044350, 2004/0092962, and 2004/0087975, all of which are expressly incorporated by reference herein. In all cases, it will usually be desirable to confirm the position prior to engaging the valve leaflets or other tissue structures. Such orienting step may comprise positioning the tool relative to a line of coaptation in the atrioventricular valve, e.g., engaging positioning elements in the valve commissures and confirming the desired location using a variety of imaging means such as magnetic resonant imaging (MRI), intracardiac echocardiography (ICE), transesophageal echo (TEE), fluoroscopy, endoscopy, intravascular ultrasound (IVUS) and the like.
  • In some embodiments, heart disease in general, and valve repair in particular, are treated by targeting the pacing of the heartbeat. In one embodiment, heart disease is treated by introducing one or more pacing leads into a heart chamber. The pacing leads are placed in contact with a heart muscle and are in electrical communication with a power source. The power source provides paced electrical stimuli to the heart muscle. The electrical stimuli are provided during or immediately after systole to extend systolic contraction of the heart, thereby extending the range of systole during each heartbeat. This extension of systole extends the amount of time in which the heart muscle tightens when it would otherwise be relaxing, when there is most mitral regurgitation in diseased mitral valves.
  • Other embodiments are directed to annuloplasty to treat heart disease in general and valve repair in particular. In one embodiment, shown generally in FIG. 1B, a stent is used to treat the mitral valve. FIG. 1B shows a cross-sectional view of the heart wherein a flexible stent 100 is positioned at or near the mitral valve MV. The stent 100 is annular and is sized and shaped to be positioned on the annulus of the mitral valve. The stent 100 can transition between a collapsed state of reduced size and an expanded state of enlarged size relative to the collapsed state.
  • The flexible stent 100 can be percutaneously introduced into an individual's heart while being biased toward the collapsed state. The stent is advanced partially through the annulus of the mitral valve so that it is coaxially positioned within the annulus, as shown in FIG. 1B. The stent 100 is then secured to the annulus such that the stent exerts an inward force on the annulus thereby causing the annulus to resist dilation during diastole of the heart.
  • In yet another embodiment, a device is disclosed for treating the mitral valve. The device can be a stent, such as the stent 100, that is sized to fit coaxially within an annulus of a mitral valve. The stent includes a hollow frame. The frame can be annular such that it has a cross-sectional diameter that is sized such that an outer surface of the frame is in continuous coaxial contact with the annulus. The frame also includes one or more anchors protruding from it for securing the stent to the annulus. The anchors can be prongs, barbs, protrusions, or any structure adapted to secure the stent to the annulus. The stent is flexible between an expanded configuration and a contracted configuration and is biased toward the contracted configuration so that it exerts an inward force on the annulus.
  • In one embodiment, the stent 100 is delivered using a delivery catheter 10 that is advanced from the inferior vena cava IVC into the right atrium RA. Once the catheter 10 reaches the anterior side of the interatrial septum IAS, a needle 12 may be advanced so that it penetrates through the septum at the fossa ovalis FO or the foramen ovale into the left atrium LA. At this point, a delivery device can be exchanged for the needle and the delivery device used to deliver the stent 100. The catheter 10 can also approach the heart in other manners.
  • FIG. 2A shows a cross-sectional view of the heart showing one or more magnets 205 positioned around the annulus of the mitral valve MV. A corresponding method of treating heart disease involves the use of magnets. The method includes percutaneously introducing at least a first magnet 205 into an individual's heart and securing it to the mitral valve MV annulus. At least a second magnet 205 is percutaneously introduced into the heart and advanced so that it is within a magnetic field of the first magnet. The second magnet is secured to the heart. The polarity of one of the two magnets is then cyclically changed in synchronization with the heart beat so that the magnets attract and repel each other in synchronization with the heart beat. The first magnet therefore moves in relation to the second magnet and exerts an inward closing force on the mitral valve during systole. The magnets 205 can be positioned on an annular band 215 (shown in FIG. 2B) that is sized and shaped to be implanted on the annulus of the mitral valve. The band 215 can be, for example, a stent.
  • In one embodiment, the magnets 205 or the annular band 215 are delivered using a delivery catheter 10 that is advanced from the inferior vena cava IVC into the right atrium RA, as described above with reference to FIG. 1. Any of the devices described herein can be percutaneously delivered into the heart by coupling the device to a delivery device, such as a steerable delivery catheter.
  • In yet another embodiment involving magnets, two or more magnets are percutaneously introduced into an individual's coronary sinus such that they attract or repel each other to reshape the coronary sinus and an underlying mitral valve annulus.
  • Other embodiments involve various prosthetics for treating heart disease in general and defective or diseased mitral valves in particular. In one embodiment, a method of treatment includes placing one or more one-way valves in one or more pulmonary veins of an individual either near the ostium of the vein or at some point along the length of the PV. Valves that may be used, for example may be stentless valves such as designs similar to the TORONTO SPV® (Stentless Porcine Valve) valve, mechanical or tissue heart valves or percutaneous heart valves as are known in the art provided they are sized appropriately to fit within the lumen of the pulmonary vein, as shown in FIG. 3. In FIG. 3, the locations in the left atrium LA where valves can be positioned in pulmonary vein orifices are represented by an “X”. In addition, certain venous valve devices and techniques may be employed such as those described in U.S. Pat. Nos. 6,299,637 and 6,585,761, and United States Patent Publication Numbers 2004/0215339 and 2005/0273160, the entire contents of which are incorporated herein by reference. A valve prosthesis for placement in the ostia of the pulmonary vein from the left atrium may be in the range of 6-20 mm in diameter. Placement of individual valves in the pulmonary vein ostia (where the pulmonary veins open or take off from the left atrium) may be achieved by obtaining trans septal access to the left atrium with a steerable catheter, positioning a guidewire through the catheter and into the targeted pulmonary vein, and deploying a valve delivery catheter over the guidewire and deploying the valve out of the delivery catheter. The valve may be formed of a deformable material, such as stainless steel, or of a self-expanding material such as NiTi, and include tissue leaflets or leaflets formed of a synthetic material, such as is known in the art. A line of +++++ symbols in FIG. 3 represents a mid-atrial location above the mitral valve where a single valve can be positioned as disclosed later in this specification.
  • The following references, all of which are expressly incorporated by reference herein, describe devices (such as steerable catheters) and methods for delivering interventional devices to a target location within a body: United States Patent Publication Numbers 2004/0044350, 2004/0092962 and 2004/0087975.
  • FIG. 4 show a cross-sectional view of the heart with a pair of flaps mounted at or near the mitral valve. FIG. 5A shows a schematic side view of the mitral valve leaflets LF with a flap 300 positioned immediately below each leaflet. The flap 300 can be contoured so as to conform at least approximately to the shape of a leaflet, or the flap 300 can be straight as shown in FIG. 4. FIG. 5B shows a downward view of the mitral valve with a pair of exemplary flaps superimposed over the leaflets LF. As shown in FIG. 5C, the flaps can have complementary shapes with a first flap having a protrusion that mates with a corresponding recess in a second flap.
  • In corresponding method of treatment, shown in FIGS. 4 and 5C, a first flap 300 with an attachment end 305 and a free end 310 is provided. The attachment end 305 of the first flap 300 is secured to the inside wall of the ventricle below the mitral valve. A second flap 315 with an attachment end 320 and a free end 330 is provided and is also secured to the inside wall of the ventricle below the mitral valve. The first and second flaps 300, 315 are oriented so that they face each other and the free ends 310, 330 are biased toward each other and approximate against each other during systole. This system provides a redundant valving system to assist the function of the native mitral valve.
  • In other embodiments, devices and methods that involve prosthetic discs are disclosed. For example, FIG. 6A shows a cross-sectional view of the heart with a membrane ring 610 positioned at the mitral valve annulus. FIG. 6B shows a schematic view of the membrane ring 610, which includes an annular ring on which is mounted a membrane. The membrane includes a series of perforations 615 extending through the membrane surface. One or more anchor devices, such as prongs, can be located on the ring for securing the ring to the mitral valve.
  • In one embodiment, a device for treating heart disease in general and defective or diseased mitral valves in particular includes a disc having a ring, a membrane stretched across an opening of the ring, and one or more anchors for securing the disc to an annulus of a mitral valve. The disc is sized to cover the annulus of the mitral valve, and the membrane includes one or more perforations that permit one way fluid flow through the disc. Methods of treatment using the device are also provided.
  • In other embodiments, devices and methods that involve fluid-filled bladders are disclosed. FIG. 7A shows a cross-sectional view of a heart with a bladder device positioned partially within the left ventricle and partially within the left atrium. A device for treating heart disease in general and defective or diseased mitral valves in particular includes a fluid-filled bladder 600. The bladder 600 is placed across the mitral valve between the left atrium and the left ventricle. Upon compression of the left ventricle, the volume of the bladder is expanded on the left atrial side of the heart, providing a baffle or sealing volume to which the leaflets of the mitral valve coapt. The bladder may also act as a blocking device in the case of flail of a leaflet, blocking said flailing leaflet from billowing into the left atrium causing regurgitation. The bladder also includes one or more anchors for securing the bladder to an annulus of a mitral valve, or may be formed on a cage or other infrastructure to position it within the line of coaptation of the mitral valve.
  • A bladder can also be used to treat functional mitral valve disease. As mentioned, functional mitral valve disease is usually characterized by the failure of the mitral valve leaflets to coapt due to an enlarged ventricle, or other impediment to the leaflets rising up far enough toward each other to close the gap or seal against each other during systole. FIG. 7B shows a schematic side view of the mitral valve leaflets LF failing to coapt such that regurgitation can occur (as represented by the arrow RF.) With reference to FIG. 7C, a baffle or bladder 630 is positioned between the leaflets LF along the line of coaptation of the leaflets. The bladder 630 provides a surface against which at least a portion of the leaflets LF can seal against. The bladder 630 thus serves as a coaptation device for the leaflets. The bladder can be attached to various locations adjacent to or on the mitral valve. FIG. 7D shows a plan view of the mitral valve with the leaflets LF in an abnormal closure state such that a gap G is present between the leaflets. In one embodiment, the bladder is attached or anchored to the mitral valve at opposite edges E of the gap G.
  • Methods of treatment using the bladder include providing the bladder and inserting it through an annulus of a mitral valve such that the bladder is coaxially positioned through the mitral valve. An atrial portion of the bladder extends into the left atrium, and a ventricular portion of the bladder extends into the left ventricle. A mid portion of the bladder may be secured to the annulus of the mitral valve such that the mid portion remains stationery while the atrial and ventricular portions expand and contract passively between the atrium and ventricle based on pressure differentials during systole and diastole.
  • FIG. 8 shows a cross-sectional view of the heart wherein a one-way valve device 700 is located in the left atrium. The valve device is represented schematically in FIG. 8. A corresponding method of treating heart disease includes introducing a one-way valve device 700 into the left atrium of an individual's heart proximal the mitral valve. The valve device 700 is configured to permit fluid flow in one direction while preventing fluid flow in an opposite direction. The valve device can have various structures. For example, the device can comprise a valve that is mounted on a stent that is sized to be positioned in the left atrium. Valves that may be used, for example may be stentless valves such as the TORONTO SPV® (Stentless Porcine Valve) valve, mechanical or tissue heart valves or percutaneous heart valves as are known in the art. The outer wall of the one-way valve device is sealed to the inner wall of the atrium so that a fluid-tight seal is formed between the outer wall of the one-way valve device and the inner wall of the left atrium. In this regard, the valve device can include a seal member that is configured to seal to the inner wall of the atrium.
  • Another embodiment involves a prosthetic for treating heart disease in general and defective or diseased mitral valves in particular. FIG. 9A shows a prosthetic ring 800 that is sized to fit within a mitral valve annulus The ring includes one or more anchors 805 that extend around the periphery of the ring 800. In addition, one or more struts 810 struts extend across the diameter of the ring, and can be made of a material that includes Nitinol or magnetic wires for selectively adjusting the shape of the ring. The struts can also be instrumental in baffling mitral valve leaflet “flail”. FIG. 9B shows another embodiment of a prosthetic ring 807 wherein a one-way valve 815 is positioned inside the ring such that blood flow BF can flow through the valve in only one direction. The valve can be manufactured of various materials, such as silicone.
  • FIG. 10 shows a prosthetic with one or more tongues or flaps that are configured to be positioned adjacent the flaps of the mitral valve. The prosthetic includes a ring 900 sized to fit within a mitral valve annulus. At least two tongues 910 project from the ring 900 in a caudal direction when the ring is implanted into a heart of an individual. The ring is flexible between an expanded configuration and a contracted configuration and is biased toward the contracted configuration. One or more anchors 920 protrude from the flexible ring for coupling the ring coaxially to the annulus such that the contracted configuration of the ring exerts an inward force to the annulus. Alternatively, or in addition, the two tongues can each have a length sufficient to prevent prolapse of a mitral valve when the ring is placed atop the leaflets of the mitral valve. In a further embodiment the tongue elements may be attached at a central point.
  • In yet another embodiment, a prosthetic for treating heart disease in general and a defective or diseased mitral valve in particular includes a wedge. The wedge has a length that is about equal to a length of the line of coaptation of a mitral valve. The wedge has a depth sufficient to prevent prolapse of a mitral valve when the wedge is placed atop an annulus of the mitral valve along the line of coaptation, and may provide a point of coaptation for each leaflet. One or more anchors protrude from the wedge for coupling the wedge to the annulus of the mitral valve. Methods of treatment using the wedge are also disclosed. The methods include inserting the wedge into an individual's heart, placing the wedge lengthwise along the line of coaptation of the mitral valve. The wedge is then secured to an annulus of the mitral valve along the line of coaptation. The wedge may be positioned also just under one segment of the leaflet (likely P2 in the case of functional MR).
  • In yet another embodiment, a device for treating heart disease includes a clip for attachment to a free end of a heart valve leaflet. FIG. 11A shows an exemplary embodiment of one or more clips 1101 that are positioned on free edges of the leaflets LF. Each of the clips 1101 has a shape that prevents flail of the leaflet by catching against an underside of an opposing leaflet. Methods of treatment using the clip are also disclosed. The methods include introducing the clip into an individual's heart and attaching the clip to a free end of a heart valve leaflet opposite the free end of an opposing leaflet of the heart valve so that the clip catches to the underside of the opposing leaflet during systole. In a further embodiment, a clip may be placed on both leaflets such that the clips meet or catch when the leaflets are in proximity. The clips may attach momentarily during systole, and then detach during diastole, or may clip permanently resulting in a double orifice mitral valve anatomy. The clips of this embodiment may include a magnetic element, or one may be magnetic and the other of a metal material attracted to said electromagnetic field of the magnetic clip.
  • In the case of magnetic clips, the clip elements may be placed on the underside of the leaflets (e.g. not necessarily on the free edge of the leaflet), provided that the magnetic field of the clip is sufficient to attract the opposing magnetic or metal clip element. This is further described with reference to FIG. 11B, which shows pair of leaflets LF with a clip 1101 attached to the underside of each leaflet. At least one of the clips is magnetic, while the other clip is of an opposite magnetic polarity than the first clip or of a metal attracted to the magnetic field of the first clip. The magnetic field is sufficiently strong such that the clips 1101 can attach to one another either momentarily or permanently to coapt the leaflets, as shown in FIG. 11C.
  • In another embodiment, shown in FIG. 11D, a single clip 1101 is attached to one of the leaflets. The clip 1101 is sufficiently long to increase the likelihood that the clip 1101 will coapt with the opposite leaflet.
  • In yet another embodiment, a device for treating heart disease includes a wedge for placement under a heart valve leaflet. FIG. 12 shows a schematic, cross-sectional view of the heart with a wedge 1205 positioned below at least one of the leaflets of the mitral valve. The wedge 1205 can be positioned below one or both of the leaflets. The wedge 1205 is sized to fit under the valve leaflet and caudal the annulus of the heart valve. The wedge 1205 can have a shape that is contoured so as to provide support to a lower surface of the leaflet. (In FIG. 12, the left atrium is labeled LA and the left ventricle is labeled LV.) An anchor is attached to the wedge for coupling the wedge to a wall of the heart chamber adjacent the heart valve. The wedge forms a fixed backstop against the bottom side of the heart valve leaflet, thereby providing a location for the leaflet to coapt against, and/or providing support or “pushing up” a restricted leaflet.
  • Other embodiments are directed to altering the size, shape, chemistry, stiffness, or other physical attributes of heart valve leaflets. In one embodiment in particular, a method of treating heart disease includes obtaining access to a heart valve leaflet and injecting a stiffening agent into the leaflet to stiffen the leaflet and minimize flail.
  • Other embodiments are directed to the chordae that connect heart valve leaflets to the inner walls of the heart. In one embodiment in particular, a method of treating heart disease includes obtaining access to a heart valve chord and cutting it mechanically or with energy such as a laser, or by heating the chordae to elongate them, thereby allowing the previously restricted leaflet to be less restricted so that it can coapt with the opposing leaflet.
  • In another embodiment directed to the chordae that connect heart valve leaflets to the inner walls of the heart, a cam-shaped ring is disclosed. The cam-shaped ring is sized to fit within a left ventricle of a heart. The ring forms a hole that is sized to receive two or more chordae tendineae. The ring is formed by connecting two detachable ends of the ring.
  • Methods of treatment using the cam-shaped ring are also disclosed. One method in particular includes introducing the ring into a left ventricle of a heart. One or more chordae tendineae are then surrounded by the ring, and the two ends of the ring are then attached to form a closed ring around the chordae tendineae. The ring is then rotated such that one or more of the chordae tendineae are shifted away from their initial orientation by the rotation of the cam-shaped ring. The ring may then be fixed in the rotated or tightened position.
  • An embodiment directed at the chordae of heart valve leaflets is now described. FIG. 13A shows a device that can be used to alter a chordae. A method includes obtaining access to a chordae tendinea (chord) within an individual's heart chamber. The chordae is then cut at a point along its length so that a length of the chordae tendinea is freed from the heart chamber leaving behind a length of chordae tendinea having a free end and an end attached to an edge of a heart valve.
  • With reference to FIG. 13A, a synthetic chord 1005 of greater length than the free length of chordae is introduced into the heart chamber. One end of the synthetic chordae 1005 is connected to a wall 1305 of the heart chamber or to a muscle attached to the wall of the heart chamber. Another end of the synthetic chord is attached to the free end of the chorda tendinea or to the leaflet.
  • In this regard, the end of the chord 1005 that is attached the wall 1305 can have any of a variety of devices that facilitate such attachment. FIGS. 13B and 13C show enlarged views of attachment devices contained within box 13 of FIG. 13A. The attachment devices can be used to attach the chord 1005 to the wall 1305. In FIG. 13B, the attachment device 1310 is an enlarged ball having a distal trocar for penetrating the wall 1305. In FIG. 13C, the attachment device 1310 is a hook that is configured to penetrate through the wall 1305. It should be appreciated that the attachment device 1310 can have other structures and it not limited to the structures shown in FIGS. 13B and 13C. In variations of these embodiments, it may be advantageous to adjust the length of the chordae (synthetic, or modified), determine the therapeutic effect of the shortening or lengthening, and then fix the chordae at the most efficacious location.
  • Valve regurgitation due to flail or broken chordae can occur. Such valve impairments can be treated percutaneously through chordal replacement or the supplementing of the chordae tendineae of the mitral valve. Although the embodiments described herein are with reference to treating mitral valve impairments it should be appreciated that other valves could similarly be treated with the embodiments described herein. The configuration of the chordal replacement devices described herein can vary. Features of the various devices and their anchoring systems can be used in combination with any of the embodiments described herein.
  • The chordal replacement devices described herein can be delivered using interventional tools, guides and supporting catheters and other equipment introduced to the heart chambers from the patient's arterial or venous vasculature remote from the heart. The chordal replacement devices described herein can be compressed to a low profile for minimally-invasive or percutaneous delivery. They can be advanced from the remote access site through the vasculature until they reach the heart. For example, the chordal replacement devices can be advanced from a venous site such as the femoral vein, jugular vein, or another portion of the patient's vasculature. It is also appreciated that chordal replacement devices can be inserted directly into the body through a chest incision. A guidewire can be steered from a remote site through the patient's vasculature into the inferior vena cava (IVC) through the right atrium so that the guidewire pierces the interatrial septum. The guidewire can then extend across the left atrium and then downward through the mitral valve MV to the left ventricle. After the guidewire is appropriately positioned, a catheter can be passed over the guidewire and used for delivery of a chordal replacement device.
  • Embodiments of the chordal replacement devices described herein can also be delivered using a catheter advanced through retrograde access through, for example an artery, across the aortic arch and the aortic valve and to the mitral valve by way of the ventricle. Alternative delivery methods of chordal replacement device embodiments described herein can include inserting the device through a small access port such as a mini-thoracotomy in the chest wall and into the left ventricle apex. From there, the chordal replacement device can be advanced through the left ventricle into the left atrium. It should be appreciated the device can also be delivered via the left atrial apex as well. Positioning of the tool and/or chordal replacement devices described herein can be confirmed using a variety of imaging means such as magnetic resonant imaging (MRI), intracardiac echocardiography (ICE), transesophageal echo (TEE), fluoroscopy, endoscopy, intravascular ultrasound (IVUS) and the like.
  • In an embodiment and as shown in FIGS. 38A-38C, a chordal replacement device 3805 can include a laterally-stabilized spring or flexible rod. In one embodiment, the device 3805 can include a first portion 3810 that receives and/or is movable with respect to a second portion 3815. The first and second portions 3810, 3815 can be surrounded by a spring 3820. Each of the first and second portions 3810, 3815 of the device 3805 can have a platform region 3825, 3830, respectively between which the spring 3820 extends. The platform regions 3825, 3830 can be of sufficient surface area or diameter that they can push against the heart wall and the leaflet surface without damaging or puncturing the surfaces. In an embodiment, the platform regions 3825, 3830 can also each have one or more barbs 3835 or another fixation device on an external surface that can implant and attach the device 3805 between the valve leaflet and the roof of the atrium (see FIG. 38C). It should also be appreciated that other attachment mechanisms for attaching one or more of the platform sections to the valve leaflet and/or the roof of the atrium are possible and that the device is not limited to including barbs. For example, one or more of the platforms can include clips such as a clip similar to the Mitraclip® to grasp the leaflet, and an adhesive or screw to attach to the roof of the atrium.
  • The chordal replacement device 3805 can be delivered into the left atrium through a guide catheter 3840 (see FIG. 38B). A tether 3845 can hold the device 3805 normal to the tip of the guide catheter 3840. The tether 3845 can be threaded through the guide catheter 3840, through the implant 3805, and back out the guide catheter 3840. When the procedure is completed, the tether 3845 can be pulled out of the guide catheter 3840 from either end releasing the implant, allowing deployment. Other mechanisms of attachment to the implant 3805 are considered herein. For example, the tether 3845 can be replaced by a flexible rod having, for example threads at a distal end. The threads of the rod can attach to corresponding threads on the implant 3805. The threaded region of the implant can be rotatable such that the implant 3805 can rotate perpendicular to the guide catheter 3840 (see the position shown in FIG. 38B) in order to couple and uncouple with the rod through rotational threading and unthreading.
  • As shown in FIG. 38B, a second tether 3850 can be used to longitudinally compress the spring 3820 between the platforms 3825, 3830 such that they approximate one another and the first portion 3810 receives a greater length of the second portion 3815 than it receives in the uncompressed state and the overall length of the device 3805 is reduced as defined by the distance between the barbs. This second tether 3850 can thread through the guide catheter 3840 in a similar manner as the first tether 3845 as described above. The second tether 3850 can be tensioned to compress the spring 3820 and after removal can be withdrawn similarly as the first tether 3845. In an embodiment, a barb 3835 can be planted into a portion of the flailing valve leaflet and another barb 3835 can be planted into the roof of the left atrium LA. The barbs can be planted by actuating the distal curved section of the guide catheter so as to guide the barbs 3835 into the desired locations.
  • The device 3805 can exert a force between the atrium roof and the valve leaflet through the spring 3820 to hold the leaflet down and prevent flail up into the left atrium LA. The tension can be adjusted by varying the spring coupled to the device prior to inserting it into the body. Alternatively, the desired length of the device after implantation can be adjusted and tuned prior to introduction with an adjustable bolt and nut type design that limits how far one platform can move in relation to the other. It should be appreciated that the embodiments of chordal replacement devices described herein are exemplary and that variations are possible.
  • In another embodiment shown in FIGS. 39A-390, a chordal replacement device 3905 can include a clip 3910, a distal anchor 3915 and a tether 3920 extending therebetween. The clip 3910 can attach to a portion of a flailing leaflet LF and the distal anchor 3915 can extend into the ventricle such that the flailing leaflet is held down. For example, the anchor 3915 can be implanted in the left ventricular wall or septum or papillary head or other appropriate tissue site. The length of the tether 3920 can be variable and/or adjusted such that the tension applied to the leaflet LF by the chordal replacement device 3905 is tailored to an individual patient's needs. For example, once the clip 3910 is positioned, the tether 3920 can be tensioned, tied and trimmed as will be described in more detail below.
  • The clip 3910 can be an elastic element that can be deformed to attach it to a portion of the leaflet LF, such as by crimping. In an embodiment, the clip 3910 can be attached to a portion of the valve leaflet LF where flail occurs, for example it can be fastened to an edge of the anterior or posterior mitral valve leaflet with the damaged chord. The clip 3910 can have surface feature 3950, such as small barbs or a textured surface, that aids in the capture of the leaflet LF upon deforming the clip 3910 to the leaflet LF. As best shown in FIG. 39A, the clip 3910 can also include an eyelet, aperture or other attachment feature 3945 that provides a location for coupling to or extending the tether 3920 through a portion of the clip 3910. The distal anchor 3915 can similarly include an eyelet, aperture or attachment feature 3945 that provides a location for the tether 3920 to couple to or extend through a portion of the anchor 3915 (see FIG. 39A, for example).
  • The anchor 3915 can vary in configuration and can include a weight, barb, corkscrew, adhesive or other mechanism such that the tether 3920 extends down and is secured in place within the ventricle. In an embodiment, the anchor 3915 extends into the ventricle from the clip 3910 and is secured to the bottom of the ventricle or toward the ventricular septum or papillary head. In an embodiment, the barbs of the anchor 3915 can be collapsible such that they conform to a narrow configuration and fit within the lumen of the guide catheter and expand upon being advanced out of the guide catheter (see FIGS. 39B-39C).
  • As mentioned above, the tether 3920 can attach to the clip 3910 in a variety of ways. The clip 3910 can include an attachment feature 3945 that provides a location for coupling the clip 3910 to the tether 3920. For example and as shown in FIG. 39D-39H, a knot or crimp 3930 can be applied to one end of the tether 3920 such that end will lodge into a portion of the clip 3910 or will lodge into the attachment feature 3945. The opposite, unknotted end of the tether 3920 can extend through the delivery catheter 3960 and be retracted until the crimp 3930 lodges with the attachment feature 3945 on the clip 3910, which is attached to the leaflet LF. The delivery catheter 3960 can be used to deploy the clip 3910 to the leaflet (FIG. 39E) and can then be withdrawn (FIG. 39F). At this stage the tether 3920 can still have both ends extending outside the body (FIG. 39G). An anchor 3915 also coupled to the tether 3920 can be loaded over the tether 3920 and delivered to the ventricle as will be described in more detail below.
  • In another embodiment shown in FIG. 39J-39M, the delivery system 3955 for the chordal replacement device 3905 can include a guide catheter 3966 having a lumen 3965 for a clip delivery catheter 3970 and a lumen 3975 for an anchor pusher or mandrel 3980 used to push the anchor 3915 out of the delivery system 3955. The anchor 3915 is shown as a barbed anchor, but it should be appreciated that other configurations are considered herein. The anchor 3915 can be attached to a distal end of the mandrel 3980 such as by corresponding threads 3990 or another coupling mechanism. Upon being pushed out the distal end of the guide catheter 3966, the anchor 3915 can be uncoupled from the mandrel 3980 (such as by an unthreading rotation) and released in its position within the heart. Alternatively, the anchor 3915 can be unattached to the mandrel 3980 and simply pushed out the distal end of the guide catheter 3966. Once the anchor 3915 is implanted, the mandrel 3980 can be withdrawn.
  • It should be appreciated that the clip 3910 can be deployed prior to, during or after delivery of the anchor 3915. The embodiments of FIGS. 39D-39H and FIG. 39K illustrate the deployment of the clip 3910 prior to the anchor 3915 being delivered. FIGS. 39L-39M illustrate an embodiment in which the clip 3910 is deployed after the anchor 3915 is delivered.
  • As mentioned above, once the clip 3910 is positioned on the leaflet LF and the anchor 3915 deployed and secured within the ventricle, the tether 3920 can be tensioned. For example, the tether 3920 can be pulled manually to tension an end of the tether 3920 extending outside the body, to the desired tension to hold the leaflet LF down. Tension on the tether 3920 can be tuned and adjusted until an appropriate tension on the leaflet LF is achieved evidenced by the tether 3920 simulating the tension of a healthy chord. The appropriate tension can be assessed as is known in the art. For example, an echocardiogram can be performed to assess leaflet flail or prolapse as well as the effect on mitral regurgitation. Once the appropriate tension is achieved, the tether 3920 can be clamped and cut to remove the excess length of the tether 3920. FIGS. 39N-390 illustrate an embodiment of a dual-function cutting clamp 3935 having the tether 3920 extending therethrough. The cutting clamp 3935 can have dual functions and can be used to clamp onto the tether 3920 to secure it near the distal end and it can also be used to cut the tether 3920 proximal of the secured section. As best shown in FIG. 39O, the cutting clamp 3935 can have an outer shell 3937 that can be coupled or attached to the anchor 3915. The shell 3937 of the cutting clamp 3935 can have apertures or slots 3939 at opposite ends through which the tether 3920 can extend into an inner region of the shell 3937. From one end of the shell 3937, the tether 3920 extends towards the clip 3910. At the opposite end of the shell 3937, the tether 3920 extends back through the delivery catheter 3970 to the outside of the body. The cutting clamp 3935 can also include an aperture or slot 3941 through which an actuator line 3943 can pass and extend to the outside of the body. The actuator line 3943 can be actuated to effect clamping and/or cutting of the tether 3920 with the cutting clamp 3935.
  • Still will respect to FIG. 39O, the cutting clamp 3935, which may or may not already be coupled to the anchor 3915 can be actuated such that the tether 3920 is engaged by a ratcheting clamp mechanism. The ratcheting clamp mechanism prevents the release of the tension on the tether 3920. The ratcheting clamp mechanism can include opposing clamp elements 3946 that extend inward from a ratchet recess 3947 open at an inner surface of the shell 3937. The opposing clamp elements 3946 have textured surfaces at one end that are designed to come together to releasably engage the tether 3920. At an opposite end the opposing clamp elements 3946 can have a ratchet mechanism 3949 that engages corresponding features in the ratchet recess 3947 of the shell 3937. The opposing clamp elements 3946 can be actuated by pulling the actuator line 3943 at the outside of the body. The actuator line 3943 engages the opposing clamp elements 3946 such that they extend out from the ratchet recess 3947 and approach one another until the tether 3920 is caught between their textured surfaces. After the opposing clamp elements 3946 are engaged with one another and the tension on the tether 3920 is maintained, the actuation line 3943 can be actuated further until the opposing cutting elements 3951 are engaged by the actuation line 3943, extend from their respective ratchet recess 3947 until their cutting surfaces come in contact to cut the tether 3920 therebetween. Once the tether 3920 is cut by the opposing cutting elements 3951 the actuation line 3943 can be released and the loose end of the tether 3920 can be removed from outside the body. In an embodiment, multiple chordal replacement devices 3905 can be used to attach to the chordae on the opposite or same side as the flailing leaflet. The second chordal replacement device 3905 can incorporate a similar cutting clamp as described above.
  • In another embodiment as shown in FIG. 40A-40B, a chordal replacement device 4005 can include a flexible material or patch 4010 that can be attached to the valve leaflet LF. A single strand of artificial chordae 4015 can loop through and underneath the patch 4010. The strand of artificial chordae 4015 can include one, two, three or more individual loops and can be made of suture or another flexible material. The loops of artificial chordae 4015 can be drawn together at one end with a ring 4020 or other enclosed shape going through the loops of artificial chordae 4015. The ring 4020 can be attached to the ventricle wall or papillary muscle or ventricular septum with a distal attachment assembly as described in more detail below.
  • The loops of artificial chordae 4015 can be a single strand of material that freely slides through the patch 4010 and the ring 4020 such that the loops 4015 can self-equalize to evenly distribute the load. A single loop 4015 can thread through the patch 4010 and the ring 4020, for example three times, such that one loop is short and there are two other loops that are long. Pulling the ring 4020 away from the patch 4010 will engage the short loop and redistribute the long loops to the length of the shortest loop such that the three loops are equally long and equally distribute the force. The loops of artificial chordae 4015 are not fixed such that they can slip and distribute the force equally between them. This self-equalizing characteristic along with the flexible patch 4010 reduces the stress on the leaflet LF.
  • As shown in FIGS. 41A-41B, the device 4005 can be delivered to the valve leaflet (posterior or anterior). The patch 4010 can be folded and loaded into a delivery catheter 4025 such that the artificial chordae 4015 trail behind and are delivered through a guide catheter 4030 to the vicinity of the valve. A mandrel or pusher tube 4035 can push the patch 4010 out the distal end of the delivery catheter 4025 (see FIG. 41C).
  • The leaflet LF can be stabilized using a vacuum or a hook attached to a guidewire or another stabilizing device. In an embodiment shown in FIGS. 41G-41N, the leaflet LF can be captured and/or stabilized using a guidewire 4141 having a distal end that has a needle point. The needle point guidewire 4141 can be delivered using a protective sheath or delivery catheter 4143 that prevents pricking of the vessel as it is passed therethrough. The sheath or delivery catheter 4143 can be retracted slightly exposing the distal needle point to the leaflet LF. The distal needle point can be urged through the leaflet LF near an edge or positioned closer to the valve annulus. The needle point guidewire 4141 can be pre-formed to have a hook shape such that when it is advanced out of the sheath 4143 and extends through the leaflet LF it can curve upward back toward the sheath 4143 to form a hook. In another embodiment shown in FIGS. 41O-41P, the guidewire 4141 can include a thicker needle point 4145 attached to a more flexible cable 4147 or guidewire or thinner wire. The needle point 4145 can also be preformed such that it takes on a sharper curve or hook shape when advanced beyond the distal end of the delivery catheter 4143. The needle point 4145 can be formed of a variety of materials such as Nitinol or other shape memory alloy or other suitable material.
  • Tension can be applied to the needle point guidewire 4141 such that the leaflet LF remains hooked and stabilized. Alternatively, the chordae can provide the resistance allowing the needle point guidewire 4141 to puncture the leaflet LF. The needle point guidewire 4141 as it forms the hook shape can penetrate the leaflet LF a second time (see FIG. 41K) although it should be appreciated that the guidewire need only penetrate the leaflet LF a single time to effect capture and stabilization (see FIG. 41M). To release the leaflet LF from the needle point guidewire 4141, the sheath 4143 can be advanced distally back over the needle point as shown in FIG. 41N. The portion of the guidewire 4141 penetrating the leaflet LF is slowly withdrawn as the sheath 4143 is advanced distally.
  • The patch 4010 can be affixed to the valve leaflet LF by activating a leaflet attachment device 4040 through the guide catheter 4030. In an embodiment, the leaflet attachment device 4040 can include a pair of expandable elements 4045 connected centrally by a rod 4050. One or more of the expandable elements 4045 can have a sharp needle point 4055. The patch 4010 can lie on top of the valve leaflet LF and the sharp needle point 4055 of the leading expandable element 4045 can pierce through the patch 4010 and the leaflet LF such that the leading expandable element 4045 emerges from the underneath side of the leaflet LF and the rod 4050 extends through the leaflet (see FIGS. 41D and 41E). The patch 4010 on the upper surface of the leaflet LF can be sandwiched between the leading and trailing expandable elements 4045 of the leaflet attachment device 4040. The leaflet attachment device 4040 and each of the expandable elements 4045 can be a shape-memory metal (e.g. Nitinol, Nitinol alloys) or some other spring material. The spring material of the expandable elements 4045 allows them to spring out as the leaflet attachment device 4040 is advanced from the distal end of the delivery catheter 4025. The leaflet attachment can be facilitated by stabilizing the leaflet as described above. The position of the patch prior to securement of the expandable element 4045 can be maintained for example, by attaching the patch to the first expandable element prior to being deployed from the delivery catheter. The delivery catheter can then be used to maneuver into position the patch prior to deploying the first expandable element.
  • FIG. 41F shows a top view of an expandable element 4045 deployed on the upper surface of the leaflet. The embodiment is shown having barbed arms in a star-shaped configuration although it should be appreciated that other shapes and configurations are considered. For example, as shown in FIGS. 42A-42B, the leaflet attachment device 4040 can include expandable elements 4045 of a spring metal mesh. The spring metal mesh expandable element 4045 can form a web shape and flatten out as it is deployed. Alternatively, the Nitinol or other spring material can spring into an expandable element 4045 shaped like a mesh ball (see FIG. 42C). Upon expansion, the mesh ball expandable element 4045 can protectively cover the sharp needle point 4055 on the underneath side of the valve leaflet. It should also be appreciated that the leaflet attachment device 4040 can include expandable elements 4045 that are a combination of configurations including flat mesh design, ball mesh design, a star-shaped design or other configuration. For example, one expandable element 4045 can have a star-shaped design and the other expandable element 4045 can have a mesh ball design (see FIG. 42D). The expandable devices such as the mesh ball design can be collapsed sufficiently small to pass through a needle hole without ripping the leaflet. In an embodiment, the needle bore can be a larger hypotube such that insertion of the tube needle can punch a hole in the leaflet. The patch 4010 can cover the hole such that leaks are avoided. Further, the hypotube can be dull at the base of the bore such that punched out tissue remains attached to avoid creation of an embolism.
  • It should be appreciated that more than one leaflet attachment device 4040 can be used to affix a patch 4010 to the valve leaflet LF. As shown in FIG. 43A, the patch 4010 can be attached to the atrial side of the valve leaflet LF with multiple leaflet attachment devices 4040 oriented side-by-side on the upper and lower surface of the leaflet LF. Using multiple leaflet attachment devices 4040 to affix the patch 4010 reduces stress in the leaflet LF, in part, due to distribution of forces across multiple attachment locations. As shown in FIG. 43B, the multiple leaflet attachment devices 4040 can be stacked and deployed in series from a delivery catheter 4025. In another embodiment, the multiple leaflet attachment devices 4040 can be deployed using a guide wire between deployments of each leaflet attachment device 4040. For example, the patch 4010 can be deployed followed by the first leaflet attachment device 4040. The delivery catheter 4025 can be withdrawn leaving a guide wire 4060 in place. Another catheter with the second leaflet attachment device 4040 can then be advanced along the guide wire 4060 and the second leaflet attachment device 4040 deployed. The process can be repeated depending on the number of attachment devices desired to be deployed.
  • Once the patch 4010 is positioned and affixed to the leaflet LF, such as with the leaflet attachment device(s) 4040, the loops of artificial chordae 4015 can be deployed distally within the ventricle such as to the ventricular wall, septum or papillary muscle. As shown in FIG. 44A, the delivery catheter 4025 that deployed the patch 4010 and leaflet attachment device(s) 4040 can be removed from the guide catheter 4030 leaving a guide wire 4060 attached to a ring 4020 through which the artificial chordae 4015 loop (attachment device(s) are not shown in the figure for simplicity). The guide wire 4060 can be previously looped through the ring 4020, for example, during manufacturing. Another catheter can be advanced over the guide wire 4060 through the guide catheter 4030. In an embodiment, the ring 4020 is attached to the distal end of the catheter 4030 as shown in FIG. 44B-44C. For example, the ring 4020 can be inserted or snapped into a flanged channel 4065 near the distal end of the catheter 4030 using the guide wire 4060 looped through the ring 4020. The catheter 4030 with the ring 4020 in the channel 4065 can advance through the valve distally into the ventricle (see FIG. 44D).
  • As shown in FIGS. 45A-45D, the ring 4020 with the attached loops of artificial chordae 4015 can be anchored to the ventricular wall or papillary muscle forming a distal attachment assembly 4070 of the chordal replacement device. In an embodiment a coil screw 4075 is coupled to the distal attachment assembly 4070. The coil screw 4075 can be advanced like a cork screw through the distal end of the catheter 4030 into the ventricular tissue, for example, by rotating an actuator knob on the proximal end of the catheter. The rotation of the actuator knob can rotate the coil screw, advancing it out of the catheter and into the ventricular tissue.
  • In another embodiment, the distal attachment assembly 4070 can be coupled to or can include a fillable element 4080 delivered through a hollow needle 4085 that pierces the ventricular wall (See FIGS. 45B-45C). The fillable element 4080 can include a balloon or mesh bag or other expandable element. A hardening agent or other material can be used to fill the element 4080 expanding it such that it anchors the artificial chordae 4015 and the distal attachment assembly 4070 to the ventricle. The needle 4085 can be retracted leaving the filled element 4080 inserted in the ventricle wall and coupled to the distal attachment assembly 4070. The hardening agent can be a two-part hardening agent, such that a small quantity of a second agent can be delivered through another smaller tube in the catheter to activate the first part and main bulk of the hardening agent.
  • After the distal anchor (e.g. coil screw 4075 or filled element 4080) of the distal attachment assembly 4070 is attached to the ventricular wall or papillary muscle, the distal attachment assembly 4070 can be released from the guide catheter 4030. The assembly 4070 can be released, for example, using a mandrel that runs through the catheter and has a threaded end that threads into the distal attachment assembly. In another embodiment, the distal end of the catheter can be a sleeve that pinches circumferentially onto the attachment assembly and then by retracting a lever proximally, a mandrel is retracted which pulls the pinching sleeve backwards over the catheter slightly, expanding the pinching sleeve and releasing the attachment assembly. The two ends of the guide wire 4060 can extend all the way up through the guide catheter 4030. As the delivery catheter 4025 is removed, the guide wire 4060 can still be looped through the ring 4020. The guide wire 4060 can be removed before, during or after the delivery catheter 4025 is removed. The guide wire 4060 can be removed by pulling one end, allowing the trailing end to pull through the ring 4020 and then out of the guide catheter 4030 leaving the distal attachment assembly 4070 anchored in the ventricle and the artificial chordae 4015 extending up to the valve leaflet LF where the patch 4010 is affixed to the leaflet LF with the leaflet attachment device(s) 4040.
  • Once the chordal replacement device is deployed, the tension of the artificial chordae 4015 can be adjusted. In an embodiment, a sensor 4090 such as a pin or pressure sensor can be used to adjust tension in the artificial chordae 4015. The sensor 4090 can provide the user with information regarding contact between the guide catheter 4030 and the ventricular wall. As shown in FIG. 46A-46B, the sensor 4090 can include a pin 4095 near the distal tip of the catheter 4030. The pin 4095 is shown in FIG. 46A as fully extended indicating no contact with the ventricular wall. Upon contact with the wall as shown in FIG. 46B, the pin 4095 can compress and activate delivery of a signal to the user such as an electrical signal or visual signal indicating that contact is made with the wall of the ventricle. If the sensor 4090 indicates contact with the ventricular wall and an echocardiogram suggests no flail or prolapse and mitral regurgitation (MR) is reduced then the distal anchor (e.g. coil screw 4075 or element 4080) can be advanced into the ventricular wall to secure attachment. If the sensor 4090 indicates contact with the ventricular wall, but the echocardiogram suggests flail and/or prolapse and poor MR results, the catheter 4030 can be moved further down into the ventricle to increase tension on the artificial chordae 4015 and the test repeated. If the sensor 4090 indicates contact with the ventricular wall, and the echocardiogram suggests no flail and/or prolapse but the MR results are still poor, the leaflet is pulled down too far and the catheter 4030 can be moved proximally to release tension on the artificial chordae 4015. The test can be repeated until desirable results are achieved.
  • Once the distal anchor is advanced into the ventricular wall and adequate results are obtained, fine-tuning of the tension can be performed (see FIG. 47). In an embodiment, the distal anchor can be a coil screw 4075 that is advanced and locked. The distal attachment assembly 4070 can be rotated clockwise by the catheter 4030 to draw the ring 4020 slightly closer to the ventricular wall. The distal attachment assembly 4070 can also be rotated by the catheter 4030 in a counter-clockwise direction to push the ring 4020 away such that the valve leaflet LF can rise up slightly.
  • In another embodiment as shown in FIGS. 48A-48B, the distal anchor can be an expandable element, such as a balloon anchor filled with a two-part epoxy as described above. This embodiment can also be fine-tuned. As the expandable element 4080 expands within the ventricular wall, the distal attachment assembly 4070 attached to the expandable element 4080 is pulled toward the ventricular wall. The material of the expandable element 4080 can be finitely expanded such that fine-tuning of the distance between the distal attachment assembly 4070 and the ventricular wall can be performed. As the expandable element 4080 is unexpanded the artificial chordae 4015 can pull the distal attachment assembly 4070 away from ventricular wall and the valve leaflet can rise slightly. Once gross adjustments are performed, fine-tuning the tension on the artificial chordae 4015 attached to the valve leaflet can be performed. The first part epoxy (i.e. prior to hardening) can be used to fill the expandable element 4080 and also fine-tune the positioning and tension on the chordae 4015. Once the proper position is confirmed, the second part of the epoxy can be infused such that it hardens and sets in place the chordae. It should be appreciated that the epoxy can be embedded directly into the attachment site or can be used to fill a expandable element pre-embedded in the distal attachment site. Ideally, very little of the second part epoxy is used so as not to interfere with the fine-tuning achieved.
  • The chordal replacement device need not include a distal attachment assembly 4070 (see FIGS. 49A-49B). For example, the chordal replacement device can be attached to an attachment assembly that is deployed proximal to the valve. In an embodiment, the chordal replacement device can include a ring 4020 and loops of artificial chordae 4015 attached to a rod 4105 extending from a spring material (e.g. shape-memory metal such as Nitinol or other material) that forms a stent-like mesh 4100 deployed in the left atrium, just above the mitral valve. The rod 4105 can be attached to the mesh 4100 and extend from the mesh 4100 through the mitral valve such as at one of the commissures into the ventricle. The rod 4105 can be straight or curved or jointed. The distal end of the rod 4105 can be attached to the ring 4020 such as by extending through the ring 4020. Rod 4105 and mesh 4100 can be moved to adjust tension on the artificial chordae 4015. Once in a desirable location and the desired tension is achieved, the mesh 4100 and rod 4105 can be secured within the atrium or to the valve leaflets, for example using the leaflet attachment devices 4040 discussed above (see FIG. 49B; note the rod, ring and replacement chordae are not shown).
  • As shown in FIG. 50A, the rod 4105 and mesh 4100 can be delivered through a delivery catheter 4025 in which the mesh 4100 is collapsed. As mentioned above, the rod 4105 can be jointed. The joints 4110 can lock in place once the rod 4105 is deployed and/or can have limited travel around the joint 4110. As shown in FIGS. 50C-50E, one or more of the rod joints 4110 can lock into place using a mechanical/physical feature incorporated within the joint 4110. In an embodiment, one or more of the joints 4110 can have a surface feature 4112 such that when the rod 4105 rotates over the surface feature 4112 on the adjacent portion of the joint 4110 it can pop over and lock in place relative to the adjacent portion of the joint 4110.
  • Even in the locked position, one or more of the joints 4110 can have limited travel around the joint 4110 to provide the artificial chordae 4015 with some degree of slack (see FIG. 50B). The rod 4105 and mesh 4100 can passively rise and fall with the mitral annulus during the cardiac cycle. In diastole, when the annulus rises, excessive tension on the artificial chordae 4015 can be avoided due to this limited travel around the joint 4110. In an embodiment, the top joint 4110 can lock and the bottom joint does not lock. In this embodiment, the lower joint can pivot without detriment to the system as the annulus rises during diastole. During systole, the lower joint can pivot in the opposite direction due to tension on the chordae until the physical stop incorporated in the joint limits the travel. In this position the rod system can then provide tension to the chordae and hold the leaflets down. As shown in FIG. 50F, the top joint 4110 rather than being fixed can pivot about an axis that is orthogonal to the axis of the bottom joint. This arrangement can prevent the forces of the cardiac cycle from bending the top joint once deployed.
  • With reference to FIGS. 51A-51B, rather than using a jointed rod, the rod 4105 can be flexible so that it can fit in a delivery catheter 4025 and expand to its spring-formed shape when deployed from the delivery catheter 4025. Flexibility of rod 4105 can be designed so that it provides a predictable spring force on the artificial chordae 4015. The rod 4105 can deflect and provide consistent tension on the artificial chordae 4015.
  • It should be appreciated that in addition to a chordal replacement system, the leaflet attachment devices 4040 described above can be used to attach a leaflet extension patch for the treatment of mitral valve prolapse or flail. As shown in FIGS. 52A-52C, the leaflet extension patch 5210 can be attached to the atrial side of the valve leaflet. The leaflet extension patch 5210 can be a stiff or a flexible material. The leaflet extension patch 5210 can prevent mitral regurgitation in the case of prolapse or flail in that it can block the leaflet from flailing upwards into the atrium. For functional mitral regurgitation, the leaflet extension patch 5210 can bridge any coaptation gap between the leaflets.
  • FIG. 52A shows the leaflet extension patch 5210 during diastole. The patch 5210 can follow the leaflet downwards such that flow through the valve is not impeded. During systole, the leaflet extension patch 5210 can block flow by coapting with the opposite leaflet LF as well as prevent flail or prolapse by physically blocking it from moving upwards into the atrium (see FIGS. 52B and 52C).
  • Other embodiments are directed to atrial or ventricular remodeling to alter the shape of an atrium or ventricle. Now with respect to FIG. 14 which shows a cross-sectional view of the heart with a first and second anchor attached to a wall of the heart. The system includes a first anchor 1410 a having a screw portion 1415 for screwing into a wall of the heart and a connector portion. The connector portion is rotatable around an axis of rotation. The first anchor includes a power source to power rotation of the connector portion and a receiver for receiving telemetric signals from an external controller for controlling the rotation of the connector portion. The system includes a second anchor 1410 b having a screw portion 1415 b for screwing into a wall of the heart and a connector portion. Also included is a tether 1420 having two free ends. One of the free ends is coupled to the connector portion of the first anchor, and the other free end is coupled to the connector portion of the second anchor. An external controller is also included. The external controller has a telemetric transmitter for communicating with the receiver and controls the rotation of the connector portion. Alternatively, the anchors may be placed with a torqueable catheter.
  • In another embodiment, a method of altering a geometry of a heart includes introducing a first coupler into a heart chamber. The first coupler has an anchor portion and a connector portion. The connector portion is rotatable around an axis of rotation and is connected to a power source to power rotation of the connector portion. The power source is in communication with a telemetric signal receiver. The first coupler is secured to the wall of the heart chamber by anchoring the anchor portion to the wall. A second coupler is introduced into the heart chamber. The second coupler includes an anchor portion and a connector portion. The second coupler is secured to the wall of the heart chamber by anchoring the anchor portion to the wall at a distance from the first coupler.
  • A tensile member is introduced into the heart chamber. One end of the tensile member is connected to the connector portion of the first coupler, and another end of the tensile member is connected to the connector portion of the second coupler. The distance between the first and second couplers is adjusted by transmitting a telemetric signal to the receiver, thus causing the connector portion to rotate around the axis of rotation and threading the tensile member around the connector portion to reduce the distance between the first and second couplers.
  • In another embodiment, a system for altering the geometry of a heart chamber includes a planar tensile member having substantially inelastic material. At least two anchors are included for anchoring the planar tensile member to an inner wall of a heart chamber. The planar tensile member is substantially shorter in length than a left ventricle of a heart so that when the planar tensile member is anchored in a caudal direction along a length of the left ventricle a tensile force exerted by the planar tensile member between the two anchors prevents the left ventricle from dilating caudally.
  • In another embodiment, a method for altering the geometry of a heart includes providing a tensile member having a substantially inelastic material. The tensile member is substantially shorter in length than a left ventricle of a heart. The tensile member is inserted into the left ventricle of the heart and a proximal end of the tensile member is anchored to the left ventricle adjacent the mitral valve. A distal end of the tensile member is anchored to the left ventricle caudal the proximal end so that a tensile force exerted by the tensile member between the two anchors prevents the left ventricle from dilating caudally.
  • Other embodiments are directed to strengthening or reshaping the left ventricle of the heart. In one embodiment in particular, a method of reinforcing the left ventricle includes injecting a strengthening agent into a wall of the left ventricle in an enlarged region of the ventricle, as shown in FIG. 15. FIG. 15 shows a catheter 1510 that has been introduced into the heart. The catheter 1510 has an internal lumen through which the strengthening agent 1512 can be injected. A proximal end of the catheter is connected to a source of the strengthening agent and a distal end of the catheter is configured to release the strengthening agent. As shown in FIG. 15, the distal end of the catheter is positioned at or near a wall of the heart and the strengthening agent 1512 is injected into the wall of the heart.
  • In another embodiment, a method is directed to altering the geometry of a heart. The method includes injecting a polymerizing agent into a pericardial space adjacent a left ventricle, thereby exerting a medial (inward) force against the left ventricle.
  • In yet another embodiment, a method of altering the geometry of a heart includes inserting a balloon into a pericardial space adjacent to a left ventricle of the heart, or extend into the pericardium of the heart. The balloon is inflated by injecting it with a fluid, and it exerts a medial force against the left ventricle upon inflation. In certain embodiments, the balloon can be inflated at the time of implantation, or at a later time. If inflated at a later time, the balloon would be self-sealing, and may be inflated by accessing the balloon with a needle placed through the chest wall.
  • Other embodiments are directed to adjusting the length or orientation of papillary muscles. FIG. 16 shows a schematic view of the heart showing the papillary muscles PM. With reference to FIG. 16, a method of treating heart disease includes inserting an anchor, cuff or sleeve 1205 into the left ventricle of an individual's heart, and sliding a cuff or sleeve around a papillary muscle PM. The size of the cuff or sleeve is reduced so that the cuff or sleeve squeezes the papillary muscle. As the size of the cuff or sleeve is reduced, the papillary muscle stretches and increased in length.
  • In yet another embodiment, a method of treating heart disease includes obtaining access to a papillary muscle in a left ventricle of the heart. The papillary muscle is cut and reattached at a new location on an inner wall of the ventricle closer to the mitral valve.
  • Additional embodiments that employ magnets in the heart are now described with reference to FIGS. 17-19, which show cross-sectional views of the heart. With reference to FIG. 17, in one embodiment one or more magnets 1705 are implanted or otherwise attached to a wall 1710 of the left ventricle LV. One or more other magnets 1715 are implanted or otherwise attached to a wall 1720 of the right ventricle. The magnets 1705 and 1715 are attached to the walls 1710 and 1720 such that they assert an attractive magnetic force (as represented by the arrows 1725 in FIG. 17) toward each other. The magnetic force 1725 assists in remodeling of the left ventricle during pumping of the heart. That is, the magnets 1705 and 1715 are urged toward one another (thereby also urging the walls 1710 and 1720 toward one another) to re-shape either the annulus AN or the left ventricle LV. The annulus or the left ventricle LV are re-shaped in a manner that reduces or eliminates backflow through the mitral valve MV. It should be appreciated that a similar procedure can be performed on the right ventricle RV and associated valves.
  • FIG. 18A shows another embodiment of a procedure wherein magnets are implanted in the heart to geometrically reshape the annulus or the left ventricle. One or more magnets 1705 are implanted or otherwise attached to a first wall 1710 a of the left ventricle LV. One or more magnets 1705 are also implanted or otherwise attached to a second, opposed wall 1710 b of the left ventricle. The magnets on the opposed walls 1710 a, 1710 b exert an attractive magnetic force toward one another to draw the walls 1710 a, 1710 b toward one another and re-shape the left ventricle LV or the annulus AN.
  • Another embodiment of a procedure uses magnets to anchor tethers within the heart at various locations to optimize the shape of cardiac structures to improve cardiac function. The tethers are placed to either reshape the cardiac structure or to prevent dilatation of the structure over time. The tethers must be securely anchored to the heart structures. A method of anchoring which enables tethering in various positions and directions within the cardiac structures is important for the clinician to optimize cardiac reshaping based on each individual patient anatomy and disease state. A method of anchoring which is atraumatic is also desirable.
  • FIG. 18B shows a side view of the heart with sets of magnets A, A1, B, and B1 positioned to various locations of the heart or to anatomical structures adjacent the heart. In one embodiment, at least one magnet A is placed on the interventricular septum within the right ventricle RV. At least one magnet A1 is placed within the left ventricle LV opposite magnet A. The magnetic force between A and A1 maintains the position of the magnets. The magnets may be enclosed in materials that will promote tissue in-growth and healing to the interventricular septum to ensure stability of location and to eliminate the need for long term anti-coagulation. Additionally, the enclosure material which is flexible and can be delivered in a low profile can be significantly larger in size than the magnets to increase the surface area of contact with the heart wall which will increase the tension that can ultimately be placed on the anchor over time.
  • A second set of magnets B and B1 are then delivered to another location selected within or adjacent to the heart. The set of magnets A/A1 are attached to the set of magnets B/B1 using at least one tether 1805, as shown in FIG. 18B. The tether 1805 can be attached to either or both of the magnets A/A1 at one end and to either of both of the magnets B/B1 at an opposite end. When the set of magnets B/B1 are tethered under tension to the set of magnets A/A1, a change in the shape of the cardiac structure results to improve cardiac function. FIG. 18B shows magnet B positioned in the LV and B1 positioned in a blood vessel BV adjacent to the heart. The magnetic force between B and B1 maintains the location of B and B1. Magnets B and B1 are delivered on or within materials and structures which promote healing and increase the amount of tension that can be placed on the anchor over time. For example, magnet B1 can be delivered on a stent which is of a length, diameter and material which will heal within the BV to provide sufficient resistance to forces placed on it by the tethers.
  • The tethers may be pre-attached to the magnets A and B1 or they may be attached after A and B1 have been positioned. The tether length may be shortened and/or adjusted after placement of the anchors. Alternatively the final tether length may be pre-selected based on the patient's cardiac structure geometry and the effect the clinician desires. Placing sets of magnets in this method, enables anchoring of tethers within the heart in various positions and angles which provides increased flexibility and variation for clinicians to select optimal re-shaping of the cardiac structures based on specific patient characteristics.
  • Examples which demonstrate the flexibility of this approach include placing anchors at the annulus and at the apex of the heart and tethered to shorten the length of the LV; anchors can be placed in the around the annulus and tethered to change the shape of the annulus. More specifically, one or more sets of magnets can be placed in the RA and LA at the level of the mitral valve annulus (on the anterior side of the annulus) and one or more sets of magnets can be placed in the LA and LV on opposite sides of the annulus on the posterior portion of the annulus. The posterior sets of magnets can then be tethered to the anterior sets of magnets to change the shape of the annulus. Alternatively, the magnet anchors can be placed at the level of the annulus in the LA and in a BV adjacent to the heart at the level of the annulus and these then tethered to the anterior annulus magnet anchor described above.
  • The magnets A and A1 can also be a single magnet that extends through the interventricular septum. Moreover, only one of the magnets A or A1 need be implanted. One or more magnets B and/or B2 are located opposite the location of the magnet(s) A and/or A1. The magnet(s) B is located within the left ventricle opposite the magnets A/A1, such as on the left ventricular wall. The magnet B1 is located on an anatomical structure adjacent the heart, such as on a blood vessel BV.
  • In another embodiment shown in FIG. 18C, the magnets A, A1, B, and B1, or combinations thereof, are implanted in the heart without tethers. The magnets A, A1, B, and B1 can be positioned in various combinations so as to exert magnetic attractions to one another to re-shape the left ventricle or the mitral valve annulus. For example, the magnets A and B can be implanted such that they exert an attractive magnetic force relative to one another. The magnets A and B2 can alternately be implanted. Other possible combinations are the magnets A1 and B or the magnets A1 and B2. The magnets can be implanted without tethers such that an attractive magnetic force F causes the magnets and the attached region of the heart to move toward one another to re-shape the heart. Alternately, the magnets can be attached to one another with tethers.
  • In yet another embodiment, one or more magnets 1705 are implanted in the walls 1710 of the left ventricle LV and/or the right ventricle RV, as shown in FIG. 19. The magnets 1705 are positioned in opposed locations on the walls 1710 and one or more tethers 1905 attach opposed pairs of magnets 1705 to one another. One or more of the tethers 1905 extend through the interventricular septum to connect a first magnet disposed in the left ventricle and a second magnet disposed in the right ventricle. In certain embodiments, magnet elements do not include tethers, but rely on the magnetic attraction to each other to remodel the tissue between them. For example, a magnetic element may be placed on either side of the interventricular septum, or one element within the septum. Another magnetic element may be placed on or within the opposite left ventricular wall, or in an adjacent vessel on the left ventricular wall. The electromagnetic field of such elements can then interact to cause a remodeling of the left ventricle to assist with ventricular function.
  • The tethers 1905 can be elastic so to exert an attractive force between the attached magnets 1705 and re-shape the left ventricle LV or annulus AN. Alternately, or in combination with elastic tethers, the tethers 1905 can be shortened in length after placement to thereby pull the walls of the left ventricle LV toward one another and re-shape the left ventricle LV or the annulus AN. In combination with the force provided by the tethers 1905, the magnets 1705 exert an attractive magnetic force toward one another to assist in pulling the heart walls toward each other.
  • It should be appreciated that one or more magnets can be positioned in other locations of the heart or adjacent anatomical structures for re-shaping of the heart. For example, one or more magnets can be positioned around the annulus AN or can be positioned in the coronary sinus in such a manner that the magnets exert attractive forces toward one another to cause re-shaping of a desired portion of the heart.
  • In another embodiment, cardiac re-shaping is achieved through percutaneous placement of one or more tethers that are cinched or anchored in the walls of the left ventricle LV. The tethers provide tension between the walls of the left ventricle to reshape the left ventricle LV in a desired manner. FIG. 20 shows a cross-sectional view of the left ventricle LV with a tether 2010 positioned therein. The tether 2010 has a first end anchored to a first wall of the left ventricle LV and a second end anchored to an opposed wall of the left ventricle LV. The tether 2010 is tensioned to pull the walls toward one another (as represented by the phantom lines 2012 in FIG. 20) and re-shape the left ventricle LV. It should be appreciated that the phantom lines 2012 in FIG. 20 are merely representative of the geometric re-shaping. The left ventricle LV can be re-shaped in various manners and the amount of re-shaping can vary depending on the tension applied to the tether 2010 and the location of attachment to the walls of the left ventricle LV. The tether may be inelastic or somewhat elastic.
  • The tether 2010 can be anchored or otherwise attached to the walls in various manners. In an exemplary embodiment, a patch 2015 (shown in FIG. 20) of material is positioned on an exterior surface of the ventricular wall and is attached to one end of the tether 2010. A similar patch can also be positioned on the opposed wall and attached to the opposite end of the tether.
  • With reference to FIG. 21, the patch is delivered to a desired location using a catheter 2105 having a sharpened distal end 2110 that is positioned within the left ventricle LV. The catheter 2105 can be delivered to the left ventricle LV in various manners, including trans-aortically (via the aorta), trans-septally (by piercing the interventricular septum), and trans-atrially (via the left atrium LA) pursuant to well-known methods. As shown in FIG. 22, the sharpened distal end 2110 pierces the ventricular wall such that the distal end 2110 is positioned exterior to the ventricular wall. The catheter 2105 has an internal delivery lumen having an opening at the distal end 2110. The patch 2015 is configured to be transported in a contracted state through the delivery lumen and delivered out of the opening at the distal end 2110, where the patch 2015 expands into an expanded state at the exterior of the ventricular wall to seal against the exterior of the left ventricular wall.
  • When positioned at the exterior of the ventricular wall, the patch 2015 is configured to act as a reservoir that receives a fluid material that can be delivered to the patch via the delivery lumen of the catheter 2105. The fluid material has a first viscous state of sufficient fluidity such that the material can flow through the delivery lumen of the catheter 2105 and out of the distal end 2110 to the location of the patch 2015. The fluid material changes to a second viscous state when positioned exterior to the ventricular wall at the patch 2015. The second viscous state is of greater viscosity (i.e., more resistant to flow) than the first viscous state such that the fluid material provides support and a level of rigidity to the patch 2015 and to the left ventricular wall. The fluid material can change to the second viscous state after a predetermined time period, after contact with the patch, or when the patch is completely filled. A catalyst can be injected into the fluid material to cause it to change to the second viscous state.
  • As shown in FIG. 23, the catheter 2105 can then be disengaged from the patch 2015 such that the patch 2015 is disposed exterior to the ventricular wall. The patch 2015 can be firmly attached to the ventricular wall (such as using an adhesive) to minimize wear or friction between the patch and the ventricular wall. Next, an end of the tether 2010 is attached to the patch 2015. The catheter 2105 can be used to deliver the tether 2010 to the patch 2015 or, alternately, a second catheter can be used. In one embodiment, the tether 2010 is already positioned in a delivery lumen of the catheter 2105 while the patch 2015 is being delivered. The catheter 2105 is then pulled back while the end of the tether 2010 remains attached to the patch 2015 to thereby let the tether 2010 out from the catheter 2105, as shown in FIG. 23.
  • With reference now to FIG. 24, a second patch 2415 is deployed in or exterior to an opposed ventricular wall in a manner similar to that described above. The opposite end of the tether 2010 is then attached to the second patch 2415 such that the tether 2010 extends between the two patches, as shown in FIG. 20. Alternately, as shown in FIG. 24, a second tether 2420 is attached at a first end to the second patch 2415. As shown in FIG. 25, the two tethers 2010 and 2420 can then be attached together at opposite ends from the patches, such as by using a clip 2510, to form a single attachment tether between the patches 2015 and 2415. The tethers 2010 and 2420 can be twisted or adjusted within the clip 2510 to tension the resulting attachment tether between the patches 2415 and 2015 and pull the ventricular walls toward one another via the tether. Once properly tensioned, the tether can be clipped or clamped to maintain its position.
  • In another embodiment, shown in FIG. 26, a needle 2610 or delivery catheter is passed trans-thoracically into the left ventricle LV to deliver a patch 2615 to the exterior of the ventricular wall, as described above. A sealing means, such as a sealing balloon, can be used to seal one or more puncture holes in the wall of the left ventricle caused by the needle 2610 during delivery of the patch 2615. Visualization means, such as fluoroscopy, can be used to visualize proper placement of the needle 2610. A second patch is attached to an opposed wall to form a tether attachment between the walls, as shown in FIG. 20. The tether is then tensioned to pull the walls together and re-shape the left ventricle or annulus of the mitral valve in a desired manner.
  • In other embodiments, described with reference to FIGS. 27-31, cardiac re-shaping is achieved by manipulation of the papillary muscles. FIG. 27 shows a schematic, cross-sectional view of the left ventricle LV in a healthy state with the mitral valve closed. The valve chordae CH connect the leaflets LF of the mitral valve to the papillary muscles PM. The papillary muscles PM and the and chordae CH are positioned such that at least a portion of the leaflets LF contact one another when the mitral valve is in the closed state, resulting in functional coaptation of the leaflets.
  • FIG. 28 shows the left ventricle LV in a dysfunctional state. The valve chordae CH or the papillary muscles PM are damaged or otherwise dysfunctional such that the leaflets LF do not properly coapt (contact one another). The dysfunction can be manifested by excess tension in the chordae CH such that a gap is located between the leaflets LF, or in some cases one leaflet may function at a different level from the other (e.g. lower (prolapse) or higher (flail)) thereby limiting the ability of the mitral valve to close resulting in mitral regurgitation. The dysfunctional left ventricle LV and in some cases leaflet prolapse or flail, can be treated by manipulating papillary muscles PM to adjust the position of the leaflets LF. In one embodiment, the papillary muscles PM are repositioned toward one another to reduce the distance between the papillary muscles PM.
  • In an embodiment described with reference to FIG. 29, a biasing member, such as a rod of adjustable length, or a spring 2910, is mounted between the papillary muscles PM with a first end of the spring 2910 attached to a first papillary muscle and a second end of the spring 2910 attached to a second papillary muscle. The spring 2910 has a pre-load such that the spring 2910 provides a biasing force (represented by the arrows 2915 in FIG. 29) that pulls the papillary muscles PM toward one another. Such a spring may be covered with polyester fabric or other coating to promote ingrowth into the muscle tissue and minimize the potential for clot formation. The repositioning of the papillary muscles PM re-shapes the left ventricle and/or changes the distance that the leaflets need to move on the chordae CH such that the leaflets LF contact one another to close the mitral valve. The tension provided by the spring 2910 can be varied or different springs can be used to achieve a proper repositioning of the papillary muscles PM. The tension may be modified at the time of the procedure or during a subsequent procedure if it is determined that additional coaptation is required.
  • In another embodiment, described with reference to FIG. 30, a suture 3010 is mounted between the papillary muscles PM with a first end of the suture 3010 attached to a first papillary muscle and a second end of the suture 3010 attached to a second papillary muscle. The suture 3010 can be attached to the papillary muscles in various manners. For example, an attachment device 3015, such as an anchor, cuff or sleeve, can be positioned around or partially around each of the papillary muscles. The ends of the suture 3010 are attached to the attachment devices 3015 to secure the suture 3010 to the suture to the papillary muscles.
  • The suture 3010 is tensioned such that it provides a force that pulls the papillary muscles PM toward one another. The suture 3010 can be tensioned, for example, by twisting the suture 3010 to reduce its the overall length and thereby reduce the distance between the papillary muscles PM, and fixing the suture with a crimping element or other stay element. The amount of twisting or shortening can be varied to vary the tension provided by the suture 3010. In addition, a crimping member may be used to fix the sutures once a desired tension between the muscles is reached. Exemplary crimping members are described in International Patent Publication Number WO 2003/073913, which is incorporated herein by reference in its entirety. As in the previous embodiment, the repositioning of the papillary muscles PM re-shapes the left ventricle and/or changes the tension on the chordae CH such that the leaflets LF contact one another to close the mitral valve. Cuffs or sleeves may be placed around the papillary muscles PM to such as those previously described, to affect the repositioning.
  • With reference now to FIG. 31, the papillary muscles PM can also be repositioned by snaring the papillary muscles. A snare 3110 comprised of a looped strand of material is positioned around the chordae CH at or near the location where the chordae attach with the papillary muscles PM. The snare 3110 is tightened to draw the papillary muscles PM toward one another and re-shape the left ventricle and/or changes the distance that the leaflets need to travel during systole such that the leaflets LF contact one another to close the mitral valve.
  • In yet another embodiment, shown in FIG. 36, one or more clips 3610 are clipped to each of the papillary muscles PM. The structure of the clips 3610 can vary. A tether 3615 attaches the clips 3610 to one another. The tether 3615 is cinched to shorten the length of the tether 3615 and pull the papillary muscles PM toward one another and re-shape the left ventricle and/or changes the distance that the leaflets need to travel during systole such that the leaflets LF contact one another to close the mitral valve.
  • In yet another embodiment, shown in FIG. 37, one or more clips 3610 are clipped to opposed walls of the left ventricle LV. The clips 3610 can be delivered to the left ventricle using a delivery catheter 2105. A tether attaches the clips to one another. The tether is cinched to shorten the length of the tether and pull the ventricular walls toward one another and re-shape the left ventricle and/or changes the distance that the leaflets need to travel during systole such that the leaflets LF contact one another to close the mitral valve.
  • In all embodiments, once the papillary muscles are fixed or repositioned, it may be advantageous to further treat the area by selectively elongating or shortening the chordae tendinae to achieve further optimal valve function. In addition, a mitral valve clip may be deployed to augment the desired valve function, either before papillary or chordal manipulation, or after, if the desired leaflet coaptation is not achieved with one particular approach.
  • As discussed above with reference to FIG. 28, a dysfunctional left ventricle can be manifested by excess tension in the chordae CH such that a gap is positioned between the valve leaflets LF. It can be desirable to eliminate or relieve the excess tension by cutting the chordae CH, and/or cutting the chordae and replacing them with artificial chordae. Prior to cutting the chordae, it can be desirable to evaluate the placement of the artificial chordae to confirm that implantation of the chordae will indeed provide the desired clinical result. This process is now described with reference to FIGS. 32-35.
  • FIG. 32 shows a leaflet grasping device 1100 that is configured to grasp and secure the leaflets of the mitral valve. The device 1100 and corresponding methods of use are described in more detail in U.S. Patent Publication No. 2004/0030382, entitled “Methods and Apparatus For Cardiac Valve Repair”, which is incorporated herein by reference in its entirety. Additional leaflet grasping devices are described in U.S. Patent Publication No. 2004/0092962, U.S. Pat. No. 6,269,819, issued Aug. 7, 2001, and U.S. U.S. Pat. No. 6,461,366, issued Oct. 8, 2002, all of which are expressly incorporated by reference herein.
  • Referring to FIG. 32, the device 1100 is comprised of a catheter shaft 1102 having a distal end 1104 and a proximal end 1106. The catheter shaft 1102 is comprised of, among others, a conduit 1108, a coaxial outer sheath 1110, a central lumen 1111 through which a double-jaw grasper 1113 may be inserted, and a central guidewire lumen 1105. The catheter shaft 1102 can have additional lumens for the passage of one or more needles, as described more fully below.
  • Toward the distal end 1104, an optional pair of stabilizers 1112 are fixedly mounted on the outer sheath 1110 at their proximal end 1114 and fixedly attached to extenders 1116 at their distal end 1118. The stabilizers 1112 are shown in an outwardly bowed position, however they may be inwardly collapsed by either extending the extenders 1116 or retracting the outer sheath 1110. Bowing may be achieved by the reverse process.
  • The double-jaw grasper 1113 is comprised of two articulating jaw arms 1120 which may be opened and closed against the central shaft 1122 (movement depicted by arrows) either independently or in tandem. The grasper 1113 is shown in the open position in FIG. 32. The surfaces of the jaw arms 1120 and central shaft 1122 may be toothed, as shown, or may have differing surface textures for varying degrees of friction. The jaw arms 1120 each include a needle passageway 1121 comprised of a cutout or a slot that extends at least partially along the length of each jaw arm 1120. As described in more detail below, the needle passageway provides a location where a needle can pass through the jaw arm 1120 during manipulation of the papillary muscle.
  • The above described components may be manipulated and controlled by a handle 1126 connected to the proximal end 1106 of the catheter shaft 1102, as shown in FIG. 32 the handle 1026 permits independent control of the components described above.
  • Referring to FIGS. 33A-C, the device 1100 may be used at least temporarily grasp and restrain the valve leaflets LF of the mitral valve MV. The double-jaw grasper 1113 extends through the valve such that the leaflets LF1, LF2 are grasped from below. Thus, the device 1100 is termed “atrial-ventricular.”
  • Referring to FIG. 33A, the atrial device 1100 may be stabilized against the mitral valve MV. The stabilizers 1112 may be positioned on the superior surface of the valve leaflets LF1, LF2 at a 90 degree angle to the line of coaptation. The grasper 1113 may be advanced in its closed position from the conduit 1108 between the leaflets LF1, LF2 until the jaw arms 1120 are fully below the leaflets in the ventricle. At this point, the grasper 1113 may be opened and retracted so that the jaw arms 1120 engage the inferior surface of the leaflets LF1, LF2. In this manner, the leaflets are secured between the stabilizers 1112 and the jaw arms 1120.
  • Referring to FIG. 33B, the grasper 1113 will gradually close, drawing the leaflets LF1, LF2 together while maintaining a secure hold on the leaflets between the jaw arms 1120 and the stabilizers 1112. This may be accomplished by number of methods. For example, the stabilizers 1112 may be gradually collapsed by either extending the extenders 1116 or retracting the outer sheath 1110. As the stabilizers 1112 collapse, the jaw arms 1120 may collapse due to spring loading to gradually close the grasper 1113. Alternatively, the jaw arms 1120 may be actuated to close against the central shaft 1122 applying force to the stabilizers 1112 causing them to collapse. In either case, such action allows the stabilizers 1112 to simultaneously vertically retract and withdraw from the leaflets as the leaflets are clamped between the jaw arms 1120 and the central shaft 1122. In this manner, the leaflets are effectively “transferred” to the grasper 1113. Referring to FIG. 33C, once the collapsed stabilizers 1112 are completely withdrawn, the leaflets LF1, LF2 are held in vertical opposition by the grasper 1113 in a more natural coaptation geometry.
  • With reference now to FIG. 34, a needle 3410 is advanced from the left atrium into the left ventricle. The needle 3410 can be passed through a lumen in the device 1100 or it can be passed external to the device 1100. In any event, the needle 3410 passes through a leaflet LF and into a papillary muscle PM. As mentioned, the jaw arms 1120 have needle passageways 1121 (shown in FIG. 32) that permit passage of the needle through the jaw arms 1120.
  • The needle 3410 is attached to a suture 3415 that extends distally through the device 1100. The suture 3415 is then anchored to the papillary muscle PM such that the suture 3415 provides an attachment for holding, pulling, or otherwise manipulating the papillary muscle PM. The tension in the suture 3415 can be adjusted to re-position the papillary muscle PM such that the leaflets LF contact one another to close the mitral valve. The same process can be performed with the other papillary muscle.
  • With the sutures 3415 holding the papillary muscles PM in a desired position, as shown in FIG. 35, the chordae CH may be cut. The sutures 3415 function as artificial chordae that retain the leaflets LF and papillary muscles PM in a desired orientation.
  • A fixation device such as a clip can then be attached to the leaflets using methods and device described in U.S. Patent Publication Nos. 2004/0030382, filed Aug. 5, 2003, and 2004/0092962, filed May 19, 2003, U.S. Pat. No. 6,269,819, issued Aug. 7, 2001, and U.S. Pat. No. 6,461,366, issued Oct. 8, 2002, all of which are expressly incorporated by reference herein. The sutures 3415 can be attached to the clip 3510 or directly to the leaflets LF. It should be appreciated that any quantity of sutures 3415 can be used as artificial chordae between the leaflets and the papillary muscles. It should be appreciated that the leaflet clips can also be used in conjunction with cutting, elongating, or shortening of the chordae pursuant to the methods described above.
  • Prior to permanently placing the chordae or clips, the result can be previewed on ultrasound (TEE, ICE, echocardiography), to determine if the appropriate valve coaptation is restored. In addition, it is within the scope of the present invention to implant a mitral valve clip in addition to performed papillary muscle approximation or chordal implantation.
  • As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope of the subject matter described herein. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
  • Although embodiments of various methods and devices are described herein in detail with reference to certain versions, it should be appreciated that other versions, embodiments, methods of use, and combinations thereof are also possible. Therefore the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.

Claims (22)

What is claimed is:
1. A chordal replacement device comprising:
a proximal anchor comprising a flexible patch and a leaflet attachment device, wherein the flexible patch is affixed to an upper surface of a portion of a flailing leaflet with the leaflet attachment device;
a distal anchor extending and affixed to a distal attachment site in a ventricle; and
a flexible tether coupled to and tensioned between the proximal and distal anchors.
2. The device of claim 1, wherein the leaflet attachment device comprises a pair of expandable elements interconnected by a central attachment rod.
3. The device of claim 2, wherein the pair of expandable elements sandwich the flexible patch and the leaflet.
4. The device of claim 1, wherein the leaflet attachment device comprises an expandable element.
5. The device of claim 1, wherein the expandable element is self-deploying.
6. The device of claim 5, wherein the expandable element comprises a star-shaped barb, a mesh web, or a mesh ball.
7. The device of claim 1, wherein the proximal anchor further comprises a mesh stent deployable within an atrium.
8. The device of claim 7, wherein the mesh stent is coupled to a flexible rod that extends through a valve commissure into the ventricle.
9. The device of claim 8, wherein a distal end of the flexible rod couples to the distal anchor and provides consistent tension on the tether during a heart cycle.
10. The device of claim 8, wherein the flexible rod has a deflectable, spring-formed shape.
11. The device of claim 8, wherein the flexible rod is jointed.
12. The device of claim 1, wherein the distal anchor and tensioned flexible tether apply a downward force on the flailing leaflet.
13. The device of claim 1, wherein the distal anchor comprises a weight, barb, adhesive, screw, or fluid-filled element.
14. The device of claim 1, wherein the distal attachment site comprises a portion of the ventricle wall, ventricular septum or papillary muscle.
15. The device of claim 14, wherein the distal anchor fine-tunes the tension of the tether after the distal anchor is affixed to the distal attachment site.
16. The device of claim 15, wherein the distal anchor comprises a coil screw and wherein rotation of the coil screw fine-tunes the tension on the tether.
17. The device of claim 15, wherein the distal anchor comprises a balloon and wherein infusion of fluid into the balloon increases tension on the tether.
18. The device of claim 1, wherein the flexible tether has a length that can be adjusted to a desired tension to apply a downward force on the flailing leaflet.
19. The device of claim 1, wherein the flexible tether comprises one or more loops of a flexible material.
20. The device of claim 19, wherein the one or more loops are drawn together at a distal end region with an enclosed element.
21. The device of claim 20, wherein the enclosed element couples the one or more loops to the distal anchor.
22. The device of claim 21, wherein the one or more loops are coupled to the proximal and distal anchors such that the one or more loops self-equalize and evenly distribute tension on the flailing leaflets and on distal attachment site.
US13/852,459 2005-02-07 2013-03-28 Methods, systems and devices for cardiac valve repair Abandoned US20130282059A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/852,459 US20130282059A1 (en) 2005-02-07 2013-03-28 Methods, systems and devices for cardiac valve repair
US15/082,137 US20160242909A1 (en) 2005-02-07 2016-03-28 Methods, systems and devices for cardiac valve repair
US15/943,758 US10667911B2 (en) 2005-02-07 2018-04-03 Methods, systems and devices for cardiac valve repair
US16/526,092 US20190350710A1 (en) 2005-02-07 2019-07-30 Methods, systems and devices for cardiac valve repair
US17/319,808 US20210393404A1 (en) 2005-02-07 2021-05-13 Methods, systems and devices for cardiac valve repair

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US65091805P 2005-02-07 2005-02-07
US69280205P 2005-06-21 2005-06-21
US24345909P 2009-09-17 2009-09-17
US12/883,095 US20110060407A1 (en) 2005-02-07 2010-09-15 Methods, systems and devices for cardiac valve repair
US13/852,459 US20130282059A1 (en) 2005-02-07 2013-03-28 Methods, systems and devices for cardiac valve repair

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US11/349,742 Continuation-In-Part US20060229708A1 (en) 2005-02-07 2006-02-07 Methods, systems and devices for cardiac valve repair
US12/883,095 Division US20110060407A1 (en) 2005-02-07 2010-09-15 Methods, systems and devices for cardiac valve repair

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/082,137 Division US20160242909A1 (en) 2005-02-07 2016-03-28 Methods, systems and devices for cardiac valve repair

Publications (1)

Publication Number Publication Date
US20130282059A1 true US20130282059A1 (en) 2013-10-24

Family

ID=36477759

Family Applications (6)

Application Number Title Priority Date Filing Date
US11/349,742 Abandoned US20060229708A1 (en) 2005-02-07 2006-02-07 Methods, systems and devices for cardiac valve repair
US12/398,971 Abandoned US20090177266A1 (en) 2005-02-07 2009-03-05 Methods, systems and devices for cardiac valve repair
US13/852,459 Abandoned US20130282059A1 (en) 2005-02-07 2013-03-28 Methods, systems and devices for cardiac valve repair
US15/082,137 Abandoned US20160242909A1 (en) 2005-02-07 2016-03-28 Methods, systems and devices for cardiac valve repair
US15/943,758 Active US10667911B2 (en) 2005-02-07 2018-04-03 Methods, systems and devices for cardiac valve repair
US16/526,092 Abandoned US20190350710A1 (en) 2005-02-07 2019-07-30 Methods, systems and devices for cardiac valve repair

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/349,742 Abandoned US20060229708A1 (en) 2005-02-07 2006-02-07 Methods, systems and devices for cardiac valve repair
US12/398,971 Abandoned US20090177266A1 (en) 2005-02-07 2009-03-05 Methods, systems and devices for cardiac valve repair

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/082,137 Abandoned US20160242909A1 (en) 2005-02-07 2016-03-28 Methods, systems and devices for cardiac valve repair
US15/943,758 Active US10667911B2 (en) 2005-02-07 2018-04-03 Methods, systems and devices for cardiac valve repair
US16/526,092 Abandoned US20190350710A1 (en) 2005-02-07 2019-07-30 Methods, systems and devices for cardiac valve repair

Country Status (5)

Country Link
US (6) US20060229708A1 (en)
EP (3) EP3967269A3 (en)
AU (1) AU2006212750B2 (en)
CA (1) CA2597066C (en)
WO (1) WO2006086434A1 (en)

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140369576A1 (en) * 2013-06-13 2014-12-18 Siemens Aktiengesellschaft Automatic interatrial septum detection from pre-operative and intra-operative 3d medical images for accurate transseptal puncture
US9011531B2 (en) 2012-02-13 2015-04-21 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
WO2016064748A1 (en) * 2014-10-22 2016-04-28 Medtronic Inc. Devices, systems and methods for tissue approximation, including approximating mitral valve leaflets
US9480565B2 (en) 2015-02-02 2016-11-01 On-X Life Technologies, Inc. Rapid deployment artificial chordae tendinae system
WO2017035002A1 (en) * 2015-08-21 2017-03-02 Twelve Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US9681864B1 (en) 2014-01-03 2017-06-20 Harpoon Medical, Inc. Method and apparatus for transapical procedures on a mitral valve
JP2017525464A (en) * 2014-08-21 2017-09-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Connecting rod for tongue operating system
US9770331B2 (en) 2010-12-23 2017-09-26 Twelve, Inc. System for mitral valve repair and replacement
US9901443B2 (en) 2011-10-19 2018-02-27 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10028827B2 (en) 2011-06-21 2018-07-24 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10052204B2 (en) 2011-10-19 2018-08-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10076414B2 (en) 2012-02-13 2018-09-18 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
US10111747B2 (en) 2013-05-20 2018-10-30 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10265172B2 (en) 2016-04-29 2019-04-23 Medtronic Vascular, Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
US10285686B2 (en) 2011-06-27 2019-05-14 University Of Maryland, Baltimore Transapical mitral valve repair method
US10299917B2 (en) 2011-10-19 2019-05-28 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
KR20200007806A (en) * 2017-04-05 2020-01-22 오푸스 메디칼 테라피스, 엘엘씨 Atrial sealing skirts, anchors and tears and implantation methods via catheter
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10624743B2 (en) 2016-04-22 2020-04-21 Edwards Lifesciences Corporation Beating-heart mitral valve chordae replacement
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10702380B2 (en) 2011-10-19 2020-07-07 Twelve, Inc. Devices, systems and methods for heart valve replacement
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10765515B2 (en) 2017-04-06 2020-09-08 University Of Maryland, Baltimore Distal anchor apparatus and methods for mitral valve repair
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10799356B2 (en) 2017-09-12 2020-10-13 Boston Scientific Scimed, Inc. Percutaneous papillary muscle relocation
WO2020231748A1 (en) 2019-05-10 2020-11-19 Merit Medical Systems, Inc. Drainage catheter exchange system and associated methods
US10842627B2 (en) 2017-04-18 2020-11-24 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10856986B2 (en) 2008-12-22 2020-12-08 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US10856987B2 (en) 2009-05-07 2020-12-08 Valtech Cardio, Ltd. Multiple anchor delivery tool
US10864080B2 (en) 2015-10-02 2020-12-15 Harpoon Medical, Inc. Distal anchor apparatus and methods for mitral valve repair
US10874514B2 (en) 2017-04-18 2020-12-29 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10893939B2 (en) 2012-10-23 2021-01-19 Valtech Cardio, Ltd. Controlled steering functionality for implant delivery tool
US10905554B2 (en) 2017-01-05 2021-02-02 Edwards Lifesciences Corporation Heart valve coaptation device
US10918374B2 (en) 2013-02-26 2021-02-16 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US10918373B2 (en) 2013-08-31 2021-02-16 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10918483B2 (en) 2018-01-09 2021-02-16 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10925735B2 (en) 2018-01-09 2021-02-23 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10925610B2 (en) 2015-03-05 2021-02-23 Edwards Lifesciences Corporation Devices for treating paravalvular leakage and methods use thereof
US10945844B2 (en) 2018-10-10 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
US10959847B2 (en) 2018-01-09 2021-03-30 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10959845B2 (en) 2016-07-08 2021-03-30 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US10973638B2 (en) 2016-07-07 2021-04-13 Edwards Lifesciences Corporation Device and method for treating vascular insufficiency
US10973637B2 (en) 2013-12-26 2021-04-13 Valtech Cardio, Ltd. Implantation of flexible implant
US10973639B2 (en) 2018-01-09 2021-04-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11013598B2 (en) 2018-01-09 2021-05-25 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11020227B2 (en) 2015-04-30 2021-06-01 Valtech Cardio, Ltd. Annuloplasty technologies
US11026672B2 (en) 2017-06-19 2021-06-08 Harpoon Medical, Inc. Method and apparatus for cardiac procedures
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11039925B2 (en) 2018-01-09 2021-06-22 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11040174B2 (en) 2017-09-19 2021-06-22 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11065117B2 (en) 2017-09-08 2021-07-20 Edwards Lifesciences Corporation Axisymmetric adjustable device for treating mitral regurgitation
US11065120B2 (en) 2017-10-24 2021-07-20 University Of Maryland, Baltimore Method and apparatus for cardiac procedures
US11065001B2 (en) 2013-10-23 2021-07-20 Valtech Cardio, Ltd. Anchor magazine
US11071628B2 (en) 2014-10-14 2021-07-27 Valtech Cardio, Ltd. Leaflet-restraining techniques
US11076958B2 (en) 2009-05-04 2021-08-03 Valtech Cardio, Ltd. Annuloplasty ring delivery catheters
US11103351B2 (en) 2017-04-05 2021-08-31 Opus Medical Therapies, LLC Transcatheter atrial sealing skirt and related method
US11103350B2 (en) 2016-06-01 2021-08-31 On-X Life Technologies, Inc. Pull-through chordae tendineae system
US11109964B2 (en) 2010-03-10 2021-09-07 Cardiovalve Ltd. Axially-shortening prosthetic valve
US11116634B2 (en) 2008-12-22 2021-09-14 Valtech Cardio Ltd. Annuloplasty implants
US11123191B2 (en) 2018-07-12 2021-09-21 Valtech Cardio Ltd. Annuloplasty systems and locking tools therefor
US11123187B2 (en) 2017-04-05 2021-09-21 Opus Medical Therapies, LLC Transcatheter atrial anchors and methods of implantation
US11129714B2 (en) 2012-03-01 2021-09-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11135059B2 (en) 2013-01-24 2021-10-05 Cardiovalve Ltd. Prosthetic valve and upstream support therefor
US11141268B2 (en) 2009-12-08 2021-10-12 Cardiovalve Ltd. Prosthetic heart valve with upper and lower skirts
US11141271B2 (en) 2009-10-29 2021-10-12 Valtech Cardio Ltd. Tissue anchor for annuloplasty device
US11166778B2 (en) 2017-04-28 2021-11-09 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US11185413B2 (en) 2016-07-13 2021-11-30 Medfree, Inc. Tissue grasping devices and related methods
US11185412B2 (en) 2009-05-04 2021-11-30 Valtech Cardio Ltd. Deployment techniques for annuloplasty implants
US11197759B2 (en) 2011-11-04 2021-12-14 Valtech Cardio Ltd. Implant having multiple adjusting mechanisms
US11202709B2 (en) 2009-02-17 2021-12-21 Valtech Cardio Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11207181B2 (en) 2018-04-18 2021-12-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US11259927B2 (en) 2018-01-09 2022-03-01 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11291547B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Leaflet clip with collars
US11298117B2 (en) 2016-02-16 2022-04-12 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US11298228B2 (en) 2018-01-09 2022-04-12 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11304804B2 (en) 2017-09-19 2022-04-19 Cardiovalve, Ltd. Prosthetic valve with connecting struts of variable size and tissue anchoring legs of variable size that extend from junctions
US11344310B2 (en) 2012-10-23 2022-05-31 Valtech Cardio Ltd. Percutaneous tissue anchor techniques
US11344414B2 (en) 2006-12-05 2022-05-31 Valtech Cardio Ltd. Implantation of repair devices in the heart
US11344410B2 (en) 2011-08-05 2022-05-31 Cardiovalve Ltd. Implant for heart valve
US11382746B2 (en) 2017-12-13 2022-07-12 Cardiovalve Ltd. Prosthetic valve and delivery tool therefor
US11389297B2 (en) 2018-04-12 2022-07-19 Edwards Lifesciences Corporation Mitral valve spacer device
US11395648B2 (en) 2012-09-29 2022-07-26 Edwards Lifesciences Corporation Plication lock delivery system and method of use thereof
US11413146B2 (en) * 2018-10-03 2022-08-16 Edwards Lifesciences Corporation Spring and coil devices for papillary muscle approximation and ventricle remodeling
US11426155B2 (en) 2010-07-21 2022-08-30 Cardiovalve Ltd. Helical anchor implantation
US11497605B2 (en) 2005-03-17 2022-11-15 Valtech Cardio Ltd. Mitral valve treatment techniques
US11517435B2 (en) 2018-05-04 2022-12-06 Edwards Lifesciences Corporation Ring-based prosthetic cardiac valve
US11517436B2 (en) 2011-08-05 2022-12-06 Cardiovalve Ltd. Implant for heart valve
US11517718B2 (en) 2016-11-07 2022-12-06 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US11534583B2 (en) 2013-03-14 2022-12-27 Valtech Cardio Ltd. Guidewire feeder
US11540835B2 (en) 2016-05-26 2023-01-03 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US11547564B2 (en) 2018-01-09 2023-01-10 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11571298B2 (en) 2017-08-03 2023-02-07 Cardiovalve Ltd. Prosthetic valve with appendages
US11583396B2 (en) 2009-12-04 2023-02-21 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US11583400B2 (en) 2012-12-06 2023-02-21 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for guided advancement of a tool
US11602434B2 (en) 2009-12-02 2023-03-14 Edwards Lifesciences Innovation (Israel) Ltd. Systems and methods for tissue adjustment
US11612485B2 (en) 2018-01-09 2023-03-28 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11617652B2 (en) 2009-10-29 2023-04-04 Edwards Lifesciences Innovation (Israel) Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US11660191B2 (en) 2008-03-10 2023-05-30 Edwards Lifesciences Corporation Method to reduce mitral regurgitation
US11666442B2 (en) 2018-01-26 2023-06-06 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11672658B2 (en) 2015-02-05 2023-06-13 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
US11690621B2 (en) 2014-12-04 2023-07-04 Edwards Lifesciences Corporation Percutaneous clip for repairing a heart valve
US11701225B2 (en) 2014-07-30 2023-07-18 Cardiovalve Ltd. Delivery of a prosthetic valve
US11723769B2 (en) 2018-01-16 2023-08-15 Medfree, Inc. Tissue grasping devices and related methods
US11730598B2 (en) 2017-09-07 2023-08-22 Edwards Lifesciences Corporation Prosthetic device for heart valve
US11766327B2 (en) 2009-05-04 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Implantation of repair chords in the heart
US11779463B2 (en) 2018-01-24 2023-10-10 Edwards Lifesciences Innovation (Israel) Ltd. Contraction of an annuloplasty structure
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US11793635B2 (en) 2015-02-05 2023-10-24 Cardiovalve Ltd. Prosthetic valve with angularly offset frames
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US11793642B2 (en) 2015-05-14 2023-10-24 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11819411B2 (en) 2019-10-29 2023-11-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies
US11832784B2 (en) 2017-11-02 2023-12-05 Edwards Lifesciences Innovation (Israel) Ltd. Implant-cinching devices and systems
US11839544B2 (en) 2019-02-14 2023-12-12 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11857415B2 (en) 2011-11-08 2024-01-02 Edwards Lifesciences Innovation (Israel) Ltd. Controlled steering functionality for implant-delivery tool
US11890193B2 (en) 2015-12-30 2024-02-06 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US11890194B2 (en) 2013-03-15 2024-02-06 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US11951263B2 (en) 2016-03-21 2024-04-09 Edwards Lifesciences Corporation Multi-direction steerable handles
JP7469395B2 (en) 2015-08-21 2024-04-16 トゥエルヴ, インコーポレイテッド IMPLANTABLE HEART VALVE DEVICES, MITRAL VALVE REPAIR DEVICES, AND RELATED SYSTEMS AND METHODS

Families Citing this family (294)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
CA2620783C (en) 1999-04-09 2011-04-05 Evalve, Inc. Methods and apparatus for cardiac valve repair
US10327743B2 (en) 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
US7604646B2 (en) 1999-04-09 2009-10-20 Evalve, Inc. Locking mechanisms for fixation devices and methods of engaging tissue
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US7226467B2 (en) 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
US8216256B2 (en) 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
ITPC20000013A1 (en) 2000-04-13 2000-07-13 Paolo Ferrazzi INTROVENTRICULAR DEVICE AND RELATED METHOD FOR THE TREATMENT AND CORRECTION OF MYOCARDIOPATHIES.
US6575971B2 (en) 2001-11-15 2003-06-10 Quantum Cor, Inc. Cardiac valve leaflet stapler device and methods thereof
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US7048754B2 (en) 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
EP1530441B1 (en) 2002-06-13 2017-08-02 Ancora Heart, Inc. Devices and methods for heart valve repair
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US8172856B2 (en) 2002-08-02 2012-05-08 Cedars-Sinai Medical Center Methods and apparatus for atrioventricular valve repair
AU2003277116A1 (en) * 2002-10-01 2004-04-23 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US20050107871A1 (en) * 2003-03-30 2005-05-19 Fidel Realyvasquez Apparatus and methods for valve repair
US10646229B2 (en) 2003-05-19 2020-05-12 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7186265B2 (en) * 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
CA2748617C (en) 2004-09-27 2014-09-23 Evalve, Inc. Methods and devices for tissue grasping and assessment
US8052592B2 (en) 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
US8470028B2 (en) 2005-02-07 2013-06-25 Evalve, Inc. Methods, systems and devices for cardiac valve repair
EP3967269A3 (en) 2005-02-07 2022-07-13 Evalve, Inc. Systems and devices for cardiac valve repair
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US8333777B2 (en) 2005-04-22 2012-12-18 Benvenue Medical, Inc. Catheter-based tissue remodeling devices and methods
EP2901967B1 (en) 2005-05-24 2019-10-02 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
WO2006130505A2 (en) 2005-05-27 2006-12-07 Arbor Surgical Technologies, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US20090099410A1 (en) * 2005-06-09 2009-04-16 De Marchena Eduardo Papillary Muscle Attachment for Left Ventricular Reduction
US8502681B2 (en) 2005-06-20 2013-08-06 Biovigil, Llc Hand cleanliness
US7616122B2 (en) 2005-06-20 2009-11-10 Biovigil, Llc Hand cleanliness
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US8092525B2 (en) 2005-10-26 2012-01-10 Cardiosolutions, Inc. Heart valve implant
US8778017B2 (en) 2005-10-26 2014-07-15 Cardiosolutions, Inc. Safety for mitral valve implant
US8852270B2 (en) 2007-11-15 2014-10-07 Cardiosolutions, Inc. Implant delivery system and method
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US9259317B2 (en) 2008-06-13 2016-02-16 Cardiosolutions, Inc. System and method for implanting a heart implant
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
US8216302B2 (en) 2005-10-26 2012-07-10 Cardiosolutions, Inc. Implant delivery and deployment system and method
WO2007100408A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Papillary muscle position control devices, systems & methods
CA2669195C (en) * 2005-12-15 2013-06-25 Georgia Tech Research Corporation Systems and methods to control the dimension of a heart valve
WO2007100410A2 (en) * 2005-12-15 2007-09-07 Georgia Tech Research Corporation Systems and methods for enabling heart valve replacement
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
WO2007130881A2 (en) 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
CA2653358C (en) * 2006-06-02 2012-03-13 Medtronic, Inc. Annuloplasty ring and method
DE102006028964A1 (en) * 2006-06-16 2007-12-20 Eberhard-Karls-Universität Tübingen Device for the treatment of mitral valve insufficiency
US8029556B2 (en) * 2006-10-04 2011-10-04 Edwards Lifesciences Corporation Method and apparatus for reshaping a ventricle
US7879087B2 (en) * 2006-10-06 2011-02-01 Edwards Lifesciences Corporation Mitral and tricuspid annuloplasty rings
US8388680B2 (en) 2006-10-18 2013-03-05 Guided Delivery Systems, Inc. Methods and devices for catheter advancement and delivery of substances therethrough
WO2008068756A2 (en) 2006-12-05 2008-06-12 Valtech Cardio, Ltd. Segmented ring placement
WO2010004546A1 (en) 2008-06-16 2010-01-14 Valtech Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US9192471B2 (en) 2007-01-08 2015-11-24 Millipede, Inc. Device for translumenal reshaping of a mitral valve annulus
US8070802B2 (en) * 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US8529620B2 (en) 2007-05-01 2013-09-10 Ottavio Alfieri Inwardly-bowed tricuspid annuloplasty ring
US8480730B2 (en) 2007-05-14 2013-07-09 Cardiosolutions, Inc. Solid construct mitral spacer
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
CA2702615C (en) * 2007-10-19 2017-06-06 Guided Delivery Systems, Inc. Systems and methods for cardiac remodeling
US8597347B2 (en) 2007-11-15 2013-12-03 Cardiosolutions, Inc. Heart regurgitation method and apparatus
US8784483B2 (en) 2007-11-19 2014-07-22 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
US8216303B2 (en) * 2007-11-19 2012-07-10 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
US8411564B2 (en) * 2007-12-17 2013-04-02 Indian Institute Of Technology, Bombay Architectural framework of communication network and a method of establishing QOS connection
US20090222081A1 (en) * 2008-01-24 2009-09-03 Coherex Medical, Inc. Methods and apparatus for reducing valve prolapse
US20100131057A1 (en) 2008-04-16 2010-05-27 Cardiovascular Technologies, Llc Transvalvular intraannular band for aortic valve repair
US11013599B2 (en) 2008-04-16 2021-05-25 Heart Repair Technologies, Inc. Percutaneous transvalvular intraannular band for mitral valve repair
US20100121435A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Percutaneous transvalvular intrannular band for mitral valve repair
US10456259B2 (en) 2008-04-16 2019-10-29 Heart Repair Technologies, Inc. Transvalvular intraannular band for mitral valve repair
US20100121437A1 (en) * 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Transvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy
US8262725B2 (en) * 2008-04-16 2012-09-11 Cardiovascular Technologies, Llc Transvalvular intraannular band for valve repair
US11083579B2 (en) 2008-04-16 2021-08-10 Heart Repair Technologies, Inc. Transvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy
US8323336B2 (en) 2008-04-23 2012-12-04 Medtronic, Inc. Prosthetic heart valve devices and methods of valve replacement
CA2723810C (en) 2008-05-07 2015-06-30 Guided Delivery Systems, Inc. Deflectable guide
US8591460B2 (en) 2008-06-13 2013-11-26 Cardiosolutions, Inc. Steerable catheter and dilator and system and method for implanting a heart implant
US8337390B2 (en) 2008-07-30 2012-12-25 Cube S.R.L. Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
CA2743719C (en) 2008-11-25 2019-03-19 Edwards Lifesciences Corporation Apparatus and method for in situ expansion of prosthetic device
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US8808368B2 (en) 2008-12-22 2014-08-19 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US8147542B2 (en) 2008-12-22 2012-04-03 Valtech Cardio, Ltd. Adjustable repair chords and spool mechanism therefor
US8926697B2 (en) 2011-06-23 2015-01-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
WO2010085456A1 (en) 2009-01-20 2010-07-29 Guided Delivery Systems Inc. Anchor deployment devices and related methods
JP2012520716A (en) * 2009-03-17 2012-09-10 ミトラシスト メディカル リミテッド Artificial valve having a folding valve and its delivery method
US8523881B2 (en) 2010-07-26 2013-09-03 Valtech Cardio, Ltd. Multiple anchor delivery tool
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
EP3042615A1 (en) 2009-09-15 2016-07-13 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US8277502B2 (en) * 2009-10-29 2012-10-02 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
WO2011154942A2 (en) 2010-06-07 2011-12-15 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of a rotation assembly
US8940042B2 (en) 2009-10-29 2015-01-27 Valtech Cardio, Ltd. Apparatus for guide-wire based advancement of a rotation assembly
WO2011072084A2 (en) 2009-12-08 2011-06-16 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US8961596B2 (en) 2010-01-22 2015-02-24 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9241702B2 (en) 2010-01-22 2016-01-26 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
ES2365317B1 (en) 2010-03-19 2012-08-03 Xavier Ruyra Baliarda PROTESTIC BAND, IN PARTICULAR FOR THE REPAIR OF A MITRAL VALVE.
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
CN102883684B (en) 2010-05-10 2015-04-08 爱德华兹生命科学公司 Prosthetic heart valve
US8790394B2 (en) 2010-05-24 2014-07-29 Valtech Cardio, Ltd. Adjustable artificial chordeae tendineae with suture loops
US20120053680A1 (en) 2010-08-24 2012-03-01 Bolling Steven F Reconfiguring Heart Features
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US8932350B2 (en) 2010-11-30 2015-01-13 Edwards Lifesciences Corporation Reduced dehiscence annuloplasty ring
EP2667824A4 (en) * 2011-01-25 2017-11-01 Emory University Devices and methods for surgical and percutaneous repair of heart valve lesions
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
EP4289398A3 (en) 2011-08-11 2024-03-13 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US8945177B2 (en) 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
US9011468B2 (en) 2011-09-13 2015-04-21 Abbott Cardiovascular Systems Inc. Independent gripper
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
WO2013123388A1 (en) 2012-02-15 2013-08-22 Children's Hospital- Boston Right ventricular papillary approximation
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
EP2943132B1 (en) 2013-01-09 2018-03-28 4Tech Inc. Soft tissue anchors
WO2014138482A1 (en) 2013-03-07 2014-09-12 Cedars-Sinai Medical Center Method and apparatus for percutaneous delivery and deployment of a cardiovascular prosthesis
WO2014138284A1 (en) 2013-03-07 2014-09-12 Cedars-Sinai Medical Center Catheter based apical approach heart prostheses delivery system
WO2014141239A1 (en) 2013-03-14 2014-09-18 4Tech Inc. Stent with tether interface
US9232998B2 (en) 2013-03-15 2016-01-12 Cardiosolutions Inc. Trans-apical implant systems, implants and methods
US9289297B2 (en) 2013-03-15 2016-03-22 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
FR3004336A1 (en) * 2013-04-12 2014-10-17 St George Medical Inc MITRAL HEART VALVE PROSTHESIS AND RELIEF CATHETER
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US9468527B2 (en) 2013-06-12 2016-10-18 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
AU2014277902A1 (en) 2013-06-14 2016-02-04 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
JP6461122B2 (en) 2013-06-25 2019-01-30 テンダイン ホールディングス,インコーポレイテッド Thrombus management and structural compliance features of prosthetic heart valves
EP3013250A4 (en) * 2013-06-25 2017-05-31 Mitralign, Inc. Percutaneous valve repair by reshaping and resizing right ventricle
EP3027144B1 (en) 2013-08-01 2017-11-08 Tendyne Holdings, Inc. Epicardial anchor devices
EP3033047B1 (en) 2013-08-14 2018-01-03 Sorin Group Italia S.r.l. Apparatus for chordal replacement
US9919137B2 (en) 2013-08-28 2018-03-20 Edwards Lifesciences Corporation Integrated balloon catheter inflation system
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
EP3656353A1 (en) 2013-10-28 2020-05-27 Tendyne Holdings, Inc. Prosthetic heart valve and systems for delivering the same
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
US10039643B2 (en) 2013-10-30 2018-08-07 4Tech Inc. Multiple anchoring-point tension system
JP2016538076A (en) * 2013-11-28 2016-12-08 ムバルブ・テクノロジーズ・リミテッド Intracardiac device comprising a stabilizing element with improved fatigue resistance
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
AU2015229708B2 (en) 2014-03-10 2019-08-15 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US9572666B2 (en) 2014-03-17 2017-02-21 Evalve, Inc. Mitral valve fixation device removal devices and methods
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
US9585752B2 (en) 2014-04-30 2017-03-07 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
CA2958061A1 (en) 2014-06-18 2015-12-23 Middle Peak Medical, Inc. Mitral valve implants for the treatment of valvular regurgitation
CN106573129B (en) 2014-06-19 2019-09-24 4科技有限公司 Heart tissue is tightened
EP3160396B1 (en) 2014-06-24 2022-03-23 Polares Medical Inc. Systems for anchoring an implant
CN104042359B (en) 2014-06-30 2017-01-04 江苏大学 A kind of Bicuspid valve closure plate occluder of the adaptive location repairing mitral incompetence
US9180005B1 (en) 2014-07-17 2015-11-10 Millipede, Inc. Adjustable endolumenal mitral valve ring
US10799359B2 (en) 2014-09-10 2020-10-13 Cedars-Sinai Medical Center Method and apparatus for percutaneous delivery and deployment of a cardiac valve prosthesis
WO2016050751A1 (en) 2014-09-29 2016-04-07 Martin Quinn A heart valve treatment device and method
US10758265B2 (en) 2014-11-14 2020-09-01 Cedars-Sinai Medical Center Cardiovascular access and device delivery system
US9907547B2 (en) 2014-12-02 2018-03-06 4Tech Inc. Off-center tissue anchors
US20160158011A1 (en) * 2014-12-09 2016-06-09 Didier De Canniere Intracardiac device to correct mitral regurgitation
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
EP3242630A2 (en) 2015-01-07 2017-11-15 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
CA2975294A1 (en) 2015-02-05 2016-08-11 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
WO2016130991A1 (en) 2015-02-13 2016-08-18 Millipede, Inc. Valve replacement using rotational anchors
CA2978599C (en) 2015-03-05 2022-09-06 Ancora Heart, Inc. Devices and methods of visualizing and determining depth of penetration in cardiac tissue
US10010315B2 (en) 2015-03-18 2018-07-03 Mitralign, Inc. Tissue anchors and percutaneous tricuspid valve repair using a tissue anchor
US10524912B2 (en) 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
CA2983002C (en) 2015-04-16 2023-07-04 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US10278819B2 (en) 2015-06-01 2019-05-07 Edwards Lifesciences Corporation Cardiac valve repair devices configured for percutaneous delivery
US10376673B2 (en) 2015-06-19 2019-08-13 Evalve, Inc. Catheter guiding system and methods
US10238494B2 (en) 2015-06-29 2019-03-26 Evalve, Inc. Self-aligning radiopaque ring
WO2017004369A1 (en) 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
CR20170597A (en) 2015-07-02 2018-04-20 Edwards Lifesciences Corp INTEGRATED HYBRID HEART VALVES
US10667815B2 (en) 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
WO2017015632A1 (en) 2015-07-23 2017-01-26 Cedars-Sinai Medical Center Device for securing heart valve leaflets
US10413408B2 (en) 2015-08-06 2019-09-17 Evalve, Inc. Delivery catheter systems, methods, and devices
EP3344158B1 (en) 2015-09-02 2023-03-01 Edwards Lifesciences Corporation Spacer for securing a transcatheter valve to a bioprosthetic cardiac structure
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
US10238495B2 (en) 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN111329541B (en) 2015-11-17 2023-09-19 波士顿科学国际有限公司 Implantable device and delivery system for reshaping a heart valve annulus
ES2777609T3 (en) 2015-12-03 2020-08-05 Tendyne Holdings Inc Framework Features for Prosthetic Mitral Valves
CN108366859B (en) 2015-12-28 2021-02-05 坦迪尼控股股份有限公司 Atrial capsular bag closure for prosthetic heart valves
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US11833034B2 (en) 2016-01-13 2023-12-05 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US11478353B2 (en) 2016-01-29 2022-10-25 Bioventrix, Inc. Percutaneous arterial access to position trans-myocardial implant devices and methods
US10433952B2 (en) 2016-01-29 2019-10-08 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10835714B2 (en) 2016-03-21 2020-11-17 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US20200146854A1 (en) * 2016-05-16 2020-05-14 Elixir Medical Corporation Methods and devices for heart valve repair
US10456245B2 (en) 2016-05-16 2019-10-29 Edwards Lifesciences Corporation System and method for applying material to a stent
EP3468480B1 (en) 2016-06-13 2023-01-11 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
WO2018005779A1 (en) 2016-06-30 2018-01-04 Tegels Zachary J Prosthetic heart valves and apparatus and methods for delivery of same
US10736632B2 (en) 2016-07-06 2020-08-11 Evalve, Inc. Methods and devices for valve clip excision
US11065116B2 (en) 2016-07-12 2021-07-20 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US10478304B2 (en) 2016-07-20 2019-11-19 Abbott Cardiovascular Systems Inc. Independent system for tricuspid valve repair
JP7199344B2 (en) 2016-08-15 2023-01-05 ザ クリーヴランド クリニック ファウンデーション Apparatus and method for at least partially supporting heart valve leaflets with regurgitation
US11071564B2 (en) 2016-10-05 2021-07-27 Evalve, Inc. Cardiac valve cutting device
US10363138B2 (en) 2016-11-09 2019-07-30 Evalve, Inc. Devices for adjusting the curvature of cardiac valve structures
US10398553B2 (en) 2016-11-11 2019-09-03 Evalve, Inc. Opposing disk device for grasping cardiac valve tissue
US10426616B2 (en) 2016-11-17 2019-10-01 Evalve, Inc. Cardiac implant delivery system
AU2017361296B2 (en) 2016-11-21 2022-09-29 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues
US10314586B2 (en) 2016-12-13 2019-06-11 Evalve, Inc. Rotatable device and method for fixing tricuspid valve tissue
USD846122S1 (en) 2016-12-16 2019-04-16 Edwards Lifesciences Corporation Heart valve sizer
JP2020501842A (en) 2016-12-22 2020-01-23 ハート・リペアー・テクノロジーズ・インコーポレーテッド Percutaneous delivery system for securing an implant to a heart valve annulus
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
US11439501B2 (en) 2017-01-25 2022-09-13 Cedars-Sinai Medical Center Device for securing heart valve leaflets
CN110381887B (en) 2017-02-10 2022-03-29 波士顿科学国际有限公司 Implantable device and delivery system for remodeling a heart valve annulus
EP3372198B1 (en) * 2017-03-06 2019-06-19 AVVie GmbH Implant for improving coaptation of an atrioventricular valve
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN110913801B (en) 2017-03-13 2022-04-15 宝来瑞斯医疗有限公司 Coaptation assistance element for treating an adverse coaptation of a heart valve of a heart and system for delivering the same
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
IL269673B2 (en) * 2017-03-28 2024-02-01 Cardiac Success Ltd Device for Improving Cardiac Function
US11318018B2 (en) 2017-03-28 2022-05-03 Cardiac Success Ltd. Method of improving cardiac function
WO2018209313A1 (en) 2017-05-12 2018-11-15 Evalve, Inc. Long arm valve repair clip
WO2018217921A1 (en) 2017-05-23 2018-11-29 Harmony Development Group, Inc. Tethered implantable device having a vortical intracardiac velocity adjusting balloon
US10779829B2 (en) * 2017-06-07 2020-09-22 Evalve, Inc. Tissue compression device for cardiac valve repair
WO2019006152A1 (en) * 2017-06-28 2019-01-03 Harmony Development Group, Inc. A force transducting inflatable implant system including a dual force annular transduction implant
US11069220B2 (en) 2017-07-10 2021-07-20 Biovigil Hygiene Technologies, Llc Hand cleanliness monitoring
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
JP7291124B2 (en) 2017-08-28 2023-06-14 テンダイン ホールディングス,インコーポレイテッド Heart valve prosthesis with tethered connections
US20190069996A1 (en) * 2017-09-07 2019-03-07 Edwards Lifesciences Corporation Integral flushing solution for blood stasis prevention in artificial heart valves
WO2019079788A1 (en) 2017-10-20 2019-04-25 Boston Scientific Scimed, Inc. Heart valve repair implant for treating tricuspid regurgitation
US11464638B2 (en) 2017-10-23 2022-10-11 Cardiac Success Ltd Adjustable self-locking papillary muscle band
WO2019081985A2 (en) 2017-10-23 2019-05-02 Cardiac Success Ltd. Adjustable self-locking papillary muscle band
US10123873B1 (en) 2018-01-09 2018-11-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
CN111565678B (en) 2018-01-23 2023-07-07 爱德华兹生命科学公司 Prosthetic valve holders, systems, and methods
WO2019152598A2 (en) 2018-02-02 2019-08-08 Cedars-Sinai Medical Center Delivery platforms, devices, and methods for tricuspid valve repair
JP7300455B2 (en) 2018-02-09 2023-06-29 ザ プロボースト,フェローズ,ファンデーション スカラーズ,アンド ジ アザー メンバーズ オブ ボード,オブ ザ カレッジ オブ ザ ホーリー アンド アンディバイデッド トリニティ オブ クイーン エリザベス ニア ダブリン heart valve therapy device
CN108309504B (en) * 2018-02-27 2019-07-26 宁波迪创医疗科技有限公司 A kind of ventricular assist device enhancing heart function
WO2019173385A1 (en) 2018-03-05 2019-09-12 Harmony Development Group, Inc. A force transducting implant system for the mitigation of atrioventricular pressure gradient loss and the restoration of healthy ventricular geometry
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
WO2019226803A1 (en) * 2018-05-22 2019-11-28 Boston Scientific Scimed, Inc. Percutaneous papillary muscle relocation
EP4140449A3 (en) 2018-07-10 2023-05-10 Syntach AG An implantable cardiac valve system
EP3593758A1 (en) 2018-07-10 2020-01-15 Syntach AG An implantable cardiac valve device and system
USD908874S1 (en) 2018-07-11 2021-01-26 Edwards Lifesciences Corporation Collapsible heart valve sizer
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
CA3115270A1 (en) 2018-10-05 2020-04-09 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
CA3118599A1 (en) 2018-11-08 2020-05-14 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
WO2020163504A1 (en) 2019-02-06 2020-08-13 inQB8 Medical Technologies, LLC Intra-cardiac left atrial and dual support systems
WO2020181154A2 (en) * 2019-03-05 2020-09-10 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
EP3941391A4 (en) 2019-03-19 2022-11-23 Shifamed Holdings, LLC Prosthetic cardiac valve devices, systems, and methods
US11602429B2 (en) 2019-04-01 2023-03-14 Neovasc Tiara Inc. Controllably deployable prosthetic valve
AU2020271896B2 (en) 2019-04-10 2022-10-13 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
JP2022530764A (en) 2019-05-04 2022-07-01 ブイダイン,インコーポレイテッド Tightening device and method for deploying a laterally delivered artificial heart valve with a native annulus.
EP3972673A4 (en) 2019-05-20 2023-06-07 Neovasc Tiara Inc. Introducer with hemostasis mechanism
US11534303B2 (en) 2020-04-09 2022-12-27 Evalve, Inc. Devices and systems for accessing and repairing a heart valve
WO2020257643A1 (en) 2019-06-20 2020-12-24 Neovasc Tiara Inc. Low profile prosthetic mitral valve
WO2021011531A1 (en) 2019-07-15 2021-01-21 Evalve, Inc. Wide clip with nondeformable wings
WO2021011659A1 (en) 2019-07-15 2021-01-21 Ancora Heart, Inc. Devices and methods for tether cutting
CA3147410A1 (en) 2019-07-15 2021-01-21 Evalve, Inc. Proximal element actuator fixation and release mechanisms
CA3148739A1 (en) 2019-08-05 2021-02-11 Croivalve Ltd. Apparatus and methods for treating a defective cardiac valve
CA3152042A1 (en) 2019-08-20 2021-02-25 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
JP2022545728A (en) 2019-08-26 2022-10-28 ブイダイン,インコーポレイテッド Transcatheter prosthetic valves capable of lateral delivery and methods for their delivery and fixation
US11707228B2 (en) 2019-09-26 2023-07-25 Evalve, Inc. Systems and methods for intra-procedural cardiac pressure monitoring
US11844695B2 (en) 2019-10-11 2023-12-19 Opus Medical Therapies, LLC Devices for transcatheter chordal implantation and methods of implantation
WO2021072209A1 (en) 2019-10-11 2021-04-15 Evalve, Inc. Repair clip for variable tissue thickness
US11622859B2 (en) 2019-11-08 2023-04-11 Evalve, Inc. Medical device delivery system with locking system
WO2021097124A1 (en) 2019-11-14 2021-05-20 Evalve, Inc. Catheter assembly with coaptation aid and methods for valve repair
US11701229B2 (en) 2019-11-14 2023-07-18 Evalve, Inc. Kit with coaptation aid and fixation system and methods for valve repair
EP3831343B1 (en) 2019-12-05 2024-01-31 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
WO2021138339A1 (en) 2019-12-31 2021-07-08 Creative Heart Valve Solutions Llc Methods, implants, and systems for treatment of mitral valve prolapse
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation
US11690717B2 (en) 2020-03-30 2023-07-04 Lepu Medical Technology (Beijing) Co., Ltd. Heart valve clamp
US11751995B2 (en) * 2020-03-30 2023-09-12 Tendyne Holdings, Inc. Apparatus and methods for minimally invasive transapical access
US11857417B2 (en) 2020-08-16 2024-01-02 Trilio Medical Ltd. Leaflet support
WO2022039853A1 (en) 2020-08-19 2022-02-24 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
CN116327431A (en) * 2021-12-22 2023-06-27 上海微创心通医疗科技有限公司 Valve repair device and valve repair system
US11654024B1 (en) 2022-10-31 2023-05-23 Capstan Medical Inc. Heart valve clip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040143323A1 (en) * 2003-01-16 2004-07-22 Chawla Surenda K. Valve repair device
US20050277966A1 (en) * 2004-06-09 2005-12-15 Usgi Medical Inc. Compressible tissue anchor assemblies
US20060287716A1 (en) * 2005-06-08 2006-12-21 The Cleveland Clinic Foundation Artificial chordae
US20070118154A1 (en) * 2005-11-23 2007-05-24 Crabtree Traves D Methods and apparatus for atrioventricular valve repair
US20070118151A1 (en) * 2005-11-21 2007-05-24 The Brigham And Women's Hospital, Inc. Percutaneous cardiac valve repair with adjustable artificial chordae
US20110029071A1 (en) * 2007-12-20 2011-02-03 Amnon Zlotnick Elongated body for deployment in a coronary sinus

Family Cites Families (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2097018A (en) 1936-07-17 1937-10-26 Coleman R Chamberlin Multiple purpose guide and retention clip
US2108206A (en) * 1937-03-09 1938-02-15 Lillian Pearl Mecker Tenaculum
US3378010A (en) * 1965-07-28 1968-04-16 Coldling Surgical clip with means for releasing the clamping pressure
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3874338A (en) * 1972-10-09 1975-04-01 Fritz Happel Milking cup
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
GB1486351A (en) 1975-06-06 1977-09-21 Rocket Of London Ltd Surgical clip applicator
US4112951A (en) 1976-01-26 1978-09-12 Research Corporation Surgical clip
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
AU521676B2 (en) 1977-02-23 1982-04-22 Clark, Richard Edwin Heart valve prosthesis
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
NL7906691A (en) 1979-09-07 1981-03-10 Jansen Anton MEDICAL DEVICE FOR COUPLING TWO Bowel Sections, Auxiliary Device For Using It And Method Of Laying A Gut Knot Using This Device.
US4498476A (en) * 1981-08-27 1985-02-12 Ethicon, Inc. Non-metallic, bio-compatible hemostatic clips with interlocking latch means
US4809695A (en) * 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4944295A (en) 1981-10-21 1990-07-31 Owen Gwathmay Suturing assembly
US4484579A (en) 1982-07-19 1984-11-27 University Of Pittsburgh Commissurotomy catheter apparatus and method
US4510934A (en) * 1983-05-13 1985-04-16 Batra Subhash K Suture
DE3344934A1 (en) 1983-12-13 1985-06-20 Richard Wolf Gmbh, 7134 Knittlingen ENDOSCOPE WITH DISTALLY DEFLECTABLE AUXILIARY INSTRUMENT
GB8424582D0 (en) 1984-09-28 1984-11-07 Univ Glasgow Heart valve prosthesis
JPS6187434A (en) * 1984-10-04 1986-05-02 Nec Corp Portable radio equipment
CA1303298C (en) 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
US5478353A (en) 1987-05-14 1995-12-26 Yoon; Inbae Suture tie device system and method for suturing anatomical tissue proximate an opening
US5542949A (en) 1987-05-14 1996-08-06 Yoon; Inbae Multifunctional clip applier instrument
WO1989009029A1 (en) 1989-02-16 1989-10-05 Taheri Syde A Method and apparatus for removing venous valves
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5108368A (en) * 1990-01-04 1992-04-28 Pilot Cardiovascular System, Inc. Steerable medical device
US4994077A (en) * 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5092872A (en) 1989-07-28 1992-03-03 Jacob Segalowitz Valvulotome catheter
US5047041A (en) 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
GB8924806D0 (en) 1989-11-03 1989-12-20 Neoligaments Ltd Prosthectic ligament system
US5015249A (en) 1989-12-26 1991-05-14 Nakao Naomi L Endoscopic stapling device and method
US5049153A (en) 1989-12-26 1991-09-17 Nakao Naomi L Endoscopic stapling device and method
US6033378A (en) * 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
US5195968A (en) * 1990-02-02 1993-03-23 Ingemar Lundquist Catheter steering mechanism
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5001136A (en) 1990-06-07 1991-03-19 Pfizer Inc. Leukotriene-synthesis-inhibiting 2-substitutedmethylamino-5-(hydroxy or alkoxy)pyridines
US5389102A (en) 1990-09-13 1995-02-14 United States Surgical Corporation Apparatus and method for subcuticular stapling of body tissue
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
US5125758A (en) 1990-12-06 1992-06-30 Dewan Thomas E Piercing clamp
US5275578A (en) * 1991-01-11 1994-01-04 Adams Andy W Clip
US5163955A (en) 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
US5171252A (en) 1991-02-05 1992-12-15 Friedland Thomas W Surgical fastening clip formed of a shape memory alloy, a method of making such a clip and a method of using such a clip
US5226429A (en) 1991-06-20 1993-07-13 Inamed Development Co. Laparoscopic gastric band and method
US5452733A (en) 1993-02-22 1995-09-26 Stanford Surgical Technologies, Inc. Methods for performing thoracoscopic coronary artery bypass
US5571215A (en) 1993-02-22 1996-11-05 Heartport, Inc. Devices and methods for intracardiac procedures
US5769812A (en) 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
US5226911A (en) 1991-10-02 1993-07-13 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5234437A (en) 1991-12-12 1993-08-10 Target Therapeutics, Inc. Detachable pusher-vasoocclusion coil assembly with threaded coupling
US5423882A (en) 1991-12-26 1995-06-13 Cordis-Webster, Inc. Catheter having electrode with annular recess and method of using same
US5417700A (en) 1992-03-30 1995-05-23 Thomas D. Egan Automatic suturing and ligating device
US5314424A (en) 1992-04-06 1994-05-24 United States Surgical Corporation Surgical instrument locking mechanism
US5190554A (en) * 1992-04-08 1993-03-02 Eastern Virginia Medical School Appendix extractor
US5318525A (en) 1992-04-10 1994-06-07 Medtronic Cardiorhythm Steerable electrode catheter
US5254130A (en) 1992-04-13 1993-10-19 Raychem Corporation Surgical device
US5368601A (en) 1992-04-30 1994-11-29 Lasersurge, Inc. Trocar wound closure device
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
US5658300A (en) 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5325845A (en) 1992-06-08 1994-07-05 Adair Edwin Lloyd Steerable sheath for use with selected removable optical catheter
US5368606A (en) 1992-07-02 1994-11-29 Marlow Surgical Technologies, Inc. Endoscopic instrument system
US5383886A (en) * 1992-10-13 1995-01-24 Kensey Nash Corporation Methods and instruments for performing medical procedures percutaneously without a trocar
US5713910A (en) * 1992-09-04 1998-02-03 Laurus Medical Corporation Needle guidance system for endoscopic suture device
US5350397A (en) 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
CA2106126A1 (en) 1992-09-23 1994-03-24 Ian M. Scott Bipolar surgical instruments
US5718725A (en) * 1992-12-03 1998-02-17 Heartport, Inc. Devices and methods for intracardiac procedures
US5462527A (en) 1993-06-29 1995-10-31 C.R. Bard, Inc. Actuator for use with steerable catheter
US6036699A (en) * 1992-12-10 2000-03-14 Perclose, Inc. Device and method for suturing tissue
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5403312A (en) * 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5368564A (en) 1992-12-23 1994-11-29 Angeion Corporation Steerable catheter
US5403326A (en) * 1993-02-01 1995-04-04 The Regents Of The University Of California Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux
US5980455A (en) 1993-02-22 1999-11-09 Heartport, Inc. Method for manipulating a tissue structure within a thoracic cavity
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5972030A (en) 1993-02-22 1999-10-26 Heartport, Inc. Less-invasive devices and methods for treatment of cardiac valves
WO1994018893A1 (en) 1993-02-22 1994-09-01 Valleylab, Inc. A laparoscopic dissection tension retractor device and method
US5425705A (en) 1993-02-22 1995-06-20 Stanford Surgical Technologies, Inc. Thoracoscopic devices and methods for arresting the heart
US5636634A (en) 1993-03-16 1997-06-10 Ep Technologies, Inc. Systems using guide sheaths for introducing, deploying, and stabilizing cardiac mapping and ablation probes
DE4319829C1 (en) 1993-06-16 1994-08-25 Lerch Karl Dieter Set for treating vascular deformities
US6258021B1 (en) 1993-06-17 2001-07-10 Peter J. Wilk Intrapericardial assist method
US5715817A (en) * 1993-06-29 1998-02-10 C.R. Bard, Inc. Bidirectional steering catheter
US5450860A (en) 1993-08-31 1995-09-19 W. L. Gore & Associates, Inc. Device for tissue repair and method for employing same
US5423858A (en) 1993-09-30 1995-06-13 United States Surgical Corporation Septoplasty fasteners and device for applying same
US5472044A (en) 1993-10-20 1995-12-05 E. I. Du Pont De Nemours And Company Method and apparatus for interacting a gas and liquid on a convoluted array of tubes
US5640955A (en) 1995-02-14 1997-06-24 Daig Corporation Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach
US5527322A (en) * 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5437681A (en) 1994-01-13 1995-08-01 Suturtek Inc. Suturing instrument with thread management
US5741280A (en) * 1994-01-18 1998-04-21 Coral Medical Knot tying method and apparatus
US5359994A (en) 1994-01-24 1994-11-01 Welch Allyn, Inc. Proximal steering cable adjustment
US5501698A (en) * 1994-02-14 1996-03-26 Heartport, Inc. Endoscopic microsurgical instruments and methods
US5431666A (en) 1994-02-24 1995-07-11 Lasersurge, Inc. Surgical suture instrument
CA2141911C (en) 1994-02-24 2002-04-23 Jude S. Sauer Surgical crimping device and method of use
US5476470A (en) 1994-04-15 1995-12-19 Fitzgibbons, Jr.; Robert J. Trocar site suturing device
US5478309A (en) 1994-05-27 1995-12-26 William P. Sweezer, Jr. Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery
DE4418766C2 (en) 1994-05-28 1996-11-07 Karlsruhe Forschzent Surgical thread for creating a surgical suture
US5732872A (en) 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5593435A (en) * 1994-07-29 1997-01-14 Baxter International Inc. Distensible annuloplasty ring for surgical remodelling of an atrioventricular valve and nonsurgical method for post-implantation distension thereof to accommodate patient growth
US5593424A (en) * 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5601576A (en) 1994-08-10 1997-02-11 Heartport Inc. Surgical knot pusher and method of use
US5456684A (en) 1994-09-08 1995-10-10 Hutchinson Technology Incorporated Multifunctional minimally invasive surgical instrument
US5599305A (en) 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US5814029A (en) 1994-11-03 1998-09-29 Daig Corporation Guiding introducer system for use in ablation and mapping procedures in the left ventricle
US5487746A (en) * 1994-11-23 1996-01-30 Yu; George W. Surgical clip having a longitudinal opening through which clamped tissue protrudes
US5690671A (en) 1994-12-13 1997-11-25 Micro Interventional Systems, Inc. Embolic elements and methods and apparatus for their delivery
US5620452A (en) * 1994-12-22 1997-04-15 Yoon; Inbae Surgical clip with ductile tissue penetrating members
US5609598A (en) 1994-12-30 1997-03-11 Vnus Medical Technologies, Inc. Method and apparatus for minimally invasive treatment of chronic venous insufficiency
JPH08231444A (en) 1995-02-28 1996-09-10 Daikin Ind Ltd Production of 1,1,3,3-pentafluoropropane
US5571085A (en) 1995-03-24 1996-11-05 Electro-Catheter Corporation Steerable open lumen catheter
US5540705A (en) 1995-05-19 1996-07-30 Suturtek, Inc. Suturing instrument with thread management
US5562678A (en) 1995-06-02 1996-10-08 Cook Pacemaker Corporation Needle's eye snare
US5846253A (en) 1995-07-14 1998-12-08 C. R. Bard, Inc. Wound closure apparatus and method
US6562052B2 (en) 1995-08-24 2003-05-13 Sutura, Inc. Suturing device and method
WO1997007745A1 (en) * 1995-08-24 1997-03-06 Nobles-Lai Engineering, Inc. Method and apparatus for suturing
US6117144A (en) 1995-08-24 2000-09-12 Sutura, Inc. Suturing device and method for sealing an opening in a blood vessel or other biological structure
DE19534112A1 (en) 1995-09-14 1997-03-20 Wolf Gmbh Richard Endoscopic instrument with steerable distal end
US5722421A (en) * 1995-09-15 1998-03-03 Symbiosis Corporation Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument
US5797927A (en) 1995-09-22 1998-08-25 Yoon; Inbae Combined tissue clamping and suturing instrument
US5810876A (en) 1995-10-03 1998-09-22 Akos Biomedical, Inc. Flexible forceps device
US5634932A (en) 1995-10-10 1997-06-03 Industrial & Scientific Designs, Ltd. Cantilever aneurysm clip system
JP3293118B2 (en) * 1995-10-18 2002-06-17 ニプロ株式会社 Catheter assembly for endocardial suture surgery
US5662704A (en) 1995-12-01 1997-09-02 Medtronic, Inc. Physiologic mitral valve bioprosthesis
US5891160A (en) * 1996-02-23 1999-04-06 Cardiovascular Technologies, Llc Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery
US6162233A (en) 1996-02-23 2000-12-19 Cardiovascular Technologies, Llc Wire fasteners for use in minimally invasive surgery and means and methods for handling those fasteners
US5879307A (en) * 1996-03-15 1999-03-09 Pulse Metric, Inc. Non-invasive method and apparatus for diagnosing and monitoring aortic valve abnormalities, such a aortic regurgitation
US5769859A (en) 1996-04-09 1998-06-23 Dorsey; William R. Umbilical scissors
US6149660A (en) 1996-04-22 2000-11-21 Vnus Medical Technologies, Inc. Method and apparatus for delivery of an appliance in a vessel
US5706824A (en) * 1996-05-20 1998-01-13 Symbiosis Corporation Endoscopic biopsy forceps instrument having a constant force spring biasing the jaws closed
US5827237A (en) 1996-06-17 1998-10-27 Cardeon Corporation Dual lumen catheter with controlled antegrade and retrograde fluid flow
US5833671A (en) 1996-06-17 1998-11-10 Cardeon Corporation Triple lumen catheter with controllable antegrade and retrograde fluid flow
US6001796A (en) 1996-07-03 1999-12-14 Alliedsignal Inc. Azeotrope-like compositions of 1,1,1,3,3-pentafluoropropane and hydrogen fluoride
US5820592A (en) 1996-07-16 1998-10-13 Hammerslag; Gary R. Angiographic and/or guide catheter
US5782845A (en) 1996-07-31 1998-07-21 Shewchuk; Dwight Trocar site suturing device
US5820631A (en) 1996-08-01 1998-10-13 Nr Medical, Inc. Device and method for suturing tissue adjacent to a blood vessel
US6482224B1 (en) 1996-08-22 2002-11-19 The Trustees Of Columbia University In The City Of New York Endovascular flexible stapling device
EP1011460A4 (en) 1996-12-02 2001-09-19 Angiotrax Inc Apparatus and methods for percutaneously performing surgery
US6045497A (en) * 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6077214A (en) 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US6406420B1 (en) 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US6074401A (en) 1997-01-09 2000-06-13 Coalescent Surgical, Inc. Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US5928224A (en) 1997-01-24 1999-07-27 Hearten Medical, Inc. Device for the treatment of damaged heart valve leaflets and methods of using the device
US5989284A (en) 1997-02-18 1999-11-23 Hearten Medical, Inc. Method and device for soft tissue modification
US5885271A (en) * 1997-03-14 1999-03-23 Millennium Cardiac Strategies, Inc. Device for regional immobilization of a compliant body
WO1999000059A1 (en) * 1997-06-27 1999-01-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
IT1293068B1 (en) 1997-07-01 1999-02-11 Kempro Italiana S R L PROCEDURE FOR OBTAINING A HIGH CONCENTRATION COLLOIDAL SILICA SUSPENSION AND PRODUCT SO OBTAINED
CA2300049C (en) 1997-08-08 2009-03-10 Duke University Compositions, apparatus and methods for facilitating surgical procedures
AU9225598A (en) 1997-09-04 1999-03-22 Endocore, Inc. Artificial chordae replacement
US6123699A (en) 1997-09-05 2000-09-26 Cordis Webster, Inc. Omni-directional steerable catheter
US5954732A (en) 1997-09-10 1999-09-21 Hart; Charles C. Suturing apparatus and method
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US6019722A (en) * 1997-09-17 2000-02-01 Guidant Corporation Device to permit offpump beating heart coronary bypass surgery
JPH1189937A (en) 1997-09-19 1999-04-06 Atsuo Mori Catheter for mitral regurgitation test
US5916147A (en) 1997-09-22 1999-06-29 Boury; Harb N. Selectively manipulable catheter
US6086600A (en) 1997-11-03 2000-07-11 Symbiosis Corporation Flexible endoscopic surgical instrument for invagination and fundoplication
US6187003B1 (en) * 1997-11-12 2001-02-13 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
AU1923999A (en) * 1998-01-30 1999-08-16 Vascular Science Inc. Medical graft connector or plug structures, and methods of making and installingsame
US6562037B2 (en) 1998-02-12 2003-05-13 Boris E. Paton Bonding of soft biological tissues by passing high frequency electric current therethrough
US7214230B2 (en) 1998-02-24 2007-05-08 Hansen Medical, Inc. Flexible instrument
US6190408B1 (en) * 1998-03-05 2001-02-20 The University Of Cincinnati Device and method for restructuring the heart chamber geometry
US6143024A (en) 1998-06-04 2000-11-07 Sulzer Carbomedics Inc. Annuloplasty ring having flexible anterior portion
US6599311B1 (en) * 1998-06-05 2003-07-29 Broncus Technologies, Inc. Method and assembly for lung volume reduction
US6250308B1 (en) 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6066146A (en) 1998-06-24 2000-05-23 Carroll; Brendan J. Laparascopic incision closure device
US6322559B1 (en) 1998-07-06 2001-11-27 Vnus Medical Technologies, Inc. Electrode catheter having coil structure
US6165183A (en) * 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US6547821B1 (en) 1998-07-16 2003-04-15 Cardiothoracic Systems, Inc. Surgical procedures and devices for increasing cardiac output of the heart
US6260552B1 (en) 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6203553B1 (en) * 1999-09-08 2001-03-20 United States Surgical Stapling apparatus and method for heart valve replacement
US6355030B1 (en) * 1998-09-25 2002-03-12 Cardiothoracic Systems, Inc. Instruments and methods employing thermal energy for the repair and replacement of cardiac valves
US6368326B1 (en) * 1998-09-28 2002-04-09 Daos Limited Internal cord fixation device
US6685627B2 (en) 1998-10-09 2004-02-03 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence heart function
US6319250B1 (en) 1998-11-23 2001-11-20 C.R. Bard, Inc Tricuspid annular grasp catheter
US6701929B2 (en) * 1999-03-03 2004-03-09 Hany Hussein Device and method for treatment of congestive heart failure
US6136010A (en) 1999-03-04 2000-10-24 Perclose, Inc. Articulating suturing device and method
US6267746B1 (en) 1999-03-22 2001-07-31 Biosense Webster, Inc. Multi-directional steerable catheters and control handles
US6464707B1 (en) 1999-04-01 2002-10-15 David B. Bjerken Vacuum-assisted remote suture placement system
US20040044350A1 (en) * 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
WO2006116558A2 (en) 1999-04-09 2006-11-02 Evalve, Inc. Device and methods for endoscopic annuloplasty
US10327743B2 (en) * 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
US7226467B2 (en) 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
CA2620783C (en) * 1999-04-09 2011-04-05 Evalve, Inc. Methods and apparatus for cardiac valve repair
US7604646B2 (en) * 1999-04-09 2009-10-20 Evalve, Inc. Locking mechanisms for fixation devices and methods of engaging tissue
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
US6709382B1 (en) * 1999-05-04 2004-03-23 Simon Marcus Horner Cardiac assist method and apparatus
AU5003100A (en) 1999-05-11 2000-11-21 Craig Berky Surgical clamp devices and methods especially useful in cardiac surgery
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
SE514718C2 (en) * 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US6997951B2 (en) * 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US7192442B2 (en) * 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US7887477B2 (en) 1999-08-09 2011-02-15 Cardiokinetix, Inc. Method of improving cardiac function using a porous membrane
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
US6306133B1 (en) 1999-10-02 2001-10-23 Quantum Cor Incorporated Ablation catheter system and methods for repairing a valvular annulus
US20030069570A1 (en) * 1999-10-02 2003-04-10 Witzel Thomas H. Methods for repairing mitral valve annulus percutaneously
FR2799364B1 (en) * 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
US6312447B1 (en) 1999-10-13 2001-11-06 The General Hospital Corporation Devices and methods for percutaneous mitral valve repair
US6626930B1 (en) * 1999-10-21 2003-09-30 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
EP1674040A3 (en) 1999-10-21 2007-09-19 Edwards Lifesciences Corporation Minimally invasive mitral valve repair
US6926730B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US6641592B1 (en) 1999-11-19 2003-11-04 Lsi Solutions, Inc. System for wound closure
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US7507252B2 (en) 2000-01-31 2009-03-24 Edwards Lifesciences Ag Adjustable transluminal annuloplasty system
US20050070999A1 (en) 2000-02-02 2005-03-31 Spence Paul A. Heart valve repair apparatus and methods
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US6530897B2 (en) 2000-04-28 2003-03-11 Mahase Nardeo Steerable medical catheter with bendable encapsulated metal spring tip fused to polymeric shaft
US6869444B2 (en) * 2000-05-22 2005-03-22 Shlomo Gabbay Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
US6840246B2 (en) 2000-06-20 2005-01-11 University Of Maryland, Baltimore Apparatuses and methods for performing minimally invasive diagnostic and surgical procedures inside of a beating heart
EP1330189B1 (en) * 2000-06-23 2007-12-19 Viacor Incorporated Automated annular plication for mitral valve repair
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
SE0002878D0 (en) * 2000-08-11 2000-08-11 Kimblad Ola Device and method of treatment of atrioventricular regurgitation
US7527646B2 (en) 2000-09-20 2009-05-05 Ample Medical, Inc. Devices, systems, and methods for retaining a native heart valve leaflet
US8956407B2 (en) * 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US7381220B2 (en) * 2000-09-20 2008-06-03 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20050228422A1 (en) 2002-11-26 2005-10-13 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US6616684B1 (en) * 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6918917B1 (en) 2000-10-10 2005-07-19 Medtronic, Inc. Minimally invasive annuloplasty procedure and apparatus
JP4184794B2 (en) 2001-02-05 2008-11-19 ビアカー・インコーポレーテッド Method and apparatus for improving mitral valve function
US20020107531A1 (en) 2001-02-06 2002-08-08 Schreck Stefan G. Method and system for tissue repair using dual catheters
JP4295925B2 (en) 2001-03-01 2009-07-15 Hoya株式会社 Bipolar high-frequency treatment instrument for endoscope
US6585761B2 (en) 2001-03-01 2003-07-01 Syde A. Taheri Prosthetic vein valve and method
US20060069429A1 (en) * 2001-04-24 2006-03-30 Spence Paul A Tissue fastening systems and methods utilizing magnetic guidance
US20050125011A1 (en) * 2001-04-24 2005-06-09 Spence Paul A. Tissue fastening systems and methods utilizing magnetic guidance
US6619291B2 (en) 2001-04-24 2003-09-16 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty
AU2002311944A1 (en) 2001-05-17 2002-11-25 The Regents Of The University Of California Retrieval catheter
US6858039B2 (en) 2002-07-08 2005-02-22 Edwards Lifesciences Corporation Mitral valve annuloplasty ring having a posterior bow
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US6726716B2 (en) * 2001-08-24 2004-04-27 Edwards Lifesciences Corporation Self-molding annuloplasty ring
US7125421B2 (en) * 2001-08-31 2006-10-24 Mitral Interventions, Inc. Method and apparatus for valve repair
US20030050693A1 (en) * 2001-09-10 2003-03-13 Quijano Rodolfo C. Minimally invasive delivery system for annuloplasty rings
JP4458845B2 (en) * 2001-10-01 2010-04-28 アンプル メディカル,インコーポレイテッド Medical device
US7144363B2 (en) 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
US7052487B2 (en) 2001-10-26 2006-05-30 Cohn William E Method and apparatus for reducing mitral regurgitation
US6949122B2 (en) 2001-11-01 2005-09-27 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US6805710B2 (en) * 2001-11-13 2004-10-19 Edwards Lifesciences Corporation Mitral valve annuloplasty ring for molding left ventricle geometry
US6575971B2 (en) 2001-11-15 2003-06-10 Quantum Cor, Inc. Cardiac valve leaflet stapler device and methods thereof
US20050177180A1 (en) 2001-11-28 2005-08-11 Aptus Endosystems, Inc. Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
EP1450732A1 (en) 2001-12-04 2004-09-01 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template system
US6978176B2 (en) 2001-12-08 2005-12-20 Lattouf Omar M Treatment for patient with congestive heart failure
US6740107B2 (en) 2001-12-19 2004-05-25 Trimedyne, Inc. Device for treatment of atrioventricular valve regurgitation
US20030120341A1 (en) 2001-12-21 2003-06-26 Hani Shennib Devices and methods of repairing cardiac valves
US20030120340A1 (en) 2001-12-26 2003-06-26 Jan Liska Mitral and tricuspid valve repair
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US7125420B2 (en) * 2002-02-05 2006-10-24 Viacor, Inc. Method and apparatus for improving mitral valve function
US7048754B2 (en) 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
US6797001B2 (en) 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US7094244B2 (en) 2002-03-26 2006-08-22 Edwards Lifesciences Corporation Sequential heart valve leaflet repair device and method of use
US7101395B2 (en) * 2002-06-12 2006-09-05 Mitral Interventions, Inc. Method and apparatus for tissue connection
EP1530441B1 (en) * 2002-06-13 2017-08-02 Ancora Heart, Inc. Devices and methods for heart valve repair
US8287555B2 (en) 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US8348963B2 (en) 2002-07-03 2013-01-08 Hlt, Inc. Leaflet reinforcement for regurgitant valves
WO2004012583A2 (en) 2002-08-01 2004-02-12 The General Hospital Corporation Cardiac devices and methods for minimally invasive repair of ischemic mitral regurgitation
US8172856B2 (en) 2002-08-02 2012-05-08 Cedars-Sinai Medical Center Methods and apparatus for atrioventricular valve repair
DE60318861T2 (en) 2002-08-13 2009-01-08 The General Hospital Corp., Boston HEART DEVICES FOR THE PERCUTANEOUS REPAIR OF ATRIOVENTRICULAR FLAPS
AU2003268220B8 (en) 2002-08-28 2010-01-21 Hlt, Inc. Method and device for treating diseased valve
US7297150B2 (en) 2002-08-29 2007-11-20 Mitralsolutions, Inc. Implantable devices for controlling the internal circumference of an anatomic orifice or lumen
US7734316B2 (en) * 2002-08-30 2010-06-08 Motorola, Inc. User-specified outputs in mobile wireless communication devices and methods therefor
AU2003277116A1 (en) 2002-10-01 2004-04-23 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US20040133062A1 (en) 2002-10-11 2004-07-08 Suresh Pai Minimally invasive cardiac force transfer structures
US7087064B1 (en) * 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
NZ539136A (en) 2002-10-21 2008-04-30 Mitralign Inc Method and apparatus for performing catheter-based annuloplasty using local plications
US20050119735A1 (en) * 2002-10-21 2005-06-02 Spence Paul A. Tissue fastening systems and methods utilizing magnetic guidance
EP1553897A1 (en) 2002-10-24 2005-07-20 Boston Scientific Limited Venous valve apparatus and method
US20040097979A1 (en) 2002-11-14 2004-05-20 Oleg Svanidze Aortic valve implantation device
AU2003290979A1 (en) 2002-11-15 2004-06-15 The Government Of The United States Of America As Represented By The Secretary Of Health And Human Services Method and device for catheter-based repair of cardiac valves
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US6945978B1 (en) 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US20040133240A1 (en) 2003-01-07 2004-07-08 Cardiac Dimensions, Inc. Electrotherapy system, device, and method for treatment of cardiac valve dysfunction
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
WO2004082538A2 (en) 2003-03-18 2004-09-30 St. Jude Medical, Inc. Body tissue remodeling apparatus
US20060271081A1 (en) * 2003-03-30 2006-11-30 Fidel Realyvasquez Apparatus and methods for valve repair
US20040210240A1 (en) 2003-04-21 2004-10-21 Sean Saint Method and repair device for treating mitral valve insufficiency
US20040220593A1 (en) 2003-05-01 2004-11-04 Secant Medical, Llc Restraining clip for mitral valve repair
US20040220657A1 (en) 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US20070255396A1 (en) 2003-06-20 2007-11-01 Medtronic Vascular, Inc. Chrodae Tendinae Girdle
JP2007535335A (en) 2003-06-20 2007-12-06 メドトロニック ヴァスキュラー インコーポレイテッド Annulus reduction system
US8052751B2 (en) * 2003-07-02 2011-11-08 Flexcor, Inc. Annuloplasty rings for repairing cardiac valves
US20050004665A1 (en) * 2003-07-02 2005-01-06 Lishan Aklog Annuloplasty rings and methods for repairing cardiac valves
EP1646332B1 (en) 2003-07-18 2015-06-17 Edwards Lifesciences AG Remotely activated mitral annuloplasty system
US7160322B2 (en) * 2003-08-13 2007-01-09 Shlomo Gabbay Implantable cardiac prosthesis for mitigating prolapse of a heart valve
WO2005032421A2 (en) 2003-09-15 2005-04-14 Medtronic Vascular, Inc. Apparatus and method for elongation of a papillary muscle
WO2005027797A1 (en) 2003-09-23 2005-03-31 Ersin Erek A mitral web apparatus for mitral valve insufficiencies
US7166127B2 (en) * 2003-12-23 2007-01-23 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
KR100610249B1 (en) 2003-12-23 2006-08-09 럭스피아 주식회사 Yellow emitting phosphor and white semiconductor light emitting device incorporating the same
US20050228495A1 (en) 2004-01-15 2005-10-13 Macoviak John A Suspended heart valve devices, systems, and methods for supplementing, repairing, or replacing a native heart valve
US20050159810A1 (en) 2004-01-15 2005-07-21 Farzan Filsoufi Devices and methods for repairing cardiac valves
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
US7641686B2 (en) 2004-04-23 2010-01-05 Direct Flow Medical, Inc. Percutaneous heart valve with stentless support
US7601117B2 (en) * 2004-06-30 2009-10-13 Ethicon, Inc. Systems and methods for assisting cardiac valve coaptation
US7556632B2 (en) * 2004-07-09 2009-07-07 Reza Zadno Device and method for repairing tissue
US7402134B2 (en) * 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
EP1768601A4 (en) 2004-07-15 2007-08-15 Micardia Corp Magnetic devices and methods for reshaping heart anatomy
US7704277B2 (en) * 2004-09-14 2010-04-27 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
WO2006041877A2 (en) * 2004-10-05 2006-04-20 Ample Medical, Inc. Atrioventricular valve annulus repair systems and methods including retro-chordal anchors
US20060089711A1 (en) * 2004-10-27 2006-04-27 Medtronic Vascular, Inc. Multifilament anchor for reducing a compass of a lumen or structure in mammalian body
WO2006064490A1 (en) 2004-12-15 2006-06-22 Mednua Limited A medical device suitable for use in treatment of a valve
EP3967269A3 (en) 2005-02-07 2022-07-13 Evalve, Inc. Systems and devices for cardiac valve repair
WO2006089236A1 (en) * 2005-02-18 2006-08-24 The Cleveland Clinic Foundation Apparatus and methods for replacing a cardiac valve
CA2601818A1 (en) 2005-03-25 2006-10-05 Ample Medical, Inc. Device, systems, and methods for reshaping a heart valve annulus
SE531468C2 (en) * 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US20060241746A1 (en) 2005-04-21 2006-10-26 Emanuel Shaoulian Magnetic implants and methods for reshaping tissue
US7753934B2 (en) 2005-04-22 2010-07-13 Wilk Patent, Llc Medical closure method and associated device
WO2006127509A2 (en) 2005-05-20 2006-11-30 Mayo Foundation For Medical Education And Research Devices and methods for reducing cardiac valve regurgitation
EP1752115A1 (en) 2005-08-08 2007-02-14 Daniele Maselli Surgical device for connecting two anatomical structures
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
WO2007078772A1 (en) 2005-12-15 2007-07-12 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant valve
DE602007012691D1 (en) * 2006-05-15 2011-04-07 Edwards Lifesciences Ag SYSTEM FOR CHANGING THE GEOMETRY OF THE HEART
US20080039935A1 (en) * 2006-08-14 2008-02-14 Wally Buch Methods and apparatus for mitral valve repair
US8597347B2 (en) 2007-11-15 2013-12-03 Cardiosolutions, Inc. Heart regurgitation method and apparatus
WO2009072114A2 (en) 2007-12-02 2009-06-11 Mor Research Applications Ltd. Access to the left atrium and reduction of mitral valve leaflet mobility
US20110077733A1 (en) 2009-09-25 2011-03-31 Edwards Lifesciences Corporation Leaflet contacting apparatus and method
US20130317438A1 (en) 2012-05-25 2013-11-28 Arstasis, Inc. Vascular access configuration
WO2015073274A1 (en) 2013-11-13 2015-05-21 Albert Einstein College Of Medicine Of Yeshiva University Wnt/beta-catenin inhibitor-eluting endovascular stent
US10441508B2 (en) 2015-04-24 2019-10-15 SpecGx LLC Systems and methods for high humidity curing within tablet coating system
US10635776B1 (en) 2017-07-14 2020-04-28 Synopsys, Inc. Producing mask layouts with rounded corners

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040143323A1 (en) * 2003-01-16 2004-07-22 Chawla Surenda K. Valve repair device
US20050277966A1 (en) * 2004-06-09 2005-12-15 Usgi Medical Inc. Compressible tissue anchor assemblies
US20060287716A1 (en) * 2005-06-08 2006-12-21 The Cleveland Clinic Foundation Artificial chordae
US20070118151A1 (en) * 2005-11-21 2007-05-24 The Brigham And Women's Hospital, Inc. Percutaneous cardiac valve repair with adjustable artificial chordae
US20070118154A1 (en) * 2005-11-23 2007-05-24 Crabtree Traves D Methods and apparatus for atrioventricular valve repair
US20110029071A1 (en) * 2007-12-20 2011-02-03 Amnon Zlotnick Elongated body for deployment in a coronary sinus

Cited By (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11497605B2 (en) 2005-03-17 2022-11-15 Valtech Cardio Ltd. Mitral valve treatment techniques
US11344414B2 (en) 2006-12-05 2022-05-31 Valtech Cardio Ltd. Implantation of repair devices in the heart
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US11660191B2 (en) 2008-03-10 2023-05-30 Edwards Lifesciences Corporation Method to reduce mitral regurgitation
US11116634B2 (en) 2008-12-22 2021-09-14 Valtech Cardio Ltd. Annuloplasty implants
US10856986B2 (en) 2008-12-22 2020-12-08 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US11202709B2 (en) 2009-02-17 2021-12-21 Valtech Cardio Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US11766327B2 (en) 2009-05-04 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Implantation of repair chords in the heart
US11185412B2 (en) 2009-05-04 2021-11-30 Valtech Cardio Ltd. Deployment techniques for annuloplasty implants
US11844665B2 (en) 2009-05-04 2023-12-19 Edwards Lifesciences Innovation (Israel) Ltd. Deployment techniques for annuloplasty structure
US11076958B2 (en) 2009-05-04 2021-08-03 Valtech Cardio, Ltd. Annuloplasty ring delivery catheters
US10856987B2 (en) 2009-05-07 2020-12-08 Valtech Cardio, Ltd. Multiple anchor delivery tool
US11723774B2 (en) 2009-05-07 2023-08-15 Edwards Lifesciences Innovation (Israel) Ltd. Multiple anchor delivery tool
US11617652B2 (en) 2009-10-29 2023-04-04 Edwards Lifesciences Innovation (Israel) Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US11141271B2 (en) 2009-10-29 2021-10-12 Valtech Cardio Ltd. Tissue anchor for annuloplasty device
US11602434B2 (en) 2009-12-02 2023-03-14 Edwards Lifesciences Innovation (Israel) Ltd. Systems and methods for tissue adjustment
US11660185B2 (en) 2009-12-04 2023-05-30 Edwards Lifesciences Corporation Ventricular anchors for valve repair and replacement devices
US11583396B2 (en) 2009-12-04 2023-02-21 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US11911264B2 (en) 2009-12-04 2024-02-27 Edwards Lifesciences Corporation Valve repair and replacement devices
US11351026B2 (en) 2009-12-08 2022-06-07 Cardiovalve Ltd. Rotation-based anchoring of an implant
US11839541B2 (en) 2009-12-08 2023-12-12 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
US11141268B2 (en) 2009-12-08 2021-10-12 Cardiovalve Ltd. Prosthetic heart valve with upper and lower skirts
US11109964B2 (en) 2010-03-10 2021-09-07 Cardiovalve Ltd. Axially-shortening prosthetic valve
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US11426155B2 (en) 2010-07-21 2022-08-30 Cardiovalve Ltd. Helical anchor implantation
US11571303B2 (en) 2010-12-23 2023-02-07 Twelve, Inc. System for mitral valve repair and replacement
US10517725B2 (en) 2010-12-23 2019-12-31 Twelve, Inc. System for mitral valve repair and replacement
US9770331B2 (en) 2010-12-23 2017-09-26 Twelve, Inc. System for mitral valve repair and replacement
US11712334B2 (en) 2011-06-21 2023-08-01 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10751173B2 (en) 2011-06-21 2020-08-25 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11523900B2 (en) 2011-06-21 2022-12-13 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10028827B2 (en) 2011-06-21 2018-07-24 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10034750B2 (en) 2011-06-21 2018-07-31 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10285686B2 (en) 2011-06-27 2019-05-14 University Of Maryland, Baltimore Transapical mitral valve repair method
US11413033B2 (en) 2011-06-27 2022-08-16 University Of Maryland, Baltimore Heart valve repair using suture knots
US11344410B2 (en) 2011-08-05 2022-05-31 Cardiovalve Ltd. Implant for heart valve
US11291547B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Leaflet clip with collars
US11951005B2 (en) 2011-08-05 2024-04-09 Cardiovalve Ltd. Implant for heart valve
US11291546B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Leaflet clip with collars
US11517429B2 (en) 2011-08-05 2022-12-06 Cardiovalve Ltd. Apparatus for use at a heart valve
US11690712B2 (en) 2011-08-05 2023-07-04 Cardiovalve Ltd. Clip-secured implant for heart valve
US11369469B2 (en) 2011-08-05 2022-06-28 Cardiovalve Ltd. Method for use at a heart valve
US11517436B2 (en) 2011-08-05 2022-12-06 Cardiovalve Ltd. Implant for heart valve
US11864995B2 (en) 2011-08-05 2024-01-09 Cardiovalve Ltd. Implant for heart valve
US11291545B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Implant for heart valve
US10299917B2 (en) 2011-10-19 2019-05-28 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11617648B2 (en) 2011-10-19 2023-04-04 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10299927B2 (en) 2011-10-19 2019-05-28 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11497603B2 (en) 2011-10-19 2022-11-15 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10052204B2 (en) 2011-10-19 2018-08-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10702380B2 (en) 2011-10-19 2020-07-07 Twelve, Inc. Devices, systems and methods for heart valve replacement
US11628063B2 (en) 2011-10-19 2023-04-18 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10335278B2 (en) 2011-10-19 2019-07-02 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11826249B2 (en) 2011-10-19 2023-11-28 Twelve, Inc. Devices, systems and methods for heart valve replacement
US10016271B2 (en) 2011-10-19 2018-07-10 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11197758B2 (en) 2011-10-19 2021-12-14 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9901443B2 (en) 2011-10-19 2018-02-27 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US10945835B2 (en) 2011-10-19 2021-03-16 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11197759B2 (en) 2011-11-04 2021-12-14 Valtech Cardio Ltd. Implant having multiple adjusting mechanisms
US11857415B2 (en) 2011-11-08 2024-01-02 Edwards Lifesciences Innovation (Israel) Ltd. Controlled steering functionality for implant-delivery tool
US10076414B2 (en) 2012-02-13 2018-09-18 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
US9011531B2 (en) 2012-02-13 2015-04-21 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
US11129714B2 (en) 2012-03-01 2021-09-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US11395648B2 (en) 2012-09-29 2022-07-26 Edwards Lifesciences Corporation Plication lock delivery system and method of use thereof
US10893939B2 (en) 2012-10-23 2021-01-19 Valtech Cardio, Ltd. Controlled steering functionality for implant delivery tool
US11890190B2 (en) 2012-10-23 2024-02-06 Edwards Lifesciences Innovation (Israel) Ltd. Location indication system for implant-delivery tool
US11344310B2 (en) 2012-10-23 2022-05-31 Valtech Cardio Ltd. Percutaneous tissue anchor techniques
US11583400B2 (en) 2012-12-06 2023-02-21 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for guided advancement of a tool
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves
US11135059B2 (en) 2013-01-24 2021-10-05 Cardiovalve Ltd. Prosthetic valve and upstream support therefor
US11793505B2 (en) 2013-02-26 2023-10-24 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US10918374B2 (en) 2013-02-26 2021-02-16 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US11534583B2 (en) 2013-03-14 2022-12-27 Valtech Cardio Ltd. Guidewire feeder
US11890194B2 (en) 2013-03-15 2024-02-06 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US11234821B2 (en) 2013-05-20 2022-02-01 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10111747B2 (en) 2013-05-20 2018-10-30 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US9020227B2 (en) * 2013-06-13 2015-04-28 Siemens Aktiengesellschaft Automatic interatrial septum detection from pre-operative and intra-operative 3D medical images for accurate transseptal puncture
US20140369576A1 (en) * 2013-06-13 2014-12-18 Siemens Aktiengesellschaft Automatic interatrial septum detection from pre-operative and intra-operative 3d medical images for accurate transseptal puncture
US10918373B2 (en) 2013-08-31 2021-02-16 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US11744573B2 (en) 2013-08-31 2023-09-05 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US11766263B2 (en) 2013-10-23 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Anchor magazine
US11065001B2 (en) 2013-10-23 2021-07-20 Valtech Cardio, Ltd. Anchor magazine
US10973637B2 (en) 2013-12-26 2021-04-13 Valtech Cardio, Ltd. Implantation of flexible implant
US11678872B2 (en) 2014-01-03 2023-06-20 University Of Maryland, Baltimore Method and apparatus for transapical procedures on a mitral valve
US10639024B2 (en) 2014-01-03 2020-05-05 University Of Maryland, Baltimore Method and apparatus for transapical procedures on a mitral valve
US9681864B1 (en) 2014-01-03 2017-06-20 Harpoon Medical, Inc. Method and apparatus for transapical procedures on a mitral valve
US11872130B2 (en) 2014-07-30 2024-01-16 Cardiovalve Ltd. Prosthetic heart valve implant
US11701225B2 (en) 2014-07-30 2023-07-18 Cardiovalve Ltd. Delivery of a prosthetic valve
JP2017525464A (en) * 2014-08-21 2017-09-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Connecting rod for tongue operating system
US11071628B2 (en) 2014-10-14 2021-07-27 Valtech Cardio, Ltd. Leaflet-restraining techniques
US10105225B2 (en) 2014-10-22 2018-10-23 Medtronic, Inc. Devices, systems and methods for tissue approximation, including approximating mitral valve leaflets
WO2016064748A1 (en) * 2014-10-22 2016-04-28 Medtronic Inc. Devices, systems and methods for tissue approximation, including approximating mitral valve leaflets
US11690621B2 (en) 2014-12-04 2023-07-04 Edwards Lifesciences Corporation Percutaneous clip for repairing a heart valve
US10213303B2 (en) 2015-02-02 2019-02-26 On-X Life Technologies, Inc. Rapid deployment artificial chordae Tendinae system
US9480565B2 (en) 2015-02-02 2016-11-01 On-X Life Technologies, Inc. Rapid deployment artificial chordae tendinae system
US11793638B2 (en) 2015-02-05 2023-10-24 Cardiovalve Ltd. Prosthetic valve with pivoting tissue anchor portions
US11672658B2 (en) 2015-02-05 2023-06-13 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
US11793635B2 (en) 2015-02-05 2023-10-24 Cardiovalve Ltd. Prosthetic valve with angularly offset frames
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US10925610B2 (en) 2015-03-05 2021-02-23 Edwards Lifesciences Corporation Devices for treating paravalvular leakage and methods use thereof
US11020227B2 (en) 2015-04-30 2021-06-01 Valtech Cardio, Ltd. Annuloplasty technologies
US11793642B2 (en) 2015-05-14 2023-10-24 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10238490B2 (en) 2015-08-21 2019-03-26 Twelve, Inc. Implant heart valve devices, mitral valve repair devices and associated systems and methods
JP2018528810A (en) * 2015-08-21 2018-10-04 トゥエルヴ, インコーポレイテッド Implantable heart valve device, mitral valve repair device, and related systems and methods
WO2017035002A1 (en) * 2015-08-21 2017-03-02 Twelve Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US11576782B2 (en) 2015-08-21 2023-02-14 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
JP7469395B2 (en) 2015-08-21 2024-04-16 トゥエルヴ, インコーポレイテッド IMPLANTABLE HEART VALVE DEVICES, MITRAL VALVE REPAIR DEVICES, AND RELATED SYSTEMS AND METHODS
JP7111610B2 (en) 2015-08-21 2022-08-02 トゥエルヴ, インコーポレイテッド Implantable Heart Valve Devices, Mitral Valve Repair Devices, and Related Systems and Methods
US10820996B2 (en) 2015-08-21 2020-11-03 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10864080B2 (en) 2015-10-02 2020-12-15 Harpoon Medical, Inc. Distal anchor apparatus and methods for mitral valve repair
US11672662B2 (en) 2015-10-02 2023-06-13 Harpoon Medical, Inc. Short-throw tissue anchor deployment
US11890193B2 (en) 2015-12-30 2024-02-06 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US11298117B2 (en) 2016-02-16 2022-04-12 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US11937795B2 (en) 2016-02-16 2024-03-26 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11951263B2 (en) 2016-03-21 2024-04-09 Edwards Lifesciences Corporation Multi-direction steerable handles
US11529233B2 (en) 2016-04-22 2022-12-20 Edwards Lifesciences Corporation Beating-heart mitral valve chordae replacement
US10624743B2 (en) 2016-04-22 2020-04-21 Edwards Lifesciences Corporation Beating-heart mitral valve chordae replacement
US10265172B2 (en) 2016-04-29 2019-04-23 Medtronic Vascular, Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
US11033390B2 (en) 2016-04-29 2021-06-15 Medtronic Vascular, Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
US11540835B2 (en) 2016-05-26 2023-01-03 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US11103350B2 (en) 2016-06-01 2021-08-31 On-X Life Technologies, Inc. Pull-through chordae tendineae system
US10973638B2 (en) 2016-07-07 2021-04-13 Edwards Lifesciences Corporation Device and method for treating vascular insufficiency
US10959845B2 (en) 2016-07-08 2021-03-30 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US11185413B2 (en) 2016-07-13 2021-11-30 Medfree, Inc. Tissue grasping devices and related methods
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US11517718B2 (en) 2016-11-07 2022-12-06 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US10905554B2 (en) 2017-01-05 2021-02-02 Edwards Lifesciences Corporation Heart valve coaptation device
EP3606443A4 (en) * 2017-04-05 2021-06-02 Opus Medical Therapies, LLC Transcatherer atrial sealing skirt, anchor, and tether and methods of implantation
KR20200007806A (en) * 2017-04-05 2020-01-22 오푸스 메디칼 테라피스, 엘엘씨 Atrial sealing skirts, anchors and tears and implantation methods via catheter
KR20210151249A (en) * 2017-04-05 2021-12-13 오푸스 메디칼 테라피스, 엘엘씨 Transcatheter atrial sealing skirt, anchor, and tether and methods of implantation
KR102339045B1 (en) * 2017-04-05 2021-12-13 오푸스 메디칼 테라피스, 엘엘씨 Atrial sealing skirt, anchor and tare via catheter and implantation method
EP4186475A1 (en) * 2017-04-05 2023-05-31 Opus Medical Therapies, LLC Transcatherer atrial sealing skirt, anchor, and tether
US11911266B2 (en) 2017-04-05 2024-02-27 Opus Medical Therapies, LLC Transcatheter atrial sealing skirt, anchor, and tether and methods of implantation
US11123187B2 (en) 2017-04-05 2021-09-21 Opus Medical Therapies, LLC Transcatheter atrial anchors and methods of implantation
US11103351B2 (en) 2017-04-05 2021-08-31 Opus Medical Therapies, LLC Transcatheter atrial sealing skirt and related method
KR102493649B1 (en) 2017-04-05 2023-01-30 오푸스 메디칼 테라피스, 엘엘씨 Transcatheter atrial sealing skirt, anchor, and tether and methods of implantation
US10765515B2 (en) 2017-04-06 2020-09-08 University Of Maryland, Baltimore Distal anchor apparatus and methods for mitral valve repair
US11944540B2 (en) 2017-04-06 2024-04-02 University Of Maryland, Baltimore Delivery devices for forming a distal anchor for mitral valve repair
US10932908B2 (en) 2017-04-18 2021-03-02 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11013601B2 (en) 2017-04-18 2021-05-25 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11737873B2 (en) 2017-04-18 2023-08-29 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10940005B2 (en) 2017-04-18 2021-03-09 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10952853B2 (en) 2017-04-18 2021-03-23 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11723772B2 (en) 2017-04-18 2023-08-15 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10925734B2 (en) 2017-04-18 2021-02-23 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10959848B2 (en) 2017-04-18 2021-03-30 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10925732B2 (en) 2017-04-18 2021-02-23 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10925733B2 (en) 2017-04-18 2021-02-23 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10918482B2 (en) 2017-04-18 2021-02-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US11000373B2 (en) 2017-04-18 2021-05-11 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10905552B2 (en) 2017-04-18 2021-02-02 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11389295B2 (en) 2017-04-18 2022-07-19 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10945843B2 (en) 2017-04-18 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11020229B2 (en) 2017-04-18 2021-06-01 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11234822B2 (en) 2017-04-18 2022-02-01 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11654021B2 (en) 2017-04-18 2023-05-23 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10905553B2 (en) 2017-04-18 2021-02-02 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10888425B2 (en) 2017-04-18 2021-01-12 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11883611B2 (en) 2017-04-18 2024-01-30 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11179240B2 (en) 2017-04-18 2021-11-23 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11602431B2 (en) 2017-04-18 2023-03-14 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11160657B2 (en) 2017-04-18 2021-11-02 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10842627B2 (en) 2017-04-18 2020-11-24 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11058539B2 (en) 2017-04-18 2021-07-13 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10849754B2 (en) 2017-04-18 2020-12-01 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10874514B2 (en) 2017-04-18 2020-12-29 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11096784B2 (en) 2017-04-18 2021-08-24 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10869763B2 (en) 2017-04-18 2020-12-22 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11850153B2 (en) 2017-04-18 2023-12-26 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11166778B2 (en) 2017-04-28 2021-11-09 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US11406468B2 (en) 2017-04-28 2022-08-09 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US11786370B2 (en) 2017-05-11 2023-10-17 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US11559398B2 (en) 2017-06-02 2023-01-24 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US11026672B2 (en) 2017-06-19 2021-06-08 Harpoon Medical, Inc. Method and apparatus for cardiac procedures
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11877926B2 (en) 2017-07-06 2024-01-23 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US11571298B2 (en) 2017-08-03 2023-02-07 Cardiovalve Ltd. Prosthetic valve with appendages
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US11730598B2 (en) 2017-09-07 2023-08-22 Edwards Lifesciences Corporation Prosthetic device for heart valve
US11065117B2 (en) 2017-09-08 2021-07-20 Edwards Lifesciences Corporation Axisymmetric adjustable device for treating mitral regurgitation
US10799356B2 (en) 2017-09-12 2020-10-13 Boston Scientific Scimed, Inc. Percutaneous papillary muscle relocation
US11864996B2 (en) 2017-09-19 2024-01-09 Cardiovalve Ltd. Prosthetic valve with protective sleeve around an outlet rim
US11337802B2 (en) 2017-09-19 2022-05-24 Cardiovalve Ltd. Heart valve delivery systems and methods
US11304806B2 (en) 2017-09-19 2022-04-19 Cardiovalve Ltd. Prosthetic valve with atrial tissue anchors having variable flexibility and ventricular tissue anchors having constant flexibility
US11944762B2 (en) 2017-09-19 2024-04-02 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11040174B2 (en) 2017-09-19 2021-06-22 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11337803B2 (en) 2017-09-19 2022-05-24 Cardiovalve Ltd. Prosthetic valve with inner and outer frames connected at a location of tissue anchor portion
US11337804B2 (en) 2017-09-19 2022-05-24 Cardiovalve Ltd. Prosthetic valve with radially-deformable tissue anchors configured to restrict axial valve migration
US11304805B2 (en) 2017-09-19 2022-04-19 Cardiovalve Ltd. Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors
US11304804B2 (en) 2017-09-19 2022-04-19 Cardiovalve, Ltd. Prosthetic valve with connecting struts of variable size and tissue anchoring legs of variable size that extend from junctions
US11110251B2 (en) 2017-09-19 2021-09-07 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11819405B2 (en) 2017-09-19 2023-11-21 Cardiovalve Ltd. Prosthetic valve with inflatable cuff configured for radial extension
US11318015B2 (en) 2017-09-19 2022-05-03 Cardiovalve Ltd. Prosthetic valve configured to fill a volume between tissue anchors with native valve tissue
US11318014B2 (en) 2017-09-19 2022-05-03 Cardiovalve Ltd. Prosthetic valve delivery system with multi-planar steering
US11833048B2 (en) 2017-10-24 2023-12-05 Harpoon Medical, Inc. Method and apparatus for cardiac procedures
US11065120B2 (en) 2017-10-24 2021-07-20 University Of Maryland, Baltimore Method and apparatus for cardiac procedures
US11832784B2 (en) 2017-11-02 2023-12-05 Edwards Lifesciences Innovation (Israel) Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11382746B2 (en) 2017-12-13 2022-07-12 Cardiovalve Ltd. Prosthetic valve and delivery tool therefor
US11872131B2 (en) 2017-12-13 2024-01-16 Cardiovalve Ltd. Prosthetic valve and delivery tool therefor
US11547564B2 (en) 2018-01-09 2023-01-10 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11259927B2 (en) 2018-01-09 2022-03-01 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11039925B2 (en) 2018-01-09 2021-06-22 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11850154B2 (en) 2018-01-09 2023-12-26 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10925735B2 (en) 2018-01-09 2021-02-23 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10959847B2 (en) 2018-01-09 2021-03-30 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10973639B2 (en) 2018-01-09 2021-04-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11013598B2 (en) 2018-01-09 2021-05-25 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10918483B2 (en) 2018-01-09 2021-02-16 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11298228B2 (en) 2018-01-09 2022-04-12 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11918469B2 (en) 2018-01-09 2024-03-05 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11612485B2 (en) 2018-01-09 2023-03-28 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11723769B2 (en) 2018-01-16 2023-08-15 Medfree, Inc. Tissue grasping devices and related methods
US11779463B2 (en) 2018-01-24 2023-10-10 Edwards Lifesciences Innovation (Israel) Ltd. Contraction of an annuloplasty structure
US11666442B2 (en) 2018-01-26 2023-06-06 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11931261B2 (en) 2018-03-20 2024-03-19 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11701228B2 (en) 2018-03-20 2023-07-18 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11389297B2 (en) 2018-04-12 2022-07-19 Edwards Lifesciences Corporation Mitral valve spacer device
US11207181B2 (en) 2018-04-18 2021-12-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11517435B2 (en) 2018-05-04 2022-12-06 Edwards Lifesciences Corporation Ring-based prosthetic cardiac valve
US11890191B2 (en) 2018-07-12 2024-02-06 Edwards Lifesciences Innovation (Israel) Ltd. Fastener and techniques therefor
US11123191B2 (en) 2018-07-12 2021-09-21 Valtech Cardio Ltd. Annuloplasty systems and locking tools therefor
US11413146B2 (en) * 2018-10-03 2022-08-16 Edwards Lifesciences Corporation Spring and coil devices for papillary muscle approximation and ventricle remodeling
US10993809B2 (en) 2018-10-10 2021-05-04 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11278409B2 (en) 2018-10-10 2022-03-22 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11202710B2 (en) 2018-10-10 2021-12-21 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11766330B2 (en) 2018-10-10 2023-09-26 Edwards Lifesciences Corporation Valve repair devices for repairing a native valve of a patient
US11129717B2 (en) 2018-10-10 2021-09-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11344415B2 (en) 2018-10-10 2022-05-31 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11083582B2 (en) 2018-10-10 2021-08-10 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11234823B2 (en) 2018-10-10 2022-02-01 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11147672B2 (en) 2018-10-10 2021-10-19 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11000375B2 (en) 2018-10-10 2021-05-11 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10987221B2 (en) 2018-10-10 2021-04-27 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10945844B2 (en) 2018-10-10 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11839544B2 (en) 2019-02-14 2023-12-12 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
EP3965861A4 (en) * 2019-05-10 2023-01-18 Merit Medical Systems, Inc. Drainage catheter exchange system and associated methods
US11717319B2 (en) 2019-05-10 2023-08-08 Merit Medical Systems, Inc. Drainage catheter exchange system and associated methods
WO2020231748A1 (en) 2019-05-10 2020-11-19 Merit Medical Systems, Inc. Drainage catheter exchange system and associated methods
US11819411B2 (en) 2019-10-29 2023-11-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies

Also Published As

Publication number Publication date
EP3539508B1 (en) 2021-07-28
EP1855623B1 (en) 2019-04-17
US20060229708A1 (en) 2006-10-12
EP3967269A2 (en) 2022-03-16
WO2006086434A1 (en) 2006-08-17
US20160242909A1 (en) 2016-08-25
EP3539508A1 (en) 2019-09-18
US20180250132A1 (en) 2018-09-06
US10667911B2 (en) 2020-06-02
EP1855623A1 (en) 2007-11-21
CA2597066A1 (en) 2006-08-17
CA2597066C (en) 2014-04-15
AU2006212750B2 (en) 2011-11-17
US20190350710A1 (en) 2019-11-21
EP3967269A3 (en) 2022-07-13
AU2006212750A1 (en) 2006-08-17
US20090177266A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
US20210393404A1 (en) Methods, systems and devices for cardiac valve repair
US10667911B2 (en) Methods, systems and devices for cardiac valve repair
EP2410948B1 (en) Devices for cardiac valve repair
US9060858B2 (en) Methods, systems and devices for cardiac valve repair
US8470028B2 (en) Methods, systems and devices for cardiac valve repair
US20100298929A1 (en) Methods, systems and devices for cardiac valve repair
US7316706B2 (en) Tensioning device, system, and method for treating mitral valve regurgitation
US10327743B2 (en) Device and methods for endoscopic annuloplasty
AU2006241065B2 (en) Device and methods for endoscopic annuloplasty
CA2822801A1 (en) Methods, systems and devices for cardiac valve repair
WO2006116558A2 (en) Device and methods for endoscopic annuloplasty
US20230200991A1 (en) Heart valve repair
EP4084737A1 (en) Methods, implants, and systems for treatment of mitral valve prolapse

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION