US20130317481A1 - Vascular access configuration - Google Patents

Vascular access configuration Download PDF

Info

Publication number
US20130317481A1
US20130317481A1 US13/902,592 US201313902592A US2013317481A1 US 20130317481 A1 US20130317481 A1 US 20130317481A1 US 201313902592 A US201313902592 A US 201313902592A US 2013317481 A1 US2013317481 A1 US 2013317481A1
Authority
US
United States
Prior art keywords
dilator
guidewire
adaptor
lumen
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/902,592
Inventor
Brian Andrew Ellingwood
D. Bruce Modesitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arstasis Inc
Original Assignee
Arstasis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arstasis Inc filed Critical Arstasis Inc
Priority to US13/902,592 priority Critical patent/US20130317481A1/en
Assigned to ARSTASIS, INC. reassignment ARSTASIS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELLINGWOOD, BRIAN ANDREW, MODESITT, D. BRUCE
Publication of US20130317481A1 publication Critical patent/US20130317481A1/en
Assigned to GREENHEART INVESTMENTS, LLC reassignment GREENHEART INVESTMENTS, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARSTASIS, INC.
Priority to US15/344,411 priority patent/US20170056063A1/en
Priority to US15/966,374 priority patent/US10675447B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3415Trocars; Puncturing needles for introducing tubes or catheters, e.g. gastrostomy tubes, drain catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3423Access ports, e.g. toroid shape introducers for instruments or hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/0069Tip not integral with tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material

Definitions

  • the present invention relates generally to vascular access systems and techniques, and more particularly to configurations for providing and/or facilitating elongate instrument access across a vascular wall with minimal disruption to surrounding tissue structures.
  • a number of diagnostic and interventional vascular procedures are now performed translumenally, where an elongate instrument such as a catheter is introduced to the vascular system at a convenient access location—such as the femoral, brachial, or subclavian arteries—and guided through the vascular system to a target location to perform therapy or diagnosis.
  • vascular access is no longer required, the catheter and other vascular access devices must be removed from the vascular entrance and bleeding at the puncture site must be stopped.
  • One common approach for providing hemostasis is to apply external force near and upstream from the puncture site, typically by manual compression. This method is time-consuming, frequently requiring one-half hour or more of compression before hemostasis. This procedure is uncomfortable for the patient and frequently requires administering analgesics.
  • Excessive pressure can also present the risk of total occlusion of the blood vessel, resulting in ischemia and/or thrombosis.
  • hemostasis is achieved by manual compression, the patient is required to remain recumbent for six to eighteen hours under observation to assure continued hemostasis.
  • bleeding from the vascular access wound can restart, potentially resulting in major complications. These complications may require blood transfusion and/or surgical intervention.
  • Bioabsorbable fasteners have also been used to stop bleeding. Generally, these approaches rely on the placement of a thrombogenic and bioabsorbable material, such as collagen, at the superficial arterial wall over the puncture site. This method generally presents difficulty locating the interface of the overlying tissue and the adventitial surface of the blood vessel. Implanting the fastener too far from the desired location can result in failure to provide hemostasis. If, however, the fastener intrudes into the vascular lumen, thrombus can form on the fastener. Thrombus can embolize downstream and/or block normal blood flow at the thrombus site. Implanted fasteners can also cause infection and auto-immune reactions/rejections of the implant.
  • a thrombogenic and bioabsorbable material such as collagen
  • Suturing methods also have used to provide hemostasis after vascular access.
  • the suture-applying device is introduced through the tissue tract with a distal end of the device located at the vascular puncture. Needles in the device draw suture through the blood vessel wall on opposite sides of the punctures, and the suture is secured directly over the adventitial surface of the blood vessel wall to close the vascular access wound.
  • suturing methods need to be performed with a precise control.
  • the needles need to be properly directed through the blood vessel wall so that the suture is well anchored in tissue to provide for tight closure. Suturing methods also require additional steps for the physician.
  • vascular access With self-sealing and other configurations of closure devices, it may be desirable to achieve vascular access with relatively small instruments before dilation up to larger working lumens for subsequent diagnostic or interventional steps.
  • a self-sealing access technique may be employed to place a much smaller guidewire, such as an 0.018′′ diameter guidewire.
  • a subsequent process step may be to install an introducer catheter assembly, generally comprising an introducer catheter defining an introducer lumen, and a dilator member configured to fit with in the introducer lumen.
  • the dilator member generally will define its own dilator member lumen through which the guidewire may be threaded, to facilitate an “over-the-wire” installation of the distal portions of the introducer catheter and dilator member into the vascular lumen.
  • the geometric mismatch between a 0.018′′ diameter guidewire and a distal end of a dilator member sized for a 0.035′′ diameter guidewire can result in what may be termed an “annular gap” that may form a mechanical edge at the interface between these structures, and insertion of this gap or edge relative to the vascular tissue to place the dilator member and associated introducer catheter distal tips within the vascular lumen may result in unwanted localized tissue trauma, heightened insertion forces, and undesirable localized stress concentrations on portions of the guidewire, dilator member, and/or introducer catheter.
  • One embodiment is directed to a method for creating translumenal vascular access, comprising placing a guidewire having a guidewire outer diameter across a portion of a vessel wall defining a vessel lumen so that a distal end of the guidewire extends into the vessel lumen and a proximal end of the guidewire extends proximally outside of the vessel lumen; loading a proximal portion of a dilator adaptor into a distal end of a dilator lumen defined through a dilator member of a dilator-introducer assembly, to form an adapted-dilator-introducer assembly having at least a portion of the dilator adaptor inserted through at least a portion of the dilator lumen, and at least a portion of the dilator inserted through at least a portion of an introducer lumen defined through an introducer member of the dilator-introducer assembly; wherein the adapted-dilator-introducer assembly is configured
  • Placing the guidewire may comprise advancing the guidewire through a portion of a needle that has been advanced across a portion of the vessel wall.
  • a maximum outer diameter of the guidewire may be substantially smaller than a minimum inner diameter of the dilator member.
  • the maximum outer diameter of the guidewire may be at least about 25% smaller than the minimum inner diameter of the dilator member.
  • the maximum outer diameter of the guidewire may be about 0.018 inches.
  • the minimum inner diameter of the dilator member may be between about 0.035 inches and about 0.040 inches.
  • the dilator adaptor may have an outer diameter and inner diameter profile configured to substantially make up the difference in fit between the guidewire and dilator member.
  • Loading the proximal portion of a dilator adaptor into the distal end of the dilator lumen defined through the dilator member may comprise substantially eliminating annular fit gaps around a junction wherein the distal end of the dilator member meets the dilator adaptor.
  • the dilator adaptor may have a minimum inner diameter of about 0.018 inches, and a maximum outer diameter of about 0.050 inches.
  • the introducer member distal end may have a tapered geometry with an outer diameter minimum at its distal tip.
  • the dilator member distal end may have a tapered geometry with an outer diameter minimum at its distal tip.
  • the distal end of the dilator adaptor may have a tapered geometry with an outer diameter minimum at its distal tip.
  • At least a portion of the dilator adaptor may have a proximally tapered geometry with an outer diameter minimum located adjacent its proximal tip.
  • the method further may comprise forming a friction fit between the proximally tapered geometry of the dilator adaptor and the dilator lumen of the dilator member when loading the dilator adaptor into the dilator lumen.
  • the proximally tapered geometry may be selected such that one size of dilator adaptor can form a friction fit with a range of dilator lumen geometries.
  • the dilator adaptor when viewed from distal tip to proximal tip, may comprise a distal section with a substantially constant outer diameter for a distal section length, tapering up to a midsection with a substantially constant outer diameter for a midsection length, tapering down to a proximal section with a substantially constant outer diameter for a proximal section length, ending in the proximal tip.
  • the substantially constant outer diameter of the proximal section may be greater than that of the distal section and less than that of the midsection.
  • Each of the distal section, midsection, and proximal sections may have a substantially homogeneous inner diameter defining an inner lumen through the dilator adaptor.
  • the maximum outer diameter of the guidewire may be at least about 0.01 inches smaller than the minimum inner diameter of the dilator member.
  • the method further may comprise withdrawing the dilator member and dilator adaptor proximally out through a proximal end of the introducer member.
  • the method further may comprise inserting instrumentation through the introducer to conduct a cardiovascular procedure after the dilator member and dilator adaptor have been proximally withdrawn.
  • the method further may comprise proximally removing the introducer and guidewire, leaving behind a defect in the vessel wall that is self-sealing.
  • the dilator adaptor may comprise a polymer selected from the group consisting of: polyethylene terepthalate, polyethylene, high density polyethylene, polypropylene, polytetrafluoroethylene, expanded polytetrafluoroethylene, poly (ethylene-co-vinyl acetate), poly(butyl methacrylate), and co-polymers thereof.
  • FIG. 1A illustrates a geometric misfit scenario wherein a relatively small guidewire is interfaced with a conventionally-sized dilator-introducer assembly.
  • FIG. 1B illustrates an assembly featuring a dilator adaptor to address a geometric misfit scenario such as that depicted in FIG. 1A .
  • FIG. 2A illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2B illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2C illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2D illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2E illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2F illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2G illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2H illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2I illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 3A illustrates a longitudinal cross sectional view of one embodiment of a dilator adaptor in accordance with the present invention.
  • FIG. 3B illustrates a longitudinal cross sectional view of another embodiment of a dilator adaptor in accordance with the present invention.
  • FIG. 4 illustrates a technique conducting a procedure involving a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 5 illustrates a technique conducting a procedure involving a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • a geometric mismatch scenario is depicted wherein a relatively small guidewire ( 6 ), such as a guidewire having a diameter in the range of 0.018 inches, is being utilized in concert with a conventionally-sized dilator-introducer assembly comprising a dilator member ( 4 ) coupled through an introducer catheter ( 2 ).
  • the dilator member ( 4 ) may define a lumen therethrough which has a diameter sized for larger guidewires, in the range of 0.035 inches. As shown in FIG.
  • the geometric mismatch between the guidewire ( 6 ) and the inner diameter of the dilator member ( 4 ) creates an annular gap ( 8 ) or step in geometry, which may unfavorably affect the function of the overall apparatus relative to the nearby pertinent tissue structures.
  • the mismatch issue may be substantially, if not completely, mitigated, to produce a desired closely-toleranced fit at the junction ( 12 ) between the guidewire ( 6 ) and adaptor ( 10 ), and at the junction ( 14 ) between the adaptor ( 10 ) and the dilator member ( 4 ).
  • FIGS. 2A-2I various aspects of a vascular access system and procedure related thereto are illustrated.
  • FIGS. 3 and 4 illustrate in a flowchart fashion various embodiments of medical procedures involving such vascular access technology.
  • a conventional dilator member/introducer catheter set is depicted in a disassembled form, comprising a dilator member ( 4 ) having proximal ( 22 ) and distal ( 20 ) ends, a lumen ( 28 ) defined therethrough, and a fitting ( 36 ) proximally to assist with manipulating and coupling the dilator member ( 4 ).
  • the conventional dilator member/introducer catheter set also comprises an introducer catheter or introducer sheath ( 2 ) having proximal ( 26 ) and distal ( 24 ) ends, a lumen ( 30 ) therethrough, and a proximal valve assembly ( 16 ), to assist with preventing leaks that may otherwise occur through the lumen ( 30 ) and around small instruments, such as the dilator member ( 4 ) or other diagnostic and/or interventional tools, which may be passed through the lumen ( 30 ) and valve ( 16 ).
  • Typical dilator member/introducer catheter sets for vascular access such as those available from providers such as Boston Scientific Corporation, Covidien, Inc., or St.
  • Jude Medical, Inc. are designed to have outer introducer catheter diameters ( 34 ) in the range of about 6 French, and have inner dilator member lumen diameters of between about 0.035′′ and about 0.038′′.
  • the outer diameter ( 32 ) of the dilator member ( 4 ) typically is configured to be easily slideable through the lumen ( 30 ) of the introducer ( 2 ), without significant leakage between the two elongate bodies when assembled.
  • the distal end ( 20 ) of the dilator ( 4 ) may be advanced through the proximal end valve fitting ( 16 ) of the introducer catheter ( 2 ) and into the lumen ( 30 ) of the introducer catheter ( 2 ), to form an assembly as shown in FIGS.
  • distal end ( 20 ) of the dilator member ( 4 ) may be configured to have a tapered geometry and to extend distally past the distal end ( 24 ) of the introducer catheter ( 2 ), which also may have a tapered distal geometry.
  • the fit ( 38 ) at the interface between the dilator member ( 4 ) and introducer catheter ( 2 ) is manufactured to be closely toleranced by the manufacturer of the dilator/introducer set, as described above.
  • a tubular dilator adaptor member ( 10 ) may be added to an assembly to mitigate the geometric mismatch.
  • the dilator adaptor ( 10 ) has proximal ( 42 ) and distal ( 40 ) ends and comprises a small lumen ( 44 ) defined therethrough to accommodate passage of a small instrument such as a guidewire. As shown in FIG.
  • the dilator adaptor ( 10 ) is configured to be inserted proximal end ( 42 ) first into the distal end ( 20 ) of the dilator member ( 4 ), and this assembly may occur before or after the dilator member is assembled into the working lumen of the introducer catheter ( 2 ).
  • FIG. 2G a resulting assembly is depicted, with the dilator adaptor ( 10 ) inserted through the working lumen of the dilator member ( 4 ), which is inserted through the working lumen of the introducer catheter ( 2 ).
  • a small working lumen ( 44 ) is maintained through the dilator adaptor ( 10 ) to accommodate passage of a guidewire or other small instrument.
  • proximal end geometry of the dilator adaptor ( 10 ) comprises a proximal taper (tapering to smaller outer diameter as one measures incrementally closer to the proximal end of the dilator adaptor) which is configured to interface with the inner lumen geometry of the working lumen of the associated dilator member ( 4 ) in such a manner that the dilator adaptor ( 10 ) may be pushed up into the distal end of the dilator member ( 4 ) until a friction fit is established.
  • proximal taper tapering to smaller outer diameter as one measures incrementally closer to the proximal end of the dilator adaptor
  • the proximal taper geometry of the dilator adaptor ( 10 ) is configured to not only accommodate one guidewire/dilator mismatch scenario (i.e., such as one wherein an 0.018′′ outer diameter guidewire is to be utilized with a dilator member having an inner lumen diameter of about 0.035′′), but also a substantially broad range of mismatch scenarios (including one wherein an 0.018′′ outer diameter guidewire is to be utilized with a dilator member having an inner lumen diameter of about 0.038′′, as well as a myriad of other mismatch scenarios which may be greater in mismatch dimensions).
  • one guidewire/dilator mismatch scenario i.e., such as one wherein an 0.018′′ outer diameter guidewire is to be utilized with a dilator member having an inner lumen diameter of about 0.035′′
  • mismatch scenarios including one wherein an 0.018′′ outer diameter guidewire is to be utilized with a dilator member having an inner lumen diameter of about 0.038′′, as well as
  • an assembly of the dilator adaptor ( 10 ), dilator member ( 4 ), and introducer catheter ( 2 ) may be advanced in an “over-the-wire” technique to place at least a portion of such assembly within the vascular lumen ( 48 ).
  • FIG. 2I A closer view is presented in FIG. 2I .
  • the assembly may be further advanced until the distal end of the introducer catheter is positioned within the vascular lumen ( 48 ), after which the dilator member ( 4 ) and dilator adaptor ( 10 ) may be withdrawn proximally to make room for other diagnostic and/or interventional tools, such as catheters, imaging devices, and prostheses such as stents which may be passed through the working lumen of the introducer. Subsequently, the tools may with withdrawn, as well as the guidewire and introducer sheath, to complete closure of the trans-vascular access port or wound.
  • the trans-vascular access point across the vessel wall ( 50 ) may be configured to be a self-sealing access point, which is designed to self-seal after withdrawal of the pertinent instrumentation.
  • a longitudinal cross sectional view of one embodiment of a dilator adaptor ( 10 ) is depicted with dimensions in inches.
  • the most distal portion starting from the distal end ( 40 ) may comprise a tapered geometry ( 56 ) to ultimately assist with pushing deployment into the pertinent tissue structures.
  • a mid-portion ( 60 ) may have a substantially homogeneous outer diameter for a given length.
  • a proximally tapered portion ( 58 ) may assist with establishing a friction fit with an associated inner lumen geometry of a dilator member, as described above.
  • a most proximal portion ( 62 ) up to the proximal end ( 42 ) may have a substantially constant outer diameter for a given length.
  • a longitudinal cross sectional view of another embodiment of a dilator adaptor ( 10 ) is depicted with dimensions in inches.
  • the most distal portion starting from the distal end ( 40 ) may comprise a tapered geometry ( 64 ), followed by a portion ( 66 ) having a substantially constant outer diameter for a given length, followed by another tapered portion ( 68 ), a midportion ( 70 ) which may have a mild taper either proximally or distally or be substantially constant in outer diameter for a given length, followed by a proximally tapered portion ( 72 ) which may assist with establishing a friction fit with an associated inner lumen geometry of a dilator member, as described above.
  • a most proximal portion ( 74 ) up to the proximal end ( 42 ) may have a substantially constant outer diameter for a given length.
  • the dilator adaptor may comprise a polymer selected from the group consisting of: polyethylene terepthalate, polyethylene, high density polyethylene, polypropylene, polytetrafluoroethylene, expanded polytetrafluoroethylene, poly (ethylene-co-vinyl acetate), poly(butyl methacrylate), and co-polymers thereof.
  • access may be created (for example, by crossing with an access needle and leaving behind a guidewire, as in a Seldinger technique) ( 82 ).
  • An operational assembly may be formed which combines the at least a portion of the guidewire through the dilator adaptor lumen, at least a portion of the dilator adaptor through the dilator member lumen, and at least a portion of the dilator member through the introducer catheter lumen.
  • Such an assembly may be accomplished by first assembling the adaptor and dilator member together, then placing this assembly into the introducer for further advancement over the guidewire into the vessel, as shown in the embodiment of FIG.
  • such a sub-process may comprise combining the adaptor into an already-assembled dilator member—introducer catheter subassembly.
  • the dilator-adaptor/dilator member/introducer assembly may then be advanced in an “over-the-wire” configuration (i.e., with the proximal end of the guidewire (and additional portions thereof following) being advanced into the distal end of the dilator-adaptor and associated dilator member and introducer as this assembly is advanced over the guidewire) into a position relative to the vessel wherein at least the distal end of the dilator adaptor is positioned within the vessel lumen ( 88 ).
  • the dilator member and dilator adaptor may be withdrawn ( 92 ) along with the guidewire, and other instrumentation may be advanced through the working lumen of the introducer catheter or sheath ( 94 ) to conduct a procedure ( 96 ), after which the instrumentation may be withdrawn out of the introducer ( 98 ), and the remaining introducer may be withdrawn to complete the closure, which preferably has been set up to be a self-sealing closure ( 100 ).
  • kits may further include instructions for use and be packaged in sterile trays or containers as commonly employed for such purposes.
  • the invention includes methods that may be performed using the subject devices.
  • the methods may comprise the act of providing such a suitable device. Such provision may be performed by the end user.
  • the “providing” act merely requires the end user obtain, access, approach, position, set-up, activate, power-up or otherwise act to provide the requisite device in the subject method.
  • Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events.
  • lubricious coatings e.g., hydrophilic polymers such as polyvinylpyrrolidone-based compositions, fluoropolymers such as tetrafluoroethylene, hydrophilic gel or silicones
  • hydrophilic polymers such as polyvinylpyrrolidone-based compositions
  • fluoropolymers such as tetrafluoroethylene
  • hydrophilic gel or silicones may be used in connection with various portions of the devices, such as relatively large interfacial surfaces of movably coupled parts, if desired, for example, to facilitate low friction manipulation or advancement of such objects relative to other portions of the instrumentation or nearby tissue structures.
  • additional acts as commonly or logically employed.
  • any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.
  • Reference to a singular item includes the possibility that there are plural of the same items present. More specifically, as used herein and in claims associated hereto, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the specifically stated otherwise.
  • use of the articles allow for “at least one” of the subject item in the description above as well as claims associated with this disclosure. It is further noted that such claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.

Abstract

One embodiment is directed to a method for creating translumenal vascular access, comprising utilizing a dilator adaptor to assist with forming a substantially atraumatic geometric outer junction between a dilator member/introducer member assembly and a guidewire which may be somewhat undersized relative to a lumen formed through the dilator member, thereby creating a geometric fit gap which may be suboptimal from a tissue interfacing perspective. The dilator adaptor may be interposed between the guidewire and dilator member to assist in remedying this fit mismatch, and in generally providing a preferred outer instrument interface for insertion through a small defect in a vessel to gain access to a lumen defined through the vessel.

Description

    RELATED APPLICATION DATA
  • The present application claims the benefit under 35 U.S.C. §119 to U.S. Provisional Application Ser. No. 61/652,108, filed May 25, 2012. The foregoing application is hereby incorporated by reference into the present application in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates generally to vascular access systems and techniques, and more particularly to configurations for providing and/or facilitating elongate instrument access across a vascular wall with minimal disruption to surrounding tissue structures.
  • BACKGROUND
  • A number of diagnostic and interventional vascular procedures are now performed translumenally, where an elongate instrument such as a catheter is introduced to the vascular system at a convenient access location—such as the femoral, brachial, or subclavian arteries—and guided through the vascular system to a target location to perform therapy or diagnosis. When vascular access is no longer required, the catheter and other vascular access devices must be removed from the vascular entrance and bleeding at the puncture site must be stopped. One common approach for providing hemostasis is to apply external force near and upstream from the puncture site, typically by manual compression. This method is time-consuming, frequently requiring one-half hour or more of compression before hemostasis. This procedure is uncomfortable for the patient and frequently requires administering analgesics. Excessive pressure can also present the risk of total occlusion of the blood vessel, resulting in ischemia and/or thrombosis. After hemostasis is achieved by manual compression, the patient is required to remain recumbent for six to eighteen hours under observation to assure continued hemostasis. During this time bleeding from the vascular access wound can restart, potentially resulting in major complications. These complications may require blood transfusion and/or surgical intervention.
  • Bioabsorbable fasteners have also been used to stop bleeding. Generally, these approaches rely on the placement of a thrombogenic and bioabsorbable material, such as collagen, at the superficial arterial wall over the puncture site. This method generally presents difficulty locating the interface of the overlying tissue and the adventitial surface of the blood vessel. Implanting the fastener too far from the desired location can result in failure to provide hemostasis. If, however, the fastener intrudes into the vascular lumen, thrombus can form on the fastener. Thrombus can embolize downstream and/or block normal blood flow at the thrombus site. Implanted fasteners can also cause infection and auto-immune reactions/rejections of the implant.
  • Suturing methods also have used to provide hemostasis after vascular access. The suture-applying device is introduced through the tissue tract with a distal end of the device located at the vascular puncture. Needles in the device draw suture through the blood vessel wall on opposite sides of the punctures, and the suture is secured directly over the adventitial surface of the blood vessel wall to close the vascular access wound. Generally, to be successful, suturing methods need to be performed with a precise control. The needles need to be properly directed through the blood vessel wall so that the suture is well anchored in tissue to provide for tight closure. Suturing methods also require additional steps for the physician.
  • In view of the deficiencies of the above methods and devices, a new generation of “self-sealing” closure devices and methods has been developed to avoid the need for implantation of a prosthesis member, and also to minimize the steps and time required for closure of the vascular site. Such self-sealing configurations are available, for example, from Arstasis, Inc., of Redwood City, Calif. under the tradename Axera™, and are described in publications such as U.S. Pat. Nos. 8,083,767, 8,012,168, 8,002,794, 8,002,793, 8,002,792, 8,002,791, 7,998,169, and 7,678,133, each of which is incorporated by reference herein in its entirety.
  • With self-sealing and other configurations of closure devices, it may be desirable to achieve vascular access with relatively small instruments before dilation up to larger working lumens for subsequent diagnostic or interventional steps. For example, rather than starting with a Seldinger access technique wherein a needle and guidewire set configured to place a conventional 0.035″ diameter guidewire are utilized, a self-sealing access technique may be employed to place a much smaller guidewire, such as an 0.018″ diameter guidewire. With a relatively small guidewire, such as an 0.018″ diameter guidewire, in place by the Seldinger technique, a subsequent process step may be to install an introducer catheter assembly, generally comprising an introducer catheter defining an introducer lumen, and a dilator member configured to fit with in the introducer lumen. The dilator member generally will define its own dilator member lumen through which the guidewire may be threaded, to facilitate an “over-the-wire” installation of the distal portions of the introducer catheter and dilator member into the vascular lumen.
  • One of the challenges with an over-the-wire installation of a conventional introducer-dilator assembly over a relatively small guidewire, such as an 0.018″ diameter guidewire, is that many readily available off-the-shelf introducer-dilator sets are configured to fit more conventional guidewire diameters through the dilator member lumen, such as diameters in the range of 0.035 inches. The geometric mismatch between a 0.018″ diameter guidewire and a distal end of a dilator member sized for a 0.035″ diameter guidewire, for example, can result in what may be termed an “annular gap” that may form a mechanical edge at the interface between these structures, and insertion of this gap or edge relative to the vascular tissue to place the dilator member and associated introducer catheter distal tips within the vascular lumen may result in unwanted localized tissue trauma, heightened insertion forces, and undesirable localized stress concentrations on portions of the guidewire, dilator member, and/or introducer catheter. There is a need to address this challenge so that conventionally-sized dilator-introducer assemblies, such as those designed for 0.035″ diameter guidewires, may be more optimally utilized with relatively small guidewires, such as those having diameters in the range of 0.018 inches, which may be desirable with procedures such as self-sealing vascular access and closure procedures.
  • SUMMARY
  • One embodiment is directed to a method for creating translumenal vascular access, comprising placing a guidewire having a guidewire outer diameter across a portion of a vessel wall defining a vessel lumen so that a distal end of the guidewire extends into the vessel lumen and a proximal end of the guidewire extends proximally outside of the vessel lumen; loading a proximal portion of a dilator adaptor into a distal end of a dilator lumen defined through a dilator member of a dilator-introducer assembly, to form an adapted-dilator-introducer assembly having at least a portion of the dilator adaptor inserted through at least a portion of the dilator lumen, and at least a portion of the dilator inserted through at least a portion of an introducer lumen defined through an introducer member of the dilator-introducer assembly; wherein the adapted-dilator-introducer assembly is configured such that a distal end of the dilator member extends distally beyond a distal end of the introducer member, and a distal end of the dilator adaptor extends distally beyond the distal end of the dilator member; and advancing the adapted-dilator-introducer assembly into a position relative to the vessel wherein at least the distal end of the dilator adaptor is positioned within the vessel lumen by inserting at least a portion of the proximal end of the guidewire into the distal end of a lumen formed through the dilator adaptor. Placing the guidewire may comprise advancing the guidewire through a portion of a needle that has been advanced across a portion of the vessel wall. A maximum outer diameter of the guidewire may be substantially smaller than a minimum inner diameter of the dilator member. The maximum outer diameter of the guidewire may be at least about 25% smaller than the minimum inner diameter of the dilator member. The maximum outer diameter of the guidewire may be about 0.018 inches. The minimum inner diameter of the dilator member may be between about 0.035 inches and about 0.040 inches. The dilator adaptor may have an outer diameter and inner diameter profile configured to substantially make up the difference in fit between the guidewire and dilator member. Loading the proximal portion of a dilator adaptor into the distal end of the dilator lumen defined through the dilator member may comprise substantially eliminating annular fit gaps around a junction wherein the distal end of the dilator member meets the dilator adaptor. The dilator adaptor may have a minimum inner diameter of about 0.018 inches, and a maximum outer diameter of about 0.050 inches. The introducer member distal end may have a tapered geometry with an outer diameter minimum at its distal tip. The dilator member distal end may have a tapered geometry with an outer diameter minimum at its distal tip. The distal end of the dilator adaptor may have a tapered geometry with an outer diameter minimum at its distal tip. At least a portion of the dilator adaptor may have a proximally tapered geometry with an outer diameter minimum located adjacent its proximal tip. The method further may comprise forming a friction fit between the proximally tapered geometry of the dilator adaptor and the dilator lumen of the dilator member when loading the dilator adaptor into the dilator lumen. The proximally tapered geometry may be selected such that one size of dilator adaptor can form a friction fit with a range of dilator lumen geometries. The dilator adaptor, when viewed from distal tip to proximal tip, may comprise a distal section with a substantially constant outer diameter for a distal section length, tapering up to a midsection with a substantially constant outer diameter for a midsection length, tapering down to a proximal section with a substantially constant outer diameter for a proximal section length, ending in the proximal tip. The substantially constant outer diameter of the proximal section may be greater than that of the distal section and less than that of the midsection. Each of the distal section, midsection, and proximal sections may have a substantially homogeneous inner diameter defining an inner lumen through the dilator adaptor. The maximum outer diameter of the guidewire may be at least about 0.01 inches smaller than the minimum inner diameter of the dilator member. The method further may comprise withdrawing the dilator member and dilator adaptor proximally out through a proximal end of the introducer member. The method further may comprise inserting instrumentation through the introducer to conduct a cardiovascular procedure after the dilator member and dilator adaptor have been proximally withdrawn. The method further may comprise proximally removing the introducer and guidewire, leaving behind a defect in the vessel wall that is self-sealing. The dilator adaptor may comprise a polymer selected from the group consisting of: polyethylene terepthalate, polyethylene, high density polyethylene, polypropylene, polytetrafluoroethylene, expanded polytetrafluoroethylene, poly (ethylene-co-vinyl acetate), poly(butyl methacrylate), and co-polymers thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A illustrates a geometric misfit scenario wherein a relatively small guidewire is interfaced with a conventionally-sized dilator-introducer assembly.
  • FIG. 1B illustrates an assembly featuring a dilator adaptor to address a geometric misfit scenario such as that depicted in FIG. 1A.
  • FIG. 2A illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2B illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2C illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2D illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2E illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2F illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2G illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2H illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 2I illustrates one aspect of a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 3A illustrates a longitudinal cross sectional view of one embodiment of a dilator adaptor in accordance with the present invention.
  • FIG. 3B illustrates a longitudinal cross sectional view of another embodiment of a dilator adaptor in accordance with the present invention.
  • FIG. 4 illustrates a technique conducting a procedure involving a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • FIG. 5 illustrates a technique conducting a procedure involving a vascular access configuration in accordance with the present invention wherein a relatively small guidewire may be utilized in concert with a conventionally-sized dilator-introducer assembly.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1A, a geometric mismatch scenario is depicted wherein a relatively small guidewire (6), such as a guidewire having a diameter in the range of 0.018 inches, is being utilized in concert with a conventionally-sized dilator-introducer assembly comprising a dilator member (4) coupled through an introducer catheter (2). The dilator member (4) may define a lumen therethrough which has a diameter sized for larger guidewires, in the range of 0.035 inches. As shown in FIG. 1A, and as described above, the geometric mismatch between the guidewire (6) and the inner diameter of the dilator member (4) creates an annular gap (8) or step in geometry, which may unfavorably affect the function of the overall apparatus relative to the nearby pertinent tissue structures. Referring to FIG. 1B, with an appropriate sized and shaped tubular dilator adaptor (10) intercoupled between the dilator member (4) and guidewire (6), the mismatch issue may be substantially, if not completely, mitigated, to produce a desired closely-toleranced fit at the junction (12) between the guidewire (6) and adaptor (10), and at the junction (14) between the adaptor (10) and the dilator member (4).
  • Referring to FIGS. 2A-2I, various aspects of a vascular access system and procedure related thereto are illustrated. FIGS. 3 and 4 illustrate in a flowchart fashion various embodiments of medical procedures involving such vascular access technology.
  • Referring to FIG. 2A, a conventional dilator member/introducer catheter set is depicted in a disassembled form, comprising a dilator member (4) having proximal (22) and distal (20) ends, a lumen (28) defined therethrough, and a fitting (36) proximally to assist with manipulating and coupling the dilator member (4). The conventional dilator member/introducer catheter set also comprises an introducer catheter or introducer sheath (2) having proximal (26) and distal (24) ends, a lumen (30) therethrough, and a proximal valve assembly (16), to assist with preventing leaks that may otherwise occur through the lumen (30) and around small instruments, such as the dilator member (4) or other diagnostic and/or interventional tools, which may be passed through the lumen (30) and valve (16). Typical dilator member/introducer catheter sets for vascular access, such as those available from providers such as Boston Scientific Corporation, Covidien, Inc., or St. Jude Medical, Inc., are designed to have outer introducer catheter diameters (34) in the range of about 6 French, and have inner dilator member lumen diameters of between about 0.035″ and about 0.038″. The outer diameter (32) of the dilator member (4) typically is configured to be easily slideable through the lumen (30) of the introducer (2), without significant leakage between the two elongate bodies when assembled. Referring to FIG. 2B, the distal end (20) of the dilator (4) may be advanced through the proximal end valve fitting (16) of the introducer catheter (2) and into the lumen (30) of the introducer catheter (2), to form an assembly as shown in FIGS. 2C and 2D, wherein the distal end (20) of the dilator member (4) may be configured to have a tapered geometry and to extend distally past the distal end (24) of the introducer catheter (2), which also may have a tapered distal geometry. Preferably the fit (38) at the interface between the dilator member (4) and introducer catheter (2) is manufactured to be closely toleranced by the manufacturer of the dilator/introducer set, as described above.
  • Referring to FIG. 2E, in a scenario wherein a relatively small guidewire, such as one in the range of 0.018 inches, is to be utilized in concert with a conventionally-sized dilator/introducer set, such as one having a dilator member lumen diameter of about 0.035 inches, a tubular dilator adaptor member (10) may be added to an assembly to mitigate the geometric mismatch. Generally the dilator adaptor (10) has proximal (42) and distal (40) ends and comprises a small lumen (44) defined therethrough to accommodate passage of a small instrument such as a guidewire. As shown in FIG. 2F, in one embodiment, the dilator adaptor (10) is configured to be inserted proximal end (42) first into the distal end (20) of the dilator member (4), and this assembly may occur before or after the dilator member is assembled into the working lumen of the introducer catheter (2). Referring to FIG. 2G, a resulting assembly is depicted, with the dilator adaptor (10) inserted through the working lumen of the dilator member (4), which is inserted through the working lumen of the introducer catheter (2). A small working lumen (44) is maintained through the dilator adaptor (10) to accommodate passage of a guidewire or other small instrument.
  • Preferably at least one portion of the proximal end geometry of the dilator adaptor (10) comprises a proximal taper (tapering to smaller outer diameter as one measures incrementally closer to the proximal end of the dilator adaptor) which is configured to interface with the inner lumen geometry of the working lumen of the associated dilator member (4) in such a manner that the dilator adaptor (10) may be pushed up into the distal end of the dilator member (4) until a friction fit is established. Preferably the proximal taper geometry of the dilator adaptor (10) is configured to not only accommodate one guidewire/dilator mismatch scenario (i.e., such as one wherein an 0.018″ outer diameter guidewire is to be utilized with a dilator member having an inner lumen diameter of about 0.035″), but also a substantially broad range of mismatch scenarios (including one wherein an 0.018″ outer diameter guidewire is to be utilized with a dilator member having an inner lumen diameter of about 0.038″, as well as a myriad of other mismatch scenarios which may be greater in mismatch dimensions).
  • Referring to FIG. 2H, in practice, with a guidewire (6) already installed into a position wherein the distal end of the guidewire extends into a blood vessel lumen (48), and the remainder of the guidewire (10) extends proximally across the vessel wall (50), across other related tissue structures (52), and across the skin (54) of the patient, to extend proximally, generally outside of the patient, an assembly of the dilator adaptor (10), dilator member (4), and introducer catheter (2) may be advanced in an “over-the-wire” technique to place at least a portion of such assembly within the vascular lumen (48). A closer view is presented in FIG. 2I. The assembly may be further advanced until the distal end of the introducer catheter is positioned within the vascular lumen (48), after which the dilator member (4) and dilator adaptor (10) may be withdrawn proximally to make room for other diagnostic and/or interventional tools, such as catheters, imaging devices, and prostheses such as stents which may be passed through the working lumen of the introducer. Subsequently, the tools may with withdrawn, as well as the guidewire and introducer sheath, to complete closure of the trans-vascular access port or wound. As described above, in one embodiment, the trans-vascular access point across the vessel wall (50) may be configured to be a self-sealing access point, which is designed to self-seal after withdrawal of the pertinent instrumentation.
  • Referring to FIG. 3A, a longitudinal cross sectional view of one embodiment of a dilator adaptor (10) is depicted with dimensions in inches. The most distal portion starting from the distal end (40) may comprise a tapered geometry (56) to ultimately assist with pushing deployment into the pertinent tissue structures. A mid-portion (60) may have a substantially homogeneous outer diameter for a given length. Next a proximally tapered portion (58) may assist with establishing a friction fit with an associated inner lumen geometry of a dilator member, as described above. A most proximal portion (62) up to the proximal end (42) may have a substantially constant outer diameter for a given length.
  • Referring to FIG. 3B, a longitudinal cross sectional view of another embodiment of a dilator adaptor (10) is depicted with dimensions in inches. The most distal portion starting from the distal end (40) may comprise a tapered geometry (64), followed by a portion (66) having a substantially constant outer diameter for a given length, followed by another tapered portion (68), a midportion (70) which may have a mild taper either proximally or distally or be substantially constant in outer diameter for a given length, followed by a proximally tapered portion (72) which may assist with establishing a friction fit with an associated inner lumen geometry of a dilator member, as described above. A most proximal portion (74) up to the proximal end (42) may have a substantially constant outer diameter for a given length. The dilator adaptor may comprise a polymer selected from the group consisting of: polyethylene terepthalate, polyethylene, high density polyethylene, polypropylene, polytetrafluoroethylene, expanded polytetrafluoroethylene, poly (ethylene-co-vinyl acetate), poly(butyl methacrylate), and co-polymers thereof.
  • Referring to FIG. 4, after patient preparation and preoperative diagnostics (80), access may be created (for example, by crossing with an access needle and leaving behind a guidewire, as in a Seldinger technique) (82). An operational assembly may be formed which combines the at least a portion of the guidewire through the dilator adaptor lumen, at least a portion of the dilator adaptor through the dilator member lumen, and at least a portion of the dilator member through the introducer catheter lumen. Such an assembly may be accomplished by first assembling the adaptor and dilator member together, then placing this assembly into the introducer for further advancement over the guidewire into the vessel, as shown in the embodiment of FIG. 4 (elements 84, 86); referring to FIG. 5 (102), such a sub-process may comprise combining the adaptor into an already-assembled dilator member—introducer catheter subassembly. The dilator-adaptor/dilator member/introducer assembly may then be advanced in an “over-the-wire” configuration (i.e., with the proximal end of the guidewire (and additional portions thereof following) being advanced into the distal end of the dilator-adaptor and associated dilator member and introducer as this assembly is advanced over the guidewire) into a position relative to the vessel wherein at least the distal end of the dilator adaptor is positioned within the vessel lumen (88). With the distal end of the introducer having access to the vascular lumen (90), the dilator member and dilator adaptor may be withdrawn (92) along with the guidewire, and other instrumentation may be advanced through the working lumen of the introducer catheter or sheath (94) to conduct a procedure (96), after which the instrumentation may be withdrawn out of the introducer (98), and the remaining introducer may be withdrawn to complete the closure, which preferably has been set up to be a self-sealing closure (100).
  • Various exemplary embodiments of the invention are described herein. Reference is made to these examples in a non-limiting sense. They are provided to illustrate more broadly applicable aspects of the invention. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. Further, as will be appreciated by those with skill in the art that each of the individual variations described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present inventions. All such modifications are intended to be within the scope of claims associated with this disclosure.
  • Any of the devices described for carrying out the subject diagnostic or interventional procedures may be provided in packaged combination for use in executing such interventions. These supply “kits” may further include instructions for use and be packaged in sterile trays or containers as commonly employed for such purposes.
  • The invention includes methods that may be performed using the subject devices. The methods may comprise the act of providing such a suitable device. Such provision may be performed by the end user. In other words, the “providing” act merely requires the end user obtain, access, approach, position, set-up, activate, power-up or otherwise act to provide the requisite device in the subject method. Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events.
  • Exemplary aspects of the invention, together with details regarding material selection and manufacture have been set forth above. As for other details of the present invention, these may be appreciated in connection with the above-referenced patents and publications as well as generally known or appreciated by those with skill in the art. For example, one with skill in the art will appreciate that one or more lubricious coatings (e.g., hydrophilic polymers such as polyvinylpyrrolidone-based compositions, fluoropolymers such as tetrafluoroethylene, hydrophilic gel or silicones) may be used in connection with various portions of the devices, such as relatively large interfacial surfaces of movably coupled parts, if desired, for example, to facilitate low friction manipulation or advancement of such objects relative to other portions of the instrumentation or nearby tissue structures. The same may hold true with respect to method-based aspects of the invention in terms of additional acts as commonly or logically employed.
  • In addition, though the invention has been described in reference to several examples optionally incorporating various features, the invention is not to be limited to that which is described or indicated as contemplated with respect to each variation of the invention. Various changes may be made to the invention described and equivalents (whether recited herein or not included for the sake of some brevity) may be substituted without departing from the true spirit and scope of the invention. In addition, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention.
  • Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in claims associated hereto, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as claims associated with this disclosure. It is further noted that such claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
  • Without the use of such exclusive terminology, the term “comprising” in claims associated with this disclosure shall allow for the inclusion of any additional element—irrespective of whether a given number of elements are enumerated in such claims, or the addition of a feature could be regarded as transforming the nature of an element set forth in such claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.
  • The breadth of the present invention is not to be limited to the examples provided and/or the subject specification, but rather only by the scope of claim language associated with this disclosure.

Claims (23)

1. A method for creating translumenal vascular access, comprising:
a. placing a guidewire having a guidewire outer diameter across a portion of a vessel wall defining a vessel lumen so that a distal end of the guidewire extends into the vessel lumen and a proximal end of the guidewire extends proximally outside of the vessel lumen;
b. loading a proximal portion of a dilator adaptor into a distal end of a dilator lumen defined through a dilator member of a dilator-introducer assembly, to form an adapted-dilator-introducer assembly having at least a portion of the dilator adaptor inserted through at least a portion of the dilator lumen, and at least a portion of the dilator inserted through at least a portion of an introducer lumen defined through an introducer member of the dilator-introducer assembly;
wherein the adapted-dilator-introducer assembly is configured such that a distal end of the dilator member extends distally beyond a distal end of the introducer member, and a distal end of the dilator adaptor extends distally beyond the distal end of the dilator member; and
c. advancing the adapted-dilator-introducer assembly into a position relative to the vessel wherein at least the distal end of the dilator adaptor is positioned within the vessel lumen by inserting at least a portion of the proximal end of the guidewire into the distal end of a lumen formed through the dilator adaptor.
2. The method of claim 1, wherein placing the guidewire comprises advancing the guidewire through a portion of a needle that has been advanced across a portion of the vessel wall.
3. The method of claim 1, wherein a maximum outer diameter of the guidewire is substantially smaller than a minimum inner diameter of the dilator member.
4. The method of claim 3, wherein the maximum outer diameter of the guidewire is at least about 25% smaller than the minimum inner diameter of the dilator member.
5. The method of claim 3, wherein the maximum outer diameter of the guidewire is about 0.018 inches.
6. The method of claim 5, wherein the minimum inner diameter of the dilator member is between about 0.035 inches and about 0.040 inches.
7. The method of claim 3, wherein the dilator adaptor has an outer diameter and inner diameter profile configured to substantially make up the difference in fit between the guidewire and dilator member.
8. The method of claim 7, wherein loading the proximal portion of a dilator adaptor into the distal end of the dilator lumen defined through the dilator member comprises substantially eliminating annular fit gaps around a junction wherein the distal end of the dilator member meets the dilator adaptor.
9. The method of claim 6, wherein the dilator adaptor has a minimum inner diameter of about 0.018 inches, and a maximum outer diameter of about 0.050 inches.
10. The method of claim 1, wherein the introducer member distal end has a tapered geometry with an outer diameter minimum at its distal tip.
11. The method of claim 1, wherein the dilator member distal end has a tapered geometry with an outer diameter minimum at its distal tip.
12. The method of claim 1, wherein the distal end of the dilator adaptor has a tapered geometry with an outer diameter minimum at its distal tip.
13. The method of claim 1, wherein at least a portion of the dilator adaptor has a proximally tapered geometry with an outer diameter minimum located adjacent its proximal tip.
14. The method of claim 13, further comprising forming a friction fit between the proximally tapered geometry of the dilator adaptor and the dilator lumen of the dilator member when loading the dilator adaptor into the dilator lumen.
15. The method of claim 14, wherein the proximally tapered geometry is selected such that one size of dilator adaptor can form a friction fit with a range of dilator lumen geometries.
16. The method of claim 1, wherein the dilator adaptor, when viewed from distal tip to proximal tip, comprises a distal section with a substantially constant outer diameter for a distal section length, tapering up to a midsection with a substantially constant outer diameter for a midsection length, tapering down to a proximal section with a substantially constant outer diameter for a proximal section length, ending in the proximal tip.
17. The method of claim 16, wherein the substantially constant outer diameter of the proximal section is greater than that of the distal section and less than that of the midsection.
18. The method of claim 17, wherein each of the distal section, midsection, and proximal sections has a substantially homogeneous inner diameter defining an inner lumen through the dilator adaptor.
19. The method of claim 3, wherein the maximum outer diameter of the guidewire is at least about 0.01 inches smaller than the minimum inner diameter of the dilator member.
20. The method of claim 1, further comprising withdrawing the dilator member and dilator adaptor proximally out through a proximal end of the introducer member.
21. The method of claim 20, further comprising inserting instrumentation through the introducer to conduct a cardiovascular procedure after the dilator member and dilator adaptor have been proximally withdrawn.
22. The method of claim 21, further comprising proximally removing the introducer and guidewire, leaving behind a defect in the vessel wall that is self-sealing.
23. The method of claim 1, wherein the dilator adaptor comprises a polymer selected from the group consisting of: polyethylene terepthalate, polyethylene, high density polyethylene, polypropylene, polytetrafluoroethylene, expanded polytetrafluoroethylene, poly (ethylene-co-vinyl acetate), poly(butyl methacrylate), and co-polymers thereof.
US13/902,592 2012-05-25 2013-05-24 Vascular access configuration Abandoned US20130317481A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/902,592 US20130317481A1 (en) 2012-05-25 2013-05-24 Vascular access configuration
US15/344,411 US20170056063A1 (en) 2012-05-25 2016-11-04 Vascular access configuration
US15/966,374 US10675447B2 (en) 2012-05-25 2018-04-30 Vascular access configuration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261652108P 2012-05-25 2012-05-25
US13/902,592 US20130317481A1 (en) 2012-05-25 2013-05-24 Vascular access configuration

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/344,411 Continuation US20170056063A1 (en) 2012-05-25 2016-11-04 Vascular access configuration

Publications (1)

Publication Number Publication Date
US20130317481A1 true US20130317481A1 (en) 2013-11-28

Family

ID=49622166

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/902,592 Abandoned US20130317481A1 (en) 2012-05-25 2013-05-24 Vascular access configuration
US15/344,411 Abandoned US20170056063A1 (en) 2012-05-25 2016-11-04 Vascular access configuration
US15/966,374 Active 2033-09-18 US10675447B2 (en) 2012-05-25 2018-04-30 Vascular access configuration

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/344,411 Abandoned US20170056063A1 (en) 2012-05-25 2016-11-04 Vascular access configuration
US15/966,374 Active 2033-09-18 US10675447B2 (en) 2012-05-25 2018-04-30 Vascular access configuration

Country Status (1)

Country Link
US (3) US20130317481A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015175537A1 (en) * 2014-05-16 2015-11-19 Silk Road Medical, Inc. Vessel access and closure assist system and method
USD753289S1 (en) 2014-03-03 2016-04-05 The Spectranetics Corporation Sheath
USD753290S1 (en) 2014-03-03 2016-04-05 The Spectranetics Corporation Sheath set
US9675371B2 (en) 2014-03-03 2017-06-13 The Spectranetics Corporation Dilator sheath set
US10525238B2 (en) 2011-12-22 2020-01-07 Ecp Entwicklungsgesellschaft Mbh Sheath device for inserting a catheter
US10709828B2 (en) 2011-12-22 2020-07-14 Ecp Entwicklungsgesellschaft Mbh Sheath device for inserting a catheter
US10709875B2 (en) 2015-01-07 2020-07-14 Abiomed Europe Gmbh Introducer sheath
US10709476B2 (en) 2016-02-22 2020-07-14 Abiomed, Inc. Introducer sheath having a multi-layer hub
US10737008B2 (en) 2015-08-17 2020-08-11 Abiomed, Inc. Dual lumen sheath for arterial access
US10881836B2 (en) 2012-12-21 2021-01-05 Ecp Entwicklungsgesellschaft Mbh Sheath assembly for insertion of a cord-shaped element, particularly a catheter, into the body of a patient
US10881845B2 (en) 2014-07-04 2021-01-05 Abiomed Europe Gmbh Sheath for sealed access to a vessel
US10967152B2 (en) 2017-03-10 2021-04-06 Abiomed, Inc. Expandable introducer sheath for medical device
US11045634B2 (en) 2017-11-06 2021-06-29 Abiomed, Inc. Peel away hemostasis valve
US11364363B2 (en) 2016-12-08 2022-06-21 Abiomed, Inc. Overmold technique for peel-away introducer design
US11464963B1 (en) 2018-08-27 2022-10-11 Abiomed, Inc. Nitinol braid processing procedure
US11517720B2 (en) 2018-08-14 2022-12-06 Abiomed, Inc. Expandable introducer sheath for medical device
US11660434B2 (en) 2020-02-03 2023-05-30 Abiomed, Inc. Expandable sheath with interlock dilator
US11730939B2 (en) 2014-07-04 2023-08-22 Abiomed Europe Gmbh Sheath for sealed access to a vessel
US11793977B2 (en) 2018-05-16 2023-10-24 Abiomed, Inc. Peel-away sheath assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200338316A1 (en) * 2019-04-24 2020-10-29 DePuy Synthes Products, Inc. Vascular Access System

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060129100A1 (en) * 2001-12-26 2006-06-15 Yale University Access Device
US20080051821A1 (en) * 2006-08-22 2008-02-28 Gephart Matthew P Tissue dilation tool and method of dilating tissue

Family Cites Families (265)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2857925A (en) 1954-10-01 1958-10-28 Higginbotham Richard Stopford Ground gripping ferrule for use on walking sticks, crutches and the like
US3727614A (en) 1971-05-13 1973-04-17 Merck & Co Inc Multiple dosage inoculator
US3730185A (en) 1971-10-29 1973-05-01 Cook Inc Endarterectomy apparatus
US4006747A (en) 1975-04-23 1977-02-08 Ethicon, Inc. Surgical method
US4774949A (en) 1983-06-14 1988-10-04 Fogarty Thomas J Deflector guiding catheter
US4744364A (en) 1987-02-17 1988-05-17 Intravascular Surgical Instruments, Inc. Device for sealing percutaneous puncture in a vessel
US4850960A (en) 1987-07-08 1989-07-25 Joseph Grayzel Diagonally tapered, bevelled tip introducing catheter and sheath and method for insertion
US4862891A (en) 1988-03-14 1989-09-05 Canyon Medical Products Device for sequential percutaneous dilation
US4890611A (en) 1988-04-05 1990-01-02 Thomas J. Fogarty Endarterectomy apparatus and method
US4921484A (en) 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US4955897A (en) 1988-08-22 1990-09-11 Ship Arthur G Tissue forceps
US5620461A (en) 1989-05-29 1997-04-15 Muijs Van De Moer; Wouter M. Sealing device
US4962755A (en) 1989-07-21 1990-10-16 Heart Tech Of Minnesota, Inc. Method for performing endarterectomy
US5571169A (en) 1993-06-07 1996-11-05 Endovascular Instruments, Inc. Anti-stenotic method and product for occluded and partially occluded arteries
US5662701A (en) 1989-08-18 1997-09-02 Endovascular Instruments, Inc. Anti-stenotic method and product for occluded and partially occluded arteries
NL9000487A (en) 1990-03-01 1991-10-01 Advanced Protective Injection PROTECTION ASSEMBLY FOR AN INJECTION SYRINGE.
US5391183A (en) 1990-09-21 1995-02-21 Datascope Investment Corp Device and method sealing puncture wounds
US5183464A (en) 1991-05-17 1993-02-02 Interventional Thermodynamics, Inc. Radially expandable dilator
US5358507A (en) 1991-07-26 1994-10-25 Pat O. Daily Thromboendarterectomy suction dissector
US6818008B1 (en) 1992-01-07 2004-11-16 Cch Associates, Inc. Percutaneous puncture sealing method
US5271415A (en) 1992-01-28 1993-12-21 Baxter International Inc. Guidewire extension system
WO1993016641A1 (en) 1992-02-21 1993-09-02 Diasonics, Inc. Ultrasound intracavity system for imaging therapy planning and treatment of focal disease
US5993389A (en) 1995-05-22 1999-11-30 Ths International, Inc. Devices for providing acoustic hemostasis
US5380290A (en) 1992-04-16 1995-01-10 Pfizer Hospital Products Group, Inc. Body access device
US5810810A (en) 1992-04-23 1998-09-22 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US6063085A (en) 1992-04-23 2000-05-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
JPH07506991A (en) 1992-04-23 1995-08-03 シメッド ライフ システムズ インコーポレイテッド Apparatus and method for sealing vascular punctures
US5368601A (en) 1992-04-30 1994-11-29 Lasersurge, Inc. Trocar wound closure device
CA2106127A1 (en) 1992-09-23 1994-03-24 Peter W.J. Hinchliffe Instrument for closing trocar puncture wounds
US5489288A (en) 1992-10-09 1996-02-06 Advanced Surgical, Inc. Device and method for applying large-diameter ligating loop
US6398782B1 (en) 1992-10-13 2002-06-04 Edwards Lifesciences Corporation Bipolar vascular sealing apparatus and methods
US5415657A (en) 1992-10-13 1995-05-16 Taymor-Luria; Howard Percutaneous vascular sealing method
US5336221A (en) 1992-10-14 1994-08-09 Premier Laser Systems, Inc. Method and apparatus for applying thermal energy to tissue using a clamp
US5304184A (en) 1992-10-19 1994-04-19 Indiana University Foundation Apparatus and method for positive closure of an internal tissue membrane opening
US5383897A (en) 1992-10-19 1995-01-24 Shadyside Hospital Method and apparatus for closing blood vessel punctures
US5364389A (en) 1992-11-25 1994-11-15 Premier Laser Systems, Inc. Method and apparatus for sealing and/or grasping luminal tissue
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5467786A (en) 1992-12-10 1995-11-21 William C. Allen Method for repairing tears and incisions in soft tissue
US6036699A (en) 1992-12-10 2000-03-14 Perclose, Inc. Device and method for suturing tissue
DE4310555C1 (en) 1993-03-31 1993-12-09 Strobel & Soehne Gmbh & Co J Surgical machine stitching tissue edges together - has forceps opening and shutting in synchronism with needle to hold edges together before puncturing
US5503634A (en) 1993-04-28 1996-04-02 Christy; William J. Surgical stab wound closure device and method
DE59308956D1 (en) 1993-06-24 1998-10-08 Schneider Europ Gmbh Aspiration catheter assembly
US5527321A (en) 1993-07-14 1996-06-18 United States Surgical Corporation Instrument for closing trocar puncture wounds
US5391182A (en) 1993-08-03 1995-02-21 Origin Medsystems, Inc. Apparatus and method for closing puncture wounds
US5462561A (en) 1993-08-05 1995-10-31 Voda; Jan K. Suture device
US5474568A (en) 1993-10-08 1995-12-12 United States Surgical Corporation Instrument for closing trocar puncture wounds
US5470338A (en) 1993-10-08 1995-11-28 United States Surgical Corporation Instrument for closing trocar puncture wounds
US5437665A (en) 1993-10-12 1995-08-01 Munro; Malcolm G. Electrosurgical loop electrode instrument for laparoscopic surgery
US5439469A (en) 1993-11-05 1995-08-08 Advanced Surgical, Inc. Wound closure device
US5527322A (en) 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5476470A (en) 1994-04-15 1995-12-19 Fitzgibbons, Jr.; Robert J. Trocar site suturing device
FR2719211B1 (en) 1994-04-27 1996-07-19 Mortier Jean Pierre Equipment for correcting foot deformities.
WO1995032669A1 (en) 1994-06-01 1995-12-07 Perclose, Inc. Apparatus and method for advancing surgical knots
WO1995032671A1 (en) 1994-06-01 1995-12-07 Perclose, Inc. Method and device for providing vascular hemostasis
US6033401A (en) 1997-03-12 2000-03-07 Advanced Closure Systems, Inc. Vascular sealing device with microwave antenna
US6302898B1 (en) 1994-06-24 2001-10-16 Advanced Closure Systems, Inc. Devices for sealing punctures in body vessels
US5536255A (en) 1994-10-03 1996-07-16 Moss; Gerald Dilator/introducer apparatus for percutaneous gastrostomy
US5451230A (en) 1994-10-11 1995-09-19 Steinert; Roger F. Cataract disassembly
US5496332A (en) 1994-10-20 1996-03-05 Cordis Corporation Wound closure apparatus and method for its use
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US5709224A (en) 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US6132438A (en) 1995-06-07 2000-10-17 Ep Technologies, Inc. Devices for installing stasis reducing means in body tissue
ATE222076T1 (en) 1995-06-07 2002-08-15 Medtronic Inc WOUND CLOSURE DEVICE
US5902311A (en) 1995-06-15 1999-05-11 Perclose, Inc. Low profile intraluminal suturing device and method
US5846253A (en) 1995-07-14 1998-12-08 C. R. Bard, Inc. Wound closure apparatus and method
US5700273A (en) 1995-07-14 1997-12-23 C.R. Bard, Inc. Wound closure apparatus and method
US6117144A (en) 1995-08-24 2000-09-12 Sutura, Inc. Suturing device and method for sealing an opening in a blood vessel or other biological structure
US5860990A (en) 1995-08-24 1999-01-19 Nr Medical, Inc. Method and apparatus for suturing
US5653717A (en) 1995-08-28 1997-08-05 Urohealth Systems, Inc. Wound closure device
US6071300A (en) 1995-09-15 2000-06-06 Sub-Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
US5645566A (en) 1995-09-15 1997-07-08 Sub Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
CA2234389A1 (en) 1995-10-13 1997-04-17 Transvascular, Inc. A device, system and method for interstitial transvascular intervention
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US5843050A (en) 1995-11-13 1998-12-01 Micro Therapeutics, Inc. Microcatheter
US6524326B1 (en) 1995-12-07 2003-02-25 Loma Linda University Medical Center Tissue opening locator and everter and method
US5772673A (en) 1996-03-07 1998-06-30 United States Surgical Corporation Apparatus for applying surgical clips
US6152918A (en) 1996-04-05 2000-11-28 Eclipse Surgical Technologies, Inc. Laser device with auto-piercing tip for myocardial revascularization procedures
US6468228B1 (en) 1996-06-18 2002-10-22 Vance Products Incorporated Surgical tissue morcellator
US5954713A (en) 1996-07-12 1999-09-21 Newman; Fredric A. Endarterectomy surgical instruments and procedure
US5766183A (en) 1996-10-21 1998-06-16 Lasersurge, Inc. Vascular hole closure
US5758665A (en) 1996-11-14 1998-06-02 Suval; William D. Method for treating varicose veins
US6036721A (en) 1996-11-16 2000-03-14 Cap Incorporated Puncture closure
US5782861A (en) 1996-12-23 1998-07-21 Sub Q Inc. Percutaneous hemostasis device
US6475182B1 (en) 1997-03-12 2002-11-05 Olexander Hnojewyj Fluidic media introduction apparatus
US6733515B1 (en) 1997-03-12 2004-05-11 Neomend, Inc. Universal introducer
US6371975B2 (en) 1998-11-06 2002-04-16 Neomend, Inc. Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers
WO1998046115A2 (en) 1997-04-11 1998-10-22 Transvascular, Inc. Methods and apparatus for transmyocardial direct coronary revascularization
US5830232A (en) 1997-04-14 1998-11-03 Hasson; Harrith M. Device for closing an opening in tissue and method of closing a tissue opening using the device
US5984948A (en) 1997-04-14 1999-11-16 Hasson; Harrith M. Device for closing an opening in tissue and method of closing a tissue opening using the device
US5941897A (en) 1997-05-09 1999-08-24 Myers; Gene E. Energy activated fibrin plug
US6071292A (en) 1997-06-28 2000-06-06 Transvascular, Inc. Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
EP0895753A1 (en) 1997-07-31 1999-02-10 Academisch Ziekenhuis Utrecht Temporary vascular seal for anastomosis
US5954732A (en) 1997-09-10 1999-09-21 Hart; Charles C. Suturing apparatus and method
US6179832B1 (en) 1997-09-11 2001-01-30 Vnus Medical Technologies, Inc. Expandable catheter having two sets of electrodes
US6258084B1 (en) 1997-09-11 2001-07-10 Vnus Medical Technologies, Inc. Method for applying energy to biological tissue including the use of tumescent tissue compression
US5972013A (en) 1997-09-19 1999-10-26 Comedicus Incorporated Direct pericardial access device with deflecting mechanism and method
US6592552B1 (en) 1997-09-19 2003-07-15 Cecil C. Schmidt Direct pericardial access device and method
US5868762A (en) 1997-09-25 1999-02-09 Sub-Q, Inc. Percutaneous hemostatic suturing device and method
US5928246A (en) 1997-10-15 1999-07-27 Bsc Northwest Technology Center, Inc. Stent securing catheter
US6139556A (en) 1997-10-29 2000-10-31 X-Site, L.L.C. Device and method for suturing blood vessels and the like
US6159232A (en) 1997-12-16 2000-12-12 Closys Corporation Clotting cascade initiating apparatus and methods of use and methods of closing wounds
US5972005A (en) 1998-02-17 1999-10-26 Advanced Cardiovascular Systems, Ind. Wound closure assembly and method of use
US6010514A (en) 1998-03-17 2000-01-04 Burney; Bryan T. Suturing assembly and method of use
US6042601A (en) 1998-03-18 2000-03-28 United States Surgical Corporation Apparatus for vascular hole closure
US20010045575A1 (en) 1998-05-01 2001-11-29 Mark Ashby Device and method for facilitating hemostasis of a biopsy tract
US5980539A (en) 1998-05-06 1999-11-09 X-Site L.L.C. Device and method for suturing blood vessels and the like
US6936053B1 (en) 1998-07-02 2005-08-30 Jeffrey N. Weiss Ocular implant needle
US6080175A (en) 1998-07-29 2000-06-27 Corvascular, Inc. Surgical cutting instrument and method of use
US7790192B2 (en) 1998-08-14 2010-09-07 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US6143004A (en) 1998-08-18 2000-11-07 Atrion Medical Products, Inc. Suturing device
US6458147B1 (en) 1998-11-06 2002-10-01 Neomend, Inc. Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue
US6994686B2 (en) 1998-08-26 2006-02-07 Neomend, Inc. Systems for applying cross-linked mechanical barriers
US6093173A (en) 1998-09-09 2000-07-25 Embol-X, Inc. Introducer/dilator with balloon protection and methods of use
EP1112043B1 (en) 1998-09-10 2006-04-05 Percardia, Inc. Tmr shunt
US6949114B2 (en) 1998-11-06 2005-09-27 Neomend, Inc. Systems, methods, and compositions for achieving closure of vascular puncture sites
US7279001B2 (en) 1998-11-06 2007-10-09 Neomend, Inc. Systems, methods, and compositions for achieving closure of vascular puncture sites
US6371963B1 (en) 1998-11-17 2002-04-16 Scimed Life Systems, Inc. Device for controlled endoscopic penetration of injection needle
CA2320097C (en) 1998-12-09 2009-04-14 Cook Incorporated Hollow, curved, superelastic medical needle
JP2000175930A (en) 1998-12-18 2000-06-27 Fuji Photo Optical Co Ltd Paracentesis treating implement
US6248124B1 (en) 1999-02-22 2001-06-19 Tyco Healthcare Group Arterial hole closure apparatus
US7001400B1 (en) 1999-03-04 2006-02-21 Abbott Laboratories Articulating suturing device and method
US20040092964A1 (en) 1999-03-04 2004-05-13 Modesitt D. Bruce Articulating suturing device and method
US6136010A (en) 1999-03-04 2000-10-24 Perclose, Inc. Articulating suturing device and method
US7235087B2 (en) 1999-03-04 2007-06-26 Abbott Park Articulating suturing device and method
US6964668B2 (en) 1999-03-04 2005-11-15 Abbott Laboratories Articulating suturing device and method
US6139560A (en) 1999-03-16 2000-10-31 Kremer; Frederic B. Cutting device and method for making controlled surgical incisions
US6981983B1 (en) 1999-03-31 2006-01-03 Rosenblatt Peter L System and methods for soft tissue reconstruction
US6146397A (en) 1999-04-06 2000-11-14 Harkrider, Jr.; William W. Endarterectomy loop
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US7666204B2 (en) 1999-04-09 2010-02-23 Evalve, Inc. Multi-catheter steerable guiding system and methods of use
USRE44297E1 (en) 1999-06-18 2013-06-11 Radi Medical Systems Ab Tool, a sealing device, a system and a method for closing a wound
US8574243B2 (en) 1999-06-25 2013-11-05 Usgi Medical, Inc. Apparatus and methods for forming and securing gastrointestinal tissue folds
US6565583B1 (en) 1999-07-08 2003-05-20 Acumen Vascular, Inc. Endarterectomy apparatus and method
US6206895B1 (en) 1999-07-13 2001-03-27 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6358197B1 (en) 1999-08-13 2002-03-19 Enteric Medical Technologies, Inc. Apparatus for forming implants in gastrointestinal tract and kit for use therewith
EP1211983B1 (en) 1999-09-13 2007-03-07 Rex Medical, LP Vascular closure
US7341595B2 (en) 1999-09-13 2008-03-11 Rex Medical, L.P Vascular hole closure device
US6171317B1 (en) 1999-09-14 2001-01-09 Perclose, Inc. Knot tying device and method
US6190396B1 (en) 1999-09-14 2001-02-20 Perclose, Inc. Device and method for deploying and organizing sutures for anastomotic and other attachments
US6423051B1 (en) 1999-09-16 2002-07-23 Aaron V. Kaplan Methods and apparatus for pericardial access
JP2003513691A (en) 1999-10-25 2003-04-15 シーラス、コーポレイション Use of focused ultrasound to seal blood vessels
JP2003524480A (en) 1999-11-05 2003-08-19 オーナックス・メディカル・インコーポレーテッド Apparatus and method for joining and closing a hole or puncture wall in a physiological shell structure
US6641592B1 (en) 1999-11-19 2003-11-04 Lsi Solutions, Inc. System for wound closure
US6203554B1 (en) 1999-11-23 2001-03-20 William Roberts Apparatus, kit and methods for puncture site closure
US6626855B1 (en) 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
EP1241994A4 (en) 1999-12-23 2005-12-14 Therus Corp Ultrasound transducers for imaging and therapy
US6461383B1 (en) 1999-12-30 2002-10-08 Advanced Cardiovascular Systems, Inc. Ultrasonic catheter vascular stent system and method
US6780197B2 (en) 2000-01-05 2004-08-24 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a vascular closure device to a body lumen
US6197042B1 (en) 2000-01-05 2001-03-06 Medical Technology Group, Inc. Vascular sheath with puncture site closure apparatus and methods of use
US6942674B2 (en) 2000-01-05 2005-09-13 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a closure device
US7500977B2 (en) 2003-10-23 2009-03-10 Trans1 Inc. Method and apparatus for manipulating material in the spine
EP1261282B1 (en) 2000-03-03 2013-09-25 C. R. Bard, Inc. Endoscopic tissue apposition device with multiple suction ports
US7077848B1 (en) 2000-03-11 2006-07-18 John Hopkins University Sutureless occular surgical methods and instruments for use in such methods
US6802822B1 (en) 2000-03-31 2004-10-12 3M Innovative Properties Company Dispenser for an adhesive tissue sealant having a flexible link
US6533795B1 (en) 2000-04-11 2003-03-18 Opus Medical, Inc Dual function suturing apparatus and method
US7083628B2 (en) 2002-09-03 2006-08-01 Edwards Lifesciences Corporation Single catheter mitral valve repair device and method for use
DE10026172A1 (en) 2000-05-26 2001-11-29 Roche Diagnostics Gmbh Body fluid withdrawal system
US20040215233A1 (en) 2000-06-16 2004-10-28 Magenta Medical Corporation Methods and apparatus for forming anastomotic sites
US6846321B2 (en) 2000-06-21 2005-01-25 Cardiodex, Ltd. Mechanical method and apparatus for enhancing hemostatis following arterial catheterization
WO2002005865A2 (en) 2000-07-14 2002-01-24 Sub-Q, Inc. Sheath-mounted arterial plug delivery device
US6890342B2 (en) 2000-08-02 2005-05-10 Loma Linda University Method and apparatus for closing vascular puncture using hemostatic material
DE60135352D1 (en) 2000-08-30 2008-09-25 Univ Johns Hopkins DEVICE FOR INTRA-OCCULAR ACTIVE AGGREGATION
US6322580B1 (en) 2000-09-01 2001-11-27 Angiolink Corporation Wound site management and wound closure device
US7074232B2 (en) 2000-09-01 2006-07-11 Medtronic Angiolink, Inc. Advanced wound site management systems and methods
US20040093024A1 (en) 2000-09-01 2004-05-13 James Lousararian Advanced wound site management systems and methods
US6767356B2 (en) 2000-09-01 2004-07-27 Angiolink Corporation Advanced wound site management systems and methods
US7029481B1 (en) 2000-11-06 2006-04-18 Abbott Laboratories Systems, devices and methods for suturing patient tissue
EP2269500B1 (en) 2000-11-28 2017-06-21 Intuitive Surgical Operations, Inc. Endoscopic beating-heart stabilizer and vessel occlusion fastener
US7905900B2 (en) 2003-01-30 2011-03-15 Integrated Vascular Systems, Inc. Clip applier and methods of use
US6695867B2 (en) 2002-02-21 2004-02-24 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US6623510B2 (en) 2000-12-07 2003-09-23 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US6840952B2 (en) 2000-12-07 2005-01-11 Mark B. Saker Tissue tract sealing device
US6969397B2 (en) 2000-12-14 2005-11-29 Ensure Medical, Inc. Guide wire element for positioning vascular closure devices and methods for use
US6846319B2 (en) 2000-12-14 2005-01-25 Core Medical, Inc. Devices for sealing openings through tissue and apparatus and methods for delivering them
US6896692B2 (en) 2000-12-14 2005-05-24 Ensure Medical, Inc. Plug with collet and apparatus and method for delivering such plugs
US6890343B2 (en) 2000-12-14 2005-05-10 Ensure Medical, Inc. Plug with detachable guidewire element and methods for use
US6524321B2 (en) 2001-01-03 2003-02-25 Nozomu Kanesaka Closure device for puncture in vessel
CN1503951A (en) 2001-01-09 2004-06-09 托普科德公司 Systems and methods for coding competitions
EP1222896B1 (en) 2001-01-12 2005-08-31 Radi Medical Systems Ab Arterial wall sealing device with positioning indicator
US7041119B2 (en) 2001-02-27 2006-05-09 Green David T Apparatus for suturing a blood vessel
US6454777B1 (en) 2001-02-27 2002-09-24 David T. Green Apparatus and method for suturing a blood vessel
US6743195B2 (en) 2001-03-14 2004-06-01 Cardiodex Balloon method and apparatus for vascular closure following arterial catheterization
US7025776B1 (en) 2001-04-24 2006-04-11 Advanced Catheter Engineering, Inc. Arteriotomy closure devices and techniques
FR2824253B1 (en) 2001-05-04 2005-02-18 Francis Navarro INTRUMENT FOR CLOSING BY SUTURE SUBCUTANEOUS AN ORIFICE REALIZED IN THE ABDOMINAL WALL OF A PATIENT
US7029489B1 (en) 2001-05-18 2006-04-18 Sub-Q, Inc. System and method for delivering hemostasis promoting material to a blood vessel puncture site
US6863680B2 (en) 2001-11-08 2005-03-08 Sub-Q, Inc. System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure
US7008440B2 (en) 2001-11-08 2006-03-07 Sub-Q, Inc. System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure
US6457182B1 (en) 2001-06-08 2002-10-01 The United States Of America As Represented By The Secretary Of The Army Protective glove
AU2002310364B2 (en) 2001-06-08 2006-02-23 Morris Innovative Research, Inc. Method and apparatus for sealing access
JP4159805B2 (en) 2001-06-15 2008-10-01 ラディ・メディカル・システムズ・アクチェボラーグ Pushing mechanism for closing method
RU2206092C2 (en) 2001-08-24 2003-06-10 Хайрок Холдинг Лимитед Method for in vitro detecting intolerance to nutrient antigen
US6939364B1 (en) 2001-10-09 2005-09-06 Tissue Adhesive Technologies, Inc. Composite tissue adhesive
US6773699B1 (en) 2001-10-09 2004-08-10 Tissue Adhesive Technologies, Inc. Light energized tissue adhesive conformal patch
US6893431B2 (en) 2001-10-15 2005-05-17 Scimed Life Systems, Inc. Medical device for delivering patches
US7037322B1 (en) 2001-11-08 2006-05-02 Sub-Q, Inc. System and method for delivering hemostasis promoting material to a blood vessel puncture with a staging tube
US7037323B2 (en) 2001-11-08 2006-05-02 Sub-Q, Inc. Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure
US20030093114A1 (en) 2001-11-13 2003-05-15 Melvin Levinson Method for effecting hemostasis
US7609673B2 (en) 2002-02-08 2009-10-27 Telefonaktiebolaget Lm Ericsson (Publ) Packet-based conversational service for a multimedia session in a mobile communications system
US7247162B1 (en) 2002-01-14 2007-07-24 Edwards Lifesciences Corporation Direct access atherectomy devices
ATE451064T1 (en) 2002-01-25 2009-12-15 Terumo Corp DEVICE FOR CUTTING BLOOD VESSELS
WO2003090631A1 (en) 2002-04-24 2003-11-06 Surgical Connections, Inc. Resection and anastomosis devices and methods
ATE266969T1 (en) 2002-06-12 2004-06-15 Radi Medical Systems LOCKING DEVICE
US7494460B2 (en) 2002-08-21 2009-02-24 Medtronic, Inc. Methods and apparatus providing suction-assisted tissue engagement through a minimally invasive incision
EP1539291A4 (en) 2002-09-20 2010-03-10 Flowmedica Inc Method and apparatus for selective material delivery via an intra-renal catheter
US7662128B2 (en) 2002-12-23 2010-02-16 Salcudean Septimiu E Steerable needle
US7008442B2 (en) 2003-01-20 2006-03-07 Medtronic Vascular, Inc. Vascular sealant delivery device and sheath introducer and method
US7322976B2 (en) 2003-03-04 2008-01-29 Cardiva Medical, Inc. Apparatus and methods for closing vascular penetrations
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
US6939348B2 (en) 2003-03-27 2005-09-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US7186251B2 (en) 2003-03-27 2007-03-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US7850654B2 (en) 2003-04-24 2010-12-14 St. Jude Medical Puerto Rico B.V. Device and method for positioning a closure device
US20040220604A1 (en) 2003-04-30 2004-11-04 Fogarty Thomas J. Tissue separation apparatus and method
US20040220594A1 (en) 2003-05-02 2004-11-04 Cardio Life Research S.A. Two-part clamping device
US7331979B2 (en) 2003-06-04 2008-02-19 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US9289195B2 (en) 2003-06-04 2016-03-22 Access Closure, Inc. Auto-retraction apparatus and methods for sealing a vascular puncture
WO2004112615A2 (en) 2003-06-16 2004-12-29 Galdonik Jason A Temporary hemostatic plug apparatus and method of use
US20050049634A1 (en) 2003-08-07 2005-03-03 Scimed Life Systems, Inc. Medical closure device
EP2345371B1 (en) 2003-08-14 2014-07-16 Loma Linda University Medical Center Vascular wound closure device
US7762977B2 (en) 2003-10-08 2010-07-27 Hemosphere, Inc. Device and method for vascular access
US8337522B2 (en) 2003-10-15 2012-12-25 St. Jude Medical Puerto Rico Llc Vascular sealing device with locking hub
US20050085773A1 (en) 2003-10-15 2005-04-21 Forsberg Andrew T. Method and apparatus for locating vascular punctures
US7931670B2 (en) 2003-10-15 2011-04-26 St. Jude Medical Puerto Rico Llc Tissue puncture closure device with automatic tamping
US8007514B2 (en) 2003-10-17 2011-08-30 St. Jude Medical Puerto Rico Llc Automatic suture locking device
US7361183B2 (en) 2003-10-17 2008-04-22 Ensure Medical, Inc. Locator and delivery device and method of use
US8852229B2 (en) 2003-10-17 2014-10-07 Cordis Corporation Locator and closure device and method of use
US20050090860A1 (en) 2003-10-23 2005-04-28 Paprocki Loran J. Segmented plug for tissue tracts
US20050096697A1 (en) 2003-11-04 2005-05-05 Forsberg Andrew T. Vascular insertion sheath with stiffened tip
US7731726B2 (en) 2003-12-03 2010-06-08 St. Jude Medical Puerto Rico Llc Suture based vascular closure apparatus and method incorporating a pre-tied knot
US7597705B2 (en) 2003-12-03 2009-10-06 St. Jude Medical Puerto Rico Llc Vascular puncture seal anchor nest
US7361180B2 (en) 2004-05-07 2008-04-22 Usgi Medical, Inc. Apparatus for manipulating and securing tissue
US20050251189A1 (en) 2004-05-07 2005-11-10 Usgi Medical Inc. Multi-position tissue manipulation assembly
US7390328B2 (en) 2003-12-19 2008-06-24 Abbott Laboratories Device and method for suturing of internal puncture sites
US20060064101A1 (en) 2004-02-12 2006-03-23 Arthrocare Corporation Bone access system
JP4700384B2 (en) 2004-04-07 2011-06-15 オリンパス株式会社 Medical ligature suturing apparatus and medical ligature suturing system
US9017374B2 (en) 2004-04-09 2015-04-28 Cardiva Medical, Inc. Device and method for sealing blood vessels
US7993366B2 (en) 2004-05-27 2011-08-09 Cardiva Medical, Inc. Self-tensioning vascular occlusion device and method for its use
US7572274B2 (en) 2004-05-27 2009-08-11 Cardiva Medical, Inc. Self-tensioning vascular occlusion device and method for its use
US20050234507A1 (en) 2004-04-16 2005-10-20 Jeff Geske Medical tool for access to internal tissue
US7390329B2 (en) 2004-05-07 2008-06-24 Usgi Medical, Inc. Methods for grasping and cinching tissue anchors
US20050267520A1 (en) 2004-05-12 2005-12-01 Modesitt D B Access and closure device and method
JP5178194B2 (en) 2004-06-14 2013-04-10 ロックス メディカル, インコーポレイテッド Devices, systems, and methods for arterio-venous fistula generation
US7678133B2 (en) 2004-07-10 2010-03-16 Arstasis, Inc. Biological tissue closure device and method
EP1791476B1 (en) 2004-09-20 2015-12-23 Endoevolution, Llc Apparatus for minimally invasive suturing
US7635329B2 (en) 2004-09-27 2009-12-22 Evalve, Inc. Methods and devices for tissue grasping and assessment
US20060217664A1 (en) 2004-11-15 2006-09-28 Hattler Brack G Telescoping vascular dilator
US7182763B2 (en) 2004-11-23 2007-02-27 Instrasurgical, Llc Wound closure device
JP4366306B2 (en) 2004-12-17 2009-11-18 テルモ株式会社 In vivo tissue closure device and in vivo tissue closure device
US8162905B2 (en) 2004-12-17 2012-04-24 W. L. Gore & Associates, Inc. Delivery system
US20060136035A1 (en) 2004-12-20 2006-06-22 Vascular Architects, Inc. A Delaware Corporation Coiled endoluminal prosthesis system and delivery catheter
US7470237B2 (en) 2005-01-10 2008-12-30 Ethicon Endo-Surgery, Inc. Biopsy instrument with improved needle penetration
US20060235449A1 (en) 2005-04-19 2006-10-19 Vascular Architects, Inc., A Delaware Corporation Vascular intimal lining removal assembly
US20060259017A1 (en) 2005-04-27 2006-11-16 Cardiac Pacemakers, Inc. Adhesive elements and methods for accessing the pericardial space
AU2006247355B2 (en) 2005-05-12 2013-01-10 Arstasis, Inc. Access and closure device and method
US8038687B2 (en) 2005-05-17 2011-10-18 St. Jude Medical Puerto Rico Llc Suture loop closure device
US8682411B2 (en) 2007-01-22 2014-03-25 Cvdevices, Llc Devices, systems and methods for epicardial cardiac monitoring system
US20080097347A1 (en) 2006-09-22 2008-04-24 Babak Arvanaghi Bendable needle assembly
US20080114364A1 (en) 2006-11-15 2008-05-15 Aoi Medical, Inc. Tissue cavitation device and method
US20090105744A1 (en) 2007-10-17 2009-04-23 Modesitt D Bruce Methods for forming tracts in tissue
US20090312786A1 (en) 2008-06-12 2009-12-17 Terumo Medical Corporation Guide Sheath Dilator And Method Of Using The Same
WO2010011695A1 (en) 2008-07-21 2010-01-28 Arstasis, Inc. Devices, methods, and kits for forming tracts in tissue
CA2731493A1 (en) 2008-07-21 2010-01-28 Arstasis, Inc. Devices and methods for forming tracts in tissue
EP2429418A1 (en) 2009-05-15 2012-03-21 Arstasis, Inc. Devices, methods and kits for forming tracts in tissue
AU2010298315A1 (en) 2009-09-22 2012-04-19 Arstasis, Inc. Devices, methods, and kits for forming tracts in tissue
EP2523612A1 (en) 2010-01-11 2012-11-21 Arstasis, Inc. Device for forming tracts in tissue

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060129100A1 (en) * 2001-12-26 2006-06-15 Yale University Access Device
US20080051821A1 (en) * 2006-08-22 2008-02-28 Gephart Matthew P Tissue dilation tool and method of dilating tissue

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10525238B2 (en) 2011-12-22 2020-01-07 Ecp Entwicklungsgesellschaft Mbh Sheath device for inserting a catheter
US11135405B2 (en) 2011-12-22 2021-10-05 Ecp Entwicklungsgesellschaft Mbh Sheath device for inserting a catheter
US10709828B2 (en) 2011-12-22 2020-07-14 Ecp Entwicklungsgesellschaft Mbh Sheath device for inserting a catheter
US11628280B2 (en) 2012-12-21 2023-04-18 Ecp Entwicklungsgesellschaft Mbh Sheath assembly for insertion of a cord-shaped element, particularly a catheter, into the body of a patient
US10881836B2 (en) 2012-12-21 2021-01-05 Ecp Entwicklungsgesellschaft Mbh Sheath assembly for insertion of a cord-shaped element, particularly a catheter, into the body of a patient
USD753289S1 (en) 2014-03-03 2016-04-05 The Spectranetics Corporation Sheath
US9675371B2 (en) 2014-03-03 2017-06-13 The Spectranetics Corporation Dilator sheath set
US10653867B2 (en) 2014-03-03 2020-05-19 Spectranetics Llc Dilator sheath set
USD753290S1 (en) 2014-03-03 2016-04-05 The Spectranetics Corporation Sheath set
US10182801B2 (en) 2014-05-16 2019-01-22 Silk Road Medical, Inc. Vessel access and closure assist system and method
US10973502B2 (en) 2014-05-16 2021-04-13 Silk Road Medical, Inc. Vessel access and closure assist system and method
WO2015175537A1 (en) * 2014-05-16 2015-11-19 Silk Road Medical, Inc. Vessel access and closure assist system and method
US10881845B2 (en) 2014-07-04 2021-01-05 Abiomed Europe Gmbh Sheath for sealed access to a vessel
US11730939B2 (en) 2014-07-04 2023-08-22 Abiomed Europe Gmbh Sheath for sealed access to a vessel
US10709875B2 (en) 2015-01-07 2020-07-14 Abiomed Europe Gmbh Introducer sheath
US11865275B2 (en) 2015-01-07 2024-01-09 Abiomed Europe Gmbh Introducer sheath
US10737008B2 (en) 2015-08-17 2020-08-11 Abiomed, Inc. Dual lumen sheath for arterial access
US11833314B2 (en) 2015-08-17 2023-12-05 Abiomed, Inc. Dual lumen sheath for arterial access
US11369413B2 (en) 2016-02-22 2022-06-28 Abiomed, Inc. Introducer sheath having a multi-layer hub
US10709476B2 (en) 2016-02-22 2020-07-14 Abiomed, Inc. Introducer sheath having a multi-layer hub
US11364363B2 (en) 2016-12-08 2022-06-21 Abiomed, Inc. Overmold technique for peel-away introducer design
US11717640B2 (en) 2016-12-08 2023-08-08 Abiomed, Inc. Overmold technique for peel-away introducer design
US10967152B2 (en) 2017-03-10 2021-04-06 Abiomed, Inc. Expandable introducer sheath for medical device
US11697002B2 (en) 2017-03-10 2023-07-11 Abiomed, Inc. Expandable introducer sheath for medical device
US11045634B2 (en) 2017-11-06 2021-06-29 Abiomed, Inc. Peel away hemostasis valve
US11793977B2 (en) 2018-05-16 2023-10-24 Abiomed, Inc. Peel-away sheath assembly
US11517720B2 (en) 2018-08-14 2022-12-06 Abiomed, Inc. Expandable introducer sheath for medical device
US11464963B1 (en) 2018-08-27 2022-10-11 Abiomed, Inc. Nitinol braid processing procedure
US11660434B2 (en) 2020-02-03 2023-05-30 Abiomed, Inc. Expandable sheath with interlock dilator
US11944770B2 (en) 2020-02-03 2024-04-02 Abiomed, Inc. Expandable sheath with interlock dilator

Also Published As

Publication number Publication date
US20170056063A1 (en) 2017-03-02
US10675447B2 (en) 2020-06-09
US20180243001A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
US10675447B2 (en) Vascular access configuration
US10441753B2 (en) Vascular access configuration
US20180008308A1 (en) Vascular access configuration
JP4406668B2 (en) System for establishing access to vessels
US10182801B2 (en) Vessel access and closure assist system and method
US9724079B2 (en) System and method for providing access and closure to tissue
US20170189648A1 (en) Transvascular access methods
US20150174376A1 (en) Stretchable-diameter inserter and methods
US20060276838A1 (en) Vascular puncture sealing method, apparatus, and system
AU2012201669A1 (en) Microaccess kit comprising a tapered needle
JP2017521156A (en) Sheath for sealed access to blood vessels
US11020224B2 (en) Methods for exchanging devices
AU2019253792A1 (en) Vascular access configuration
US9533076B2 (en) Carriers for hemostatic tract treatment
JP2009535080A (en) Transcutaneous dilator
US8740936B2 (en) Pinch vascular closure apparatus and method
US20140039546A1 (en) Access closure configuration
US20190069924A1 (en) Access closure configuration
US20190076627A1 (en) Retro Access Vascular Sheath And Related Methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARSTASIS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ELLINGWOOD, BRIAN ANDREW;MODESITT, D. BRUCE;REEL/FRAME:030780/0925

Effective date: 20130708

AS Assignment

Owner name: GREENHEART INVESTMENTS, LLC, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:ARSTASIS, INC.;REEL/FRAME:035228/0841

Effective date: 20150312

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION