US20140044308A1 - Image determining method and object coordinate computing apparatus - Google Patents

Image determining method and object coordinate computing apparatus Download PDF

Info

Publication number
US20140044308A1
US20140044308A1 US13/789,591 US201313789591A US2014044308A1 US 20140044308 A1 US20140044308 A1 US 20140044308A1 US 201313789591 A US201313789591 A US 201313789591A US 2014044308 A1 US2014044308 A1 US 2014044308A1
Authority
US
United States
Prior art keywords
row
specific image
pixels
pixel
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/789,591
Inventor
Chia-Cheun LIANG
Shu-Sian Yang
Yi-Hsien Ko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pixart Imaging Inc
Original Assignee
Pixart Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixart Imaging Inc filed Critical Pixart Imaging Inc
Assigned to PIXART IMAGING INC. reassignment PIXART IMAGING INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KO, YI-HSIEN, LIANG, CHIA-CHEUN, YANG, SHU-SIAN
Publication of US20140044308A1 publication Critical patent/US20140044308A1/en
Priority to US15/212,281 priority Critical patent/US10255518B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • G06K9/62
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding

Definitions

  • the present invention relates to an image determining method and an object coordinate computing apparatus, and particularly relates to an image determining method and an object coordinate computing apparatus, which utilize both brightness and conditions besides brightness to determine the predetermined image pixel or the object pixel.
  • FIG. 1 is a schematic diagram illustrating a prior art image determining method for determining an object coordinate in an image.
  • FIG. 1 is a gray level diagram of an image (i.e. an brightness diagram of an image), which is a 7 ⁇ 8 matrix having 7 ⁇ 8 pixels P 11 -P 78 .
  • the image includes a specific image generated by an object (in this example, a light source). Specific image pixels for this specific image have higher brightness values than the pixels surrounding them, for examples, pixels P 16 , P 25 , P 27 , P 34 , P 38 , P 43 , P 48 , P 54 , P 57 and P 65 -P 67 .
  • One of the methods for determining the specific image pixels is determining the pixels having brightness values higher than a threshold value as specific image pixels.
  • the threshold value is gray level 100 , such that the pixels P 26 , P 35 -P 37 , P 44 -P 47 , and P 55 -P 56 will be determined to be specific image pixels.
  • the edge pixels for the specific image have lower brightness values, thus such determining method still determines the pixels P 16 P 25 P 27 P 34 P 38 P 43 P 48 P 54 P 57 and P 65 -P 67 to be normal pixels rather than specific image pixels.
  • the threshold value is adjusted to be lower, such as 80, normal pixels P 75 and P 76 will be determined to be specific image pixels, but still exclude the pixel P 16 .
  • the size, location and brightness values of different specific images caused by different objects are all different, thus a most suitable brightness threshold value is hard to select.
  • One objective of the present invention is to provide an image determining method utilizing brightness and parameters besides brightness to determine specific image pixels or object pixels, and provides an object coordinate computing apparatus utilizing the image determining method.
  • One embodiment of the present invention discloses an image determining method, for determining which pixels in an image are specific image pixels of a specific image, comprising: (a) determining which pixels in the image have brightness values larger than a threshold value; (b) determining the pixels having brightness values larger than the threshold value as the specific image pixels; and determining pixels in a predetermined range of at least one the specific image pixel as the specific image pixels as well.
  • Another embodiment of the present invention discloses an image determining method, for determining which pixels in an image are specific image pixels of a specific image, comprising: (a) scanning pixels of at least one row in an image in turn, and determining which pixels in the row is larger than a threshold value; (b) determining at least one first row specific image pixel, which has a brightness value larger than a threshold value, in a first row to be the specific image pixel, and defines a specific image range according to the first row specific image pixel; and (c) determining a second row specific image pixel inside the range, which is located in the specific image range of a second row after the first row, to be the specific image pixel while scanning the second row.
  • Still another embodiment of the present invention discloses an object coordinate computing apparatus, comprising: a camera, for catching an image, which is a gray level diagram, for at least one object; a reading circuit, for scanning pixels of at least one row in the image in turn; for recoding brightness values and coordinates for the pixels; for defining an object range according to the brightness values and the coordinates for a first row of the rows; for determining first row object pixels in the object range of the first row to be the object pixels; and for determining a second row specific image pixel inside the range, which is inside the object range of a second row after the first row, to be the object pixel while scanning the second row; wherein the reading circuit utilizes the recorded brightness values and the recorded coordinate to compute a gravity center of the object.
  • the present invention provides an image determining method for determining specific image pixels or object pixels, an object coordinate computing method and an object coordinate computing apparatus, according to brightness and parameters besides brightness.
  • the prior art issue that only brightness is utilized for determining can be avoided.
  • different conditions can be set based on different object types and the size for caught images, such that the determining mechanism can be more accurate and can be set unlimitedly.
  • the gravity center of the object can be moved downward if the gravity center is computed according to the image determining mechanism of the present invention. By this way, the gravity center matches the habit for a user while handling a remote controller, such that the displacement detecting can be more accurate.
  • FIG. 1 is a schematic diagram illustrating a prior art image determining method for determining an object coordinate in an image.
  • FIG. 2 and FIG. 4 are schematic diagrams illustrating image determining methods according to embodiments of the present invention.
  • FIG. 3 and FIG. 5 are flowcharts illustrating image determining methods according to embodiments of the present invention.
  • FIG. 6 is a schematic diagram illustrating an object coordinate computing apparatus utilizing the image determining method shown in FIG. 2 to FIG. 5 .
  • FIG. 2 and FIG. 4 are schematic diagrams illustrating image determining methods according to embodiments of the present invention.
  • FIG. 2 illustrates a first embodiment while FIG. 4 illustrates a second embodiment.
  • FIG. 2 and FIG. 4 utilizes the gray level diagram which is the same as which in FIG. 1 , but it does not mean to limit the image determining method of the present invention is limited to this gray level diagram.
  • pixels in the image are determined that if any of them has a brightness value larger than a threshold value, and then the pixels having brightness values larger than the threshold value are determined as the initial specific image pixels.
  • specific image pixels including the initial specific image pixels are determined according to the initial specific image pixels.
  • the threshold value is determined to be 100 as shown in FIG. 1 , thus the pixels P 26 , P 35 -P 36 , P 44 -P 47 and P 55 -P 66 are determined to be the initial specific image pixels.
  • this step can be performed via scanning and determining in turn, but the determining step can be performed after all rows have been scanned.
  • the pixels in a predetermined range of the initial specific image pixels are determined to be specific image pixels.
  • each initial specific image pixel is utilized as a center of a 3 ⁇ 3 pixel matrix to generate a pixel matrix, which is utilized to define the predetermined range.
  • each pixel in the pixel matrix is determined to be the specific image pixel.
  • the pixel P 44 is utilized as a center of the 3 ⁇ 3 pixel matrix, which includes pixels P 33 -P 35 , P 43 -P 45 , and P 53 -P 55 . These pixels are all determined to be specific image pixels.
  • pixels P 35 , P 44 -P 45 , and P 55 are all determined to be initial specific image pixels in the previous step, thus the step of utilizing the pixel P 44 as a center of the pixel matrix adds the pixels P 33 -P 34 , P 43 , and P 53 -P 55 to the group of specific image pixels.
  • pixels P 54 , and P 64 -P 65 are added to the group of specific image pixels. If the same steps are performed for pixels P 26 , P 35 -P 36 , P 44 -P 47 and P 55 -P 66 , pixels P 15 -P 17 P 24 -P 25 P 27 P 33 -P 34 P 37 -P 38 P 43 P 48 P 53 -P 54 P 57 -P 58 and P 64 -P 67 are added to the group of specific image pixels.
  • the above-mentioned predetermined range is not limited to a pixel matrix with the same width and length, and is not limited to a pixel matrix as well.
  • This predetermined range can be set according to other parameters, such as an image of the object type that is desired to be determined.
  • the initial specific image pixels and the specific image pixels determined according to the initial specific image pixels are both specific image pixels and have no difference. The reason for giving them different names is to make them more easily to be distinguished such that the concept of the present invention can be depicted for more clearly.
  • the image determining method shown in FIG. 3 can be acquired according to the first embodiment shown in FIG. 2 , which includes the following steps:
  • the predetermined range is a 3 ⁇ 3 pixel matrix such that the pixels P 15 -P 17 P 24 -P 25 P 27 P 33 -P 34 P 37 -P 38 P 43 P 48 P 53 -P 54 P 57 -P 58 and P 64 -P 67 , which are not initial specific image pixels, are also determined to be specific image pixels.
  • pixels of at least one raw in an image are scanned in turn and determined which pixels have brightness values larger than a threshold value.
  • the direction for scanning is downward. That is, pixels P 71 -P 78 are scanned first, then the pixels P 61 -P 68 are scanned, then the pixels P 61 -P 68 are scanned . . . and so on.
  • any one row of the image (the first one row L 1 in this embodiment) is determined to include at lease one pixel having a brightness value larger than a threshold value such as pixels P 55 , P 56 (named first row specific image pixels)
  • the first row specific image pixels are determined as specific image pixels and a specific image range W 1 is defined according to the first row specific image pixels.
  • the leftmost pixel and the rightmost pixel of the first row specific image pixels are utilized to define edges of the specific image range W 1 , but it is not limited.
  • the image pixels in the specific image range W 1 of the next row are all determined to be specific images pixels while scanning the next row.
  • the pixels P 45 , P 46 in the specific image range W 1 of the second row L 2 are determined to be specific images pixels, which are called second row specific image pixels inside the range, while scanning the second row L 2 including pixels P 41 -P 48 .
  • Pixels of the second row outside the specific image range W 1 are also determined to check if they have brightness values larger than the threshold value. If all the brightness values are less than the threshold value, the specific image range W 1 is kept, and the pixels in the specific image range W 1 are determined to be specific image pixels while scanning the rows after the second row. If at least one pixel located outside the specific image range W 1 of the second row, which is named a second row specific image pixel outside the range, has a brightness value larger than the threshold value, the second row specific image pixel outside the range is determined to be a specific image pixel. Additionally, the specific image range W 1 is updated according to the second row specific image pixel outside the range. The pixels in the updated specific image range of the next row are determined to be the specific image pixel while scanning the next row.
  • the second row specific image pixels outside the range P 44 , P 47 which are located outside the predetermined image range W 1 , have brightness values larger than the threshold value 100
  • the second row specific image pixels outside the range P 44 , P 47 are also determined to be specific image pixels and the specific image range W 1 is updated to be the specific image range W 2 .
  • the third row specific image pixels inside the range P 34 -P 37 which are located inside the specific image range W 2 of the third row L 3 , are determined to be the specific image pixels while scanning the third row L 3 .
  • the pixels P 31 -P 33 , P 38 outside the specific image range W 2 of the third row L 3 are determined to check if they have brightness values larger than the threshold value.
  • the brightness values of the pixels P 31 -P 33 , P 38 are not larger than 100, thus the specific image range W 2 is kept.
  • the above-mentioned steps are performed while scanning the fourth row L 4 , thus the pixels P 24 -P 27 inside the specific image range W 2 are determined to be the specific image pixels and the specific image range W 2 is kept.
  • the pixels P 14 -P 17 inside the specific image range W 2 are determined to be the specific image pixels while scanning the fifth row L 5 .
  • the step for scanning this object and the step for updating the specific image range stop since no pixels in the fifth row L 5 have brightness values larger than the threshold value.
  • the mechanism for stopping the scanning step and the updating step can be triggered via various kinds of methods.
  • the scanning step and the updating step are stopped.
  • the scanning step and the updating step are stopped.
  • an image may include more than one objects, therefore the next object may be scanned and the above-mentioned steps are repeated if the scanning steps for one object has been stopped. Therefore, more than one object can be detected while scanning an image.
  • the objects can be distinguished from each other depending on space relations if two objects are on one row.
  • the scanning step of one object is stopped if all pixels of a whole row have brightness values smaller than the threshold value.
  • the scanning step of the other object is stopped if all pixels in a specific image range of a row have brightness values smaller than the threshold value.
  • an image determining method shown in FIG. 5 can be acquired, which includes following steps:
  • FIG. 6 is a schematic diagram illustrating an object coordinate computing apparatus 601 utilizing the image determining method shown in FIG. 2 to FIG. 5 .
  • the coordinate computing apparatus 601 is included in a displacement detecting system 600 .
  • the displacement detecting system 600 is only for example, the coordinate computing apparatus 601 can also be applied to other systems or apparatuses.
  • the displacement detecting system 600 includes an object coordinate computing apparatus 601 and a display 603 .
  • the display 603 includes a light source 605
  • the object coordinate computing apparatus 601 includes a camera 607 and a reading circuit 608 .
  • the camera 607 catches an image, which is a gray level diagram, for at least one object (the light source 605 in this embodiment).
  • the reading circuit 608 scans pixels of at least one row in an image in turn, and records brightness values and coordinates for the pixels.
  • the reading circuit 608 can perform the first embodiment shown in FIG. 2 and the second embodiment shown in FIG. 4 to determine which pixels are object pixels (i.e. the specific image pixels). Then the reading circuit 608 utilizes the recorded brightness values and the recorded coordinate to compute a gravity center of the light source 605 .
  • the reading circuit 608 utilizes the brightness of the object pixels as weighting, and computing the gravity center of the object via multiplying the weight and the coordinates of the object pixels.
  • the coordinate computing apparatus 601 can further include a processor (not illustrated) to compute a displacement between the object coordinate computing apparatus 601 and the display referring to the light source 605 . The processor further controls a cursor Cr according to the displacement.
  • the following object coordinate computing method can be acquired: (a) determining which pixels in the image have brightness values larger than a threshold value; (b) determining the pixels having brightness values larger than the threshold value as the object pixels of the object (such as pixels P 26 , P 35 -P 36 , P 44 -P 47 and P 55 -P 56 ); and (c) determining pixels in a predetermined range of at least one the object pixel as the object pixels as well; and (d) computing a coordinate of the object according to the determining result of the steps (b) and (c).
  • the following object coordinate computing method can be acquired: (a) scan pixels of at least one row in an image in turn, and determine which pixels in the row is larger than a threshold value; (b) determine at least one first row object pixel (such as P 55 , P 56 ), which has a brightness value larger than a threshold value, in a first row (Such as L 1 in FIG. 4 ) to be the object pixel, and defines a object range such as W 1 according to the first row object pixel; (c) determine a second row object pixel inside the range (such as P 45 , P 46 ), which is located in the object range of a second row (such as L 2 in FIG. 4 ) after the first row, to be the object pixel while scanning the second row; and (d) computing a coordinate of the object according to the determining result of the steps (b) and (c).
  • the present invention provides an image determining method for determining specific image pixels or object pixels, an object coordinate computing method and an object coordinate computing apparatus, according to brightness and parameters besides brightness.
  • the prior art issue that only brightness is utilized for determining can be avoided.
  • different conditions can be set based on different object types and the size for caught images, such that the determining mechanism can be more accurate and can be set unlimitedly.
  • the gravity center of the object can be moved downward if the gravity center is computed according to the image determining mechanism of the present invention. By this way, the gravity center matches the habit for a user while handling a remote controller, such that the displacement detecting can be more accurate.

Abstract

An image determining method, for determining which pixels in an image are specific image pixels of a specific image, comprising: (a) determining which pixels in the image have brightness values larger than a threshold value; (b) determining the pixels having brightness values larger than the threshold value as the specific image pixels; and determining pixels in a predetermined range of at least one the specific image pixel as the specific image pixels as well.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an image determining method and an object coordinate computing apparatus, and particularly relates to an image determining method and an object coordinate computing apparatus, which utilize both brightness and conditions besides brightness to determine the predetermined image pixel or the object pixel.
  • 2. Description of the Prior Art
  • FIG. 1 is a schematic diagram illustrating a prior art image determining method for determining an object coordinate in an image. FIG. 1 is a gray level diagram of an image (i.e. an brightness diagram of an image), which is a 7×8 matrix having 7×8 pixels P11-P78. The image includes a specific image generated by an object (in this example, a light source). Specific image pixels for this specific image have higher brightness values than the pixels surrounding them, for examples, pixels P16, P25, P27, P34, P38, P43, P48, P54, P57 and P65-P67.
  • One of the methods for determining the specific image pixels is determining the pixels having brightness values higher than a threshold value as specific image pixels. In the example shown in FIG. 1, the threshold value is gray level 100, such that the pixels P26, P35-P37, P44-P47, and P55-P56 will be determined to be specific image pixels. However, the edge pixels for the specific image have lower brightness values, thus such determining method still determines the pixels P16
    Figure US20140044308A1-20140213-P00001
    P25
    Figure US20140044308A1-20140213-P00001
    P27
    Figure US20140044308A1-20140213-P00001
    P34
    Figure US20140044308A1-20140213-P00001
    P38
    Figure US20140044308A1-20140213-P00001
    P43
    Figure US20140044308A1-20140213-P00001
    P48
    Figure US20140044308A1-20140213-P00001
    P54
    Figure US20140044308A1-20140213-P00001
    P57 and P65-P67 to be normal pixels rather than specific image pixels. If the threshold value is adjusted to be lower, such as 80, normal pixels P75 and P76 will be determined to be specific image pixels, but still exclude the pixel P16. Also, the size, location and brightness values of different specific images caused by different objects are all different, thus a most suitable brightness threshold value is hard to select.
  • SUMMARY OF THE INVENTION
  • One objective of the present invention is to provide an image determining method utilizing brightness and parameters besides brightness to determine specific image pixels or object pixels, and provides an object coordinate computing apparatus utilizing the image determining method.
  • One embodiment of the present invention discloses an image determining method, for determining which pixels in an image are specific image pixels of a specific image, comprising: (a) determining which pixels in the image have brightness values larger than a threshold value; (b) determining the pixels having brightness values larger than the threshold value as the specific image pixels; and determining pixels in a predetermined range of at least one the specific image pixel as the specific image pixels as well.
  • Another embodiment of the present invention discloses an image determining method, for determining which pixels in an image are specific image pixels of a specific image, comprising: (a) scanning pixels of at least one row in an image in turn, and determining which pixels in the row is larger than a threshold value; (b) determining at least one first row specific image pixel, which has a brightness value larger than a threshold value, in a first row to be the specific image pixel, and defines a specific image range according to the first row specific image pixel; and (c) determining a second row specific image pixel inside the range, which is located in the specific image range of a second row after the first row, to be the specific image pixel while scanning the second row.
  • Still another embodiment of the present invention discloses an object coordinate computing apparatus, comprising: a camera, for catching an image, which is a gray level diagram, for at least one object; a reading circuit, for scanning pixels of at least one row in the image in turn; for recoding brightness values and coordinates for the pixels; for defining an object range according to the brightness values and the coordinates for a first row of the rows; for determining first row object pixels in the object range of the first row to be the object pixels; and for determining a second row specific image pixel inside the range, which is inside the object range of a second row after the first row, to be the object pixel while scanning the second row; wherein the reading circuit utilizes the recorded brightness values and the recorded coordinate to compute a gravity center of the object.
  • In view of above-mentioned embodiments, the present invention provides an image determining method for determining specific image pixels or object pixels, an object coordinate computing method and an object coordinate computing apparatus, according to brightness and parameters besides brightness. By this way, the prior art issue that only brightness is utilized for determining can be avoided. Besides, different conditions can be set based on different object types and the size for caught images, such that the determining mechanism can be more accurate and can be set unlimitedly. Furthermore, the gravity center of the object can be moved downward if the gravity center is computed according to the image determining mechanism of the present invention. By this way, the gravity center matches the habit for a user while handling a remote controller, such that the displacement detecting can be more accurate.
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram illustrating a prior art image determining method for determining an object coordinate in an image.
  • FIG. 2 and FIG. 4 are schematic diagrams illustrating image determining methods according to embodiments of the present invention.
  • FIG. 3 and FIG. 5 are flowcharts illustrating image determining methods according to embodiments of the present invention.
  • FIG. 6 is a schematic diagram illustrating an object coordinate computing apparatus utilizing the image determining method shown in FIG. 2 to FIG. 5.
  • DETAILED DESCRIPTION
  • Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, electronic equipment manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms “include” and “comprise” are used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to . . . ”.
  • FIG. 2 and FIG. 4 are schematic diagrams illustrating image determining methods according to embodiments of the present invention. FIG. 2 illustrates a first embodiment while FIG. 4 illustrates a second embodiment. For the convenience for explanation, FIG. 2 and FIG. 4 utilizes the gray level diagram which is the same as which in FIG. 1, but it does not mean to limit the image determining method of the present invention is limited to this gray level diagram.
  • In the embodiment shown in FIG. 2, pixels in the image are determined that if any of them has a brightness value larger than a threshold value, and then the pixels having brightness values larger than the threshold value are determined as the initial specific image pixels. After that, specific image pixels including the initial specific image pixels are determined according to the initial specific image pixels. In this example, the threshold value is determined to be 100 as shown in FIG. 1, thus the pixels P26, P35-P36, P44-P47 and P55-P66 are determined to be the initial specific image pixels. Please note this step can be performed via scanning and determining in turn, but the determining step can be performed after all rows have been scanned. After that, the pixels in a predetermined range of the initial specific image pixels are determined to be specific image pixels. In this embodiment, each initial specific image pixel is utilized as a center of a 3×3 pixel matrix to generate a pixel matrix, which is utilized to define the predetermined range. Also, each pixel in the pixel matrix is determined to be the specific image pixel. For example, the pixel P44 is utilized as a center of the 3×3 pixel matrix, which includes pixels P33-P35, P43-P45, and P53-P55. These pixels are all determined to be specific image pixels. Since pixels P35, P44-P45, and P55 are all determined to be initial specific image pixels in the previous step, thus the step of utilizing the pixel P44 as a center of the pixel matrix adds the pixels P33-P34, P43, and P53-P55 to the group of specific image pixels.
  • Similarly, if the pixel P55 is utilized as a center of a 3×3 pixel matrix, the pixels P54, and P64-P65 are added to the group of specific image pixels. If the same steps are performed for pixels P26, P35-P36, P44-P47 and P55-P66, pixels P15-P17
    Figure US20140044308A1-20140213-P00001
    P24-P25
    Figure US20140044308A1-20140213-P00001
    P27
    Figure US20140044308A1-20140213-P00001
    P33-P34
    Figure US20140044308A1-20140213-P00001
    P37-P38
    Figure US20140044308A1-20140213-P00001
    P43
    Figure US20140044308A1-20140213-P00001
    P48
    Figure US20140044308A1-20140213-P00001
    P53-P54
    Figure US20140044308A1-20140213-P00001
    P57-P58 and P64-P67 are added to the group of specific image pixels. However, it should be noted that the above-mentioned predetermined range is not limited to a pixel matrix with the same width and length, and is not limited to a pixel matrix as well. This predetermined range can be set according to other parameters, such as an image of the object type that is desired to be determined. Please note the initial specific image pixels and the specific image pixels determined according to the initial specific image pixels are both specific image pixels and have no difference. The reason for giving them different names is to make them more easily to be distinguished such that the concept of the present invention can be depicted for more clearly.
  • The image determining method shown in FIG. 3 can be acquired according to the first embodiment shown in FIG. 2, which includes the following steps:
  • Step 301
  • Determine which pixels in the image have brightness values larger than a threshold value.
  • Step 303
  • Determine the pixels having brightness values larger than the threshold value as initial specific image pixels (Such as pixels P26, P35-P36, P44-P47 and P55-P66 in FIG. 2).
  • Step 305
  • Determine pixels in a predetermined range of at least one the initial specific image pixel as the specific image pixels as well. In one example, the predetermined range is a 3×3 pixel matrix such that the pixels P15-P17
    Figure US20140044308A1-20140213-P00001
    P24-P25
    Figure US20140044308A1-20140213-P00001
    P27
    Figure US20140044308A1-20140213-P00001
    P33-P34
    Figure US20140044308A1-20140213-P00001
    P37-P38
    Figure US20140044308A1-20140213-P00001
    P43
    Figure US20140044308A1-20140213-P00001
    P48
    Figure US20140044308A1-20140213-P00001
    P53-P54
    Figure US20140044308A1-20140213-P00001
    P57-P58 and P64-P67, which are not initial specific image pixels, are also determined to be specific image pixels.
  • Other detail steps can be acquired according to the embodiment shown in FIG. 2, thus are omitted for brevity here.
  • In the second embodiment shown in FIG. 4, pixels of at least one raw in an image are scanned in turn and determined which pixels have brightness values larger than a threshold value. In FIG. 4, the direction for scanning is downward. That is, pixels P71-P78 are scanned first, then the pixels P61-P68 are scanned, then the pixels P61-P68 are scanned . . . and so on. If any one row of the image (the first one row L1 in this embodiment) is determined to include at lease one pixel having a brightness value larger than a threshold value such as pixels P55, P56 (named first row specific image pixels), the first row specific image pixels are determined as specific image pixels and a specific image range W1 is defined according to the first row specific image pixels. In one embodiment, the leftmost pixel and the rightmost pixel of the first row specific image pixels are utilized to define edges of the specific image range W1, but it is not limited. Also, the image pixels in the specific image range W1 of the next row are all determined to be specific images pixels while scanning the next row. For example, the pixels P45, P46 in the specific image range W1 of the second row L2 are determined to be specific images pixels, which are called second row specific image pixels inside the range, while scanning the second row L2 including pixels P41-P48.
  • Pixels of the second row outside the specific image range W1 are also determined to check if they have brightness values larger than the threshold value. If all the brightness values are less than the threshold value, the specific image range W1 is kept, and the pixels in the specific image range W1 are determined to be specific image pixels while scanning the rows after the second row. If at least one pixel located outside the specific image range W1 of the second row, which is named a second row specific image pixel outside the range, has a brightness value larger than the threshold value, the second row specific image pixel outside the range is determined to be a specific image pixel. Additionally, the specific image range W1 is updated according to the second row specific image pixel outside the range. The pixels in the updated specific image range of the next row are determined to be the specific image pixel while scanning the next row.
  • Take the embodiment shown in FIG. 4 for example, since the second row specific image pixels outside the range P44, P47, which are located outside the predetermined image range W1, have brightness values larger than the threshold value 100, the second row specific image pixels outside the range P44, P47 are also determined to be specific image pixels and the specific image range W1 is updated to be the specific image range W2. The third row specific image pixels inside the range P34-P37, which are located inside the specific image range W2 of the third row L3, are determined to be the specific image pixels while scanning the third row L3. Additionally, the pixels P31-P33, P38 outside the specific image range W2 of the third row L3 are determined to check if they have brightness values larger than the threshold value. In the embodiment shown in FIG. 4, the brightness values of the pixels P31-P33, P38 are not larger than 100, thus the specific image range W2 is kept. The above-mentioned steps are performed while scanning the fourth row L4, thus the pixels P24-P27 inside the specific image range W2 are determined to be the specific image pixels and the specific image range W2 is kept. The pixels P14-P17 inside the specific image range W2 are determined to be the specific image pixels while scanning the fifth row L5. However, the step for scanning this object and the step for updating the specific image range stop since no pixels in the fifth row L5 have brightness values larger than the threshold value. The mechanism for stopping the scanning step and the updating step can be triggered via various kinds of methods. In one embodiment, if all pixels of a whole row, such as the above-mentioned fifth row L5, have brightness values smaller than the threshold value, the scanning step and the updating step are stopped. In another embodiment, if all pixels in a specific image range of a row, such as the above-mentioned specific image range W2 in the fifth row L5, have brightness values smaller than the threshold value, the scanning step and the updating step are stopped. Furthermore, an image may include more than one objects, therefore the next object may be scanned and the above-mentioned steps are repeated if the scanning steps for one object has been stopped. Therefore, more than one object can be detected while scanning an image. For example, the objects can be distinguished from each other depending on space relations if two objects are on one row. For example, the scanning step of one object is stopped if all pixels of a whole row have brightness values smaller than the threshold value. However, the scanning step of the other object is stopped if all pixels in a specific image range of a row have brightness values smaller than the threshold value.
  • According to the second embodiment shown in FIG. 4, an image determining method shown in FIG. 5 can be acquired, which includes following steps:
  • Step 501
  • Scan pixels of at least one row in an image in turn, and determine which pixels in the row is larger than a threshold value.
  • Step 503
  • Determine at least one first row specific image pixel (such as P55, P56), which has a brightness value larger than a threshold value, in a first row (Such as L1 in FIG. 4) to be the specific image pixel, and defines a specific image range such as W1 according to the first row specific image pixel.
  • Step 505
  • Determine a second row specific image pixel inside the range (such as P45, P46), which is located in the specific image range of a second row (such as L2 in FIG. 4) after the first row, to be the specific image pixel while scanning the second row.
  • Other detail steps can be acquired according to the embodiment shown in FIG. 4, thus it is omitted for brevity here.
  • FIG. 6 is a schematic diagram illustrating an object coordinate computing apparatus 601 utilizing the image determining method shown in FIG. 2 to FIG. 5. The coordinate computing apparatus 601 is included in a displacement detecting system 600. Please note the displacement detecting system 600 is only for example, the coordinate computing apparatus 601 can also be applied to other systems or apparatuses. As shown in FIG. 6, the displacement detecting system 600 includes an object coordinate computing apparatus 601 and a display 603. The display 603 includes a light source 605, and the object coordinate computing apparatus 601 includes a camera 607 and a reading circuit 608. The camera 607 catches an image, which is a gray level diagram, for at least one object (the light source 605 in this embodiment). The reading circuit 608 scans pixels of at least one row in an image in turn, and records brightness values and coordinates for the pixels. The reading circuit 608 can perform the first embodiment shown in FIG. 2 and the second embodiment shown in FIG. 4 to determine which pixels are object pixels (i.e. the specific image pixels). Then the reading circuit 608 utilizes the recorded brightness values and the recorded coordinate to compute a gravity center of the light source 605. For more detail, the reading circuit 608 utilizes the brightness of the object pixels as weighting, and computing the gravity center of the object via multiplying the weight and the coordinates of the object pixels. Additionally, the coordinate computing apparatus 601 can further include a processor (not illustrated) to compute a displacement between the object coordinate computing apparatus 601 and the display referring to the light source 605. The processor further controls a cursor Cr according to the displacement.
  • In view of the first embodiment shown in FIG. 3, and the displacement detecting system shown in FIG. 6, the following object coordinate computing method can be acquired: (a) determining which pixels in the image have brightness values larger than a threshold value; (b) determining the pixels having brightness values larger than the threshold value as the object pixels of the object (such as pixels P26, P35-P36, P44-P47 and P55-P56); and (c) determining pixels in a predetermined range of at least one the object pixel as the object pixels as well; and (d) computing a coordinate of the object according to the determining result of the steps (b) and (c).
  • In view of the second embodiment shown in FIG. 5, and the displacement detecting system shown in FIG. 6, the following object coordinate computing method can be acquired: (a) scan pixels of at least one row in an image in turn, and determine which pixels in the row is larger than a threshold value; (b) determine at least one first row object pixel (such as P55, P56), which has a brightness value larger than a threshold value, in a first row (Such as L1 in FIG. 4) to be the object pixel, and defines a object range such as W1 according to the first row object pixel; (c) determine a second row object pixel inside the range (such as P45, P46), which is located in the object range of a second row (such as L2 in FIG. 4) after the first row, to be the object pixel while scanning the second row; and (d) computing a coordinate of the object according to the determining result of the steps (b) and (c).
  • In view of above-mentioned embodiments, the present invention provides an image determining method for determining specific image pixels or object pixels, an object coordinate computing method and an object coordinate computing apparatus, according to brightness and parameters besides brightness. By this way, the prior art issue that only brightness is utilized for determining can be avoided. Besides, different conditions can be set based on different object types and the size for caught images, such that the determining mechanism can be more accurate and can be set unlimitedly. Furthermore, the gravity center of the object can be moved downward if the gravity center is computed according to the image determining mechanism of the present invention. By this way, the gravity center matches the habit for a user while handling a remote controller, such that the displacement detecting can be more accurate.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (15)

What is claimed is:
1. An image determining method, for determining which pixels in an image are specific image pixels of a specific image, comprising:
(a) determining which pixels in the image have brightness values larger than a threshold value;
(b) determining the pixels having brightness values larger than the threshold value as the specific image pixels; and
(c) determining pixels in a predetermined range of at least one the specific image pixel as the specific image pixels as well.
2. The image determining method of claim 1, wherein the step (c) comprises utilizing each of the specific image pixel as a center pixel of a pixel matrix to generate at least one pixel matrix, and the step (c) further comprising determining each pixel in the pixel matrix as the specific image pixel.
3. The image determining method of claim 1, wherein a length and a width of the pixel matrix have the same amounts for pixels.
4. The image determining method of claim 1, wherein the specific image pixel is generated by an object, where the image determining method further comprises:
(d) computing a coordinate of the object according to the determining result of the steps (b) and (c).
5. The image determining method of claim 4, further comprising:
utilizing brightness values of the specific image pixels as a weighting, and utilizing the coordinate of the specific image pixels and the weighting to compute a gravity center of the object.
6. An image determining method, for determining which pixels in an image are specific image pixels of a specific image, comprising:
(a) scanning pixels of at least one row in an image in turn, and determining which pixels in the row is larger than a threshold value;
(b) determining at least one first row specific image pixel, which has a brightness value larger than a threshold value, in a first row to be the specific image pixel, and defines a specific image range according to the first row specific image pixel; and
(c) determining a second row specific image pixel inside the range, which is located in the specific image range of a second row after the first row, to be the specific image pixel while scanning the second row.
7. The image determining method of claim 6, further comprising:
(d) determining if pixels of the second row outside the specific image range have brightness values larger than the threshold value;
(e) if all the pixels of the second row outside the specific image range do not have brightness values larger than the threshold value, determining a third row specific image pixel inside the range, which is located in the specific image range of a third row after the second row, to be the specific image pixel while scanning the third row; and
(f) if at least one second row specific image pixel outside the range, which is located outside the specific image range of the second row, has a brightness value larger than the threshold value, determining the second row specific image pixel outside the range to be the specific image pixel, and updating the specific image range according to the second row specific image pixel outside the range; and determining pixels in the updated specific image range of the third row to be the specific image pixel while scanning the third row.
8. The image determining method of claim 6, wherein the step (b) comprising determining a leftmost pixel of the first row specific image pixel as a leftmost edge of the specific image range, and determining a rightmost pixel of the first row specific image pixel as a rightmost edge of the specific image range.
9. The image determining method of claim 6, further comprising:
stopping scanning the image and stop updating the specific image range if no pixel is found to have a brightness value greater than the threshold value after scanning any row after the first row.
10. The image determining method of claim 6, wherein the specific image pixel is generated by an object, where the image determining method further comprises:
(d) computing a coordinate of the object according to the determining result of the steps (b) and (c).
11. The image determining method of claim 10, further comprising:
utilizing brightness values of the specific image pixels as a weighting, and utilizing the coordinate of the specific image pixels and the weighting to compute a gravity center of the object.
12. An object coordinate computing apparatus, comprising:
a camera, for catching an image, which is a gray level diagram, for at least one object;
a reading circuit, for scanning pixels of at least one row in an image in turn; for recoding brightness values and coordinates for the pixels; for defining an object range according to the brightness values and the coordinates for a first row of the rows; for determining first row object pixels in the object range of the first row to be the object pixels; and for determining a second row specific image pixel inside the range, which is inside the object range of a second row after the first row, to be the object pixel while scanning the second row;
wherein the reading circuit utilizes the recorded brightness values and the recorded coordinate to compute a gravity center of the object.
13. The object coordinate computing apparatus of claim 12, wherein the reading circuit determines a leftmost pixel of the first row object pixel as a leftmost edge of the object range, and determines a rightmost pixel of the first row object pixel as a rightmost edge of the object range.
14. The object coordinate computing apparatus of claim 12,
wherein the reading circuit determines if pixels of the second row outside the object range have brightness values larger than the threshold value;
where the reading circuit determines a third row object pixel inside the range, which is located in the object range of a third row after the second row, to be the object pixel while scanning the third row if all the pixels in the second row outside the object range do not have brightness values larger than the threshold value; and
if at least one second row object pixel outside the range, which is located outside the object range of the second row, has a brightness value larger than the threshold value, the reading circuit determines the second row object pixel outside the range to be the object pixel, updates the object range according to the second row object pixel outside the range, and determines pixels in the updated object range of the third row to be the object pixel while scanning the third row.
15. The object coordinate computing apparatus of claim 12,
wherein the reading circuit stops scanning the image and stop updating the object range, utilizes the brightness values recorded before stop scanning as weighting, and utilizes the coordinate recorded before stop scanning and the weighting to compute a gravity center of the object;
if no pixel is found to have brightness values greater than the threshold value after scanning any row after the first row.
US13/789,591 2012-08-08 2013-03-07 Image determining method and object coordinate computing apparatus Abandoned US20140044308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/212,281 US10255518B2 (en) 2012-08-08 2016-07-17 Image determining method and object coordinate computing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101128552 2012-08-08
TW101128552A TWI469089B (en) 2012-08-08 2012-08-08 Image determining method and object coordinate computing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/212,281 Continuation US10255518B2 (en) 2012-08-08 2016-07-17 Image determining method and object coordinate computing apparatus

Publications (1)

Publication Number Publication Date
US20140044308A1 true US20140044308A1 (en) 2014-02-13

Family

ID=50066220

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/789,591 Abandoned US20140044308A1 (en) 2012-08-08 2013-03-07 Image determining method and object coordinate computing apparatus
US15/212,281 Active 2033-06-04 US10255518B2 (en) 2012-08-08 2016-07-17 Image determining method and object coordinate computing apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/212,281 Active 2033-06-04 US10255518B2 (en) 2012-08-08 2016-07-17 Image determining method and object coordinate computing apparatus

Country Status (2)

Country Link
US (2) US20140044308A1 (en)
TW (1) TWI469089B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150163376A1 (en) * 2013-12-06 2015-06-11 Fujitsu Limited Apparatus for and method of processing document image

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10255109B2 (en) 2017-04-17 2019-04-09 Intel Corporation High bandwidth connection between processor dies

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229594A (en) * 1991-02-15 1993-07-20 U.S. Philips Corporation Method of measuring the exact position of the energy center of an image spot of a bright object on a photosensitive detector
US5774177A (en) * 1996-09-11 1998-06-30 Milliken Research Corporation Textile fabric inspection system
US5815590A (en) * 1996-12-18 1998-09-29 Cal Corporation Target light detection
US6146278A (en) * 1997-01-10 2000-11-14 Konami Co., Ltd. Shooting video game machine
US6236466B1 (en) * 1998-08-19 2001-05-22 Acer Peripherals, Inc. System and method for converting a gray-level image into a binary image
US20080198129A1 (en) * 2007-02-15 2008-08-21 Namco Bandai Games Inc. Indication position calculation system, indicator for indication position calculation system, game system, and indication position calculation method
US20080219566A1 (en) * 2007-03-09 2008-09-11 Edward Kah Ching Teoh System and method for identifying and labeling cluster pixels in a frame of image data for optical navigation
US20090207318A1 (en) * 2008-02-19 2009-08-20 Hisense Beijing Electric Co., Ltd.; Control unit, a video device including said control unit, and a control method
US7623115B2 (en) * 2002-07-27 2009-11-24 Sony Computer Entertainment Inc. Method and apparatus for light input device
US7796116B2 (en) * 2005-01-12 2010-09-14 Thinkoptics, Inc. Electronic equipment for handheld vision based absolute pointing system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7031517B1 (en) * 1998-10-02 2006-04-18 Canon Kabushiki Kaisha Method and apparatus for segmenting images
TWI225622B (en) * 2003-10-24 2004-12-21 Sunplus Technology Co Ltd Method for detecting the sub-pixel motion for optic navigation device
US9024880B2 (en) 2004-08-11 2015-05-05 Pixart Imaging Inc. Interactive system capable of improving image processing
JP4830652B2 (en) * 2006-06-12 2011-12-07 日産自動車株式会社 Image processing apparatus and image processing method
TWI466064B (en) * 2009-08-21 2014-12-21 Altek Corp A method of handling a face image
TWI508543B (en) * 2010-05-06 2015-11-11 Pixart Imaging Inc Interactive system capable of improving image processing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229594A (en) * 1991-02-15 1993-07-20 U.S. Philips Corporation Method of measuring the exact position of the energy center of an image spot of a bright object on a photosensitive detector
US5774177A (en) * 1996-09-11 1998-06-30 Milliken Research Corporation Textile fabric inspection system
US5815590A (en) * 1996-12-18 1998-09-29 Cal Corporation Target light detection
US6146278A (en) * 1997-01-10 2000-11-14 Konami Co., Ltd. Shooting video game machine
US6236466B1 (en) * 1998-08-19 2001-05-22 Acer Peripherals, Inc. System and method for converting a gray-level image into a binary image
US7623115B2 (en) * 2002-07-27 2009-11-24 Sony Computer Entertainment Inc. Method and apparatus for light input device
US7796116B2 (en) * 2005-01-12 2010-09-14 Thinkoptics, Inc. Electronic equipment for handheld vision based absolute pointing system
US20080198129A1 (en) * 2007-02-15 2008-08-21 Namco Bandai Games Inc. Indication position calculation system, indicator for indication position calculation system, game system, and indication position calculation method
US20080219566A1 (en) * 2007-03-09 2008-09-11 Edward Kah Ching Teoh System and method for identifying and labeling cluster pixels in a frame of image data for optical navigation
US20090207318A1 (en) * 2008-02-19 2009-08-20 Hisense Beijing Electric Co., Ltd.; Control unit, a video device including said control unit, and a control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150163376A1 (en) * 2013-12-06 2015-06-11 Fujitsu Limited Apparatus for and method of processing document image
US9294655B2 (en) * 2013-12-06 2016-03-22 Fujitsu Limited Apparatus for and method of processing document image

Also Published As

Publication number Publication date
TW201407543A (en) 2014-02-16
TWI469089B (en) 2015-01-11
US10255518B2 (en) 2019-04-09
US20160364627A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
CN110447061B (en) Luminance compensation method, luminance compensation device, display device, and storage medium
US8599270B2 (en) Computing device, storage medium and method for identifying differences between two images
CN109903717B (en) Identification method, compensation method and device for bright spot area of display panel
US9402025B2 (en) Detection apparatus, method for detecting feature point and storage medium
US20100296698A1 (en) Motion object detection method using adaptive background model and computer-readable storage medium
US20190164008A1 (en) Image processing apparatus, image processing method, and storage medium
US9824267B2 (en) Writing board detection and correction
JP2008250950A (en) Image processor, control program, computer-readable recording medium, electronic equipment and control method of image processor
JP2008250951A (en) Image processor, control program, computer-readable recording medium, electronic equipment, and control method of image processor
US10255518B2 (en) Image determining method and object coordinate computing apparatus
US11205272B2 (en) Information processing apparatus, robot system, information processing method and program
US20150187051A1 (en) Method and apparatus for estimating image noise
US10939036B2 (en) Spot detecting apparatus and method of detecting spot using the same
US9959479B2 (en) Image classification for adjustment
US11134180B2 (en) Detection method for static image of a video and terminal, and computer-readable storage medium
US9846816B2 (en) Image segmentation threshold value deciding method, gesture determining method, image sensing system and gesture determining system
EP3046406B1 (en) Method for generating compensation matrix during substrate inspection
US20170344820A1 (en) Method and system of identifying fillable fields of an electronic form
CN115760653A (en) Image correction method, device, equipment and readable storage medium
JP6855938B2 (en) Distance measuring device, distance measuring method and distance measuring program
JP6478897B2 (en) Modulation transfer function calculation device and modulation transfer function calculation program
US9679363B1 (en) System and method for reducing image noise
US20170178337A1 (en) Edge detection apparatus and edge detection method
Lee et al. A novel illumination-balance technique for improving the quality of degraded text-photo images
CN116913226A (en) Display panel brightness compensation method and device and computing equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: PIXART IMAGING INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIANG, CHIA-CHEUN;YANG, SHU-SIAN;KO, YI-HSIEN;REEL/FRAME:029947/0301

Effective date: 20130304

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION