US20140046322A1 - System and Method for Increasing a Target Zone for Electrical Ablation - Google Patents

System and Method for Increasing a Target Zone for Electrical Ablation Download PDF

Info

Publication number
US20140046322A1
US20140046322A1 US14/056,315 US201314056315A US2014046322A1 US 20140046322 A1 US20140046322 A1 US 20140046322A1 US 201314056315 A US201314056315 A US 201314056315A US 2014046322 A1 US2014046322 A1 US 2014046322A1
Authority
US
United States
Prior art keywords
pulses
treatment
zone
conditioning
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/056,315
Inventor
Peter Callas
Wesley Chung Joe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angiodynamics Inc
Original Assignee
Angiodynamics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angiodynamics Inc filed Critical Angiodynamics Inc
Priority to US14/056,315 priority Critical patent/US20140046322A1/en
Assigned to ANGIODYNAMICS, INC. reassignment ANGIODYNAMICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CALLAS, PETER, JOE, WESLEY CHUNG
Publication of US20140046322A1 publication Critical patent/US20140046322A1/en
Priority to US15/140,832 priority patent/US10342600B2/en
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANGIODYNAMICS, INC.
Priority to US16/504,542 priority patent/US20190328446A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00613Irreversible electroporation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/143Needle multiple needles

Definitions

  • the present invention relates to a medical treatment device for ablating a target tissue zone. More particularly, the present application relates to a system and method for increasing a target tissue zone for electrical ablation.
  • Devices for delivering therapeutic energy such as an ablation device using irreversible electroporation (IRE) include a pulse generator and one or more electrodes coupled to the generator.
  • the pulse generator delivers the therapeutic energy to a targeted tissue through the electrodes, thereby causing ablation of the tissue.
  • the electrodes of the device are placed in such a way as to create a treatment zone that surrounds the target treatment region.
  • a treatment planning system Prior to treatment, a treatment planning system is used to generate an estimated treatment region that completely covers the target treatment region.
  • the estimated region is used by a physician to plan where to place the electrodes in the patient.
  • the physician may be forced to use a large number of electrodes, e.g., 4 or more electrodes. This makes accurately placing the electrodes much more difficult as moving one electrode affects the spacing from all other electrodes.
  • the large target area can be divided into two or more smaller areas and the treatment procedure for one area can be repeated to cover the other divided areas.
  • the longer procedure makes it riskier for the patient since the patient would have to stay on an operating table much longer, often with an exposed body portion to be treated.
  • the longer procedure also makes the procedure more expensive.
  • the system includes a memory, a processor coupled to the memory and a treatment control module.
  • the treatment control module stored in the memory and executable by the processor, the treatment control module applies through at least one electrode a plurality of pre-conditioning pulses to subject tissue cells in a pre-conditioning zone surrounding the electrode to electroporation, the pre-conditioning zone being smaller than a target ablation zone.
  • the control module applies a plurality of treatment pulses in an amount sufficient to electrically ablate the tissue cells in the target ablation zone.
  • the pre-conditioning pulses cause the pre-conditioning zone to have a much higher conductivity so that the zone acts as a larger electrode area when the treatment pulses are applied, which results in a much larger target ablation zone than otherwise possible.
  • the treatment control module applies the plurality of treatment pulses in an amount sufficient to subject the tissue cells in the target ablation zone to irreversible electroporation or supra-poration.
  • the treatment control module applies the pre-conditioning pulses that have a shorter pulse width than the treatment pulses.
  • the treatment control module applies the pre-conditioning pulses in an amount sufficient to subject tissue cells in the pre-conditioning zone to irreversible electroporation.
  • the treatment control module waits at least 30 seconds after the pre-conditioning pulses have been applied to allow an electrical conductivity in the pre-conditioning zone to increase.
  • the treatment control module waits at least two minutes after the pre-conditioning pulses have been applied to allow an electrical conductivity in the pre-conditioning zone to increase.
  • the treatment control module continuously monitors current to adjust at least one pulse parameter for the pre-conditioning pulses.
  • the treatment control module continuously monitors impedance and determines when to apply the treatment pulses.
  • the treatment control module applies the pre-conditioning pulses that have a shorter pulse width than the treatment pulses, and waits at least 30 seconds after the pre-conditioning pulses have been applied to allow an electrical conductivity in the pre-conditioning zone to increase.
  • the treatment control module applies a test pulse through the electrode and determines at least one pulse parameter for the pre-conditioning pulses based on the applied test pulse.
  • treatment control module applies a test pulse through the electrode after the pre-conditioning pulses have been applied, and based on the applied test pulse, determines whether to repeat the application of the pre-conditioning pulses or proceed to application of the treatment pulses.
  • the treatment control module determines whether to repeat the application of the pre-conditioning pulses based on an electrical conductivity derived from the test pulse.
  • a method for increasing a target zone for electrical ablation includes positioning at least one electrode near a target ablation zone and applying through the positioned electrode a plurality of pre-conditioning pulses to subject tissue cells in a pre-conditioning zone surrounding the electrode to electroporation, the pre-conditioning zone being smaller than the target ablation zone. After the pre-conditioning pulses have been applied, the method further includes applying a plurality of treatment pulses in an amount sufficient to electrically ablate the tissue cells in the target ablation zone.
  • FIG. 1 illustrates several components of a medical treatment system to treat a patient according to the present invention.
  • FIG. 2 is a schematic diagram of a treatment control computer of the present invention.
  • FIG. 3 is a screen shot of an “Information” screen of a treatment control module showing various input boxes.
  • FIG. 4 is a screen shot of a “Probe Selection” screen of the treatment control module showing a side view and top view of the four probe array and an example of the general shape of the treatment zone that can be generated by a four probe array.
  • FIG. 5 is a screen shot of a “Probe Placement Process” screen of the treatment control module.
  • FIG. 6 illustrates an example of a three probe array defining three individual treatment zones, which combine to form a combined treatment region.
  • FIG. 7 illustrates details of the generator shown in FIG. 1 .
  • FIG. 8 illustrates an image of a sample pre-conditioned tissue zone surrounded by a sample ablation zone.
  • FIG. 9 illustrates another image of a sample pre-conditioned tissue zone surrounded by a sample ablation zone.
  • any and all of the one, two, or more features and/or components disclosed or suggested herein, explicitly or implicitly, may be practiced and/or implemented in any combinations of two, three, or more thereof, whenever and wherever appropriate as understood by one of ordinary skill in the art.
  • the various features and/or components disclosed herein are all illustrative for the underlying concepts, and thus are non-limiting to their actual descriptions. Any means for achieving substantially the same functions are considered as foreseeable alternatives and equivalents, and are thus fully described in writing and fully enabled.
  • the various examples, illustrations, and embodiments described herein are by no means, in any degree or extent, limiting the broadest scopes of the claimed inventions presented herein or in any future applications claiming priority to the instant application.
  • FIG. 1 One embodiment of the present invention is illustrated in FIG. 1 .
  • One or more probes/electrodes 22 deliver therapeutic energy and are powered by a voltage pulse generator 10 that generates high voltage pulses as therapeutic energy such as pulses capable of irreversibly electroporating the tissue cells.
  • the voltage pulse generator 10 includes six separate receptacles for receiving up to six individual probes 22 which are adapted to be plugged into the respective receptacle.
  • the receptacles are each labeled with a number in consecutive order.
  • the voltage pulse generator can have any number of receptacles for receiving more or less than six probes.
  • each probe 22 includes either a monopolar electrode or bipolar electrodes having two electrodes separated by an insulating sleeve.
  • the amount of exposure of the active portion of the electrode can be adjusted by retracting or advancing an insulating sleeve relative to the electrode. See, for example, U.S. Pat. No. 7,344,533, which is incorporated by reference herein.
  • the generator 10 is connected to a treatment control computer 40 having input devices such as keyboard 12 and a pointing device 14 , and an output device such as a display device 11 for viewing an image of a target treatment region such as a lesion 300 surrounded by a safety margin 301 .
  • the pulse generator 10 is used to treat a lesion 300 inside a patient 15 .
  • An imaging device 30 includes a monitor 31 for viewing the lesion 300 inside the patient 15 in real time. Examples of imaging devices 30 include ultrasonic, CT, MRI and fluoroscopic devices as are known in the art.
  • the present invention includes computer software (treatment control module 54 ) which assists a user to plan for, execute, and review the results of a medical treatment procedure, as will be discussed in more detail below.
  • the treatment control module 54 assists a user to plan for a medical treatment procedure by enabling a user to more accurately position each of the probes 22 of the pulse generator 10 in relation to the lesion 300 in a way that will generate the most effective treatment zone.
  • the treatment control module 54 can display the anticipated treatment zone based on the position of the probes and the treatment parameters.
  • the treatment control module 54 can display the progress of the treatment in real time and can display the results of the treatment procedure after it is completed. This information can be used to determine whether the treatment was successful and whether it is necessary to re-treat the patient.
  • code For purposes of this application, the terms “code”, “software”, “program”, “application”, “software code”, “software module”, “module” and “software program” are used interchangeably to mean software instructions that are executable by a processor.
  • the “user” can be a physician or other medical professional.
  • the treatment control module 54 executed by a processor outputs various data including text and graphical data to the monitor 11 associated with the generator 10 .
  • the treatment control computer 40 of the present invention manages planning of treatment for a patient.
  • the computer 40 is connected to the communication link 52 through an I/O interface 42 such as a USB (universal serial bus) interface, which receives information from and sends information over the communication link 52 to the voltage generator 10 .
  • the computer 40 includes memory storage 44 such as RAM, processor (CPU) 46 , program storage 48 such as ROM or EEPROM, and data storage 50 such as a hard disk, all commonly connected to each other through a bus 53 .
  • the program storage 48 stores, among others, a treatment control module 54 which includes a user interface module that interacts with the user in planning for, executing and reviewing the result of a treatment. Any of the software program modules in the program storage 48 and data from the data storage 50 can be transferred to the memory 44 as needed and is executed by the CPU 46 .
  • the computer 40 is built into the voltage generator 10 . In another embodiment, the computer 40 is a separate unit which is connected to the voltage generator through the communication link 52 . In a preferred embodiment, the communication link 52 is a USB link.
  • the imaging device 30 is a stand alone device which is not connected to the computer 40 .
  • the computer 40 is connected to the imaging device 30 through a communication link 53 .
  • the communication link 53 is a USB link.
  • the computer can determine the size and orientation of the lesion 300 by analyzing the data such as the image data received from the imaging device 30 , and the computer 40 can display this information on the monitor 11 .
  • the lesion image generated by the imaging device 30 can be directly displayed on the grid 200 of the monitor 11 of the computer running the treatment control module 54 .
  • This embodiment would provide an accurate representation of the lesion image on the grid 200 , and may eliminate the step of manually inputting the dimensions of the lesion in order to create the lesion image on the grid 200 . This embodiment would also be useful to provide an accurate representation of the lesion image if the lesion has an irregular shape.
  • treatment control module 54 The basic functionality of the computer software (treatment control module 54 ) will now be discussed in relation to the following example.
  • the software can be used independently of the generator 10 .
  • the user can plan the treatment in a different computer as will be explained below and then save the treatment parameters to an external memory device, such as a USB flash drive (not shown).
  • the data from the memory device relating to the treatment parameters can then be downloaded into the computer 40 to be used with the generator 10 for treatment.
  • the treatment control module 54 After the treatment control module 54 is initialized, it displays an “Information” screen with various input boxes as shown in FIG. 3 .
  • a keyboard or other input device 12 together with a mouse or other pointing device 14 (see FIG. 1 ) are used to input the data. Any data that is inputted into the input boxes can be saved into internal or external memory along with a record of the treatment as described below for future reference.
  • the basic patient information can be inputted, such as a patient ID number in input box 100 , the name of the patient in input box 101 , and the age of the patient in input box 102 .
  • the user can enter clinical data, such as the clinical indication of the treatment in input box 114 .
  • the date of the procedure is automatically displayed at 111 or can be inputted by the user in another embodiment.
  • the user can enter other case information such as the name of the physician in input box 112 and any specific case notes in input box 113 .
  • the dimensions of the lesion 300 are determined from viewing it on the monitor 31 of the imaging device 30 (see FIG. 1 ) such as an ultrasonic imaging device and using known methods to calculate the dimensions from the image generated from the imaging device 31 .
  • the dimensions of the lesion 300 (length at input box 103 , width at input box 104 , and depth at input box 105 ) are inputted into the program.
  • a safety margin is selected at input box 106 which will surround the entire lesion 300 in three dimensions. According to the size of the safety margin that is selected, a target treatment region is automatically calculated and is displayed in boxes 107 , 108 , and 109 as shown.
  • the safety margin value may be set to zero. For example, when treating a benign tumor, a safety margin may not be necessary.
  • the user has indicated that the lesion that will be treated has a length of 2 cm, width of 1 cm and a depth of 1 cm.
  • the target treatment region has a length of 4 cm, width of 3 cm and a depth of 3 cm.
  • the user can select the “ECG synchronization” option by clicking the circle in the box 110 in order to synchronize the pulses with an electrocardiogram (ECG) device, if such a device is being used during the procedure.
  • ECG electrocardiogram
  • the other options available for treatment that are included in box 110 can include an option for “90 PPM” (pulses per minute) or “240 PPM”.
  • the user should select at least one of the three options provided in box 110 . After all of the necessary data has been inputted, the user clicks on the “Next” button with a pointing device 14 to proceed to the next screen described below.
  • the treatment control module 54 will test this functionality to verify that the system is working properly.
  • the treatment control module 54 can automatically detect whether an error has occurred during the testing phase of the ECG feature.
  • the detectable errors include, but are not limited to, “no signal” (such as no pulses for 3.5 seconds) and “noisy” (such as pulses occurring at a rate greater than 120 beats per minute for at least 3.5 seconds).
  • the treatment control module 54 can synchronize energy release with cardiac rhythm by analyzing cardiac output such as electrocardiogram results (or other cardiac function output) and sending synchronization signals to a controller of the pulse generator 10 .
  • the control module 54 is also capable of generating internal flags such as a synchronization problem flag and a synchronization condition flag to indicate to users on a graphic user interface a synchronization status, so that energy pulse delivery can be synchronized with the cardiac rhythm for each beat (in real-time) or aborted as necessary for patient safety and treatment efficiency.
  • control module 54 synchronizes energy pulses such as IRE (irreversible electroporation) pulses with a specific portion of the cardiac rhythm.
  • the module uses the R-wave of the heartbeat and generates a control signal to the pulse generator 10 indicating that this portion of the heartbeat is optimal for release of IRE pulses.
  • the S wave would be an optimal time for delivery of an energy pulse, but due to the fact that the S wave ends nebulously in some cases, the R wave is used as an indicator to start timing of energy release.
  • the synchronization feature of the control module 54 allows for monitoring of heart signals so as to ensure that changes, maladies, and other alterations associated with the heartbeat are coordinated such that pulses from the pulse generator 10 are released at the proper time, and that if the heartbeat is out of its normal rhythm, that the release of energy is either altered or aborted.
  • the user can select the number of probes that the user believes will be necessary to produce a treatment zone which will adequately cover the lesion 300 and any safety margin 301 .
  • the selection is made by clicking the circle next to each type of device, as shown in the “Probe Selection” screen, illustrated in FIG. 4 .
  • a “Probes Selection Status” box 199 identifies which of the receptacles, if any, on the generator 10 have been connected to a probe by displaying the phrase “Connected” or the like next to the corresponding probe number.
  • each receptacle includes an RFID device and a connector for each probe which connects to the receptacle and includes a compatible RFID device, so that the treatment control module 54 can detect whether or not an authorized probe has been connected to the receptacle on the generator 10 by detecting a connection of the compatible RFID devices. If an authorized probe is not connected to a receptacle on the generator, the phrase “Not Connected” or the like will appear next to the probe number.
  • the color of each probe shown in the “Probes Selection Status” box 199 can be used to indicate whether or not each receptacle on the generator is connected to a compatible probe.
  • This feature allows the user to verify that the requisite number of probes are properly connected to the generator 10 before selecting a probe type for the treatment procedure. For example, if the treatment control module 54 detects a problem with the probe connection status (e.g. selecting a three probe array when only two probes are connected to the generator), it can notify the user by displaying an error message.
  • a problem with the probe connection status e.g. selecting a three probe array when only two probes are connected to the generator
  • the user can select which of the connected probes will be used to perform the treatment procedure, by clicking on the box next to the selected probes in the “Probes Selection Status” box 199 .
  • the treatment control module 54 will automatically select probes in ascending numerical order, as they are labeled.
  • circle 150 is used to select a four probe array.
  • FIG. 4 illustrates a side view 151 and top view 152 of the four probe array and an example of the general shape of the treatment zone that can be generated by a four probe array.
  • the exposed portion of each of the electrodes as shown is 20 mm in length and each pair of the four probes are equally spaced from each other by 15 mm, as measured at four places (PLCS) along the perimeter.
  • FIG. 5 illustrates a “Probe Placement Process” screen of one aspect of the invention.
  • the screen illustrated by FIG. 5 shows a lesion 300 according to the dimensions which were inputted on the “Information” screen (see FIG. 3 ) along with a safety margin 301 , if any, that was previously inputted.
  • the lesion 300 has a length of 2.0 cm and a width of 1.0 cm, and the device selected on the “Probe Selection” screen (see FIG. 4 ) is a four probe array.
  • the lesion 300 is displayed near the center of an x-y grid 200 with the distance between two adjacent grid lines representing 1 mm.
  • Each of the four probes 201 , 202 , 203 , 204 is displayed in the grid 200 and each probe can be manually positioned within the grid by clicking and dragging the probe with the pointing device 14 .
  • Two fiducials 208 , 209 labeled “A” and “B”, respectively, are also displayed on the grid 200 and are used as a point of reference or a measure as will be described below.
  • the amount of longitudinal exposure of the active electrode portion for each probe that has already been manually adjusted by the user as explained above can be manually inputted in input box 210 , which can be selected by the user according to the depth (z) of the lesion.
  • the treatment control module 54 can generate an estimated treatment zone according to the treatment parameters, and locations and depths of the probes.
  • a second x-z grid is displayed on the monitor 11 of the computer running the treatment control module 54 .
  • the treatment control module 54 can automatically calculate preferred values for the amount of longitudinal exposure of the active electrode portions based on the size and shape of the lesion.
  • the depth (z) of the electric field image can be calculated analytically or with interpolation and displayed on the x-z grid.
  • the distribution of the electric field (i.e., expected treatment region) between two monopolar electrodes may “dip in” along the boundary line (e.g., a peanut shaped treatment region due to large spacing between the two electrodes where the width of the region is smaller in the middle; see for example region 305 in FIG. 9 ) depending on the electrode location and the applied voltage, it is beneficial to have an x-z grid included on the monitor. For example, if this “dip” of the boundary line travels into, rather than surround/cover, the lesion region, then the targeted region may not be fully treated. As a default to ensure treatment of the entire lesion region, the probe depth placement and the exposure length may be set unnecessarily higher to ensure erring on the safe side.
  • the probe dock status is indicated in box 210 , by indicating if the probes are “docked” or “undocked”.
  • the “UnDock Probes” button allows the user to “unplug” the probes from the generator while the “Probe Placement Process” screen is displayed without causing error messages.
  • the user plugs the probes into the generator on the “Probe Selection” screen, and then the probes are “authorized” as being compatible probes according to the RFID devices, as discussed above.
  • the software requires that all the selected probes remain plugged into the generator, or else the software will display an error message (e.g. “Probe #2 unplugged”, etc.), and will also force the user back to the “Probe Selection” screen.
  • the treatment control module 54 automatically adjusts the voltage (treatment energy level) applied between the electrodes, as shown in column 222 .
  • Box 280 allows a user to select between two different Volts/cm types, namely “Linear” or “Non-Linear Lookup”.
  • the default Volts/cm setting is “Linear”, in which case the Voltage that is applied between a given pair of electrodes, as shown in column 222 , is determined by the following formula:
  • Non-Linear Lookup the Voltage that is applied between the given pair of electrodes will be similar to the Voltage values for a “Linear” selection when a pair of electrodes are closely spaced together (e.g. within about 1 cm). However, as a pair of given electrodes are spaced farther from one another, a “Non-Linear Lookup” will produce lower Voltages between the given pair of electrodes as compared to the Voltage values for a “Linear” selection at any given distance.
  • the “Non-Linear Lookup” feature is particularly useful for reducing “popping” during treatment.
  • “Popping” refers to an audible popping noise that sometimes occurs, which is believed to be caused by a plasma discharge from high voltage gradients at the tip of the electrodes.
  • the “Non-Linear Lookup” feature can also minimize any swelling of the tissue that might occur as a result of a treatment.
  • the Voltage values used for the “Non-Linear Lookup” selection can be pre-determined based on animal experiments and other research.
  • different tissue types can each have their own “Non-Linear Lookup” table.
  • the tissue being treated is prostate tissue.
  • the details of the treatment parameters are displayed in window 270 .
  • the firing (switching) sequence between probes is listed automatically in window 270 .
  • the firing sequence involves six steps beginning with between probes 1 and 2 , then probes 1 and 3 , then probes 2 and 3 , then probes 2 and 4 , then probes 3 and 4 , and then probes 4 and 1 .
  • the polarity of each of the probes may switch from negative to positive according to step of the firing sequence.
  • Column 220 displays which probe is the positive probe (according to a number assigned to each probe) for each step.
  • Column 221 displays which probe is the negative probe (according to a number assigned to each probe) for each step.
  • Column 222 displays the actual voltage generated between each probe during each step of the firing sequence. In the example, the maximum voltage that can be generated between probes is limited by the capabilities of the generator 10 , which in the example is limited to a maximum of 3000 Volts.
  • Column 223 displays the length of each pulse that is generated between probes during each respective step of the firing sequence. In the example, the pulse length is predetermined and is the same for each respective step, and is set at 100 microseconds.
  • Column 224 displays the number of pulses that is generated during each respective step of the firing sequence. In the example, the number of pulses is predetermined and is the same for each respective step, and is set at 90 pulses which are applied in a set of 10 pulses at a time.
  • Column 225 displays the setting for Volts/cm according to the value selected at input box 211 .
  • Column 226 displays the actual distance between the electrodes (measured in cm), which is automatically calculated according to the placement of each probe in the grid 200 .
  • the treatment control module 54 can be programmed to calculate and display the area of the combined treatment regions on the grid 200 by several different methods.
  • Each method determines a boundary line surrounding a treatment zone that is created between a pair of electrodes.
  • a combined treatment region can be displayed on the x-y grid.
  • FIG. 6 illustrates three electrodes 201 (E 1 ), 202 (E 2 ), 203 (E 3 ) defining three individual treatment zones 311 , 312 , 313 , which combine to form a combined treatment region 315 which is shown with hatched lines.
  • the monitor can further include an x-z grid to illustrate the depth of the lesion and the shape of the treatment region.
  • the shape of the treatment zone in the x-z grid will vary according to the selected amounts of electrode exposure for each probe and can be determined by one or more methods.
  • the treatment boundary line that is created between two points on the x-y grid can be rotated about an axis joining the two points in order to generate the treatment region boundary line on the x-z grid.
  • several points may be selected along the exposed length of the active electrode portion for each probe at various depths (z).
  • a three-dimensional combined treatment region can then be generated by determining the boundary line on the x-y grid between each individual pair of points and then rotating the boundary line along the axis joining each pair of points.
  • the resulting boundary lines can be combined to create a three dimensional image that is displayed on the monitor.
  • the following is an alternate method for determining a boundary line on the x-z grid, thereby determining a three dimensional treatment region.
  • This example describes a two probe array with the probes being inserted in a parallel relationship and with the probes having the same amount of exposed portions of the electrode.
  • the exposed portions of each probe start at the same “uppermost” depth (z) and end at the same “lowermost” depth (z).
  • a treatment zone boundary line is created in the x-y plane at the uppermost depth (z).
  • the treatment zone boundary line is repeatedly created stepwise for all subsequently lower depths (z), preferably evenly spaced, until the lowermost depth (z) is reached.
  • the result is a 3-D volume (stacked set of treatment zone boundary lines) having a flat top surface and a flat bottom surface.
  • two new focus points are selected, with the first focus point positioned midway between the probe positions in the x-y grid and near the uppermost depth (z) of the exposed electrode.
  • the second focus point is also positioned midway between the probe positions in the x-y grid, but near the lowermost depth (z) of the exposed electrode.
  • a treatment zone boundary line is created in the x-z grid using one of the methods described earlier. The actual placement of each focus point may be closer together, namely, not positioned in the uppermost and lowermost x-y planes defined by the exposed portions.
  • each focus point should be selected so that the treatment zone boundary line that is created in the x-z grid closely matches the treatment zone boundary lines that were created in the uppermost and lowermost x-y grids.
  • the treatment zone boundary line that was created in the x-z grid according to the two focus points is rotated about the axis joining the two focus points. This creates the shapes for the upper and lower 3-D volumes which are added to the flat top surface and the flat bottom surface described above.
  • tissue properties are highly variable between tissue types, between individuals, and even within an individual. These changes may result from differences in body fat composition, hydration levels, and hormone cycles. Due to the large dependence of IRE (irreversible electroporation) treatments on tissue conductivity, it is imperative to have accurate values. Therefore, to obtain viable conductivity values prior to treatment, a low amplitude voltage pulse is used between the electrode conductors and the resultant impedance/conductance is measured as a way to determine pertinent tissue property data such as the predicted current. The value determined may then be implemented when assessing field strength and treatment protocol in real time. For example, the resulting impedance or predicted current can be used to set the default electric field density.
  • IRE irreversible electroporation
  • One method of generating an estimated treatment region between a pair of treatment electrodes is a numerical model based method involving finite element analysis (FEA).
  • FEA finite element analysis
  • U.S. Patent Application Publication No. 2007/0043345 which is hereby incorporated by reference, discloses using FEA models to generate treatment zones between a pair of electrodes (the calculations were performed using MATLAB's finite element solver, Femlab v2.2 (The MathWorks, Inc. Natick, Mass.)).
  • FEA is used to relate each node to each of the other nodes by applying sets of partial differential equations. This type of a system can be coded by scratch, but most people use one of many commercial FEA programs that automatically define the mesh and create the equations given the model geometry and boundary conditions. Some FEA programs only work in one area of engineering, for example, heat transfer and others are known as multiphysics. These systems can convert electricity to heat and can be used for studying the relationships between different types of energy.
  • the FEA mesh is not homogeneous and areas of transition have increased mesh density.
  • the time and resources (memory) required to solve the FEA problem are proportional to the number of nodes, so it is generally unwise to have a uniformly small mesh over the entire model.
  • FEA users also try to limit the analysis to 2D problems and/or use planes of symmetry to limit the size of the model being considered because even a modest 2D model often requires 30 minutes to several hours to run.
  • a 3D Model usually takes several hours to several days to run. A complicated model like a weather system or a crash simulation may take a super computer several days to complete.
  • the purchase price of the FEA modeling software can cost several thousand dollars for a low end system to $30 k for a non linear multiphysics system.
  • the systems that model the weather are custom made and cost tens of millions of dollars.
  • the steps which are required for generating a treatment zone between a pair of treatment probes using finite element analysis include: (1) creating the geometry of interest (e.g., a plane of tissue with two circular electrodes); (2) defining the materials involved (e.g., tissue, metal); (3) defining the boundary conditions (e.g., Initial voltage, Initial temperature); (4) defining the system load (e.g., change the voltage of the electrodes to 3,000V); (5) determining the type of solver that will be used; (6) determining whether to use a time response or steady state solution; (7) running the model and wait for the analysis to finish; and (8) displaying the results.
  • the geometry of interest e.g., a plane of tissue with two circular electrodes
  • the materials involved e.g., tissue, metal
  • boundary conditions e.g., Initial voltage, Initial temperature
  • the system load e.g., change the voltage of the electrodes to 3,000V
  • FEA Using FEA, however, may not be practical for use in calculating and displaying in real time a treatment zone that is created between a pair of treatment probes in accordance with the present invention because of the time required to run these types of analyses.
  • the system should allow a user to experiment with probe placement and should calculate a new treatment zone in less than a few seconds. Accordingly, the FEA model is not appropriate for such use and it would be desirable to find an analytic solution (closed form solution), which can calculate the treatment zones with only simple equations, but which closely approximate the solutions from a numerical model analysis such as the finite element analysis.
  • the closed loop solutions should preferably generate the treatment zone calculation in a fraction of a second so as to allow a physician/user to experiment with probe placement in real time.
  • Analytical models are mathematical models that have a closed form solution, i.e., the solution to the equations used to describe changes in a system can be expressed as a mathematical analytic function. The following method represents just one of the non-limiting examples of such alternative closed loop solutions.
  • a Cassini oval is a set (or locus) of points in the plane such that each point p on the oval bears a special relation to two other fixed points q 1 and q 2 : the product of the distance from p to q 1 and the distance from p to q 2 is constant. That is, if the function dist(x,y) is defined to be the distance from a point x to a point y, then all points p on a Cassini oval satisfy the equation:
  • the points q 1 and q 2 are called the foci of the oval.
  • the shape of the oval depends on the ratio b/a. When b/a is greater than 1, the locus is a single, connected loop. When b/a is less than 1, the locus comprises two disconnected loops. When b/a is equal to 1, the locus is a lemniscate of Bernoulli.
  • the Cassini equation provides a very efficient algorithm for plotting the boundary line of the treatment zone that was created between two probes on the grid 200 .
  • the first probe is set as q 1 being the point (a,0) and the second probe is set as q 2 being the point ( ⁇ a,0).
  • the polar equation for the Cassini curve is preferably used because it provides a more efficient equation for computation.
  • the current algorithm can work equally as well by using the Cartesian equation of the Cassini curve.
  • r 2 a 2 cos(2*theta)+/ ⁇ sqrt( b 4 ⁇ a 4 sin 2 (2*theta)) (5)
  • r can be up to four separate values for each given value for theta.
  • a cassini curve can be plotted by using eq. (5) above by solving for r, for each degree of theta from 0 degrees to 360 degrees.
  • the curve from the cassini oval equation was calibrated as best as possible to the 650 V/cm contour line using two 1-mm diameter electrodes with an electrode spacing between 0.5-5 cm and an arbitrary applied voltage.
  • q 1 and q 2 reference points could be moved to locations along the x-axis to points of ( ⁇ a,0).
  • a voltage could then be selected, and an arbitrary scaling factor (“gain denominator”) would convert this voltage to the corresponding “b” used in eq. (4).
  • the worksheet would then plot the resulting Cassini oval, which has a shape progression with applied voltage beginning as two circles around the electrodes that grow into irregular ellipses before converging into a single “peanut” shape that ultimately becomes an ellipse expanding from the original electrode locations.
  • the Cassini oval creates a reasonable visualization that mimics the shape of numerical results for the field distribution.
  • a calibration involving the b 4 term was necessary to develop the relationship between the analytical Cassini oval and the numerical results. This was done through a backwards calibration process defined as follows:
  • a reference electric field density value was selected to be 650 V/cm.
  • the determined voltage was placed into the Cassini oval electronic worksheet for the same electrode geometry and the “gain denominator” was adjusted until the shape from the cassini oval matched that from the numerical solution.
  • Table 1 incorporates all the steps above to yield a single, calibrated Cassini Oval output that analytically predicts the electric field distribution; providing a quick and simple solution for the prediction of IRE (irreversible electroporation) treatment regions that may be adjusted in real-time.
  • the inputs are the electrode location (as a given “ ⁇ a” distance from the origin along the x-axis), the applied voltage to the energized electrode, and the desired electric field to visualize.
  • the resulting output is a contour representing a threshold where the entire area within it has been subjected to an electric field the one selected; and thus treated by IRE. It is important to remember that the analytical solution was calibrated for an electric field contour of 650 V/cm, and thus yields an accurate approximation for this value. Other field strength contours of interest still yield reasonable results that mimic the overall shape of the electric field. Overall, the analytical solution provided yields consistently good predictions for electric field strengths, and thus, treatment regions of IRE that may be used during treatment planning or analysis.
  • a similar algorithm for calibration can be used for a bipolar electrode.
  • the diameter of the probe is 0.065 cm
  • the lengths of the two electrodes are respectively 0.295 cm and 0.276 cm, separated by an insulation sleeve of 0.315 cm in length.
  • Adapting this scenario to the cassini oval presents some challenges because the distribution is now resulting from the two exposed cylinder lengths, rather than two distinct loci of points. This was solved by calibrating individual electric field contours for the same applied voltage and developing two equations that adjust the separation distance ( ⁇ a) and gain denominator (GD) according to the equations:
  • E the electric field magnitude contour desired.
  • FIG. 6 illustrates an example of how to generate a combined treatment zone according to the invention.
  • Three electrodes 201 , 202 , 203 defining three individual treatment zones 311 , 312 , 313 combine to form a combined treatment region 315 which is shown with hatched lines.
  • a combined treatment region 315 can be displayed on the x-y grid.
  • FIG. 7 illustrates one embodiment of a pulse generator according to the present invention.
  • a USB connection 52 carries instructions from the user computer 40 to a controller 71 .
  • the controller can be a computer similar to the computer 40 as shown in FIG. 2 .
  • the controller 71 can include a processor, ASIC (application-specific integrated circuit), microcontroller or wired logic.
  • the controller 71 then sends the instructions to a pulse generation circuit 72 .
  • the pulse generation circuit 72 generates the pulses and sends electrical energy to the probes. In the embodiment shown, the pulses are applied one pair of electrodes at a time, and then switched to another pair using a switch 74 , which is under the control of the controller 71 .
  • the switch 74 is preferably an electronic switch that switches the probe pairs based on the instructions received from the computer 40 .
  • a sensor 73 such as a sensor can sense the current or voltage between each pair of the probes in real time and communicate such information to the controller 71 , which in turn, communicates the information to the computer 40 . If the sensor 73 detects an abnormal condition during treatment such as a high current or low current condition, then it will communicate with the controller 71 and the computer 40 which may cause the controller to send a signal to the pulse generation circuit 72 to discontinue the pulses for that particular pair of probes.
  • the treatment control module 54 can further include a feature that tracks the treatment progress and provides the user with an option to automatically retreat for low or missing pulses, or over-current pulses (see discussion below). Also, if the generator stops prematurely for any reason, the treatment control module 54 can restart at the same point where it terminated, and administer the missing treatment pulses as part of the same treatment.
  • the treatment control module 54 is able to detect certain errors during treatment, which include, but are not limited to, “charge failure”, “hardware failure”, “high current failure”, and “low current failure”.
  • the treatment control module 54 in the computer 40 directs the pulse generator 10 to apply a plurality of pre-conditioning pulses (first set of pulses) between the electrodes 22 so as to create a “virtual electrode” (i.e., pre-conditioning zone) A 1 as shown in FIG. 8 .
  • the control module 54 directs the generator to apply a plurality of treatment pulses (second set of pulses) to the electrodes 22 to ablate substantially all tissue cells in the target ablation zone.
  • zone A 2 If the treatment pulses were applied without the pre-conditioning pulses, then the expected target ablation zone would result in zone A 2 . However, due to the pre-conditioning zone A 1 , the resulting ablation zone has been enlarged to zone A 3 which is much larger than zone A 2 .
  • the pre-conditioned tissue zone A 1 is substantially surrounded by ablation zones A 2 and A 3 .
  • at least two electrodes 22 can be provided. The electrodes can be positioned anywhere in or near the target tissue.
  • the pre-conditioning pulses can be 1) IRE pulses that irreversibly electroporate the cell membranes in zone A 1 , 2) reversible electroporation pulses that temporarily electroporate the cell membranes in zone A 1 , or 3) pulses that cause irreversible electroporation to some cells and reversible electroporation in other cells in the same zone.
  • the pre-conditioning pulses can even be supraporation type pulses (typically sub-microsecond pulses with 10-80 kV/cm of field strength) that causes disturbances within the cells which tend to weaken them such that when the treatment pulses are applied, the cells in zone A 1 are more vulnerable to irreversible electroporation even when the voltage applied may be sufficient for only reversible electroporation.
  • the particular pre-conditioning pulse parameters would depend on many factors such as the type of tissue and the size of zone A 1 to be created.
  • the mechanism of action for the increased conductivity in the virtual electrode is as follows. There is a range of non thermal irreversible electroporation (NTIRE). At one end of the range, there is just enough irreversible cell membrane damage to cause cell death. At the other end of the range, there is so much cell membrane damage that the membrane ruptures (similar to a balloon popping).
  • the virtual electrode (highest conductivity tissue) works well in the tissue where the cell membranes have ruptured.
  • the pre-conditioning pulses are preferably those that are capable of causing NTIRE which also causes cell rupturing to at least some of the tissue cells in the pre-conditioning zone. In another aspect, the pre-conditioning pulses are capable of causing NTIRE which also causes cell rupturing to substantially all tissue cells in the pre-conditioning zone.
  • control module 54 directs the pulse generator 10 to apply a set of treatment pulses, thereby forming a second zone of ablation A 3 that substantially surrounds pre-conditioning zone A 1 .
  • zone A 3 is substantially larger than zone A 2 which would be the result from application of only the treatment pulses without the pre-conditioning pulses.
  • a first set of electrical pulses can be delivered to the cells of the target tissue A 1 at a predetermined voltage to form a pre-conditioned zone.
  • the applied current that is delivered or electrical impedance during the pre-conditioning pulse application can be measured to adjust the pulse parameters such as the number of pulses that need to be delivered to create the pre-conditioned tissue zone A 1 .
  • one or more test pulses can be delivered to the electrodes before delivering the first set of electrical pulses.
  • the applied current/impedance can be measured using the sensor 73 during the delivery of the test pulses, and any pulse parameter such as the voltage, number of pulses, and the duration of the pulses can be adjusted to create the desired pre-conditioned tissue zone A 1 based on the measured current or impedance.
  • the first and second sets of electrical pulses can be delivered to the target tissue in the range of from about 2,000 V/cm to about 3,000 V/cm.
  • a predetermined time delay can be commenced before delivering a second set of electrical pulses to the target tissue to allow intra-cellular fluid to escape thereby further increasing the conductance of zone A 1 .
  • the predetermined time delay between the first set of electrical pulses and the second set of electrical pulses can be from about 1 second to about 10 minutes to allow for mixing of intra-cellular and extra-cellular components.
  • the waiting period ranges from 30 seconds to 8 minutes, and more preferably 2 minutes to 8 minutes, to allow sufficient time for the intra-cellular fluid to exit the cells.
  • the treatment control module applies a test pulse through the electrode after the pre-conditioning pulses have been applied. Based on the applied test pulse, the module 54 determines whether to repeat the application of the pre-conditioning pulses or proceed to application of the treatment pulses. In one aspect, the treatment control module 54 determines whether to repeat the application of the pre-conditioning pulses based on an electrical conductivity derived from the test pulse. For example, if the electrical conductivity has not been sufficiently increased, the module may decide to repeat the application of pre-conditioning pulses with perhaps lower voltage or shorter pulse width than before.
  • the first set of electrical pulses can comprise about 10 pulses to about 100 pulses. More preferably, the first set of electrical pulses can comprise from about 10 pulses to about 50 pulses. Still more preferably, the first set of electrical pulses can comprise from about 10 pulses to about 20 pulses. In one exemplary embodiment, the first set of electrical pulses can be delivered to the target tissue with each pulse having a pulse duration in a range of from about 10 ⁇ sec to about 50 ⁇ sec at a voltage between the two electrodes of 2000 to 3000 Volts. In another embodiment, the pre-conditioning electrical pulses can be delivered to the target tissue with each pulse having a duration in a range of from about 10 ⁇ sec to about 20 ⁇ sec.
  • Narrower pulse widths such as those described herein may be beneficial because such pulses will substantially affect the tissue close to the electrodes 22 , with a reduced risk of over-current conditions and reduced joule heating. For example, applying pulses of 20 ⁇ sec width will cause irreversible electroporation of a narrow band of tissue substantially around the electrodes 22 .
  • the delivery of the first set of electrical pulses can be repeated until a predetermined level of conductivity/impedance is measured in the target tissue.
  • the delivery of the first set of electrical pulses can be repeated until a predetermined number of electrical pulses is delivered to the target tissue. In one example, the predetermined number of pulses can be between about 10 pulses and about 300 pulses. In another example, the predetermined number of pulses can be about 100 pulses.
  • Pre-conditioning the tissue zone A 1 around the electrodes 22 causes the tissue surrounding the electrodes 22 to be more conductive and increases the ability of the tissue to electrically couple to the electrodes. If the electrical coupling between the electrodes and the target tissue is enhanced, this allows higher voltages to be delivered and larger ablations to be created. The higher conductivity of the tissue also helps to increase the ablation size of the tissue and to reduce the incidence of arcing from the electrode tips.
  • the target tissue is pre-conditioned by being irreversibly electroporated, an electric field gradient is established where the target tissue is most conductive near the electrodes 22 . In one aspect, the pre-conditioned tissue allows the electric field gradient to become steeper compared to non-pre-conditioned target tissue.
  • the second set of electrical pulses can comprise at least 10 pulses and in one embodiment, about 10 pulses to about 100 pulses. In another embodiment, the second set of electrical pulses can comprise about 10 pulses to about 50 pulses. In yet another embodiment, the second set of electrical pulses can comprise about 10 pulses to about 20 pulses. In one exemplary embodiment, the second set of electrical pulses can be delivered to the target tissue with each pulse having a duration in a range of from about 70 ⁇ sec to about 100 ⁇ sec at a voltage between the two electrodes of 2000 to 3000 Volts.
  • the second set of pulses may be supra-poration pulses that have a pulse with of 1 microsecond or less and a voltage of 10 kV/cm or more.
  • the second set of electrical pulses have a pulse width of 0.3 microsecond to 10 microseconds and a pulse application frequency of 50 kHz or higher. The higher frequency of the pulses may reduce or even eliminate movement of the patient and may allow treatment of a zone made of different tissue types.
  • the delivery of an additional second set of pulses to the target tissue and/or the use of predetermined time delays between sets of pulses helps to further increase the ablation zone of the irreversibly electroporated tissue to electric field thresholds that are lower than currently published values.
  • the first predetermined voltage of the first set of electrical pulses can be greater than the second predetermined voltage of the second set of electrical pulses.
  • the first predetermined voltage of the first set of electrical pulses can be less than the second predetermined voltage.
  • the first predetermined voltage can be substantially equal to the second predetermined voltage.
  • the treatment pulses typically, however, compared to the pre-conditioning pulses, the treatment pulses have a higher pulse width, higher voltage or both.
  • the virtual electrode A 1 can comprise target tissue that has been severely electroporated. Severe electroporation is the formation of pores in cell membranes by the action of high-voltage electric fields. When the cells of the target tissue are severely electroporated, the intracellular components of the cells of the target tissue are destroyed in a very short amount of time, i.e., several minutes compared to two hours to one day in irreversibly electroporated target tissue. The severe electroporation of the cells of the target tissue results in a fatal disruption of the normal controlled flow of material across a membrane of the cells in the target tissue, such that the target tissue comprises substantially no intracellular components. When severely electroporated, the cells of the target tissue catastrophically fail, yet the target tissue cell nuclei are still intact.
  • FIG. 9 illustrates at least two severe electroporation zones 49 that are positioned such that they substantially surround at least a portion of the electrodes 22 .
  • the electrical fields are very high.
  • These areas of target tissue having increased electrical field strength can also have local edema, which is an abnormal accumulation of fluid beneath the skin or in one or more cavities of the body that produces swelling.
  • the increased local fluid content in the target tissue will improve electrical coupling of the target tissue to the electrodes 22 .
  • the higher local fluid content will help keep the outer surface of the electrode wet.
  • the mixing of intra-cellular contents that have a high ionic content with extra-cellular fluid contents that have a lower ionic content can increase the local conductivity of the target tissue.
  • an agent can be provided and delivered to the target tissue before, during, or after an ablation to improve electrical coupling between the electrode and the target tissue.
  • the agent can be a surface tension modifier, a wetting agent, a liquid, a gel, or any combination thereof.
  • the agent can be delivered through the electrodes to the target tissue.
  • one or more of the electrodes 22 can have openings positioned along the outer surface of the electrodes 22 .
  • the openings of the electrodes 22 can be in fluid communication with an inner lumen of the electrodes.
  • An agent can be delivered through the lumen of one or more of the electrodes 22 along the outer surface of the electrodes 22 .
  • the one or more agents can be diffused along the entire length of the electrodes 22 before, during, or after a target tissue ablation. Additional benefits of “wetting” the target tissue either through the target tissue's increased fluid content, as described above, or by manually providing a wetting agent, include a reduced probability of arcing from the electrode to the target tissue. A larger ablation area can also be created by using a larger virtual electrode, as illustrated in FIG. 8 . Further, reduced Joule heating occurs around the electrodes 22 as a result of the delivery of shorter or narrower width pulses or pulse durations to the target tissue, which also requires less applied energy.
  • a high conductivity fluid can be infused into the target tissue before, during, or after the ablation to increase the local conductivity of the target tissue near the electrodes 22 .
  • the high conductivity fluid can be, e.g., hypertonic saline or a similar liquid.
  • the ablation process as described above, including the progress thereof, can be monitored by detecting the associated change in impedance (either real, imaginary or complex) through the sensor 73 in the ablated tissue for both the pre-conditioning step and treatment pulse application step.
  • the pre-conditioning step once the outer perimeter of the ablated, liquid-like pre-conditioned tissue is defined, the impedance can stabilize or level out.
  • the progress of the pre-conditioning step can be monitored by measuring changes in impedance, and pre-conditioning pulse application can be discontinued once a change in impedance is no longer observed.
  • the treatment control module 54 continuously monitors the change in impedance of tissue between the two electrodes.
  • the impedance should decrease as conductive intra-cellular fluid from the pre-conditioned tissue cells starts to ooze out. Once a predetermined impedance (or a predetermined impedance decrease) has been reached, the treatment control module 54 moves to the step of applying the treatment pulses between the electrodes.
  • the applied current of the electrical pulses can be continuously measured during pre-conditioning pulse application, and the number of pulses, the voltage level, and the length of the pulses can be adjusted to create a predetermined virtual electrode.
  • IRE irreversible electroporation
  • other methods can include reversible electroporation, supraporation, RF ablation, cryo-ablation, microwave ablation, etc.
  • Raporation uses much higher voltages, in comparison to electroporation, but with shorter pulse widths.
  • reversible electroporation as well as irreversible electroporation.
  • Example embodiments for reversible electroporation can involve 1-8 pulses with a field strength of 1-100 V/cm.
  • the number of pulses can vary. In certain embodiments the number of pulses is from 1 to 100 pulses. In one embodiment, as described herein, between about 10 pulses and about 100 pulses can be applied at about 2,000 V/cm to about 3,000 V/cm with a pulse width of about 10 ⁇ sec to about 50 ⁇ sec. After applying these pulses, a predetermined time delay of from about 1 second to about 10 minutes can optionally be commenced in order that intra-cellular contents and extra-cellular contents of the target tissue cells can mix. This procedure can be repeated, as necessary, until a conductivity change is measured in the tissue.
  • about 1 pulse to about 300 pulses of about 2,000 V/cm to about 3,000 V/cm can be applied with a pulse width of about 70 ⁇ sec to about 100 ⁇ sec to widely ablate the tissue.
  • This last step can be repeated until a desired number of ablation pulses is delivered to the tissue, for example, in the range of about 10 pulses to about 300 pulses, more particularly, about 100 pulses.
  • groups of 1 to 100 pulses are also called pulse-trains
  • the gap of time between groups of pulses is 0.5 second to 10 seconds.
  • a method of increasing the ablation size in a living mammal such as a human is executed by the system, which includes the computer 40 storing the treatment control module 54 and the generator 10 .
  • the treatment control module executes the following steps.
  • the size, shape, and position of a lesion are identified with an imaging device 30 .
  • the treatment control module 54 as described above is started by a user.
  • the dimensions of the lesion, the type of probe device, and other parameters for treatment are received either automatically or through user inputs.
  • the treatment control module 54 Based on these inputs, the treatment control module 54 generates a lesion image placed on a grid.
  • the treatment module determines whether it is sufficiently large to require pre-conditioning steps according to the present invention. If so, the control module 54 automatically sets the probe locations and generates an estimated target zone superimposed on the lesion image based on the enlarged ablation target zone expected from adding the pre-conditioning step.
  • the user is allowed to click and drag each of the probes/electrodes.
  • the user can verify that the image of the lesion is adequately covered by the ablation region that is estimated by the treatment control module 54 . If necessary, the user can select a treatment device with additional probes or make other adjustments.
  • the user can then physically place the probes in the patient based on the placement which was selected on the grid.
  • the user can adjust the placement of the probes on the grid if necessary based on the actual placement in the patient. The user is now ready to treat the tissue as described above.
  • Therapeutic energy deliver devices disclosed herein are designed for tissue destruction in general, such as resection, excision, coagulation, disruption, denaturation, and ablation, and are applicable in a variety of surgical procedures, including but not limited to open surgeries, minimally invasive surgeries (e.g., laparoscopic surgeries, endoscopic surgeries, surgeries through natural body orifices), thermal ablation surgeries, non-thermal surgeries, as well as other procedures known to one of ordinary skill in the art.
  • the devices may be designed as disposables or for repeated uses.

Abstract

System for increasing a target zone for electrical ablation includes a treatment control module executable by a processor. The control module directs a pulse generator to apply pre-conditioning pulses to subject tissue cells in a pre-conditioning zone to electroporation, the pre-conditioning zone being smaller than a target ablation zone. After the pre-conditioning pulses have been applied, the control module directs the pulse generator to apply treatment pulses to electrically ablate the tissue cells in the target ablation zone. The pre-conditioning pulses cause the pre-conditioning zone to have a much higher conductivity so that the zone acts as a larger electrode area when the treatment pulses are applied, which results in a much larger target ablation zone than otherwise possible.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Application No. 61/596,436, filed Feb. 8, 2012, which is incorporated by reference herein.
  • This application is also related to PCT International Application Number PCT/US10/29243, filed Mar. 30, 2010 and entitled “System and Method for Estimating a Treatment Region for a Medical Treatment Device and for Interactively Planning a Treatment of a Patient”, which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a medical treatment device for ablating a target tissue zone. More particularly, the present application relates to a system and method for increasing a target tissue zone for electrical ablation.
  • BACKGROUND OF THE INVENTION
  • Devices for delivering therapeutic energy such as an ablation device using irreversible electroporation (IRE) include a pulse generator and one or more electrodes coupled to the generator. The pulse generator delivers the therapeutic energy to a targeted tissue through the electrodes, thereby causing ablation of the tissue.
  • Once a target treatment area/region is located within a patient, the electrodes of the device are placed in such a way as to create a treatment zone that surrounds the target treatment region.
  • Prior to treatment, a treatment planning system is used to generate an estimated treatment region that completely covers the target treatment region. The estimated region is used by a physician to plan where to place the electrodes in the patient.
  • This can be effective when the target area is relatively small, e.g., less than 2 cm in length. However, when the target area is much larger, e.g., larger than 3 cm in length, the physician may be forced to use a large number of electrodes, e.g., 4 or more electrodes. This makes accurately placing the electrodes much more difficult as moving one electrode affects the spacing from all other electrodes.
  • Alternatively, the large target area can be divided into two or more smaller areas and the treatment procedure for one area can be repeated to cover the other divided areas. However, this makes the entire treatment procedure much longer. The longer procedure makes it riskier for the patient since the patient would have to stay on an operating table much longer, often with an exposed body portion to be treated. The longer procedure also makes the procedure more expensive.
  • Therefore, it would be desirable to provide a system and method for increasing a target tissue zone for electrical ablation for a given set of electrodes.
  • SUMMARY OF THE DISCLOSURE
  • Disclosed herein is a system and method of pre-conditioning a target tissue near an electrode to increase a target ablation zone. The system includes a memory, a processor coupled to the memory and a treatment control module. The treatment control module stored in the memory and executable by the processor, the treatment control module applies through at least one electrode a plurality of pre-conditioning pulses to subject tissue cells in a pre-conditioning zone surrounding the electrode to electroporation, the pre-conditioning zone being smaller than a target ablation zone. After the pre-conditioning pulses have been applied, the control module applies a plurality of treatment pulses in an amount sufficient to electrically ablate the tissue cells in the target ablation zone. Advantageously, the pre-conditioning pulses cause the pre-conditioning zone to have a much higher conductivity so that the zone acts as a larger electrode area when the treatment pulses are applied, which results in a much larger target ablation zone than otherwise possible.
  • In another aspect, the treatment control module applies the plurality of treatment pulses in an amount sufficient to subject the tissue cells in the target ablation zone to irreversible electroporation or supra-poration.
  • In another aspect, the treatment control module applies the pre-conditioning pulses that have a shorter pulse width than the treatment pulses.
  • In another aspect, the treatment control module applies the pre-conditioning pulses in an amount sufficient to subject tissue cells in the pre-conditioning zone to irreversible electroporation.
  • In another aspect, the treatment control module waits at least 30 seconds after the pre-conditioning pulses have been applied to allow an electrical conductivity in the pre-conditioning zone to increase.
  • In another aspect, the treatment control module waits at least two minutes after the pre-conditioning pulses have been applied to allow an electrical conductivity in the pre-conditioning zone to increase.
  • In another aspect, while the pre-conditioning pulses are being applied, the treatment control module continuously monitors current to adjust at least one pulse parameter for the pre-conditioning pulses.
  • In another aspect, after the pre-conditioning pulses have been applied, the treatment control module continuously monitors impedance and determines when to apply the treatment pulses.
  • In another aspect, the treatment control module applies the pre-conditioning pulses that have a shorter pulse width than the treatment pulses, and waits at least 30 seconds after the pre-conditioning pulses have been applied to allow an electrical conductivity in the pre-conditioning zone to increase.
  • In another aspect, the treatment control module applies a test pulse through the electrode and determines at least one pulse parameter for the pre-conditioning pulses based on the applied test pulse.
  • In another aspect, treatment control module applies a test pulse through the electrode after the pre-conditioning pulses have been applied, and based on the applied test pulse, determines whether to repeat the application of the pre-conditioning pulses or proceed to application of the treatment pulses.
  • In another aspect, the treatment control module determines whether to repeat the application of the pre-conditioning pulses based on an electrical conductivity derived from the test pulse.
  • According to another aspect of the invention, a method for increasing a target zone for electrical ablation is provided. The method includes positioning at least one electrode near a target ablation zone and applying through the positioned electrode a plurality of pre-conditioning pulses to subject tissue cells in a pre-conditioning zone surrounding the electrode to electroporation, the pre-conditioning zone being smaller than the target ablation zone. After the pre-conditioning pulses have been applied, the method further includes applying a plurality of treatment pulses in an amount sufficient to electrically ablate the tissue cells in the target ablation zone.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates several components of a medical treatment system to treat a patient according to the present invention.
  • FIG. 2 is a schematic diagram of a treatment control computer of the present invention.
  • FIG. 3 is a screen shot of an “Information” screen of a treatment control module showing various input boxes.
  • FIG. 4 is a screen shot of a “Probe Selection” screen of the treatment control module showing a side view and top view of the four probe array and an example of the general shape of the treatment zone that can be generated by a four probe array.
  • FIG. 5 is a screen shot of a “Probe Placement Process” screen of the treatment control module.
  • FIG. 6 illustrates an example of a three probe array defining three individual treatment zones, which combine to form a combined treatment region.
  • FIG. 7 illustrates details of the generator shown in FIG. 1.
  • FIG. 8 illustrates an image of a sample pre-conditioned tissue zone surrounded by a sample ablation zone.
  • FIG. 9 illustrates another image of a sample pre-conditioned tissue zone surrounded by a sample ablation zone.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Throughout the present teachings, any and all of the one, two, or more features and/or components disclosed or suggested herein, explicitly or implicitly, may be practiced and/or implemented in any combinations of two, three, or more thereof, whenever and wherever appropriate as understood by one of ordinary skill in the art. The various features and/or components disclosed herein are all illustrative for the underlying concepts, and thus are non-limiting to their actual descriptions. Any means for achieving substantially the same functions are considered as foreseeable alternatives and equivalents, and are thus fully described in writing and fully enabled. The various examples, illustrations, and embodiments described herein are by no means, in any degree or extent, limiting the broadest scopes of the claimed inventions presented herein or in any future applications claiming priority to the instant application.
  • One embodiment of the present invention is illustrated in FIG. 1. One or more probes/electrodes 22 deliver therapeutic energy and are powered by a voltage pulse generator 10 that generates high voltage pulses as therapeutic energy such as pulses capable of irreversibly electroporating the tissue cells. In the embodiment shown, the voltage pulse generator 10 includes six separate receptacles for receiving up to six individual probes 22 which are adapted to be plugged into the respective receptacle. The receptacles are each labeled with a number in consecutive order. In other embodiments, the voltage pulse generator can have any number of receptacles for receiving more or less than six probes.
  • In the embodiment shown, each probe 22 includes either a monopolar electrode or bipolar electrodes having two electrodes separated by an insulating sleeve. In one embodiment, if the probe includes a monopolar electrode, the amount of exposure of the active portion of the electrode can be adjusted by retracting or advancing an insulating sleeve relative to the electrode. See, for example, U.S. Pat. No. 7,344,533, which is incorporated by reference herein. The generator 10 is connected to a treatment control computer 40 having input devices such as keyboard 12 and a pointing device 14, and an output device such as a display device 11 for viewing an image of a target treatment region such as a lesion 300 surrounded by a safety margin 301. The pulse generator 10 is used to treat a lesion 300 inside a patient 15. An imaging device 30 includes a monitor 31 for viewing the lesion 300 inside the patient 15 in real time. Examples of imaging devices 30 include ultrasonic, CT, MRI and fluoroscopic devices as are known in the art.
  • The present invention includes computer software (treatment control module 54) which assists a user to plan for, execute, and review the results of a medical treatment procedure, as will be discussed in more detail below. For example, the treatment control module 54 assists a user to plan for a medical treatment procedure by enabling a user to more accurately position each of the probes 22 of the pulse generator 10 in relation to the lesion 300 in a way that will generate the most effective treatment zone. The treatment control module 54 can display the anticipated treatment zone based on the position of the probes and the treatment parameters. The treatment control module 54 can display the progress of the treatment in real time and can display the results of the treatment procedure after it is completed. This information can be used to determine whether the treatment was successful and whether it is necessary to re-treat the patient.
  • For purposes of this application, the terms “code”, “software”, “program”, “application”, “software code”, “software module”, “module” and “software program” are used interchangeably to mean software instructions that are executable by a processor.
  • The “user” can be a physician or other medical professional. The treatment control module 54 executed by a processor outputs various data including text and graphical data to the monitor 11 associated with the generator 10.
  • Referring now to FIG. 2, the treatment control computer 40 of the present invention manages planning of treatment for a patient. The computer 40 is connected to the communication link 52 through an I/O interface 42 such as a USB (universal serial bus) interface, which receives information from and sends information over the communication link 52 to the voltage generator 10. The computer 40 includes memory storage 44 such as RAM, processor (CPU) 46, program storage 48 such as ROM or EEPROM, and data storage 50 such as a hard disk, all commonly connected to each other through a bus 53. The program storage 48 stores, among others, a treatment control module 54 which includes a user interface module that interacts with the user in planning for, executing and reviewing the result of a treatment. Any of the software program modules in the program storage 48 and data from the data storage 50 can be transferred to the memory 44 as needed and is executed by the CPU 46.
  • In one embodiment, the computer 40 is built into the voltage generator 10. In another embodiment, the computer 40 is a separate unit which is connected to the voltage generator through the communication link 52. In a preferred embodiment, the communication link 52 is a USB link.
  • In one embodiment, the imaging device 30 is a stand alone device which is not connected to the computer 40. In the embodiment as shown in FIG. 1, the computer 40 is connected to the imaging device 30 through a communication link 53. As shown, the communication link 53 is a USB link. In this embodiment, the computer can determine the size and orientation of the lesion 300 by analyzing the data such as the image data received from the imaging device 30, and the computer 40 can display this information on the monitor 11. In this embodiment, the lesion image generated by the imaging device 30 can be directly displayed on the grid 200 of the monitor 11 of the computer running the treatment control module 54. This embodiment would provide an accurate representation of the lesion image on the grid 200, and may eliminate the step of manually inputting the dimensions of the lesion in order to create the lesion image on the grid 200. This embodiment would also be useful to provide an accurate representation of the lesion image if the lesion has an irregular shape.
  • The basic functionality of the computer software (treatment control module 54) will now be discussed in relation to the following example.
  • It should be noted that the software can be used independently of the generator 10. For example, the user can plan the treatment in a different computer as will be explained below and then save the treatment parameters to an external memory device, such as a USB flash drive (not shown). The data from the memory device relating to the treatment parameters can then be downloaded into the computer 40 to be used with the generator 10 for treatment.
  • After the treatment control module 54 is initialized, it displays an “Information” screen with various input boxes as shown in FIG. 3. A keyboard or other input device 12, together with a mouse or other pointing device 14 (see FIG. 1) are used to input the data. Any data that is inputted into the input boxes can be saved into internal or external memory along with a record of the treatment as described below for future reference. The basic patient information can be inputted, such as a patient ID number in input box 100, the name of the patient in input box 101, and the age of the patient in input box 102. The user can enter clinical data, such as the clinical indication of the treatment in input box 114. The date of the procedure is automatically displayed at 111 or can be inputted by the user in another embodiment. The user can enter other case information such as the name of the physician in input box 112 and any specific case notes in input box 113.
  • The dimensions of the lesion 300 are determined from viewing it on the monitor 31 of the imaging device 30 (see FIG. 1) such as an ultrasonic imaging device and using known methods to calculate the dimensions from the image generated from the imaging device 31. The dimensions of the lesion 300 (length at input box 103, width at input box 104, and depth at input box 105) are inputted into the program. A safety margin is selected at input box 106 which will surround the entire lesion 300 in three dimensions. According to the size of the safety margin that is selected, a target treatment region is automatically calculated and is displayed in boxes 107, 108, and 109 as shown. In one embodiment, the safety margin value may be set to zero. For example, when treating a benign tumor, a safety margin may not be necessary.
  • In the embodiment shown in FIG. 3, the user has indicated that the lesion that will be treated has a length of 2 cm, width of 1 cm and a depth of 1 cm. With a user specified margin of 1 cm (which is a default margin setting), the target treatment region has a length of 4 cm, width of 3 cm and a depth of 3 cm.
  • The user can select the “ECG synchronization” option by clicking the circle in the box 110 in order to synchronize the pulses with an electrocardiogram (ECG) device, if such a device is being used during the procedure. The other options available for treatment that are included in box 110 can include an option for “90 PPM” (pulses per minute) or “240 PPM”. The user should select at least one of the three options provided in box 110. After all of the necessary data has been inputted, the user clicks on the “Next” button with a pointing device 14 to proceed to the next screen described below.
  • Further regarding the ECG synchronization option, if this circle is selected in window 110, the treatment control module 54 will test this functionality to verify that the system is working properly. The treatment control module 54 can automatically detect whether an error has occurred during the testing phase of the ECG feature. The detectable errors include, but are not limited to, “no signal” (such as no pulses for 3.5 seconds) and “noisy” (such as pulses occurring at a rate greater than 120 beats per minute for at least 3.5 seconds).
  • The treatment control module 54 can synchronize energy release with cardiac rhythm by analyzing cardiac output such as electrocardiogram results (or other cardiac function output) and sending synchronization signals to a controller of the pulse generator 10. The control module 54 is also capable of generating internal flags such as a synchronization problem flag and a synchronization condition flag to indicate to users on a graphic user interface a synchronization status, so that energy pulse delivery can be synchronized with the cardiac rhythm for each beat (in real-time) or aborted as necessary for patient safety and treatment efficiency.
  • Specifically, the control module 54 synchronizes energy pulses such as IRE (irreversible electroporation) pulses with a specific portion of the cardiac rhythm. The module uses the R-wave of the heartbeat and generates a control signal to the pulse generator 10 indicating that this portion of the heartbeat is optimal for release of IRE pulses. For clarity, the S wave would be an optimal time for delivery of an energy pulse, but due to the fact that the S wave ends nebulously in some cases, the R wave is used as an indicator to start timing of energy release.
  • More specifically, the synchronization feature of the control module 54 allows for monitoring of heart signals so as to ensure that changes, maladies, and other alterations associated with the heartbeat are coordinated such that pulses from the pulse generator 10 are released at the proper time, and that if the heartbeat is out of its normal rhythm, that the release of energy is either altered or aborted.
  • Next, the user can select the number of probes that the user believes will be necessary to produce a treatment zone which will adequately cover the lesion 300 and any safety margin 301. The selection is made by clicking the circle next to each type of device, as shown in the “Probe Selection” screen, illustrated in FIG. 4.
  • In one embodiment, a “Probes Selection Status” box 199 identifies which of the receptacles, if any, on the generator 10 have been connected to a probe by displaying the phrase “Connected” or the like next to the corresponding probe number.
  • In one embodiment, each receptacle includes an RFID device and a connector for each probe which connects to the receptacle and includes a compatible RFID device, so that the treatment control module 54 can detect whether or not an authorized probe has been connected to the receptacle on the generator 10 by detecting a connection of the compatible RFID devices. If an authorized probe is not connected to a receptacle on the generator, the phrase “Not Connected” or the like will appear next to the probe number. In addition, the color of each probe shown in the “Probes Selection Status” box 199 can be used to indicate whether or not each receptacle on the generator is connected to a compatible probe. This feature allows the user to verify that the requisite number of probes are properly connected to the generator 10 before selecting a probe type for the treatment procedure. For example, if the treatment control module 54 detects a problem with the probe connection status (e.g. selecting a three probe array when only two probes are connected to the generator), it can notify the user by displaying an error message.
  • The user can select which of the connected probes will be used to perform the treatment procedure, by clicking on the box next to the selected probes in the “Probes Selection Status” box 199. By default the treatment control module 54 will automatically select probes in ascending numerical order, as they are labeled.
  • Referring to FIG. 4, circle 150 is used to select a four probe array. FIG. 4 illustrates a side view 151 and top view 152 of the four probe array and an example of the general shape of the treatment zone that can be generated by a four probe array. In the illustrated example, the exposed portion of each of the electrodes as shown is 20 mm in length and each pair of the four probes are equally spaced from each other by 15 mm, as measured at four places (PLCS) along the perimeter.
  • FIG. 5 illustrates a “Probe Placement Process” screen of one aspect of the invention. The screen illustrated by FIG. 5 shows a lesion 300 according to the dimensions which were inputted on the “Information” screen (see FIG. 3) along with a safety margin 301, if any, that was previously inputted. In the example depicted in FIG. 5, the lesion 300 has a length of 2.0 cm and a width of 1.0 cm, and the device selected on the “Probe Selection” screen (see FIG. 4) is a four probe array. The lesion 300 is displayed near the center of an x-y grid 200 with the distance between two adjacent grid lines representing 1 mm. Each of the four probes 201, 202, 203, 204 is displayed in the grid 200 and each probe can be manually positioned within the grid by clicking and dragging the probe with the pointing device 14. Two fiducials 208, 209 labeled “A” and “B”, respectively, are also displayed on the grid 200 and are used as a point of reference or a measure as will be described below.
  • The amount of longitudinal exposure of the active electrode portion for each probe that has already been manually adjusted by the user as explained above can be manually inputted in input box 210, which can be selected by the user according to the depth (z) of the lesion. In this way, the treatment control module 54 can generate an estimated treatment zone according to the treatment parameters, and locations and depths of the probes. In one embodiment, a second x-z grid is displayed on the monitor 11 of the computer running the treatment control module 54. In one embodiment, the treatment control module 54 can automatically calculate preferred values for the amount of longitudinal exposure of the active electrode portions based on the size and shape of the lesion. The depth (z) of the electric field image can be calculated analytically or with interpolation and displayed on the x-z grid. Because the distribution of the electric field (i.e., expected treatment region) between two monopolar electrodes may “dip in” along the boundary line (e.g., a peanut shaped treatment region due to large spacing between the two electrodes where the width of the region is smaller in the middle; see for example region 305 in FIG. 9) depending on the electrode location and the applied voltage, it is beneficial to have an x-z grid included on the monitor. For example, if this “dip” of the boundary line travels into, rather than surround/cover, the lesion region, then the targeted region may not be fully treated. As a default to ensure treatment of the entire lesion region, the probe depth placement and the exposure length may be set unnecessarily higher to ensure erring on the safe side. However, this will potentially treat a much larger volume than needed, killing healthy surrounding tissue, which can be an issue when treating sensitive tissues such as the pancreas, brain, etc. By optimizing the treatment depth (z) together with the width (x) and height (y), this effect may be reduced, further enhancing procedural protocol and clinical outcome.
  • The probe dock status is indicated in box 210, by indicating if the probes are “docked” or “undocked”. The “UnDock Probes” button allows the user to “unplug” the probes from the generator while the “Probe Placement Process” screen is displayed without causing error messages. In normal operation, the user plugs the probes into the generator on the “Probe Selection” screen, and then the probes are “authorized” as being compatible probes according to the RFID devices, as discussed above. When the user proceeds to the “Probe Placement Process” screen, the software requires that all the selected probes remain plugged into the generator, or else the software will display an error message (e.g. “Probe #2 unplugged”, etc.), and will also force the user back to the “Probe Selection” screen. However, sometimes doctors may want to perform another scan of the lesion or perform some other procedure while leaving the probes inserted in the patient. But, if the procedure cannot be performed near the generator, the probes are unplugged from the generator. If the user selects the “UnDock Probes” button, this will allow the probes to be unplugged from the generator without causing an error message. Then, after the user has performed the other procedure that was required, he can re-attach the probes to the generator, and then select “Dock Probes” in input box 210. In this way, the user will not receive any error messages while the “Probe Placement Process” screen is displayed.
  • There is a default electric field density setting (Volts/cm) which is shown in input box 211. In the example, the default setting is 1500 Volts/cm. This number represents the electric field density that the user believes is needed to effectively treat the cells, e.g., ablate the tissue cells. For example, 1500 Volts/cm is an electric field density that is needed to irreversibly electroporate the tissue cells. Based on the number selected in input box 211, the treatment control module 54 automatically adjusts the voltage (treatment energy level) applied between the electrodes, as shown in column 222.
  • Box 280 allows a user to select between two different Volts/cm types, namely “Linear” or “Non-Linear Lookup”.
  • The default Volts/cm setting is “Linear”, in which case the Voltage that is applied between a given pair of electrodes, as shown in column 222, is determined by the following formula:

  • Voltage=xd,  (1)
      • where x=the electric field density setting (Volts/cm) shown in column 225, which is based on the value from box 211, and
      • where d=the distance (cm) between the given pair of electrodes shown in column 226.
        Therefore, when “Linear” is selected, the Voltage that is applied between a given pair of electrodes is directly proportional to the Distance between the given electrode pair in a linear relationship.
  • If the user selects “Non-Linear Lookup” in box 280, then the Voltage that is applied between the given pair of electrodes will be similar to the Voltage values for a “Linear” selection when a pair of electrodes are closely spaced together (e.g. within about 1 cm). However, as a pair of given electrodes are spaced farther from one another, a “Non-Linear Lookup” will produce lower Voltages between the given pair of electrodes as compared to the Voltage values for a “Linear” selection at any given distance. The “Non-Linear Lookup” feature is particularly useful for reducing “popping” during treatment. “Popping” refers to an audible popping noise that sometimes occurs, which is believed to be caused by a plasma discharge from high voltage gradients at the tip of the electrodes. The “Non-Linear Lookup” feature can also minimize any swelling of the tissue that might occur as a result of a treatment. The Voltage values used for the “Non-Linear Lookup” selection can be pre-determined based on animal experiments and other research. In one embodiment, different tissue types can each have their own “Non-Linear Lookup” table. In the example shown, the tissue being treated is prostate tissue.
  • The details of the treatment parameters are displayed in window 270. The firing (switching) sequence between probes is listed automatically in window 270. In the example, the firing sequence involves six steps beginning with between probes 1 and 2, then probes 1 and 3, then probes 2 and 3, then probes 2 and 4, then probes 3 and 4, and then probes 4 and 1. As shown, the polarity of each of the probes may switch from negative to positive according to step of the firing sequence. Column 220 displays which probe is the positive probe (according to a number assigned to each probe) for each step. Column 221 displays which probe is the negative probe (according to a number assigned to each probe) for each step. Column 222 displays the actual voltage generated between each probe during each step of the firing sequence. In the example, the maximum voltage that can be generated between probes is limited by the capabilities of the generator 10, which in the example is limited to a maximum of 3000 Volts. Column 223 displays the length of each pulse that is generated between probes during each respective step of the firing sequence. In the example, the pulse length is predetermined and is the same for each respective step, and is set at 100 microseconds. Column 224 displays the number of pulses that is generated during each respective step of the firing sequence. In the example, the number of pulses is predetermined and is the same for each respective step, and is set at 90 pulses which are applied in a set of 10 pulses at a time. Column 225 displays the setting for Volts/cm according to the value selected at input box 211. Column 226 displays the actual distance between the electrodes (measured in cm), which is automatically calculated according to the placement of each probe in the grid 200.
  • The treatment control module 54 can be programmed to calculate and display the area of the combined treatment regions on the grid 200 by several different methods.
  • Each method determines a boundary line surrounding a treatment zone that is created between a pair of electrodes. By combining a plurality of treatment zones with each treatment zone being defined by a pair of electrodes, a combined treatment region can be displayed on the x-y grid. FIG. 6 illustrates three electrodes 201 (E1), 202 (E2), 203 (E3) defining three individual treatment zones 311, 312, 313, which combine to form a combined treatment region 315 which is shown with hatched lines.
  • As discussed above, the monitor can further include an x-z grid to illustrate the depth of the lesion and the shape of the treatment region. The shape of the treatment zone in the x-z grid will vary according to the selected amounts of electrode exposure for each probe and can be determined by one or more methods.
  • In one embodiment, the treatment boundary line that is created between two points on the x-y grid can be rotated about an axis joining the two points in order to generate the treatment region boundary line on the x-z grid. In this embodiment, several points may be selected along the exposed length of the active electrode portion for each probe at various depths (z). A three-dimensional combined treatment region can then be generated by determining the boundary line on the x-y grid between each individual pair of points and then rotating the boundary line along the axis joining each pair of points. The resulting boundary lines can be combined to create a three dimensional image that is displayed on the monitor.
  • The following is an alternate method for determining a boundary line on the x-z grid, thereby determining a three dimensional treatment region. This example describes a two probe array with the probes being inserted in a parallel relationship and with the probes having the same amount of exposed portions of the electrode. In this example, the exposed portions of each probe start at the same “uppermost” depth (z) and end at the same “lowermost” depth (z). First, a treatment zone boundary line is created in the x-y plane at the uppermost depth (z). Next, the treatment zone boundary line is repeatedly created stepwise for all subsequently lower depths (z), preferably evenly spaced, until the lowermost depth (z) is reached. The result is a 3-D volume (stacked set of treatment zone boundary lines) having a flat top surface and a flat bottom surface. Next, two new focus points are selected, with the first focus point positioned midway between the probe positions in the x-y grid and near the uppermost depth (z) of the exposed electrode. The second focus point is also positioned midway between the probe positions in the x-y grid, but near the lowermost depth (z) of the exposed electrode. Next, a treatment zone boundary line is created in the x-z grid using one of the methods described earlier. The actual placement of each focus point may be closer together, namely, not positioned in the uppermost and lowermost x-y planes defined by the exposed portions. The placement of each focus point should be selected so that the treatment zone boundary line that is created in the x-z grid closely matches the treatment zone boundary lines that were created in the uppermost and lowermost x-y grids. Next, the treatment zone boundary line that was created in the x-z grid according to the two focus points is rotated about the axis joining the two focus points. This creates the shapes for the upper and lower 3-D volumes which are added to the flat top surface and the flat bottom surface described above.
  • The above methods can be applied by persons of ordinary skill in the art to create 3-D treatment zones between exposed portions of electrodes even when the probes are not parallel to each other and even when the amount of the exposed portion varies with each probe.
  • Furthermore, there are situations where it is advantageous to show multiple boundary zones as a result of a therapy. For example, indicating which regimes undergo no change, reversible electroporation, irreversible electroporation, and conventional thermal damage is possible in accordance with the present invention. In addition, it is possible to output the entire distribution rather than just delineating boundaries.
  • It has been shown repeatedly in the literature that tissue properties are highly variable between tissue types, between individuals, and even within an individual. These changes may result from differences in body fat composition, hydration levels, and hormone cycles. Due to the large dependence of IRE (irreversible electroporation) treatments on tissue conductivity, it is imperative to have accurate values. Therefore, to obtain viable conductivity values prior to treatment, a low amplitude voltage pulse is used between the electrode conductors and the resultant impedance/conductance is measured as a way to determine pertinent tissue property data such as the predicted current. The value determined may then be implemented when assessing field strength and treatment protocol in real time. For example, the resulting impedance or predicted current can be used to set the default electric field density.
  • One method of generating an estimated treatment region between a pair of treatment electrodes is a numerical model based method involving finite element analysis (FEA). For example, U.S. Patent Application Publication No. 2007/0043345, which is hereby incorporated by reference, discloses using FEA models to generate treatment zones between a pair of electrodes (the calculations were performed using MATLAB's finite element solver, Femlab v2.2 (The MathWorks, Inc. Natick, Mass.)).
  • Most engineering problems can be solved by breaking the system into cells where each corner of the cell or mesh is a node. FEA is used to relate each node to each of the other nodes by applying sets of partial differential equations. This type of a system can be coded by scratch, but most people use one of many commercial FEA programs that automatically define the mesh and create the equations given the model geometry and boundary conditions. Some FEA programs only work in one area of engineering, for example, heat transfer and others are known as multiphysics. These systems can convert electricity to heat and can be used for studying the relationships between different types of energy.
  • Typically the FEA mesh is not homogeneous and areas of transition have increased mesh density. The time and resources (memory) required to solve the FEA problem are proportional to the number of nodes, so it is generally unwise to have a uniformly small mesh over the entire model. If possible, FEA users also try to limit the analysis to 2D problems and/or use planes of symmetry to limit the size of the model being considered because even a modest 2D model often requires 30 minutes to several hours to run. By comparison, a 3D Model usually takes several hours to several days to run. A complicated model like a weather system or a crash simulation may take a super computer several days to complete.
  • Depending on the complexity of the FEA models that are required, the purchase price of the FEA modeling software can cost several thousand dollars for a low end system to $30 k for a non linear multiphysics system. The systems that model the weather are custom made and cost tens of millions of dollars.
  • In one example, the steps which are required for generating a treatment zone between a pair of treatment probes using finite element analysis include: (1) creating the geometry of interest (e.g., a plane of tissue with two circular electrodes); (2) defining the materials involved (e.g., tissue, metal); (3) defining the boundary conditions (e.g., Initial voltage, Initial temperature); (4) defining the system load (e.g., change the voltage of the electrodes to 3,000V); (5) determining the type of solver that will be used; (6) determining whether to use a time response or steady state solution; (7) running the model and wait for the analysis to finish; and (8) displaying the results.
  • Using FEA, however, may not be practical for use in calculating and displaying in real time a treatment zone that is created between a pair of treatment probes in accordance with the present invention because of the time required to run these types of analyses. For the present invention, the system should allow a user to experiment with probe placement and should calculate a new treatment zone in less than a few seconds. Accordingly, the FEA model is not appropriate for such use and it would be desirable to find an analytic solution (closed form solution), which can calculate the treatment zones with only simple equations, but which closely approximate the solutions from a numerical model analysis such as the finite element analysis. The closed loop solutions should preferably generate the treatment zone calculation in a fraction of a second so as to allow a physician/user to experiment with probe placement in real time.
  • There are different closed loop (analytical model analysis) methods for estimating and displaying a treatment zone between a pair of treatment probes, which produce similar results to what would have been derived by a numerical model analysis such as FEA, but without the expense and time of performing FEA. Analytical models are mathematical models that have a closed form solution, i.e., the solution to the equations used to describe changes in a system can be expressed as a mathematical analytic function. The following method represents just one of the non-limiting examples of such alternative closed loop solutions.
  • In mathematics, a Cassini oval is a set (or locus) of points in the plane such that each point p on the oval bears a special relation to two other fixed points q1 and q2: the product of the distance from p to q1 and the distance from p to q2 is constant. That is, if the function dist(x,y) is defined to be the distance from a point x to a point y, then all points p on a Cassini oval satisfy the equation:

  • dist(q 1 ,p)×dist(q 2 ,p)=b 2  (2)
  • where b is a constant.
  • The points q1 and q2 are called the foci of the oval.
  • Suppose q1 is the point (a,0), and q2 is the point (−a,0). Then the points on the curve satisfy the equation:

  • ((x−a)2 +y 2)((x+a)2 +y 2)=b 4  (3)
  • The equivalent polar equation is:

  • r 4−2a 2 r 2 cos 2θ=b 4 −a 4  (4)
  • The shape of the oval depends on the ratio b/a. When b/a is greater than 1, the locus is a single, connected loop. When b/a is less than 1, the locus comprises two disconnected loops. When b/a is equal to 1, the locus is a lemniscate of Bernoulli.
  • The Cassini equation provides a very efficient algorithm for plotting the boundary line of the treatment zone that was created between two probes on the grid 200. By taking pairs of probes for each firing sequence, the first probe is set as q1 being the point (a,0) and the second probe is set as q2 being the point (−a,0).
  • The polar equation for the Cassini curve is preferably used because it provides a more efficient equation for computation. The current algorithm can work equally as well by using the Cartesian equation of the Cassini curve. By solving for r2 from eq. (4) above, the following polar equation was developed:

  • r 2 =a 2 cos(2*theta)+/−sqrt(b 4 −a 4 sin2(2*theta))  (5)
      • where a=the distance from the origin (0,0) to each probe in cm; and
      • where b is calculated from the following equation:
  • b 2 = [ V [ ln ( a ) ( 595.28 ) + 2339 ] ( A 650 ) ] 2 ( 6 )
      • where V=the Voltage (V) applied between the probes;
      • where a=the same a from eq. (5); and
      • where A=the electric field density (V/cm) that is required to ablate the desired type of tissue according to known scientific values.
  • As can be seen from the mathematics involved in the equation, r can be up to four separate values for each given value for theta.
  • Example 1
  • If V=2495 Volts; a=0.7 cm; and A=650 V/cm;
  • Then b2=1.376377
  • and then a cassini curve can be plotted by using eq. (5) above by solving for r, for each degree of theta from 0 degrees to 360 degrees.
  • A portion of the solutions for eq. (5) are shown in Table 1 below:
  • where M=a2 cos(2*theta); and L=sqrt(b4−a4 sin2(2*theta))
  • TABLE 1
    Theta r = r = r = r =
    (degrees) sqrt(M + L) −sqrt(M + L) sqrt(M − L) −sqrt(M − L)
    0 1.366154 −1.36615 0 0
    1 1.366006 −1.36601 0 0
    2 1.365562 −1.36556 0 0
    3 1.364822 −1.36482 0 0
    4 1.363788 −1.36379 0 0
    5 1.362461 −1.36246 0 0
    6 1.360843 −1.36084 0 0
    7 1.358936 −1.35894 0 0
    8 1.356743 −1.35674 0 0
    9 1.354267 −1.35427 0 0
    10 1.351512 −1.35151 0 0
    11 1.348481 −1.34848 0 0
    12 1.34518 −1.34518 0 0
    13 1.341611 −1.34161 0 0
    14 1.337782 −1.33778 0 0
    15 1.333697 −1.3337 0 0
  • The above eq. (6) was developed according to the following analysis.
  • The curve from the cassini oval equation was calibrated as best as possible to the 650 V/cm contour line using two 1-mm diameter electrodes with an electrode spacing between 0.5-5 cm and an arbitrary applied voltage.
  • For this worksheet, q1 and q2 reference points (taken to be +/−electrodes) could be moved to locations along the x-axis to points of (±a,0). A voltage could then be selected, and an arbitrary scaling factor (“gain denominator”) would convert this voltage to the corresponding “b” used in eq. (4). The worksheet would then plot the resulting Cassini oval, which has a shape progression with applied voltage beginning as two circles around the electrodes that grow into irregular ellipses before converging into a single “peanut” shape that ultimately becomes an ellipse expanding from the original electrode locations.
  • The Cassini oval creates a reasonable visualization that mimics the shape of numerical results for the field distribution. In order to understand which values or levels correspond to a desired electric field of interest, a calibration involving the b4 term was necessary to develop the relationship between the analytical Cassini oval and the numerical results. This was done through a backwards calibration process defined as follows:
  • 1. A reference contour was selected to correlate the analytical and numerical solutions. This was chosen to be when b/a=1, forming a lemniscate of Bernoulli (the point where the two ellipses first connect, forming “00”).
  • 2. A reference electric field density value was selected to be 650 V/cm.
  • 3. Numerical models were developed to mimic the x-y output from the Cassini oval for scenarios where a=±0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, and 2.5 cm.
  • 4. Models were solved using trial and error to determine which voltage yielded the electric field contour of 650 V/cm in the shape of a lemniscate of Bernoulli.
  • 5. The determined voltage was placed into the Cassini oval electronic worksheet for the same electrode geometry and the “gain denominator” was adjusted until the shape from the cassini oval matched that from the numerical solution.
  • 6. The determined gain denominators for all values of “a” were collected and a calibration plot was made and fitted with a logarithmic trendline of:

  • Gain Denominator=595.28·ln(a)+2339; R 2=0.993  (7)
  • 7. The calibration trendline function shown above was incorporated back into the Cassini Oval spreadsheet. At this point, the worksheet was capable of outputting a field contour of 650 V/cm for any electrode separation distance (±a) and applied voltage (V).
  • 8. The calibration function was then scaled to a desired electric field contour input. This allowed the analytical solution to solve for any electric field for any given a separation distance and voltage. Since the Laplace equation is linear, scaling should provide a good estimate for how other fields would look.
  • Table 1 incorporates all the steps above to yield a single, calibrated Cassini Oval output that analytically predicts the electric field distribution; providing a quick and simple solution for the prediction of IRE (irreversible electroporation) treatment regions that may be adjusted in real-time. The inputs are the electrode location (as a given “±a” distance from the origin along the x-axis), the applied voltage to the energized electrode, and the desired electric field to visualize. The resulting output is a contour representing a threshold where the entire area within it has been subjected to an electric field the one selected; and thus treated by IRE. It is important to remember that the analytical solution was calibrated for an electric field contour of 650 V/cm, and thus yields an accurate approximation for this value. Other field strength contours of interest still yield reasonable results that mimic the overall shape of the electric field. Overall, the analytical solution provided yields consistently good predictions for electric field strengths, and thus, treatment regions of IRE that may be used during treatment planning or analysis.
  • A similar algorithm for calibration can be used for a bipolar electrode.
  • In one example, the diameter of the probe is 0.065 cm, and the lengths of the two electrodes are respectively 0.295 cm and 0.276 cm, separated by an insulation sleeve of 0.315 cm in length. Adapting this scenario to the cassini oval presents some challenges because the distribution is now resulting from the two exposed cylinder lengths, rather than two distinct loci of points. This was solved by calibrating individual electric field contours for the same applied voltage and developing two equations that adjust the separation distance (±a) and gain denominator (GD) according to the equations:

  • a=7*10−9 *E 3−2*10−5 *E 2+0.015*E+6.1619; R 2=0.9806  (8)

  • GD=1.0121*E+1920; R 2=0.9928  (9)
  • where E is the electric field magnitude contour desired.
  • These two equations may then be used to calibrate the cassini ovals into a satisfactory shape to mimic the electric field distribution, and thus treatment region accordingly.
  • FIG. 6 illustrates an example of how to generate a combined treatment zone according to the invention. Three electrodes 201, 202, 203 defining three individual treatment zones 311, 312, 313, combine to form a combined treatment region 315 which is shown with hatched lines. By combining a plurality of treatment zones with each treatment zone being defined by a pair of electrodes, a combined treatment region 315 can be displayed on the x-y grid.
  • FIG. 7 illustrates one embodiment of a pulse generator according to the present invention. A USB connection 52 carries instructions from the user computer 40 to a controller 71. The controller can be a computer similar to the computer 40 as shown in FIG. 2. The controller 71 can include a processor, ASIC (application-specific integrated circuit), microcontroller or wired logic. The controller 71 then sends the instructions to a pulse generation circuit 72. The pulse generation circuit 72 generates the pulses and sends electrical energy to the probes. In the embodiment shown, the pulses are applied one pair of electrodes at a time, and then switched to another pair using a switch 74, which is under the control of the controller 71. The switch 74 is preferably an electronic switch that switches the probe pairs based on the instructions received from the computer 40. A sensor 73 such as a sensor can sense the current or voltage between each pair of the probes in real time and communicate such information to the controller 71, which in turn, communicates the information to the computer 40. If the sensor 73 detects an abnormal condition during treatment such as a high current or low current condition, then it will communicate with the controller 71 and the computer 40 which may cause the controller to send a signal to the pulse generation circuit 72 to discontinue the pulses for that particular pair of probes.
  • The treatment control module 54 can further include a feature that tracks the treatment progress and provides the user with an option to automatically retreat for low or missing pulses, or over-current pulses (see discussion below). Also, if the generator stops prematurely for any reason, the treatment control module 54 can restart at the same point where it terminated, and administer the missing treatment pulses as part of the same treatment.
  • In other embodiments, the treatment control module 54 is able to detect certain errors during treatment, which include, but are not limited to, “charge failure”, “hardware failure”, “high current failure”, and “low current failure”.
  • According to the invention, the treatment control module 54 in the computer 40 directs the pulse generator 10 to apply a plurality of pre-conditioning pulses (first set of pulses) between the electrodes 22 so as to create a “virtual electrode” (i.e., pre-conditioning zone) A1 as shown in FIG. 8. Once the pre-conditioning zone has been created, the control module 54 directs the generator to apply a plurality of treatment pulses (second set of pulses) to the electrodes 22 to ablate substantially all tissue cells in the target ablation zone.
  • If the treatment pulses were applied without the pre-conditioning pulses, then the expected target ablation zone would result in zone A2. However, due to the pre-conditioning zone A1, the resulting ablation zone has been enlarged to zone A3 which is much larger than zone A2.
  • As shown in FIG. 8, the pre-conditioned tissue zone A1 is substantially surrounded by ablation zones A2 and A3. In one exemplary embodiment, at least two electrodes 22 can be provided. The electrodes can be positioned anywhere in or near the target tissue.
  • The pre-conditioning pulses can be 1) IRE pulses that irreversibly electroporate the cell membranes in zone A1, 2) reversible electroporation pulses that temporarily electroporate the cell membranes in zone A1, or 3) pulses that cause irreversible electroporation to some cells and reversible electroporation in other cells in the same zone. Alternatively, the pre-conditioning pulses can even be supraporation type pulses (typically sub-microsecond pulses with 10-80 kV/cm of field strength) that causes disturbances within the cells which tend to weaken them such that when the treatment pulses are applied, the cells in zone A1 are more vulnerable to irreversible electroporation even when the voltage applied may be sufficient for only reversible electroporation. The particular pre-conditioning pulse parameters would depend on many factors such as the type of tissue and the size of zone A1 to be created.
  • The mechanism of action for the increased conductivity in the virtual electrode is as follows. There is a range of non thermal irreversible electroporation (NTIRE). At one end of the range, there is just enough irreversible cell membrane damage to cause cell death. At the other end of the range, there is so much cell membrane damage that the membrane ruptures (similar to a balloon popping). The virtual electrode (highest conductivity tissue) works well in the tissue where the cell membranes have ruptured. Accordingly, the pre-conditioning pulses are preferably those that are capable of causing NTIRE which also causes cell rupturing to at least some of the tissue cells in the pre-conditioning zone. In another aspect, the pre-conditioning pulses are capable of causing NTIRE which also causes cell rupturing to substantially all tissue cells in the pre-conditioning zone.
  • After the target tissue is pre-conditioned using pre-conditioning electrical pulses, the control module 54 directs the pulse generator 10 to apply a set of treatment pulses, thereby forming a second zone of ablation A3 that substantially surrounds pre-conditioning zone A1. As noted above, zone A3 is substantially larger than zone A2 which would be the result from application of only the treatment pulses without the pre-conditioning pulses.
  • To pre-condition at least a portion of the target tissue, a first set of electrical pulses can be delivered to the cells of the target tissue A1 at a predetermined voltage to form a pre-conditioned zone. In one aspect, the applied current that is delivered or electrical impedance during the pre-conditioning pulse application can be measured to adjust the pulse parameters such as the number of pulses that need to be delivered to create the pre-conditioned tissue zone A1. Optionally, one or more test pulses can be delivered to the electrodes before delivering the first set of electrical pulses. In one aspect, the applied current/impedance can be measured using the sensor 73 during the delivery of the test pulses, and any pulse parameter such as the voltage, number of pulses, and the duration of the pulses can be adjusted to create the desired pre-conditioned tissue zone A1 based on the measured current or impedance. In one exemplary embodiment, the first and second sets of electrical pulses can be delivered to the target tissue in the range of from about 2,000 V/cm to about 3,000 V/cm.
  • After the target tissue is pre-conditioned using a first set of electrical pulses, optionally, a predetermined time delay can be commenced before delivering a second set of electrical pulses to the target tissue to allow intra-cellular fluid to escape thereby further increasing the conductance of zone A1. In one exemplary embodiment, the predetermined time delay between the first set of electrical pulses and the second set of electrical pulses can be from about 1 second to about 10 minutes to allow for mixing of intra-cellular and extra-cellular components. Preferably, the waiting period ranges from 30 seconds to 8 minutes, and more preferably 2 minutes to 8 minutes, to allow sufficient time for the intra-cellular fluid to exit the cells.
  • Alternatively, the treatment control module applies a test pulse through the electrode after the pre-conditioning pulses have been applied. Based on the applied test pulse, the module 54 determines whether to repeat the application of the pre-conditioning pulses or proceed to application of the treatment pulses. In one aspect, the treatment control module 54 determines whether to repeat the application of the pre-conditioning pulses based on an electrical conductivity derived from the test pulse. For example, if the electrical conductivity has not been sufficiently increased, the module may decide to repeat the application of pre-conditioning pulses with perhaps lower voltage or shorter pulse width than before.
  • Modeling for the increased ablation area due to an increase in electrode size is known in the art. See, for example, an article by Edd entitled “Mathematical Modeling of Irreversible Electroporation for Treatment Planning”, published in Technology in Cancer Research and Treatment, August 2007, Vol. 6, No. 4, pages 275-286, which is incorporated herein by reference. For more accuracy, experiments could be performed to modify the equations discussed herein.
  • In one aspect, the first set of electrical pulses can comprise about 10 pulses to about 100 pulses. More preferably, the first set of electrical pulses can comprise from about 10 pulses to about 50 pulses. Still more preferably, the first set of electrical pulses can comprise from about 10 pulses to about 20 pulses. In one exemplary embodiment, the first set of electrical pulses can be delivered to the target tissue with each pulse having a pulse duration in a range of from about 10 μsec to about 50 μsec at a voltage between the two electrodes of 2000 to 3000 Volts. In another embodiment, the pre-conditioning electrical pulses can be delivered to the target tissue with each pulse having a duration in a range of from about 10 μsec to about 20 μsec. It has been observed that large ablations using irreversible electroporation require longer pulse widths or durations than smaller pulse width ablations. Narrower pulse widths such as those described herein may be beneficial because such pulses will substantially affect the tissue close to the electrodes 22, with a reduced risk of over-current conditions and reduced joule heating. For example, applying pulses of 20 μsec width will cause irreversible electroporation of a narrow band of tissue substantially around the electrodes 22. The delivery of the first set of electrical pulses can be repeated until a predetermined level of conductivity/impedance is measured in the target tissue. Alternatively, the delivery of the first set of electrical pulses can be repeated until a predetermined number of electrical pulses is delivered to the target tissue. In one example, the predetermined number of pulses can be between about 10 pulses and about 300 pulses. In another example, the predetermined number of pulses can be about 100 pulses.
  • Pre-conditioning the tissue zone A1 around the electrodes 22 causes the tissue surrounding the electrodes 22 to be more conductive and increases the ability of the tissue to electrically couple to the electrodes. If the electrical coupling between the electrodes and the target tissue is enhanced, this allows higher voltages to be delivered and larger ablations to be created. The higher conductivity of the tissue also helps to increase the ablation size of the tissue and to reduce the incidence of arcing from the electrode tips. As the target tissue is pre-conditioned by being irreversibly electroporated, an electric field gradient is established where the target tissue is most conductive near the electrodes 22. In one aspect, the pre-conditioned tissue allows the electric field gradient to become steeper compared to non-pre-conditioned target tissue.
  • The second set of electrical pulses (treatment pulses) can comprise at least 10 pulses and in one embodiment, about 10 pulses to about 100 pulses. In another embodiment, the second set of electrical pulses can comprise about 10 pulses to about 50 pulses. In yet another embodiment, the second set of electrical pulses can comprise about 10 pulses to about 20 pulses. In one exemplary embodiment, the second set of electrical pulses can be delivered to the target tissue with each pulse having a duration in a range of from about 70 μsec to about 100 μsec at a voltage between the two electrodes of 2000 to 3000 Volts. Alternatively, the second set of pulses (treatment pulses) may be supra-poration pulses that have a pulse with of 1 microsecond or less and a voltage of 10 kV/cm or more. Still in another alternative embodiment, the second set of electrical pulses have a pulse width of 0.3 microsecond to 10 microseconds and a pulse application frequency of 50 kHz or higher. The higher frequency of the pulses may reduce or even eliminate movement of the patient and may allow treatment of a zone made of different tissue types.
  • The delivery of an additional second set of pulses to the target tissue and/or the use of predetermined time delays between sets of pulses helps to further increase the ablation zone of the irreversibly electroporated tissue to electric field thresholds that are lower than currently published values. In one embodiment, the first predetermined voltage of the first set of electrical pulses can be greater than the second predetermined voltage of the second set of electrical pulses. In another embodiment, the first predetermined voltage of the first set of electrical pulses can be less than the second predetermined voltage. In yet another embodiment, the first predetermined voltage can be substantially equal to the second predetermined voltage. Typically, however, compared to the pre-conditioning pulses, the treatment pulses have a higher pulse width, higher voltage or both.
  • In one aspect, the virtual electrode A1 can comprise target tissue that has been severely electroporated. Severe electroporation is the formation of pores in cell membranes by the action of high-voltage electric fields. When the cells of the target tissue are severely electroporated, the intracellular components of the cells of the target tissue are destroyed in a very short amount of time, i.e., several minutes compared to two hours to one day in irreversibly electroporated target tissue. The severe electroporation of the cells of the target tissue results in a fatal disruption of the normal controlled flow of material across a membrane of the cells in the target tissue, such that the target tissue comprises substantially no intracellular components. When severely electroporated, the cells of the target tissue catastrophically fail, yet the target tissue cell nuclei are still intact. When severe electroporation occurs and sufficient intra-cellular components have been excreted from the cells of the target tissue, this helps to make the cells of the target tissue locally and highly conductive. When the tissue around the electrodes is highly porated, the local tissue resistance is greatly reduced, and the tissue will couple better to the active electrode. The severely electroporated tissue thus forms a virtual electrode to allow a substantial increase in the target ablation zone.
  • FIG. 9 illustrates at least two severe electroporation zones 49 that are positioned such that they substantially surround at least a portion of the electrodes 22. In these areas of severe electroporation the electrical fields are very high. These areas of target tissue having increased electrical field strength can also have local edema, which is an abnormal accumulation of fluid beneath the skin or in one or more cavities of the body that produces swelling. The increased local fluid content in the target tissue will improve electrical coupling of the target tissue to the electrodes 22. The higher local fluid content will help keep the outer surface of the electrode wet. Further, the mixing of intra-cellular contents that have a high ionic content with extra-cellular fluid contents that have a lower ionic content can increase the local conductivity of the target tissue.
  • In yet another aspect, an agent can be provided and delivered to the target tissue before, during, or after an ablation to improve electrical coupling between the electrode and the target tissue. The agent can be a surface tension modifier, a wetting agent, a liquid, a gel, or any combination thereof. The agent can be delivered through the electrodes to the target tissue. In one exemplary embodiment, one or more of the electrodes 22 can have openings positioned along the outer surface of the electrodes 22. The openings of the electrodes 22 can be in fluid communication with an inner lumen of the electrodes. An agent can be delivered through the lumen of one or more of the electrodes 22 along the outer surface of the electrodes 22. In one exemplary embodiment, the one or more agents can be diffused along the entire length of the electrodes 22 before, during, or after a target tissue ablation. Additional benefits of “wetting” the target tissue either through the target tissue's increased fluid content, as described above, or by manually providing a wetting agent, include a reduced probability of arcing from the electrode to the target tissue. A larger ablation area can also be created by using a larger virtual electrode, as illustrated in FIG. 8. Further, reduced Joule heating occurs around the electrodes 22 as a result of the delivery of shorter or narrower width pulses or pulse durations to the target tissue, which also requires less applied energy. In yet another aspect, a high conductivity fluid can be infused into the target tissue before, during, or after the ablation to increase the local conductivity of the target tissue near the electrodes 22. In one exemplary aspect, the high conductivity fluid can be, e.g., hypertonic saline or a similar liquid.
  • In one embodiment, the ablation process as described above, including the progress thereof, can be monitored by detecting the associated change in impedance (either real, imaginary or complex) through the sensor 73 in the ablated tissue for both the pre-conditioning step and treatment pulse application step. In the pre-conditioning step, once the outer perimeter of the ablated, liquid-like pre-conditioned tissue is defined, the impedance can stabilize or level out. Thus, the progress of the pre-conditioning step can be monitored by measuring changes in impedance, and pre-conditioning pulse application can be discontinued once a change in impedance is no longer observed. Alternatively, once the pre-conditioning pulses have been applied, the treatment control module 54 continuously monitors the change in impedance of tissue between the two electrodes. The impedance should decrease as conductive intra-cellular fluid from the pre-conditioned tissue cells starts to ooze out. Once a predetermined impedance (or a predetermined impedance decrease) has been reached, the treatment control module 54 moves to the step of applying the treatment pulses between the electrodes.
  • In another embodiment, the applied current of the electrical pulses can be continuously measured during pre-conditioning pulse application, and the number of pulses, the voltage level, and the length of the pulses can be adjusted to create a predetermined virtual electrode.
  • Although the present treatment method has been discussed in relation to irreversible electroporation (IRE), the principles of this invention can be applied to any other method where therapeutic energy is applied at more than one point. For example, other methods can include reversible electroporation, supraporation, RF ablation, cryo-ablation, microwave ablation, etc. “Supraporation” uses much higher voltages, in comparison to electroporation, but with shorter pulse widths.
  • In addition to the example parameters described above, specific electro-medical applications of this technology include reversible electroporation as well as irreversible electroporation. This could include reversible or irreversible damage to the external cell membranes or membranes of the organelles, or damage to individual cellular structures such as mitochondrion so as to affect cellular metabolism or homeostasis of voltage or ion levels. Example embodiments for reversible electroporation can involve 1-8 pulses with a field strength of 1-100 V/cm. Other embodiment altering cellular structure adversely involve supraporation pulse generators having a voltage range of 100 kV-300 kV operating with nano-second (sub-microsecond) pulses with a minimum field strength of 2,000V/cm to and in excess of 20,000V/cm between electrodes. Certain embodiments involve between 1-15 pulses between 5 microseconds and 62,000 milliseconds, while others involve pulses of 75 microseconds to 20,000 milliseconds. In certain embodiments the electric field density for the treatment is from 100 Volts per centimeter (V/cm) to 7,000 V/cm, while in other embodiments the density is 200 to 2000 V/cm as well as from 300 V/cm to 1000 V/cm. Yet additional embodiments have a maximum field strength density between electrodes of 250V/cm to 500V/cm. The number of pulses can vary. In certain embodiments the number of pulses is from 1 to 100 pulses. In one embodiment, as described herein, between about 10 pulses and about 100 pulses can be applied at about 2,000 V/cm to about 3,000 V/cm with a pulse width of about 10 μsec to about 50 μsec. After applying these pulses, a predetermined time delay of from about 1 second to about 10 minutes can optionally be commenced in order that intra-cellular contents and extra-cellular contents of the target tissue cells can mix. This procedure can be repeated, as necessary, until a conductivity change is measured in the tissue. Following this step, about 1 pulse to about 300 pulses of about 2,000 V/cm to about 3,000 V/cm can be applied with a pulse width of about 70 μsec to about 100 μsec to widely ablate the tissue. This last step can be repeated until a desired number of ablation pulses is delivered to the tissue, for example, in the range of about 10 pulses to about 300 pulses, more particularly, about 100 pulses. In other embodiments, groups of 1 to 100 pulses (here groups of pulses are also called pulse-trains) are applied in succession following a gap of time. In certain embodiments the gap of time between groups of pulses is 0.5 second to 10 seconds.
  • In summary, a method of increasing the ablation size in a living mammal such as a human is executed by the system, which includes the computer 40 storing the treatment control module 54 and the generator 10. The treatment control module executes the following steps. The size, shape, and position of a lesion are identified with an imaging device 30. The treatment control module 54 as described above is started by a user. The dimensions of the lesion, the type of probe device, and other parameters for treatment are received either automatically or through user inputs. Based on these inputs, the treatment control module 54 generates a lesion image placed on a grid. Based on the lesion size and the number of probes/electrodes to be used, the treatment module determines whether it is sufficiently large to require pre-conditioning steps according to the present invention. If so, the control module 54 automatically sets the probe locations and generates an estimated target zone superimposed on the lesion image based on the enlarged ablation target zone expected from adding the pre-conditioning step.
  • The user is allowed to click and drag each of the probes/electrodes. The user can verify that the image of the lesion is adequately covered by the ablation region that is estimated by the treatment control module 54. If necessary, the user can select a treatment device with additional probes or make other adjustments. The user can then physically place the probes in the patient based on the placement which was selected on the grid. The user can adjust the placement of the probes on the grid if necessary based on the actual placement in the patient. The user is now ready to treat the tissue as described above.
  • Therapeutic energy deliver devices disclosed herein are designed for tissue destruction in general, such as resection, excision, coagulation, disruption, denaturation, and ablation, and are applicable in a variety of surgical procedures, including but not limited to open surgeries, minimally invasive surgeries (e.g., laparoscopic surgeries, endoscopic surgeries, surgeries through natural body orifices), thermal ablation surgeries, non-thermal surgeries, as well as other procedures known to one of ordinary skill in the art. The devices may be designed as disposables or for repeated uses.
  • The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many modifications, variations, and alternatives may be made by ordinary skill in this art without departing from the scope of the invention. Those familiar with the art may recognize other equivalents to the specific embodiments described herein. Accordingly, the scope of the invention is not limited to the foregoing specification.

Claims (23)

1-32. (canceled)
33. A method for increasing a target zone for electrical ablation comprising:
positioning at least one electrode near a target ablation zone; and
applying a first set and a second set of pulses through the electrode, each set of pulses sufficient to irreversibly electroporate tissue cells in the target ablation zone;
wherein a first delay of between 1 and 600 seconds is introduced between the first and second set of pulses.
34. The method of claim 33, wherein the first delay is between 30 and 480 seconds.
35. The method of claim 33, wherein the first delay is between 120 and 480 seconds.
37. The method of claim 33 further comprising:
applying a third set of pulses through the electrode;
wherein a second delay of between 1 and 600 seconds is introduced between the second and third set of pulses.
38. The method of claim 37, wherein the second delay is between 30 and 480 seconds.
39. The method of claim 37, wherein the second delay is between 120 and 480 seconds.
40. The method of claim 37 further comprising:
applying a fourth set of pulses through the electrode;
wherein a third delay of between 1 and 600 seconds is introduced between the third and fourth set of pulses.
41. The method of claim 40, wherein the third delay is between 30 and 480 seconds.
42. The method of claim 40, wherein the third delay is between 120 and 480 seconds.
43. The method of claim 40 further comprising:
applying a fifth set of pulses through the electrode;
wherein a fourth delay of between 1 and 600 seconds is introduced between the fourth and fifth set of pulses.
44. The method of claim 43, wherein the fourth delay is between 30 and 480 seconds.
45. The method of claim 43, wherein the fourth delay is between 120 and 480 seconds.
46. The method of claim 43 further comprising:
applying a sixth set of pulses through the electrode;
wherein a fifth delay of between 1 and 690 seconds is introduced between the fifth and sixth set of pulses.
47. The method of claim 46, wherein the fifth delay is between 30 and 480 seconds.
48. The method of claim 46, wherein the fifth delay is between 120 and 480 seconds.
49. The method of claim 33, wherein pulse widths in the first set of pulses are different than pulse widths in the second set of pulses.
50. The method of claim 33, wherein voltage settings for the first set of pulses are different from voltage settings for the second set of pulses.
51. The method of claim 33, wherein prior to an application of the second set of pulses and subsequent to a start of the application of the first set of pulses, a parameter for the second set of pulses is determined based on an impedance measured from the target zone.
52. The method of claim 33, wherein each set of pulses comprises a pulse-train.
53. A method for increasing a target zone for electrical ablation comprising:
positioning a bipolar electrode near a target ablation zone; and
applying a plurality of sets of pulses through the electrode, each of the sets of pulses being sufficient to irreversibly electroporate tissue cells in the target ablation zone;
wherein a delay of between 1 and 600 seconds is introduced between each of the plurality of sets of pulses.
54. The method of claim 53, wherein the delay is between 30 and 480 seconds.
55. The method of claim 53, wherein the delay is between 120 and 480 seconds.
US14/056,315 2012-02-08 2013-10-17 System and Method for Increasing a Target Zone for Electrical Ablation Abandoned US20140046322A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/056,315 US20140046322A1 (en) 2012-02-08 2013-10-17 System and Method for Increasing a Target Zone for Electrical Ablation
US15/140,832 US10342600B2 (en) 2012-02-08 2016-04-28 System and method for increasing a target zone for electrical ablation
US16/504,542 US20190328446A1 (en) 2012-02-08 2019-07-08 System and Method for Increasing a Target Zone for Electrical Ablation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261596436P 2012-02-08 2012-02-08
US13/762,027 US9414881B2 (en) 2012-02-08 2013-02-07 System and method for increasing a target zone for electrical ablation
US14/056,315 US20140046322A1 (en) 2012-02-08 2013-10-17 System and Method for Increasing a Target Zone for Electrical Ablation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/762,027 Continuation US9414881B2 (en) 2012-02-08 2013-02-07 System and method for increasing a target zone for electrical ablation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/140,832 Continuation US10342600B2 (en) 2012-02-08 2016-04-28 System and method for increasing a target zone for electrical ablation

Publications (1)

Publication Number Publication Date
US20140046322A1 true US20140046322A1 (en) 2014-02-13

Family

ID=48982824

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/762,027 Active 2034-08-20 US9414881B2 (en) 2012-02-08 2013-02-07 System and method for increasing a target zone for electrical ablation
US14/056,315 Abandoned US20140046322A1 (en) 2012-02-08 2013-10-17 System and Method for Increasing a Target Zone for Electrical Ablation
US15/140,832 Active 2033-10-20 US10342600B2 (en) 2012-02-08 2016-04-28 System and method for increasing a target zone for electrical ablation
US16/504,542 Pending US20190328446A1 (en) 2012-02-08 2019-07-08 System and Method for Increasing a Target Zone for Electrical Ablation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/762,027 Active 2034-08-20 US9414881B2 (en) 2012-02-08 2013-02-07 System and method for increasing a target zone for electrical ablation

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/140,832 Active 2033-10-20 US10342600B2 (en) 2012-02-08 2016-04-28 System and method for increasing a target zone for electrical ablation
US16/504,542 Pending US20190328446A1 (en) 2012-02-08 2019-07-08 System and Method for Increasing a Target Zone for Electrical Ablation

Country Status (1)

Country Link
US (4) US9414881B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160157932A1 (en) * 2014-12-01 2016-06-09 Electroblate, Inc. Nanoelectroablation control and vaccination
US9598691B2 (en) 2008-04-29 2017-03-21 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US10117707B2 (en) 2008-04-29 2018-11-06 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US10154874B2 (en) 2008-04-29 2018-12-18 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US10245105B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Electroporation with cooling to treat tissue
US10252050B2 (en) 2016-05-16 2019-04-09 Pulse Biosciences, Inc. Pulse applicator
US10272178B2 (en) 2008-04-29 2019-04-30 Virginia Tech Intellectual Properties Inc. Methods for blood-brain barrier disruption using electrical energy
US10292755B2 (en) 2009-04-09 2019-05-21 Virginia Tech Intellectual Properties, Inc. High frequency electroporation for cancer therapy
US10471254B2 (en) 2014-05-12 2019-11-12 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US10470822B2 (en) 2008-04-29 2019-11-12 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US10543357B2 (en) 2016-09-19 2020-01-28 Pulse Biosciences, Inc. High voltage connectors for pulse generators
US10548665B2 (en) 2016-02-29 2020-02-04 Pulse Biosciences, Inc. High-voltage analog circuit pulser with feedback control
US10694972B2 (en) 2014-12-15 2020-06-30 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US10702337B2 (en) 2016-06-27 2020-07-07 Galary, Inc. Methods, apparatuses, and systems for the treatment of pulmonary disorders
US10729724B2 (en) 2013-06-03 2020-08-04 Pulse Biosciences, Inc. Methods and devices for stimulating an immune response using nanosecond pulsed electric fields
US10857347B2 (en) 2017-09-19 2020-12-08 Pulse Biosciences, Inc. Treatment instrument and high-voltage connectors for robotic surgical system
US10874451B2 (en) 2016-02-29 2020-12-29 Pulse Biosciences, Inc. High-voltage analog circuit pulser and pulse generator discharge circuit
US10946193B2 (en) 2017-02-28 2021-03-16 Pulse Biosciences, Inc. Pulse generator with independent panel triggering
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US11453873B2 (en) 2008-04-29 2022-09-27 Virginia Tech Intellectual Properties, Inc. Methods for delivery of biphasic electrical pulses for non-thermal ablation
US11571569B2 (en) 2019-02-15 2023-02-07 Pulse Biosciences, Inc. High-voltage catheters for sub-microsecond pulsing
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US11707629B2 (en) 2009-05-28 2023-07-25 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US11723710B2 (en) 2016-11-17 2023-08-15 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US11779395B2 (en) 2011-09-28 2023-10-10 Angiodynamics, Inc. Multiple treatment zone ablation probe
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11931096B2 (en) 2010-10-13 2024-03-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US11950835B2 (en) 2019-06-28 2024-04-09 Virginia Tech Intellectual Properties, Inc. Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy
US11957405B2 (en) 2013-06-13 2024-04-16 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164930A1 (en) * 2015-04-10 2016-10-13 Angiodynamics Inc. System and method for irreversible electroporation with thermally controlled electrodes
JP6301926B2 (en) 2012-08-09 2018-03-28 ユニバーシティ オブ アイオワ リサーチ ファウンデーション Catheter, catheter system, and method for piercing tissue structure
EP3030185B1 (en) 2013-08-06 2023-05-10 Memorial Sloan Kettering Cancer Center System and computer-accessible medium for in-vivo tissue ablation and/or damage
EP3068327B8 (en) 2013-11-14 2022-02-23 RM2 Technology LLC Systems, and apparatuses for tissue ablation using electrolysis and permeabilization
EP3091921B1 (en) 2014-01-06 2019-06-19 Farapulse, Inc. Apparatus for renal denervation ablation
EP3495018B1 (en) * 2014-05-07 2023-09-06 Farapulse, Inc. Apparatus for selective tissue ablation
EP3154464A4 (en) 2014-06-12 2018-01-24 Iowa Approach Inc. Method and apparatus for rapid and selective tissue ablation with cooling
WO2015192027A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective transurethral tissue ablation
EP3206613B1 (en) 2014-10-14 2019-07-03 Farapulse, Inc. Apparatus for rapid and safe pulmonary vein cardiac ablation
CN104809702B (en) * 2015-04-22 2018-07-03 上海理工大学 Diagnosis by feeling the pulse curve image grid removing method based on frequency domain processing
WO2016178697A1 (en) * 2015-05-01 2016-11-10 Inter Science Gmbh Methods, systems, and apparatuses for tissue ablation using pulse shape designs
US20160361109A1 (en) * 2015-06-11 2016-12-15 Massachusetts Institute Of Technology Methods for inducing electroporation and tissue ablation
CN107921258B (en) * 2015-08-06 2021-09-07 美敦力公司 Cardiac pulsed field ablation
US11337749B2 (en) 2015-10-07 2022-05-24 Mayo Foundation For Medical Education And Research Electroporation for obesity or diabetes treatment
US20170189097A1 (en) 2016-01-05 2017-07-06 Iowa Approach Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10660702B2 (en) 2016-01-05 2020-05-26 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10130423B1 (en) 2017-07-06 2018-11-20 Farapulse, Inc. Systems, devices, and methods for focal ablation
WO2017218734A1 (en) 2016-06-16 2017-12-21 Iowa Approach, Inc. Systems, apparatuses, and methods for guide wire delivery
IT201600068691A1 (en) * 2016-07-01 2018-01-01 Igea S P A HANDLING AND CONTROL SYSTEM FOR EXPANDABLE ELECTRODES OF A HANDPIECE USED IN AN ELECTRO-PORTION PROCESS
CN106388933B (en) * 2016-09-14 2017-10-10 上海睿刀医疗科技有限公司 Electrode for irreversible electroporation device
EP3500199B1 (en) * 2016-11-29 2021-07-28 St. Jude Medical, Cardiology Division, Inc. Electroporation systems and catheters for electroporation systems
AU2017377003B2 (en) * 2016-12-13 2022-05-19 Novocure Gmbh Treating patients with TTFields with the electrode positions optimized using deformable templates
US11229478B2 (en) 2017-02-08 2022-01-25 Medtronic, Inc. Profile parameter selection algorithm for electroporation
EP3576839B1 (en) 2017-04-10 2022-10-26 St. Jude Medical, Cardiology Division, Inc. Electroporation system and method of preconditioning tissue for electroporation therapy
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
US10617867B2 (en) 2017-04-28 2020-04-14 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue
US10850095B2 (en) * 2017-08-08 2020-12-01 Pulse Biosciences, Inc. Treatment of tissue by the application of energy
US11590345B2 (en) 2017-08-08 2023-02-28 Pulse Biosciences, Inc. Treatment of tissue by the application of energy
CN115844523A (en) 2017-09-12 2023-03-28 波士顿科学医学有限公司 Systems, devices, and methods for ventricular focal ablation
CN112118798A (en) 2018-05-07 2020-12-22 法拉普尔赛股份有限公司 Systems, devices, and methods for filtering high voltage noise induced by pulsed electric field ablation
EP3790486A1 (en) 2018-05-07 2021-03-17 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
JP7399881B2 (en) 2018-05-07 2023-12-18 ファラパルス,インコーポレイテッド epicardial ablation catheter
EP3852661A1 (en) 2018-09-20 2021-07-28 Farapulse, Inc. Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
JP2022509316A (en) * 2018-12-03 2022-01-20 3メンシオ メディカル イメージング ビー ヴイ Methods, devices and systems for planning intracavitary probe procedures
CN109820592B (en) * 2018-12-31 2021-01-22 杭州睿笛生物科技有限公司 Self-adaptive pulse ablation instrument based on electrocardiographic waveform
US10625080B1 (en) 2019-09-17 2020-04-21 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US11065047B2 (en) 2019-11-20 2021-07-20 Farapulse, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11497541B2 (en) 2019-11-20 2022-11-15 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US10842572B1 (en) 2019-11-25 2020-11-24 Farapulse, Inc. Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines
CN113440247B (en) * 2020-08-28 2022-06-17 苏州博思得电气有限公司 High-frequency irreversible electroporation tumor treatment system
US20220071692A1 (en) * 2020-09-08 2022-03-10 Biosense Webster (Israel) Ltd. Impedance based irreversible-electroporation (ire)
US20220096151A1 (en) * 2020-09-30 2022-03-31 Boston Scientific Scimed Inc. Pretreatment waveform for irreversible electroporation
CN113098448B (en) * 2021-04-01 2023-07-04 杭州维纳安可医疗科技有限责任公司 Pulse generating method, pulse generating device, storage medium, and electronic apparatus
WO2022214870A1 (en) 2021-04-07 2022-10-13 Btl Medical Technologies S.R.O. Pulsed field ablation device and method
IL309432A (en) 2021-07-06 2024-02-01 Btl Medical Dev A S Pulsed field ablation device and method
CN113440249B (en) * 2021-08-06 2022-05-13 上海睿刀医疗科技有限公司 Electrode needle ablation data determination method and device, electronic equipment and storage medium
CN114533249B (en) * 2022-02-11 2024-01-16 重庆千恩医疗科技有限公司 Self-adaptive follow-up pulse ablation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024359A1 (en) * 1995-06-07 2006-02-02 Walker Jeffrey P Drug delivery system and method
US20060293731A1 (en) * 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating tumors using electroporation
US20070066957A1 (en) * 2004-11-02 2007-03-22 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US20100030211A1 (en) * 2008-04-29 2010-02-04 Rafael Davalos Irreversible electroporation to treat aberrant cell masses
US20100250209A1 (en) * 2009-03-31 2010-09-30 Pearson Robert M System and method for estimating a treatment region for a medical treatment device
US20100256628A1 (en) * 2009-04-03 2010-10-07 Angiodynamics, Inc. Irreversible Electroporation (IRE) for Congestive Obstructive Pulmonary Disease (COPD)
US20110106221A1 (en) * 2008-04-29 2011-05-05 Neal Ii Robert E Treatment planning for electroporation-based therapies

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1653819A (en) 1926-08-07 1927-12-27 Northcott Ephraim Electrotherapeutical apparatus
DE863111C (en) 1951-07-03 1953-01-15 Walter Hallegger Instrument for transcutaneous and subcutaneous heating and iontophoresis and method of its use
US4016886A (en) 1974-11-26 1977-04-12 The United States Of America As Represented By The United States Energy Research And Development Administration Method for localizing heating in tumor tissue
US4407943A (en) 1976-12-16 1983-10-04 Millipore Corporation Immobilized antibody or antigen for immunoassay
CH617590A5 (en) 1977-05-27 1980-06-13 Carba Ag
DE2800039C2 (en) 1978-01-02 1984-06-20 Horst Dr.Med. 6700 Ludwigshafen Kief Acupuncture device
US5385544A (en) 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
GB8408529D0 (en) 1984-04-03 1984-05-16 Health Lab Service Board Concentration of biological particles
US4946793A (en) 1986-05-09 1990-08-07 Electropore, Inc. Impedance matching for instrumentation which electrically alters vesicle membranes
US5098843A (en) 1987-06-04 1992-03-24 Calvin Noel M Apparatus for the high efficiency transformation of living cells
US5749847A (en) 1988-01-21 1998-05-12 Massachusetts Institute Of Technology Delivery of nucleotides into organisms by electroporation
JP2798459B2 (en) 1988-01-21 1998-09-17 マサチユセツツ・インスチチユート・オブ・テクノロジー Diagnostic device using electroporation and device for moving molecules into tissue
US5389069A (en) 1988-01-21 1995-02-14 Massachusetts Institute Of Technology Method and apparatus for in vivo electroporation of remote cells and tissue
EP0346513A1 (en) 1988-06-15 1989-12-20 Etama Ag Assembly for electrotherapy
ES2012944A6 (en) 1989-01-09 1990-04-16 Tomas Justribo Jose Ramon A device for the administration of medication by iontopheresis for local - regional treatment.
CS275292B2 (en) 1989-02-22 1992-02-19 Cvut Fakulta Elektrotechnick Private rehabilitation apparatus with ion transcutaneous acceleration
DE4000893A1 (en) 1990-01-15 1991-07-18 Bosch Gmbh Robert Multichannel appts. for electro-simulation - provides several current circuits for patient with electrodes applying pulse signals
US5134070A (en) 1990-06-04 1992-07-28 Casnig Dael R Method and device for cell cultivation on electrodes
US5193537A (en) 1990-06-12 1993-03-16 Zmd Corporation Method and apparatus for transcutaneous electrical cardiac pacing
US5052391A (en) 1990-10-22 1991-10-01 R.F.P., Inc. High frequency high intensity transcutaneous electrical nerve stimulator and method of treatment
US5173158A (en) 1991-07-22 1992-12-22 Schmukler Robert E Apparatus and methods for electroporation and electrofusion
US5328451A (en) 1991-08-15 1994-07-12 Board Of Regents, The University Of Texas System Iontophoretic device and method for killing bacteria and other microbes
US5425752A (en) 1991-11-25 1995-06-20 Vu'nguyen; Dung D. Method of direct electrical myostimulation using acupuncture needles
US6500173B2 (en) 1992-01-07 2002-12-31 Ronald A. Underwood Methods for electrosurgical spine surgery
US6210402B1 (en) 1995-11-22 2001-04-03 Arthrocare Corporation Methods for electrosurgical dermatological treatment
US6132419A (en) 1992-05-22 2000-10-17 Genetronics, Inc. Electroporetic gene and drug therapy
US5318563A (en) 1992-06-04 1994-06-07 Valley Forge Scientific Corporation Bipolar RF generator
US5273525A (en) 1992-08-13 1993-12-28 Btx Inc. Injection and electroporation apparatus for drug and gene delivery
US5634899A (en) 1993-08-20 1997-06-03 Cortrak Medical, Inc. Simultaneous cardiac pacing and local drug delivery method
GB9226376D0 (en) 1992-12-18 1993-02-10 British Tech Group Tomography
WO1994017856A1 (en) 1993-02-02 1994-08-18 Vidamed, Inc. Transurethral needle ablation device and method
US5792187A (en) 1993-02-22 1998-08-11 Angeion Corporation Neuro-stimulation to control pain during cardioversion defibrillation
US5403311A (en) 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
FR2703253B1 (en) 1993-03-30 1995-06-23 Centre Nat Rech Scient APPLICATOR OF ELECTRIC PULSES FOR TREATING BIOLOGICAL TISSUES.
US5702359A (en) 1995-06-06 1997-12-30 Genetronics, Inc. Needle electrodes for mediated delivery of drugs and genes
US5439440A (en) 1993-04-01 1995-08-08 Genetronics, Inc. Electroporation system with voltage control feedback for clinical applications
US6832996B2 (en) 1995-06-07 2004-12-21 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
US5464437A (en) 1993-07-08 1995-11-07 Urologix, Inc. Benign prostatic hyperplasia treatment catheter with urethral cooling
US5533999A (en) 1993-08-23 1996-07-09 Refractec, Inc. Method and apparatus for modifications of visual acuity by thermal means
US5458625A (en) 1994-05-04 1995-10-17 Kendall; Donald E. Transcutaneous nerve stimulation device and method for using same
US5836905A (en) 1994-06-20 1998-11-17 Lemelson; Jerome H. Apparatus and methods for gene therapy
ATE182478T1 (en) 1995-01-17 1999-08-15 Christoph Hehrlein BALLOON CATHETER FOR PREVENTING RE-stenosis AFTER ANGIOPLASTY, AND METHOD FOR MAKING A BALLOON CATHETER
US5720921A (en) 1995-03-10 1998-02-24 Entremed, Inc. Flow electroporation chamber and method
US5810762A (en) 1995-04-10 1998-09-22 Genetronics, Inc. Electroporation system with voltage control feedback for clinical applications
US6041252A (en) 1995-06-07 2000-03-21 Ichor Medical Systems Inc. Drug delivery system and method
US6607529B1 (en) 1995-06-19 2003-08-19 Medtronic Vidamed, Inc. Electrosurgical device
US5919142A (en) 1995-06-22 1999-07-06 Btg International Limited Electrical impedance tomography method and apparatus
US5983131A (en) 1995-08-11 1999-11-09 Massachusetts Institute Of Technology Apparatus and method for electroporation of tissue
EP0776678A1 (en) 1995-11-30 1997-06-04 Hewlett-Packard Company System for administering transcutaneous cardiac pacing with transcutaneous electrical nerve stimuli
US6010613A (en) 1995-12-08 2000-01-04 Cyto Pulse Sciences, Inc. Method of treating materials with pulsed electrical fields
US6016452A (en) 1996-03-19 2000-01-18 Kasevich; Raymond S. Dynamic heating method and radio frequency thermal treatment
US5778894A (en) 1996-04-18 1998-07-14 Elizabeth Arden Co. Method for reducing human body cellulite by treatment with pulsed electromagnetic energy
SE509241C2 (en) 1996-07-18 1998-12-21 Radinvent Ab Devices for electrodynamic radiation therapy of tumor diseases
US6102885A (en) 1996-08-08 2000-08-15 Bass; Lawrence S. Device for suction-assisted lipectomy and method of using same
US6106521A (en) 1996-08-16 2000-08-22 United States Surgical Corporation Apparatus for thermal treatment of tissue
US5991697A (en) 1996-12-31 1999-11-23 The Regents Of The University Of California Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
US6109270A (en) 1997-02-04 2000-08-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multimodality instrument for tissue characterization
US5873849A (en) 1997-04-24 1999-02-23 Ichor Medical Systems, Inc. Electrodes and electrode arrays for generating electroporation inducing electrical fields
US6085115A (en) 1997-05-22 2000-07-04 Massachusetts Institite Of Technology Biopotential measurement including electroporation of tissue surface
US5978704A (en) 1997-06-03 1999-11-02 Uab Research Foundation Method and apparatus for treating cardiac arrhythmia
US6055453A (en) 1997-08-01 2000-04-25 Genetronics, Inc. Apparatus for addressing needle array electrodes for electroporation therapy
US6216034B1 (en) 1997-08-01 2001-04-10 Genetronics, Inc. Method of programming an array of needle electrodes for electroporation therapy of tissue
US5999847A (en) 1997-10-21 1999-12-07 Elstrom; John A. Apparatus and method for delivery of surgical and therapeutic agents
CA2318488A1 (en) 1997-10-24 1999-05-06 Children's Medical Center Corporation Methods for promoting cell transfection in vivo
US6208893B1 (en) 1998-01-27 2001-03-27 Genetronics, Inc. Electroporation apparatus with connective electrode template
US6009347A (en) 1998-01-27 1999-12-28 Genetronics, Inc. Electroporation apparatus with connective electrode template
US6440127B2 (en) 1998-02-11 2002-08-27 Cosman Company, Inc. Method for performing intraurethral radio-frequency urethral enlargement
US6122599A (en) 1998-02-13 2000-09-19 Mehta; Shailesh Apparatus and method for analyzing particles
SE513814C2 (en) 1998-03-31 2000-11-06 Aditus Medical Ab Device for the treatment of diseases with electric fields
US6219577B1 (en) 1998-04-14 2001-04-17 Global Vascular Concepts, Inc. Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues
US6159163A (en) 1998-05-07 2000-12-12 Cedars-Sinai Medical Center System for attenuating pain during bone marrow aspiration and method
EP1079890A4 (en) 1998-05-08 2008-12-03 Genetronics Inc Electrically induced vessel vasodilation
EP2428249B1 (en) 1998-07-13 2015-10-07 Inovio Pharmaceuticals, Inc. Skin and muscle-targeted gene therapy by pulsed electrical field
US6212433B1 (en) 1998-07-28 2001-04-03 Radiotherapeutics Corporation Method for treating tumors near the surface of an organ
WO2000018289A1 (en) 1998-09-30 2000-04-06 Cygnus, Inc. Method and device for predicting physiological values
JP2002526103A (en) 1998-10-08 2002-08-20 アストラゼネカ・アクチエボラーグ Micro-assembled cell injector
US6611706B2 (en) 1998-11-09 2003-08-26 Transpharma Ltd. Monopolar and bipolar current application for transdermal drug delivery and analyte extraction
ES2238862T3 (en) 1998-11-16 2005-09-01 United States Surgical Corporation APPARATUS FOR THERMAL TREATMENT OF FABRIC.
US6090016A (en) 1998-11-18 2000-07-18 Kuo; Hai Pin Collapsible treader with enhanced stability
US6351674B2 (en) 1998-11-23 2002-02-26 Synaptic Corporation Method for inducing electroanesthesia using high frequency, high intensity transcutaneous electrical nerve stimulation
US6261831B1 (en) 1999-03-26 2001-07-17 The United States Of America As Represented By The Secretary Of The Air Force Ultra-wide band RF-enhanced chemotherapy for cancer treatmeat
US6738663B2 (en) 1999-04-09 2004-05-18 Oncostim, A Minnesota Corporation Implantable device and method for the electrical treatment of cancer
US6627421B1 (en) 1999-04-13 2003-09-30 Imarx Therapeutics, Inc. Methods and systems for applying multi-mode energy to biological samples
US20040039342A1 (en) 2000-06-08 2004-02-26 Jonathan Eppstein Transdermal integrated actuator device, methods of making and using same
US7053063B2 (en) 1999-07-21 2006-05-30 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes in tissue
US6300108B1 (en) 1999-07-21 2001-10-09 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes
US6387671B1 (en) 1999-07-21 2002-05-14 The Regents Of The University Of California Electrical impedance tomography to control electroporation
US6927049B2 (en) 1999-07-21 2005-08-09 The Regents Of The University Of California Cell viability detection using electrical measurements
US6403348B1 (en) 1999-07-21 2002-06-11 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes
US6326177B1 (en) 1999-08-04 2001-12-04 Eastern Virginia Medical School Of The Medical College Of Hampton Roads Method and apparatus for intracellular electro-manipulation
US20020010491A1 (en) 1999-08-04 2002-01-24 Schoenbach Karl H. Method and apparatus for intracellular electro-manipulation
US20030078499A1 (en) 1999-08-12 2003-04-24 Eppstein Jonathan A. Microporation of tissue for delivery of bioactive agents
US6613211B1 (en) 1999-08-27 2003-09-02 Aclara Biosciences, Inc. Capillary electrokinesis based cellular assays
JP4676042B2 (en) 1999-10-01 2011-04-27 帝國製薬株式会社 Topical analgesic / anti-inflammatory patch containing felbinac
US6493592B1 (en) 1999-12-01 2002-12-10 Vertis Neuroscience, Inc. Percutaneous electrical therapy system with electrode position maintenance
IT1320186B1 (en) 2000-04-21 2003-11-26 Igea Srl ELECTRO-PORTATION DEVICE AND METHOD IN WHICH THE IMPULSE OF THE PULSE OR PULSES IS ESTABLISHED AUTOMATICALLY IN
US20010044596A1 (en) 2000-05-10 2001-11-22 Ali Jaafar Apparatus and method for treatment of vascular restenosis by electroporation
KR100375657B1 (en) 2000-06-21 2003-03-15 주식회사 몸앤맘 Apparatus and method for eliminating a fat mass in human body
US6669691B1 (en) 2000-07-18 2003-12-30 Scimed Life Systems, Inc. Epicardial myocardial revascularization and denervation methods and apparatus
AU2001279026B2 (en) 2000-07-25 2005-12-22 Angiodynamics, Inc. Apparatus for detecting and treating tumors using localized impedance measurement
US6892099B2 (en) 2001-02-08 2005-05-10 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
US6795728B2 (en) 2001-08-17 2004-09-21 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation
US6697670B2 (en) 2001-08-17 2004-02-24 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
US6702808B1 (en) 2000-09-28 2004-03-09 Syneron Medical Ltd. Device and method for treating skin
US20050043726A1 (en) 2001-03-07 2005-02-24 Mchale Anthony Patrick Device II
EP2341148A3 (en) 2001-04-12 2012-05-30 Imperial Innovations Limited Diagnosis and treatment of cancer
WO2002087692A1 (en) 2001-04-26 2002-11-07 The Procter & Gamble Company A method and apparatus for the treatment of cosmetic skin conditioins
US6832111B2 (en) 2001-07-06 2004-12-14 Hosheng Tu Device for tumor diagnosis and methods thereof
US7130697B2 (en) 2002-08-13 2006-10-31 Minnesota Medical Physics Llc Apparatus and method for the treatment of benign prostatic hyperplasia
US6994706B2 (en) 2001-08-13 2006-02-07 Minnesota Medical Physics, Llc Apparatus and method for treatment of benign prostatic hyperplasia
US7344533B2 (en) 2001-09-28 2008-03-18 Angiodynamics, Inc. Impedance controlled tissue ablation apparatus and method
AU2002362441A1 (en) 2001-10-01 2003-04-14 Am Discovery, Incorporated Devices for treating atrial fibrilation
FR2830767B1 (en) 2001-10-12 2004-03-12 Optis France Sa DEVICE FOR DELIVERING DRUGS BY IONTOPHORESIS OR INTROCULAR ELECTROPORATION
CN1606461B (en) 2001-10-24 2011-03-23 纸型电池有限公司 Formulation therapeutic device for skin, kit and skin plaster
AU2002360540A1 (en) 2001-12-04 2003-06-17 University Of Southern California Method for intracellular modifications within living cells using pulsed electric fields
US6912417B1 (en) 2002-04-05 2005-06-28 Ichor Medical Systmes, Inc. Method and apparatus for delivery of therapeutic agents
US8150520B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods for catheter-based renal denervation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US6801804B2 (en) 2002-05-03 2004-10-05 Aciont, Inc. Device and method for monitoring and controlling electrical resistance at a tissue site undergoing iontophoresis
US6780178B2 (en) 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
ATE371413T1 (en) 2002-05-06 2007-09-15 Covidien Ag BLOOD DETECTOR FOR CHECKING AN ELECTROSURGICAL UNIT
WO2004037341A2 (en) 2002-05-07 2004-05-06 Schroeppel Edward A Method and device for treating concer with electrical therapy in conjunction with chemotherapeutic agents and radiation therapy
US7063698B2 (en) 2002-06-14 2006-06-20 Ncontact Surgical, Inc. Vacuum coagulation probes
US7223264B2 (en) * 2002-08-21 2007-05-29 Resect Medical, Inc. Thermal coagulation of tissue during tissue resection
US6972014B2 (en) 2003-01-04 2005-12-06 Endocare, Inc. Open system heat exchange catheters and methods of use
US7211083B2 (en) 2003-03-17 2007-05-01 Minnesota Medical Physics, Llc Apparatus and method for hair removal by electroporation
US20050171574A1 (en) 2003-12-24 2005-08-04 The Regents Of The University Of California Electroporation to interrupt blood flow
US20050261672A1 (en) 2004-05-18 2005-11-24 Mark Deem Systems and methods for selective denervation of heart dysrhythmias
US7261710B2 (en) 2004-10-13 2007-08-28 Medtronic, Inc. Transurethral needle ablation system
US20120226271A1 (en) * 2005-03-25 2012-09-06 Peter Callas Vacuum Ablation Apparatus and Method
US20060264752A1 (en) 2005-04-27 2006-11-23 The Regents Of The University Of California Electroporation controlled with real time imaging
US20080052786A1 (en) 2006-08-24 2008-02-28 Pei-Cheng Lin Animal Model of Prostate Cancer and Use Thereof
US20100152725A1 (en) * 2008-12-12 2010-06-17 Angiodynamics, Inc. Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation
US8958875B2 (en) * 2010-02-03 2015-02-17 Medtronic, Inc. Stimulation mode switching based on tissue impedance stability
US9289606B2 (en) * 2010-09-02 2016-03-22 St. Jude Medical, Atrial Fibrillation Division, Inc. System for electroporation therapy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024359A1 (en) * 1995-06-07 2006-02-02 Walker Jeffrey P Drug delivery system and method
US20070066957A1 (en) * 2004-11-02 2007-03-22 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US20060293731A1 (en) * 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating tumors using electroporation
US20100030211A1 (en) * 2008-04-29 2010-02-04 Rafael Davalos Irreversible electroporation to treat aberrant cell masses
US20110106221A1 (en) * 2008-04-29 2011-05-05 Neal Ii Robert E Treatment planning for electroporation-based therapies
US20100250209A1 (en) * 2009-03-31 2010-09-30 Pearson Robert M System and method for estimating a treatment region for a medical treatment device
US20100256628A1 (en) * 2009-04-03 2010-10-07 Angiodynamics, Inc. Irreversible Electroporation (IRE) for Congestive Obstructive Pulmonary Disease (COPD)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10272178B2 (en) 2008-04-29 2019-04-30 Virginia Tech Intellectual Properties Inc. Methods for blood-brain barrier disruption using electrical energy
US11952568B2 (en) 2008-04-29 2024-04-09 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of biphasic electrical pulses for non-thermal ablation
US10828086B2 (en) 2008-04-29 2020-11-10 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US11607271B2 (en) 2008-04-29 2023-03-21 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US10286108B2 (en) 2008-04-29 2019-05-14 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US11453873B2 (en) 2008-04-29 2022-09-27 Virginia Tech Intellectual Properties, Inc. Methods for delivery of biphasic electrical pulses for non-thermal ablation
US10117707B2 (en) 2008-04-29 2018-11-06 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11655466B2 (en) 2008-04-29 2023-05-23 Virginia Tech Intellectual Properties, Inc. Methods of reducing adverse effects of non-thermal ablation
US10154874B2 (en) 2008-04-29 2018-12-18 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US10537379B2 (en) 2008-04-29 2020-01-21 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US10245098B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Acute blood-brain barrier disruption using electrical energy based therapy
US11737810B2 (en) 2008-04-29 2023-08-29 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using electroporation
US9598691B2 (en) 2008-04-29 2017-03-21 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US10828085B2 (en) 2008-04-29 2020-11-10 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US10245105B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Electroporation with cooling to treat tissue
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US10959772B2 (en) 2008-04-29 2021-03-30 Virginia Tech Intellectual Properties, Inc. Blood-brain barrier disruption using electrical energy
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
US11890046B2 (en) 2008-04-29 2024-02-06 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US10470822B2 (en) 2008-04-29 2019-11-12 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US10448989B2 (en) 2009-04-09 2019-10-22 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
US10292755B2 (en) 2009-04-09 2019-05-21 Virginia Tech Intellectual Properties, Inc. High frequency electroporation for cancer therapy
US11707629B2 (en) 2009-05-28 2023-07-25 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US11931096B2 (en) 2010-10-13 2024-03-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US11779395B2 (en) 2011-09-28 2023-10-10 Angiodynamics, Inc. Multiple treatment zone ablation probe
US11051871B2 (en) 2013-06-03 2021-07-06 Pulse Biosciences, Inc. Methods and devices for stimulating an immune response using nanosecond pulsed electric fields
US10729724B2 (en) 2013-06-03 2020-08-04 Pulse Biosciences, Inc. Methods and devices for stimulating an immune response using nanosecond pulsed electric fields
US11957405B2 (en) 2013-06-13 2024-04-16 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US11406820B2 (en) 2014-05-12 2022-08-09 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US10471254B2 (en) 2014-05-12 2019-11-12 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US20180318004A1 (en) * 2014-12-01 2018-11-08 Pulse Biosciences, Inc. Nanoelectroablation control and vaccination
WO2016089781A1 (en) * 2014-12-01 2016-06-09 Electroblate, Inc. Nanoelectroablation control and vaccination
US20160157932A1 (en) * 2014-12-01 2016-06-09 Electroblate, Inc. Nanoelectroablation control and vaccination
US9724155B2 (en) * 2014-12-01 2017-08-08 Pulse Biosciences, Inc. Nanoelectroablation control and vaccination
AU2015355241B2 (en) * 2014-12-01 2019-10-24 Pulse Biosciences, Inc. Nanoelectroablation control and vaccination
US10307207B2 (en) * 2014-12-01 2019-06-04 Pulse Biosciences, Inc. Nanoelectroablation control and vaccination
US20170360504A1 (en) * 2014-12-01 2017-12-21 Pulse Biosciences, Inc. Nanoelectroablation control and vaccination
US10058383B2 (en) * 2014-12-01 2018-08-28 Pulse Biosciences, Inc. Nanoelectroablation control and vaccination
US10695127B2 (en) * 2014-12-01 2020-06-30 Pulse Biosciences, Inc. Nanoelectroablation control and vaccination
US10694972B2 (en) 2014-12-15 2020-06-30 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US11903690B2 (en) 2014-12-15 2024-02-20 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US10874451B2 (en) 2016-02-29 2020-12-29 Pulse Biosciences, Inc. High-voltage analog circuit pulser and pulse generator discharge circuit
US11723712B2 (en) 2016-02-29 2023-08-15 Pulse Biosciences, Inc. High-voltage analog circuit pulser and pulse generator discharge circuit
US10548665B2 (en) 2016-02-29 2020-02-04 Pulse Biosciences, Inc. High-voltage analog circuit pulser with feedback control
US11696800B2 (en) 2016-02-29 2023-07-11 Pulse Biosciences, Inc. High-voltage analog circuit pulser
US11051882B2 (en) 2016-02-29 2021-07-06 Pulse Biosciences, Inc. High-voltage analog circuit pulser
US10252050B2 (en) 2016-05-16 2019-04-09 Pulse Biosciences, Inc. Pulse applicator
US10939958B2 (en) 2016-06-27 2021-03-09 Galary, Inc. Methods, apparatuses, and systems for the treatment of pulmonary disorders
US11369433B2 (en) 2016-06-27 2022-06-28 Galvanize Therapeutics, Inc. Methods, apparatuses, and systems for the treatment of pulmonary disorders
US10702337B2 (en) 2016-06-27 2020-07-07 Galary, Inc. Methods, apparatuses, and systems for the treatment of pulmonary disorders
US11253695B2 (en) 2016-09-19 2022-02-22 Pulse Biosciences, Inc. High voltage connectors and electrodes for pulse generators
US10543357B2 (en) 2016-09-19 2020-01-28 Pulse Biosciences, Inc. High voltage connectors for pulse generators
US11723710B2 (en) 2016-11-17 2023-08-15 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US10946193B2 (en) 2017-02-28 2021-03-16 Pulse Biosciences, Inc. Pulse generator with independent panel triggering
US11638815B2 (en) 2017-09-19 2023-05-02 Pulse Biosciences, Inc. Treatment instrument and high-voltage connectors for robotic surgical system
US10857347B2 (en) 2017-09-19 2020-12-08 Pulse Biosciences, Inc. Treatment instrument and high-voltage connectors for robotic surgical system
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
US11167125B2 (en) 2018-01-16 2021-11-09 Pulse Biosciences, Inc. Treatment tip with protected electrodes
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11571569B2 (en) 2019-02-15 2023-02-07 Pulse Biosciences, Inc. High-voltage catheters for sub-microsecond pulsing
US11931570B2 (en) 2019-02-15 2024-03-19 Pulse Biosciences, Inc. Treating tissue pulsed energy using high-voltage catheters
US11950835B2 (en) 2019-06-28 2024-04-09 Virginia Tech Intellectual Properties, Inc. Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy

Also Published As

Publication number Publication date
US20190328446A1 (en) 2019-10-31
US20130218157A1 (en) 2013-08-22
US20160235470A1 (en) 2016-08-18
US10342600B2 (en) 2019-07-09
US9414881B2 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
US20190328446A1 (en) System and Method for Increasing a Target Zone for Electrical Ablation
US11931096B2 (en) System and method for electrically ablating tissue of a patient
US20160354142A1 (en) System and Method for Estimating A Treatment Region for a Medical Treatment Device
US11607271B2 (en) System and method for estimating a treatment volume for administering electrical-energy based therapies
US11453873B2 (en) Methods for delivery of biphasic electrical pulses for non-thermal ablation
US11254926B2 (en) Devices and methods for high frequency electroporation
CN106388932B (en) Irreversible electroporation device
US11272979B2 (en) System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11950835B2 (en) Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy
RU2648213C2 (en) Ablation control based on contact force
US10117707B2 (en) System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US20050171523A1 (en) Irreversible electroporation to control bleeding
US20230157759A1 (en) System and method for estimating a treatment volume for administering electrical-energy based therapies
US20230414276A1 (en) Application of non-therapeutic waveforms with gradient sensing to predict pulsed field ablation (pfa) fields
Zhang et al. Electrodes Deployment for IRE Tumor Ablation based on the Nelder-Mead Simplex Algorithm
Mamundur Raman Impact of the orientation of electrodes on ire parameters

Legal Events

Date Code Title Description
AS Assignment

Owner name: ANGIODYNAMICS, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CALLAS, PETER;JOE, WESLEY CHUNG;SIGNING DATES FROM 20130308 TO 20130314;REEL/FRAME:031431/0607

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:ANGIODYNAMICS, INC.;REEL/FRAME:040613/0049

Effective date: 20161107

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:ANGIODYNAMICS, INC.;REEL/FRAME:040613/0049

Effective date: 20161107

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION