US20140051999A1 - System and Methods for Nerve Monitoring - Google Patents

System and Methods for Nerve Monitoring Download PDF

Info

Publication number
US20140051999A1
US20140051999A1 US14/063,184 US201314063184A US2014051999A1 US 20140051999 A1 US20140051999 A1 US 20140051999A1 US 201314063184 A US201314063184 A US 201314063184A US 2014051999 A1 US2014051999 A1 US 2014051999A1
Authority
US
United States
Prior art keywords
stimulation
ultrasound
surgical
transducer
testing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/063,184
Inventor
James Gharib
Albert Pothier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuvasive Inc
Original Assignee
Nuvasive Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuvasive Inc filed Critical Nuvasive Inc
Priority to US14/063,184 priority Critical patent/US20140051999A1/en
Publication of US20140051999A1 publication Critical patent/US20140051999A1/en
Priority to US14/881,091 priority patent/US10299756B1/en
Priority to US16/384,936 priority patent/US11653894B2/en
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NUVASIVE CLINICAL SERVICES MONITORING, INC., NUVASIVE CLINICAL SERVICES, INC., NUVASIVE SPECIALIZED ORTHOPEDICS, INC., NUVASIVE, INC.
Priority to US16/875,018 priority patent/US11617562B2/en
Priority to US16/875,033 priority patent/US11540804B2/en
Priority to US16/875,040 priority patent/US20200275906A1/en
Priority to US16/875,025 priority patent/US11712218B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • A61B19/5244
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0206Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors with antagonistic arms as supports for retractor elements
    • A61B5/04001
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/4893Nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1703Guides or aligning means for drills, mills, pins or wires using imaging means, e.g. by X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1757Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00039Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine
    • A61B2017/0262Joint distractors for the spine with a provision for protecting nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements

Definitions

  • the present invention relates generally to a system and related methods for performing at least one of bone integrity testing and nerve detection during surgical access using both neurophysiologic testing and ultrasound testing during surgery.
  • Neurophysiologic monitoring generally consists of stimulating neural tissue and analyzing responses (generally electrical waveforms) generated by the stimulus. While such neurophysiologic monitoring has proved an exceedingly valuable tool in efforts to prevent neurological damage during spine surgery there is still room for further improvements.
  • the present invention is directed at such an improvement.
  • the present invention includes a surgical system, comprising a surgical instrument having at least one stimulation electrode for transmitting a stimulation signal for performing neurophysiologic testing during surgery and/or at least one transducer for transmitting and/or receiving signals for performing ultrasound-based testing during surgery.
  • the testing may include, but is not necessarily limited to, pedicle integrity testing associated with the use of pedicle screws (e.g. hole formation, preparation, and screw placement) and surgical access.
  • FIG. 1 is a perspective view of an exemplary surgical system 10 capable of neurophysiologic assessments together with ultrasound monitoring to aimed to safely access the spine and properly implant pedicle screws for fixation.
  • FIG. 2 is a block diagram of the surgical system 20 shown in FIG. 1 ;
  • FIG. 3 is a graph illustrating an exemplary single pulse stimulation signal according to one embodiment of the present invention.
  • FIG. 4 is a graph illustrating an exemplary multipulse stimulation signal according to one embodiment of the present invention.
  • FIG. 5 is a graph illustrating an exemplary EMG response to the stimulus of FIG. 3 or 4 according to one embodiment of the present invention
  • FIG. 6 is a graph illustrating a plot of peak-to-peak voltage (Vpp) for each given stimulation current level (I Stim ) forming a stimulation current pulse train according to the present invention (otherwise known as a “recruitment curve”);
  • FIGS. 7A-7D are graphs illustrating the fundamental steps of a rapid current threshold-hunting algorithm according to one embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method by which the algorithm may omit a stimulation and proceed to the next current according to one aspect of the present invention
  • FIGS. 9A-9C are graphs illustrating use of the threshold hunting algorithm of FIG. 7 and further omitting stimulations when the likely result is already clear from previous data according to one aspect of the present invention.
  • FIG. 10 is an illustration of a stimulation handpiece for coupling surgical accessories to the neuromonitoring system 10 according to one embodiment of the present invention
  • FIG. 11 an of a screw test probe coupled to the stimulation handpiece of FIG. 10 illustration according to one embodiment of the present invention
  • FIG. 12 is an illustration of a stimulation clip coupled to the stimulation handpiece of FIG. 10 according to one embodiment of the present invention.
  • FIG. 13 is a side view of the stimulation probe of FIG. 11 positioned over a stimulation target site and wherein the distal tip of the probe member and the stimulation target site are included in the camera's field of view;
  • FIG. 14 is an exemplary screen view of the Basic Screw Test mode for performing pedicle integrity assessments according to one embodiment of the present invention.
  • FIG. 15 is an exemplary screen view of the Difference Screw Test mode for performing pedicle integrity assessments according to one embodiment of the present invention.
  • FIG. 16 is an exemplary screen view of the Dynamic Screw Test mode for performing pedicle integrity assessments according to one embodiment of the present invention.
  • FIG. 17 is an exemplary screen view of the MaXcess Detection mode for detecting nerve presence during spinal access according to one embodiment of the present invention.
  • FIG. 18 is side view of a tap member coupled to the system for nerve monitoring via an electric coupling device and incorporating an ultrasound transducer for intraosteal ultrasound imaging according to one aspect of the present invention
  • FIG. 19 is side view of a pedicle access probe/bone awl coupled to the system for nerve monitoring via an electric coupling device and incorporating an ultrasound transducer for intraosteal ultrasound imaging according to one aspect of the present invention
  • FIG. 20 is a close up side view of the distal end of the tap member of FIG. 18 with a cutaway exposing an integrated ultrasound transducer for use according to one embodiment of the present invention
  • FIG. 21 is an overhead view of one embodiment of a transducer for use according to one embodiment of the present invention, having 64 elements arrayed radially for generating 360 degree images;
  • FIG. 22 is an illustration showing the general makeup of various bone regions comprising the spinal pedicle
  • FIG. 23 is an illustration of tap member of FIG. 18 forming a pilot hole along a preferred trajectory utilizing nerve monitoring and ultrasound imaging to maintain the trajectory;
  • FIG. 24 is a graphical representation of an ultrasound image showing the position of a surgical instrument within the interior pedicle during pedicle integrity testing
  • FIG. 25 is a graphical representation of an ultrasound image showing the position of a surgical access component relative to a nerve during nerve detection
  • FIG. 26 is an exemplary screen view of the Basic Screw Test mode for performing pedicle integrity assessments with concurrent use of ultrasound according to one embodiment of the present invention
  • FIG. 27 is an exemplary screen view of the Difference Screw Test mode for performing pedicle integrity assessments with concurrent use of ultrasound according to one embodiment of the present invention
  • FIG. 28 is an exemplary screen view of the Dynamic Screw Test mode for performing pedicle integrity assessments with concurrent use of ultrasound according to one embodiment of the present invention
  • FIG. 29 is an exemplary screen view of the MaXcess Detection mode for detecting nerve presence during spinal access with concurrent use of ultrasound according to one embodiment of the present invention.
  • the present invention is directed towards enabling safe and reproducible spinal surgery by aiding in, among other things, access to a target site in the spine (including but not necessarily limited to a pedicle) and pedicle screw implantation (including but not necessarily limited to formation and preparation of pilot holes and screw placement).
  • a target site in the spine including but not necessarily limited to a pedicle
  • pedicle screw implantation including but not necessarily limited to formation and preparation of pilot holes and screw placement.
  • FIG. 1 illustrates, by way of example only, a surgical system 10 capable carrying neurophysiologic assessment functions including, but not necessarily limited to, Basic, Difference, and Dynamic Screw Tests (pedicle integrity testing), Detection (nerve proximity testing during surgical access) and Free Run EMG (detection of spontaneous muscle activity, may be conducted in any mode).
  • the surgical system 10 is capable of performing ultrasound imaging to aid in intraoperative guidance of surgical instrumentation through bone, and in particular, through the cancellous bone forming the interior region of the pedicle as well as enhancing nerve detection. It is expressly noted that, although described herein largely in terms of use in spinal surgery, the surgical system 10 and related methods of the present invention are suitable for use in any number of additional surgical procedures where neurological impairment is a concern.
  • the neuromonitoring system 10 includes a control unit 12 , a patient module 14 , an EMG harness 16 , including eight pairs of EMG electrodes 18 and a return electrode 22 coupled to the patient module 14 , and one or more of a host of surgical accessories 24 capable of being coupled to the patient module 14 (preferably via a stimulation handpiece 28 and accessory cables 26 ), and a pair of peripheral nerve stimulation (PNS) electrodes (one positive and one negative) 29 also coupled to the patient module 14 .
  • PNS peripheral nerve stimulation
  • the surgical accessories 24 may include, but are not necessarily limited to, devices for performing pedicle screw tests (such as a screw test probe 30 , tap member 32 , bone awl 34 ), surgical access components (such as a K-wire 36 , one or more dilating cannula 38 , 40 , a tissue retractor assembly 42 ), and neural pathology monitoring devices (such as a nerve root retractors 44 , 45 ), any of which may also be fitted with one or more ultrasound transducers 55 for imaging of surrounding tissue during use.
  • the neuromonitoring system 10 accomplishes neuromonitoring by having the control unit 12 and patient module 14 cooperate to send stimulation signals to one or more stimulation electrodes or electrode regions on the various surgical accessories, while sensors detect muscle activity caused by the stimulation signal.
  • the control unit 12 includes a touch screen display 46 and a base 48 , which collectively contain the essential processing capabilities for controlling the neuromonitoring system 10 .
  • the touch screen display 26 is preferably equipped with a graphical user interface (GUI) capable of communicating information to the user and receiving instructions from the user.
  • GUI graphical user interface
  • the base 48 contains computer hardware and software that commands the stimulation and ultrasound sources, receives digitized signals and other information from the patient module 14 , processes EMG responses, performs ultrasound image processing, and displays the processed data to the operator via the display 46 .
  • the primary functions of the software within the control unit 12 include receiving user commands via the touch screen display 46 , activating stimulation in the requested mode (Basic Screw Test, Difference Screw Test, Dynamic Screw Test, MaXcess Detection), processing EMG signal data according to defined algorithms, activating ultrasound signaling, processing ultrasound signal data into viewable images, displaying received parameters and processed data, and monitoring system status.
  • the patient module 14 is connected via a data cable 50 (or optionally via wireless communication) to the control unit 12 , and contains the electrical connections to all electrodes, EMG signal conditioning circuitry, stimulator drive and steering circuitry, ultrasound signal conditioning and receiving circuitry and a digital communications interface to the control unit 12 .
  • the control unit 12 is situated outside but close to the surgical field (such as on a cart adjacent the operating table) such that the display 46 is directed towards the surgeon for easy visualization.
  • the patient module 14 should be located between the patient's legs, or may be affixed to the end of the operating table at mid-leg level using a bedrail clamp. The position selected should be such that the EMG leads surgical accessories 24 can reach their farthest desired location without tension during the surgical procedure.
  • the information displayed to the user on the display 46 may include, but is not necessarily limited to, alpha-numeric and/or graphical information regarding any of the requested modes (e.g., Twitch Test, Free-Run EMG, Screw Test (Basic, Difference, Dynamic), Detection, and Nerve Retractor), myotome/EMG levels, stimulation levels, past stimulation events, stimulation site images, ultrasound images, etc. . . .
  • this information may include at least some of the following components (depending on the active mode) as set forth in Table 1:
  • Mode Indicator Graphics and/or name to indicate the currently active mode (Detection, Basic Screw Test, Dynamic Screw Test, Difference Screw Test, Free- Run EMG, Twitch Test, Nerve Retractor, MEP, SSEP).
  • Graphics and/or name may also be displayed to indicate the instrument in use, such as the dilator, K-wire, retractor blades, screw test instruments, and associated size information, if applicable, of the cannula, with the numeric size. If no instrument is in use, then no indicator is displayed.
  • Stimulation Bar A graphical stimulation indicator depicting the present stimulation status (i.e. on or off and stimulation current level) Sequence Bar Shows the last seven stimulation results and provides for annotation of results.
  • EMG waveforms EMG waveforms may be optionally displayed on screen along with the stimulation results.
  • the neuromonitoring functionality of the neuromonitoring system 10 is based on assessing the evoked response of the various muscle myotomes monitored by the system 10 in relation to a stimulation signal transmitted by the system 10 (via patient module 14 ). This is best shown in FIGS. 3-5 , wherein FIG. 5 illustrates the resulting EMG of a monitored myotome in response to one of the exemplary single pulse stimulation signal shown in FIG. 3 and the multiple pulse stimulation signal shown in FIG. 4 .
  • the EMG responses provide a quantitative measure of the nerve depolarization caused by the electrical stimulus.
  • EMG response monitoring is accomplished via 8 pairs EMG electrodes 18 (placed on the skin over the muscle groups to be monitored), a common electrode 20 providing a ground reference to pre-amplifiers in the patient module 14 , and an anode electrode 22 providing a return path for the stimulation current.
  • EMG electrode placement depends on a multitude of factors, including for example, the spinal level and particular nerves at risk and user preference, among others.
  • an exemplary EMG configuration is described for Lumbar surgery in Table 2, Thoracolumbar surgery in Table 3, and Cervical surgery in Table 4 below:
  • a basic premise underlying the methods employed by the system 10 for much of the neurophysiologic monitoring conducted is that neurons and nerves have characteristic threshold current levels (I Thresh ) at which they will depolarize, resulting in detectable muscle activity. Below this threshold current, stimulation signals will not evoke a significant EMG response.
  • a significant EMG response is defined as having a V pp of approximately 100 uV.
  • I Thresh The lowest stimulation signal current, I stim that evokes this threshold voltage (V Thresh ) is called I Thresh .
  • Finding I thresh is useful in making neurophysiologic assessments because it provides a relative indication as to the degree of communication between a stimulation signal and nerve tissue. For example, as the degree of electrical communication between a stimulation signal and a nerve decreases, I thresh will increase. Conversely, as the degree of communication between the stimulation signal and a nerve increases, I thresh will decrease.
  • the neuromonitoring system 10 capitalizes on and enhances the information derived from I thresh by (a) employing methods designed to find I thresh quickly, accurately, and efficiently; (b) analyzing I thresh according to predetermined safety indicator levels; and (c) displaying I thresh and related safety indication data in a simple and meaningful way.
  • the surgeon may detect early on any problem or potential problem and then act to avoid and/or mitigate the situation.
  • an excessively high I thresh or an increase over a previous I thresh measurement during Nerve Retractor mode may indicate a deterioration of nerve root function caused by excessive and/or prolonged retraction.
  • a low I thresh value may indicate a breach in the pedicle, or the close proximity of a nerve, respectively.
  • the system 10 may employ a variety of suitable algorithms and techniques which are described in detail in the “NeuroVision Applications,” all of which are incorporated by reference below, as if they were set forth herein in their entireties.
  • One exemplary threshold hunting algorithm illustrated by way of example only in FIGS. 7A-7D , is described hereafter in only brief detail.
  • the threshold hunting algorithm utilizes a bracketing method and a bisection method to find I thresh .
  • the bracketing method finds a range (bracket) of stimulation currents that must contain I thresh .
  • the algorithm directs stimulation to begin at a predetermined current level (based on the selected function). For each subsequent stimulation, the current level is doubled from the previous current level.
  • V thresh e.g. 100 uV.
  • the initial bracket is successively reduced via the bisection method to a predetermined width. This is accomplished by applying a first bisection stimulation current that bisects (i.e. forms the midpoint of) the initial bracket. If this first bisection stimulation current recruits, the bracket is reduced to the lower half of the initial bracket. If this first bisection stimulation current does not recruit, the bracket is reduced to the upper half of the initial bracket. This process is continued for each successive bracket until I thresh is bracketed by stimulation currents separated by the predetermined width.
  • the midpoint of this final bracket may be defined as I thresh ; however, any value falling within the final bracket may be selected as I thresh without departing from the scope of the present invention.
  • stimulations may stop after I thresh is determined for the channel possessing the lowest I thresh .
  • functions e.g. Screw Tests and Detection
  • the hunting algorithm may employ additional methods allowing it to omit certain stimulations, thereby reducing the number of stimulations and time required to obtain an I thresh value on each channel.
  • I thresh is still found using the bracketing and bisection methods described above, however the algorithm will omit stimulations for which the result is predictable from data previously acquired.
  • the algorithm proceeds as if the stimulation had taken place. This permits the algorithm to proceed to the next required stimulation immediately, without a time delay inherently associated with each stimulation signal.
  • the algorithm may confirm previously obtained I thresh values (e.g. by stimulation at current levels just below and at/or just above I thresh and determining whether the resulting responses are consistent with the previously acquired I thresh value), rather than initiating stimulations from the beginning each time a function is performed.
  • the various functional modes of the neuromonitoring system 10 may include the Basic Screw Test, Difference Screw Test, Dynamic Screw Test, MaXcess® Detection, and Free-run EMG, all of which will be described briefly below.
  • the Basic Screw Test, Difference Screw Test, and Dynamic Screw Test modes are designed to assess the integrity of bone (e.g. pedicle) during all aspects of pilot hole formation (e.g., via an awl), pilot hole preparation (e.g. via a tap), and screw introduction (during and after). These modes are described in greater detail in commonly owned U.S. Pat. No. 7,664,544 entitled “System and Methods for Performing Percutaneous Pedicle Integrity Assessments” and commonly owned U.S. Pat. No.
  • the MaXcess® Detection mode is designed to detect the presence of nerves during the use of the various surgical access instruments of the neuromonitoring system 10 , including the k-wire 62 , dilator 64 , cannula 66 , 68 , retractor assembly 70 . This mode is described in greater detail within commonly owned U.S. Pat. No. 8,068,912 entitled “System and Methods for Determining Nerve Proximity, Direction, and Pathology During Surgery,” the entire contents of which is hereby incorporated by reference as if set forth fully herein.
  • one or more of the surgical accessories 24 including, but not necessarily limited to screw test probe 30 , tap member 32 , bone awl 34 , k-wire 36 , dilating cannulae 38 , 40 , retractor assembly 42 , by way of fixed or releasable linkage to a stimulation handpiece 28 .
  • FIG. 10 there is shown one exemplary embodiment of a stimulation handpiece 28 .
  • Stimulation handpiece 28 is communicatively linked to the patient module 14 via accessory cable 26 .
  • Stimulation handpiece 28 directs stimulation signals from the patient module 14 to the surgical accessories 24 . Thereafter the stimulation signal preferably exits one or more electrode regions formed at or near the distal ends of the surgical accessories 24 .
  • Stimulation handpiece 28 may be equipped with one or more stimulation buttons 52 for selectively applying electrical stimulation to the attached surgical accessory 24 (according to the selected mode and hunting algorithm discussed above).
  • the one or more stimulation buttons 52 are preferably positioned along stimulation handpiece 28 such that the one or more buttons 52 may preferably be manipulated using the thumb and/or one or more fingers of the hand in which handpiece 28 is held.
  • Various surgical accessories 24 that may be coupled to the stimulation handpiece 28 will be discussed in more detail with regard to the neurophysiologic assessment modes performed by the neuromonitoring system 10 .
  • the neuromonitoring system 10 may test the integrity of pedicle holes (during and/or after formation) and/or screws (during and/or after introduction) via the Basic Screw test, Difference Screw Test, and/or Dynamic Screw Test modes.
  • a screw test probe 30 such as that illustrated in FIG. 11 , is used to direct stimulation signals to a pilot hole prior to screw installation, or a screw head after screw installation.
  • Screw test probe 30 may be coupled to stimulation handpiece 28 and includes an elongated probe member 54 and a ball-tipped end 56 . The ball-tipped end 56 is inserted through the surgical corridor to the stimulation target site (e.g. pilot hole and or screw head).
  • a stimulation button 52 may be pressed to initiate stimulation.
  • the insulating character of bone will prevent the stimulation current, up to a certain amplitude, from communicating with the nerve, thus resulting in a relatively high I thresh , as determined via the threshold hunting algorithm described above.
  • the current density in the breach area will increase to the point that the stimulation current will pass through to the adjacent nerve roots and they will depolarize at a lower stimulation current, thus I thresh will be relatively low. Details and results of the Basic Screw test results and may be conveyed to the user on display 46 .
  • a baseline threshold value is determined by directly stimulating a nerve.
  • Screw test probe 30 may preferably be used, and the probe is advanced through the surgical corridor to the surgical target site (i.e. the nerve to be directly stimulated).
  • Button 52 on the stimulation handpiece 28 is pressed to initiate stimulation and a baseline threshold is established.
  • Screw test probe 30 may then be maneuvered to the next stimulation target site (e.g. pilot hole or screw head) and stimulation is initiated to determine the actual threshold value I thresh .
  • the actual threshold is compared to the baseline threshold.
  • the difference between the actual and baseline thresholds is calculated to provide an indication of the safety level. Details and results, including the baseline, actual, and difference thresholds among other things may be displayed for the user on GUI display 46 .
  • Dynamic Screw Test mode continuously monitors threshold values while one or more surgical accessories are in use, for example forming a pilot hole.
  • an electric coupling device such as, by way of example only, stimulation clip 58 is coupled to stimulation handpiece 28 , as illustrated in FIG. 12 .
  • the electric coupling device couples surgical accessories 24 (such as for example, a tap member 32 or a bone awl 34 ) to the neuromonitoring system 10 such that stimulation signals may be transmitted through the tool during use.
  • surgical accessories 24 such as for example, a tap member 32 or a bone awl 34
  • screw testing may be performed continuously during pilot hole formation by coupling the bone awl 34 to the neuromonitoring system 10 , and during pilot hole preparation by coupling the tap 32 to the system 10 .
  • the algorithm may preferably confirm the earlier results by switching back and forth between stimulation signals just above and just below I thresh . If the expected results are not obtained then the algorithm may transition back into the bracketing and bisection steps. Details and results of the Dynamic Screw test results and may be conveyed and continuously updated on display 46 .
  • stimulation clip 58 utilizes a spring-loaded plunger to hold the surgical tool and transmit the stimulation signal.
  • the plunger 60 is composed of a conductive material such as metal.
  • a nonconductive housing 62 partially encases the plunger 60 about its center. Extending from the housing 62 is an end plate 64 .
  • An electrical cable 66 connects the stimulation clip 58 to the stimulation handpiece 28 .
  • a spring (not shown) is disposed within the housing 62 such that in a natural or “closed” state the plunger 60 is situated in close proximity to the endplate 64 .
  • Exerting a compressive force on the spring causes a gap between the end plate 64 and the plunger 60 to widen to an “open” position, thereby allowing insertion of a surgical tool (e.g. tap member 32 and awl 34 ) between the end plate 64 and plunger 60 .
  • Releasing the cable 66 allows the spring to return to a “closed” position, causing the plunger 60 to move laterally back towards the endplate such that a force is exerted upon the surgical instrument and thereby holds it in place between the endplate 64 and the plunger 60 . This is best viewed in FIG.
  • stimulation clip 58 is linked to stimulation handpiece 28 (via cable 66 ) on one end and coupled around tap member 32 on the other end.
  • stimulation clip 58 (or clap 68 described below) may be linked directly to patient module 14 rather than stimulation handpiece 28 , in which case stimulation may be initiated and/or stopped from the GUI display 46 .
  • the electrical stimulus may be initiated by pressing one of stimulation buttons 52 and thereafter the stimulation signal may be passed from the handpiece 28 through the cable 66 and plunger 60 to the tap member 32 (or other surgical accessory 24 ).
  • Stimulation clamp 68 is comprised of two prongs hingedly coupled at a coupling point 70 such that the clamp 68 includes an attachment end 72 and a non-attachment end 74 .
  • a stimulation electrode 76 is disposed on the attachment end 72 and communicates with electric cable 66 extending from the non-attachment end 74 to the handpiece 28 .
  • the prong ends at the attachment end 72 touch. Depressing the prongs at the non-attachment end 74 in a direction towards one another causes a gap to form between the prong ends at the attachment end 72 .
  • FIG. 14 is an exemplary screen view of the Basic Screw Test mode for display on display 46 .
  • FIG. 15 illustrates an exemplary screen view of the Difference Screw Test mode for display on display 46 .
  • FIG. 16 is an exemplary screen view of the Dynamic Screw Test mode for display on display 46 .
  • one or more channel tabs may be highlighted using a color-code to indicate status of the corresponding nerve, and thus the relative safety level determined by the system 10 .
  • the channel with the “worst” (lowest) level will preferably be enlarged and that myotome name 76 will be displayed, as well as graphically depicted on the spine diagram 78 .
  • a vertical bar chart 80 may also be shown to depict the stimulation current required to evoke a significant response for the selected channel.
  • a large numerical readout 82 may also indicate the value of the stimulation result.
  • the display of the stimulation result may be augmented with a color code utilizing the colors green, yellow, and red to enhance the understandability of the result and quickly indicate to the surgeon the level of safety determined by the system 10 . Red may be used to indicate an I thresh level below a predetermined unsafe level.
  • Yellow may be used to indicate an I thresh that falls in between predetermined safe and unsafe levels.
  • Green may represent an I thresh within the range predetermined as safe.
  • the threshold results may be replaced with, or more preferably, augmented with a display of the actual waveform for each channel, as well as audible sounds distinctive to each level of safety (safe, unsafe, in between).
  • the neuromonitoring system 10 may perform nerve proximity testing, via the MaXcess® Detection mode, to ensure safe and reproducible access to surgical target sites.
  • the system 10 detects the existence of neural structures before, during, and after the establishment of an operative corridor through (or near) any of a variety of tissues having such neural structures, which, if contacted or impinged, may otherwise result in neural impairment for the patient.
  • the surgical access components 36 - 40 are designed to bluntly dissect the tissue between the patient's skin and the surgical target site. Access components 36 - 40 preferably utilize stimulation handpiece 28 and stimulation clip 58 (in the same manner as described above and shown in FIG. 12 ) to link to the system 10 .
  • Cannulae or dilators of increasing diameter may be advanced towards the target site until a sufficient operating corridor is established.
  • electrical stimulation signals are transmitted through the stimulation handpiece 28 to the distal end of the cannulae where they are emitted from an electrode region.
  • the stimulation signal will stimulate nerves in close proximity to the stimulation electrode and the corresponding EMG response is monitored.
  • the stimulation current (I stim ) required to evoke a muscle response decreases.
  • I thresh is calculated (using the threshold hunting algorithm described above) which provides a measure of the communication between the stimulation signal and the nerve and thus giving a relative indication of the proximity between access components and nerves.
  • tissue retraction assembly 42 may be coupled to the system 10 (via stimulation clip 58 or clamp 68 ) and employed to provide safe and reproducible access to a surgical target site.
  • Tissue retraction assembly 42 and various embodiments and uses thereof have been shown and described co-pending and commonly assigned U.S. patent application Ser. No. 10/967,668, entitled “Surgical Access System and Related Methods,” filed on Oct. 18, 2004, the entire contents of which are expressly incorporated by reference as if set forth herein in their entirety.
  • FIG. 17 An exemplary screen display of the Detection mode for display on display 46 is illustrated by way of example only in FIG. 17 . Similar to the screw test modes, upon execution of the algorithm, one or more channel tabs may be highlighted using a color-code to indicate status of the corresponding nerve, and thus the relative safety level determined by the system 10 .
  • the channel with the “worst” (lowest) level will preferably be enlarged and that myotome name— 76 will be displayed, as well as graphically depicted on the spine diagram 78 .
  • a vertical bar chart 80 may also be shown to depict the stimulation current required to evoke a significant response for the selected channel.
  • a large numerical readout 82 may also indicate the value of the stimulation result.
  • the display of the stimulation result may be augmented with a color code utilizing the colors green, yellow, and red to enhance the understandability of the result and quickly indicate to the surgeon the level of safety determined by the system 10 .
  • Red may be used to indicate an I thresh level below a predetermined unsafe level.
  • Yellow may be used to indicate an I thresh that falls in between predetermined safe and unsafe levels.
  • Green may represent an I thresh within the range predetermined as safe.
  • the threshold results may be replaced with, or more preferably, augmented with a display of the actual waveform for each channel, as well as audible sounds distinctive to each level of safety (safe, unsafe, in between).
  • the neuromonitoring system 10 may also conduct free-run EMG monitoring while the system is in any of the above-described modes.
  • Free-run EMG monitoring continuously listens for spontaneous muscle activity that may be indicative of potential danger.
  • the system 10 may automatically cycle into free-run monitoring after 5 seconds (by way of example only) of inactivity. Initiating a stimulation signal in the selected mode will interrupt the free-run monitoring until the system 10 has again been inactive for five seconds at which time the free-run begins again.
  • Stimulated and/or Free-run results for any function may be replaced with, or more preferably, augmented with a display of the actual waveform for each channel, as well as audible sounds distinctive to each level of safety (safe, unsafe, in between).
  • the system 10 may be further equipped to conduct and display ultrasound imaging of proximate body tissues (e.g. bone during pilot hole formation and preparation and/or screw implantation and nerves and/or vasculature during surgical access).
  • proximate body tissues e.g. bone during pilot hole formation and preparation and/or screw implantation and nerves and/or vasculature during surgical access.
  • the system 10 may employ intraoperative ultrasound tailored to allow use within bone, such as, by way of example only, the ultrasound system described in U.S. Pat. No. 6,579,244, entitled “Intraosteal Ultrasound During Surgical Implantation.”
  • at least one ultrasound transducer 55 may be deployed to the surgical target site during surgery.
  • acoustic signals of a predetermined frequency ranging between 50 kHz and 16 MHz, are emitted from the transducer(s) 55 through the surrounding body tissue.
  • the signals reflect off tissue boundaries and are thereafter received back at the transducer, converted into electric signals, and processed by the control unit 12 into viewable images.
  • the images may be viewed on the screen display 26 .
  • At least one transducer is mounted on or within one or more of the surgical accessories 24 (such as screw test probe 30 , dilating cannula 38 , 40 , or retraction assembly 42 , shown in FIG. 1 ) and/or one or more surgical instruments engageable with the system 10 via electric coupling device 58 , 68 (such as a tap member 34 or pedicle access probe 32 , shown in FIG. 18 and FIG. 19 , respectively).
  • a separate transducer may be provided and advanced to the surgical target site alone or in conjunction with one or more of the above accessories or instruments, either by advancing alongside or through an interior lumen formed in the instrument for such purpose.
  • ultrasound transducers 55 may be deployed at the distal end of various bone screws, including, but not necessarily limited to pedicle screws and/or facet screws, for enabling ultrasound imaging of the surrounding bone during screw implantation.
  • FIG. 20 depicts in more detail the incorporation of the ultrasound transducer 55 within tap member 34 , according to one exemplary embodiment of the present invention.
  • ultrasound transducer 55 is incorporated in the distal end of tap member 34 .
  • the transducer 55 may be coupled to the patient module via electric cable, such as by way of example, cable 59 .
  • the surgical system 10 utilizes a 64-element array transducer, such as that available and in use with a number of commercially developed products from Volcano Corp. (Rancho Cordova, Calif.).
  • the transducer elements 57 are arrayed in a circular pattern providing for 360° radial imaging of surrounding tissue.
  • forward looking transducers may also be employed for additional imaging of tissue lying in front of the surgical instrument.
  • transducer 55 both transmits and receives the acoustic signals.
  • a transducer incorporated in a surgical accessory may transmit acoustic signals to a receiver positioned in the operating room (outside the patients body) and conversely, a transducer positioned in the operating room may transmit acoustic signals to a receiver incorporated into a surgical accessory.
  • a basic principle underlying the effective use of ultrasound during and/or after pilot hole formation and preparation is the distinctive acoustical characteristics of bone relative to other soft tissues in the body, and more importantly, the varying acoustical characteristics exhibited by bone itself, depending upon its different properties, such as (by way of example only) the type of bone (i.e. cortical or cancellous), bone density, and bone composition.
  • Different acoustical characteristics can include, among others, the velocity, amplitude, and attenuation of sound waves as they pass through tissue.
  • the present invention makes advantageous use of this information, as well as the general makeup of the boney tissue within the pedicle, to assist surgeons in guidance of surgical instrumentation (including but not limited to tap member 34 and pedicle access probe/awl 36 ) through the cancellous bone of the interior pedicle and into the vertebral body without breaching the cortical wall.
  • surgical instrumentation including but not limited to tap member 34 and pedicle access probe/awl 36
  • the pedicle generally comprises a hard outer region 420 of dense cortical bone and center region 400 of softer, less dense cancellous bone, separated by one or more middle regions 410 .
  • the bone in region 410 is generally less dense than outer region 420 but more dense than center region 410 .
  • the preferred trajectory for pedicle screw placement is through the soft cancellous bone of the center region 400 , thereby avoiding a breach of the pedicle wall.
  • at least one of the tap member 34 , pedicle access probe 36 , or screw test probe 30 is advanced through the pedicle. As illustrated in FIG. 23 , acoustic signals are emitted from the transducer 55 and travel through the bone.
  • the ultrasound scan is conducted radially about the surgical instrument thus generating a 360° image of the pedicle relative to the distal end of the surgical instrument, as seen in FIG. 24 . From the screen display 46 the surgeon can visually monitor the relative position of the instrument within the pedicle and thus make any necessary adjustments should the instrument position stray from the desired pathway.
  • the transducer 55 may be substantially located on just one portion of the distal end and the ultrasound scan may be directed by rotating the instrument about its longitudinal axis or any desired portion thereof.
  • ultrasound may be used to determine various properties and/or conditions of bone (via any of a number of suitable methods known to the prior art which may be implemented by the system 10 ) which may also provide useful information.
  • cracks in the pedicle bone may be detected using ultrasound.
  • the system 10 may thus detect a breach in the outer wall of the pedicle by ultrasound detection as well as by the nerve monitoring described above. Additional warning indicia such as graphics and/or audible tones may be employed to warn of any danger detected by the system 10 using ultrasound.
  • the system 10 may utilize ultrasound to determine the density of the bone instrument 24 is in contact with. In the event the instrument encounters cortical bone an auditory or visual alert may be initiated thereby providing additional warning of impending breach if the current trajectory is maintained.
  • Ultrasound during surgical access may also be used to enhance the nerve detection function described above and proceeds along the same premise as that described for imaging bone.
  • Acoustic signals generally in the range of 2 MHz-16 MHZ for nerve imaging, are emitted from the transducer 55 located on or within the surgical access components (such as, cannulae 38 , 40 , and/or retraction assembly 42 ).
  • the signals reflect of tissue boundaries, such as the interface between fat and muscle or muscle and nerves, and are thereafter received and processed to form a viewable image of the tissue relative to the transducer, which is displayed on screen display 46 .
  • Nerves are distinguished from other tissue based on their shape and/or color on the image, as illustrated in FIG. 25 . By way of example only, nerves generally appear as round or oval shaped and are generally brighter than the surrounding tissue.
  • Ultrasound may be utilized on system 10 in conjunction with one the neurophysiologic assessment functions, or, it may be used as a stand alone feature.
  • ultrasound is preferably activated from the GUI display 46 by selecting the appropriate command.
  • the ultrasound image is preferably displayed together with the nerve monitoring data thereby allowing the user to receive all the useful information provided by the system 10 at one time without the need to switch between screen views.
  • FIG. 26 - 28 illustraterate, by way of example only, an exemplary screen display for the Basic, Difference, and Dynamic screw test modes, respectively, with the combined ultrasound imaging image 84 .
  • the ultrasound display includes colorized tissue boundaries.
  • the soft cancellous bone 400 may be shown in green representing the preferred instrument positioning.
  • the middle region 410 may be represented in yellow and the cortical bone in red.
  • the distal end of the surgical instrument is represented, by way of example only, as a target finder 430 .
  • FIG. 29 illustrates an exemplary screen display of the nerve detection function when ultrasound imaging is in use.
  • neurophysiologic assessment data and/or ultrasound images captured by the system 10 may be viewable by persons not present in the operating room. It is contemplated that the data and images may be transmitted to one or more remote locations and viewable by authorized persons. This may be accomplished by any number of data transmission methods. In one example, the images may be transmitted to a remote user via remote monitoring software such as that described in detail in the commonly owned and co-pending U.S. patent application Ser. No. 11/418,589, entitled “System and Methods for Performing and Monitoring Neurophysiologic Assessments,” filed on May 5, 2006, the entire contents of which are incorporated by reference herein as if set forth in its entirety.
  • the present invention may be implemented using any combination of computer programming software, firmware or hardware.
  • the computer programming code (whether software or firmware) according to the invention will typically be stored in one or more machine readable storage mediums such as fixed (hard) drives, diskettes, optical disks, magnetic tape, semiconductor memories such as ROMs, PROMs, etc., thereby making an article of manufacture in accordance with the invention.
  • the article of manufacture containing the computer programming code is used by either executing the code directly from the storage device, by copying the code from the storage device into another storage device such as a hard disk, RAM, etc. or by transmitting the code on a network for remote execution.
  • a hard disk such as a hard disk, RAM, etc.

Abstract

A system and related methods for performing nerve detection during surgical access using ultrasound testing during surgery.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/528,981, filed on Sep. 27, 2005 (now issued as U.S. Pat. No. 8,568,317), which claims priority to U.S. Provisional Patent Application Ser. No. 60/721,425, filed on Sep. 27, 2005, the entire contents of which are hereby expressly incorporated by reference into this disclosure as if set forth in its entirety herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field
  • The present invention relates generally to a system and related methods for performing at least one of bone integrity testing and nerve detection during surgical access using both neurophysiologic testing and ultrasound testing during surgery.
  • 2. Discussion
  • It has been estimated that somewhere between 50 and 70 million people suffer from chronic back pain in the United States. In most cases, conservative therapies, including, for example, bed rest and physical therapy will succeed in alleviating, or at least significantly reducing the back pain. Still, a significant number of patients are unaided by conservative therapies alone and undergo spinal surgery before finding relief. The rate at which caregivers and patients opt for surgery also continues to grow as medical technology advances and surgical options increase. In all, approximately 750,000 spine surgeries are performed per year in the United States alone.
  • When necessary, spine surgery may provide great benefit to the patient, often allowing patients to resume activities long since abandoned because of the debilitating pain. Spine surgery, however, is not without risk. Operating on or near the spine generally means operating in close proximity to delicate neural tissue, such as the spinal cord and nerve roots. Damage to the neural tissue, which may be caused (for example) by inadvertent contact with a surgical instrument and/or implant while accessing the spinal target site or inadvertent contact of an implant or surgical instrument and/or implant before or during pedicle screw placement. One way to mitigate this risk is to conduct neurophysiologic monitoring during the procedure and/or recovery period. Neurophysiologic monitoring generally consists of stimulating neural tissue and analyzing responses (generally electrical waveforms) generated by the stimulus. While such neurophysiologic monitoring has proved an exceedingly valuable tool in efforts to prevent neurological damage during spine surgery there is still room for further improvements. The present invention is directed at such an improvement.
  • SUMMARY OF THE INVENTION
  • According to a broad aspect, the present invention includes a surgical system, comprising a surgical instrument having at least one stimulation electrode for transmitting a stimulation signal for performing neurophysiologic testing during surgery and/or at least one transducer for transmitting and/or receiving signals for performing ultrasound-based testing during surgery. The testing may include, but is not necessarily limited to, pedicle integrity testing associated with the use of pedicle screws (e.g. hole formation, preparation, and screw placement) and surgical access.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Many advantages of the present invention will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, wherein like reference numerals are applied to like elements and wherein:
  • FIG. 1 is a perspective view of an exemplary surgical system 10 capable of neurophysiologic assessments together with ultrasound monitoring to aimed to safely access the spine and properly implant pedicle screws for fixation.
  • FIG. 2 is a block diagram of the surgical system 20 shown in FIG. 1;
  • FIG. 3 is a graph illustrating an exemplary single pulse stimulation signal according to one embodiment of the present invention;
  • FIG. 4 is a graph illustrating an exemplary multipulse stimulation signal according to one embodiment of the present invention;
  • FIG. 5 is a graph illustrating an exemplary EMG response to the stimulus of FIG. 3 or 4 according to one embodiment of the present invention;
  • FIG. 6 is a graph illustrating a plot of peak-to-peak voltage (Vpp) for each given stimulation current level (IStim) forming a stimulation current pulse train according to the present invention (otherwise known as a “recruitment curve”);
  • FIGS. 7A-7D are graphs illustrating the fundamental steps of a rapid current threshold-hunting algorithm according to one embodiment of the present invention;
  • FIG. 8 is a flowchart illustrating a method by which the algorithm may omit a stimulation and proceed to the next current according to one aspect of the present invention;
  • FIGS. 9A-9C are graphs illustrating use of the threshold hunting algorithm of FIG. 7 and further omitting stimulations when the likely result is already clear from previous data according to one aspect of the present invention;
  • FIG. 10 is an illustration of a stimulation handpiece for coupling surgical accessories to the neuromonitoring system 10 according to one embodiment of the present invention;
  • FIG. 11 an of a screw test probe coupled to the stimulation handpiece of FIG. 10 illustration according to one embodiment of the present invention;
  • FIG. 12 is an illustration of a stimulation clip coupled to the stimulation handpiece of FIG. 10 according to one embodiment of the present invention;
  • FIG. 13 is a side view of the stimulation probe of FIG. 11 positioned over a stimulation target site and wherein the distal tip of the probe member and the stimulation target site are included in the camera's field of view;
  • FIG. 14 is an exemplary screen view of the Basic Screw Test mode for performing pedicle integrity assessments according to one embodiment of the present invention;
  • FIG. 15 is an exemplary screen view of the Difference Screw Test mode for performing pedicle integrity assessments according to one embodiment of the present invention;
  • FIG. 16 is an exemplary screen view of the Dynamic Screw Test mode for performing pedicle integrity assessments according to one embodiment of the present invention;
  • FIG. 17 is an exemplary screen view of the MaXcess Detection mode for detecting nerve presence during spinal access according to one embodiment of the present invention;
  • FIG. 18 is side view of a tap member coupled to the system for nerve monitoring via an electric coupling device and incorporating an ultrasound transducer for intraosteal ultrasound imaging according to one aspect of the present invention;
  • FIG. 19 is side view of a pedicle access probe/bone awl coupled to the system for nerve monitoring via an electric coupling device and incorporating an ultrasound transducer for intraosteal ultrasound imaging according to one aspect of the present invention;
  • FIG. 20 is a close up side view of the distal end of the tap member of FIG. 18 with a cutaway exposing an integrated ultrasound transducer for use according to one embodiment of the present invention;
  • FIG. 21 is an overhead view of one embodiment of a transducer for use according to one embodiment of the present invention, having 64 elements arrayed radially for generating 360 degree images;
  • FIG. 22 is an illustration showing the general makeup of various bone regions comprising the spinal pedicle;
  • FIG. 23 is an illustration of tap member of FIG. 18 forming a pilot hole along a preferred trajectory utilizing nerve monitoring and ultrasound imaging to maintain the trajectory;
  • FIG. 24 is a graphical representation of an ultrasound image showing the position of a surgical instrument within the interior pedicle during pedicle integrity testing;
  • FIG. 25 is a graphical representation of an ultrasound image showing the position of a surgical access component relative to a nerve during nerve detection;
  • FIG. 26 is an exemplary screen view of the Basic Screw Test mode for performing pedicle integrity assessments with concurrent use of ultrasound according to one embodiment of the present invention;
  • FIG. 27 is an exemplary screen view of the Difference Screw Test mode for performing pedicle integrity assessments with concurrent use of ultrasound according to one embodiment of the present invention;
  • FIG. 28 is an exemplary screen view of the Dynamic Screw Test mode for performing pedicle integrity assessments with concurrent use of ultrasound according to one embodiment of the present invention;
  • FIG. 29 is an exemplary screen view of the MaXcess Detection mode for detecting nerve presence during spinal access with concurrent use of ultrasound according to one embodiment of the present invention;
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The systems disclosed herein boast a variety of inventive features and components that warrant patent protection, both individually and in combination.
  • The present invention is directed towards enabling safe and reproducible spinal surgery by aiding in, among other things, access to a target site in the spine (including but not necessarily limited to a pedicle) and pedicle screw implantation (including but not necessarily limited to formation and preparation of pilot holes and screw placement). To do so the present invention integrates a host of imaging and neurophysiologic assessment capabilities together in a single, user-friendly and surgeon directed system. FIG. 1 illustrates, by way of example only, a surgical system 10 capable carrying neurophysiologic assessment functions including, but not necessarily limited to, Basic, Difference, and Dynamic Screw Tests (pedicle integrity testing), Detection (nerve proximity testing during surgical access) and Free Run EMG (detection of spontaneous muscle activity, may be conducted in any mode). Simultaneously, the surgical system 10 is capable of performing ultrasound imaging to aid in intraoperative guidance of surgical instrumentation through bone, and in particular, through the cancellous bone forming the interior region of the pedicle as well as enhancing nerve detection. It is expressly noted that, although described herein largely in terms of use in spinal surgery, the surgical system 10 and related methods of the present invention are suitable for use in any number of additional surgical procedures where neurological impairment is a concern.
  • The neuromonitoring system 10 includes a control unit 12, a patient module 14, an EMG harness 16, including eight pairs of EMG electrodes 18 and a return electrode 22 coupled to the patient module 14, and one or more of a host of surgical accessories 24 capable of being coupled to the patient module 14 (preferably via a stimulation handpiece 28 and accessory cables 26), and a pair of peripheral nerve stimulation (PNS) electrodes (one positive and one negative) 29 also coupled to the patient module 14. The surgical accessories 24 may include, but are not necessarily limited to, devices for performing pedicle screw tests (such as a screw test probe 30, tap member 32, bone awl 34), surgical access components (such as a K-wire 36, one or more dilating cannula 38, 40, a tissue retractor assembly 42), and neural pathology monitoring devices (such as a nerve root retractors 44, 45), any of which may also be fitted with one or more ultrasound transducers 55 for imaging of surrounding tissue during use. The neuromonitoring system 10 accomplishes neuromonitoring by having the control unit 12 and patient module 14 cooperate to send stimulation signals to one or more stimulation electrodes or electrode regions on the various surgical accessories, while sensors detect muscle activity caused by the stimulation signal.
  • A block diagram of the neuromonitoring system 10 is shown in FIG. 2, the operation of which is readily apparent in view of the following description. The control unit 12 includes a touch screen display 46 and a base 48, which collectively contain the essential processing capabilities for controlling the neuromonitoring system 10. The touch screen display 26 is preferably equipped with a graphical user interface (GUI) capable of communicating information to the user and receiving instructions from the user. The base 48 contains computer hardware and software that commands the stimulation and ultrasound sources, receives digitized signals and other information from the patient module 14, processes EMG responses, performs ultrasound image processing, and displays the processed data to the operator via the display 46. The primary functions of the software within the control unit 12 include receiving user commands via the touch screen display 46, activating stimulation in the requested mode (Basic Screw Test, Difference Screw Test, Dynamic Screw Test, MaXcess Detection), processing EMG signal data according to defined algorithms, activating ultrasound signaling, processing ultrasound signal data into viewable images, displaying received parameters and processed data, and monitoring system status.
  • The patient module 14 is connected via a data cable 50 (or optionally via wireless communication) to the control unit 12, and contains the electrical connections to all electrodes, EMG signal conditioning circuitry, stimulator drive and steering circuitry, ultrasound signal conditioning and receiving circuitry and a digital communications interface to the control unit 12. In use, the control unit 12 is situated outside but close to the surgical field (such as on a cart adjacent the operating table) such that the display 46 is directed towards the surgeon for easy visualization. The patient module 14 should be located between the patient's legs, or may be affixed to the end of the operating table at mid-leg level using a bedrail clamp. The position selected should be such that the EMG leads surgical accessories 24 can reach their farthest desired location without tension during the surgical procedure.
  • The information displayed to the user on the display 46 may include, but is not necessarily limited to, alpha-numeric and/or graphical information regarding any of the requested modes (e.g., Twitch Test, Free-Run EMG, Screw Test (Basic, Difference, Dynamic), Detection, and Nerve Retractor), myotome/EMG levels, stimulation levels, past stimulation events, stimulation site images, ultrasound images, etc. . . . In one embodiment, set forth by way of example only, this information may include at least some of the following components (depending on the active mode) as set forth in Table 1:
  • TABLE 1
    Screen
    Component Description
    Spine Image An image of the human body/skeleton showing the electrode placement
    on the body, with labeled channel number tabs on each side (1-4 on the
    left and right). Left and right labels will show the patient orientation.
    The channel number tabs may be highlighted or colored depending on
    the specific function being performed.
    Myotome & Level A label to indicate the Myotome name and corresponding Spinal
    Names Level(s) associated with the channel of interest.
    Menu A drop down navigation component for toggling between functions.
    Display Area Shows procedure-specific information including stimulation results.
    Color Indication Enhances stimulation results with a color display of green, yellow, or
    red corresponding to the relative safety level determined by the system.
    Mode Indicator Graphics and/or name to indicate the currently active mode (Detection,
    Basic Screw Test, Dynamic Screw Test, Difference Screw Test, Free-
    Run EMG, Twitch Test, Nerve Retractor, MEP, SSEP). In an alternate
    embodiment, Graphics and/or name may also be displayed to indicate
    the instrument in use, such as the dilator, K-wire, retractor blades,
    screw test instruments, and associated size information, if applicable,
    of the cannula, with the numeric size. If no instrument is in use, then
    no indicator is displayed.
    Stimulation Bar A graphical stimulation indicator depicting the present stimulation
    status (i.e. on or off and stimulation current level)
    Sequence Bar Shows the last seven stimulation results and provides for annotation of
    results.
    EMG waveforms EMG waveforms may be optionally displayed on screen along with the
    stimulation results.
    Ultrasound Image Ultrasound images of the tissue, including bone, acquired from
    ultrasound transducers integrated into or used in cooperation with one
    or more of the surgical accessories.
  • The neuromonitoring functionality of the neuromonitoring system 10 is based on assessing the evoked response of the various muscle myotomes monitored by the system 10 in relation to a stimulation signal transmitted by the system 10 (via patient module 14). This is best shown in FIGS. 3-5, wherein FIG. 5 illustrates the resulting EMG of a monitored myotome in response to one of the exemplary single pulse stimulation signal shown in FIG. 3 and the multiple pulse stimulation signal shown in FIG. 4. The EMG responses provide a quantitative measure of the nerve depolarization caused by the electrical stimulus.
  • In one embodiment, EMG response monitoring is accomplished via 8 pairs EMG electrodes 18 (placed on the skin over the muscle groups to be monitored), a common electrode 20 providing a ground reference to pre-amplifiers in the patient module 14, and an anode electrode 22 providing a return path for the stimulation current. It should be appreciated that any of a variety of known electrodes can be employed, including but not limited to surface pad electrodes and needle electrodes. It should also be appreciated that EMG electrode placement depends on a multitude of factors, including for example, the spinal level and particular nerves at risk and user preference, among others. In one embodiment (set forth by way of example only), an exemplary EMG configuration is described for Lumbar surgery in Table 2, Thoracolumbar surgery in Table 3, and Cervical surgery in Table 4 below:
  • TABLE 2
    Lumbar
    Color Channel Myotome Nerve Spinal Level
    Red Right
    1 Right Vastus Medialis Femoral L2, L3, L4
    Orange Right
    2 Right Tibialis Anterior Common L4, L5
    Peroneal
    Yellow Right
    3 Right Biceps Femoris Sciatic L5, S1, S2
    Green Right
    4 Right Medial Gastroc. Post Tibial S1, S2
    Blue Left
    1 Left Vastus Medialis Femoral L2, L3, L4
    Violet Left
    2 Left Tibialis Anterior Common L4, L5
    Peroneal
    Gray Left
    3 Left Biceps Femoris Sciatic L5, S1, S2
    White Left
    4 Left Medial Gastroc. Post Tibial S1, S2
  • TABLE 3
    Thoracolumbar
    Color Channel Myotome Nerve Spinal Level
    Red Right
    1 Right Abductor Pollicis Median C6, C7, C8, T1
    Brevis
    Orange Right
    2 Right Vastus Medialis Femoral L2, L3, L4
    Yellow Right
    3 Right Tibialis Anterior Common L4, L5
    Peroneal
    Green Right
    4 Right Abductor Hallucis Tibial L4, L5, S1
    Blue Left
    1 Left Abductor Pollicis Median C6, C7, C8, T1
    Brevis
    Violet Left
    2 Left Vastus Medialis Femoral L2, L3, L4
    Gray Left
    3 Left Tibialis Anterior Common L4, L5
    Peroneal
    White Left
    4 Left Abductor Hallucis Tibial L4, L5, S1
  • TABLE 4
    Cervical
    Color Channel Myotome Nerve Spinal Level
    Red Right
    1 Right Deltoid Axilliary C5, C6
    Orange Right
    2 Right Flexor Carpi Median C6, C7, C8
    Radialis
    Yellow Right
    3 Right Abductor Pollicis Median C6, C7, C8, T1
    Brevis
    Green Right
    4 Right Abductor Hallucis Tibial L4, L5, S1
    Blue Left
    1 Left Deltoid Axillary C5, C6
    Violet Left
    2 Left Flexor Carpi Median C6, C7, C8
    Radialis
    Gray Left
    3 Left Abductor Pollicis Median C6, C7, C8, T1
    Brevis
    White Left
    4 Left Abductor Hallucis Tibial L4, L5, S1
  • A basic premise underlying the methods employed by the system 10 for much of the neurophysiologic monitoring conducted is that neurons and nerves have characteristic threshold current levels (IThresh) at which they will depolarize, resulting in detectable muscle activity. Below this threshold current, stimulation signals will not evoke a significant EMG response. Each EMG response can be characterized by a peak-to-peak voltage of Vpp=Vmax−Vmin, shown in FIG. 5. Once the stimulation threshold (IThresh) is reached, the evoked response is reproducible and increases with increasing stimulation until saturation is reached as shown in FIG. 6. This is known as a “recruitment curve.” In one embodiment, a significant EMG response is defined as having a Vpp of approximately 100 uV. The lowest stimulation signal current, Istim that evokes this threshold voltage (VThresh) is called IThresh. Finding Ithresh is useful in making neurophysiologic assessments because it provides a relative indication as to the degree of communication between a stimulation signal and nerve tissue. For example, as the degree of electrical communication between a stimulation signal and a nerve decreases, Ithresh will increase. Conversely, as the degree of communication between the stimulation signal and a nerve increases, Ithresh will decrease.
  • The neuromonitoring system 10 capitalizes on and enhances the information derived from Ithresh by (a) employing methods designed to find Ithresh quickly, accurately, and efficiently; (b) analyzing Ithresh according to predetermined safety indicator levels; and (c) displaying Ithresh and related safety indication data in a simple and meaningful way. Armed with the useful information conveyed by the system 10, the surgeon may detect early on any problem or potential problem and then act to avoid and/or mitigate the situation. By way of general example only, an excessively high Ithresh or an increase over a previous Ithresh measurement during Nerve Retractor mode may indicate a deterioration of nerve root function caused by excessive and/or prolonged retraction. During Screw Test and Detection modes, a low Ithresh value may indicate a breach in the pedicle, or the close proximity of a nerve, respectively.
  • To quickly determine Ithresh, the system 10 may employ a variety of suitable algorithms and techniques which are described in detail in the “NeuroVision Applications,” all of which are incorporated by reference below, as if they were set forth herein in their entireties. One exemplary threshold hunting algorithm, illustrated by way of example only in FIGS. 7A-7D, is described hereafter in only brief detail. The threshold hunting algorithm utilizes a bracketing method and a bisection method to find Ithresh. The bracketing method finds a range (bracket) of stimulation currents that must contain Ithresh. To accomplish this, the algorithm directs stimulation to begin at a predetermined current level (based on the selected function). For each subsequent stimulation, the current level is doubled from the previous current level. This doubling continues until a until a stimulation current recruits, that is, results in an EMG response with a Vpp greater or equal to Vthresh (e.g. 100 uV). This first stimulation current to recruit, together with the last stimulation current to have not recruited, forms the initial bracket. If the stimulation current threshold, Ithresh, of a channel exceeds a maximum stimulation current, that threshold is considered out of range.
  • After the bracket containing the threshold current Ithresh has been determined, the initial bracket is successively reduced via the bisection method to a predetermined width. This is accomplished by applying a first bisection stimulation current that bisects (i.e. forms the midpoint of) the initial bracket. If this first bisection stimulation current recruits, the bracket is reduced to the lower half of the initial bracket. If this first bisection stimulation current does not recruit, the bracket is reduced to the upper half of the initial bracket. This process is continued for each successive bracket until Ithresh is bracketed by stimulation currents separated by the predetermined width. In one embodiment, the midpoint of this final bracket may be defined as Ithresh; however, any value falling within the final bracket may be selected as Ithresh without departing from the scope of the present invention.
  • During some functions (e.g. Screw Tests and Detection) stimulations may stop after Ithresh is determined for the channel possessing the lowest Ithresh. For other functions (e.g. Nerve Retractor), however, it may useful to determine Ithresh for every channel. To accomplish this quickly, the hunting algorithm may employ additional methods allowing it to omit certain stimulations, thereby reducing the number of stimulations and time required to obtain an Ithresh value on each channel. As demonstrated in FIG. 8 and FIGS. 9A-9C, Ithresh is still found using the bracketing and bisection methods described above, however the algorithm will omit stimulations for which the result is predictable from data previously acquired. When a stimulation signal is omitted, the algorithm proceeds as if the stimulation had taken place. This permits the algorithm to proceed to the next required stimulation immediately, without a time delay inherently associated with each stimulation signal. To further reduce the number of stimulations required over the time frame of an entire surgical procedure, the algorithm may confirm previously obtained Ithresh values (e.g. by stimulation at current levels just below and at/or just above Ithresh and determining whether the resulting responses are consistent with the previously acquired Ithresh value), rather than initiating stimulations from the beginning each time a function is performed.
  • By way of example only, the various functional modes of the neuromonitoring system 10 may include the Basic Screw Test, Difference Screw Test, Dynamic Screw Test, MaXcess® Detection, and Free-run EMG, all of which will be described briefly below. The Basic Screw Test, Difference Screw Test, and Dynamic Screw Test modes are designed to assess the integrity of bone (e.g. pedicle) during all aspects of pilot hole formation (e.g., via an awl), pilot hole preparation (e.g. via a tap), and screw introduction (during and after). These modes are described in greater detail in commonly owned U.S. Pat. No. 7,664,544 entitled “System and Methods for Performing Percutaneous Pedicle Integrity Assessments” and commonly owned U.S. Pat. No. 7,657,308, entitled “System and Methods for Performing Dynamic Pedicle Integrity Assessments,” the entire contents of which are both hereby incorporated by reference as if set forth fully herein. The MaXcess® Detection mode is designed to detect the presence of nerves during the use of the various surgical access instruments of the neuromonitoring system 10, including the k-wire 62, dilator 64, cannula 66, 68, retractor assembly 70. This mode is described in greater detail within commonly owned U.S. Pat. No. 8,068,912 entitled “System and Methods for Determining Nerve Proximity, Direction, and Pathology During Surgery,” the entire contents of which is hereby incorporated by reference as if set forth fully herein. Although not described herein, various other functional modes may be performed by the system 10, such as for example only, MEP and SSEP functions which are described in detail within commonly owned and co-pending Int'l Patent App. No. PCT/US2006/003966, entitled “System and Methods for Performing Neurophysiologic Assessments During Spine Surgery,” filed on Feb. 2, 2006, the entire contents of which are hereby incorporated by reference as if set forth fully herein; The Twitch Test mode which is described in detail in commonly owned U.S. Pat. No. 8,538,539 entitled “System and Methods for Assessing the Neuromuscular Pathway Prior to Nerve Testing,” the entire contents of which is hereby incorporated by reference as if set forth fully herein; and Nerve Retractor mode which is described in greater detail within commonly owned U.S. Pat. No. 7,522,953 entitled “System and Methods for Performing Surgical Procedures and Assessments,” the entire contents of which are hereby incorporated by reference as if set forth fully herein.
  • In one embodiment one or more of the surgical accessories 24 including, but not necessarily limited to screw test probe 30, tap member 32, bone awl 34, k-wire 36, dilating cannulae 38, 40, retractor assembly 42, by way of fixed or releasable linkage to a stimulation handpiece 28. Turning to FIG. 10, there is shown one exemplary embodiment of a stimulation handpiece 28. Stimulation handpiece 28 is communicatively linked to the patient module 14 via accessory cable 26. Stimulation handpiece 28 directs stimulation signals from the patient module 14 to the surgical accessories 24. Thereafter the stimulation signal preferably exits one or more electrode regions formed at or near the distal ends of the surgical accessories 24. Stimulation handpiece 28 may be equipped with one or more stimulation buttons 52 for selectively applying electrical stimulation to the attached surgical accessory 24 (according to the selected mode and hunting algorithm discussed above). The one or more stimulation buttons 52 are preferably positioned along stimulation handpiece 28 such that the one or more buttons 52 may preferably be manipulated using the thumb and/or one or more fingers of the hand in which handpiece 28 is held. Various surgical accessories 24 that may be coupled to the stimulation handpiece 28 will be discussed in more detail with regard to the neurophysiologic assessment modes performed by the neuromonitoring system 10.
  • The neuromonitoring system 10 may test the integrity of pedicle holes (during and/or after formation) and/or screws (during and/or after introduction) via the Basic Screw test, Difference Screw Test, and/or Dynamic Screw Test modes. For the Basic Screw Test a screw test probe 30, such as that illustrated in FIG. 11, is used to direct stimulation signals to a pilot hole prior to screw installation, or a screw head after screw installation. Screw test probe 30 may be coupled to stimulation handpiece 28 and includes an elongated probe member 54 and a ball-tipped end 56. The ball-tipped end 56 is inserted through the surgical corridor to the stimulation target site (e.g. pilot hole and or screw head). Once the ball-tipped end 56 is in position, a stimulation button 52 may be pressed to initiate stimulation. The insulating character of bone will prevent the stimulation current, up to a certain amplitude, from communicating with the nerve, thus resulting in a relatively high Ithresh, as determined via the threshold hunting algorithm described above. However, in the event the pedicle wall has been breached by the screw or tap, the current density in the breach area will increase to the point that the stimulation current will pass through to the adjacent nerve roots and they will depolarize at a lower stimulation current, thus Ithresh will be relatively low. Details and results of the Basic Screw test results and may be conveyed to the user on display 46.
  • In Difference Screw Test mode, a baseline threshold value is determined by directly stimulating a nerve. Screw test probe 30 may preferably be used, and the probe is advanced through the surgical corridor to the surgical target site (i.e. the nerve to be directly stimulated). Button 52 on the stimulation handpiece 28 is pressed to initiate stimulation and a baseline threshold is established. Screw test probe 30 may then be maneuvered to the next stimulation target site (e.g. pilot hole or screw head) and stimulation is initiated to determine the actual threshold value Ithresh. The actual threshold is compared to the baseline threshold. The difference between the actual and baseline thresholds is calculated to provide an indication of the safety level. Details and results, including the baseline, actual, and difference thresholds among other things may be displayed for the user on GUI display 46.
  • Dynamic Screw Test mode continuously monitors threshold values while one or more surgical accessories are in use, for example forming a pilot hole. For dynamic screw tests an electric coupling device, such as, by way of example only, stimulation clip 58 is coupled to stimulation handpiece 28, as illustrated in FIG. 12. The electric coupling device couples surgical accessories 24 (such as for example, a tap member 32 or a bone awl 34) to the neuromonitoring system 10 such that stimulation signals may be transmitted through the tool during use. Thus, screw testing may be performed continuously during pilot hole formation by coupling the bone awl 34 to the neuromonitoring system 10, and during pilot hole preparation by coupling the tap 32 to the system 10. Likewise, by coupling a pedicle screw to the neuromonitoring system 10 (such as via pedicle screw instrumentation), screw testing may be performed during screw introduction. To continually update the Ithresh results in an efficient manner, the algorithm may preferably confirm the earlier results by switching back and forth between stimulation signals just above and just below Ithresh. If the expected results are not obtained then the algorithm may transition back into the bracketing and bisection steps. Details and results of the Dynamic Screw test results and may be conveyed and continuously updated on display 46.
  • With reference to FIG. 1 and FIG. 12, stimulation clip 58 utilizes a spring-loaded plunger to hold the surgical tool and transmit the stimulation signal. The plunger 60 is composed of a conductive material such as metal. A nonconductive housing 62 partially encases the plunger 60 about its center. Extending from the housing 62 is an end plate 64. An electrical cable 66 connects the stimulation clip 58 to the stimulation handpiece 28. A spring (not shown) is disposed within the housing 62 such that in a natural or “closed” state the plunger 60 is situated in close proximity to the endplate 64. Exerting a compressive force on the spring (such as by pulling the cable 66 while holding the housing 62) causes a gap between the end plate 64 and the plunger 60 to widen to an “open” position, thereby allowing insertion of a surgical tool (e.g. tap member 32 and awl 34) between the end plate 64 and plunger 60. Releasing the cable 66 allows the spring to return to a “closed” position, causing the plunger 60 to move laterally back towards the endplate such that a force is exerted upon the surgical instrument and thereby holds it in place between the endplate 64 and the plunger 60. This is best viewed in FIG. 13 wherein stimulation clip 58 is linked to stimulation handpiece 28 (via cable 66) on one end and coupled around tap member 32 on the other end. Alternatively, stimulation clip 58 (or clap 68 described below) may be linked directly to patient module 14 rather than stimulation handpiece 28, in which case stimulation may be initiated and/or stopped from the GUI display 46. The electrical stimulus may be initiated by pressing one of stimulation buttons 52 and thereafter the stimulation signal may be passed from the handpiece 28 through the cable 66 and plunger 60 to the tap member 32 (or other surgical accessory 24).
  • Again with reference to FIG. 1, there is shown another embodiment of an electric coupling device for use with the system 10. Stimulation clamp 68 is comprised of two prongs hingedly coupled at a coupling point 70 such that the clamp 68 includes an attachment end 72 and a non-attachment end 74. A stimulation electrode 76 is disposed on the attachment end 72 and communicates with electric cable 66 extending from the non-attachment end 74 to the handpiece 28. In a “closed” position the prong ends at the attachment end 72 touch. Depressing the prongs at the non-attachment end 74 in a direction towards one another causes a gap to form between the prong ends at the attachment end 72. Positioning the “opened” attachment end 72 over a desired surgical instrument and releasing the force on the non-attachment end 74 causes the attachment end 72 to pinch tight on the surgical accessory 24 and thereby allow the electrical stimulus to pass from the stimulation handpiece 28, through the stimulation electrode 76, to the surgical accessory.
  • Stimulation results and other relevant data for the screw test modes are conveyed to the user on display 46, as illustrated in FIGS. 14-16. FIG. 14 is an exemplary screen view of the Basic Screw Test mode for display on display 46. FIG. 15 illustrates an exemplary screen view of the Difference Screw Test mode for display on display 46. FIG. 16 is an exemplary screen view of the Dynamic Screw Test mode for display on display 46. Upon execution of the algorithm, one or more channel tabs may be highlighted using a color-code to indicate status of the corresponding nerve, and thus the relative safety level determined by the system 10. The channel with the “worst” (lowest) level will preferably be enlarged and that myotome name 76 will be displayed, as well as graphically depicted on the spine diagram 78. A vertical bar chart 80 may also be shown to depict the stimulation current required to evoke a significant response for the selected channel. A large numerical readout 82 may also indicate the value of the stimulation result. Preferably, the display of the stimulation result may be augmented with a color code utilizing the colors green, yellow, and red to enhance the understandability of the result and quickly indicate to the surgeon the level of safety determined by the system 10. Red may be used to indicate an Ithresh level below a predetermined unsafe level. Yellow may be used to indicate an Ithresh that falls in between predetermined safe and unsafe levels. Green may represent an Ithresh within the range predetermined as safe. Although not show, the threshold results may be replaced with, or more preferably, augmented with a display of the actual waveform for each channel, as well as audible sounds distinctive to each level of safety (safe, unsafe, in between).
  • The neuromonitoring system 10 may perform nerve proximity testing, via the MaXcess® Detection mode, to ensure safe and reproducible access to surgical target sites. Using the surgical access components 36-40, the system 10 detects the existence of neural structures before, during, and after the establishment of an operative corridor through (or near) any of a variety of tissues having such neural structures, which, if contacted or impinged, may otherwise result in neural impairment for the patient. The surgical access components 36-40 are designed to bluntly dissect the tissue between the patient's skin and the surgical target site. Access components 36-40 preferably utilize stimulation handpiece 28 and stimulation clip 58 (in the same manner as described above and shown in FIG. 12) to link to the system 10. Cannulae or dilators of increasing diameter may be advanced towards the target site until a sufficient operating corridor is established. As the cannulae or dilators are advanced to the target site, electrical stimulation signals are transmitted through the stimulation handpiece 28 to the distal end of the cannulae where they are emitted from an electrode region. The stimulation signal will stimulate nerves in close proximity to the stimulation electrode and the corresponding EMG response is monitored. As a nerve gets closer to the stimulation electrode, the stimulation current (Istim) required to evoke a muscle response decreases. Ithresh is calculated (using the threshold hunting algorithm described above) which provides a measure of the communication between the stimulation signal and the nerve and thus giving a relative indication of the proximity between access components and nerves.
  • Additional and/or alternative surgical access components such as, by way of example only, a tissue retraction assembly 42 (FIG. 1) may be coupled to the system 10 (via stimulation clip 58 or clamp 68) and employed to provide safe and reproducible access to a surgical target site. Tissue retraction assembly 42 and various embodiments and uses thereof have been shown and described co-pending and commonly assigned U.S. patent application Ser. No. 10/967,668, entitled “Surgical Access System and Related Methods,” filed on Oct. 18, 2004, the entire contents of which are expressly incorporated by reference as if set forth herein in their entirety.
  • An exemplary screen display of the Detection mode for display on display 46 is illustrated by way of example only in FIG. 17. Similar to the screw test modes, upon execution of the algorithm, one or more channel tabs may be highlighted using a color-code to indicate status of the corresponding nerve, and thus the relative safety level determined by the system 10. The channel with the “worst” (lowest) level will preferably be enlarged and that myotome name—76 will be displayed, as well as graphically depicted on the spine diagram 78. A vertical bar chart 80 may also be shown to depict the stimulation current required to evoke a significant response for the selected channel. A large numerical readout 82 may also indicate the value of the stimulation result. Preferably, the display of the stimulation result may be augmented with a color code utilizing the colors green, yellow, and red to enhance the understandability of the result and quickly indicate to the surgeon the level of safety determined by the system 10. Red may be used to indicate an Ithresh level below a predetermined unsafe level. Yellow may be used to indicate an Ithresh that falls in between predetermined safe and unsafe levels. Green may represent an Ithresh within the range predetermined as safe. Although not show, the threshold results may be replaced with, or more preferably, augmented with a display of the actual waveform for each channel, as well as audible sounds distinctive to each level of safety (safe, unsafe, in between).
  • The neuromonitoring system 10 may also conduct free-run EMG monitoring while the system is in any of the above-described modes. Free-run EMG monitoring continuously listens for spontaneous muscle activity that may be indicative of potential danger. The system 10 may automatically cycle into free-run monitoring after 5 seconds (by way of example only) of inactivity. Initiating a stimulation signal in the selected mode will interrupt the free-run monitoring until the system 10 has again been inactive for five seconds at which time the free-run begins again. Stimulated and/or Free-run results for any function may be replaced with, or more preferably, augmented with a display of the actual waveform for each channel, as well as audible sounds distinctive to each level of safety (safe, unsafe, in between).
  • To augment the neurophysiologic assessments, such as for example only those described above, performed by the neuromonitoring system 10, the system 10 may be further equipped to conduct and display ultrasound imaging of proximate body tissues (e.g. bone during pilot hole formation and preparation and/or screw implantation and nerves and/or vasculature during surgical access). To do so, the system 10 may employ intraoperative ultrasound tailored to allow use within bone, such as, by way of example only, the ultrasound system described in U.S. Pat. No. 6,579,244, entitled “Intraosteal Ultrasound During Surgical Implantation.” Specifically, at least one ultrasound transducer 55 may be deployed to the surgical target site during surgery. Under the direction of control unit 12, acoustic signals of a predetermined frequency, ranging between 50 kHz and 16 MHz, are emitted from the transducer(s) 55 through the surrounding body tissue. The signals reflect off tissue boundaries and are thereafter received back at the transducer, converted into electric signals, and processed by the control unit 12 into viewable images. The images may be viewed on the screen display 26.
  • Preferably, at least one transducer is mounted on or within one or more of the surgical accessories 24 (such as screw test probe 30, dilating cannula 38, 40, or retraction assembly 42, shown in FIG. 1) and/or one or more surgical instruments engageable with the system 10 via electric coupling device 58, 68 (such as a tap member 34 or pedicle access probe 32, shown in FIG. 18 and FIG. 19, respectively). As an alternative, a separate transducer (not shown) may be provided and advanced to the surgical target site alone or in conjunction with one or more of the above accessories or instruments, either by advancing alongside or through an interior lumen formed in the instrument for such purpose. Incorporating the transducer 55 onto existing instrumentation permits deployment to the surgical target site during normal operation of the instrument, allowing the advantageous addition of ultrasound imaging without requiring additional steps or instrumentation. It is further contemplated that ultrasound transducers 55 may be deployed at the distal end of various bone screws, including, but not necessarily limited to pedicle screws and/or facet screws, for enabling ultrasound imaging of the surrounding bone during screw implantation.
  • For the purposes of example only, FIG. 20 depicts in more detail the incorporation of the ultrasound transducer 55 within tap member 34, according to one exemplary embodiment of the present invention. In the exemplary embodiment, ultrasound transducer 55 is incorporated in the distal end of tap member 34. The transducer 55 may be coupled to the patient module via electric cable, such as by way of example, cable 59. In the pictured embodiment, the surgical system 10 utilizes a 64-element array transducer, such as that available and in use with a number of commercially developed products from Volcano Corp. (Rancho Cordova, Calif.). As best appreciated in FIG. 21, the transducer elements 57 are arrayed in a circular pattern providing for 360° radial imaging of surrounding tissue. Optionally, forward looking transducers may also be employed for additional imaging of tissue lying in front of the surgical instrument. It will be appreciated from the above description that transducer 55 both transmits and receives the acoustic signals. Various other configurations for integrating ultrasound capabilities are also possible. By way of example only, a transducer incorporated in a surgical accessory may transmit acoustic signals to a receiver positioned in the operating room (outside the patients body) and conversely, a transducer positioned in the operating room may transmit acoustic signals to a receiver incorporated into a surgical accessory.
  • A basic principle underlying the effective use of ultrasound during and/or after pilot hole formation and preparation is the distinctive acoustical characteristics of bone relative to other soft tissues in the body, and more importantly, the varying acoustical characteristics exhibited by bone itself, depending upon its different properties, such as (by way of example only) the type of bone (i.e. cortical or cancellous), bone density, and bone composition. Different acoustical characteristics can include, among others, the velocity, amplitude, and attenuation of sound waves as they pass through tissue. Methods abound in the prior art for quantifying different properties of bone by using ultrasound to determine one or more of its acoustical characteristics and additional methods are known in the prior art for processing ultrasound signals to generate a viewable image of tissue. The present invention makes advantageous use of this information, as well as the general makeup of the boney tissue within the pedicle, to assist surgeons in guidance of surgical instrumentation (including but not limited to tap member 34 and pedicle access probe/awl 36) through the cancellous bone of the interior pedicle and into the vertebral body without breaching the cortical wall.
  • With reference to FIG. 22, the pedicle generally comprises a hard outer region 420 of dense cortical bone and center region 400 of softer, less dense cancellous bone, separated by one or more middle regions 410. The bone in region 410 is generally less dense than outer region 420 but more dense than center region 410. The preferred trajectory for pedicle screw placement is through the soft cancellous bone of the center region 400, thereby avoiding a breach of the pedicle wall. During and/or after pilot hole formation and preparation at least one of the tap member 34, pedicle access probe 36, or screw test probe 30, is advanced through the pedicle. As illustrated in FIG. 23, acoustic signals are emitted from the transducer 55 and travel through the bone. Upon reaching a boundary, a portion of the signal reflects back to the transducer while the remainder of the signal continues moving through the pedicle to the next boundary. The received signals are electronically processed and converted into an image that graphically represents the different tissue, specifically, the different regions of bone 400, 410, and 420. In a preferred embodiment, the ultrasound scan is conducted radially about the surgical instrument thus generating a 360° image of the pedicle relative to the distal end of the surgical instrument, as seen in FIG. 24. From the screen display 46 the surgeon can visually monitor the relative position of the instrument within the pedicle and thus make any necessary adjustments should the instrument position stray from the desired pathway. In another embodiment, the transducer 55 may be substantially located on just one portion of the distal end and the ultrasound scan may be directed by rotating the instrument about its longitudinal axis or any desired portion thereof.
  • In addition to the image guidance aspect of ultrasound, ultrasound may be used to determine various properties and/or conditions of bone (via any of a number of suitable methods known to the prior art which may be implemented by the system 10) which may also provide useful information. By way of example only, cracks in the pedicle bone, along with their relative position, may be detected using ultrasound. The system 10 may thus detect a breach in the outer wall of the pedicle by ultrasound detection as well as by the nerve monitoring described above. Additional warning indicia such as graphics and/or audible tones may be employed to warn of any danger detected by the system 10 using ultrasound. By way of further example, the system 10 may utilize ultrasound to determine the density of the bone instrument 24 is in contact with. In the event the instrument encounters cortical bone an auditory or visual alert may be initiated thereby providing additional warning of impending breach if the current trajectory is maintained.
  • Ultrasound during surgical access may also be used to enhance the nerve detection function described above and proceeds along the same premise as that described for imaging bone. Acoustic signals, generally in the range of 2 MHz-16 MHZ for nerve imaging, are emitted from the transducer 55 located on or within the surgical access components (such as, cannulae 38, 40, and/or retraction assembly 42). The signals reflect of tissue boundaries, such as the interface between fat and muscle or muscle and nerves, and are thereafter received and processed to form a viewable image of the tissue relative to the transducer, which is displayed on screen display 46. Nerves are distinguished from other tissue based on their shape and/or color on the image, as illustrated in FIG. 25. By way of example only, nerves generally appear as round or oval shaped and are generally brighter than the surrounding tissue.
  • Ultrasound may be utilized on system 10 in conjunction with one the neurophysiologic assessment functions, or, it may be used as a stand alone feature. In one embodiment ultrasound is preferably activated from the GUI display 46 by selecting the appropriate command. When ultrasound imaging is utilized in conjunction with nerve monitoring according to the present invention, the ultrasound image is preferably displayed together with the nerve monitoring data thereby allowing the user to receive all the useful information provided by the system 10 at one time without the need to switch between screen views. FIG. 26-28—illustrate, by way of example only, an exemplary screen display for the Basic, Difference, and Dynamic screw test modes, respectively, with the combined ultrasound imaging image 84. In one embodiment, the ultrasound display includes colorized tissue boundaries. The soft cancellous bone 400 may be shown in green representing the preferred instrument positioning. The middle region 410 may be represented in yellow and the cortical bone in red. The distal end of the surgical instrument is represented, by way of example only, as a target finder 430. FIG. 29 illustrates an exemplary screen display of the nerve detection function when ultrasound imaging is in use.
  • It may also be advantageous for neurophysiologic assessment data and/or ultrasound images captured by the system 10 to be viewable by persons not present in the operating room. It is contemplated that the data and images may be transmitted to one or more remote locations and viewable by authorized persons. This may be accomplished by any number of data transmission methods. In one example, the images may be transmitted to a remote user via remote monitoring software such as that described in detail in the commonly owned and co-pending U.S. patent application Ser. No. 11/418,589, entitled “System and Methods for Performing and Monitoring Neurophysiologic Assessments,” filed on May 5, 2006, the entire contents of which are incorporated by reference herein as if set forth in its entirety.
  • While this invention has been described in terms of a best mode for achieving this invention's objectives, it will be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviating from the spirit or scope of the present invention. By way of example the present invention may be implemented using any combination of computer programming software, firmware or hardware. As a preparatory step to practicing the invention or constructing an apparatus according to the invention, the computer programming code (whether software or firmware) according to the invention will typically be stored in one or more machine readable storage mediums such as fixed (hard) drives, diskettes, optical disks, magnetic tape, semiconductor memories such as ROMs, PROMs, etc., thereby making an article of manufacture in accordance with the invention. The article of manufacture containing the computer programming code is used by either executing the code directly from the storage device, by copying the code from the storage device into another storage device such as a hard disk, RAM, etc. or by transmitting the code on a network for remote execution. As can be envisioned by one of skill in the art, many different combinations of the above may be used and accordingly the present invention is not limited by the specified scope.

Claims (10)

What is claimed is:
1. A method for safely avoiding nerve tissue during access to a surgical target site during surgery, comprising conducting both neurophysiologic testing and ultrasound testing to detect the presence of nerve tissue near an instrument equipped with at least one electrode for emitting a stimulation signal and at least one ultrasound transducer for emitting ultrasound signals while advancing the instrument to the surgical target site.
2. The method of claim Error! Reference source not found., wherein the ultrasound testing uses a signal having a frequency in the range of 50 kHz to 16 MHz.
3. The method of claim Error! Reference source not found., wherein the neurophysiologic testing and ultrasound testing are performed substantially simultaneously.
4. The method of claim Error! Reference source not found., wherein said transducer is located at a distal end of said instrument and is configured to transmit ultrasound signals through body tissue to nerve tissue near the surgical instrument during surgical access.
5. The method of claim 4, wherein the transducer is further configured to receive ultrasound signals after they reflect off at least the nerve tissue adjacent to the surgical instrument.
6. The method of claim 5, wherein the transducer is an array transducer.
7. The method of claim 6, wherein the transducer includes multiple elements arranged in a circular pattern about the distal end of the surgical instrument.
8. The method of claim 1, comprising the further step of displaying an image of the ultrasound testing on a display screen.
9. The method of claim 8, wherein the image depicts the position of the distal end of the surgical instrument in relation to the nerve tissue.
10. The method of claim 9, wherein the image is displayed together with data associated with the neurophysiologic testing.
US14/063,184 2005-09-27 2013-10-25 System and Methods for Nerve Monitoring Abandoned US20140051999A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/063,184 US20140051999A1 (en) 2005-09-27 2013-10-25 System and Methods for Nerve Monitoring
US14/881,091 US10299756B1 (en) 2005-09-27 2015-10-12 System and methods for nerve monitoring
US16/384,936 US11653894B2 (en) 2005-09-27 2019-04-16 System and methods for nerve monitoring
US16/875,018 US11617562B2 (en) 2005-09-27 2020-05-15 System and methods for nerve monitoring
US16/875,033 US11540804B2 (en) 2005-09-27 2020-05-15 System and methods for nerve monitoring
US16/875,040 US20200275906A1 (en) 2005-09-27 2020-05-15 System and Methods For Nerve Monitoring
US16/875,025 US11712218B2 (en) 2005-09-27 2020-05-15 System and methods for nerve monitoring

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US72142505P 2005-09-27 2005-09-27
US11/528,981 US8568317B1 (en) 2005-09-27 2006-09-27 System and methods for nerve monitoring
US14/063,184 US20140051999A1 (en) 2005-09-27 2013-10-25 System and Methods for Nerve Monitoring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/528,981 Continuation US8568317B1 (en) 2005-09-27 2006-09-27 System and methods for nerve monitoring

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/881,091 Continuation US10299756B1 (en) 2005-09-27 2015-10-12 System and methods for nerve monitoring

Publications (1)

Publication Number Publication Date
US20140051999A1 true US20140051999A1 (en) 2014-02-20

Family

ID=49448540

Family Applications (8)

Application Number Title Priority Date Filing Date
US11/528,981 Active US8568317B1 (en) 2005-09-27 2006-09-27 System and methods for nerve monitoring
US14/063,184 Abandoned US20140051999A1 (en) 2005-09-27 2013-10-25 System and Methods for Nerve Monitoring
US14/881,091 Active US10299756B1 (en) 2005-09-27 2015-10-12 System and methods for nerve monitoring
US16/384,936 Active 2027-01-05 US11653894B2 (en) 2005-09-27 2019-04-16 System and methods for nerve monitoring
US16/875,018 Active 2027-10-16 US11617562B2 (en) 2005-09-27 2020-05-15 System and methods for nerve monitoring
US16/875,033 Active 2027-10-23 US11540804B2 (en) 2005-09-27 2020-05-15 System and methods for nerve monitoring
US16/875,040 Pending US20200275906A1 (en) 2005-09-27 2020-05-15 System and Methods For Nerve Monitoring
US16/875,025 Active 2028-01-02 US11712218B2 (en) 2005-09-27 2020-05-15 System and methods for nerve monitoring

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/528,981 Active US8568317B1 (en) 2005-09-27 2006-09-27 System and methods for nerve monitoring

Family Applications After (6)

Application Number Title Priority Date Filing Date
US14/881,091 Active US10299756B1 (en) 2005-09-27 2015-10-12 System and methods for nerve monitoring
US16/384,936 Active 2027-01-05 US11653894B2 (en) 2005-09-27 2019-04-16 System and methods for nerve monitoring
US16/875,018 Active 2027-10-16 US11617562B2 (en) 2005-09-27 2020-05-15 System and methods for nerve monitoring
US16/875,033 Active 2027-10-23 US11540804B2 (en) 2005-09-27 2020-05-15 System and methods for nerve monitoring
US16/875,040 Pending US20200275906A1 (en) 2005-09-27 2020-05-15 System and Methods For Nerve Monitoring
US16/875,025 Active 2028-01-02 US11712218B2 (en) 2005-09-27 2020-05-15 System and methods for nerve monitoring

Country Status (1)

Country Link
US (8) US8568317B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217824A1 (en) * 2015-09-17 2017-03-23 Airbus Ds Gmbh Medical drill system with automatic switch-off
WO2018089950A1 (en) * 2016-11-14 2018-05-17 Safeop Surgical, Inc. Systems and methods for placement of spinal cord stimulator leads
US10716536B2 (en) 2013-07-17 2020-07-21 Tissue Differentiation Intelligence, Llc Identifying anatomical structures
WO2020165858A1 (en) * 2019-02-15 2020-08-20 Medos International Sarl Portable ultrasound based nerve imaging system
US11701086B1 (en) 2016-06-21 2023-07-18 Tissue Differentiation Intelligence, Llc Methods and systems for improved nerve detection

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8052688B2 (en) * 2006-10-06 2011-11-08 Wolf Ii Erich Electromagnetic apparatus and method for nerve localization during spinal surgery
US8992558B2 (en) 2008-12-18 2015-03-31 Osteomed, Llc Lateral access system for the lumbar spine
US20140288427A1 (en) * 2009-04-03 2014-09-25 James K. Wall Devices and methods for tissue navigation
WO2012040206A1 (en) 2010-09-20 2012-03-29 Synthes Usa, Llc Spinal access retractor
US9949651B2 (en) 2011-11-01 2018-04-24 DePuy Synthes Products, Inc. Intraoperative neurophysiological monitoring system
US20140081659A1 (en) 2012-09-17 2014-03-20 Depuy Orthopaedics, Inc. Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking
US9387026B2 (en) * 2013-03-14 2016-07-12 Warsaw Orthopedic, Inc. Bone fastener and methods of use
US10098585B2 (en) 2013-03-15 2018-10-16 Cadwell Laboratories, Inc. Neuromonitoring systems and methods
US10154826B2 (en) 2013-07-17 2018-12-18 Tissue Differentiation Intelligence, Llc Device and method for identifying anatomical structures
US10478096B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions. Neural event detection
US10478097B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions Neural event detection
US10376208B2 (en) 2013-09-20 2019-08-13 Innovative Surgical Solutions, Llc Nerve mapping system
US10449002B2 (en) 2013-09-20 2019-10-22 Innovative Surgical Solutions, Llc Method of mapping a nerve
US10376209B2 (en) 2013-09-20 2019-08-13 Innovative Surgical Solutions, Llc Neural locating method
US9918669B2 (en) 2014-08-08 2018-03-20 Medtronic Xomed, Inc. Wireless nerve integrity monitoring systems and devices
US10258228B2 (en) 2014-08-08 2019-04-16 K2M, Inc. Retraction devices, systems, and methods for minimally invasive spinal surgery
US9936961B2 (en) * 2014-09-26 2018-04-10 DePuy Synthes Products, Inc. Surgical tool with feedback
US10039915B2 (en) 2015-04-03 2018-08-07 Medtronic Xomed, Inc. System and method for omni-directional bipolar stimulation of nerve tissue of a patient via a surgical tool
US10339273B2 (en) 2015-11-18 2019-07-02 Warsaw Orthopedic, Inc. Systems and methods for pre-operative procedure determination and outcome predicting
US10445466B2 (en) 2015-11-18 2019-10-15 Warsaw Orthopedic, Inc. Systems and methods for post-operative outcome monitoring
WO2018039228A1 (en) 2016-08-23 2018-03-01 Stryker European Holdings I, Llc Instrumentation for the implantation of spinal implants
US10849517B2 (en) 2016-09-19 2020-12-01 Medtronic Xomed, Inc. Remote control module for instruments
US10321833B2 (en) 2016-10-05 2019-06-18 Innovative Surgical Solutions. Neural locating method
WO2018085537A2 (en) 2016-11-03 2018-05-11 Edge Surgical, Inc. Surgical depth instrument having neuromonitoring capabilities
US9935395B1 (en) 2017-01-23 2018-04-03 Cadwell Laboratories, Inc. Mass connection plate for electrical connectors
US10792080B2 (en) 2017-06-14 2020-10-06 Edge Surgical, Inc. Devices for minimally invasive procedures
WO2019036048A2 (en) 2017-08-17 2019-02-21 Stryker European Holdings I, Llc Lateral access bridges, shims and lighting including rod lighting
US11331091B2 (en) * 2017-11-14 2022-05-17 Endovision Co., Ltd. Surgical instrument set for use during unilateral biportal endoscopy
WO2019173307A1 (en) * 2018-03-05 2019-09-12 Edge Surgical, Inc. Handheld devices for use in medical procedures
US11191532B2 (en) 2018-03-30 2021-12-07 Stryker European Operations Holdings Llc Lateral access retractor and core insertion
US11253182B2 (en) 2018-05-04 2022-02-22 Cadwell Laboratories, Inc. Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation
US10869616B2 (en) 2018-06-01 2020-12-22 DePuy Synthes Products, Inc. Neural event detection
US11443649B2 (en) 2018-06-29 2022-09-13 Cadwell Laboratories, Inc. Neurophysiological monitoring training simulator
US10870002B2 (en) 2018-10-12 2020-12-22 DePuy Synthes Products, Inc. Neuromuscular sensing device with multi-sensor array
US11413029B2 (en) 2018-10-24 2022-08-16 Stryker European Operations Holdings Llc Anterior to psoas instrumentation
US11678906B2 (en) * 2019-09-09 2023-06-20 Amplify Surgical, Inc. Multi-portal surgical systems, cannulas, and related technologies
US11399777B2 (en) 2019-09-27 2022-08-02 DePuy Synthes Products, Inc. Intraoperative neural monitoring system and method
US11564674B2 (en) 2019-11-27 2023-01-31 K2M, Inc. Lateral access system and method of use
US11950770B1 (en) 2022-12-01 2024-04-09 Amplify Surgical, Inc. Multi-portal split cannulas, endoscopic hemostatic dispensers and surgical tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020103428A1 (en) * 2001-01-30 2002-08-01 Decharms R. Christopher Methods for physiological monitoring, training, exercise and regulation
US20050240126A1 (en) * 1999-09-17 2005-10-27 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
US20050283148A1 (en) * 2004-06-17 2005-12-22 Janssen William M Ablation apparatus and system to limit nerve conduction

Family Cites Families (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736002A (en) 1956-02-21 oriel
US972983A (en) 1909-05-17 1910-10-18 Lester R Lantz Dilator.
US1328624A (en) 1917-08-13 1920-01-20 Frank B Graham Dilator
US1548184A (en) 1923-04-11 1925-08-04 Will J Cameron Holder and control for pulp testers
US2704064A (en) 1952-09-10 1955-03-15 Meditron Company Neurosurgical stimulator
US2808826A (en) 1956-01-19 1957-10-08 Teca Corp Electro-diagnostic apparatus and a circuit therefor
US3364929A (en) 1964-12-21 1968-01-23 Burroughs Wellcome Co Method for administering muscle relaxant drug
US3682162A (en) 1968-12-13 1972-08-08 Wellcome Found Combined electrode and hypodermic syringe needle
US3664329A (en) 1970-03-09 1972-05-23 Concept Nerve locator/stimulator
US3785368A (en) 1971-08-23 1974-01-15 Carthy T Mc Abnormal nerve pressure locus detector and method
US3938502A (en) * 1972-02-22 1976-02-17 Nicolaas Bom Apparatus with a catheter for examining hollow organs or bodies with the ultrasonic waves
US3830226A (en) 1973-06-15 1974-08-20 Concept Variable output nerve locator
US3957036A (en) 1975-02-03 1976-05-18 Baylor College Of Medicine Method and apparatus for recording activity in intact nerves
GB1534162A (en) 1976-07-21 1978-11-29 Lloyd J Cyosurgical probe
US4099519A (en) 1977-01-14 1978-07-11 Warren Fred E Diagnostic device
US4164214A (en) 1977-07-25 1979-08-14 The Regents Of The University Of California Method and apparatus for measuring the sensitivity of teeth
US4224949A (en) 1977-11-17 1980-09-30 Cornell Research Foundation, Inc. Method and electrical resistance probe for detection of estrus in bovine
US4226228A (en) 1978-11-02 1980-10-07 Shin Hee J Multiple joint retractor with light
US4235242A (en) 1979-04-02 1980-11-25 Med General, Inc. Electronic circuit permitting simultaneous use of stimulating and monitoring equipment
US4285347A (en) 1979-07-25 1981-08-25 Cordis Corporation Stabilized directional neural electrode lead
US4291705A (en) 1979-09-10 1981-09-29 The Regents Of The University Of California Neuromuscular block monitor
USRE34390E (en) 1980-12-31 1993-09-28 Nicolet Instrument Corporation Apparatus and method for topographic display of multichannel EEG data
US4461300A (en) 1982-01-18 1984-07-24 Sutter Biomedical, Inc. Bone and tissue healing device including a special electrode assembly and method
US4592369A (en) 1982-07-12 1986-06-03 National Research Development Corp. Method and apparatus for use in temporal analysis of waveforms
US4545374A (en) 1982-09-03 1985-10-08 Jacobson Robert E Method and instruments for performing a percutaneous lumbar diskectomy
US4519403A (en) 1983-04-29 1985-05-28 Medtronic, Inc. Balloon lead and inflator
US4561445A (en) 1983-05-25 1985-12-31 Joseph J. Berke Elongated needle electrode and method of making same
FI73878C (en) 1983-06-10 1987-12-10 Instrumentarium Oy FOERFARANDE FOER VIDAREUTVECKLING AV NERVMUSKELANSLUTNINGS MAETNING.
US4515168A (en) 1983-07-22 1985-05-07 Chester Martin H Clamp-on nerve stimulator and locator
US4573448A (en) 1983-10-05 1986-03-04 Pilling Co. Method for decompressing herniated intervertebral discs
US4562832A (en) 1984-01-21 1986-01-07 Wilder Joseph R Medical instrument and light pipe illumination assembly
US4616660A (en) 1984-12-10 1986-10-14 Suncoast Medical Manufacturing, Inc. Variable alternating current output nerve locator/stimulator
US4633889A (en) 1984-12-12 1987-01-06 Andrew Talalla Stimulation of cauda-equina spinal nerves
US4658835A (en) 1985-07-25 1987-04-21 Cordis Corporation Neural stimulating lead with fixation canopy formation
EP0233258A1 (en) 1985-08-16 1987-08-26 BROWN, David Electromyographic repetitive strain injury monitor
US4892105A (en) 1986-03-28 1990-01-09 The Cleveland Clinic Foundation Electrical stimulus probe
US4784150A (en) 1986-11-04 1988-11-15 Research Corporation Surgical retractor and blood flow monitor
US4759377A (en) 1986-11-26 1988-07-26 Regents Of The University Of Minnesota Apparatus and method for mechanical stimulation of nerves
US4744371A (en) 1987-04-27 1988-05-17 Cordis Leads, Inc. Multi-conductor lead assembly for temporary use
US4926865A (en) 1987-10-01 1990-05-22 Oman Paul S Microcomputer-based nerve and muscle stimulator
DE8803153U1 (en) 1988-03-09 1988-06-23 B. Braun Melsungen Ag, 3508 Melsungen, De
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
US5484437A (en) 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5015247A (en) 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5772661A (en) 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5127403A (en) 1988-07-05 1992-07-07 Cardiac Control Systems, Inc. Pacemaker catheter utilizing bipolar electrodes spaced in accordance to the length of a heart depolarization signal
US5058602A (en) 1988-09-30 1991-10-22 Brody Stanley R Paraspinal electromyography scanning
US4964411A (en) 1989-07-13 1990-10-23 Empi, Inc. Evoked EMG signal processing
US4962766A (en) 1989-07-19 1990-10-16 Herzon Garrett D Nerve locator and stimulator
US5125406A (en) 1989-11-29 1992-06-30 Eet Limited Partnership (Del) Electrode endotracheal tube
US5078147A (en) * 1990-01-25 1992-01-07 Vivo Corporation Method of noninvasive ultrasonic detection of nerve root inflammation
US5454365A (en) 1990-11-05 1995-10-03 Bonutti; Peter M. Mechanically expandable arthroscopic retractors
US5081990A (en) 1990-05-11 1992-01-21 New York University Catheter for spinal epidural injection of drugs and measurement of evoked potentials
US5095905A (en) 1990-06-07 1992-03-17 Medtronic, Inc. Implantable neural electrode
US5092344A (en) 1990-11-19 1992-03-03 Lee Tzium Shou Remote indicator for stimulator
SE467561B (en) 1990-12-04 1992-08-10 Dorsograf Ab DEVICE FOR SEATING TRANSPORT TIME OF NERV SIGNALS
US5480440A (en) 1991-08-15 1996-01-02 Smith & Nephew Richards, Inc. Open surgical technique for vertebral fixation with subcutaneous fixators positioned between the skin and the lumbar fascia of a patient
US5161533A (en) 1991-09-19 1992-11-10 Xomed-Treace Inc. Break-apart needle electrode system for monitoring facial EMG
US5313962A (en) 1991-10-18 1994-05-24 Obenchain Theodore G Method of performing laparoscopic lumbar discectomy
US5255691A (en) 1991-11-13 1993-10-26 Medtronic, Inc. Percutaneous epidural lead introducing system and method
US6500173B2 (en) 1992-01-07 2002-12-31 Ronald A. Underwood Methods for electrosurgical spine surgery
US5171279A (en) 1992-03-17 1992-12-15 Danek Medical Method for subcutaneous suprafascial pedicular internal fixation
US5284153A (en) 1992-04-14 1994-02-08 Brigham And Women's Hospital Method for locating a nerve and for protecting nerves from injury during surgery
US5474558A (en) * 1992-04-30 1995-12-12 Neubardt; Seth L. Procedure and system for spinal pedicle screw insertion
US5196015A (en) * 1992-04-30 1993-03-23 Neubardt Seth L Procedure for spinal pedicle screw insertion
US5312417A (en) 1992-07-29 1994-05-17 Wilk Peter J Laparoscopic cannula assembly and associated method
US5299563A (en) 1992-07-31 1994-04-05 Seton Joseph Z Method of using a surgical retractor
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
WO1994010924A1 (en) 1992-11-13 1994-05-26 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical probe
US5375067A (en) 1992-12-11 1994-12-20 Nicolet Instrument Corporation Method and apparatus for adjustment of acquisition parameters in a data acquisition system such as a digital oscilloscope
US5814073A (en) 1996-12-13 1998-09-29 Bonutti; Peter M. Method and apparatus for positioning a suture anchor
US5327902A (en) 1993-05-14 1994-07-12 Lemmen Roger D Apparatus for use in nerve conduction studies
US5333618A (en) 1993-06-30 1994-08-02 Gregory Lekhtman Portable self-contained instrument for the measurement of nerve resistance of a patient
US5549656A (en) 1993-08-16 1996-08-27 Med Serve Group, Inc. Combination neuromuscular stimulator and electromyograph system
US5566678B1 (en) 1993-09-10 1999-11-30 Cadwell Ind Inc Digital eeg noise synthesizer
US5560372A (en) 1994-02-02 1996-10-01 Cory; Philip C. Non-invasive, peripheral nerve mapping device and method of use
CA2144211C (en) 1994-03-16 2005-05-24 David T. Green Surgical instruments useful for endoscopic spinal procedures
CA2551185C (en) 1994-03-28 2007-10-30 Sdgi Holdings, Inc. Apparatus and method for anterior spinal stabilization
US5575284A (en) 1994-04-01 1996-11-19 University Of South Florida Portable pulse oximeter
US5593429A (en) 1994-06-28 1997-01-14 Cadwell Industries, Inc. Needle electrode with depth of penetration limiter
US5482038A (en) 1994-06-28 1996-01-09 Cadwell Industries, Inc. Needle electrode assembly
US5540235A (en) 1994-06-30 1996-07-30 Wilson; John R. Adaptor for neurophysiological monitoring with a personal computer
JP2750088B2 (en) * 1994-08-19 1998-05-13 小林 史朗 Human body color map, treatment material and treatment method using the same
US6038469A (en) 1994-10-07 2000-03-14 Ortivus Ab Myocardial ischemia and infarction analysis and monitoring method and apparatus
US5579781A (en) 1994-10-13 1996-12-03 Cooke; Thomas H. Wireless transmitter for needle electrodes as used in electromyography
US5630813A (en) 1994-12-08 1997-05-20 Kieturakis; Maciej J. Electro-cauterizing dissector and method for facilitating breast implant procedure
US5601608A (en) 1995-02-02 1997-02-11 Pacesetter, Inc. Methods and apparatus for applying charge-balanced antiarrhythmia shocks
US5860973A (en) 1995-02-27 1999-01-19 Michelson; Gary Karlin Translateral spinal implant
US5671752A (en) 1995-03-31 1997-09-30 Universite De Montreal/The Royal Insitution For The Advancement Of Learning (Mcgill University) Diaphragm electromyography analysis method and system
AU5448496A (en) 1995-04-10 1996-10-30 St. Luke's-Roosevelt Hospital Peripheral nerve stimulation device for unassisted nerve blo ckade
US5711307A (en) 1995-04-13 1998-01-27 Liberty Mutual Insurance Company Method and apparatus for detecting myoelectric activity from the surface of the skin
US5775331A (en) * 1995-06-07 1998-07-07 Uromed Corporation Apparatus and method for locating a nerve
DE19522879A1 (en) 1995-06-23 1997-01-02 Aesculap Ag Surgical retractor
US5797854A (en) 1995-08-01 1998-08-25 Hedgecock; James L. Method and apparatus for testing and measuring current perception threshold and motor nerve junction performance
DE19530869A1 (en) 1995-08-22 1997-02-27 Sterimed Gmbh Puncturing and / or catheterizing device for probing nerves
US5707359A (en) 1995-11-14 1998-01-13 Bufalini; Bruno Expanding trocar assembly
US6425901B1 (en) 1995-12-07 2002-07-30 Loma Linda University Medical Center Vascular wound closure system
US5779642A (en) 1996-01-16 1998-07-14 Nightengale; Christopher Interrogation device and method
US5651363A (en) * 1996-02-16 1997-07-29 Orthologic Corporation Ultrasonic bone assessment method and apparatus
US5792044A (en) 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
DE19618945C2 (en) 1996-05-10 2003-02-27 Phonak Ag Staefa Fixable positioning system for a firm, play-free connection to the human skull
US5853373A (en) 1996-08-05 1998-12-29 Becton, Dickinson And Company Bi-level charge pulse apparatus to facilitate nerve location during peripheral nerve block procedures
US5759159A (en) 1996-09-25 1998-06-02 Ormco Corporation Method and apparatus for apical detection with complex impedance measurement
US5862314A (en) 1996-11-01 1999-01-19 Micron Electronics, Inc. System and method for remapping defective memory locations
US5797397A (en) * 1996-11-25 1998-08-25 Hewlett-Packard Company Ultrasound imaging system and method using intensity highlighting to facilitate tissue differentiation
US6135965A (en) 1996-12-02 2000-10-24 Board Of Regents, The University Of Texas System Spectroscopic detection of cervical pre-cancer using radial basis function networks
US6119068A (en) 1996-12-27 2000-09-12 Kannonji; Michihiro Rear-end collision alarming device and method linked to speed control device of a vehicle
US5928158A (en) 1997-03-25 1999-07-27 Aristides; Arellano Medical instrument with nerve sensor
US6050992A (en) 1997-05-19 2000-04-18 Radiotherapeutics Corporation Apparatus and method for treating tissue with multiple electrodes
US6132387A (en) 1997-07-01 2000-10-17 Neurometrix, Inc. Neuromuscular electrode
US6146335A (en) 1997-07-01 2000-11-14 Neurometrix, Inc. Apparatus for methods for the assessment of neuromuscular function of the lower extremity
US6132386A (en) 1997-07-01 2000-10-17 Neurometrix, Inc. Methods for the assessment of neuromuscular function by F-wave latency
US5851191A (en) 1997-07-01 1998-12-22 Neurometrix, Inc. Apparatus and methods for assessment of neuromuscular function
US5872314A (en) 1997-07-25 1999-02-16 Clinton; Robert P. Method and apparatus for measuring characteristics of meat
US6348058B1 (en) 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6306100B1 (en) 1997-12-16 2001-10-23 Richard L. Prass Intraoperative neurophysiological monitoring system
US6181961B1 (en) 1997-12-16 2001-01-30 Richard L. Prass Method and apparatus for an automatic setup of a multi-channel nerve integrity monitoring system
US6206826B1 (en) * 1997-12-18 2001-03-27 Sdgi Holdings, Inc. Devices and methods for percutaneous surgery
US5928139A (en) * 1998-04-24 1999-07-27 Koros; Tibor B. Retractor with adjustable length blades and light pipe guides
US6161047A (en) 1998-04-30 2000-12-12 Medtronic Inc. Apparatus and method for expanding a stimulation lead body in situ
US6004262A (en) 1998-05-04 1999-12-21 Ad-Tech Medical Instrument Corp. Visually-positioned electrical monitoring apparatus
US6066096A (en) * 1998-05-08 2000-05-23 Duke University Imaging probes and catheters for volumetric intraluminal ultrasound imaging and related systems
US6361559B1 (en) * 1998-06-10 2002-03-26 Converge Medical, Inc. Thermal securing anastomosis systems
US6139493A (en) 1998-07-08 2000-10-31 Koros; Tibor B. Retractor with adjustable length blades and light pipe guides
US6027456A (en) 1998-07-10 2000-02-22 Advanced Neuromodulation Systems, Inc. Apparatus and method for positioning spinal cord stimulation leads
US6104960A (en) 1998-07-13 2000-08-15 Medtronic, Inc. System and method for providing medical electrical stimulation to a portion of the nervous system
JP2000028717A (en) 1998-07-13 2000-01-28 Mitsubishi Electric Corp Device for detecting obstacle
US6126660A (en) 1998-07-29 2000-10-03 Sofamor Danek Holdings, Inc. Spinal compression and distraction devices and surgical methods
US6366813B1 (en) 1998-08-05 2002-04-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
US6292701B1 (en) 1998-08-12 2001-09-18 Medtronic Xomed, Inc. Bipolar electrical stimulus probe with planar electrodes
US6104957A (en) 1998-08-21 2000-08-15 Alo; Kenneth M. Epidural nerve root stimulation with lead placement method
US6139545A (en) 1998-09-09 2000-10-31 Vidaderm Systems and methods for ablating discrete motor nerve regions
US6038477A (en) 1998-12-23 2000-03-14 Axon Engineering, Inc. Multiple channel nerve stimulator with channel isolation
JP4430238B2 (en) 1998-09-18 2010-03-10 英博 山本 Endoscope electrification device
US6451015B1 (en) 1998-11-18 2002-09-17 Sherwood Services Ag Method and system for menu-driven two-dimensional display lesion generator
US6507755B1 (en) 1998-12-01 2003-01-14 Neurometrix, Inc. Apparatus and method for stimulating human tissue
US6266558B1 (en) 1998-12-01 2001-07-24 Neurometrix, Inc. Apparatus and method for nerve conduction measurements with automatic setting of stimulus intensity
US6564078B1 (en) 1998-12-23 2003-05-13 Nuvasive, Inc. Nerve surveillance cannula systems
JP2003524452A (en) 1998-12-23 2003-08-19 ヌバシブ, インコーポレイテッド Nerve monitoring cannula system
US6393325B1 (en) 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6285902B1 (en) * 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
US6214035B1 (en) 1999-03-23 2001-04-10 Jackson Streeter Method for improving cardiac microcirculation
US6074343A (en) 1999-04-16 2000-06-13 Nathanson; Michael Surgical tissue retractor
US6224549B1 (en) 1999-04-20 2001-05-01 Nicolet Biomedical, Inc. Medical signal monitoring and display
US6259945B1 (en) 1999-04-30 2001-07-10 Uromed Corporation Method and device for locating a nerve
US6901928B2 (en) 1999-05-04 2005-06-07 Paul G. Loubser Superglottic and peri-laryngeal apparatus for supraglottic airway insertion
DE19921279C1 (en) 1999-05-07 2000-11-30 Aesculap Ag & Co Kg Rotating surgical tool
EP1115338B1 (en) 1999-05-07 2006-08-16 Aesculap AG & Co. KG Rotating surgical instrument
FR2795624B1 (en) 1999-07-01 2001-09-28 Vanacker Gerard METHOD FOR DRILLING THE VERTEBRAL PEDICLE, PARTICULARLY FOR THE PLACEMENT OF A PEDICULAR SCREW, AN INSTRUMENT FOR THE IMPLEMENTATION OF SUCH A PROCESS
US6298265B1 (en) 1999-07-09 2001-10-02 Paul A. Burgio Electrode design and stimulator for antler-bearing animals
FR2796846A1 (en) 1999-07-30 2001-02-02 Mohamed Zouheir Naja Thoraco-abdominal or pelvic anaesthesia apparatus comprises needle and electrode linked to electrical power source, extension, guide tube and catheter
US6334068B1 (en) 1999-09-14 2001-12-25 Medtronic Xomed, Inc. Intraoperative neuroelectrophysiological monitor
US20050256582A1 (en) 1999-10-08 2005-11-17 Ferree Bret A Spinal implants, including devices that reduce pressure on the annulus fibrosis
US6878167B2 (en) * 2002-04-24 2005-04-12 Bret A. Ferree Methods and apparatus for placing intradiscal devices
US6500180B1 (en) 1999-10-20 2002-12-31 Sdgi Holdings, Inc. Methods and instrumentation for distraction of a disc space
US7470236B1 (en) 1999-11-24 2008-12-30 Nuvasive, Inc. Electromyography system
US6466817B1 (en) * 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
JP2003518404A (en) * 1999-12-28 2003-06-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Ultrasonic image processing method and apparatus for displaying an ultrasonic color-coded image of an object having a moving part
US6457365B1 (en) * 2000-02-09 2002-10-01 Endosonics Corporation Method and apparatus for ultrasonic imaging
US6582441B1 (en) 2000-02-24 2003-06-24 Advanced Bionics Corporation Surgical insertion tool
US6312392B1 (en) 2000-04-06 2001-11-06 Garrett D. Herzon Bipolar handheld nerve locator and evaluator
WO2001087154A1 (en) 2000-05-18 2001-11-22 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
EP1292223A2 (en) 2000-06-08 2003-03-19 Nuvasive, Inc. Relative nerve movement and status detection system and method
US6902569B2 (en) 2000-08-17 2005-06-07 Image-Guided Neurologics, Inc. Trajectory guide with instrument immobilizer
US6487446B1 (en) 2000-09-26 2002-11-26 Medtronic, Inc. Method and system for spinal cord stimulation prior to and during a medical procedure
US7089059B1 (en) 2000-11-03 2006-08-08 Pless Benjamin D Predicting susceptibility to neurological dysfunction based on measured neural electrophysiology
US6847849B2 (en) 2000-11-15 2005-01-25 Medtronic, Inc. Minimally invasive apparatus for implanting a sacral stimulation lead
DE50106342D1 (en) * 2000-11-24 2005-06-30 Innovacell Biotechnologie Gmbh ULTRASONIC SENSOR WITH POSITIONING DEVICE FOR TESTING AND OPERATING DEVICES
US20080039914A1 (en) 2000-11-24 2008-02-14 Nervonix, Inc. Needle with depth determination capability and method of use
WO2002054941A2 (en) * 2001-01-11 2002-07-18 Rita Medical Systems Inc Bone-treatment instrument and method
US6618626B2 (en) 2001-01-16 2003-09-09 Hs West Investments, Llc Apparatus and methods for protecting the axillary nerve during thermal capsullorhaphy
US6929606B2 (en) 2001-01-29 2005-08-16 Depuy Spine, Inc. Retractor and method for spinal pedicle screw placement
US6839594B2 (en) 2001-04-26 2005-01-04 Biocontrol Medical Ltd Actuation and control of limbs through motor nerve stimulation
US20030105503A1 (en) 2001-06-08 2003-06-05 Nuvasive, Inc. Relative nerve movement and status detection system and method
EP1417000B1 (en) * 2001-07-11 2018-07-11 Nuvasive, Inc. System for determining nerve proximity during surgery
US6855105B2 (en) 2001-07-11 2005-02-15 Jackson, Iii Avery M. Endoscopic pedicle probe
US6926728B2 (en) 2001-07-18 2005-08-09 St. Francis Medical Technologies, Inc. Curved dilator and method
JP2005503857A (en) * 2001-09-25 2005-02-10 ヌバシブ, インコーポレイテッド Systems and methods for performing surgical procedures and surgical diagnosis
US20030078618A1 (en) 2001-10-19 2003-04-24 Fey Kate E. System and method for removing implanted devices
EP1443859A4 (en) 2001-10-24 2006-03-22 Cutting Edge Surgical Inc Intraosteal ultrasound during surgical implantation
US6916330B2 (en) 2001-10-30 2005-07-12 Depuy Spine, Inc. Non cannulated dilators
US7664544B2 (en) 2002-10-30 2010-02-16 Nuvasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
WO2003037170A2 (en) * 2001-10-30 2003-05-08 Nuvasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
US7824410B2 (en) 2001-10-30 2010-11-02 Depuy Spine, Inc. Instruments and methods for minimally invasive spine surgery
US7214197B2 (en) 2001-11-06 2007-05-08 Prass Richard L Intraoperative neurophysiological monitoring system
US7020512B2 (en) * 2002-01-14 2006-03-28 Stereotaxis, Inc. Method of localizing medical devices
FR2835732B1 (en) 2002-02-11 2004-11-12 Spinevision DEVICE FOR TRACKING THE PENETRATION OF A PENETRATION MEANS IN ANATOMICAL ELEMENTS
US7294127B2 (en) 2002-03-05 2007-11-13 Baylis Medical Company Inc. Electrosurgical tissue treatment method
US7258688B1 (en) 2002-04-16 2007-08-21 Baylis Medical Company Inc. Computerized electrical signal generator
US8147421B2 (en) 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
WO2004064634A1 (en) * 2003-01-15 2004-08-05 Nuvasive, Inc. Systems and methods for determining direction to a nerve
AU2002950769A0 (en) 2002-08-06 2002-09-12 Neopraxis Pty Ltd A method and system for inserting an electrode
BR0314328A (en) 2002-09-04 2005-07-05 William F Urmey Positioning system for a nerve stimulating needle
US8137284B2 (en) 2002-10-08 2012-03-20 Nuvasive, Inc. Surgical access system and related methods
US7660623B2 (en) * 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7715896B2 (en) * 2003-03-21 2010-05-11 Boston Scientific Scimed, Inc. Systems and methods for internal tissue penetration
US7570791B2 (en) * 2003-04-25 2009-08-04 Medtronic Navigation, Inc. Method and apparatus for performing 2D to 3D registration
US20040225228A1 (en) 2003-05-08 2004-11-11 Ferree Bret A. Neurophysiological apparatus and procedures
EP1675508B1 (en) 2003-08-05 2016-04-20 NuVasive, Inc. System for performing dynamic pedicle integrity assessments
WO2005030318A1 (en) 2003-09-25 2005-04-07 Nuvasive, Inc. Surgical access system and related methods
WO2005034781A1 (en) * 2003-09-29 2005-04-21 Promethean Surgical Devices Llc Devices and methods for spine repair
US7242401B2 (en) * 2004-06-25 2007-07-10 Siemens Medical Solutions Usa, Inc. System and method for fast volume rendering
DE602005002405T2 (en) * 2004-07-06 2008-06-12 Fujinon Corporation An ultrasonic endoscope
WO2006029257A2 (en) 2004-09-08 2006-03-16 Spinal Modulation Inc. Neurostimulation methods and systems
US8538539B2 (en) * 2004-10-07 2013-09-17 Nu Vasive, Inc. System and methods for assessing the neuromuscular pathway prior to nerve testing
US7553307B2 (en) * 2004-10-15 2009-06-30 Baxano, Inc. Devices and methods for tissue modification
US7865236B2 (en) * 2004-10-20 2011-01-04 Nervonix, Inc. Active electrode, bio-impedance based, tissue discrimination system and methods of use
US20090177112A1 (en) * 2005-02-02 2009-07-09 James Gharib System and Methods for Performing Neurophysiologic Assessments During Spine Surgery
US7604601B2 (en) * 2005-04-26 2009-10-20 Biosense Webster, Inc. Display of catheter tip with beam direction for ultrasound system
US7835784B2 (en) * 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US7789833B2 (en) * 2006-11-16 2010-09-07 Penrith Corporation Integrated nerve stimulator and ultrasound imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050240126A1 (en) * 1999-09-17 2005-10-27 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
US20020103428A1 (en) * 2001-01-30 2002-08-01 Decharms R. Christopher Methods for physiological monitoring, training, exercise and regulation
US20050283148A1 (en) * 2004-06-17 2005-12-22 Janssen William M Ablation apparatus and system to limit nerve conduction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716536B2 (en) 2013-07-17 2020-07-21 Tissue Differentiation Intelligence, Llc Identifying anatomical structures
DE102015217824A1 (en) * 2015-09-17 2017-03-23 Airbus Ds Gmbh Medical drill system with automatic switch-off
DE102015217824B4 (en) 2015-09-17 2019-01-17 Airbus Defence and Space GmbH Medical drill system with automatic switch-off
US11701086B1 (en) 2016-06-21 2023-07-18 Tissue Differentiation Intelligence, Llc Methods and systems for improved nerve detection
WO2018089950A1 (en) * 2016-11-14 2018-05-17 Safeop Surgical, Inc. Systems and methods for placement of spinal cord stimulator leads
CN109937003A (en) * 2016-11-14 2019-06-25 赛佛欧普手术有限公司 System and method for placing spinal stimulator lead
US11648401B2 (en) * 2016-11-14 2023-05-16 Safeop Surgical, Inc. Systems and methods for placement of spinal cord stimulator leads
WO2020165858A1 (en) * 2019-02-15 2020-08-20 Medos International Sarl Portable ultrasound based nerve imaging system
US11666304B2 (en) 2019-02-15 2023-06-06 Medos International Sarl Portable ultrasound based nerve imaging system

Also Published As

Publication number Publication date
US20200275906A1 (en) 2020-09-03
US20200275904A1 (en) 2020-09-03
US11540804B2 (en) 2023-01-03
US20200275903A1 (en) 2020-09-03
US10299756B1 (en) 2019-05-28
US20190307418A1 (en) 2019-10-10
US8568317B1 (en) 2013-10-29
US20200275905A1 (en) 2020-09-03
US11653894B2 (en) 2023-05-23
US11712218B2 (en) 2023-08-01
US11617562B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
US11540804B2 (en) System and methods for nerve monitoring
US8740783B2 (en) System and methods for performing neurophysiologic assessments with pressure monitoring
US20200085590A1 (en) Systems and methods for performing surgical procedures and assessments
US8989866B2 (en) System and methods for assessing the neuromuscular pathway prior to nerve testing
US20140121555A1 (en) Neuromonitoring systems and methods
US20100010367A1 (en) System and methods for monitoring during anterior surgery

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNORS:NUVASIVE, INC.;NUVASIVE CLINICAL SERVICES MONITORING, INC.;NUVASIVE CLINICAL SERVICES, INC.;AND OTHERS;REEL/FRAME:052918/0595

Effective date: 20200224