US20140088077A1 - Novel substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments - Google Patents

Novel substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments Download PDF

Info

Publication number
US20140088077A1
US20140088077A1 US14/094,976 US201314094976A US2014088077A1 US 20140088077 A1 US20140088077 A1 US 20140088077A1 US 201314094976 A US201314094976 A US 201314094976A US 2014088077 A1 US2014088077 A1 US 2014088077A1
Authority
US
United States
Prior art keywords
alkyl
compound
formula
combination
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/094,976
Inventor
Lothar Schwink
Siegfried Stengelin
Matthias Gossel
Torsten HAACK
Petra Lennig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi SA
Original Assignee
Sanofi SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanofi SA filed Critical Sanofi SA
Priority to US14/094,976 priority Critical patent/US20140088077A1/en
Assigned to SANOFI reassignment SANOFI ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOSSEL, MATTHIAS, HAACK, TORSTEN, SCHWINK, LOTHAR, STENGELIN, SIEGFRIED, LENNIG, PETRA
Publication of US20140088077A1 publication Critical patent/US20140088077A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/397Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4025Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4525Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/541Non-condensed thiazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/553Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one oxygen as ring hetero atoms, e.g. loxapine, staurosporine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/12Radicals substituted by oxygen atoms

Definitions

  • the invention relates to substituted tetrahydronaphthalenes and derivatives thereof, and also to the physiologically compatible salts and physiologically functional derivatives thereof, to preparation thereof, to medicaments comprising at least one inventive substituted tetrahydronaphthalene or derivative thereof, and to the use of the inventive substituted tetrahydronaphthalenes and derivatives thereof as medicaments.
  • the invention therefore relates to compounds of the formula I
  • a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C 1 -C 6 )-alkyl, oxygen and sulfur; q, r are each independently 0, 1, 2, 3, 4, 5, 6;
  • are each independently H, OH, F, O—(C 1 -C 6 )-alkyl, S—(C 1 -C 6 )-alkyl, O-phenyl, CN, COO(R25), N(R26)CO(C 1 -C 6 )-alkyl, N(R27)(R28), CON(R29)(R30), SO 2 (C 1 -C 6 )-alkyl, 3-12-membered mono-, bi- or spirocyclic ring which may contain one to four heteroatoms from the group of N, O and S, and the 3-12-membered ring may contain further substituents such as F, Cl, Br, OH, CF 3 , NO 2 , CN, OCF 3 , oxo, O—(C 1 -C 6 )-alkyl, (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, S—(C 1 -C 8
  • L1 is C(R34)(R35), C(R36)(R37)C(R38)(R39), (C 3 -C 6 )-cycloalkyl; optionally, R1 may be joined to one of the R34, R35, R36, R37, R38 or R39 radicals, so as to form a 5-6-membered ring;
  • X is O, C(R43)(R43′);
  • R6 and R6′, or R43 and R43′ together are optionally oxo;
  • R8 is H, (C 1 -C 8 )-alkyl;
  • L2 is a bond, C(R44)(R45);
  • C 1 -C 8 are each independently H, (C 1 -C 8 )-alkyl;
  • L3 is a bond or a linker having from 1 to 4 members, where the members are selected from the group consisting of O, S, SO 2 , N(R61), CO, C(R62)(R63), C ⁇ C, to give rise to a chemically viable radical, and the linker does not have any O—CO or COO groups;
  • B is (C 1 -C 8 )-alkyl, (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, hydroxy-(C 1 -C 6 )-alkyl, a 3 to 10-membered mono-, bi- or spirocyclic nonaromatic ring which may include from 0 to 3 heteroatom
  • L3 is C(R62)(R63)O
  • B is a 4- to 10-membered mono-, bi- or spirocyclic nonaromatic ring which includes from 1 to 3 heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the ring system may additionally be substituted by one or more of the following substituents: F, CF 3 , (C 1 -C 6 )-alkyl, O—(C 1 -C 8 )-alkyl, (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, hydroxy-(C 1 -C 4 )-alkyl, oxo, CO(R64), hydroxyl.
  • the compounds of the formula I are notable in that they have an improved solubility in aqueous media as compared with structurally similar compounds with MCH-antagonistic action (especially in physiologically relevant buffer systems) coupled with simultaneously high activity. Moreover, preferred inventive compounds are notable for low blockage of the hERG channel. Furthermore, preferred inventive compounds have an improved metabolic stability as compared with prior art compounds.
  • alkyl, alkenyl and alkynyl radicals in the substituents R1, R2, R3, R4, R5, R6, R6′′, R7, R7′, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36, R37, R38, R39, R40, R41, R42, R43, R43′, R44, R45, R54, R55, R56, R57, R58, R59, R60, R61, R62, R63, R64 may be either straight-chain, branched and/or optionally substituted by substituents such as (C 1 -C 4 )-alkoxy or halogen.
  • alkyl, alkenyl and alkynyl radicals are part of another group, for example part of an alkoxy group (such as (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl)).
  • Suitable halogens are fluorine, chlorine, bromine and iodine, preferably fluorine, chlorine and bromine, particularly preferably fluorine.
  • alkyl groups are: methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl. Included therein are both the n-isomers of these radicals and branched isomers such as isopropyl, isobutyl, isopentyl, sec-butyl, tert-butyl, neopentyl, 3,3-dimethylbutyl, etc.
  • alkyl additionally also includes alkyl radicals which are unsubstituted or optionally substituted by one or more further radicals, for example by 1, 2, 3 or 4 identical or different radicals such as (C 1 -C 4 )-alkoxy or halogen.
  • alkyl groups substituted by halogen are fluorinated alkyl groups such as CF 3 , CHF 2 , CH 2 F, 3-fluoroprop-1-yl, 2,2,1,1-tetrafluoroethyl. It is moreover possible for the additional substituents to appear in any desired position of the alkyl radical.
  • the alkyl radicals are preferably unsubstituted.
  • Cycloalkyl means in the context of the present application cycloalkyl and cycloalkylalkyl (alkyl which is in turn substituted by cycloalkyl), where cycloalkyl has at least 3 carbon atoms.
  • cycloalkyl radicals are: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl and cyclodecyl.
  • Polycyclic ring systems are also possible where appropriate, such as decalinyl, norbornanyl, bornanyl or adamantanyl.
  • cycloalkyl radicals may be unsubstituted or optionally substituted by one or more further radicals as listed by way of example above for the alkyl radicals. Unless defined otherwise, the cycloalkyl radicals are preferably unsubstituted.
  • alkenyl and alkynyl groups are: vinyl, 1-propenyl, 2-propenyl (allyl), 2-butenyl, 2-methyl-2-propenyl, 3-methyl-2-butenyl, ethynyl, 2-propynyl (propargyl), 2-butynyl or 3-butynyl.
  • Cycloalkenyl means in the context of the present application cycloalkenyl radicals and cycloalkenylalkyl radicals (alkyl which is substituted by cycloalkenyl), which comprise at least three carbon atoms.
  • Examples of cycloalkenyl are: cyclopentenyl, cyclohexenyl, cycloheptenyl and cyclooctenyl.
  • the alkenyl radicals and cycloalkenyl radicals may have one to three conjugated or non-conjugated double bonds (i.e. also alkadienyl and alkatrienyl radicals), preferably one double bond in a linear or branched chain. The same applies to the triple bonds for alkynyl radicals.
  • the alkenyl and alkynyl radicals may be unsubstituted or optionally substituted by one or more further radicals as listed by way of example above for the alkyl radicals. Unless defined otherwise, the alkenyl and alkynyl radicals are preferably unsubstituted.
  • Aryl refers in the present invention to radicals which are derived from monocyclic or bicyclic aromatic compounds comprising no ring heteroatoms. Where aryl refers to systems which are not monocyclic, the saturated form (perhydro form) or the partly unsaturated form (for example the dihydro form or tetrahydro form) is also possible for the second ring when the respective forms are known and stable.
  • aryl also includes in the present invention for example bicyclic radicals in which both rings are aromatic and bicyclic radicals in which only one ring is aromatic.
  • aryl examples include: phenyl, naphthyl, indanyl, 1,2-dihydronaphthenyl, 1,4-dihydronaphthenyl, indenyl or 1,2,3,4-tetrahydronaphthyl. Unless defined otherwise, the aryl radicals are preferably unsubstituted.
  • Aryl is particularly preferably phenyl or naphthyl.
  • Heteroaryl radicals mean radicals derived from monocyclic or bicyclic aromatic compounds which comprise ring heteroatoms, preferably N, O or S. Otherwise, the statements made about aryl radicals apply to heteroaryl radicals.
  • a “tricycle” means structures having 3 rings which are linked together by more than one bond. Examples of such systems are fused systems with 3 rings and spirocycles with fused-on ring system.
  • a polycyclic group means in the context of the present application a group which is derived from spiranes, fused ring systems or bridged ring systems.
  • the spiranes are notable for two rings having only one carbon atom in common and the ring planes of the two rings being perpendicular to one another.
  • the fused ring systems two rings are linked together in such a way that they have two atoms in common. This type of linkage involves an “ortho fusion”.
  • Bridged ring systems are ring systems having a bridge of carbon atoms and/or heteroatoms between two nonadjacent atoms of a ring.
  • a “chemically viable radical” means in the context of the present invention a radical which is stable at room temperature and atmospheric pressure.
  • a “chemically viable radical” in the definition of group A in compounds of the formula I preferably means groups which have no heteroatom-heteroatom bonds between the individual members of the groups.
  • a “nonaromatic” ring means in the context of the present application preferably a ring which is saturated or partly unsaturated.
  • a partly unsaturated ring according to the present application has one or, where appropriate, a plurality of double bonds, but the partly unsaturated ring is not aromatic.
  • the term “nonaromatic” in the context of the present application also includes “nonheteroaromatic” rings.
  • the compounds of the formula I may have one or more centers of asymmetry.
  • the compounds of the formula I may therefore exist in the form of their racemates, enantiomer-enriched mixtures, pure enantiomers, diastereomers and mixtures of diastereomers.
  • the present invention encompasses all these isomeric forms of the compounds of the formula I. These isomeric forms may be obtained by known methods, even if not expressly described in some cases.
  • Suitable pharmaceutically acceptable acid addition salts of the compounds of the invention are salts of inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, metaphosphoric acid, nitric acid and sulfuric acid, and of organic acids, for example acetic acid, benzenesulfonic acid, benzoic acid, citric acid, ethanesulfonic acid, fumaric acid, gluconic acid, glycolic acid, isethionic acid, lactic acid, lactobionic acid, maleic acid, malic acid, methanesulfonic acid, succinic acid, p-toluenesulfonic acid and tartaric acid.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, metaphosphoric acid, nitric acid and sulfuric acid
  • organic acids for example acetic acid, benzenesulfonic acid, benzoic acid, citric acid, ethanesulfonic acid, fumaric acid, glu
  • Suitable pharmaceutically acceptable basic salts are ammonium salts, alkali metal salts (such as sodium and potassium salts), alkaline earth metal salts (such as magnesium and calcium salts) and salts of trometamol (2-amino-2-hydroxymethyl-1,3-propanediol), diethanolamine, lysine or ethylenediamine.
  • Salts with a pharmaceutically unacceptable anion for example trifluoroacetate, likewise belong within the framework of the invention as useful intermediates for the preparation or purification of pharmaceutically acceptable salts and/or for use in nontherapeutic, for example in vitro, applications.
  • physiologically functional derivative refers to any physiologically tolerated derivative of a compound of the formula I of the invention, for example an ester, which on administration to a mammal, for example a human, is able to form (directly or indirectly) a compound of the formula I or an active metabolite thereof.
  • Physiologically functional derivatives also include prodrugs of the compounds of the invention, as described, for example, in H. Okada et al., Chem. Pharm. Bull. 1994, 42, 57-61. Such prodrugs can be metabolized in vivo to a compound of the invention. These prodrugs may themselves be active or not.
  • the compounds of the invention may also exist in various polymorphous forms, for example as amorphous and crystalline polymorphous forms. All polymorphous forms of the compounds of the invention belong within the framework of the invention and are a further aspect of the invention.
  • radicals or substituents can occur more than once in the compounds of the formula I, they may each independently be defined as specified and be the same or different.
  • R1 is preferably: H, (C 1 -C 8 )-alkyl, (C(R10)(R11)) q -R12, (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, (C 3 -C 8 ) alkenyl, (C 3 -C 8 )-alkynyl, CO(R9), (C(R10)(R11)) q -R12, CO(C(R13)(R14)) r -R15, CO—O(C 1 -C 8 )-alkyl, CO(C(R13)(R14)) r N(R16)(R17);
  • R1 is preferably: H, (C 1 -C 8 )-alkyl, (C(R10)(R11)) q -R12, (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, (C 3 -C 8
  • a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C 1 -C 6 )-alkyl, oxygen and sulfur; q, r are each independently 0, 1, 2, 3, 4, 5, 6; preferably 0, 1, 2, 3, 4;
  • are each independently H, OH, F, O—(C 1 -C 6 )-alkyl, S—(C 1 -C 6 )-alkyl, O-phenyl, CN, COO(R25), N(R26)CO(C 1 -C 6 )-alkyl, N(R27)(R28), CON(R29)(R30), SO 2 (C 1 -C 6 )-alkyl, 3-12-membered mono-, bi- or spirocyclic ring which may contain one to four heteroatoms from the group of N, O and S, and the 3-12-membered ring may contain further substituents such as F, Cl, Br, OH, CF 3 , NO 2 , CN, OCF 3 , oxo, O—(C 1 -C 6 )-alkyl, (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, S—(C 1 -C 6
  • L1 is C(R34)(R35), C(R36)(R37)C(R38)(R39), (C 3 -C 6 )-cycloalkyl; preferably C(R34)(R35); optionally, R1 may be joined to one of the R34, R35, R36, R37, R38 or R39 radicals, so as to form a 5-6-membered ring;
  • X is O, C(R43)(R43′);
  • R8 is H, (C 1 -C 8 )-alkyl
  • L2 is a bond, C(R44)(R45); preferably a bond;
  • A is a 5-6-membered aromatic ring which may include up to 2 heteroatoms selected from the group of nitrogen, oxygen and sulfur, and may be substituted by one or more of the substituents H, F, Cl, Br, I, OH, CF 3 , NO 2 , CN, OCF 3 , O—(C 1 -C 6 )-alkyl, O—(C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, (C 1 -C 6 )-alkyl, N(R54)(R55), SO 2 —CH 3 , CON(R56)(R57), N(R58)CO(R59), CO(R60); preferably H, F, Cl, Br, I, OH, CF 3 , NO 2 , CN, OCF 3 , O—(C 1 -C 6 )-alkyl, (C 1 -C 4 )--alkyl, (C 1 -C 4 )-
  • C(O)NR8 may be joined to an ortho substituent of A via a bridge containing one or two elements from the group of carbon and nitrogen, so as to form a 9- to 10-membered bicyclic ring overall; the bridge preferably contains two carbon elements, so as to form an isoquinolinone or a dihydroisoquinolinone overall;
  • L3 is a bond or a linker having from 1 to 4 members, where the members are selected from the group consisting of O, S, SO 2 , N(R61), CO, C(R62)(R63), C ⁇ C, to give rise to a chemically viable radical, and the linker does not have any O—CO or COO groups; preferably a bond or a linker having from 1 to 4 members, where the members are selected from the group consisting of O, N(R61), CO, C(R62)(R63), to give rise to a chemically viable radical, and the linker does not have any O—CO or COO groups; more preferably a bond, O, C(R62)(R63)O; B is (C
  • L3 is C(R62)(R63)O
  • B is a 4- to 10-membered mono-, bi- or spirocyclic nonaromatic ring which includes from 1 to 3 heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the ring system may additionally be substituted by one or more of the following substituents: F, CF 3 , (C 1 -C 6 )-alkyl, O—(C 1 -C 8 )-alkyl, (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, hydroxy-(C 1 -C 4 )-alkyl, oxo, CO(R64), hydroxyl.
  • a particular aspect of the invention is that of compounds of the formula II
  • L3 is CH 2 O
  • B is a 4- to 6-membered nonaromatic ring which includes from 1 to 2 oxygen atoms, where the ring system may additionally be substituted by one or more of the following substituents: F, (C 1 -C 6 )-alkyl, O—(C 1 -C 8 )-alkyl, (C 1 -C 4 )-alkoxy-(C 1 -C 4 )-alkyl, oxo, hydroxyl, preferably (C 1 -C 6 )-alkyl or hydroxyl; the combined element B-L3 is preferably selected from the group of
  • a further particular aspect of the invention is that of compounds of the formula IIa
  • the invention relates to compounds of the formula III
  • R1, R2, R3, R4, R8, A, L1, L3 and B are each as defined for formula I.
  • the invention relates to compounds of the formula IV
  • R1, R2, R3, R4, X, L1, L3 and B are each as defined for formula I.
  • the broken line indicates an optional double bond, such that both dihydroisoquinolinones and isoquinolinones are encompassed by the formula IV.
  • inventive compounds of the general formula I can be prepared analogously to processes known to those skilled in the art. Suitable processes for preparing the inventive compounds of the general formula I are mentioned below by way of example (see especially methods A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P and schemes 1 to 3).
  • This invention further relates to the use of compounds of the formula I and pharmaceutical compositions thereof as MCH receptor ligands.
  • the inventive MCH receptor ligands are suitable especially as modulators of the activity of MCH R1.
  • MCH antagonists can have a beneficial influence on centrally related disorders such as, for example, anxiety neuroses and depressions (Borowsky, B. et al. Nature Medicine 2002, 8, 825-30; Reviews: G. Hervieu, Expert Opin. Ther. Targets 2003, 7, 495-511; Chaki, S. et al., Drug Dev. Res. 2005, 65, 278-290; Dyck, B., Drug Dev. Res. 2005, 65, 291-300; Shimazaki, T., CNS Drugs 2006, 20, 801-11; Drugs Fut. 2007, 32, 809-822).
  • Compounds of this type are particularly suitable for the treatment and/or prevention of
  • the amount of a compound of formula I necessary to achieve the desired biological effect depends on a number of factors, for example the specific compound chosen, the intended use, the mode of administration and the clinical condition of the patient.
  • the daily dose is generally in the range from 0.001 mg to 100 mg (typically from 0.01 mg to 50 mg) per day and per kilogram of body weight, for example 0.1-10 mg/kg/day.
  • An intravenous dose may be, for example, in the range from 0.001 mg to 1.0 mg/kg, which can suitably be administered as infusion of 10 ng to 100 ng per kilogram and per minute.
  • Suitable infusion solutions for these purposes may contain, for example, from 0.1 ng to 10 mg, typically from 1 ng to 10 mg, per milliliter.
  • Single doses may contain, for example, from 1 mg to 10 g of the active ingredient.
  • ampoules for injections may contain, for example, from 1 mg to 100 mg
  • single-dose formulations which can be administered orally, such as, for example, tablets or capsules may contain, for example, from 0.05 to 1000 mg, typically from 0.5 to 600 mg.
  • the compounds of formula I may be used as the compound itself, but they are preferably in the form of a pharmaceutical composition with an acceptable carrier.
  • the carrier must, of course, be acceptable in the sense that it is compatible with the other ingredients of the composition and is not harmful for the patient's health.
  • the carrier may be a solid or a liquid or both and is preferably formulated with the compound as a single dose, for example as a tablet, which may contain from 0.05% to 95% by weight of the active ingredient.
  • Other pharmaceutically active substances may likewise be present, including other compounds of formula I.
  • the pharmaceutical compositions of the invention can be produced by one of the known pharmaceutical methods, which essentially consist of mixing the ingredients with pharmacologically acceptable carriers and/or excipients.
  • compositions of the invention are those suitable for oral, rectal, topical, peroral (for example sublingual) and parenteral (for example subcutaneous, intramuscular, intradermal or intravenous) administration, although the most suitable mode of administration depends in each individual case on the nature and severity of the condition to be treated and on the nature of the compound of formula I used in each case.
  • Coated formulations and coated slow-release formulations also belong within the framework of the invention. Preference is given to acid- and gastric juice-resistant formulations. Suitable coatings resistant to gastric juice comprise cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropylmethylcellulose phthalate and anionic polymers of methacrylic acid and methyl methacrylate.
  • Suitable pharmaceutical preparations for oral administration may be in the form of separate units such as, for example, capsules, cachets, suckable tablets or tablets, each of which contains a defined amount of at least one compound of formula I; as powders or granules; as solution or suspension in an aqueous or nonaqueous liquid; or as an oil-in-water or water-in-oil emulsion.
  • These compositions may, as already mentioned, be prepared by any suitable pharmaceutical method which includes a step in which the active ingredient and the carrier (which may consist of one or more additional ingredients) are brought into contact.
  • the compositions are generally produced by uniform and homogeneous mixing of the active ingredient with a liquid and/or finely divided solid carrier, after which the product is shaped if necessary.
  • a tablet can be produced by compressing or molding a powder or granules of the compound, where appropriate with one or more additional ingredients.
  • Compressed tablets can be produced by tableting the compound in free-flowing form such as, for example, a powder or granules, where appropriate mixed with a binder, glidant, inert diluent and/or one (or more) surface-active/dispersing agent(s) in a suitable machine.
  • Molded tablets can be produced by molding the compound, which is in powder form and is moistened with an inert liquid diluent, in a suitable machine.
  • compositions which are suitable for peroral (sublingual) administration comprise suckable tablets which contain at least one compound of formula I with a flavoring, normally sucrose and gum arabic or tragacanth, and pastilles which comprise the compound in an inert base such as gelatin and glycerol or sucrose and gum arabic.
  • compositions suitable for parenteral administration comprise preferably sterile aqueous preparations of at least one compound of formula I, which are preferably isotonic with the blood of the intended recipient. These preparations are preferably administered intravenously, although administration may also take place by subcutaneous, intramuscular or intradermal injection. These preparations can preferably be produced by mixing the compound with water and making the resulting solution sterile and isotonic with blood. Injectable compositions of the invention generally contain from 0.1 to 5% by weight of the active compound.
  • compositions suitable for rectal administration are preferably in the form of single-dose suppositories. These can be produced by mixing at least one compound of the formula I with one or more conventional solid carriers, for example cocoa butter, and shaping the resulting mixture.
  • compositions suitable for topical use on the skin are preferably in the form of ointment, cream, lotion, paste, spray, aerosol or oil.
  • Carriers which can be used are petrolatum, lanolin, polyethylene glycols, alcohols and combinations of two or more of these substances.
  • the active ingredient is generally present in a concentration of from 0.1 to 15% by weight of the composition, for example from 0.5 to 2%.
  • compositions suitable for transdermal uses can be in the form of single patches which are suitable for long-term close contact with the patient's epidermis. Such patches suitably contain the active ingredient in an aqueous solution which is buffered where appropriate, dissolved and/or dispersed in an adhesive or dispersed in a polymer.
  • a suitable active ingredient concentration is about 1% to 35%, preferably about 3% to 15%.
  • a particular possibility is for the active ingredient to be released by electrotransport or iontophoresis as described, for example, in Pharmaceutical Research, 2(6): 318 (1986).
  • the compounds of the formula I are distinguished by beneficial effects on lipid metabolism, and they are particularly suitable for weight reduction and for maintaining a reduced weight after weight reduction has taken place in mammals and as anorectic agents.
  • the compounds are distinguished as selective MCH1R antagonists by their low toxicity, the small effect on metabolizing enzymes and their few side effects.
  • preferred compounds of the invention are notable for low blockade of the hERG channel.
  • preferred compounds of the formula I are noticeably soluble in aqueous systems and thus particularly suitable for pharmaceutical development. The pharmacological effect is moreover achieved in in vivo test models after oral administration from well-tolerated vehicles.
  • the compounds can be employed alone or in combination with other weight-reducing or anorectic active ingredients.
  • Further anorectic active ingredients of this type are mentioned, for example, in the Rote Liste, chapter 01 under weight-reducing agents/appetite suppressants, and may also include active ingredients which increase the energy turnover of the organism and thus lead to weight reduction or else those which influence the general metabolism of the organism in such a way that an increased calorie intake does not lead to an enlargement of the fat depots and a normal calorie intake leads to a reduction of the fat depots of the organism.
  • the compounds are suitable for the prophylaxis and, in particular, for the treatment of excessive weight or obesity.
  • the compounds are further suitable for the prophylaxis and, in particular, for the treatment of type II diabetes, of arteriosclerosis and for normalizing lipid metabolism and for the treatment of high blood pressure.
  • the compounds of the invention can be administered alone or in combination with one or more further pharmacologically active substances which have, for example, beneficial effects on metabolic disturbances or disorders frequently associated therewith.
  • further pharmacologically active substances which have, for example, beneficial effects on metabolic disturbances or disorders frequently associated therewith. Examples of such medicaments are
  • the active ingredient combination can be administered either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation.
  • the active ingredient combination can be administered either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation. If the active ingredients are administered separately, this can be done simultaneously or successively. Most of the active ingredients mentioned hereinafter are disclosed in the USP Dictionary of USAN and International Drug Names, US Pharmacopeia, Rockville 2006.
  • Antidiabetics include insulin and insulin derivatives, for example LANTUS® (insulin glargine, also see www.lantus.com) or HMR 1964 or LEVEMIR® (insulin detemir), HUMALOG® (Insulin Lispro), HUMULIN®, VIAJECTTM, SULIXEN® or those as described in WO2005005477 (Novo Nordisk), fast-acting insulins (see U.S. Pat. No.
  • inhalable insulins for example EXUBERA®, NASULINTM, or oral insulins, for example IN-105 (Nobex) or ORAL-LYNTM (Generex Biotechnology), or TECHNOSPHERE® Insulin (MannKind) or COBALAMINTM oral insulin, or insulins as described in WO2007128815, WO2007128817, WO2008034881, WO2008049711, or insulins which can be administered transdermally; GLP-1 derivatives and GLP-1 agonists, for example exenatide or specific formulations thereof, as described, for example, in WO2008061355, liraglutide, taspoglutide or those which have been disclosed in WO 98/08871, WO2005027978, WO2006037811, WO2006037810 by Novo Nordisk A/S, in WO 01/04156 by Zealand or in WO 00/34331 by Beaufour-Ipsen, pramlintide
  • Antidiabetics also include agonists of the glucose-dependent insulinotropic polypeptide (GIP) receptor, as described, for example, in WO2006121860. Antidiabetics also include the glucose-dependent insulinotropic polypeptide (GIP), and also analogous compounds, as described, for example, in WO2008021560.
  • GIP glucose-dependent insulinotropic polypeptide
  • Antidiabetics also include analogs and derivatives of fibroblast growth factor 21 (FGF-21).
  • FGF-21 fibroblast growth factor 21
  • the orally active hypoglycemic ingredients preferably include
  • sulfonylureas biguanidines, meglitinides, oxadiazolidinediones, thiazolidinediones, PPAR and RXR modulators, glucosidase inhibitors, inhibitors of glycogen phosphorylase, glucagon receptor antagonists, glucokinase activators, inhibitors of fructose 1,6-bisphosphatase modulators of glucose transporter 4 (GLUT4), inhibitors of glutamine-fructose-6-phosphate amidotransferase (GFAT), GLP-1 agonists, potassium channel openers, for example pinacidil, cromakalim, diazoxide, or those as described in R. D.
  • glucosidase inhibitors inhibitors of glycogen phosphorylase, glucagon receptor antagonists, glucokinase activators, inhibitors of fructose 1,6-bisphosphatase modulators of glucose transporter 4 (GLUT4), inhibitors of glut
  • active ingredients which act on the ATP-dependent potassium channel of the beta cells active ingredients which act on the ATP-dependent potassium channel of the beta cells, inhibitors of dipeptidylpeptidase IV (DPP-IV), insulin sensitizers, inhibitors of liver enzymes involved in stimulating gluconeogenesis and/or glycogenolysis, modulators of glucose uptake, of glucose transport and of glucose reabsorption, modulators of sodium-dependent glucose transporter 1 or 2 (SGLT1, SGLT2), inhibitors of 11-beta-hydroxysteroid dehydrogenase-1 (11 ⁇ -HSD1), inhibitors of protein tyrosine phosphatase 1B (PTP-1B), nicotinic acid receptor agonists, inhibitors of hormone-sensitive or endothelial lipases, inhibitors of acetyl-CoA carboxylase (ACC1 and/or ACC2) or inhibitors of GSK-3 beta.
  • DPP-IV dipeptidylpeptidase IV
  • insulin sensitizers inhibitors of liver
  • HMGCoA reductase inhibitors HMGCoA reductase inhibitors, farnesoid X receptor (FXR) modulators, fibrates, cholesterol reabsorption inhibitors, CETP inhibitors, bile acid reabsorption inhibitors, MTP inhibitors, agonists of estrogen receptor gamma (ERR ⁇ agonists), sigma-1 receptor antagonists, antagonists of the somatostatin 5 receptor (SST5 receptor); compounds which reduce food intake, and compounds which increase thermogenesis.
  • FXR farnesoid X receptor
  • the compound of the formula I is administered in combination with insulin.
  • the compound of the formula I is administered in combination with an active ingredient which acts on the ATP-dependent potassium channel of the beta cells, for example sulfonylureas, for example tolbutamide, glibenclamide, glipizide, gliclazide or glimepiride.
  • an active ingredient which acts on the ATP-dependent potassium channel of the beta cells, for example sulfonylureas, for example tolbutamide, glibenclamide, glipizide, gliclazide or glimepiride.
  • the compound of the formula I is administered in combination with a tablet which comprises both glimepiride, which is released rapidly, and metformin, which is released over a longer period (as described, for example, in US2007264331, WO2008050987).
  • the compound of the formula I is administered in combination with a biguanide, for example metformin.
  • a biguanide for example metformin.
  • the compound of the formula I is administered in combination with a meglitinide, for example repaglinide, nateglinid or mitiglinide.
  • a meglitinide for example repaglinide, nateglinid or mitiglinide.
  • the compound of the formula I is administered with a combination of mitiglinide with a glitazone, e.g. pioglitazone hydrochloride. In a further embodiment, the compound of the formula I is administered with a combination of mitiglinide with an alpha-glucosidase inhibitor. In a further embodiment, the compound of the formula I is administered in combination with antidiabetic compounds, as described in WO2007095462, WO2007101060, WO2007105650.
  • the compound of the formula I is administered in combination with antihypoglycemic compounds, as described in WO2007137008.
  • the compound of the formula I is administered in combination with a thiazolidinedione, for example troglitazone, ciglitazone, pioglitazone, rosiglitazone or the compounds disclosed in WO 97/41097 by Dr. Reddy's Research Foundation, especially 5-[[4-[(3,4-dihydro-3-methyl-4-oxo-2-quinazolinylmethoxy]phenyl]methyl]-2,4-thiazolidinedione.
  • a thiazolidinedione for example troglitazone, ciglitazone, pioglitazone, rosiglitazone or the compounds disclosed in WO 97/41097 by Dr. Reddy's Research Foundation, especially 5-[[4-[(3,4-dihydro-3-methyl-4-oxo-2-quinazolinylmethoxy]phenyl]methyl]-2,4-thiazolidinedione.
  • the compound of the formula I is administered in combination with a PPAR gamma agonist, for example rosiglitazone, pioglitazone, JTT-501, GI 262570, R-483, CS-011 (rivoglitazone), DRL-17564, DRF-2593 (Balaglitazon), INT-131, T-2384, or those as described in WO2005086904, WO2007060992, WO2007100027, WO2007103252, WO2007122970, WO2007138485, WO2008006319, WO2008006969, WO2008010238, WO2008017398, WO2008028188.
  • a PPAR gamma agonist for example rosiglitazone, pioglitazone, JTT-501, GI 262570, R-483, CS-011 (rivoglitazone), DRL-17564, DRF-2593 (Balaglitazon), INT-131, T-
  • the compound of the formula I is administered in combination with CompetactTM, a solid combination of pioglitazone hydrochloride with metformin hydrochloride.
  • the compound of the formula I is administered in combination with TandemactTM, a solid combination of pioglitazone with glimepiride.
  • the compound of the formula I is administered in combination with a solid combination of pioglitazone hydrochloride with an angiotensin II agonist, for example TAK-536.
  • the compound of the formula I is administered in combination with a PPAR alpha agonist or mixed PPAR alpha/PPAR delta agonist, for example GW9578, GW-590735, K-111, LY-674, KRP-101, DRF-10945, LY-518674, CP-900691, BMS-687453, BMS-711939, or those as described in WO2001040207, WO2002096894, WO2005097076, WO2007056771, WO2007087448, WO2007089667, WO2007089557, WO2007102515, WO2007103252, JP2007246474, WO2007118963, WO2007118964, WO2007126043, WO2008006043, WO2008006044, WO2008012470, WO2008035359.
  • a PPAR alpha agonist or mixed PPAR alpha/PPAR delta agonist for example GW9578, GW-590735, K-111
  • the compound of the formula I is administered in combination with a mixed PPAR alpha/gamma agonisn, for example naveglitazar, LY-510929, ONO-5129, E-3030, AVE 8042, AVE 8134, AVE 0847, CKD-501 (lobeglitazone sulfate), MBX-213, KY-201 or as described in WO 00/64888, WO 00/64876, WO03/020269, WO2004024726, WO2007099553, US2007276041, WO2007085135, WO2007085136, WO2007141423, WO2008016175, WO2008053331 or in J.P. Berger et al., TRENDS in Pharmacological Sciences 28(5), 244-251, 2005.
  • a mixed PPAR alpha/gamma agonisn for example naveglitazar, LY-510929, ONO-5129, E-3030, AVE 8042, AVE 8134
  • the compound of the formula I is administered in combination with a PPAR delta agonist, for example GW-501516, or as described in WO2006059744, WO2006084176, WO2006029699, WO2007039172-WO2007039178, WO2007071766, WO2007101864, US2007244094, WO2007119887, WO2007141423, US2008004281, WO2008016175.
  • a PPAR delta agonist for example GW-501516, or as described in WO2006059744, WO2006084176, WO2006029699, WO2007039172-WO2007039178, WO2007071766, WO2007101864, US2007244094, WO2007119887, WO2007141423, US2008004281, WO2008016175.
  • the compound of the formula I is administered in combination with a pan-SPPARM (selective PPAR modulator alpha, gamma, delta), for example GFT-505, or those as described in WO2008035359.
  • a pan-SPPARM selective PPAR modulator alpha, gamma, delta
  • the compound of the formula I is administered in combination with metaglidasen or with MBX-2044 or other partial PPAR gamma agonists/antagonists.
  • the compound of the formula I is administered in combination with an ⁇ -glucosidase inhibitor, for example miglitol or acarbose, or those as described, for example, in WO2007114532, WO2007140230, US2007287674, US2008103201.
  • an ⁇ -glucosidase inhibitor for example miglitol or acarbose, or those as described, for example, in WO2007114532, WO2007140230, US2007287674, US2008103201.
  • the compound of the formula I is administered in combination with an inhibitor of glycogen phosphorylase, for example PSN-357 or FR-258900, or those as described in WO2003084922, WO2004007455, WO2005073229-31, WO2005067932.
  • an inhibitor of glycogen phosphorylase for example PSN-357 or FR-258900, or those as described in WO2003084922, WO2004007455, WO2005073229-31, WO2005067932.
  • the compound of the formula I is administered in combination with glucagon receptor antagonists, for example A-770077 or NNC-25-2504 or as described in WO2004100875, WO2005065680, WO2006086488, WO2007047177, WO2007106181, WO2007111864, WO2007120270, WO2007120284, WO2007123581, WO2007136577, WO2008042223.
  • glucagon receptor antagonists for example A-770077 or NNC-25-2504 or as described in WO2004100875, WO2005065680, WO2006086488, WO2007047177, WO2007106181, WO2007111864, WO2007120270, WO2007120284, WO2007123581, WO2007136577, WO2008042223.
  • the compound of the formula I is administered in combination with an antisense compound, e.g. ISIS-325568, which inhibits the production of the glucagon receptor.
  • an antisense compound e.g. ISIS-325568, which inhibits the production of the glucagon receptor.
  • the compound of the formula I is administered in combination with activators of glucokinase, for example LY-2121260 (WO2004063179), PSN-105, PSN-110, GKA-50, or those as described, for example, in WO2004072031, WO2004072066, WO2005080360, WO2005044801, WO2006016194, WO2006058923, WO2006112549, WO2006125972, WO2007017549, WO2007017649, WO2007007910, WO2007007040-42, WO2007006760-61, WO2007006814, WO2007007886, WO2007028135, WO2007031739, WO2007041365, WO2007041366, WO2007037534, WO2007043638, WO2007053345, WO2007051846, WO2007051845, WO2007053765, WO2007051847, WO2007061923, WO20070758
  • the compound of the formula I is administered in combination with an inhibitor of gluconeogenesis, as described, for example, in FR-225654, WO2008053446.
  • the compound of the formula I is administered in combination with inhibitors of fructose 1,6-bisphosphatase (FBPase), for example MB-07729, CS-917 (MB-06322) or MB-07803, or those as described in WO2006023515, WO2006104030, WO2007014619, WO2007137962, WO2008019309, WO2008037628.
  • FBPase fructose 1,6-bisphosphatase
  • the compound of the formula I is administered in combination with modulators of glucose transporters 4 (GLUT4), for example KST-48 (D.-O. Lee et al.: Arzneim.-Forsch. Drug Res. 54 (12), 835 (2004)).
  • GLUT4 modulators of glucose transporters 4
  • KST-48 D.-O. Lee et al.: Arzneim.-Forsch. Drug Res. 54 (12), 835 (2004).
  • the compound of the formula I is administered in combination with inhibitors of glutamine:fructose-6-phosphate amidotransferase (GFAT), as described, for example, in WO2004101528.
  • GFAT glutamine:fructose-6-phosphate amidotransferase
  • the compound of the formula I is administered in combination with inhibitors of dipeptidyl peptidase IV (DPP-IV), for example vildagliptin (LAF-237), sitagliptin (MK-0431), sitagliptin phosphate, saxagliptin ((BMS-477118), GSK-823093, PSN-9301, SYR-322, SYR-619, TA-6666, TS-021, GRC-8200 (Melogliptin), GW-825964X, KRP-104, DP-893, ABT-341, ABT-279 or another salt thereof, S-40010, S-40755, PF-00734200, BI-1356, PHX-1149, alogliptin, or those compounds as described in WO2003074500, WO2003106456, WO2004037169, WO200450658, WO2005037828, WO2005058901, WO2005012312, WO
  • the compound of the formula I is administered in combination with JanumetTM, a solid combination of sitagliptin phosphate with metformin hydrochloride.
  • the compound of the formula I is administered in combination with Eucreas®, a solid combination of vildagliptin with metformin hydrochloride.
  • the compound of the formula I is administered in combination with a solid combination of a salt of sitagliptin with metformin hydrochloride.
  • the compound of the formula I is administered in combination with a combination of a DPP-IV inhibitors with omega-3 fatty acids or omega-3 fatty acid esters, as described, for example, in WO2007128801.
  • the compound of the formula I is administered in combination with a substance which enhances insulin secretion, for example KCP-265 (WO2003097064), or those as described in WO2007026761, WO2008045484.
  • a substance which enhances insulin secretion for example KCP-265 (WO2003097064), or those as described in WO2007026761, WO2008045484.
  • the compound of the formula I is administered in combination with agonists of the glucose-dependent insulinotropic receptor (GDIR), for example APD-668.
  • GDIR glucose-dependent insulinotropic receptor
  • the compound of the formula I is administered in combination with an ATP citrate lyase inhibitor, for example SB-204990.
  • the compound of the formula I is administered in combination with modulators of the sodium-dependent glucose transporter 1 or 2 (SGLT1, SGLT2), for example KGA-2727, T-1095, SGL-0010, AVE 2268, SAR 7226, SGL-5083, SGL-5085, SGL-5094, ISIS-388626, sergliflozin or dapagliflozin, or as described, for example, in WO2004007517, WO200452903, WO200452902, PCT/EP2005/005959, WO2005085237, JP2004359630, WO2005121161, WO2006018150, WO2006035796, WO2006062224, WO2006058597, WO2006073197, WO2006080577, WO2006087997, WO2006108842, WO2007000445, WO2007014895, WO2007080170, WO2007093610, WO2007126117, WO2007128480,
  • the compound of the formula I is administered in combination with inhibitors of 11-beta-hydroxysteroid dehydrogenase 1 (11 ⁇ -HSD1), for example BVT-2733, JNJ-25918646, INCB-13739, INCB-20817, DIO-92 (( ⁇ )-ketoconazole) or those as described, for example, in WO200190090-94, WO200343999, WO2004112782, WO200344000, WO200344009, WO2004112779, WO2004113310, WO2004103980, WO2004112784, WO2003065983, WO2003104207, WO2003104208, WO2004106294, WO2004011410, WO2004033427, WO2004041264, WO2004037251, WO2004056744, WO2004058730, WO2004065351, WO2004089367, WO2004089380, WO2004089470-71, WO20040898
  • the compound of the formula I is administered in combination with inhibitors of protein tyrosine phosphatase 1B (PTP-1B), as described, for example, in WO200119830-31, WO200117516, WO2004506446, WO2005012295, WO2005116003, WO2005116003, WO2006007959, DE 10 2004 060542.4, WO2007009911, WO2007028145, WO2007067612-615, WO2007081755, WO2007115058, US2008004325, WO2008033455, WO2008033931, WO2008033932, WO2008033934.
  • PTP-1B protein tyrosine phosphatase 1B
  • the compound of the formula I is administered in combination with an agonist of GPR109A (HM74A receptor agonists; NAR agonists (nicotinic acid receptor agonists)), for example nicotinic acid or “extended release niacin” in conjunction with MK-0524A (laropiprant) or MK-0524, or those compounds as described in WO2004041274, WO2006045565, WO2006045564, WO2006069242, WO2006085108, WO2006085112, WO2006085113, WO2006124490, WO2006113150, WO2007017261, WO2007017262, WO2007017265, WO2007015744, WO2007027532, WO2007092364, WO2007120575, WO2007134986, WO2007150025, WO2007150026, WO2008016968, WO2008051403.
  • GPR109A HM74A receptor agonists
  • the compound of the formula I is administered in combination with a solid combination of niacin with simvastatin.
  • the compound of the formula I is administered in combination with nicotinic acid or “extended release niacin” in conjunction with MK-0524A (laropiprant).
  • the compound of the formula I is administered in combination with nicotinic acid or “extended release niacin” in conjunction with MK-0524A (laropiprant) and with simvastatin.
  • the compound of the formula I is administered in combination with nicotinic acid or another nicotinic acid receptor agonist and a prostaglandin DP receptor antagonist, for example those as described in WO2008039882.
  • the compound of the formula I is administered in combination with an agonist of GPR116, as described, for example, in WO2006067531, WO2006067532.
  • the compound of the formula I is administered in combination with modulators of GPR40, as described, for example, in WO2007013689, WO2007033002, WO2007106469, US2007265332, WO2007123225, WO2007131619, WO2007131620, WO2007131621, US2007265332, WO2007131622, WO2007136572, WO2008001931, WO2008030520, WO2008030618, WO2008054674, WO2008054675.
  • the compound of the formula I is administered in combination with modulators of GPR119 (G-protein-coupled glucose-dependent insulinotropic receptor), for example PSN-119-1, PSN-821, MBX-2982, or those as described, for example, in WO2005061489 (PSN-632408), WO2004065380, WO2007003960-62 and WO2007003964, WO2007116229, WO2007116230, WO2008005569, WO2008005576, WO2008008887, WO2008008895, WO2008025798, WO2008025799, WO2008025800, WO2007035355, WO2006083491, WO200807692, WO2008076243.
  • GPR119 G-protein-coupled glucose-dependent insulinotropic receptor
  • the compound of the formula I is administered in combination with modulators of GPR120, as described, for example, in EP1688138.
  • the compound of the formula I is administered in combination with inhibitors of hormone-sensitive lipase (HSL) and/or phospholipases, as described, for example, in WO2005073199, WO2006074957, WO2006087309, WO2006111321, WO2007042178, WO2007119837.
  • HSL hormone-sensitive lipase
  • the compound of the formula I is administered in combination with inhibitors of endothelial lipase, as described, for example, in WO2006111321, WO2006131233, WO2006131232, WO2006131231, WO2007042178, WO2007045392, WO2007045393, WO2007110216, WO2007110215.
  • the compound of the formula I is administered in combination with a phospholipase A2 inhibitor, for example darapladib or A-002, or those as described in WO2008048866, WO20080488867.
  • a phospholipase A2 inhibitor for example darapladib or A-002, or those as described in WO2008048866, WO20080488867.
  • the compound of the formula I is administered in combination with myricitrin, a lipase inhibitor (WO2007119827).
  • the compound of the formula I is administered in combination with an inhibitor of glycogen synthase kinase-3 beta (GSK-3 beta), as described, for example, in US2005222220, WO2005085230, WO2005111018, WO2003078403, WO2004022544, WO2003106410, WO2005058908, US2005038023, WO2005009997, US2005026984, WO2005000836, WO2004106343, EP1460075, WO2004014910, WO2003076442, WO2005087727, WO2004046117, WO2007073117, WO2007083978, WO2007120102, WO2007122634, WO2007125109, WO2007125110, US2007281949, WO2008002244, WO2008002245, WO2008016123, WO2008023239, WO2008044700, WO2008056266, WO2008057940.
  • GSK-3 beta glycogen synthase
  • the compound of the formula I is administered in combination with an inhibitor of phosphoenolpyruvate carboxykinase (PEPCK), for example those as described in WO2004074288.
  • PPCK phosphoenolpyruvate carboxykinase
  • the compound of the formula I is administered in combination with an inhibitor of phosphoinositide kinase-3 (PI3K), for example those as described in WO2008027584.
  • PI3K phosphoinositide kinase-3
  • the compound of the formula I is administered in combination with an inhibitor of serum/glucocorticoid-regulated kinase (SGK), as described, for example, in WO2006072354, WO2007093264, WO2008009335.
  • SGK serum/glucocorticoid-regulated kinase
  • the compound of the formula I is administered in combination with a modulator of the glucocorticoid receptor, as described, for example, in WO2008057855, WO2008057856, WO2008057857, WO2008057859, WO2008057862.
  • the compound of the formula I is administered in combination with an inhibitor of protein kinase C beta (PKC beta), for example ruboxistaurin.
  • PLC beta protein kinase C beta
  • the compound of the formula I is administered in combination with an activator of the AMP-activated protein kinase (AMPK), as described, for example, in WO2007062568, WO2008006432, WO2008016278, WO2008016730.
  • AMPK AMP-activated protein kinase
  • the compound of the formula I is administered in combination with an inhibitor of ceramide kinase, as described, for example, in WO2007112914, WO2007149865.
  • the compound of the formula I is administered in combination with an inhibitor of MAPK-interacting kinase 1 or 2 (MNK1 or 2), as described, for example, in WO2007104053, WO2007115822, WO2008008547.
  • MNK1 or 2 an inhibitor of MAPK-interacting kinase 1 or 2
  • the compound of the formula I is administered in combination with inhibitors of “I-kappaB kinase” (IKK inhibitors), as described, for example, in WO2001000610, WO2001030774, WO2004022057, WO2004022553, WO2005097129, WO2005113544, US2007244140.
  • IKK inhibitors inhibitors of “I-kappaB kinase”
  • the compound of the formula I is administered in combination with inhibitors of NF-kappaB (NFKB) activation, for example salsalate.
  • NFKB NF-kappaB
  • the compound of the formula I is administered in combination with inhibitors of ASK-1 (apoptosis signal-regulating kinase 1), as described, for example, in WO2008016131.
  • ASK-1 apoptosis signal-regulating kinase 1
  • the compound of the formula I is administered in combination with an HMG-CoA reductase inhibitor such as simvastatin, fluvastatin, pravastatin, lovastatin, atorvastatin, cerivastatin, rosuvastatin, L-659699, BMS-644950, or those as described in US2007249583.
  • an HMG-CoA reductase inhibitor such as simvastatin, fluvastatin, pravastatin, lovastatin, atorvastatin, cerivastatin, rosuvastatin, L-659699, BMS-644950, or those as described in US2007249583.
  • the compound of the formula I is administered in combination with a farnesoid X receptor (FXR) modulator, for example WAY-362450 or those as described in WO2003099821, WO2005056554, WO2007052843, WO2007070796, WO2007092751, JP2007230909, WO2007095174, WO2007140174, WO2007140183, WO2008000643, WO2008002573, WO2008025539, WO2008025540.
  • FXR farnesoid X receptor
  • the compound of the formula I is administered in combination with a ligand of the liver X receptor (LXR), as described, for example, in WO2007092965, WO2008041003, WO2008049047.
  • LXR liver X receptor
  • the compound of the formula I is administered in combination with a fibrate, for example fenofibrate, clofibrate, bezafibrate.
  • the compound of the formula I is administered in combination with fibrates, for example the choline salt of fenofibrate (SLV-348).
  • fibrates for example the choline salt of fenofibrate (SLV-348).
  • the compound of the formula I is administered in combination with fibrates, for example the choline salt of fenofibrate and an HMG-CoA reductase inhibitor, for example rosuvastatin.
  • fibrates for example the choline salt of fenofibrate and an HMG-CoA reductase inhibitor, for example rosuvastatin.
  • the compound of the formula I is administered in combination with bezafibrate and diflunisal.
  • the compound of the formula I is administered in combination with a solid combination of fenofibrate or a salt thereof with simvastatin, rosuvastatin, fluvastatin, lovastatin, cerivastatin, pravastatin or atorvastatin.
  • the compound of the formula I is administered in combination with Synordia®, a solid combination of fenofibrate with metformin.
  • the compound of the formula I is administered in combination with a cholesterol reabsorption inhibitor, for example ezetimibe, tiqueside, pamaqueside, FM-VP4 (sitostanol/campesterol ascorbyl phosphate; Forbes Medi-Tech, WO2005042692, WO2005005453), MD-0727 (Microbia Inc., WO2005021497, WO2005021495) or with compounds as described in WO2002066464, WO2005000353 (Kotobuki Pharmaceutical Co.
  • a cholesterol reabsorption inhibitor for example ezetimibe, tiqueside, pamaqueside, FM-VP4 (sitostanol/campesterol ascorbyl phosphate; Forbes Medi-Tech, WO2005042692, WO2005005453), MD-0727 (Microbia Inc., WO2005021497, WO2005021495) or with compounds as described in WO2002066464, WO2005000353 (Kotobuki Pharmaceutical
  • the compound of the formula I is administered in combination with an NPC1L1 antagonist, for example those as described in WO2008033464, WO2008033465.
  • the compound of the formula I is administered in combination with VytorinTM, a solid combination of ezetimibe with simvastatin.
  • the compound of the formula I is administered in combination with a solid combination of ezetimibe with atorvastatin.
  • the compound of the formula I is administered in combination with a solid combination of ezetimibe with fenofibrate.
  • the further active ingredient is a diphenylazetidinone derivative, as described, for example, in U.S. Pat. No. 6,992,067 or U.S. Pat. No. 7,205,290.
  • the further active ingredient is a diphenylazetidinone derivative, as described, for example, in U.S. Pat. No. 6,992,067 or U.S. Pat. No. 7,205,290, combined with a statin, for example simvastatin, fluvastatin, pravastatin, lovastatin, cerivastatin, atorvastatin or rosuvastatin.
  • a statin for example simvastatin, fluvastatin, pravastatin, lovastatin, cerivastatin, atorvastatin or rosuvastatin.
  • the compound of the formula I is administered in combination with a solid combination of lapaquistat, a squalene synthase inhibitor, with atorvastatin.
  • the compound of the formula I is administered in combination with a CETP inhibitor, for example torcetrapib, anacetrapib or JTT-705 (dalcetrapib), or those as described in WO2006002342, WO2006010422, WO2006012093, WO2006073973, WO2006072362, WO2007088996, WO2007088999, US2007185058, US2007185113, US2007185154, US2007185182, WO2006097169, WO2007041494, WO2007090752, WO2007107243, WO2007120621, US2007265252, US2007265304, WO2007128568, WO2007132906, WO2008006257, WO2008009435, WO2008018529, WO2008058961, WO2008058967.
  • a CETP inhibitor for example torcetrapib, anacetrapib or JTT-705 (dalcetrapib), or those as described in WO20060023
  • the compound of the formula I is administered in combination with bile acid reabsorption inhibitor (see, for example, U.S. Pat. No. 6,245,744, U.S. Pat. No. 6,221,897 or WO00/61568), for example HMR 1741, or those as described in DE 10 2005 033099.1 and DE 10 2005 033100.9, DE 10 2006 053635, DE 10 2006 053637, WO2007009655-56, WO2008058628, WO2008058629, WO2008058630, WO2008058631.
  • bile acid reabsorption inhibitor see, for example, U.S. Pat. No. 6,245,744, U.S. Pat. No. 6,221,897 or WO00/61568
  • HMR 1741 or those as described in DE 10 2005 033099.1 and DE 10 2005 033100.9, DE 10 2006 053635, DE 10 2006 053637, WO2007009655-56, WO2008058628, WO20080586
  • the compound of the formula I is administered in combination with agonists of GPBAR1 (G-protein-coupled bile acid receptor-1; TGR5), as described, for example, in WO2007110237, WO2007127505, WO2008009407.
  • GPBAR1 G-protein-coupled bile acid receptor-1
  • the compound of the formula I is administered in combination with a polymeric bile acid adsorber, for example cholestyramine, colesevelam hydrochloride.
  • a polymeric bile acid adsorber for example cholestyramine, colesevelam hydrochloride.
  • the compound of the formula I is administered in combination with colesevelam hydrochloride and metformin or a sulfonylurea or insulin.
  • the compound of the formula I is administered in combination with a chewing gum comprising phytosterols (ReductolTM)
  • the compound of the formula I is administered in combination with an inhibitor of the microsomal triglyceride transfer proteins (MTP inhibitor), for example implitapide, BMS-201038, R-103757, AS-1552133, SLx-4090, AEGR-733, or those as described in WO2005085226, WO2005121091, WO2006010423, WO2006113910, WO2007143164, WO2008049806, WO2008049808.
  • MTP inhibitor microsomal triglyceride transfer proteins
  • the compound of the formula I is administered in combination with a combination of a cholesterol absorption inhibitor, for example ezetimibe, and an inhibitor of the triglyceride transfer proteins (MTP inhibitor), for example implitapide, as described in WO2008030382.
  • a cholesterol absorption inhibitor for example ezetimibe
  • MTP inhibitor inhibitor of the triglyceride transfer proteins
  • the compound of the formula I is administered in combination with an active antihypertriglyceridemic ingredient, for example those as described in WO2008032980.
  • the compound of the formula I is administered in combination with an antagonist of the somatostatin 5 receptor (SST5 receptor), for example those as described in WO2006094682.
  • SST5 receptor somatostatin 5 receptor
  • the compound of the formula I is administered in combination with an ACAT inhibitor, for example avasimibe, SMP-797 or KY-382.
  • an ACAT inhibitor for example avasimibe, SMP-797 or KY-382.
  • the compound of the formula I is administered in combination with an inhibitor of liver carnitine palmitoyltransferase 1 (L-CPT1), as described, for example, in WO2007063012, WO2007096251 (ST-3473), WO2008015081, US2008103182.
  • L-CPT1 liver carnitine palmitoyltransferase 1
  • the compound of the formula I is administered in combination with a modulator of serine palmitoyltransferase (SPT), as described, for example, in WO2008031032, WO2008046071.
  • SPT serine palmitoyltransferase
  • the compound of the formula I is administered in combination with a squalene synthetase inhibitor, for example BMS-188494, TAK-475 (lapaquistat acetate), or as described in WO2005077907, JP2007022943, WO2008003424.
  • a squalene synthetase inhibitor for example BMS-188494, TAK-475 (lapaquistat acetate), or as described in WO2005077907, JP2007022943, WO2008003424.
  • the compound of the formula I is administered in combination with ISIS-301012 (mipomersen), an antisense oligonucleotide which is capable of regulating the apolipoprotein B gene.
  • the compound of the formula I is administered in combination with an LDL receptor inducer (see U.S. Pat. No. 6,342,512), for example HMR1171, HMR1586, or those as described in WO2005097738, WO2008020607.
  • an LDL receptor inducer see U.S. Pat. No. 6,342,512
  • HMR1171, HMR1586 or those as described in WO2005097738, WO2008020607.
  • the compound of the formula I is administered in combination with an HDL cholesterol-elevating agent, for example those as described in WO2008040651.
  • the compound of the formula I is administered in combination with an ABCA1 expression enhancer, as described, for example, in WO2006072393.
  • the compound of the formula I is administered in combination with a lipoproteinlipase modulator, for example ibrolipim (NO-1886).
  • a lipoproteinlipase modulator for example ibrolipim (NO-1886).
  • the compound of the formula I is administered in combination with a lipoprotein(a) antagonist, for example gemcabene (Cl-1027).
  • a lipoprotein(a) antagonist for example gemcabene (Cl-1027).
  • the compound of the formula I is administered in combination with a lipase inhibitor, for example orlistat or cetilistat (ATL-962).
  • a lipase inhibitor for example orlistat or cetilistat (ATL-962).
  • the compound of the formula I is administered in combination with an adenosine A1 receptor agonist (adenosine A1 R), as described, for example, in EP1258247, EP1375508, WO2008028590.
  • an adenosine A1 receptor agonist as described, for example, in EP1258247, EP1375508, WO2008028590.
  • the compound of the formula I is administered in combination with an adenosine A2B receptor agonist (adenosine A2B R), for example ATL-801.
  • adenosine A2B R adenosine A2B receptor agonist
  • the compound of the formula I is administered in combination with a modulator of adenosine A2A and/or adenosine A3 receptors, as described, for example, in WO2007111954, WO2007121918, WO2007121921, WO2007121923.
  • the compound of the formula I is administered in combination with an adenosine A2B receptor antagonist (adenosine A2B R), as described in US2007270433, WO2008027585.
  • an adenosine A2B receptor antagonist adenosine A2B R
  • the compound of the formula I is administered in combination with inhibitors of acetyl-CoA carboxylase (ACC1 and/or ACC2), for example those as described in WO199946262, WO200372197, WO2003072197, WO2005044814, WO2005108370, JP2006131559, WO2007011809, WO2007011811, WO2007013691, WO2007095601-603, WO2007119833.
  • ACC1 and/or ACC2 inhibitors of acetyl-CoA carboxylase
  • the compound of the formula I is administered in combination with modulators of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase 3 (GPAT3, described in WO2007100789) or with modulators of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase 4 (GPAT4, described in WO2007100833).
  • modulators of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase 3 GPAT3, described in WO2007100789
  • modulators of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase 4 GPAT4, described in WO2007100833
  • the compound of the formula I is administered in combination with modulators of xanthine oxidoreductase (XOR).
  • the compound of the formula I is administered in combination with inhibitors of soluble epoxide hydrolase (sEH), as described, for example, in WO2008051873, WO2008051875.
  • SEH soluble epoxide hydrolase
  • the compound of the formula I is administered in combination with CART modulators (see “Cocaine-amphetamine-regulated transcript influences energy metabolism, anxiety and gastric emptying in mice” Asakawa, A. et al.: Hormone and Metabolic Research (2001), 33(9), 554-558);
  • NPY antagonists for example N- ⁇ 4-[(4-aminoquinazolin-2-ylamino)methyl]-cyclohexylmethyl ⁇ naphthalene-1-sulfonamide hydrochloride (CGP 71683A);
  • NPY-5 receptor antagonists such as L-152804 or the compound “NPY-5-BY” from Banyu, or as described, for example, in WO2006001318, WO2007103295, WO2007125952, WO2008026563, WO2008026564, WO2008052769;
  • NPY-4 receptor antagonists as described, for example, in WO2007038942;
  • NPY-2 receptor antagonists as described, for example, in WO2007038943;
  • peptide YY 3-36 PYY3-36 or analogous compounds, for example CJC-1682 (PYY3-36 conjugated with human serum albumin via Cys34) or CJC-1643 (derivative of PYY3-36, which is conjugated in vivo to serum albumin), or those as described in WO2005080424, WO2006095166, WO2008003947; derivatives of the peptide obestatin, as described by WO2006096847; CB1R (cannabinoid receptor 1) antagonists, for example rimonabant, surinabant (SR147778), SLV-319 (ibipinabant), AVE-1625, taranabant (MK-0364) or salts thereof, otenabant (CP-945,598), V-24343 or those compounds as described in, for example, EP 0656354, WO 00/15609, WO2001/64632-64634, WO 02/076949, WO2005
  • urocortin urocortin
  • urocortin agonists agonists of the beta-3 adrenoceptor, for example 1-(4-chloro-3-methanesulfonylmethylphenyl)-2-[2-(2,3-dimethyl-1H-indol-6-yloxy)ethylamino]-ethanol hydrochloride (WO 01/83451) or solabegron (GW-427353) or N-5984 (KRP-204), or those as described in JP2006111553, WO2002038543, WO2002038544, WO2007048840-843, WO2008015558; MSH (melanocyte-stimulating hormone) agonists; MCH (melanine-concentrating hormone) receptor antagonists (for example NBI-845, A-761, A-665798, A-798, ATC-0175, T-226296, T-71 (AMG-071, AMG-076), GW-803430,
  • dexfenfluramine dexfenfluramine
  • mixed serotonin/dopamine reuptake inhibitors e.g. bupropion
  • naltrexone or bupropion with zonisamide e.g. DOV-21947
  • mixed serotoninergic and noradrenergic compounds e.g.
  • 5-HT receptor agonists for example 1-(3-ethylbenzofuran-7-yl)piperazine oxalic acid salt (WO 01/09111); mixed dopamine/norepinephrine/acetylcholine reuptake inhibitors (e.g.
  • tesofensine or those as described, for example, in WO2006085118; norepinephrine reuptake inhibitors, as described, for example, in US2008076724; 5-HT2A receptor antagonists, as described, for example, in WO2007138343; 5-HT2C receptor agonists (for example lorcaserine hydrochloride (APD-356) or BVT-933, or those as described in WO200077010, WO200077001-02, WO2005019180, WO2003064423, WO200242304, WO2005035533, WO2005082859, WO2006004937, US2006025601, WO2006028961, WO2006077025, WO2006103511, WO2007028132, WO2007084622, US2007249709; WO2007132841, WO2007140213, WO2008007661, WO2008007664, WO2008009125, WO2008010073); 5-HT6 receptor modulators
  • growth hormone or AOD-9604 human growth hormone or AOD-9604
  • growth hormone releasing compounds tert-butyl 6-benzyloxy-1-(2-diisopropylaminoethylcarbamoyl)-3,4-dihydro-1H-isoquinoline-2-carboxylate (WO 01/85695)
  • growth hormone secretagogue receptor antagonists ghrelin antagonists
  • growth hormone secretagogue receptor modulators for example JMV-2959, JMV-3002, JMV-2810, JMV-2951, or those as described in WO2006012577 (e.g.
  • YIL-781 or YIL-870 WO2007079239
  • TRH agonists see, for example, EP 0 462 884
  • decoupling protein 2 or 3 modulators leptin agonists (see, for example, Lee, Daniel W.; Leinung, Matthew C.; Rozhayskaya-Arena, Marina; Grasso, Patricia. Leptin agonists as a potential approach to the treatment of obesity.
  • Drugs of the Future (2001), 26(9), 873-881); DA agonists (bromocriptin, doprexin); lipase/amylase inhibitors (e.g.
  • WO 00/40569 inhibitors of diacylglycerol O-acyltransferases (DGATs), for example BAY-74-4113, or as described, for example, in US2004/0224997, WO2004094618, WO200058491, WO2005044250, WO2005072740, JP2005206492, WO2005013907, WO2006004200, WO2006019020, WO2006064189, WO2006082952, WO2006120125, WO2006113919, WO2006134317, WO2007016538, WO2007060140, JP2007131584, WO2007071966, WO2007126957, WO2007137103, WO2007137107, WO2007138304, WO2007138311, WO2007141502, WO2007141517, WO2007141538, WO2007141545, WO2007144571, WO2008011130, WO2008011131, WO2008039007,
  • the compound of the formula I is administered in combination with a combination of epotirome with ezetimibe.
  • the compound of the formula I is administered in combination with an inhibitor of site-1 protease (S1P), for example PF-429242.
  • S1P site-1 protease
  • the compound of the formula I is administered in combination with an RNAi therapeutic agent directed against PCSK9 (proprotein convertase subtilisin/kexin type 9).
  • the compound of the formula I is administered in combination with Omacor® or LovazaTM (omega-3 fatty acid ester; highly concentrated ethyl ester of eicosapentaenoic acid and of docosahexaenoic acid).
  • Omacor® or LovazaTM omega-3 fatty acid ester; highly concentrated ethyl ester of eicosapentaenoic acid and of docosahexaenoic acid.
  • the compound of the formula I is administered in combination with lycopene.
  • the compound of the formula I is administered in combination with an antioxidant, for example OPC-14117, AGI-1067 (succinobucol), probucol, tocopherol, ascorbic acid, ⁇ -carotene or selenium.
  • an antioxidant for example OPC-14117, AGI-1067 (succinobucol), probucol, tocopherol, ascorbic acid, ⁇ -carotene or selenium.
  • the compound of the formula I is administered in combination with a vitamin, for example Vitamin B6 or Vitamin B12.
  • the compound of the formula I is administered in combination with more than one of the aforementioned compounds, for example in combination with a sulfonylurea and metformin, a sulfonylurea and acarbose, repaglinide and metformin, insulin and a sulfonylurea, insulin and metformin, insulin and troglitazone, insulin and lovastatin, etc.
  • the compound of the formula I is administered in combination with an inhibitor of carboanhydrase type 2 (carbonic anhydrase type 2), for example those as described in WO2007065948.
  • carboanhydrase type 2 carbonic anhydrase type 2
  • the compound of the formula I is administered in combination with topiramat or a derivative thereof, as described in WO2008027557.
  • the compound of the formula I is administered in combination with a solid combination of topiramat with phentermin (QnexaTM)
  • the compound of the formula I is administered in combination with an antisense compound, e.g. ISIS-377131, which inhibits the production of the glucocorticoid receptor.
  • an antisense compound e.g. ISIS-377131
  • the compound of the formula I is administered in combination with an aldosterone synthase inhibitor and an antagonist of the glucocorticoid receptor, a cortisol synthesis inhibitor and/or an antagonist of the corticotropin releasing factor, as described, for example, in EP1886695.
  • the compound of the formula I is administered in combination with an agonist of the RUP3 receptor, as described, for example, in WO2007035355, WO2008005576.
  • the compound of the formula I is administered in combination with an activator of the gene which codes for ataxia telangiectasia mutated (ATM) protein kinase, for example chloroquine.
  • ATM telangiectasia mutated
  • the compound of the formula I is administered in combination with a tau protein kinase 1 inhibitor (TPK1 inhibitor), as described, for example, in WO2007119463.
  • TPK1 inhibitor tau protein kinase 1 inhibitor
  • the compound of the formula I is administered in combination with a “c-Jun N-terminal kinase” inhibitor (JNK inhibitor), as described, for example, in WO2007125405, WO2008028860.
  • JNK inhibitor c-Jun N-terminal kinase inhibitor
  • the compound of the formula I is administered in combination with an endothelin A receptor antagonist, for example avosentan (SPP-301).
  • an endothelin A receptor antagonist for example avosentan (SPP-301).
  • the compound of the formula I is administered in combination with modulators of the glucocorticoid receptor (GR), for example KB-3305 or those compounds as described, for example, in WO2005090336, WO2006071609, WO2006135826, WO2007105766.
  • GR glucocorticoid receptor
  • the further active ingredient is varenicline tartrate, a partial agonist of the alpha 4-beta 2 nicotinic acetylcholine receptor.
  • the further active ingredient is trodusquemine.
  • the further active ingredient is a modulator of the enzyme SIRT1 (an NAD + -dependent protein deacetylase); this active ingredient may, for example, be resveratrol in suitable formulations, or those compounds as specified in WO2007019416 (e.g. SRT-1720).
  • SIRT1 an NAD + -dependent protein deacetylase
  • the further active ingredient is DM-71 (N-acetyl-L-cysteine with bethanechol).
  • the compound of the formula I is administered in combination with antihypercholesterolemic compounds, as described, for example, in WO2007107587, WO2007111994.
  • the compound of the formula I is administered in combination with a cyclic peptide agonist of the VPAC2 receptor, as described, for example, in WO2007101146, WO2007133828.
  • the compound of the formula I is administered in combination with an agonist of the endothelin receptor, as described, for example, in WO2007112069.
  • the compound of the formula I is administered in combination with AKP-020 (bis(ethylmaltolato)oxovanadium(IV)).
  • the compound of the formula I is administered in combination with tissue-selective androgen receptor modulators (SARM), as described, for example, in WO2007099200, WO2007137874.
  • SARM tissue-selective androgen receptor modulators
  • the compound of the formula I is administered in combination with an AGE (advanced glycation end product) inhibitor, as described, for example, in JP2008024673.
  • AGE advanced glycation end product
  • the further active ingredient is leptin; see, for example, “Perspectives in the therapeutic use of leptin”, Salvador, Javier; Gomez-Ambrosi, Javier; Fruhbeck, Gema, Expert Opinion on Pharmacotherapy (2001), 2(10), 1615-1622.
  • the further active ingredient is metreleptin (recombinant methionyl-leptin) combined with pramlintide.
  • the further active ingredient is the tetrapeptide ISF-402.
  • the further active ingredient is dexamphetamine or amphetamine.
  • the further active ingredient is fenfluramin or dexfenfluramin.
  • the further active ingredient is sibutramine or those derivatives as described in WO2008034142.
  • the further active ingredient is mazindol or phentermin.
  • the further active ingredient is geniposidic acid (WO2007100104) or derivatives thereof (JP2008106008).
  • the further active ingredient is a nasal calcium channel blocker, for example diltiazem, or those as described in U.S. Pat. No. 7,138,107.
  • the further active ingredient is an inhibitor of sodium-calcium ion exchange, for example those as described in WO2008028958.
  • the further active ingredient is a blocker of calcium channels, for example of CaV3.2, as described in WO2008033431, WO2008033447, WO2008033356, WO2008033460, WO2008033464, WO2008033465, WO2008033468.
  • the further active ingredient is a blocker of the “T-type calcium channel”, as described, for example, in WO2008033431.
  • the further active ingredient is an inhibitor of KCNQ potassium channel 2 or 3, for example those as described in US2008027049, US2008027090.
  • the further active ingredient is an inhibitor of the potassium Kv1.3 ion channel, for example those as described in WO2008040057, WO2008040058, WO2008046065.
  • the further active ingredient is a modulator of the MCP-1 receptor (monocyte chemoattractant protein-1 (MCP-1)), for example those as described in WO2008014360, WO2008014381.
  • MCP-1 receptor monocyte chemoattractant protein-1 (MCP-1)
  • the further active ingredient is a modulator of somatostatin receptor 5 (SSTR5), for example those as described in WO2008019967, US2008064697.
  • SSTR5 somatostatin receptor 5
  • the further active ingredient is a modulator of somatostatin receptor 2 (SSTR2), for example those as described in WO2008051272.
  • SSTR2 somatostatin receptor 2
  • the further active ingredient is an erythropoietin-mimetic peptide which acts as an erythropoietin (EPO) receptor agonist.
  • EPO erythropoietin
  • the further active ingredient is an anorectic/a hypoglycemic compound, for example those as described in WO2008035305, WO2008035306, WO2008035686.
  • the further active ingredient is an inductor of lipoic acid synthetase, for example those as described in WO2008036966, WO2008036967.
  • the further active ingredient is a stimulator of endothelial nitric oxide synthase (eNOS), for example those as described in WO2008058641.
  • eNOS endothelial nitric oxide synthase
  • the further active ingredient is a modulator of carbohydrate and/or lipid metabolism, for example those as described in WO2008059023, WO2008059024, WO2008059025, WO2008059026.
  • the further active ingredient is an angiotensin II receptor antagonist, for example those as described in WO2008062905.
  • the further active ingredient is an agonist of the sphingosine-1-phosphate receptor (S1P), for example those as described in WO2008064315.
  • S1P sphingosine-1-phosphate receptor
  • the compound of the formula I is administered in combination with bulking agents, preferably insoluble bulking agents (see, for example, Carob/Caromax® (Zunft H J; et al., Carob pulp preparation for treatment of hypercholesterolemia, ADVANCES IN THERAPY (2001 September-October), 18(5), 230-6).
  • Caromax is a carob-containing product from Nutrinova, Nutrition Specialties & Food Ingredients GmbH, Industriepark Hochst, 65926 Frankfurt/Main).
  • Combination with Caromax® is possible in one preparation or by separate administration of compounds of the formula I and Caromax®.
  • Caromax® can in this connection also be administered in the form of food products such as, for example, in bakery products or muesli bars.
  • the compounds of the formula I are administered in combination with medicaments with effects on the cardiovascular system and the blood vessel system, for example ACE inhibitors (e.g. ramipril), medicaments which act on the angiotensin renin system, calcium antagonists, beta-blockers, etc.
  • ACE inhibitors e.g. ramipril
  • medicaments which act on the angiotensin renin system calcium antagonists, beta-blockers, etc.
  • the compounds of the formula I are administered in combination with antiinflammatory medicaments.
  • the compounds of the formula I are administered in combination with medicaments which are used for cancer treatment and cancer prevention.
  • the compounds of the invention show a significant inhibition (>30%) of the signal induced by the agonist at a concentration of 100 ⁇ M, preferably at 10 ⁇ M, particularly preferably at 1 ⁇ M, very particularly preferably at 100 nM and very very particularly preferably at 10 nM.
  • Preferred compounds of the invention show an IC50 of less than 1 ⁇ M, particularly preferably of less than 100 nM, very particularly preferably of less than 10 nM and very very particularly preferably of less than 1 nM.
  • the anorectic effect is tested on female NMRI mice. After withdrawal of feed for 24 hours, the test substance is administered intraperitoneally or preferably orally by gavage. The animals are housed singly with free access to drinking water and, 30 minutes after administration of product, are offered condensed milk. The condensed milk consumption is determined every half hour for 7 hours, and the general condition of the animals is observed. The measured milk consumption is compared with the vehicle-treated control animals.
  • Preferred tolerated vehicles for the administration are, for example, hydroxyethylcellulose (0.5% in water) or Solutol HS15 (5% in hydroxyethylcellulose (0.5% in water)).
  • mice 5 weeks old are accustomed either to a standard maintenance diet or to a high-fat and thus high-energy diet.
  • the normally fed, slim mice have typically reached a body weight of about 25 g, and the fat-fed mice have reached one of about 35 g.
  • the animals are housed singly, and the feed intake and water intake are determined individually. There is free access to feed and water during the experiment.
  • test substances are administered orally in a vehicle and always tested by comparison with the vehicle control which is included in parallel.
  • vehicle itself has no influence on the feed intake, and is normally hydroxyethylcellulose (0.5% in water) or Solutol HS15 (5% in hydroxyethylcellulose (0.5% in water)).
  • a corresponding group of slim mice is kept for each group of diet-induced obese mice.
  • Feed consumption and water consumption are determined each day in the first week and then once per week by reweighing the offered feed and water, respectively. The body weight is measured each day.
  • Blood samples are taken before and at the end of the treatment in order to determine serum parameters which provide information about changes in intermediary metabolism. It is additionally possible to determine the body fat content on the living animal by means of an impedance measurement (TOBEC method).
  • TOBEC method impedance measurement
  • an antagonist of MCH1R has sufficient brain penetration (for example determined as the ratio of the compound level in the brain tissue and in the blood serum attained at one time) (on this subject, see, for example, J. Pharmacol. Exp. Thera. 2008, 324, 206-213).
  • Preferred compounds of the invention have a ratio of brain to serum levels of at least 0.3. Further preferred compounds have a ratio of at least 0.6. Particularly preferred compounds exhibit a ratio of at least 1.0.
  • the aim of the micronucleus test is to examine whether a test compound has the potential to elicit the formation of micronuclei (small membrane-bound DNA fragments) in various cell lines or primary cultures, with or without metabolic activation by S9 liver homogenate.
  • the test system allows differentiation between the clastogenic and aneugenic potential of a test compound by an immunochemical labeling of the kinetochores or by staining the DNA fragments by the FISH (fluorescence in situ hybridization) method.
  • the cells are treated in a 96-well microtiter plate with the test compound.
  • the treatment time is typically 3 hours with metabolic activation or 24 hours without metabolic activation.
  • Twenty-four hours after the end of the treatment the cells are isolated, fixed and stained.
  • the cytotoxicity of the test compound is assessed according to the relative cell growth expressed as percentage growth or taking account of the doubling time as population doubling compared with the negative control.
  • the highest test concentration should show not less than 30% surviving cells, or should be the concentration at which a precipitate of the test compound is observed. Duplicate determinations should be carried out with each test concentration. An accurate detailed description of the experiment is to be found in Kirsch-Volders et al. (Mutation Res. 2003, 540, 153-163).
  • a positive control must show a clear statistically significant effect by comparison with the negative control.
  • Preferred compounds of the invention are negative in the micronucleus test.
  • the aim of the AMES II test is to examine whether a test compound has mutagenic potential.
  • a mixed bacterial strain (mixed strains, 6 different Salmonella typhimurium strains with in each case a missence point mutation in the histidine operon) and the Salmonella typhimurium strain TA98 for detecting frame shift mutations is treated in a 384-well microtiter plate with various concentrations of the test substance with or without metabolic activation through addition of S9 liver homogenate (accurate descriptions of the experiment are to be found in the literature: P. Gee, D. M. Maron, B. N. Ames; Proc. Natl. Acad. Sci. USA 1994, 91, 11606 and dieckiger-Isler et al.; Mutation Res. 2004, 558, 181 and cit. lit.). Mutagenic test compounds cause back-mutations and thus restore the functionality of endogenous histidine biosynthesis. Mutated bacteria are thus able to divide and expand to bacterial colonies.
  • Preferred compounds of the invention are negative in the AMES II test.
  • LDH lactate dehydrogenase
  • the LDH activity which enters the cell supernatant from the cytosol due to cell damage is measured by colorimetry.
  • the cells are treated with the test compound.
  • Fifty microliters of the culture supernatant are removed and mixed with the reaction solution (LDH kit, Roche, Mannheim) in accordance with the manufacturer's information.
  • LDH catalyzes the conversion of lactate into pyruvate.
  • NAD+ is reduced to NADH/H+.
  • the latter in turn reduces, under the influence of the added diaphorase, a likewise added yellow tetrazolium salt to the red formazan.
  • the formazan is quantified by measuring the absorption at 492 nM (e.g. with TECAN SPECTRAFluor Plus).
  • Preferred compounds of the invention show no significant increase in LDH activity at concentrations below 10 ⁇ M. Particularly preferred compounds show no increase below a concentration of 50 ⁇ M. Even further preferred compounds show no increase below a concentration of 250 ⁇ M.
  • the aim of the test is to determine the total intracellular ATP content, which is a measure of the energy level and thus the vitality of a cell.
  • 100 ⁇ l of cell culture medium are mixed in a well of a microtiter plate with 100 ⁇ l of the CellTiter-Glo reagent (following the manufacturer's instructions: Promega Technical Bulletin No. 228, CellTiter-Glo Luminesent Cell Viability Assay).
  • the cultures are shaken at room temperature for 2 minutes and then incubated for 10 minutes until the luminescence signal has stabilized.
  • Preferred compounds of the invention show no significant reduction in the ATP levels at concentrations below 10 ⁇ M. Particularly preferred compounds show no reduction below a concentration of 50 ⁇ M. Even further preferred compounds show no reduction below a concentration of 250 ⁇ M.
  • the aim of the test is to measure the uptake of neutral red (NR) into the lysosomes/endosomes and vacuoles of living cells, which is a quantitative measure of the number and vitality of the cells.
  • NR neutral red
  • the cells are washed with 150 ⁇ l of a preheated phosphate buffer solution (PBS) and incubated with 100 ⁇ l of the NR medium at 37° C. in a humidified atmosphere with 7.5% carbon dioxide for 3 hours. After the incubation, the NR medium is removed and the cells are washed with 150 ⁇ l of PBS. Removal of the PBS is followed by addition of exactly 150 ⁇ l of an ethanol/glacial acetic acid solution. After shaking for 10 minutes, the dye is extracted from the cells to give a homogeneous dye solution. An exact description of the test is to be found in the literature (E. Borenfreund, J. A. Puerner, Toxicol. Lett. 1985, 24(2-3), 119-124).
  • PBS preheated phosphate buffer solution
  • the absorption of the dye solution is determined at 540 nM using a microtiter plate reader as difference from the absorption of the ethanol/glacial acetic acid solution.
  • the aim of the test is to determine the concentration range in which the test compound blocks the cardiac hERG channel. Blockade of the hERG channel, which is responsible for the Ikr current in the human heart, is associated with potentially fatal arrhythmias.
  • cDNA For expression of the cDNA encoding the hERG channel it was cloned into the pcDNA3 vector (Invitrogen).
  • Chinese hamster oocytes (CHO, American Type Culture Collection, Rockville, Md.) were transfected using lipofectamine (GIBCO/BRL, Grand Island, N.Y.) with the hERG cDNA and selected using G418 (GIBCO/BRL, Grand Island, N.Y.; 500 ⁇ g/ml).
  • CHO cells with stable expression of the hERG channel were cultured on a HAM F-12 medium which was supplemented with 10% native bovine serum, 1 ⁇ penicillin/streptomycin and 500 ⁇ g/ml G418 in an atmosphere of 95% air/5% carbon dioxide.
  • the cells selected for the patch clamp experiment are seeded on a plastic support 18-24 hours before the experiment.
  • HERG channel currents are recorded at room temperature by the whole-cell variant of the patch clamp technique using an Axopatch 200B amplifier (Axon Instruments, Foster City, Calif.).
  • the electrodes (3-6 megaohms resistance) are prepared from TW150F glass capillaries (World Precision Instruments, Sarasota, Fla.) and filled with the pipette solution (120 mM potassium aspartate, 20 mM KCl, 4 mM Na2ATP, 5 mM HEPES, 1 mM MgCl2; adjusted to pH 7.2 with KOH).
  • the hERG channel currents are induced by a positive voltage pulse (20 mV) followed by a negative pulse ( ⁇ 40 mV) and are recorded for later analysis.
  • the hERG channel current of the cell flushed with the control solution 130 mM, 5 mM KCl, 2.8 mM NaOAc, 1 mM MgCl2, 10 mM HEPES; 10 mM glucose, 1 mM CaCl2; adjusted to pH 7.4 with NaOH
  • the cell is perfused with the test compound dissolved in the above control solution (by dilution of a 10 or 100 mM DMSO solution of the test compound so that the DMSO content is no more than 0.1%).
  • the current is followed continuously until no further changes occur.
  • the same procedure is repeated with increasing concentrations of the test compound.
  • the maximum amplitude of the hERG current is measured in picoAmperes (pA) for each concentration and for each cell.
  • the maximum amplitude in pA for each concentration of the test compound is compared with that of the pure control solution in the same cell and calculated as % of the control value.
  • test compound is tested at various concentrations in 3-5 CHO cells which express the hERG channel.
  • IC50 is obtained by use of nonlinear least squares regression (GraphPAD Software, San Diego, Calif.).
  • the compounds of the invention of the formula I exhibit, as selective MCH1R antagonists, selectivity factors of at least 30, preferably of 100, more preferably of 300 and even more preferably of 1000 vis à vis the affinity to other proteins.
  • selectivity factors e.g. the 5-HT2a receptor
  • muscarine receptor subtypes e.g. the M1 receptor
  • adrenergic receptor subtypes e.g. AR alpha1a
  • sodium and calcium channels e.g. the L-type calcium channel.
  • Solubility in aqueous systems can be determined by various methods. Suitable examples are solution precipitation methods (“kinetic solubility”) and methods which investigate the dissolution of a solid sample until an equilibrium is set up (“thermodynamic solubility”).
  • a DMSO solution of the test compound (2.5 mM; 0.5 ⁇ l) is pipetted into 200 ⁇ l of an aqueous test solution (e.g. phosphate-buffered saline, 10 ⁇ , 1M, Sigma, adjusted to 10 mM, pH 7.4) in a 96-well microtiter plate, and the turbidity is measured at the resulting theoretical concentration for the test compound of 6.25 ⁇ M using a nephelometer (e.g. Nephelostar Galaxy, BMG Labtech). The concentration of the test compound in the aqueous test solution is then raised to a theoretical 12.5 ⁇ M by adding further DMSO solution (2.5 mM; 0.5 ⁇ l), and the turbidity measurement is repeated.
  • an aqueous test solution e.g. phosphate-buffered saline, 10 ⁇ , 1M, Sigma, adjusted to 10 mM, pH 7.4
  • a nephelometer e.g. Nep
  • Preferred compounds of the invention show a kinetic solubility in phosphate buffer (pH 7.4) of at least 12.5 ⁇ M; more preferably of at least 50 ⁇ M and even more preferably of at least 250 ⁇ M.
  • the integrated UV absorption from HPLC UV measurement of serial dilutions of the test compound in DMSO shows a linear correlation with the concentration in a calibration line.
  • the test compound (500 ⁇ g) is shaken together with the aqueous test solution (250 ⁇ l) in a closed vessel (capacity: 1.5 ml) for 16 hours (Eppendorf thermoshaker, 1400 rpm, 25° C., covering to protect from light).
  • the sample is then centrifuged at maximum rotational speed, and the supernatant is finally filtered.
  • a sample of the filtered supernatant is analyzed directly by HPLC UV measurement (see above).
  • a further sample is analyzed after dilution (1 part by volume of supernatant, 39 parts by volume of test solution).
  • the concentration of the test compound in the undiluted supernatant is calculated from the resulting integrated UV absorptions of the supernatant samples on the basis of the constructed calibration lines and stated as solubility of the test compound in the respective aqueous test solution.
  • aqueous test solutions are deionized water or aqueous phosphate buffer with various pH values (e.g. pH 1.2; pH 4.0; pH 6.8; pH 7.4; pH 9.0) which can be prepared from the commercial solution (phosphate buffered saline, 10 ⁇ , Sigma) by dilution and adjustment with phosphoric acid or sodium hydroxide solution by standard methods.
  • pH 1.2; pH 4.0; pH 6.8; pH 7.4; pH 9.0 phosphated saline, 10 ⁇ , Sigma
  • Preferred compounds of the invention show a solubility in phosphate buffer (pH 7.4) of at least 12.5 ⁇ M; more preferably of at least 50 ⁇ M and even more preferably of at least 250 ⁇ M.
  • the test for permeability is carried out in CACO-2/TC7 cells which have been cultured (DMEM/Glutamax I/Gibco with high glucose content, HEPES 25 mM, 1% NEAA, 10% FBS, 40 ⁇ g/ml gentamycin; 37° C. surrounding temperature; 95% humidity and 10% CO2 content) on Becton Dickinson filters (24-well, uncoated) for 21 days.
  • the permeability is tested at a concentration of 20 ⁇ M for the test compound (1% DMSO in HBSS) with a pH gradient (apical: pH 6.5 and 0.5% BSA; basolateral: pH 7.4 and 5% BSA). Analysis takes place by means of LCMS/MS. Further descriptions of the test system and references for the experimental procedure are to be found in Balimane, P. V.; Drug Discovery Today 2005, 10(5), 335-343.
  • CYP enzymes The inhibition of CYP enzymes is determined on recombinant enzymes (obtained from Becton Dickinson) and fluorescent substrates (BD/Gentest) as recommended by the manufacturer (see Website http://www.bdbiosciences.com). Further descriptions of the test system and references for the experimental procedure are to be found in Zlokarnik, G.; Drug Discovery Today 2005, 10(21), 1443-1450.
  • the metabolic stability is determined by incubating the test compound (5 ⁇ M) with microsomal liver fractions (1 mg/ml protein with 0.1% w/v BSA; 1 mM NADPH, 0.5% DMSO) at 37° C. Analysis at an incubation time of 0 and 20 minutes takes place by means of LCMS/MS. Further descriptions of the test system and references for the experimental procedure are to be found in Plant, N.; Drug Discovery Today 2004, 9(7), 328-336 and Lau, Y. Y. et al.; Pharmaceutical Res. 2002, 19(11), 1606-1610.
  • the inventive compounds of the formula I can be prepared with the aid of reactions known in principle.
  • an amino acid of the structure Z1 can first be protected selectively (for example by method D with Boc2O).
  • the subsequent reaction with an amine (HNR1R2) can advantageously be carried out using a commonly known coupling reagent (for example by method A-1 with HATU or by method A-2 with EDC/HOBt).
  • Removal of the protecting group for example by method C with hydrochloric acid
  • subsequent reduction for example by method B with lithium aluminum hydride
  • the inventive compounds of the formula Ia can be obtained by reducing the amine Z2 with an acid of the structure B-L3-A-L2-CO2H (for example by method A-1 or A-2) (scheme 1).
  • ketones Z3 which are commercially available, or can be prepared by known methods (see, for example, synthesis 2004, 121; J. Org. Chem. 1995, 60, 4324). Acid-catalyzed condensation of the ketones Z3 with amides (B-L3-A-L2-CONH2) and subsequent (optionally asymmetric) catalytic hydrogenation of the resulting enamides under known conditions (see, for example, Adv. Synth. Catal. 2003, 345, 230; Tetrahedron: Asymmetry 1999, 10, 3467; J. Org. Chem. 1995, 60, 4324) gives rise to the aryl bromides Z4.
  • Stereochemically defined compounds of type Ib* can be formed, for example, by condensation of the intermediates Z5′ with chiral sulfinylamides (for example by method M), addition of Grignard reagents (for example by method L), hydrolysis (for example by method K) and optional reductive alkylation, for example by method H-2 (scheme 2-1).
  • the intermediates Z4 can also be used to synthesize other compounds of the formula I.
  • the dian ions obtained by sequential treatment of Z4 with MeLi and then n-BuLi can be reacted with ketones (R34COR35).
  • the resulting tertiary alcohols can be converted under the conditions of the Ritter reaction (e.g. TMSCN, H2SO4/HOAc to amides which then, after hydrolysis and optional reductive amination, give rise to compounds of the structure Ib-1 (scheme 2-2).
  • the intermediates Z4 can also be reacted by means of transition metal complexes (for example those of Pd and Ni) catalyzed with pyridyl compounds (e.g. pyridyltrialkyltin compounds, pyridylboronic acid (derivatives) or pyridine N-oxides).
  • pyridyl compounds e.g. pyridyltrialkyltin compounds, pyridylboronic acid (derivatives) or pyridine N-oxides.
  • suitable catalysts e.g. PtO2 in HOAc; method J-1
  • optional reductive alkylation gives rise to the structures Ib-2 (scheme 2-2).
  • the intermediates Z4 are reacted with allyl-metal compounds (e.g. allyltributyltin) under palladium catalysis, then the double bond is cleaved oxidatively (for example with OsO4/NaIO4), and the aldehydes thus obtained are reacted with amines HNR1R2 in the sense of a reductive amination (scheme 2-2).
  • allyl-metal compounds e.g. allyltributyltin
  • a further preparation process for other compounds of the formula I again consists in reacting dichlorides of the Z6 type or isochromenones of the Z7 type with amines Z8 by processes known in principle (scheme 3).
  • the dichlorides Z6 required can be obtained from ortho-methylbenzoic acids by double metalation, for example with lithium diisopropylamide (LDA), scavenging of the dianion with formaldehyde (for example in the form of paraformaldehyde) and final dichlorination.
  • (dihydro)isoquinolinones of the formula I it is also to possible to cleave the amide bond of the intermediates Z4 under appropriate conditions (for example with HBr/methanesulfonic acid).
  • the amines thus obtained can be reacted with the dichlorides Z6 (or the isochromenones Z7).
  • the bromides Z9 thus prepared can then be converted further to inventive compounds analogously to the intermediates Z4 (preferably by means of the transition metal-catalyzed reactions specified there).
  • the bromides Z9 can be reductively carbonylated and the aldehydes thus obtained can be converted to compounds of the le type by means of a reductive amination (scheme 3-1).
  • method A-1, B, C, D, E, F, G in example 1; method H, I in example 2; method J-1 in example 4; method K, L, M-1 in example 6; method H-2 in example 8-1; method A-2 in example 9-1; method N in example 13; method O in example 14; method P in example 15.
  • inventive compounds are bases and can form salts with correspondingly strong acid.
  • the compounds after HPLC purification using an eluent comprising trifluoroacetic acid, may be present in the form of hydrotrifluoroacetates. These can be converted to the free bases shown by simple treatment of a solution of the salts, for example with sodium carbonate solution.
  • the unit of the molecular weights reported is “g/mol”. Peaks observed in the mass spectrum are reported as the integer quotient of the molar molecular ion mass and the charge of the molecular ion (m/z).
  • the aqueous phase was basified with concentrated sodium hydroxide solution and extracted three times with dichloromethane (DCM). The combined organic phases were dried over magnesium sulfate and concentrated. The product was thus obtained with the molecular weight of 230.36 (C15H22N2); MS (ESI): 231 (M+H+).
  • N—((R)-6-formyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide was prepared from N—((R)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide.
  • N—((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-hydroxybenzamide was reacted with methanesulfonic acid (S)-1-(tetrahydrofuran-2-yl)methyl ester.
  • the product was thus obtained with the molecular weight of 430.35 (C22H24BrNO3); MS (ESI): 430 (M+H+).
  • (S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-ylamine was reacted with 5-hydroxypyridine-2-carboxylic acid.
  • the amide obtained was alkylated by method F with (S)-1-(tetrahydrofuran-2-yl)methyl methanesulfonate and converted to the desired aldehyde by method I.
  • the product was thus obtained with the molecular weight of 380A5 (C22H24N2O4); MS (ESI): 381 (M+H+).
  • N—((S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-hydroxybenzamide was obtained by reacting 4-hydroxybenzoic acid with (S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-ylamine.
  • reaction mixture was then allowed to come to room temperature and stirred at this temperature for 4 hours.
  • the reaction mixture was admixed with water, then the THF was removed under reduced pressure and then the aqueous phase was extracted with diethyl ether.
  • the aqueous phase was acidified with conc. HCl, and the resulting precipitate was filtered off and washed repeatedly with water.
  • the product was thus obtained with the molecular weight of 178.06 (C10H10O3); MS (ESI): 179 (M+H+).
  • 6-methoxyisochroman-1-one was treated with boron tribromide.
  • Table 7 lists examples with an aminochromane base skeleton, which can be prepared by the processes described above by way of example.
  • inventive compounds for example, by the process described in Scheme 2 or by way of example in Example 3-1, it is possible to proceed, for example, from 7-bromochroman-3-one, which is supplied commercially (Anichem LLC; 195 Black Horse Lane; North Brunswick, N.J., 08902; USA) or by the following route:

Abstract

The invention relates to substituted tetrahydronaphthalenes and derivatives thereof, and also to the physiologically compatible salts and physiologically functional derivatives thereof, to preparation thereof, to medicaments comprising at least one inventive substituted tetrahydronaphthalene or derivative thereof, and to the use of the inventive substituted tetrahydronaphthalenes and derivatives thereof as medicaments.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 12/705,140, filed Feb. 12, 2010, which is a continuation of International Application No. PCT/EP2008/006700, filed Aug. 14, 2008, which claims priority of European Patent Application No. 07291010.2, filed Aug. 15, 2007, which is incorporated herein by reference in its entirety.
  • The invention relates to substituted tetrahydronaphthalenes and derivatives thereof, and also to the physiologically compatible salts and physiologically functional derivatives thereof, to preparation thereof, to medicaments comprising at least one inventive substituted tetrahydronaphthalene or derivative thereof, and to the use of the inventive substituted tetrahydronaphthalenes and derivatives thereof as medicaments.
  • Compounds which have pharmacological action and whose overall structure is similar to the substituted tetrahydronaphthalenes and derivatives thereof described in the present application are already described in the prior art, for example in WO2002/064565 and WO2000/051970.
  • WO2008/002575, WO2008/001160, WO2006/044293, WO2005/033063, US2005/0075324, US 2006/0247239 and Meyers K. M. et al., Bioorganic & Medicinal Chemistry Letters 17, 2007, 814-18; Meyers K. M. et al., Bioorganic & Medicinal Chemistry Letters 17, 2007, 819-22; Mendez-Andino J. L. et al., Bioorganic & Medicinal Chemistry Letters 15, 2007, 2092-2105 disclose amino-substituted tetrahydronaphthalene derivatives with MCH R1-antagonistic action for treatment of obesity.
  • Further compounds with MCH-antagonistic action for treatment of obesity have been described in the prior art (examples: WO2005047293, WO2004092181, WO2005103039, WO2004024702, WO2001021577, WO2003035624, WO2002089729, WO2002006245, WO2002002744, WO2002057233, WO2003045313, WO2003097047, WO2002010146, WO2003087044, WO2003/087046, WO2001/021577). A review is given in Rokosz, L. L., Expert Opin. Drug Discov. 2007, 2, 1301-1327.
  • It was an object of the invention to provide compounds which bring about weight reduction in mammals and which are suitable for prevention and treatment of obesity and diabetes and their manifold sequelae.
  • Surprisingly, a series of compounds which modulate the activity of MCH receptors has been found. More particularly, the compounds feature antagonism of MCH R1.
  • The invention therefore relates to compounds of the formula I
  • Figure US20140088077A1-20140327-C00001
  • in which
  • R1, R2
  • are each independently H, (C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C3-C8)-alkenyl, (C3-C8)-alkynyl, CO(R9), (C(R10)(R11))q-R12, CO(C(R13)(R14))r-R15, CO—O(C1-C8)-alkyl, CO(C(R13)(R14))r—N(R16)(R17);
    or
    R1 and R2, together with the nitrogen atom to which they are bonded, form a 4-to 10-membered mono-, bi- or spirocyclic ring which, apart from the nitrogen atom, may include from 0 to 3 additional heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the heterocyclic ring system may additionally be substituted by F, Cl, Br, CF3, CN, (C1-C6)-alkyl, (C3-C3)-cycloalkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C6)-alkyl, oxo, CO(R18), CON(R19)(R20), hydroxyl, COO(R21), N(R22)CO(C1-C6)-alkyl, N(R23)(R24) or SO2(C1-C6)-alkyl;
  • R10, R11
  • are each independently H, (C1-C6)-alkyl, hydroxy-(C1-C2)-alkyl, F, OH;
  • R9, R13, R14, R16, R17, R18, R19, R20, R21, R22, R23, R24,
  • are each independently H, (C1-C6)-alkyl;
    or
  • R16 and R17, R23 and R24
  • form, optionally together with the nitrogen atom to which they are bonded, a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C6)-alkyl, oxygen and sulfur;
    q, r are each independently 0, 1, 2, 3, 4, 5, 6;
  • R12, R15
  • are each independently H, OH, F, O—(C1-C6)-alkyl, S—(C1-C6)-alkyl, O-phenyl, CN, COO(R25), N(R26)CO(C1-C6)-alkyl, N(R27)(R28), CON(R29)(R30), SO2(C1-C6)-alkyl, 3-12-membered mono-, bi- or spirocyclic ring which may contain one to four heteroatoms from the group of N, O and S, and the 3-12-membered ring may contain further substituents such as F, Cl, Br, OH, CF3, NO2, CN, OCF3, oxo, O—(C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, S—(C1-C8)-alkyl, (C1-C6)-alkyl, (C2-C6)-alkenyl, (C3-C8)-cycloalkyl, O—(C3-C8)-cycloalkyl, (C3-C8)-cycloalkenyl, O—(C3-C8)-cycloalkenyl, (C2-C6)-alkynyl, N(R31)(R32), COO(R33), SO2(C1-C6)-alkyl and COOH;
  • R25, R26, R27, R28, R29, R30, R31, R32, R33
  • are each independently H, (C1-C8)-alkyl; or
  • R27 and R28, R29 and R30, R31 and R32
  • each independently form, optionally together with the nitrogen atom to which they are bonded, a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C6)-alkyl, oxygen and sulfur;
    L1 is C(R34)(R35), C(R36)(R37)C(R38)(R39), (C3-C6)-cycloalkyl;
    optionally, R1 may be joined to one of the R34, R35, R36, R37, R38 or R39 radicals, so as to form a 5-6-membered ring;
  • R34, R35, R36, R37, R38, R39
  • are each independently H, (C1-C8)-alkyl;
  • R3, R4, R5
  • are each independently H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O—(C1-C6)-alkyl, S—(C1-C6)-alkyl, O—(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, CON(R40)(R41), CO(R42);
  • R40, R41, R42
  • are each independently H, (C1-C8)-alkyl;
    or
  • R40 and R41
  • each independently form, optionally together with the nitrogen atom to which they are bonded, a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C6)-alkyl, oxygen and sulfur;
  • X is O, C(R43)(R43′); R6, R6′, R7, R7′, R43, R43′
  • are each independently H, F, (C1-C8)-alkyl, OH, O—(C1-C6)-alkyl; or
    R6 and R6′, or R43 and R43′ together are optionally oxo;
    R8 is H, (C1-C8)-alkyl;
    L2 is a bond, C(R44)(R45);
  • R44, R45
  • are each independently H, (C1-C8)-alkyl;
    A is a 5-6-membered aromatic ring which may include up to 2 heteroatoms selected from the group of nitrogen, oxygen and sulfur, and may be substituted by one or more of the substituents H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O—(C1-C8)-alkyl, O—(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, N(R54)(R55), SO2—CH3, CON(R56)(R57), N(R58)CO(R59), CO(R60);
    in the case that L2=a bond, C(O)NR8 may be joined to an ortho substituent of A via a bridge containing one or two elements from the group of carbon and nitrogen, so as to form a 9- to 10-membered bicyclic ring overall;
  • R54, R55, R56, R57, R58, R59, R60
  • are each independently H, (C1-C8)-alkyl;
    or
  • R54 and R55, R56 and R57
  • each independently form, optionally together with the nitrogen atom to which they are bonded, a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C8)-alkyl, oxygen and sulfur;
    L3 is a bond or a linker having from 1 to 4 members, where the members are selected from the group consisting of O, S, SO2, N(R61), CO, C(R62)(R63), C≡C, to give rise to a chemically viable radical, and the linker does not have any O—CO or COO groups;
    B is (C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C6)-alkyl, a 3 to 10-membered mono-, bi- or spirocyclic nonaromatic ring which may include from 0 to 3 heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the ring system may additionally be substituted by one or more of the following substituents: F, CF3, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C4)-alkyl, oxo, CO(R64), hydroxyl;
  • R61, R62, R63, R64
  • are each independently H, (C1-C8)-alkyl; where, in the case that X═C(R43)(R43′)
  • L3 is C(R62)(R63)O, and
  • B is a 4- to 10-membered mono-, bi- or spirocyclic nonaromatic ring which includes from 1 to 3 heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the ring system may additionally be substituted by one or more of the following substituents: F, CF3, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C4)-alkyl, oxo, CO(R64), hydroxyl.
  • The compounds of the formula I are notable in that they have an improved solubility in aqueous media as compared with structurally similar compounds with MCH-antagonistic action (especially in physiologically relevant buffer systems) coupled with simultaneously high activity. Moreover, preferred inventive compounds are notable for low blockage of the hERG channel. Furthermore, preferred inventive compounds have an improved metabolic stability as compared with prior art compounds.
  • The alkyl, alkenyl and alkynyl radicals in the substituents R1, R2, R3, R4, R5, R6, R6″, R7, R7′, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36, R37, R38, R39, R40, R41, R42, R43, R43′, R44, R45, R54, R55, R56, R57, R58, R59, R60, R61, R62, R63, R64 may be either straight-chain, branched and/or optionally substituted by substituents such as (C1-C4)-alkoxy or halogen. This also applies when the alkyl, alkenyl and alkynyl radicals are part of another group, for example part of an alkoxy group (such as (C1-C4)-alkoxy-(C1-C4)-alkyl)). Suitable halogens are fluorine, chlorine, bromine and iodine, preferably fluorine, chlorine and bromine, particularly preferably fluorine.
  • Examples of alkyl groups are: methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl. Included therein are both the n-isomers of these radicals and branched isomers such as isopropyl, isobutyl, isopentyl, sec-butyl, tert-butyl, neopentyl, 3,3-dimethylbutyl, etc. Unless stated otherwise, the term alkyl additionally also includes alkyl radicals which are unsubstituted or optionally substituted by one or more further radicals, for example by 1, 2, 3 or 4 identical or different radicals such as (C1-C4)-alkoxy or halogen. Examples of alkyl groups substituted by halogen are fluorinated alkyl groups such as CF3, CHF2, CH2F, 3-fluoroprop-1-yl, 2,2,1,1-tetrafluoroethyl. It is moreover possible for the additional substituents to appear in any desired position of the alkyl radical. Unless defined otherwise, the alkyl radicals are preferably unsubstituted.
  • Cycloalkyl means in the context of the present application cycloalkyl and cycloalkylalkyl (alkyl which is in turn substituted by cycloalkyl), where cycloalkyl has at least 3 carbon atoms. Examples of cycloalkyl radicals are: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl and cyclodecyl. Polycyclic ring systems are also possible where appropriate, such as decalinyl, norbornanyl, bornanyl or adamantanyl. The cycloalkyl radicals may be unsubstituted or optionally substituted by one or more further radicals as listed by way of example above for the alkyl radicals. Unless defined otherwise, the cycloalkyl radicals are preferably unsubstituted.
  • Examples of alkenyl and alkynyl groups are: vinyl, 1-propenyl, 2-propenyl (allyl), 2-butenyl, 2-methyl-2-propenyl, 3-methyl-2-butenyl, ethynyl, 2-propynyl (propargyl), 2-butynyl or 3-butynyl.
  • Cycloalkenyl means in the context of the present application cycloalkenyl radicals and cycloalkenylalkyl radicals (alkyl which is substituted by cycloalkenyl), which comprise at least three carbon atoms. Examples of cycloalkenyl are: cyclopentenyl, cyclohexenyl, cycloheptenyl and cyclooctenyl.
  • The alkenyl radicals and cycloalkenyl radicals may have one to three conjugated or non-conjugated double bonds (i.e. also alkadienyl and alkatrienyl radicals), preferably one double bond in a linear or branched chain. The same applies to the triple bonds for alkynyl radicals. The alkenyl and alkynyl radicals may be unsubstituted or optionally substituted by one or more further radicals as listed by way of example above for the alkyl radicals. Unless defined otherwise, the alkenyl and alkynyl radicals are preferably unsubstituted.
  • Aryl refers in the present invention to radicals which are derived from monocyclic or bicyclic aromatic compounds comprising no ring heteroatoms. Where aryl refers to systems which are not monocyclic, the saturated form (perhydro form) or the partly unsaturated form (for example the dihydro form or tetrahydro form) is also possible for the second ring when the respective forms are known and stable. The term aryl also includes in the present invention for example bicyclic radicals in which both rings are aromatic and bicyclic radicals in which only one ring is aromatic. Examples of aryl are: phenyl, naphthyl, indanyl, 1,2-dihydronaphthenyl, 1,4-dihydronaphthenyl, indenyl or 1,2,3,4-tetrahydronaphthyl. Unless defined otherwise, the aryl radicals are preferably unsubstituted. Aryl is particularly preferably phenyl or naphthyl.
  • Heteroaryl radicals mean radicals derived from monocyclic or bicyclic aromatic compounds which comprise ring heteroatoms, preferably N, O or S. Otherwise, the statements made about aryl radicals apply to heteroaryl radicals.
  • A “tricycle” means structures having 3 rings which are linked together by more than one bond. Examples of such systems are fused systems with 3 rings and spirocycles with fused-on ring system.
  • A polycyclic group (bi-, tri- or spirocyclic ring structure) means in the context of the present application a group which is derived from spiranes, fused ring systems or bridged ring systems. The spiranes are notable for two rings having only one carbon atom in common and the ring planes of the two rings being perpendicular to one another. In the fused ring systems, two rings are linked together in such a way that they have two atoms in common. This type of linkage involves an “ortho fusion”. Bridged ring systems are ring systems having a bridge of carbon atoms and/or heteroatoms between two nonadjacent atoms of a ring. A “chemically viable radical” means in the context of the present invention a radical which is stable at room temperature and atmospheric pressure. In the context of the present invention, a “chemically viable radical” in the definition of group A in compounds of the formula I preferably means groups which have no heteroatom-heteroatom bonds between the individual members of the groups.
  • A “nonaromatic” ring means in the context of the present application preferably a ring which is saturated or partly unsaturated. In this connection, a partly unsaturated ring according to the present application has one or, where appropriate, a plurality of double bonds, but the partly unsaturated ring is not aromatic. The term “nonaromatic” in the context of the present application also includes “nonheteroaromatic” rings.
  • The compounds of the formula I may have one or more centers of asymmetry. The compounds of the formula I may therefore exist in the form of their racemates, enantiomer-enriched mixtures, pure enantiomers, diastereomers and mixtures of diastereomers. The present invention encompasses all these isomeric forms of the compounds of the formula I. These isomeric forms may be obtained by known methods, even if not expressly described in some cases.
  • Pharmaceutically acceptable salts are, because their solubility in water is greater than that of the initial or basic compounds, particularly suitable for medical applications. These salts must have a pharmaceutically acceptable anion or cation. Suitable pharmaceutically acceptable acid addition salts of the compounds of the invention are salts of inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, metaphosphoric acid, nitric acid and sulfuric acid, and of organic acids, for example acetic acid, benzenesulfonic acid, benzoic acid, citric acid, ethanesulfonic acid, fumaric acid, gluconic acid, glycolic acid, isethionic acid, lactic acid, lactobionic acid, maleic acid, malic acid, methanesulfonic acid, succinic acid, p-toluenesulfonic acid and tartaric acid. Suitable pharmaceutically acceptable basic salts are ammonium salts, alkali metal salts (such as sodium and potassium salts), alkaline earth metal salts (such as magnesium and calcium salts) and salts of trometamol (2-amino-2-hydroxymethyl-1,3-propanediol), diethanolamine, lysine or ethylenediamine.
  • Salts with a pharmaceutically unacceptable anion, for example trifluoroacetate, likewise belong within the framework of the invention as useful intermediates for the preparation or purification of pharmaceutically acceptable salts and/or for use in nontherapeutic, for example in vitro, applications.
  • The term “physiologically functional derivative” used herein refers to any physiologically tolerated derivative of a compound of the formula I of the invention, for example an ester, which on administration to a mammal, for example a human, is able to form (directly or indirectly) a compound of the formula I or an active metabolite thereof.
  • Physiologically functional derivatives also include prodrugs of the compounds of the invention, as described, for example, in H. Okada et al., Chem. Pharm. Bull. 1994, 42, 57-61. Such prodrugs can be metabolized in vivo to a compound of the invention. These prodrugs may themselves be active or not.
  • The compounds of the invention may also exist in various polymorphous forms, for example as amorphous and crystalline polymorphous forms. All polymorphous forms of the compounds of the invention belong within the framework of the invention and are a further aspect of the invention.
  • All references to “compound(s) of formula I” hereinafter refer to compound(s) of the formula I as described above, and their salts, solvates and physiologically functional derivatives as described herein.
  • If radicals or substituents can occur more than once in the compounds of the formula I, they may each independently be defined as specified and be the same or different.
  • The symbols in the formula I are preferably each independently defined as follows:
  • R1, R2
  • are each independently H, (C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C3-C8)-alkenyl, (C3-C8)-alkynyl, CO(R9), (C(R10)(R11))q-R12, CO(C(R13)(R14))r-R15, CO—O(C1-C8)-alkyl, CO(C(R13)(R14))rN(R16)(R17);
    R1 is preferably:
    H, (C1-C8)-alkyl, (C(R10)(R11))q-R12, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C3-C8) alkenyl, (C3-C8)-alkynyl, CO—(C1-C8)-alkyl, CO—O(C1-C8)-alkyl,
    CO(C(R13)(R14))rN(R16)(R17);
    R2 is preferably:
    (C1-C8)-alkyl, (C(R10)(R11))q-R12, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C3-C8)-alkenyl, (C3-C8)-alkynyl;
    or
    R1 and R2, together with the nitrogen atom to which they bonded, form a 4- to 10-membered mono-, bi- or spirocyclic ring which, apart from the nitrogen atom, may include from 0 to 3 additional heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the heterocyclic ring system may additionally be substituted by F, Cl, Br, CF3, CN, (C1-C6)-alkyl, (C3-C8)-cycloalkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C6)-alkyl, oxo, CO(R18), CON(R19)(R20), hydroxyl, COO(R21), N(R22)CO(C1-C6)-alkyl, N(R23)(R24) or SO2(C1-C6)-alkyl;
    more preferably, R1, R2 are:
    (C1-C8)-alkyl, (C(R10)(R11))q-R12, (C1-C4)-alkoxy-(C1-C4)-alkyl; or R1 and R2, together with the nitrogen atom to which they are bonded, form a 4- to 10-membered mono-, bi- or spirocyclic ring which, apart from the nitrogen, may include from 0 to 2 additional heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the heterocyclic ring system may additionally be substituted by F, Cl, Br, CF3, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C3-C8)-cycloalkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C6)-alkyl, oxo, CO(R18), hydroxyl, N(R22)CO(C1-C6)-alkyl, or SO2(C1-C6)-alkyl;
    most preferably, R1 and R2, together with the nitrogen atom to which they are bonded, form a 4- to 10-membered mono-, bi- or spirocyclic ring which, apart from the nitrogen atom, may include from 0 to 2 additional heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the heterocyclic ring system may additionally be substituted by F, Cl, Br, CF3, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C3-C8)-cycloalkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C6)-alkyl, oxo, CO(R18), hydroxyl, N(R22)CO(C1-C6)-alkyl, or SO2(C1-C6)-alkyl;
  • R10, R11
  • are each independently H, (C1-C6)-alkyl, hydroxy-(C1-C2)-alkyl, F, OH;
  • R9, R13, R14, R16, R17, R18, R19, R20, R21, R22, R23, R24,
  • are each independently H, (C1-C6)-alkyl;
    or
  • R16 and R17, R23 and R24
  • form, optionally together with the nitrogen atom to which they are bonded, a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C6)-alkyl, oxygen and sulfur;
    q, r are each independently 0, 1, 2, 3, 4, 5, 6; preferably 0, 1, 2, 3, 4;
  • R12, R15
  • are each independently H, OH, F, O—(C1-C6)-alkyl, S—(C1-C6)-alkyl, O-phenyl, CN, COO(R25), N(R26)CO(C1-C6)-alkyl, N(R27)(R28), CON(R29)(R30), SO2(C1-C6)-alkyl, 3-12-membered mono-, bi- or spirocyclic ring which may contain one to four heteroatoms from the group of N, O and S, and the 3-12-membered ring may contain further substituents such as F, Cl, Br, OH, CF3, NO2, CN, OCF3, oxo, O—(C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, S—(C1-C6)-alkyl, (C1-C6)-alkyl, (C2-C6)-alkenyl, (C3-C8)-cycloalkyl, O—(C3-C8)-cycloalkyl, (C3-C8)-cycloalkenyl, O—(C3-C8)-cycloalkenyl, (C2-C6)-alkynyl, N(R31)(R32), COO(R33), SO2(C1-C6)-alkyl and COOH;
    preferably H, OH, F, O—(C1-C6)-alkyl, N(R26)CO(C1-C6)-alkyl, SO2(C1-C6)-alkyl, 3-12 membered mono-, bi- or spirocyclic ring which may contain one to three heteroatoms from the group of N, O and S, and the 3-12-membered ring may contain further substituents such as F, Cl, Br, OH, CF3, NO2, CN, OCF3, oxo, O—(C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, N(R31)(R32) and SO2(C1-C6)-alkyl;
  • R25, R26, R27, R28, R29, R30, R31, R32, R33
  • are each independently H, (C1-C8)-alkyl;
    or
  • R27 and R28, R29 and R30, R31 and R32
  • each independently form, optionally together with the nitrogen atom to which they are bonded, a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C6)-alkyl, oxygen and sulfur;
    L1 is C(R34)(R35), C(R36)(R37)C(R38)(R39), (C3-C6)-cycloalkyl;
    preferably C(R34)(R35);
    optionally, R1 may be joined to one of the R34, R35, R36, R37, R38 or R39
    radicals, so as to form a 5-6-membered ring;
  • R34, R35, R36, R37, R38, R39
  • are each independently H, (C1-C8)-alkyl;
  • R3, R4, R5
  • are each independently H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O—(C1-C6)-alkyl, S—(C1-C6)-alkyl, O—(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, CON(R40)(R41),
  • CO(R42);
  • preferably each independently H, F, Cl, Br, CF3, CN, OCF3, O—(C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, CO(C1-C6)-alkyl;
    more preferably each independently H, F, Cl, Br, CF3, CN, OCF3, O—(C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl;
    even more preferably each independently H, F, Cl, O—(C1-C6)-alkyl, (C1-C6)-alkyl; very especially preferably H;
    where preferably at least two or all R3, R4 and R5 radicals are H;
  • R40, R41, R42
  • are each independently H, (C1-C8)-alkyl;
    or
  • R40 and R41
  • each independently form, optionally together with the nitrogen atom to which they are bonded, a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C6)-alkyl, oxygen and sulfur;
  • X is O, C(R43)(R43′); R6, R6′, R7, R7′, R43, R43′
  • are each independently H, F, (C1-C8)-alkyl, OH, O—(C1-C6)-alkyl;
    preferably H;
    or
    R6 and R6′, or R43 and R43′ together are optionally oxo;
    R8 is H, (C1-C8)-alkyl;
    L2 is a bond, C(R44)(R45);
    preferably a bond;
  • R44, R45
  • are each independently H, (C1-C8)-alkyl;
    A is a 5-6-membered aromatic ring which may include up to 2 heteroatoms selected from the group of nitrogen, oxygen and sulfur, and may be substituted by one or more of the substituents H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O—(C1-C6)-alkyl, O—(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, N(R54)(R55), SO2—CH3, CON(R56)(R57), N(R58)CO(R59), CO(R60); preferably H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O—(C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl; more preferably H, F, Cl, Br, CF3, CN, OCF3, O—(C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl; even more preferably H, F, Cl, O—(C1-C6)-alkyl, (C1-C6)-alkyl; very especially preferably H;
    the 5-6-membered aromatic ring is preferably selected from the group consisting of
  • Figure US20140088077A1-20140327-C00002
  • more preferably
  • Figure US20140088077A1-20140327-C00003
  • in the case that L2=a bond, C(O)NR8 may be joined to an ortho substituent of A via a bridge containing one or two elements from the group of carbon and nitrogen, so as to form a 9- to 10-membered bicyclic ring overall;
    the bridge preferably contains two carbon elements, so as to form an isoquinolinone or a dihydroisoquinolinone overall;
  • R54, R55, R56, R57, R58, R59, R60
  • are each independently H, (C1-C8)-alkyl;
    or
  • R54 and R55, R56 and R57
  • each independently form, optionally together with the nitrogen atom to which they are bonded, a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C6)-alkyl, oxygen and sulfur;
    L3 is a bond or a linker having from 1 to 4 members, where the members are selected from the group consisting of O, S, SO2, N(R61), CO, C(R62)(R63), C≡C, to give rise to a chemically viable radical, and the linker does not have any O—CO or COO groups;
    preferably a bond or a linker having from 1 to 4 members, where the members are selected from the group consisting of O, N(R61), CO, C(R62)(R63), to give rise to a chemically viable radical, and the linker does not have any O—CO or COO groups;
    more preferably a bond, O, C(R62)(R63)O;
    B is (C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C6)alkyl, a 3- to 10-membered mono-, bi- or spirocyclic nonaromatic ring which includes from 0 to 3 heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the ring system may additionally be substituted by one or more of the following substituents: F, CF3, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C4)-alkyl, oxo, CO(R64), hydroxyl;
    preferably a 4- to 6-membered nonaromatic ring which includes from 1 to 2 oxygen atoms, where the ring system may additionally be substituted by one or more of the following substituents: F, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, oxo, hydroxyl, preferably (C1-C6)-alkyl or hydroxyl;
    the combined element B-L3 is more preferably
    selected from the group of
  • Figure US20140088077A1-20140327-C00004
  • preferably
  • Figure US20140088077A1-20140327-C00005
  • more preferably
  • Figure US20140088077A1-20140327-C00006
  • R61, R62, R63, R64
  • are each independently H, (C1-C8)-alkyl;
    where, in the case that X═C(R43)(R43′)
  • L3 is C(R62)(R63)O, and
  • B is a 4- to 10-membered mono-, bi- or spirocyclic nonaromatic ring which includes from 1 to 3 heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the ring system may additionally be substituted by one or more of the following substituents: F, CF3, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C4)-alkyl, oxo, CO(R64), hydroxyl.
  • A particular aspect of the invention is that of compounds of the formula II
  • Figure US20140088077A1-20140327-C00007
  • in which the variables R1, R2, L1, R3, R4 and R8 are each as defined above and
  • R, R′, R″, R′″
  • are each independently H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O—(C1-C6)-alkyl, O—(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, N(R54)(R55), SO2—CH3, CON(R56)(R57), N(R58)CO(R59), CO(R60);
    preferably each independently H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, 0 (C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl;
    more preferably each independently H, F, Cl, Br, CF3, CN, OCF3, O—(C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl;
    even more preferably each independently H, F, Cl, O—(C1-C6)-alkyl, (C1-C6)-alkyl; very especially preferably H;
  • L3 is CH2O;
  • B is a 4- to 6-membered nonaromatic ring which includes from 1 to 2 oxygen atoms, where the ring system may additionally be substituted by one or more of the following substituents: F, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, oxo, hydroxyl, preferably (C1-C6)-alkyl or hydroxyl;
    the combined element B-L3
    is preferably selected from the group of
  • Figure US20140088077A1-20140327-C00008
  • more preferably
  • Figure US20140088077A1-20140327-C00009
  • especially preferably
  • Figure US20140088077A1-20140327-C00010
  • A further particular aspect of the invention is that of compounds of the formula IIa
  • Figure US20140088077A1-20140327-C00011
  • in which the variables R1, R2, L1, R3, R4, R8, R′, R″, R′″, L3 and B are each as defined above.
  • In a further particular aspect, the invention relates to compounds of the formula III
  • Figure US20140088077A1-20140327-C00012
  • in which R1, R2, R3, R4, R8, A, L1, L3 and B are each as defined for formula I.
  • In another particular aspect, the invention relates to compounds of the formula IV
  • Figure US20140088077A1-20140327-C00013
  • in which R1, R2, R3, R4, X, L1, L3 and B are each as defined for formula I. The broken line indicates an optional double bond, such that both dihydroisoquinolinones and isoquinolinones are encompassed by the formula IV.
  • The inventive compounds of the general formula I can be prepared analogously to processes known to those skilled in the art. Suitable processes for preparing the inventive compounds of the general formula I are mentioned below by way of example (see especially methods A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P and schemes 1 to 3).
  • Preferred embodiments of the steps mentioned, just like the preparation of the starting substances used in the steps, are known to those skilled in the art and are mentioned by way of example in the schemes and methods mentioned, and also examples.
  • This invention further relates to the use of compounds of the formula I and pharmaceutical compositions thereof as MCH receptor ligands. The inventive MCH receptor ligands are suitable especially as modulators of the activity of MCH R1.
  • The role of MCH in regulating the energy balance has now been well documented (Qu, D. et al. Nature 1996, 380, 243-7; Shimada, M. et al. Nature 1998, 396, 670-4; Chen, Y et al. Endocrinology 2002, 143, 2469-77; Endocrinology 2003, 144, 4831-40; Reviews: G. Hervieu, Expert Opin. Ther. Targets 2003, 7, 495-511; Shi, Y., Peptides 2004, 25, 1605-11; Pissios, P. et al., Endocrine Rev. 2006, 27, 606-20; Luthin, D. R., Life Sci. 2007, 81, 423-440). There are also indications that MCH antagonists can have a beneficial influence on centrally related disorders such as, for example, anxiety neuroses and depressions (Borowsky, B. et al. Nature Medicine 2002, 8, 825-30; Reviews: G. Hervieu, Expert Opin. Ther. Targets 2003, 7, 495-511; Chaki, S. et al., Drug Dev. Res. 2005, 65, 278-290; Dyck, B., Drug Dev. Res. 2005, 65, 291-300; Shimazaki, T., CNS Drugs 2006, 20, 801-11; Drugs Fut. 2007, 32, 809-822).
  • Compounds of this type are particularly suitable for the treatment and/or prevention of
    • 1. Obesity
    • 2. Diabetes mellitus, especially type 2 diabetes, including the prevention of the sequelae associated therewith.
  • Particular aspects in this connection are
      • hyperglycemia,
      • improvement in insulin resistance,
      • improvement in glucose tolerance,
      • protection of the pancreatic β cells
      • prevention of macro- and microvascular disorders
    • 3. Dyslipidemias and the sequelae thereof such as, for example, atherosclerosis, coronary heart disease, cerebrovascular disorders etc., especially (but not restricted to) those which are characterized by one or more of the following factors:
      • high plasma triglyceride concentrations, high postprandial plasma triglyceride concentrations
      • low HDL cholesterol concentration
    • 4. Fatty liver, especially nonalcoholic fatty liver and variants thereof,
      • steatosis
      • steatohepatitis
      • cirrhosis.
    • 5. Various other conditions which may be associated with the metabolic syndrome, such as:
      • thromboses, hypercoagulable and prothrombotic stages (arterial and venous)
      • high blood pressure
      • heart failure such as, for example (but not restricted thereto), following myocardial infarction, hypertensive heart disease or cardiomyopathy
    • 6. Psychiatric indications such as
      • depressions
      • anxiety states
      • disturbances of the circadian rhythm
      • affection disorders
      • schizophrenia
      • addictive disorders
    • 7. Sleep disorders such as
      • sleep apnea
      • narcolepsy
    • 8. Inflammation disorders such as
      • inflammatory bowel disease
      • Crohn's disease
    Formulations
  • The amount of a compound of formula I necessary to achieve the desired biological effect depends on a number of factors, for example the specific compound chosen, the intended use, the mode of administration and the clinical condition of the patient. The daily dose is generally in the range from 0.001 mg to 100 mg (typically from 0.01 mg to 50 mg) per day and per kilogram of body weight, for example 0.1-10 mg/kg/day. An intravenous dose may be, for example, in the range from 0.001 mg to 1.0 mg/kg, which can suitably be administered as infusion of 10 ng to 100 ng per kilogram and per minute. Suitable infusion solutions for these purposes may contain, for example, from 0.1 ng to 10 mg, typically from 1 ng to 10 mg, per milliliter. Single doses may contain, for example, from 1 mg to 10 g of the active ingredient. Thus, ampoules for injections may contain, for example, from 1 mg to 100 mg, and single-dose formulations which can be administered orally, such as, for example, tablets or capsules, may contain, for example, from 0.05 to 1000 mg, typically from 0.5 to 600 mg. For the therapy of the abovementioned conditions, the compounds of formula I may be used as the compound itself, but they are preferably in the form of a pharmaceutical composition with an acceptable carrier. The carrier must, of course, be acceptable in the sense that it is compatible with the other ingredients of the composition and is not harmful for the patient's health. The carrier may be a solid or a liquid or both and is preferably formulated with the compound as a single dose, for example as a tablet, which may contain from 0.05% to 95% by weight of the active ingredient. Other pharmaceutically active substances may likewise be present, including other compounds of formula I. The pharmaceutical compositions of the invention can be produced by one of the known pharmaceutical methods, which essentially consist of mixing the ingredients with pharmacologically acceptable carriers and/or excipients.
  • Pharmaceutical compositions of the invention are those suitable for oral, rectal, topical, peroral (for example sublingual) and parenteral (for example subcutaneous, intramuscular, intradermal or intravenous) administration, although the most suitable mode of administration depends in each individual case on the nature and severity of the condition to be treated and on the nature of the compound of formula I used in each case. Coated formulations and coated slow-release formulations also belong within the framework of the invention. Preference is given to acid- and gastric juice-resistant formulations. Suitable coatings resistant to gastric juice comprise cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropylmethylcellulose phthalate and anionic polymers of methacrylic acid and methyl methacrylate.
  • Suitable pharmaceutical preparations for oral administration may be in the form of separate units such as, for example, capsules, cachets, suckable tablets or tablets, each of which contains a defined amount of at least one compound of formula I; as powders or granules; as solution or suspension in an aqueous or nonaqueous liquid; or as an oil-in-water or water-in-oil emulsion. These compositions may, as already mentioned, be prepared by any suitable pharmaceutical method which includes a step in which the active ingredient and the carrier (which may consist of one or more additional ingredients) are brought into contact. The compositions are generally produced by uniform and homogeneous mixing of the active ingredient with a liquid and/or finely divided solid carrier, after which the product is shaped if necessary. Thus, for example, a tablet can be produced by compressing or molding a powder or granules of the compound, where appropriate with one or more additional ingredients. Compressed tablets can be produced by tableting the compound in free-flowing form such as, for example, a powder or granules, where appropriate mixed with a binder, glidant, inert diluent and/or one (or more) surface-active/dispersing agent(s) in a suitable machine. Molded tablets can be produced by molding the compound, which is in powder form and is moistened with an inert liquid diluent, in a suitable machine.
  • Pharmaceutical compositions which are suitable for peroral (sublingual) administration comprise suckable tablets which contain at least one compound of formula I with a flavoring, normally sucrose and gum arabic or tragacanth, and pastilles which comprise the compound in an inert base such as gelatin and glycerol or sucrose and gum arabic.
  • Pharmaceutical compositions suitable for parenteral administration comprise preferably sterile aqueous preparations of at least one compound of formula I, which are preferably isotonic with the blood of the intended recipient. These preparations are preferably administered intravenously, although administration may also take place by subcutaneous, intramuscular or intradermal injection. These preparations can preferably be produced by mixing the compound with water and making the resulting solution sterile and isotonic with blood. Injectable compositions of the invention generally contain from 0.1 to 5% by weight of the active compound.
  • Pharmaceutical compositions suitable for rectal administration are preferably in the form of single-dose suppositories. These can be produced by mixing at least one compound of the formula I with one or more conventional solid carriers, for example cocoa butter, and shaping the resulting mixture.
  • Pharmaceutical compositions suitable for topical use on the skin are preferably in the form of ointment, cream, lotion, paste, spray, aerosol or oil. Carriers which can be used are petrolatum, lanolin, polyethylene glycols, alcohols and combinations of two or more of these substances. The active ingredient is generally present in a concentration of from 0.1 to 15% by weight of the composition, for example from 0.5 to 2%.
  • Transdermal administration is also possible. Pharmaceutical compositions suitable for transdermal uses can be in the form of single patches which are suitable for long-term close contact with the patient's epidermis. Such patches suitably contain the active ingredient in an aqueous solution which is buffered where appropriate, dissolved and/or dispersed in an adhesive or dispersed in a polymer. A suitable active ingredient concentration is about 1% to 35%, preferably about 3% to 15%. A particular possibility is for the active ingredient to be released by electrotransport or iontophoresis as described, for example, in Pharmaceutical Research, 2(6): 318 (1986).
  • The compounds of the formula I are distinguished by beneficial effects on lipid metabolism, and they are particularly suitable for weight reduction and for maintaining a reduced weight after weight reduction has taken place in mammals and as anorectic agents. The compounds are distinguished as selective MCH1R antagonists by their low toxicity, the small effect on metabolizing enzymes and their few side effects. In particular, preferred compounds of the invention are notable for low blockade of the hERG channel. In addition, preferred compounds of the formula I are noticeably soluble in aqueous systems and thus particularly suitable for pharmaceutical development. The pharmacological effect is moreover achieved in in vivo test models after oral administration from well-tolerated vehicles.
  • The compounds can be employed alone or in combination with other weight-reducing or anorectic active ingredients. Further anorectic active ingredients of this type are mentioned, for example, in the Rote Liste, chapter 01 under weight-reducing agents/appetite suppressants, and may also include active ingredients which increase the energy turnover of the organism and thus lead to weight reduction or else those which influence the general metabolism of the organism in such a way that an increased calorie intake does not lead to an enlargement of the fat depots and a normal calorie intake leads to a reduction of the fat depots of the organism. The compounds are suitable for the prophylaxis and, in particular, for the treatment of excessive weight or obesity. The compounds are further suitable for the prophylaxis and, in particular, for the treatment of type II diabetes, of arteriosclerosis and for normalizing lipid metabolism and for the treatment of high blood pressure.
  • Combinations with Other Medicaments
  • The compounds of the invention can be administered alone or in combination with one or more further pharmacologically active substances which have, for example, beneficial effects on metabolic disturbances or disorders frequently associated therewith. Examples of such medicaments are
      • 1. medicaments which lower blood glucose, antidiabetics,
      • 2. active ingredients for the treatment of dyslipidemias,
      • 3. antiatherosclerotic medicaments,
      • 4. antiobesity agents,
      • 5. antiinflammatory active ingredients
      • 6. active ingredients for the treatment of malignant tumors
      • 7. antithrombotic active ingredients
      • 8. active ingredients for the treatment of high blood pressure
      • 9. active ingredients for the treatment of heart failure and
      • 10. active ingredients for the treatment and/or prevention of complications caused by diabetes or associated with diabetes.
  • They can be combined with the compounds of the invention of the formula I in particular for a synergistic improvement in action. The active ingredient combination can be administered either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation.
  • Further suitable active ingredients for the combination preparations are:
  • All antidiabetics which are mentioned in the Rote Liste 2007, chapter 12; all weight-reducing agents/appetite suppressants which are mentioned in the Rote Liste 2007, chapter 1; all diuretics which are mentioned in the Rote Liste 2007, chapter 36; all lipid-lowering agents which are mentioned in the Rote Liste 2007, chapter 58. They can be combined with the compound of the invention of the formula I in particular for a synergistic improvement in action. The active ingredient combination can be administered either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation. If the active ingredients are administered separately, this can be done simultaneously or successively. Most of the active ingredients mentioned hereinafter are disclosed in the USP Dictionary of USAN and International Drug Names, US Pharmacopeia, Rockville 2006.
  • Antidiabetics include insulin and insulin derivatives, for example LANTUS® (insulin glargine, also see www.lantus.com) or HMR 1964 or LEVEMIR® (insulin detemir), HUMALOG® (Insulin Lispro), HUMULIN®, VIAJECT™, SULIXEN® or those as described in WO2005005477 (Novo Nordisk), fast-acting insulins (see U.S. Pat. No. 6,221,633), inhalable insulins, for example EXUBERA®, NASULIN™, or oral insulins, for example IN-105 (Nobex) or ORAL-LYN™ (Generex Biotechnology), or TECHNOSPHERE® Insulin (MannKind) or COBALAMIN™ oral insulin, or insulins as described in WO2007128815, WO2007128817, WO2008034881, WO2008049711, or insulins which can be administered transdermally; GLP-1 derivatives and GLP-1 agonists, for example exenatide or specific formulations thereof, as described, for example, in WO2008061355, liraglutide, taspoglutide or those which have been disclosed in WO 98/08871, WO2005027978, WO2006037811, WO2006037810 by Novo Nordisk A/S, in WO 01/04156 by Zealand or in WO 00/34331 by Beaufour-Ipsen, pramlintide acetate (Symlin; Amylin Pharmaceuticals), AVE-0010, BIM-51077 (R-1583, I™-077), PC-DAC:Exendin-4 (an exendin-4 analog which is bonded covalently to recombinant human albumin), CVX-73, CVX-98 and CVx-96 (GLP-1 analog which is bonded covalently to a monoclonal antibody which has specific binding sites for the GLP-1 peptide), CNTO-736 (a GLP-1 analog which is bonded to a domain which includes the Fc portion of an antibody), PGC-GLP-1 (GLP-1 bonded to a nanocarrier), agonists, as described, for example, in D. Chen et al., Proc. Natl. Acad. Sci. USA 104 (2007) 943, those as described in WO2006124529, WO2007124461, peptides, for example obinepitide (TM-30338), amylin receptor agonists, as described, for example, in WO2007104789, analogs of the human GLP-1, as described in WO2007120899, WO2008022015, WO2008056726, and orally active hypoglycemic ingredients.
  • Antidiabetics also include agonists of the glucose-dependent insulinotropic polypeptide (GIP) receptor, as described, for example, in WO2006121860. Antidiabetics also include the glucose-dependent insulinotropic polypeptide (GIP), and also analogous compounds, as described, for example, in WO2008021560.
  • Antidiabetics also include analogs and derivatives of fibroblast growth factor 21 (FGF-21).
  • The orally active hypoglycemic ingredients preferably include
  • sulfonylureas,
    biguanidines,
    meglitinides,
    oxadiazolidinediones,
    thiazolidinediones,
    PPAR and RXR modulators,
    glucosidase inhibitors,
    inhibitors of glycogen phosphorylase,
    glucagon receptor antagonists,
    glucokinase activators,
    inhibitors of fructose 1,6-bisphosphatase
    modulators of glucose transporter 4 (GLUT4),
    inhibitors of glutamine-fructose-6-phosphate amidotransferase (GFAT),
    GLP-1 agonists,
    potassium channel openers, for example pinacidil, cromakalim, diazoxide, or those as described in R. D. Carr et al., Diabetes 52, 2003, 2513.2518, in J. B. Hansen et al, Current Medicinal Chemistry 11, 2004, 1595-1615, in T. M. Tagmose et al., J. Med. Chem. 47, 2004, 3202-3211 or in M. J. Coghlan et al., J. Med. Chem. 44, 2001, 1627-1653, or those which have been disclosed in WO 97/26265 and WO 99/03861 by Novo Nordisk A/S,
    active ingredients which act on the ATP-dependent potassium channel of the beta cells,
    inhibitors of dipeptidylpeptidase IV (DPP-IV),
    insulin sensitizers,
    inhibitors of liver enzymes involved in stimulating gluconeogenesis and/or
    glycogenolysis,
    modulators of glucose uptake, of glucose transport and of glucose reabsorption, modulators of sodium-dependent glucose transporter 1 or 2 (SGLT1, SGLT2),
    inhibitors of 11-beta-hydroxysteroid dehydrogenase-1 (11β-HSD1),
    inhibitors of protein tyrosine phosphatase 1B (PTP-1B),
    nicotinic acid receptor agonists,
    inhibitors of hormone-sensitive or endothelial lipases,
    inhibitors of acetyl-CoA carboxylase (ACC1 and/or ACC2) or
    inhibitors of GSK-3 beta.
  • Also included are compounds which modify the metabolism, such as active antihyperlipidemic ingredients and active antilipidemic ingredients,
  • HMGCoA reductase inhibitors,
    farnesoid X receptor (FXR) modulators,
    fibrates,
    cholesterol reabsorption inhibitors,
    CETP inhibitors,
    bile acid reabsorption inhibitors,
    MTP inhibitors,
    agonists of estrogen receptor gamma (ERRγ agonists),
    sigma-1 receptor antagonists,
    antagonists of the somatostatin 5 receptor (SST5 receptor);
    compounds which reduce food intake, and
    compounds which increase thermogenesis.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with insulin.
  • In one embodiment, the compound of the formula I is administered in combination with an active ingredient which acts on the ATP-dependent potassium channel of the beta cells, for example sulfonylureas, for example tolbutamide, glibenclamide, glipizide, gliclazide or glimepiride.
  • In one embodiment, the compound of the formula I is administered in combination with a tablet which comprises both glimepiride, which is released rapidly, and metformin, which is released over a longer period (as described, for example, in US2007264331, WO2008050987).
  • In one embodiment, the compound of the formula I is administered in combination with a biguanide, for example metformin.
  • In another embodiment, the compound of the formula I is administered in combination with a meglitinide, for example repaglinide, nateglinid or mitiglinide.
  • In a further embodiment, the compound of the formula I is administered with a combination of mitiglinide with a glitazone, e.g. pioglitazone hydrochloride. In a further embodiment, the compound of the formula I is administered with a combination of mitiglinide with an alpha-glucosidase inhibitor. In a further embodiment, the compound of the formula I is administered in combination with antidiabetic compounds, as described in WO2007095462, WO2007101060, WO2007105650.
  • In a further embodiment, the compound of the formula I is administered in combination with antihypoglycemic compounds, as described in WO2007137008.
  • In one embodiment, the compound of the formula I is administered in combination with a thiazolidinedione, for example troglitazone, ciglitazone, pioglitazone, rosiglitazone or the compounds disclosed in WO 97/41097 by Dr. Reddy's Research Foundation, especially 5-[[4-[(3,4-dihydro-3-methyl-4-oxo-2-quinazolinylmethoxy]phenyl]methyl]-2,4-thiazolidinedione.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a PPAR gamma agonist, for example rosiglitazone, pioglitazone, JTT-501, GI 262570, R-483, CS-011 (rivoglitazone), DRL-17564, DRF-2593 (Balaglitazon), INT-131, T-2384, or those as described in WO2005086904, WO2007060992, WO2007100027, WO2007103252, WO2007122970, WO2007138485, WO2008006319, WO2008006969, WO2008010238, WO2008017398, WO2008028188.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with Competact™, a solid combination of pioglitazone hydrochloride with metformin hydrochloride.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with Tandemact™, a solid combination of pioglitazone with glimepiride.
  • In a further embodiment of the invention, the compound of the formula I is administered in combination with a solid combination of pioglitazone hydrochloride with an angiotensin II agonist, for example TAK-536.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a PPAR alpha agonist or mixed PPAR alpha/PPAR delta agonist, for example GW9578, GW-590735, K-111, LY-674, KRP-101, DRF-10945, LY-518674, CP-900691, BMS-687453, BMS-711939, or those as described in WO2001040207, WO2002096894, WO2005097076, WO2007056771, WO2007087448, WO2007089667, WO2007089557, WO2007102515, WO2007103252, JP2007246474, WO2007118963, WO2007118964, WO2007126043, WO2008006043, WO2008006044, WO2008012470, WO2008035359.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a mixed PPAR alpha/gamma agonisn, for example naveglitazar, LY-510929, ONO-5129, E-3030, AVE 8042, AVE 8134, AVE 0847, CKD-501 (lobeglitazone sulfate), MBX-213, KY-201 or as described in WO 00/64888, WO 00/64876, WO03/020269, WO2004024726, WO2007099553, US2007276041, WO2007085135, WO2007085136, WO2007141423, WO2008016175, WO2008053331 or in J.P. Berger et al., TRENDS in Pharmacological Sciences 28(5), 244-251, 2005.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a PPAR delta agonist, for example GW-501516, or as described in WO2006059744, WO2006084176, WO2006029699, WO2007039172-WO2007039178, WO2007071766, WO2007101864, US2007244094, WO2007119887, WO2007141423, US2008004281, WO2008016175.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a pan-SPPARM (selective PPAR modulator alpha, gamma, delta), for example GFT-505, or those as described in WO2008035359.
  • In one embodiment, the compound of the formula I is administered in combination with metaglidasen or with MBX-2044 or other partial PPAR gamma agonists/antagonists.
  • In one embodiment, the compound of the formula I is administered in combination with an α-glucosidase inhibitor, for example miglitol or acarbose, or those as described, for example, in WO2007114532, WO2007140230, US2007287674, US2008103201.
  • In one embodiment, the compound of the formula I is administered in combination with an inhibitor of glycogen phosphorylase, for example PSN-357 or FR-258900, or those as described in WO2003084922, WO2004007455, WO2005073229-31, WO2005067932.
  • In one embodiment, the compound of the formula I is administered in combination with glucagon receptor antagonists, for example A-770077 or NNC-25-2504 or as described in WO2004100875, WO2005065680, WO2006086488, WO2007047177, WO2007106181, WO2007111864, WO2007120270, WO2007120284, WO2007123581, WO2007136577, WO2008042223.
  • In a further embodiment, the compound of the formula I is administered in combination with an antisense compound, e.g. ISIS-325568, which inhibits the production of the glucagon receptor.
  • In one embodiment, the compound of the formula I is administered in combination with activators of glucokinase, for example LY-2121260 (WO2004063179), PSN-105, PSN-110, GKA-50, or those as described, for example, in WO2004072031, WO2004072066, WO2005080360, WO2005044801, WO2006016194, WO2006058923, WO2006112549, WO2006125972, WO2007017549, WO2007017649, WO2007007910, WO2007007040-42, WO2007006760-61, WO2007006814, WO2007007886, WO2007028135, WO2007031739, WO2007041365, WO2007041366, WO2007037534, WO2007043638, WO2007053345, WO2007051846, WO2007051845, WO2007053765, WO2007051847, WO2007061923, WO2007075847, WO2007089512, WO2007104034, WO2007117381, WO2007122482, WO2007125103, WO2007125105, US2007281942, WO2008005914, WO2008005964, WO2008043701, WO2008044777, WO2008047821, US2008096877, WO2008050117, WO2008050101, WO2008059625.
  • In one embodiment, the compound of the formula I is administered in combination with an inhibitor of gluconeogenesis, as described, for example, in FR-225654, WO2008053446.
  • In one embodiment, the compound of the formula I is administered in combination with inhibitors of fructose 1,6-bisphosphatase (FBPase), for example MB-07729, CS-917 (MB-06322) or MB-07803, or those as described in WO2006023515, WO2006104030, WO2007014619, WO2007137962, WO2008019309, WO2008037628.
  • In one embodiment, the compound of the formula I is administered in combination with modulators of glucose transporters 4 (GLUT4), for example KST-48 (D.-O. Lee et al.: Arzneim.-Forsch. Drug Res. 54 (12), 835 (2004)).
  • In one embodiment, the compound of the formula I is administered in combination with inhibitors of glutamine:fructose-6-phosphate amidotransferase (GFAT), as described, for example, in WO2004101528.
  • In one embodiment, the compound of the formula I is administered in combination with inhibitors of dipeptidyl peptidase IV (DPP-IV), for example vildagliptin (LAF-237), sitagliptin (MK-0431), sitagliptin phosphate, saxagliptin ((BMS-477118), GSK-823093, PSN-9301, SYR-322, SYR-619, TA-6666, TS-021, GRC-8200 (Melogliptin), GW-825964X, KRP-104, DP-893, ABT-341, ABT-279 or another salt thereof, S-40010, S-40755, PF-00734200, BI-1356, PHX-1149, alogliptin, or those compounds as described in WO2003074500, WO2003106456, WO2004037169, WO200450658, WO2005037828, WO2005058901, WO2005012312, WO2005/012308, WO2006039325, WO2006058064, WO2006015691, WO2006015701, WO2006015699, WO2006015700, WO2006018117, WO2006099943, WO2006099941, JP2006160733, WO2006071752, WO2006065826, WO2006078676, WO2006073167, WO2006068163, WO2006085685, WO2006090915, WO2006104356, WO2006127530, WO2006111261, US2006890898, US2006803357, US2006303661, WO2007015767 (LY-2463665), WO2007024993, WO2007029086, WO2007063928, WO2007070434, WO2007071738, WO2007071576, WO2007077508, WO2007087231, WO2007097931, WO2007099385, WO2007100374, WO2007112347, WO2007112669, WO2007113226, WO2007113634, WO2007115821, WO2007116092, US2007259900, EP1852108, US2007270492, WO2007126745, WO2007136603, WO2007142253, WO2007148185, WO2008017670, US2008051452, WO2008027273, WO2008028662, WO2008029217, JP2008031064, JP2008063256, WO2008033851, WO2008040974, WO2008040995, WO2008064107.
  • In one embodiment, the compound of the formula I is administered in combination with Janumet™, a solid combination of sitagliptin phosphate with metformin hydrochloride.
  • In one embodiment, the compound of the formula I is administered in combination with Eucreas®, a solid combination of vildagliptin with metformin hydrochloride.
  • In one embodiment, the compound of the formula I is administered in combination with a solid combination of a salt of sitagliptin with metformin hydrochloride.
  • In one embodiment, the compound of the formula I is administered in combination with a combination of a DPP-IV inhibitors with omega-3 fatty acids or omega-3 fatty acid esters, as described, for example, in WO2007128801.
  • In one embodiment, the compound of the formula I is administered in combination with a substance which enhances insulin secretion, for example KCP-265 (WO2003097064), or those as described in WO2007026761, WO2008045484.
  • In one embodiment, the compound of the formula I is administered in combination with agonists of the glucose-dependent insulinotropic receptor (GDIR), for example APD-668.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an ATP citrate lyase inhibitor, for example SB-204990.
  • In one embodiment, the compound of the formula I is administered in combination with modulators of the sodium-dependent glucose transporter 1 or 2 (SGLT1, SGLT2), for example KGA-2727, T-1095, SGL-0010, AVE 2268, SAR 7226, SGL-5083, SGL-5085, SGL-5094, ISIS-388626, sergliflozin or dapagliflozin, or as described, for example, in WO2004007517, WO200452903, WO200452902, PCT/EP2005/005959, WO2005085237, JP2004359630, WO2005121161, WO2006018150, WO2006035796, WO2006062224, WO2006058597, WO2006073197, WO2006080577, WO2006087997, WO2006108842, WO2007000445, WO2007014895, WO2007080170, WO2007093610, WO2007126117, WO2007128480, WO2007129668, US2007275907, WO2007136116, WO2007143316, WO2007147478, WO2008001864, WO2008002824, WO2008013277, WO2008013280, WO2008013321, WO2008013322, WO2008016132, WO2008020011, JP2008031161, WO2008034859, WO2008042688, WO2008044762, WO2008046497, WO2008049923, WO2008055870, WO2008055940 or by A. L. Handlon in Expert Opin. Ther. Patents (2005) 15(11), 1531-1540.
  • In one embodiment, the compound of the formula I is administered in combination with inhibitors of 11-beta-hydroxysteroid dehydrogenase 1 (11β-HSD1), for example BVT-2733, JNJ-25918646, INCB-13739, INCB-20817, DIO-92 ((−)-ketoconazole) or those as described, for example, in WO200190090-94, WO200343999, WO2004112782, WO200344000, WO200344009, WO2004112779, WO2004113310, WO2004103980, WO2004112784, WO2003065983, WO2003104207, WO2003104208, WO2004106294, WO2004011410, WO2004033427, WO2004041264, WO2004037251, WO2004056744, WO2004058730, WO2004065351, WO2004089367, WO2004089380, WO2004089470-71, WO2004089896, WO2005016877, WO2005063247, WO2005097759, WO2006010546, WO2006012227, WO2006012173, WO2006017542, WO2006034804, WO2006040329, WO2006051662, WO2006048750, WO2006049952, WO2006048331, WO2006050908, WO2006024627, WO2006040329, WO2006066109, WO2006074244, WO2006078006, WO2006106423, WO2006132436, WO2006134481, WO2006134467, WO2006135795, WO2006136502, WO2006138508, WO2006138695, WO2006133926, WO2007003521, WO2007007688, US2007066584, WO2007029021, WO2007047625, WO2007051811, WO2007051810, WO2007057768, WO2007058346, WO2007061661, WO2007068330, WO2007070506, WO2007087150, WO2007092435, WO2007089683, WO2007101270, WO2007105753, WO2007107470, WO2007107550, WO2007111921, US2007207985, US2007208001, WO2007115935, WO2007118185, WO2007122411, WO2007124329, WO2007124337, WO2007124254, WO2007127688, WO2007127693, WO2007127704, WO2007127726, WO2007127763, WO2007127765, WO2007127901, US2007270424, JP2007291075, WO2007130898, WO2007135427, WO2007139992, WO2007144394, WO2007145834, WO2007145835, WO2007146761, WO2008000950, WO2008000951, WO2008003611, WO2008005910, WO2008006702, WO2008006703, WO2008011453, WO2008012532, WO2008024497, WO2008024892, WO2008032164, WO2008034032, WO2008043544, WO2008044656, WO2008046758, WO2008052638, WO2008053194.
  • In one embodiment, the compound of the formula I is administered in combination with inhibitors of protein tyrosine phosphatase 1B (PTP-1B), as described, for example, in WO200119830-31, WO200117516, WO2004506446, WO2005012295, WO2005116003, WO2005116003, WO2006007959, DE 10 2004 060542.4, WO2007009911, WO2007028145, WO2007067612-615, WO2007081755, WO2007115058, US2008004325, WO2008033455, WO2008033931, WO2008033932, WO2008033934.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an agonist of GPR109A (HM74A receptor agonists; NAR agonists (nicotinic acid receptor agonists)), for example nicotinic acid or “extended release niacin” in conjunction with MK-0524A (laropiprant) or MK-0524, or those compounds as described in WO2004041274, WO2006045565, WO2006045564, WO2006069242, WO2006085108, WO2006085112, WO2006085113, WO2006124490, WO2006113150, WO2007017261, WO2007017262, WO2007017265, WO2007015744, WO2007027532, WO2007092364, WO2007120575, WO2007134986, WO2007150025, WO2007150026, WO2008016968, WO2008051403.
  • In another embodiment of the invention, the compound of the formula I is administered in combination with a solid combination of niacin with simvastatin.
  • In another embodiment of the invention, the compound of the formula I is administered in combination with nicotinic acid or “extended release niacin” in conjunction with MK-0524A (laropiprant).
  • In a further embodiment of the invention, the compound of the formula I is administered in combination with nicotinic acid or “extended release niacin” in conjunction with MK-0524A (laropiprant) and with simvastatin.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with nicotinic acid or another nicotinic acid receptor agonist and a prostaglandin DP receptor antagonist, for example those as described in WO2008039882.
  • In another embodiment of the invention, the compound of the formula I is administered in combination with an agonist of GPR116, as described, for example, in WO2006067531, WO2006067532.
  • In one embodiment, the compound of the formula I is administered in combination with modulators of GPR40, as described, for example, in WO2007013689, WO2007033002, WO2007106469, US2007265332, WO2007123225, WO2007131619, WO2007131620, WO2007131621, US2007265332, WO2007131622, WO2007136572, WO2008001931, WO2008030520, WO2008030618, WO2008054674, WO2008054675.
  • In one embodiment, the compound of the formula I is administered in combination with modulators of GPR119 (G-protein-coupled glucose-dependent insulinotropic receptor), for example PSN-119-1, PSN-821, MBX-2982, or those as described, for example, in WO2005061489 (PSN-632408), WO2004065380, WO2007003960-62 and WO2007003964, WO2007116229, WO2007116230, WO2008005569, WO2008005576, WO2008008887, WO2008008895, WO2008025798, WO2008025799, WO2008025800, WO2007035355, WO2006083491, WO200807692, WO2008076243.
  • In a further embodiment, the compound of the formula I is administered in combination with modulators of GPR120, as described, for example, in EP1688138.
  • In one embodiment, the compound of the formula I is administered in combination with inhibitors of hormone-sensitive lipase (HSL) and/or phospholipases, as described, for example, in WO2005073199, WO2006074957, WO2006087309, WO2006111321, WO2007042178, WO2007119837.
  • In one embodiment, the compound of the formula I is administered in combination with inhibitors of endothelial lipase, as described, for example, in WO2006111321, WO2006131233, WO2006131232, WO2006131231, WO2007042178, WO2007045392, WO2007045393, WO2007110216, WO2007110215.
  • In one embodiment, the compound of the formula I is administered in combination with a phospholipase A2 inhibitor, for example darapladib or A-002, or those as described in WO2008048866, WO20080488867.
  • In one embodiment, the compound of the formula I is administered in combination with myricitrin, a lipase inhibitor (WO2007119827).
  • In one embodiment, the compound of the formula I is administered in combination with an inhibitor of glycogen synthase kinase-3 beta (GSK-3 beta), as described, for example, in US2005222220, WO2005085230, WO2005111018, WO2003078403, WO2004022544, WO2003106410, WO2005058908, US2005038023, WO2005009997, US2005026984, WO2005000836, WO2004106343, EP1460075, WO2004014910, WO2003076442, WO2005087727, WO2004046117, WO2007073117, WO2007083978, WO2007120102, WO2007122634, WO2007125109, WO2007125110, US2007281949, WO2008002244, WO2008002245, WO2008016123, WO2008023239, WO2008044700, WO2008056266, WO2008057940.
  • In one embodiment, the compound of the formula I is administered in combination with an inhibitor of phosphoenolpyruvate carboxykinase (PEPCK), for example those as described in WO2004074288.
  • In one embodiment, the compound of the formula I is administered in combination with an inhibitor of phosphoinositide kinase-3 (PI3K), for example those as described in WO2008027584.
  • In one embodiment, the compound of the formula I is administered in combination with an inhibitor of serum/glucocorticoid-regulated kinase (SGK), as described, for example, in WO2006072354, WO2007093264, WO2008009335.
  • In one embodiment, the compound of the formula I is administered in combination with a modulator of the glucocorticoid receptor, as described, for example, in WO2008057855, WO2008057856, WO2008057857, WO2008057859, WO2008057862.
  • In one embodiment, the compound of the formula I is administered in combination with an inhibitor of protein kinase C beta (PKC beta), for example ruboxistaurin.
  • In a further embodiment, the compound of the formula I is administered in combination with an activator of the AMP-activated protein kinase (AMPK), as described, for example, in WO2007062568, WO2008006432, WO2008016278, WO2008016730.
  • In one embodiment, the compound of the formula I is administered in combination with an inhibitor of ceramide kinase, as described, for example, in WO2007112914, WO2007149865.
  • In a further embodiment, the compound of the formula I is administered in combination with an inhibitor of MAPK-interacting kinase 1 or 2 (MNK1 or 2), as described, for example, in WO2007104053, WO2007115822, WO2008008547.
  • In one embodiment, the compound of the formula I is administered in combination with inhibitors of “I-kappaB kinase” (IKK inhibitors), as described, for example, in WO2001000610, WO2001030774, WO2004022057, WO2004022553, WO2005097129, WO2005113544, US2007244140.
  • In another embodiment, the compound of the formula I is administered in combination with inhibitors of NF-kappaB (NFKB) activation, for example salsalate.
  • In a further embodiment, the compound of the formula I is administered in combination with inhibitors of ASK-1 (apoptosis signal-regulating kinase 1), as described, for example, in WO2008016131.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an HMG-CoA reductase inhibitor such as simvastatin, fluvastatin, pravastatin, lovastatin, atorvastatin, cerivastatin, rosuvastatin, L-659699, BMS-644950, or those as described in US2007249583.
  • In a further embodiment of the invention, the compound of the formula I is administered in combination with a farnesoid X receptor (FXR) modulator, for example WAY-362450 or those as described in WO2003099821, WO2005056554, WO2007052843, WO2007070796, WO2007092751, JP2007230909, WO2007095174, WO2007140174, WO2007140183, WO2008000643, WO2008002573, WO2008025539, WO2008025540.
  • In another embodiment of the invention, the compound of the formula I is administered in combination with a ligand of the liver X receptor (LXR), as described, for example, in WO2007092965, WO2008041003, WO2008049047.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a fibrate, for example fenofibrate, clofibrate, bezafibrate.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with fibrates, for example the choline salt of fenofibrate (SLV-348).
  • In one embodiment of the invention, the compound of the formula I is administered in combination with fibrates, for example the choline salt of fenofibrate and an HMG-CoA reductase inhibitor, for example rosuvastatin.
  • In a further embodiment of the invention, the compound of the formula I is administered in combination with bezafibrate and diflunisal.
  • In a further embodiment of the invention, the compound of the formula I is administered in combination with a solid combination of fenofibrate or a salt thereof with simvastatin, rosuvastatin, fluvastatin, lovastatin, cerivastatin, pravastatin or atorvastatin.
  • In a further embodiment of the invention, the compound of the formula I is administered in combination with Synordia®, a solid combination of fenofibrate with metformin.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a cholesterol reabsorption inhibitor, for example ezetimibe, tiqueside, pamaqueside, FM-VP4 (sitostanol/campesterol ascorbyl phosphate; Forbes Medi-Tech, WO2005042692, WO2005005453), MD-0727 (Microbia Inc., WO2005021497, WO2005021495) or with compounds as described in WO2002066464, WO2005000353 (Kotobuki Pharmaceutical Co. Ltd.) or WO2005044256 or WO2005062824 (Merck & Co.) or WO2005061451 and WO2005061452 (AstraZeneca AB) and WO2006017257 (Phenomix) or WO2005033100 (Lipideon Biotechnology AG), or as described in WO2002050060, WO2002050068, WO2004000803, WO2004000804, WO2004000805, WO2004087655, WO2004097655, WO2005047248, WO2006086562, WO2006102674, WO2006116499, WO2006121861, WO2006122186, WO2006122216, WO2006127893, WO2006137794, WO2006137796, WO2006137782, WO2006137793, WO2006137797, WO2006137795, WO2006137792, WO2006138163, WO2007059871, US2007232688, WO2007126358, WO2008033431, WO2008033465, WO2008052658, WO2008057336.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an NPC1L1 antagonist, for example those as described in WO2008033464, WO2008033465.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with Vytorin™, a solid combination of ezetimibe with simvastatin.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a solid combination of ezetimibe with atorvastatin.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a solid combination of ezetimibe with fenofibrate.
  • In one embodiment of the invention, the further active ingredient is a diphenylazetidinone derivative, as described, for example, in U.S. Pat. No. 6,992,067 or U.S. Pat. No. 7,205,290.
  • In a further embodiment of the invention, the further active ingredient is a diphenylazetidinone derivative, as described, for example, in U.S. Pat. No. 6,992,067 or U.S. Pat. No. 7,205,290, combined with a statin, for example simvastatin, fluvastatin, pravastatin, lovastatin, cerivastatin, atorvastatin or rosuvastatin.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a solid combination of lapaquistat, a squalene synthase inhibitor, with atorvastatin.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a CETP inhibitor, for example torcetrapib, anacetrapib or JTT-705 (dalcetrapib), or those as described in WO2006002342, WO2006010422, WO2006012093, WO2006073973, WO2006072362, WO2007088996, WO2007088999, US2007185058, US2007185113, US2007185154, US2007185182, WO2006097169, WO2007041494, WO2007090752, WO2007107243, WO2007120621, US2007265252, US2007265304, WO2007128568, WO2007132906, WO2008006257, WO2008009435, WO2008018529, WO2008058961, WO2008058967.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with bile acid reabsorption inhibitor (see, for example, U.S. Pat. No. 6,245,744, U.S. Pat. No. 6,221,897 or WO00/61568), for example HMR 1741, or those as described in DE 10 2005 033099.1 and DE 10 2005 033100.9, DE 10 2006 053635, DE 10 2006 053637, WO2007009655-56, WO2008058628, WO2008058629, WO2008058630, WO2008058631.
  • In one embodiment, the compound of the formula I is administered in combination with agonists of GPBAR1 (G-protein-coupled bile acid receptor-1; TGR5), as described, for example, in WO2007110237, WO2007127505, WO2008009407.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a polymeric bile acid adsorber, for example cholestyramine, colesevelam hydrochloride.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with colesevelam hydrochloride and metformin or a sulfonylurea or insulin.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a chewing gum comprising phytosterols (Reductol™)
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an inhibitor of the microsomal triglyceride transfer proteins (MTP inhibitor), for example implitapide, BMS-201038, R-103757, AS-1552133, SLx-4090, AEGR-733, or those as described in WO2005085226, WO2005121091, WO2006010423, WO2006113910, WO2007143164, WO2008049806, WO2008049808.
  • In a further embodiment of the invention, the compound of the formula I is administered in combination with a combination of a cholesterol absorption inhibitor, for example ezetimibe, and an inhibitor of the triglyceride transfer proteins (MTP inhibitor), for example implitapide, as described in WO2008030382.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an active antihypertriglyceridemic ingredient, for example those as described in WO2008032980.
  • In another embodiment of the invention, the compound of the formula I is administered in combination with an antagonist of the somatostatin 5 receptor (SST5 receptor), for example those as described in WO2006094682.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an ACAT inhibitor, for example avasimibe, SMP-797 or KY-382.
  • In a further embodiment of the invention, the compound of the formula I is administered in combination with an inhibitor of liver carnitine palmitoyltransferase 1 (L-CPT1), as described, for example, in WO2007063012, WO2007096251 (ST-3473), WO2008015081, US2008103182.
  • In a further embodiment of the invention, the compound of the formula I is administered in combination with a modulator of serine palmitoyltransferase (SPT), as described, for example, in WO2008031032, WO2008046071.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a squalene synthetase inhibitor, for example BMS-188494, TAK-475 (lapaquistat acetate), or as described in WO2005077907, JP2007022943, WO2008003424.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with ISIS-301012 (mipomersen), an antisense oligonucleotide which is capable of regulating the apolipoprotein B gene.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an LDL receptor inducer (see U.S. Pat. No. 6,342,512), for example HMR1171, HMR1586, or those as described in WO2005097738, WO2008020607.
  • In another embodiment of the invention, the compound of the formula I is administered in combination with an HDL cholesterol-elevating agent, for example those as described in WO2008040651.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an ABCA1 expression enhancer, as described, for example, in WO2006072393.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a lipoproteinlipase modulator, for example ibrolipim (NO-1886).
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a lipoprotein(a) antagonist, for example gemcabene (Cl-1027).
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a lipase inhibitor, for example orlistat or cetilistat (ATL-962).
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an adenosine A1 receptor agonist (adenosine A1 R), as described, for example, in EP1258247, EP1375508, WO2008028590.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an adenosine A2B receptor agonist (adenosine A2B R), for example ATL-801.
  • In another embodiment of the invention, the compound of the formula I is administered in combination with a modulator of adenosine A2A and/or adenosine A3 receptors, as described, for example, in WO2007111954, WO2007121918, WO2007121921, WO2007121923.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an adenosine A2B receptor antagonist (adenosine A2B R), as described in US2007270433, WO2008027585.
  • In one embodiment, the compound of the formula I is administered in combination with inhibitors of acetyl-CoA carboxylase (ACC1 and/or ACC2), for example those as described in WO199946262, WO200372197, WO2003072197, WO2005044814, WO2005108370, JP2006131559, WO2007011809, WO2007011811, WO2007013691, WO2007095601-603, WO2007119833.
  • In another embodiment, the compound of the formula I is administered in combination with modulators of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase 3 (GPAT3, described in WO2007100789) or with modulators of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase 4 (GPAT4, described in WO2007100833).
  • In a further embodiment, the compound of the formula I is administered in combination with modulators of xanthine oxidoreductase (XOR).
  • In another embodiment, the compound of the formula I is administered in combination with inhibitors of soluble epoxide hydrolase (sEH), as described, for example, in WO2008051873, WO2008051875.
  • In a further embodiment, the compound of the formula I is administered in combination with CART modulators (see “Cocaine-amphetamine-regulated transcript influences energy metabolism, anxiety and gastric emptying in mice” Asakawa, A. et al.: Hormone and Metabolic Research (2001), 33(9), 554-558);
  • NPY antagonists, for example N-{4-[(4-aminoquinazolin-2-ylamino)methyl]-cyclohexylmethyl}naphthalene-1-sulfonamide hydrochloride (CGP 71683A);
  • NPY-5 receptor antagonists, such as L-152804 or the compound “NPY-5-BY” from Banyu, or as described, for example, in WO2006001318, WO2007103295, WO2007125952, WO2008026563, WO2008026564, WO2008052769;
  • NPY-4 receptor antagonists, as described, for example, in WO2007038942;
  • NPY-2 receptor antagonists, as described, for example, in WO2007038943;
  • peptide YY 3-36 (PYY3-36) or analogous compounds, for example CJC-1682 (PYY3-36 conjugated with human serum albumin via Cys34) or CJC-1643 (derivative of PYY3-36, which is conjugated in vivo to serum albumin), or those as described in WO2005080424, WO2006095166, WO2008003947;
    derivatives of the peptide obestatin, as described by WO2006096847;
    CB1R (cannabinoid receptor 1) antagonists, for example rimonabant, surinabant (SR147778), SLV-319 (ibipinabant), AVE-1625, taranabant (MK-0364) or salts thereof, otenabant (CP-945,598), V-24343 or those compounds as described in, for example, EP 0656354, WO 00/15609, WO2001/64632-64634, WO 02/076949, WO2005080345, WO2005080328, WO2005080343, WO2005075450, WO2005080357, WO200170700, WO2003026647-48, WO200302776, WO2003040107, WO2003007887, WO2003027069, U.S. Pat. No. 6,509,367, WO200132663, WO2003086288, WO2003087037, WO2004048317, WO2004058145, WO2003084930, WO2003084943, WO2004058744, WO2004013120, WO2004029204, WO2004035566, WO2004058249, WO2004058255, WO2004058727, WO2004069838, US20040214837, US20040214855, US20040214856, WO2004096209, WO2004096763, WO2004096794, WO2005000809, WO2004099157, US20040266845, WO2004110453, WO2004108728, WO2004000817, WO2005000820, US20050009870, WO200500974, WO2004111033-34, WO200411038-39, WO2005016286, WO2005007111, WO2005007628, US20050054679, WO2005027837, WO2005028456, WO2005063761-62, WO2005061509, WO2005077897, WO2006018662, WO2006047516, WO2006060461, WO2006067428, WO2006067443, WO2006087480, WO2006087476, WO2006100208, WO2006106054, WO2006111849, WO2006113704, WO2007009705, WO2007017124, WO2007017126, WO2007018459, WO2007018460, WO2007016460, WO2007020502, WO2007026215, WO2007028849, WO2007031720, WO2007031721, WO2007036945, WO2007038045, WO2007039740, US20070015810, WO2007046548, WO2007047737, WO2007057687, WO2007062193, WO2007064272, WO2007079681, WO2007084319, WO2007084450, WO2007086080, EP1816125, US2007213302, WO2007095513, WO2007096764, US2007254863, WO2007119001, WO2007120454, WO2007121687, WO2007123949, US2007259934, WO2007131219, WO2007133820, WO2007136571, WO2007136607, WO2007136571, U.S. Pat. No. 7,297,710, WO2007138050, WO2007139464, WO2007140385, WO2007140439, WO2007146761, WO2007148061, WO2007148062, US2007293509, WO2008004698, WO2008017381, US2008021031, WO2008024284, WO2008031734, WO2008032164, WO2008034032, WO2008035356, WO2008036021, WO2008036022, WO2008039023, WO2998043544, WO2008044111, WO2008048648, EP1921072-A1, WO2008053341, WO2008056377, WO2008059207, WO2008059335;
    cannabinoid receptor 1/cannabinoid receptor 2 (CB1/CB2) modulating compounds, for example delta-9-tetrahydrocannabivarin, or those as described, for example, in WO2007001939, WO2007044215, WO2007047737, WO2007095513, WO2007096764, WO2007112399, WO2007112402;
    modulators of FAAH (fatty acid amide hydrolase), as described, for example, in WO2007140005, WO2008019357, WO2008021625, WO2008023720, WO2008030532;
    vanilloid-1 receptor modulators (modulators of TRPV1), as described, for example, in WO2007091948, WO2007129188, WO2007133637, WO2008007780, WO2008010061, WO2008007211, WO2008010061, WO2008015335, WO2008018827, WO2008024433, WO2008024438, WO2008032204, WO2008050199, WO2008059370;
    antagonists or inverse agonists of the opioid receptors, as described, for example, in WO2008021849, WO2008021851, WO2008032156;
    agonists of the prostaglandin receptor, for example bimatoprost or those compounds as described in WO2007111806;
    MC4 receptor agonists (melanocortin-4 receptor agonists, MC4R agonists, for example N-[2-(3a-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydropyrazolo[4,3-c]-pyridin-5-yl)-1-(4-chlorophenyl)-2-oxoethyl]-1-amino-1,2,3,4-tetrahydronaphthalene-2-carboxamide; (WO 01/91752)) or LB53280, LB53279, LB53278 or THIQ, MB243, RY764, CHIR-785, PT-141, MK-0493, or those as described in WO2005060985, WO2005009950, WO2004087159, WO2004078717, WO2004078716, WO2004024720, US20050124652, WO2005051391, WO2004112793, WOUS20050222014, US20050176728, US20050164914, US20050124636, US20050130988, US20040167201, WO2004005324, WO2004037797, WO2005042516, WO2005040109, WO2005030797, US20040224901, WO200501921, WO200509184, WO2005000339, EP1460069, WO2005047253, WO2005047251, WO2005118573, EP1538159, WO2004072076, WO2004072077, WO2006021655-57, WO2007009894, WO2007015162, WO2007041061, WO2007041052, JP2007131570, EP-1842846, WO2007096186, WO2007096763, WO2007141343, WO2008007930, WO2008017852, WO2008039418;
    orexin receptor 1 antagonists (OX1R antagonists), orexin receptor 2 antagonists (OX2R antagonists) or mixed OX1R/OX2R antagonists (e.g. 1-(2-methyl-benzoxazol-6-yl)-3-[1,5]naphthyridin-4-ylurea hydrochloride (SB-334867-A), or those as described, for example, in WO200196302, WO200185693, WO2004085403, WO2005075458, WO2006067224, WO2007085718, WO2007088276, WO2007116374; WO2007122591, WO2007126934, WO2007126935, WO2008008517, WO2008008518, WO2008008551, WO2008020405, WO2008026149, WO2008038251);
    histamine H3 receptor antagonists/inverse agonists (e.g. 3-cyclohexyl-1-(4,4-dimethyl-1,4,6,7-tetrahydroimidazo[4,5-c]pyridin-5-yl)propan-1-one oxalic acid salt (WO 00/63208), or those as described in WO200064884, WO2005082893, US2005171181 (e.g. PF-00389027), WO2006107661, WO2007003804, WO2007016496, WO2007020213, WO2007049798, WO2007055418, WO2007057329, WO2007065820, WO2007068620, WO2007068641, WO2007075629, WO2007080140, WO2007082840, WO2007088450, WO2007088462, WO2007094962, WO2007099423, WO2007100990, WO2007105053, WO2007106349, WO2007110364, WO2007115938, WO2007131907, WO2007133561, US2007270440, WO2007135111, WO2007137955, US2007281923, WO2007137968, WO2007138431, WO2007146122, WO2008005338, WO2008012010, WO2008015125, WO2008045371);
    histamine H1/histamine H3 modulators, for example betahistine or its dihydrochloride;
    modulators of the histamine H3 transporter or of the histamine H3/serotonin transporter, as described, for example, in WO2008002816, WO2008002817, WO2008002818, WO2008002820;
    histamine H4 modulators, as described, for example, in WO2007117399;
    CRF antagonists (e.g. [2-methyl-9-(2,4,6-trimethylphenyl)-9H-1,3,9-triazafluoren-4-yl]dipropylamine (WO 00/66585) or those CRF1 antagonists as described in WO2007105113, WO2007133756, WO2008036541, WO2008036579);
    CRF BP antagonists (e.g. urocortin);
    urocortin agonists;
    agonists of the beta-3 adrenoceptor, for example 1-(4-chloro-3-methanesulfonylmethylphenyl)-2-[2-(2,3-dimethyl-1H-indol-6-yloxy)ethylamino]-ethanol hydrochloride (WO 01/83451) or solabegron (GW-427353) or N-5984 (KRP-204), or those as described in JP2006111553, WO2002038543, WO2002038544, WO2007048840-843, WO2008015558;
    MSH (melanocyte-stimulating hormone) agonists;
    MCH (melanine-concentrating hormone) receptor antagonists (for example NBI-845, A-761, A-665798, A-798, ATC-0175, T-226296, T-71 (AMG-071, AMG-076), GW-803430, GW-856464, NGD-4715, ATC-0453, ATC-0759 or those compounds as described in WO2005085200, WO2005019240, WO2004011438, WO2004012648, WO2003015769, WO2004072025, WO2005070898, WO2005070925, WO2004039780, WO2004092181, WO2003033476, WO2002006245, WO2002089729, WO2002002744, WO2003004027, FR2868780, WO2006010446, WO2006038680, WO2006044293, WO2006044174, JP2006176443, WO2006018280, WO2006018279, WO2006118320, WO2006130075, WO2007018248, WO2007012661, WO2007029847, WO2007024004, WO2007039462, WO2007042660, WO2007042668, WO2007042669, US2007093508, US2007093509, WO2007048802, JP2007091649, WO2007092416; WO2007093363-366, WO2007114902, WO2007114916, WO2007141200, WO2007142217, US2007299062, WO2007146758, WO2007146759, WO200800116, WO2008016811, WO2008020799, WO2008022979, WO2008038692, WO2008041090, WO2008044632, WO2008047544, JP2008088120, WO2008065021, WO2008068265, WO2008061109, WO2008076562, WO2008071646);
    CCK-A (CCK-1) agonists (for example {2-[4-(4-chloro-2,5-dimethoxyphenyl)-5-(2-cyclohexylethyl)thiazol-2-ylcarbamoyl]-5,7-dimethylindol-1-yl}acetic acid trifluoroacetic acid salt (WO 99/15525) or SR-146131 (WO 0244150) or SSR-125180), or those as described in WO2005116034, WO2007120655, WO2007120688, WO2007120718;
    serotonin reuptake inhibitors (e.g. dexfenfluramine), or those as described in WO2007148341, WO2008034142;
    mixed serotonin/dopamine reuptake inhibitors (e.g. bupropion), or those as described in WO2008063673, or solid combinations of bupropion with naltrexone or bupropion with zonisamide;
    mixed reuptake inhibitors, for example DOV-21947;
    mixed serotoninergic and noradrenergic compounds (e.g. WO 00/71549);
    5-HT receptor agonists, for example 1-(3-ethylbenzofuran-7-yl)piperazine oxalic acid salt (WO 01/09111);
    mixed dopamine/norepinephrine/acetylcholine reuptake inhibitors (e.g. tesofensine), or those as described, for example, in WO2006085118;
    norepinephrine reuptake inhibitors, as described, for example, in US2008076724;
    5-HT2A receptor antagonists, as described, for example, in WO2007138343;
    5-HT2C receptor agonists (for example lorcaserine hydrochloride (APD-356) or BVT-933, or those as described in WO200077010, WO200077001-02, WO2005019180, WO2003064423, WO200242304, WO2005035533, WO2005082859, WO2006004937, US2006025601, WO2006028961, WO2006077025, WO2006103511, WO2007028132, WO2007084622, US2007249709; WO2007132841, WO2007140213, WO2008007661, WO2008007664, WO2008009125, WO2008010073);
    5-HT6 receptor modulators, for example E-6837, BVT-74316 or PRX-07034, or those as described, for example, in WO2005058858, WO2007054257, WO2007107373, WO2007108569, WO2007108742-744, WO2008003703, WO2008027073, WO2008034815, WO2008054288;
    agonists of estrogen receptor gamma (ERRγ agonists), as described, for example, in WO2007131005, WO2008052709;
    sigma-1 receptor antagonists, as described, for example, in WO2007098953, WO2007098961, WO2008015266, WO2008055932, WO2008055933;
    muscarin 3 receptor (M3R) antagonists, as described, for example, in WO2007110782, WO2008041184;
    bombesin receptor agonists (BRS-3 agonists), as described, for example, in WO2008051404, WO2008051405, WO2008051406;
    galanin receptor antagonists;
    growth hormone (e.g. human growth hormone or AOD-9604);
    growth hormone releasing compounds (tert-butyl 6-benzyloxy-1-(2-diisopropylaminoethylcarbamoyl)-3,4-dihydro-1H-isoquinoline-2-carboxylate (WO 01/85695));
    growth hormone secretagogue receptor antagonists (ghrelin antagonists), for example A-778193, or those as described in WO2005030734, WO2007127457, WO2008008286;
    growth hormone secretagogue receptor modulators, for example JMV-2959, JMV-3002, JMV-2810, JMV-2951, or those as described in WO2006012577 (e.g. YIL-781 or YIL-870), WO2007079239;
    TRH agonists (see, for example, EP 0 462 884);
    decoupling protein 2 or 3 modulators;
    leptin agonists (see, for example, Lee, Daniel W.; Leinung, Matthew C.; Rozhayskaya-Arena, Marina; Grasso, Patricia. Leptin agonists as a potential approach to the treatment of obesity. Drugs of the Future (2001), 26(9), 873-881);
    DA agonists (bromocriptin, doprexin);
    lipase/amylase inhibitors (e.g. WO 00/40569);
    inhibitors of diacylglycerol O-acyltransferases (DGATs), for example BAY-74-4113, or as described, for example, in US2004/0224997, WO2004094618, WO200058491, WO2005044250, WO2005072740, JP2005206492, WO2005013907, WO2006004200, WO2006019020, WO2006064189, WO2006082952, WO2006120125, WO2006113919, WO2006134317, WO2007016538, WO2007060140, JP2007131584, WO2007071966, WO2007126957, WO2007137103, WO2007137107, WO2007138304, WO2007138311, WO2007141502, WO2007141517, WO2007141538, WO2007141545, WO2007144571, WO2008011130, WO2008011131, WO2008039007, WO2008048991;
    inhibitors of monoacylglycerol acyltransferase (2-acylglycerol O-acyltransferase; MGAT), as described, for example, in WO2008038768;
    inhibitors of fatty acid synthase (FAS), for example C75, or those as described in WO2004005277, WO2008006113;
    inhibitors of stearoyl-CoA delta9 desaturase (SCD1), as described, for example, in WO2007009236, WO2007044085, WO2007046867, WO2007046868, WO20070501124, WO2007056846, WO2007071023, WO2007130075, WO2007134457, WO2007136746, WO2007143597, WO2007143823, WO2007143824, WO2008003753, WO2008017161, WO2008024390, WO2008029266, WO2008036715, WO2008043087, WO2008044767, WO2008046226, WO2008056687;
    hypoglycemic/hypertriglyceridemic indoline compounds, as described in WO2008039087;
    inhibitors of “adipocyte fatty acid-binding protein aP2”, for example BMS-309403; activators of adiponectin secretion, as described, for example, in WO2006082978;
    promoters of adiponectin secretion, as described, for example, in WO2007125946, WO2008038712;
    oxyntomodulin or analogs thereof;
    oleoyl-estrone
    or agonists or partial agonists of the thyroid hormone receptor (thyroid hormone receptor agonists), for example: KB-2115 (eprotirome), QRX-431 (sobetirome) or DITPA, or those as described in WO20058279, WO200172692, WO200194293, WO2003084915, WO2004018421, WO2005092316, WO2007003419, WO2007009913, WO2007039125, WO2007110225, WO2007110226, WO2007128492, WO2007132475, WO2007134864, WO2008001959
    or agonists of the thyroid hormone receptor beta (TR-beta), for example MB-07811 or MB-07344.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a combination of epotirome with ezetimibe.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an inhibitor of site-1 protease (S1P), for example PF-429242.
  • In a further embodiment of the invention, the compound of the formula I is administered in combination with an RNAi therapeutic agent directed against PCSK9 (proprotein convertase subtilisin/kexin type 9).
  • In one embodiment, the compound of the formula I is administered in combination with Omacor® or Lovaza™ (omega-3 fatty acid ester; highly concentrated ethyl ester of eicosapentaenoic acid and of docosahexaenoic acid).
  • In one embodiment, the compound of the formula I is administered in combination with lycopene.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with an antioxidant, for example OPC-14117, AGI-1067 (succinobucol), probucol, tocopherol, ascorbic acid, β-carotene or selenium.
  • In one embodiment of the invention, the compound of the formula I is administered in combination with a vitamin, for example Vitamin B6 or Vitamin B12.
  • In one embodiment, the compound of the formula I is administered in combination with more than one of the aforementioned compounds, for example in combination with a sulfonylurea and metformin, a sulfonylurea and acarbose, repaglinide and metformin, insulin and a sulfonylurea, insulin and metformin, insulin and troglitazone, insulin and lovastatin, etc.
  • In another embodiment, the compound of the formula I is administered in combination with an inhibitor of carboanhydrase type 2 (carbonic anhydrase type 2), for example those as described in WO2007065948.
  • In another embodiment, the compound of the formula I is administered in combination with topiramat or a derivative thereof, as described in WO2008027557.
  • In a further embodiment, the compound of the formula I is administered in combination with a solid combination of topiramat with phentermin (Qnexa™)
  • In a further embodiment, the compound of the formula I is administered in combination with an antisense compound, e.g. ISIS-377131, which inhibits the production of the glucocorticoid receptor.
  • In another embodiment, the compound of the formula I is administered in combination with an aldosterone synthase inhibitor and an antagonist of the glucocorticoid receptor, a cortisol synthesis inhibitor and/or an antagonist of the corticotropin releasing factor, as described, for example, in EP1886695.
  • In one embodiment, the compound of the formula I is administered in combination with an agonist of the RUP3 receptor, as described, for example, in WO2007035355, WO2008005576.
  • In another embodiment, the compound of the formula I is administered in combination with an activator of the gene which codes for ataxia telangiectasia mutated (ATM) protein kinase, for example chloroquine.
  • In one embodiment, the compound of the formula I is administered in combination with a tau protein kinase 1 inhibitor (TPK1 inhibitor), as described, for example, in WO2007119463.
  • In one embodiment, the compound of the formula I is administered in combination with a “c-Jun N-terminal kinase” inhibitor (JNK inhibitor), as described, for example, in WO2007125405, WO2008028860.
  • In one embodiment, the compound of the formula I is administered in combination with an endothelin A receptor antagonist, for example avosentan (SPP-301).
  • In one embodiment, the compound of the formula I is administered in combination with modulators of the glucocorticoid receptor (GR), for example KB-3305 or those compounds as described, for example, in WO2005090336, WO2006071609, WO2006135826, WO2007105766.
  • In one embodiment, the further active ingredient is varenicline tartrate, a partial agonist of the alpha 4-beta 2 nicotinic acetylcholine receptor.
  • In one embodiment, the further active ingredient is trodusquemine.
  • In one embodiment, the further active ingredient is a modulator of the enzyme SIRT1 (an NAD+-dependent protein deacetylase); this active ingredient may, for example, be resveratrol in suitable formulations, or those compounds as specified in WO2007019416 (e.g. SRT-1720).
  • In one embodiment of the invention, the further active ingredient is DM-71 (N-acetyl-L-cysteine with bethanechol).
  • In one embodiment, the compound of the formula I is administered in combination with antihypercholesterolemic compounds, as described, for example, in WO2007107587, WO2007111994.
  • In another embodiment, the compound of the formula I is administered in combination with a cyclic peptide agonist of the VPAC2 receptor, as described, for example, in WO2007101146, WO2007133828.
  • In a further embodiment, the compound of the formula I is administered in combination with an agonist of the endothelin receptor, as described, for example, in WO2007112069.
  • In a further embodiment, the compound of the formula I is administered in combination with AKP-020 (bis(ethylmaltolato)oxovanadium(IV)).
  • In another embodiment, the compound of the formula I is administered in combination with tissue-selective androgen receptor modulators (SARM), as described, for example, in WO2007099200, WO2007137874.
  • In a further embodiment, the compound of the formula I is administered in combination with an AGE (advanced glycation end product) inhibitor, as described, for example, in JP2008024673.
  • In one embodiment of the invention, the further active ingredient is leptin; see, for example, “Perspectives in the therapeutic use of leptin”, Salvador, Javier; Gomez-Ambrosi, Javier; Fruhbeck, Gema, Expert Opinion on Pharmacotherapy (2001), 2(10), 1615-1622.
  • In another embodiment of the invention, the further active ingredient is metreleptin (recombinant methionyl-leptin) combined with pramlintide.
  • In a further embodiment of the invention, the further active ingredient is the tetrapeptide ISF-402.
  • In one embodiment, the further active ingredient is dexamphetamine or amphetamine.
  • In one embodiment, the further active ingredient is fenfluramin or dexfenfluramin.
  • In another embodiment, the further active ingredient is sibutramine or those derivatives as described in WO2008034142.
  • In one embodiment, the further active ingredient is mazindol or phentermin.
  • In a further embodiment, the further active ingredient is geniposidic acid (WO2007100104) or derivatives thereof (JP2008106008).
  • In one embodiment, the further active ingredient is a nasal calcium channel blocker, for example diltiazem, or those as described in U.S. Pat. No. 7,138,107.
  • In one embodiment, the further active ingredient is an inhibitor of sodium-calcium ion exchange, for example those as described in WO2008028958.
  • In a further embodiment, the further active ingredient is a blocker of calcium channels, for example of CaV3.2, as described in WO2008033431, WO2008033447, WO2008033356, WO2008033460, WO2008033464, WO2008033465, WO2008033468.
  • In one embodiment, the further active ingredient is a blocker of the “T-type calcium channel”, as described, for example, in WO2008033431.
  • In one embodiment, the further active ingredient is an inhibitor of KCNQ potassium channel 2 or 3, for example those as described in US2008027049, US2008027090.
  • In one embodiment, the further active ingredient is an inhibitor of the potassium Kv1.3 ion channel, for example those as described in WO2008040057, WO2008040058, WO2008046065.
  • In another embodiment, the further active ingredient is a modulator of the MCP-1 receptor (monocyte chemoattractant protein-1 (MCP-1)), for example those as described in WO2008014360, WO2008014381.
  • In one embodiment, the further active ingredient is a modulator of somatostatin receptor 5 (SSTR5), for example those as described in WO2008019967, US2008064697.
  • In one embodiment, the further active ingredient is a modulator of somatostatin receptor 2 (SSTR2), for example those as described in WO2008051272.
  • In one embodiment, the further active ingredient is an erythropoietin-mimetic peptide which acts as an erythropoietin (EPO) receptor agonist. Such molecules are described, for example, in WO2008042800.
  • In a further embodiment, the further active ingredient is an anorectic/a hypoglycemic compound, for example those as described in WO2008035305, WO2008035306, WO2008035686.
  • In one embodiment, the further active ingredient is an inductor of lipoic acid synthetase, for example those as described in WO2008036966, WO2008036967.
  • In one embodiment, the further active ingredient is a stimulator of endothelial nitric oxide synthase (eNOS), for example those as described in WO2008058641.
  • In one embodiment, the further active ingredient is a modulator of carbohydrate and/or lipid metabolism, for example those as described in WO2008059023, WO2008059024, WO2008059025, WO2008059026.
  • In a further embodiment, the further active ingredient is an angiotensin II receptor antagonist, for example those as described in WO2008062905.
  • In one embodiment, the further active ingredient is an agonist of the sphingosine-1-phosphate receptor (S1P), for example those as described in WO2008064315.
  • In one embodiment, the compound of the formula I is administered in combination with bulking agents, preferably insoluble bulking agents (see, for example, Carob/Caromax® (Zunft H J; et al., Carob pulp preparation for treatment of hypercholesterolemia, ADVANCES IN THERAPY (2001 September-October), 18(5), 230-6). Caromax is a carob-containing product from Nutrinova, Nutrition Specialties & Food Ingredients GmbH, Industriepark Hochst, 65926 Frankfurt/Main). Combination with Caromax® is possible in one preparation or by separate administration of compounds of the formula I and Caromax®. Caromax® can in this connection also be administered in the form of food products such as, for example, in bakery products or muesli bars.
  • It will be appreciated that every suitable combination of the compounds of the invention with one or more of the aforementioned compounds and optionally one or more other pharmacologically active substances is regarded as falling within the protection conferred by the present invention.
  • Figure US20140088077A1-20140327-C00014
    Figure US20140088077A1-20140327-C00015
    Figure US20140088077A1-20140327-C00016
    Figure US20140088077A1-20140327-C00017
    Figure US20140088077A1-20140327-C00018
    Figure US20140088077A1-20140327-C00019
    Figure US20140088077A1-20140327-C00020
    Figure US20140088077A1-20140327-C00021
    Figure US20140088077A1-20140327-C00022
    Figure US20140088077A1-20140327-C00023
    Figure US20140088077A1-20140327-C00024
    Figure US20140088077A1-20140327-C00025
    Figure US20140088077A1-20140327-C00026
  • Also suitable are the following active ingredients for combination preparations:
  • all antiepileptics specified in the Rote Liste 2007, chapter 15;
    all antihypertensives specified in the Rote Liste 2007, chapter 17;
    all hypotonics specified in the Rote Liste 2007, chapter 19;
    all anticoagulants specified in the Rote Liste 2007, chapter 20;
    all arteriosclerosis drugs specified in the Rote Liste 2007, chapter 25;
    all beta receptors, calcium channel blockers and inhibitors of the renin angiotensin system specified in the Rote Liste 2007, chapter 27;
    all diuretics and perfusion-promoting drugs specified in the Rote Liste 2007, chapter 36 and 37;
    all withdrawal drugs/drugs for the treatment of addictive disorders specified in the Rote Liste 2007, chapter 39;
    all coronary drugs and gastrointestinal drugs specified in the Rote Liste 2007, chapter 55 and 60;
    all migraine drugs, neuropathy preparations and Parkinson's drugs specified in the Rote Liste 2007, chapter 61, 66 and 70.
  • In one embodiment, the compounds of the formula I are administered in combination with medicaments with effects on the cardiovascular system and the blood vessel system, for example ACE inhibitors (e.g. ramipril), medicaments which act on the angiotensin renin system, calcium antagonists, beta-blockers, etc.
  • In one embodiment, the compounds of the formula I are administered in combination with antiinflammatory medicaments.
  • In one embodiment, the compounds of the formula I are administered in combination with medicaments which are used for cancer treatment and cancer prevention.
  • It will be appreciated that every suitable combination of the compounds of the invention with one or more of the aforementioned compounds and optionally one or more other pharmacologically active substances is regarded as falling within the protection conferred by the present invention.
  • Test Models
  • Suitability of the compounds of the invention as active pharmaceutical ingredients can be tested by means of various test models. Descriptions are given of such test models by way of example below.
  • Influence on the MCH Receptor In Vitro; Determination of Functional IC50 Values of MCH1R Antagonists
  • Cloning of the cDNA for the human MCH receptor, preparation of a recombinant HEK293 cell line which expresses the human MCH receptor, and functional measurements with the recombinant cell line took place in analogy to the description by Audinot et al. (J. Biol. Chem. 2001, 276, 13554-13562). A difference from the reference was, however, the use of the plasmid pEAK8 from EDGE Biosystems (USA) for the construction of the expression vector. The host used for the transfection was a transformed HEK cell line named “PEAK Stable Cells” (likewise from EDGE Biosystems). Functional measurements of the cellular calcium flux after addition of agonist (MCH) in the presence of ligand of the invention took place with the aid of the FLIPR apparatus from Molecular Devices (USA), using protocols of the apparatus manufacturer. The compounds of the invention show a significant inhibition (>30%) of the signal induced by the agonist at a concentration of 100 μM, preferably at 10 μM, particularly preferably at 1 μM, very particularly preferably at 100 nM and very very particularly preferably at 10 nM.
  • Besides the functional activity it is also possible to determine the affinity for the MCH1R according to Audinot et al. (Br. J. Pharmacol. 2001, 133, 371-378).
  • Preferred compounds of the invention show an IC50 of less than 1 μM, particularly preferably of less than 100 nM, very particularly preferably of less than 10 nM and very very particularly preferably of less than 1 nM.
  • Milk Intake by Female NMRI Mice
  • The anorectic effect is tested on female NMRI mice. After withdrawal of feed for 24 hours, the test substance is administered intraperitoneally or preferably orally by gavage. The animals are housed singly with free access to drinking water and, 30 minutes after administration of product, are offered condensed milk. The condensed milk consumption is determined every half hour for 7 hours, and the general condition of the animals is observed. The measured milk consumption is compared with the vehicle-treated control animals.
  • The vehicle itself has no influence on feed intake. Preferred tolerated vehicles for the administration are, for example, hydroxyethylcellulose (0.5% in water) or Solutol HS15 (5% in hydroxyethylcellulose (0.5% in water)).
  • Feed and Water Intake of Female Wistar Rats
  • As alternative to testing the anorectic effect on NMRI mice, it is also possible analogously to use female Wistar rats weighing about 220-250 g. The animals are accustomed to the experimental environment before the start of the study. In one embodiment, the animals have free access to feed and water up to the start of the experiment. In another embodiment, access of the animals to feed is withdrawn 24 hours before the administration. For the investigation of the test substance, the animals are housed singly with free access to feed and water. Feed intake and water intake are measured continuously every 30 minutes over a period of 22 hours using a computer-assisted system (TSE Drinking & Feeding Monitor). The measured feed and water consumption is compared with the vehicle-treated control animals.
  • Body Weight Gain of Diet-Induced Obese and Standard-Fed Mice
  • For these investigations, male C57BL6J mice 5 weeks old (weaning age) are accustomed either to a standard maintenance diet or to a high-fat and thus high-energy diet. After 12 weeks, the normally fed, slim mice have typically reached a body weight of about 25 g, and the fat-fed mice have reached one of about 35 g. The animals are housed singly, and the feed intake and water intake are determined individually. There is free access to feed and water during the experiment.
  • The test substances are administered orally in a vehicle and always tested by comparison with the vehicle control which is included in parallel. The vehicle itself has no influence on the feed intake, and is normally hydroxyethylcellulose (0.5% in water) or Solutol HS15 (5% in hydroxyethylcellulose (0.5% in water)). A corresponding group of slim mice is kept for each group of diet-induced obese mice.
  • Feed consumption and water consumption are determined each day in the first week and then once per week by reweighing the offered feed and water, respectively. The body weight is measured each day.
  • Blood samples are taken before and at the end of the treatment in order to determine serum parameters which provide information about changes in intermediary metabolism. It is additionally possible to determine the body fat content on the living animal by means of an impedance measurement (TOBEC method).
  • For the intended effects on parameters such as food uptake and body weight development, it is desirable that an antagonist of MCH1R has sufficient brain penetration (for example determined as the ratio of the compound level in the brain tissue and in the blood serum attained at one time) (on this subject, see, for example, J. Pharmacol. Exp. Thera. 2008, 324, 206-213). Preferred compounds of the invention have a ratio of brain to serum levels of at least 0.3. Further preferred compounds have a ratio of at least 0.6. Particularly preferred compounds exhibit a ratio of at least 1.0.
  • Micronucleus Test (In Vitro)
  • The aim of the micronucleus test (in vitro) is to examine whether a test compound has the potential to elicit the formation of micronuclei (small membrane-bound DNA fragments) in various cell lines or primary cultures, with or without metabolic activation by S9 liver homogenate. The test system allows differentiation between the clastogenic and aneugenic potential of a test compound by an immunochemical labeling of the kinetochores or by staining the DNA fragments by the FISH (fluorescence in situ hybridization) method.
  • Brief description: The cells are treated in a 96-well microtiter plate with the test compound. The treatment time is typically 3 hours with metabolic activation or 24 hours without metabolic activation. Twenty-four hours after the end of the treatment, the cells are isolated, fixed and stained. The cytotoxicity of the test compound is assessed according to the relative cell growth expressed as percentage growth or taking account of the doubling time as population doubling compared with the negative control. The highest test concentration should show not less than 30% surviving cells, or should be the concentration at which a precipitate of the test compound is observed. Duplicate determinations should be carried out with each test concentration. An accurate detailed description of the experiment is to be found in Kirsch-Volders et al. (Mutation Res. 2003, 540, 153-163).
  • Evaluation: The structural or numerical chromosomal damage is reported as the increase in the number of cells with micronuclei in an ensemble of 1000 cells at three analyzable test concentrations. The test is regarded as positive in the following cases:
      • a) the increase in the number of cells with micronuclei is significant by comparison with the negative control (solvent or untreated), or
      • b) the number of micronuclei is increased to a biologically relevant extent, concentration-dependently by comparison with the negative control.
  • A positive control must show a clear statistically significant effect by comparison with the negative control.
  • Preferred compounds of the invention are negative in the micronucleus test.
  • AMES II Test
  • The aim of the AMES II test is to examine whether a test compound has mutagenic potential.
  • Brief description: A mixed bacterial strain (mixed strains, 6 different Salmonella typhimurium strains with in each case a missence point mutation in the histidine operon) and the Salmonella typhimurium strain TA98 for detecting frame shift mutations is treated in a 384-well microtiter plate with various concentrations of the test substance with or without metabolic activation through addition of S9 liver homogenate (accurate descriptions of the experiment are to be found in the literature: P. Gee, D. M. Maron, B. N. Ames; Proc. Natl. Acad. Sci. USA 1994, 91, 11606 and Flückiger-Isler et al.; Mutation Res. 2004, 558, 181 and cit. lit.). Mutagenic test compounds cause back-mutations and thus restore the functionality of endogenous histidine biosynthesis. Mutated bacteria are thus able to divide and expand to bacterial colonies.
  • Evaluation: If there is enhanced bacterial growth owing to mutations of the bacteria, then enzymes are digested in the growth medium. As a result, the pH in the medium falls and the color of the added indicator (bromocresol purple) changes from pale violet to yellow. The test is regarded as positive if the number of wells in which a color change is observed per concentration increases significantly by comparison with the control.
  • Preferred compounds of the invention are negative in the AMES II test.
  • Cytotoxicity Tests a) LDH Release
  • The aim of the test for LDH (lactate dehydrogenase) release is to examine whether a compound damages the integrity of the cell wall and may thus cause cell death.
  • Brief description: The LDH activity which enters the cell supernatant from the cytosol due to cell damage is measured by colorimetry. The cells are treated with the test compound. Fifty microliters of the culture supernatant are removed and mixed with the reaction solution (LDH kit, Roche, Mannheim) in accordance with the manufacturer's information. LDH catalyzes the conversion of lactate into pyruvate. During this, NAD+ is reduced to NADH/H+. The latter in turn reduces, under the influence of the added diaphorase, a likewise added yellow tetrazolium salt to the red formazan.
  • Evaluation: The formazan is quantified by measuring the absorption at 492 nM (e.g. with TECAN SPECTRAFluor Plus).
  • Preferred compounds of the invention show no significant increase in LDH activity at concentrations below 10 μM. Particularly preferred compounds show no increase below a concentration of 50 μM. Even further preferred compounds show no increase below a concentration of 250 μM.
  • b) Intracellular ATP Content
  • The aim of the test is to determine the total intracellular ATP content, which is a measure of the energy level and thus the vitality of a cell.
  • Brief description: 100 μl of cell culture medium are mixed in a well of a microtiter plate with 100 μl of the CellTiter-Glo reagent (following the manufacturer's instructions: Promega Technical Bulletin No. 228, CellTiter-Glo Luminesent Cell Viability Assay). The cultures are shaken at room temperature for 2 minutes and then incubated for 10 minutes until the luminescence signal has stabilized.
  • Evaluation: The luminescence is recorded, integrating over one second (e.g. with TECAN SPECTRAFluor Plus).
  • Preferred compounds of the invention show no significant reduction in the ATP levels at concentrations below 10 μM. Particularly preferred compounds show no reduction below a concentration of 50 μM. Even further preferred compounds show no reduction below a concentration of 250 μM.
  • c) Neutral Red Uptake
  • The aim of the test is to measure the uptake of neutral red (NR) into the lysosomes/endosomes and vacuoles of living cells, which is a quantitative measure of the number and vitality of the cells.
  • Brief description: The cells are washed with 150 μl of a preheated phosphate buffer solution (PBS) and incubated with 100 μl of the NR medium at 37° C. in a humidified atmosphere with 7.5% carbon dioxide for 3 hours. After the incubation, the NR medium is removed and the cells are washed with 150 μl of PBS. Removal of the PBS is followed by addition of exactly 150 μl of an ethanol/glacial acetic acid solution. After shaking for 10 minutes, the dye is extracted from the cells to give a homogeneous dye solution. An exact description of the test is to be found in the literature (E. Borenfreund, J. A. Puerner, Toxicol. Lett. 1985, 24(2-3), 119-124).
  • Evaluation: The absorption of the dye solution is determined at 540 nM using a microtiter plate reader as difference from the absorption of the ethanol/glacial acetic acid solution.
  • HERG Channel Blockade
  • The aim of the test is to determine the concentration range in which the test compound blocks the cardiac hERG channel. Blockade of the hERG channel, which is responsible for the Ikr current in the human heart, is associated with potentially fatal arrhythmias.
  • For expression of the cDNA encoding the hERG channel it was cloned into the pcDNA3 vector (Invitrogen). Chinese hamster oocytes (CHO, American Type Culture Collection, Rockville, Md.) were transfected using lipofectamine (GIBCO/BRL, Grand Island, N.Y.) with the hERG cDNA and selected using G418 (GIBCO/BRL, Grand Island, N.Y.; 500 μg/ml). CHO cells with stable expression of the hERG channel were cultured on a HAM F-12 medium which was supplemented with 10% native bovine serum, 1× penicillin/streptomycin and 500 μg/ml G418 in an atmosphere of 95% air/5% carbon dioxide.
  • The cells selected for the patch clamp experiment are seeded on a plastic support 18-24 hours before the experiment. HERG channel currents are recorded at room temperature by the whole-cell variant of the patch clamp technique using an Axopatch 200B amplifier (Axon Instruments, Foster City, Calif.). The electrodes (3-6 megaohms resistance) are prepared from TW150F glass capillaries (World Precision Instruments, Sarasota, Fla.) and filled with the pipette solution (120 mM potassium aspartate, 20 mM KCl, 4 mM Na2ATP, 5 mM HEPES, 1 mM MgCl2; adjusted to pH 7.2 with KOH). The hERG channel currents are induced by a positive voltage pulse (20 mV) followed by a negative pulse (−40 mV) and are recorded for later analysis. As soon as the hERG channel current of the cell flushed with the control solution (130 mM, 5 mM KCl, 2.8 mM NaOAc, 1 mM MgCl2, 10 mM HEPES; 10 mM glucose, 1 mM CaCl2; adjusted to pH 7.4 with NaOH) is stable, the cell is perfused with the test compound dissolved in the above control solution (by dilution of a 10 or 100 mM DMSO solution of the test compound so that the DMSO content is no more than 0.1%). The current is followed continuously until no further changes occur. The same procedure is repeated with increasing concentrations of the test compound. The maximum amplitude of the hERG current is measured in picoAmperes (pA) for each concentration and for each cell. The maximum amplitude in pA for each concentration of the test compound is compared with that of the pure control solution in the same cell and calculated as % of the control value.
  • Evaluation: The test compound is tested at various concentrations in 3-5 CHO cells which express the hERG channel. The IC50 is obtained by use of nonlinear least squares regression (GraphPAD Software, San Diego, Calif.).
  • General Selectivity
  • In order to minimize the risk of unwanted side effects, it is desirable to keep the nonselective effect on biologically important functional units (e.g. receptors, ion channels and enzymes; for lists, see, for example, Whitebread, S. et al.; Drug Discovery Today 2005, 10, 1421-33 and Rolland, C. et al.; J. Med. Chem. 2005, 48, 6563-6574) by an active pharmaceutical ingredient as small as possible. General selectivity tests in a large number of in vitro test systems can be carried out by various specialized services (e.g. Cerep, Panlabs).
  • The compounds of the invention of the formula I exhibit, as selective MCH1R antagonists, selectivity factors of at least 30, preferably of 100, more preferably of 300 and even more preferably of 1000 vis à vis the affinity to other proteins. Examples of such proteins are serotonin receptor subtypes (e.g. the 5-HT2a receptor), muscarine receptor subtypes (e.g. the M1 receptor), adrenergic receptor subtypes (e.g. AR alpha1a), sodium and calcium channels (e.g. the L-type calcium channel).
  • Solubilities in Aqueous Systems
  • Adequate solubility of a substance in aqueous solvent systems is an important prerequisite for a (reproducible) pharmacological effect. Solubilities in aqueous systems can be determined by various methods. Suitable examples are solution precipitation methods (“kinetic solubility”) and methods which investigate the dissolution of a solid sample until an equilibrium is set up (“thermodynamic solubility”).
  • a) Kinetic Solubility
  • A DMSO solution of the test compound (2.5 mM; 0.5 μl) is pipetted into 200 μl of an aqueous test solution (e.g. phosphate-buffered saline, 10×, 1M, Sigma, adjusted to 10 mM, pH 7.4) in a 96-well microtiter plate, and the turbidity is measured at the resulting theoretical concentration for the test compound of 6.25 μM using a nephelometer (e.g. Nephelostar Galaxy, BMG Labtech). The concentration of the test compound in the aqueous test solution is then raised to a theoretical 12.5 μM by adding further DMSO solution (2.5 mM; 0.5 μl), and the turbidity measurement is repeated. Further additions of DMSO solutions (1 μl, 2.5 mM; 0.5 μl, 10 mM; then 9×1 μl, 10 mM resulting in theoretical concentrations of 25 μM, 50 μM, 100 μM, 150 μM, 200 μM, 250 μM, 300 μM, 350 μM, 400 μM, 450 μM and 500 μM) with turbidity measurement in between complete the measurement process.
  • Evaluation: The turbidity values from the nephelometer are plotted against the theoretical concentration of the test compound in the aqueous test solution. As soon as a significant turbidity is detected (e.g. 5 times above the control value of the aqueous test solution) at a theoretical concentration, the level of concentration below this is stated to be the solubility limit of the test compound in the test solution. Thus, the maximum possible measurement range emerges as values <6.25 μM, 6.25-500 μM and >500 μM.
  • Preferred compounds of the invention show a kinetic solubility in phosphate buffer (pH 7.4) of at least 12.5 μM; more preferably of at least 50 μM and even more preferably of at least 250 μM.
  • b) Thermodynamic Solubility
  • The integrated UV absorption from HPLC UV measurement of serial dilutions of the test compound in DMSO (500 μM, 100 μM, 50 μM, 10 μM and 1 μM) shows a linear correlation with the concentration in a calibration line. The test compound (500 μg) is shaken together with the aqueous test solution (250 μl) in a closed vessel (capacity: 1.5 ml) for 16 hours (Eppendorf thermoshaker, 1400 rpm, 25° C., covering to protect from light). The sample is then centrifuged at maximum rotational speed, and the supernatant is finally filtered. A sample of the filtered supernatant is analyzed directly by HPLC UV measurement (see above). A further sample is analyzed after dilution (1 part by volume of supernatant, 39 parts by volume of test solution).
  • Evaluation: The concentration of the test compound in the undiluted supernatant is calculated from the resulting integrated UV absorptions of the supernatant samples on the basis of the constructed calibration lines and stated as solubility of the test compound in the respective aqueous test solution.
  • Examples of aqueous test solutions are deionized water or aqueous phosphate buffer with various pH values (e.g. pH 1.2; pH 4.0; pH 6.8; pH 7.4; pH 9.0) which can be prepared from the commercial solution (phosphate buffered saline, 10×, Sigma) by dilution and adjustment with phosphoric acid or sodium hydroxide solution by standard methods.
  • Preferred compounds of the invention show a solubility in phosphate buffer (pH 7.4) of at least 12.5 μM; more preferably of at least 50 μM and even more preferably of at least 250 μM.
  • Permeability
  • The test for permeability is carried out in CACO-2/TC7 cells which have been cultured (DMEM/Glutamax I/Gibco with high glucose content, HEPES 25 mM, 1% NEAA, 10% FBS, 40 μg/ml gentamycin; 37° C. surrounding temperature; 95% humidity and 10% CO2 content) on Becton Dickinson filters (24-well, uncoated) for 21 days. The permeability is tested at a concentration of 20 μM for the test compound (1% DMSO in HBSS) with a pH gradient (apical: pH 6.5 and 0.5% BSA; basolateral: pH 7.4 and 5% BSA). Analysis takes place by means of LCMS/MS. Further descriptions of the test system and references for the experimental procedure are to be found in Balimane, P. V.; Drug Discovery Today 2005, 10(5), 335-343.
  • Inhibition of CYP Enzymes
  • The inhibition of CYP enzymes is determined on recombinant enzymes (obtained from Becton Dickinson) and fluorescent substrates (BD/Gentest) as recommended by the manufacturer (see Website http://www.bdbiosciences.com). Further descriptions of the test system and references for the experimental procedure are to be found in Zlokarnik, G.; Drug Discovery Today 2005, 10(21), 1443-1450.
  • Metabolic Stability
  • The metabolic stability is determined by incubating the test compound (5 μM) with microsomal liver fractions (1 mg/ml protein with 0.1% w/v BSA; 1 mM NADPH, 0.5% DMSO) at 37° C. Analysis at an incubation time of 0 and 20 minutes takes place by means of LCMS/MS. Further descriptions of the test system and references for the experimental procedure are to be found in Plant, N.; Drug Discovery Today 2004, 9(7), 328-336 and Lau, Y. Y. et al.; Pharmaceutical Res. 2002, 19(11), 1606-1610.
  • EXAMPLES
  • The examples and preparation methods adduced below serve to illustrate the invention, but without limiting it.
  • The inventive compounds of the formula I can be prepared with the aid of reactions known in principle. For example, an amino acid of the structure Z1 can first be protected selectively (for example by method D with Boc2O). The subsequent reaction with an amine (HNR1R2) can advantageously be carried out using a commonly known coupling reagent (for example by method A-1 with HATU or by method A-2 with EDC/HOBt). Removal of the protecting group (for example by method C with hydrochloric acid) and subsequent reduction (for example by method B with lithium aluminum hydride) gives rise to an amine of structure Z2 (where R8=H). When one carbamate protecting group is not removed before the reduction, Z2 is obtained with R8=methyl. In a last step, the inventive compounds of the formula Ia can be obtained by reducing the amine Z2 with an acid of the structure B-L3-A-L2-CO2H (for example by method A-1 or A-2) (scheme 1).
  • Figure US20140088077A1-20140327-C00027
  • Further compounds of the type Ia can be obtained by reacting the intermediates Z2 with carboxylic acids of the structure HO-A-L2-COOH (for example by method A-2) and subsequent alkylation with appropriate alkylating agents (for example by method F with alkyl bromides, alkyl iodides or alkylsulfonic esters).
  • Alternatively, compounds of the formula I can be obtained from the ketones Z3, which are commercially available, or can be prepared by known methods (see, for example, synthesis 2004, 121; J. Org. Chem. 1995, 60, 4324). Acid-catalyzed condensation of the ketones Z3 with amides (B-L3-A-L2-CONH2) and subsequent (optionally asymmetric) catalytic hydrogenation of the resulting enamides under known conditions (see, for example, Adv. Synth. Catal. 2003, 345, 230; Tetrahedron: Asymmetry 1999, 10, 3467; J. Org. Chem. 1995, 60, 4324) gives rise to the aryl bromides Z4. These can be converted by literature methods to the arylcarbonyl compounds Z5 (see, for example, J. Am. Chem. Soc. 2000, 122, 6935; J. Med. Chem. 2005, 48, 1948; Angew. Chem. Int. Ed. 2006, 45, 154). Final reductive amination leads to the compounds Ib (scheme 2).
  • Figure US20140088077A1-20140327-C00028
  • Stereochemically defined compounds of type Ib* can be formed, for example, by condensation of the intermediates Z5′ with chiral sulfinylamides (for example by method M), addition of Grignard reagents (for example by method L), hydrolysis (for example by method K) and optional reductive alkylation, for example by method H-2 (scheme 2-1).
  • Figure US20140088077A1-20140327-C00029
  • Further intermediates of the Z4 type can be obtained by subsequent modification of substituents. For example, methoxy groups (B-L3=MeO) can be cleaved by reagents such as hydrogen bromide or boron tribromide (for example by method N), and the resulting aromatic hydroxyl compounds can be reacted with appropriate alkylating agents (for example by method F with alkyl bromides, alkyl iodides or alkyl sulfonates).
  • The intermediates Z4 can also be used to synthesize other compounds of the formula I. For this purpose, for example, the dian ions obtained by sequential treatment of Z4 with MeLi and then n-BuLi can be reacted with ketones (R34COR35). The resulting tertiary alcohols can be converted under the conditions of the Ritter reaction (e.g. TMSCN, H2SO4/HOAc to amides which then, after hydrolysis and optional reductive amination, give rise to compounds of the structure Ib-1 (scheme 2-2).
  • Alternatively, the intermediates Z4 can also be reacted by means of transition metal complexes (for example those of Pd and Ni) catalyzed with pyridyl compounds (e.g. pyridyltrialkyltin compounds, pyridylboronic acid (derivatives) or pyridine N-oxides). Subsequent hydrogenation with suitable catalysts (e.g. PtO2 in HOAc; method J-1) and optional reductive alkylation gives rise to the structures Ib-2 (scheme 2-2).
  • In another variant, the intermediates Z4 are reacted with allyl-metal compounds (e.g. allyltributyltin) under palladium catalysis, then the double bond is cleaved oxidatively (for example with OsO4/NaIO4), and the aldehydes thus obtained are reacted with amines HNR1R2 in the sense of a reductive amination (scheme 2-2).
  • Figure US20140088077A1-20140327-C00030
  • Alkylation (for example with NaH, MeI) on the amide function of the intermediates Z4, Z5 and Z5′ and further synthesis along the pathways specified above, and also analogous alkylation of the structures Ib, Ib-1, Ib-2 and Ib-3, give rise to further routes to compounds of the formula I (variation of the substituent R8).
  • A further preparation process for other compounds of the formula I again consists in reacting dichlorides of the Z6 type or isochromenones of the Z7 type with amines Z8 by processes known in principle (scheme 3). The dichlorides Z6 required can be obtained from ortho-methylbenzoic acids by double metalation, for example with lithium diisopropylamide (LDA), scavenging of the dianion with formaldehyde (for example in the form of paraformaldehyde) and final dichlorination. The amines Z8 can be obtained, for example, according to scheme 1 (Z2 with R8=H) or according to scheme 2 by hydrolysis of the structures Ib.
  • Figure US20140088077A1-20140327-C00031
  • Alternatively, for the synthesis of (dihydro)isoquinolinones of the formula I, it is also to possible to cleave the amide bond of the intermediates Z4 under appropriate conditions (for example with HBr/methanesulfonic acid). The amines thus obtained can be reacted with the dichlorides Z6 (or the isochromenones Z7). The bromides Z9 thus prepared can then be converted further to inventive compounds analogously to the intermediates Z4 (preferably by means of the transition metal-catalyzed reactions specified there). For example, the bromides Z9 can be reductively carbonylated and the aldehydes thus obtained can be converted to compounds of the le type by means of a reductive amination (scheme 3-1).
  • Figure US20140088077A1-20140327-C00032
  • Descriptions of the general methods used can be found, by way of example, at the following points:
  • method A-1, B, C, D, E, F, G in example 1;
    method H, I in example 2;
    method J-1 in example 4;
    method K, L, M-1 in example 6;
    method H-2 in example 8-1;
    method A-2 in example 9-1;
    method N in example 13;
    method O in example 14;
    method P in example 15.
  • General Explanations a) Drawing of the Structural Formulae
  • In the structural formulae of the examples given, for clarity, preferentially only non-hydrogen atoms are shown.
  • b) Salt Forms
  • Many of the inventive compounds are bases and can form salts with correspondingly strong acid. In particular, the compounds, after HPLC purification using an eluent comprising trifluoroacetic acid, may be present in the form of hydrotrifluoroacetates. These can be converted to the free bases shown by simple treatment of a solution of the salts, for example with sodium carbonate solution.
  • c) Units of the Characterization Data
  • The unit of the molecular weights reported is “g/mol”. Peaks observed in the mass spectrum are reported as the integer quotient of the molar molecular ion mass and the charge of the molecular ion (m/z).
  • Example 1 N—((S)-6-Pyrrolidin-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00033
  • Method A-1
  • To a solution of 4-[(S)-1-(TETRAHYDROFURAN-2-YL)METHOXY]BENZOIC ACID (3.38 g) in NMP (30 ml) were added HATU (O-(7-AZABENZOTRIAZOL-1-YL)-N,N,N′,N′-TETRAMETHYLURONIUM HEXAFLUOROPHOSPHATE; 5.78 g) and then triethylamine (2.12 ml). A solution of (S)-6-pyrrolidin-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-ylamine (3.5 g) in NMP (20 ml) was added dropwise. After 12 hours, the reaction mixture was diluted with ethyl acetate, washed with saturated sodium carbonate solution and concentrated. The residue was purified by chromatography on silica gel (eluent: 10:1 DCM/MeOH). The product was thus obtained with the molecular weight of 434.58 (C27H34N2O3); MS (ESI): 435 (M+H+).
  • (S)-6-Pyrrolidin-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-ylamine Method B
  • A solution of ((S)-6-amino-5,6,7,8-tetrahydronaphthalen-2-yl)pyrrolidin-1-ylmethanone (0.49 g) in THF (5 ml) was added dropwise to a suspension of lithium aluminum hydride (0.60 g) in THF (10 ml). The mixture was stirred at RT for one hour. Water (0.6 ml) was cautiously added dropwise, followed by sodium hydroxide solution (16%; 2 ml) and water again (2 ml). The resulting precipitate was filtered off and the filtrate was concentrated. The residue was taken up in hydrochloric acid (1N) and the solution was washed with diethyl ether. The aqueous phase was basified with concentrated sodium hydroxide solution and extracted three times with dichloromethane (DCM). The combined organic phases were dried over magnesium sulfate and concentrated. The product was thus obtained with the molecular weight of 230.36 (C15H22N2); MS (ESI): 231 (M+H+).
  • In an analogous manner, (S)-6-(4-methoxypiperidin-1-ylmethyl)-1,2,3,4-tetrahydronaphthalen-2-ylamine and (S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-ylamine were prepared.
  • ((S)-6-Amino-5,6,7,8-tetrahydronaphthalen-2-yl)-pyrrolidine-1-ylmethanone Method C
  • To a solution of [(S)-6-(pyrrolidine-1-carbonyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-carbamic acid tert-butyl ester (0.70 g) in MeOH (5 ml) was added concentrated hydrochloric acid (5 ml). After one hour, the mixture was basified with concentrated sodium hydroxide solution and extracted three times with DCM. The combined organic phases were dried over magnesium sulfate and concentrated. The product was thus obtained with the molecular weight of 244.34 (C15H20N20); MS (ESI): 245 (M+H+).
  • [(S)-6-(Pyrrolidine-1-carbonyl)-1,2,3,4-tetrahydronaphthalenr-2-yl]carbamic acid tert-butyl ester
  • According to method A-1, (S)-6-tert-butoxycarbonylamino-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid was reacted with pyrrolidine. The product was thus obtained with the molecular weight of 344.46 (C20H28N2O3); MS (ESI): 345 (M+H+).
  • (S)-6-tert-Butoxycarbonylamino-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid Method D
  • To a mixture of (S)-6-amino-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid (1.0 g), sodium hydroxide solution (32%; 1.1 g) and MeOH (20 ml) was added DI-TERT-BUTYL DICARBONATE (1.92 g). The mixture was stirred at 50° C. for 6 hours and then water (150 ml) was added. After extraction with diethyl ether, the aqueous phase was acidified slightly and extracted three times with DCM. The combined organic phases were dried over magnesium sulphate and concentrated. The product was thus obtained with the molecular weight of 291.35 (C16H21NO4); MS (ESI): 292 (M+H+).
  • 4-[(S)-1-(Tetrahydrofuran-2-yl)methoxy]benzoic acid Method E
  • A mixture of 4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzoic acid methyl ester (9.8 g), sodium hydroxide solution (2 N; 80 ml) and MeOH (300 ml) was stirred for 12 hours. Organic volatile fractions were removed on a rotary evaporator. The remaining aqueous phase was extracted with methyl tert-butyl ether (MTBE) and then acidified with concentrated hydrochloric acid. The resulting precipitate was filtered off and dried. The product was thus obtained with the molecular weight of 222.24 (C12H14O4); MS (ESI): 223 (M+H+).
  • 4-[(S)-1-(Tetrahydrofuran-2-yl)methoxy]benzoic acid methyl ester Method F
  • A mixture of methanesulfonic acid (S)-1-(tetrahydrofuran-2-yl)methyl ester (7.6 g), 4-hydroxybenzoic acid methyl ester (6.4 g), cesium carbonate (20 g) and NMP (100 ml) was heated to 75° C. for 12 hours. The cooled reaction mixture was admixed with water and extracted with ethyl acetate. The organic phase was washed three times with water, dried over magnesium sulfate and concentrated. The product was thus obtained with the molecular weight of 236.27 (C13H16O4); MS (ESI): 237 (M+H+).
  • Methanesulfonic acid (S)-1-(tetrahydrofuran-2-yl)methyl ester Method G
  • To a solution of (S)-1-(tetrahydrofuran-2-yl)methanol (7.95 g) in pyridine (35 ml) was added, at −15° C., methanesulfonyl chloride (7.47 g), and the reaction was stirred at 0° C. for 5 hours. After the addition of water, the mixture was extracted with ethyl acetate. The organic phases were dried over magnesium sulfate and concentrated. The product was thus obtained with the molecular weight of 180.22 (C6H12O4S); MS (ESI): 181 (M+H+). Analogously, methanesulfonic acid (R)-1-(tetrahydrofuran-2-yl)methyl ester was synthesized.
  • Example 2 N-Methyl-N—((S)-6-pyrrolidin-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00034
  • According to method A-1,4-[(S)-1-(TETRAHYDROFURAN-2-YL)METHOXY]-BENZOIC ACID was reacted with methyl-((S)-6-pyrrolidin-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)amine. The product was thus obtained with the molecular weight of 448.61 (C28H36N2O3); MS (ESI): 449 (M+H+).
  • Methyl-((S)-6 pyrrolidin-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)amine
  • According to method B, [(S)-6-(pyrrolidine-1-carbonyl)-1,2,3,4-tetrahydronaphthalen-2-yl]carbamic acid tert-butyl ester was reacted with lithium aluminum hydride (10 equiv., 60° C., 2 hours). The product was thus obtained with the molecular weight of 244.38 (C16H24N2); MS (ESI): 245 (M+H+).
  • Example 3-1 N-{(S)-6-[(Isobutylmethylamino)methyl]-1,2,3,4-tetrahydronaphthalen-2-yl}-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00035
  • Method H-1
  • To a mixture of N—((S)-6-formyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (0.50 g), THF (5 ml), methanol (2 ml), isobutylmethylamine (0.23 g) and acetic acid (0.24 g) was added polymer-bound sodium cyanoborohydride (2.7 mmol), and the suspension was agitated at room temperature for 12 hours. The polymer was filtered off with suction and the filtrate was concentrated. The residue was purified by preparative HPLC. The product was thus obtained with the molecular weight of 450.63 (C28H38N2O3); MS (ESI): 451 (M+H+).
  • N—((S)-6-Formyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide Method I
  • A mixture of N—((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (10.0 g) and THF (130 ml) was cooled to −78° C. (dry ice bath) and a solution of methyl lithium (18.9 ml; 1.6 M in diethyl ether) was added dropwise. One minute after the addition had ended, a solution of butyllithium (13.9 ml; 2.5 M in toluene) was added dropwise. One minute after the addition had ended, DMF (5.1 g) was added, and, after a further 30 seconds, acetic acid (4.5 ml). After warming to room temperature, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic phases were dried over magnesium sulfate and concentrated. The product was thus obtained with the molecular weight of 379.46 (C23H25NO4); MS (ESI): 380 (M+H+). In an analogous manner, N—((R)-6-formyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide was prepared from N—((R)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide.
  • N—((S)-6-Bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • According to method F, N—((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-hydroxybenzamide was reacted with methanesulfonic acid (S)-1-(tetrahydrofuran-2-yl)methyl ester. The product was thus obtained with the molecular weight of 430.35 (C22H24BrNO3); MS (ESI): 430 (M+H+).
  • N—((S)-6-Bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-hydroxybenzamide
  • A mixture of N—((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-methoxybenzamide (3.0 g), glacial acetic acid (2 ml) and HBr (20 ml; 48% in water) was heated to 150° C. in a closed glass vessel in a microwave reactor for 25 minutes. The precipitate obtained after the cooling was filtered off. The product was thus obtained with the molecular weight of 346.23 (C17H16BrNO2); MS (ESI): 346 (M+H+). Both N—((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-methoxybenzamide and N—((R)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-methoxybenzamide were obtained by literature methods (J. Org. Chem. 1995, 60, 4324).
  • The examples compiled in table 1 were obtained by reacting the appropriate carbonyl compounds (aldehydes or ketones) with the appropriate amines by method H-1.
  • TABLE 1
    ESI-
    Ex. Molecular- MS
    No. Structure weight [M + H]+
    3-2
    Figure US20140088077A1-20140327-C00036
    434.58 435
    3-3
    Figure US20140088077A1-20140327-C00037
    436.59 437
    3-4
    Figure US20140088077A1-20140327-C00038
    448.60 449
    3-5
    Figure US20140088077A1-20140327-C00039
    448.60 449
    3-6
    Figure US20140088077A1-20140327-C00040
    462.63 463
    3-7
    Figure US20140088077A1-20140327-C00041
    462.63 463
    3-8
    Figure US20140088077A1-20140327-C00042
    462.63 463
    3-9
    Figure US20140088077A1-20140327-C00043
    466.59 467
    3-10
    Figure US20140088077A1-20140327-C00044
    484.58 485
    3-11
    Figure US20140088077A1-20140327-C00045
    452.57 453
    3-12
    Figure US20140088077A1-20140327-C00046
    460.61 461
    3-13
    Figure US20140088077A1-20140327-C00047
    502.70 503
    3-14
    Figure US20140088077A1-20140327-C00048
    474.64 475
    3-15
    Figure US20140088077A1-20140327-C00049
    464.65 465
    3-16
    Figure US20140088077A1-20140327-C00050
    448.60 449
    3-17
    Figure US20140088077A1-20140327-C00051
    492.66 493
    3-18
    Figure US20140088077A1-20140327-C00052
    492.66 493
    3-19
    Figure US20140088077A1-20140327-C00053
    466.62 467
    3-20
    Figure US20140088077A1-20140327-C00054
    484.64 485
    3-21
    Figure US20140088077A1-20140327-C00055
    420.55 421
    3-22
    Figure US20140088077A1-20140327-C00056
    450.58 451
    3-23
    Figure US20140088077A1-20140327-C00057
    462.51 463
    3-24
    Figure US20140088077A1-20140327-C00058
    422.57 423
    3-25
    Figure US20140088077A1-20140327-C00059
    438.57 439
    3-26
    Figure US20140088077A1-20140327-C00060
    452.55 453
    3-27
    Figure US20140088077A1-20140327-C00061
    434.58 435
    3-28
    Figure US20140088077A1-20140327-C00062
    434.58 435
    3-29
    Figure US20140088077A1-20140327-C00063
    466.64 467
    3-30
    Figure US20140088077A1-20140327-C00064
    452.59 453
    3-31
    Figure US20140088077A1-20140327-C00065
    465.59 466
    3-32
    Figure US20140088077A1-20140327-C00066
    488.63 489
    3-33
    Figure US20140088077A1-20140327-C00067
    505.66 506
    3-34
    Figure US20140088077A1-20140327-C00068
    450.62 451
    3-35
    Figure US20140088077A1-20140327-C00069
    450.62 451
    3-36
    Figure US20140088077A1-20140327-C00070
    465.63 466
    3-37
    Figure US20140088077A1-20140327-C00071
    463.62 464
    3-38
    Figure US20140088077A1-20140327-C00072
    450.62 451
    3-39
    Figure US20140088077A1-20140327-C00073
    496.65 497
    3-40
    Figure US20140088077A1-20140327-C00074
    464.60 465
    3-41
    Figure US20140088077A1-20140327-C00075
    464.60 465
    3-42
    Figure US20140088077A1-20140327-C00076
    464.60 465
    3-43
    Figure US20140088077A1-20140327-C00077
    464.60 465
    3-44
    Figure US20140088077A1-20140327-C00078
    491.63 492
    3-45
    Figure US20140088077A1-20140327-C00079
    462.63 463
    3-46
    Figure US20140088077A1-20140327-C00080
    450.62 451
    3-47
    Figure US20140088077A1-20140327-C00081
    496.65 497
    3-48
    Figure US20140088077A1-20140327-C00082
    488.67 489
    3-49
    Figure US20140088077A1-20140327-C00083
    478.63 479
    3-50
    Figure US20140088077A1-20140327-C00084
    461.60 462
    3-51
    Figure US20140088077A1-20140327-C00085
    474.60 475
    3-52
    Figure US20140088077A1-20140327-C00086
    476.66 477
    3-53
    Figure US20140088077A1-20140327-C00087
    478.63 479
    3-54
    Figure US20140088077A1-20140327-C00088
    452.59 453
    3-55
    Figure US20140088077A1-20140327-C00089
    491.63 492
    3-56
    Figure US20140088077A1-20140327-C00090
    492.62 493
    3-57
    Figure US20140088077A1-20140327-C00091
    450.58 451
    3-58
    Figure US20140088077A1-20140327-C00092
    454.56 455
    3-59
    Figure US20140088077A1-20140327-C00093
    420.55 421
    3-60
    Figure US20140088077A1-20140327-C00094
    502.70 503
    3-61
    Figure US20140088077A1-20140327-C00095
    466.58 467
    3-62
    Figure US20140088077A1-20140327-C00096
    478.63 479
    3-63
    Figure US20140088077A1-20140327-C00097
    486.61 487
    3-64
    Figure US20140088077A1-20140327-C00098
    486.63 487
    3-65
    Figure US20140088077A1-20140327-C00099
    454.56 455
    3-66
    Figure US20140088077A1-20140327-C00100
    450.58 451
    3-67
    Figure US20140088077A1-20140327-C00101
    450.62 451
    3-68
    Figure US20140088077A1-20140327-C00102
    478.63 479
    3-69
    Figure US20140088077A1-20140327-C00103
    464.60 465
    3-70
    Figure US20140088077A1-20140327-C00104
    492.54 493
    3-71
    Figure US20140088077A1-20140327-C00105
    475.59 476
    3-72
    Figure US20140088077A1-20140327-C00106
    463.58 464
    3-73
    Figure US20140088077A1-20140327-C00107
    444.52 445
    3-74
    Figure US20140088077A1-20140327-C00108
    452.59 453
    3-75
    Figure US20140088077A1-20140327-C00109
    436.55 437
    3-76
    Figure US20140088077A1-20140327-C00110
    452.59 453
    3-77
    Figure US20140088077A1-20140327-C00111
    464.60 465
    3-78
    Figure US20140088077A1-20140327-C00112
    468.59 469
    3-79
    Figure US20140088077A1-20140327-C00113
    492.66 493
    3-80
    Figure US20140088077A1-20140327-C00114
    478.63 479
    3-81
    Figure US20140088077A1-20140327-C00115
    498.64 499
    3-82
    Figure US20140088077A1-20140327-C00116
    474.60 475
    3-83
    Figure US20140088077A1-20140327-C00117
    460.61 461
    3-84
    Figure US20140088077A1-20140327-C00118
    473.61 474
    3-85
    Figure US20140088077A1-20140327-C00119
    464.60 465
    3-86
    Figure US20140088077A1-20140327-C00120
    452.57 453
    3-87
    Figure US20140088077A1-20140327-C00121
    478.63 479
    3-88
    Figure US20140088077A1-20140327-C00122
    506.68 507
    3-89
    Figure US20140088077A1-20140327-C00123
    466.59 467
    3-90
    Figure US20140088077A1-20140327-C00124
    512.65 513
    3-91
    Figure US20140088077A1-20140327-C00125
    484.64 485
    3-92
    Figure US20140088077A1-20140327-C00126
    422.57 423
    3-93
    Figure US20140088077A1-20140327-C00127
    438.57 439
    3-94
    Figure US20140088077A1-20140327-C00128
    438.57 439
    3-95
    Figure US20140088077A1-20140327-C00129
    466.62 467
    3-96
    Figure US20140088077A1-20140327-C00130
    512.65 513
    3-97
    Figure US20140088077A1-20140327-C00131
    462.63 463
    3-98
    Figure US20140088077A1-20140327-C00132
    506.64 507
    3-99
    Figure US20140088077A1-20140327-C00133
    452.59 453
    3-100
    Figure US20140088077A1-20140327-C00134
    462.59 463
    3-101
    Figure US20140088077A1-20140327-C00135
    512.67 513
    3-102
    Figure US20140088077A1-20140327-C00136
    464.60 465
    3-103
    Figure US20140088077A1-20140327-C00137
    501.62 502
    3-104
    Figure US20140088077A1-20140327-C00138
    480.60 481
    3-105
    Figure US20140088077A1-20140327-C00139
    465.63 466
    3-106
    Figure US20140088077A1-20140327-C00140
    476.66 477
    3-107
    Figure US20140088077A1-20140327-C00141
    464.65 465
    3-108
    Figure US20140088077A1-20140327-C00142
    452.59 453
    3-109
    Figure US20140088077A1-20140327-C00143
    436.59 437
    3-110
    Figure US20140088077A1-20140327-C00144
    506.64 507
    3-111
    Figure US20140088077A1-20140327-C00145
    436.59 437
    3-112
    Figure US20140088077A1-20140327-C00146
    500.64 501
    3-113
    Figure US20140088077A1-20140327-C00147
    476.66 477
    3-114
    Figure US20140088077A1-20140327-C00148
    485.63 486
    3-115
    Figure US20140088077A1-20140327-C00149
    466.62 467
    3-116
    Figure US20140088077A1-20140327-C00150
    491.63 492
    3-117
    Figure US20140088077A1-20140327-C00151
    464.60 465
    3-118
    Figure US20140088077A1-20140327-C00152
    474.64 475
    3-119
    Figure US20140088077A1-20140327-C00153
    505.66 506
    3-120
    Figure US20140088077A1-20140327-C00154
    487.60 488
    3-121
    Figure US20140088077A1-20140327-C00155
    452.59 453
    3-122
    Figure US20140088077A1-20140327-C00156
    440.56 441
    3-123
    Figure US20140088077A1-20140327-C00157
    452.59 453
    3-124
    Figure US20140088077A1-20140327-C00158
    426.53 427
    3-125
    Figure US20140088077A1-20140327-C00159
    476.66 477
    3-126
    Figure US20140088077A1-20140327-C00160
    448.60 449
    3-127
    Figure US20140088077A1-20140327-C00161
    450.62 451
    3-128
    Figure US20140088077A1-20140327-C00162
    476.66 477
    3-129
    Figure US20140088077A1-20140327-C00163
    452.59 453
    3-130
    Figure US20140088077A1-20140327-C00164
    476.66 477
    3-131
    Figure US20140088077A1-20140327-C00165
    448.60 449
    3-132
    Figure US20140088077A1-20140327-C00166
    478.63 479
    3-133
    Figure US20140088077A1-20140327-C00167
    478.63 479
    3-134
    Figure US20140088077A1-20140327-C00168
    450.58 451
    3-135
    Figure US20140088077A1-20140327-C00169
    464.65 465
    3-136
    Figure US20140088077A1-20140327-C00170
    448.60 449
    3-137
    Figure US20140088077A1-20140327-C00171
    448.60 449
    3-138
    Figure US20140088077A1-20140327-C00172
    448.60 449
    3-139
    Figure US20140088077A1-20140327-C00173
    462.63 463
    3-140
    Figure US20140088077A1-20140327-C00174
    408.54 409
    3-141
    Figure US20140088077A1-20140327-C00175
    450.62 451
    3-142
    Figure US20140088077A1-20140327-C00176
    436.59 437
    3-143
    Figure US20140088077A1-20140327-C00177
    461.60 462
    3-144
    Figure US20140088077A1-20140327-C00178
    490.64 491
    3-145
    Figure US20140088077A1-20140327-C00179
    474.64 475
    3-146
    Figure US20140088077A1-20140327-C00180
    503.64 504
    3-147
    Figure US20140088077A1-20140327-C00181
    460.61 461
    3-148
    Figure US20140088077A1-20140327-C00182
    460.61 461
    3-149
    Figure US20140088077A1-20140327-C00183
    474.64 475
    3-150
    Figure US20140088077A1-20140327-C00184
    474.64 475
    3-151
    Figure US20140088077A1-20140327-C00185
    488.67 489
    3-152
    Figure US20140088077A1-20140327-C00186
    448.60 449
    3-153
    Figure US20140088077A1-20140327-C00187
    488.67 489
    3-154
    Figure US20140088077A1-20140327-C00188
    488.67 489
    3-155
    Figure US20140088077A1-20140327-C00189
    488.67 489
    3-156
    Figure US20140088077A1-20140327-C00190
    474.64 475
    3-157
    Figure US20140088077A1-20140327-C00191
    492.70 493
    3-158
    Figure US20140088077A1-20140327-C00192
    476.66 477
    3-159
    Figure US20140088077A1-20140327-C00193
    488.67 489
    3-160
    Figure US20140088077A1-20140327-C00194
    476.66 477
    3-161
    Figure US20140088077A1-20140327-C00195
    490.68 491
    3-162
    Figure US20140088077A1-20140327-C00196
    490.68 491
    3-163
    Figure US20140088077A1-20140327-C00197
    477.65 478
    3-164
    Figure US20140088077A1-20140327-C00198
    476.66 477
    3-165
    Figure US20140088077A1-20140327-C00199
    504.71 505
    3-166
    Figure US20140088077A1-20140327-C00200
    476.66 477
    3-167
    Figure US20140088077A1-20140327-C00201
    490.68 491
    3-168
    Figure US20140088077A1-20140327-C00202
    464.65 465
    3-169
    Figure US20140088077A1-20140327-C00203
    492.66 493
    3-170
    Figure US20140088077A1-20140327-C00204
    462.63 463
    3-171
    Figure US20140088077A1-20140327-C00205
    492.70 493
    3-172
    Figure US20140088077A1-20140327-C00206
    462.63 463
    3-173
    Figure US20140088077A1-20140327-C00207
    476.66 477
    3-174
    Figure US20140088077A1-20140327-C00208
    476.66 477
    3-175
    Figure US20140088077A1-20140327-C00209
    490.68 491
    3-176
    Figure US20140088077A1-20140327-C00210
    490.68 491
    3-177
    Figure US20140088077A1-20140327-C00211
    494.67 495
    3-178
    Figure US20140088077A1-20140327-C00212
    490.68 491
    3-179
    Figure US20140088077A1-20140327-C00213
    490.68 491
    3-180
    Figure US20140088077A1-20140327-C00214
    502.70 503
    3-181
    Figure US20140088077A1-20140327-C00215
    464.65 465
    3-182
    Figure US20140088077A1-20140327-C00216
    474.64 475
    3-183
    Figure US20140088077A1-20140327-C00217
    490.56 491
    3-184
    Figure US20140088077A1-20140327-C00218
    502.70 503
    3-185
    Figure US20140088077A1-20140327-C00219
    490.68 491
    3-186
    Figure US20140088077A1-20140327-C00220
    490.68 491
    3-187
    Figure US20140088077A1-20140327-C00221
    464.65 465
    3-188
    Figure US20140088077A1-20140327-C00222
    464.65 465
    3-189
    Figure US20140088077A1-20140327-C00223
    504.71 505
    3-190
    Figure US20140088077A1-20140327-C00224
    476.66 477
    3-191
    Figure US20140088077A1-20140327-C00225
    478.63 479
    3-192
    Figure US20140088077A1-20140327-C00226
    490.68 491
    3-193
    Figure US20140088077A1-20140327-C00227
    492.66 493
    3-194
    Figure US20140088077A1-20140327-C00228
    488.67 489
    3-195
    Figure US20140088077A1-20140327-C00229
    476.66 477
    3-196
    Figure US20140088077A1-20140327-C00230
    463.63 464
    3-197
    Figure US20140088077A1-20140327-C00231
    477.65 478
    3-198
    Figure US20140088077A1-20140327-C00232
    451.61 452
    3-199
    Figure US20140088077A1-20140327-C00233
    489.66 490
    3-200
    Figure US20140088077A1-20140327-C00234
    477.65 478
    3-201
    Figure US20140088077A1-20140327-C00235
    463.63 464
    3-202
    Figure US20140088077A1-20140327-C00236
    463.63 464
    3-203
    Figure US20140088077A1-20140327-C00237
    475.64 476
    3-204
    Figure US20140088077A1-20140327-C00238
    479.62 480
    3-205
    Figure US20140088077A1-20140327-C00239
    493.65 494
    3-206
    Figure US20140088077A1-20140327-C00240
    451.61 452
    3-207
    Figure US20140088077A1-20140327-C00241
    437.59 438
    3-208
    Figure US20140088077A1-20140327-C00242
    435.57 436
    3-209
    Figure US20140088077A1-20140327-C00243
    449.60 450
    3-210
    Figure US20140088077A1-20140327-C00244
    461.61 462
    3-211
    Figure US20140088077A1-20140327-C00245
    475.64 476
    3-212
    Figure US20140088077A1-20140327-C00246
    475.64 476
    3-213
    Figure US20140088077A1-20140327-C00247
    435.57 436
    3-214
    Figure US20140088077A1-20140327-C00248
    449.60 450
  • Preparation of Starting Materials Required (Table 1) N—((S)-6-Acetyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • A mixture of N—((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (1.0 g) and THF (10 ml) was cooled to −78° C. (dry ice bath), and a solution of methyllithium (2.0 ml; 1.6 M in diethyl ether) was added dropwise. One minute after the addition had ended, a solution of butyllithium (1.4 ml; 2.5 M in toluene) was added dropwise. One minute after the addition had ended, N-methoxy-N-methylacetamide (0.24 g) was added. After warming to room temperature, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic phases were dried over magnesium sulfate and concentrated. The residue was chromatographed on silica gel (eluent: 1:1 heptane/ethyl acetate). The product was thus obtained with the molecular weight of 393.49 (C24H27NO4); MS (ESI): 394 (M+H+).
  • N—[(S)-6-(2-Oxoethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • A mixture of N—((S)-6-allyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (0.50 g), 2-propanol (50 ml) and water (50 ml) was admixed with sodium periodate (0.60 g) and osmium tetroxide (1.3 mg). After stirring vigorously for 14 hours, the reaction mixture was extracted with ethyl acetate. The organic phase was washed with sodium chloride solution, dried over sodium sulfate and concentrated. The product was thus obtained with the molecular weight of 393.49 (C24H27NO4); MS (ESI): 394 (M+H+).
  • N—((S)-6-Allyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • A mixture of N—((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (1.00 g), toluene (10 ml), Pd(PPh3)4 (26.7 mg) and allyltributyltin (2.46 g) was boiled at reflux for 5 hours. The cooled reaction mixture was diluted with ethyl acetate and washed with water. The organic phase was washed with sodium chloride solution, dried over sodium sulfate and concentrated. The residue was purified by chromatography on silica gel. The product was thus obtained with the molecular weight of 391.51 (C25H29NO3); MS (ESI): 392 (M+H+).
  • N((S)-6-formyl-1,2,3,4-tetrahydronaphthalen-2-yl)-5-[(S)-1-(tetrahydrofuran-2-yl)methoxy]pyridine-2-carboxamide
  • According to method A, (S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-ylamine was reacted with 5-hydroxypyridine-2-carboxylic acid. The amide obtained was alkylated by method F with (S)-1-(tetrahydrofuran-2-yl)methyl methanesulfonate and converted to the desired aldehyde by method I. The product was thus obtained with the molecular weight of 380A5 (C22H24N2O4); MS (ESI): 381 (M+H+).
  • Example 4 N—((S)-6-Piperidin-3-yl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00249
  • Method J-1
  • A mixture of N—((S)-6-pyridin-3-yl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (0.60 g), glacial acetic acid (30 ml) and platinum(IV) oxide (0.10 g) was stirred vigorously under a hydrogen atmosphere (balloon) for 12 hours. The catalyst was filtered off with suction and the filtrate was concentrated. The product was thus obtained with the molecular weight of 434.58 (C27H34N2O3); MS (ESI): 435 (M+H+).
  • Preparative separation on a chiral phase (Chiralpak AD-H) afforded the pure diastereomers (N—((S)—(R)-6-piperidin-3-yl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide and N—((S)—(S)-6-piperidin-3-yl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide).
  • N—((S)-6-Pyridin-3-yl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • A mixture of N—((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (1.00 g), toluene (10 ml) and Pd(PPh3)4 (2.69 g) was admixed with 3-pyridylboronic acid (0.28 g), ethanol (3 ml) and cesium carbonate solution (1.2 ml; 2 M in water). The mixture was boiled at reflux for 7 hours. The cooled reaction mixture was diluted with ethyl acetate and washed with water. The organic phase was washed with sodium chloride solution, dried over sodium sulfate and concentrated. The residue was purified by chromatography on silica gel. The product was thus obtained with the molecular weight of 428.54 (C27H28N2O3); MS (ESI): 429 (M+H+).
  • Example 5 N—((S)-6-Piperidin-2-yl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00250
  • According to method J-1, N—[(S)-6-(1-oxypyridin-2-yl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-benzamide was hydrogenated. The product was thus obtained with the molecular weight of 434.58 (C27H34N2O3); MS (ESI): 435 (M+H+).
  • N—[(S)-6-(1-Oxypyridin-2-yl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • A mixture of pyridine N-oxide (0.88 g), potassium carbonate (0.64 g), tri-tert-butylphosphine (0.101 g; HBF4 adduct) and palladium(II) acetate (26 mg) was admixed with a solution of N—((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (1.00 g) in toluene (8 ml). The mixture was boiled at reflux for 5 hours. The cooled reaction mixture was diluted with ethyl acetate and washed with water. The organic phase was washed with sodium chloride solution, dried over sodium sulfate and concentrated. The residue was purified by chromatography on silica gel (eluent: 15:1 dichloromethane/methanol). The product was thus obtained with the molecular weight of 444.54 (C27H28N2O4); MS (ESI): 445 (M+H+).
  • Example 6 N—[(S)-6-(S)-1-Aminoethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00251
  • Method K
  • A mixture of N-{(S)-6-[(S)-1-((R)-2-methylpropane-2-sulfinylamino)ethyl]-1,2,3,4-tetrahydronaphthalen-2-yl}-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-benzamide (0.12 g) and methanol (2 ml) was admixed with hydrogen chloride (2 ml; 5 M in 2-propanol). After 30 minutes, the reaction mixture was concentrated. The product was thus obtained with the molecular weight of 394.52 (C24H30N2O3); MS (ESI): 395 (M+H+).
  • In an analogous manner, it is possible to prepare N—[(S)-6-((R)-1-aminoethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-benzamide.
  • N-{(S)-6-[(S)-1-((R)-2-Methylpropane-2-sulfinylamino)ethyl]-1,2,3,4-tetrahydronaphthalen-2-yl}-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide Method L
  • A suspension, cooled to −45° C., of N—((S)-6-{[(E)-(R)-2-methylpropane-2-sulfinylimino]methyl}-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (0.34 g), diethyl ether (15 ml) and dichloromethane (15 ml) was admixed with methylmagnesium bromide (1.1 ml; 1.4 M in toluene). After warming to room temperature, the mixture was stirred for another 5 hours. The reaction mixture was hydrolyzed cautiously with water and extracted with ethyl acetate. The organic phase was washed with sodium chloride solution, dried over sodium sulfate and concentrated. The residue was purified by chromatography on silica gel (eluent: ethyl acetate). The product was thus obtained with the molecular weight of 498.69 (C28H38N2O4S); MS (ESI): 499 (M+H+).
  • N—((S)-6-{[(E)-(R)-2-Methylpropane-2-sulfinylimino]methyl}-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide Method M-1
  • A mixture of N—((S)-6-formyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (1.0 g), (R)-2-methylpropane-2-sulfinic acid amide (0.32 g), pyridinium para-toluenesulfonate (165 mg), copper(II) sulfate (1.0 g; anhydrous) and dichloromethane (10 ml) was stirred for 24 hours. Solid fractions were filtered off and the filtrate was concentrated. The residue was purified by chromatography on silica gel. The product was thus obtained with the molecular weight of 482.65 (C27H34N2O4S); MS (ESI): 483 (M+H+).
  • Example 7 N—[(S)-6-(1-Amino-1-methylethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00252
  • A mixture, cooled to 0° C., of N—[(S)-6-(1-hydroxy-1-methylethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (0.30 g), glacial acetic acid (1 ml) and trimethylsilyl cyanide (145 mg) was admixed dropwise with sulfuric acid (1.2 ml; 96%). The cooling bath was removed and the mixture was stirred for another 12 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic phase was washed with sodium chloride solution, dried over sodium sulfate and concentrated. The residue was taken up in 1,4-dioxane (20 ml) and boiled at reflux with dilute hydrochloric acid for 30 minutes. The reaction mixture was washed with ethyl acetate and basified with concentrated sodium hydroxide solution. Extraction with dichloromethane gave rise to an organic phase which was dried over sodium sulfate and concentrated. (Alternatively, the hydrolysis of the intermediate formamide can also be achieved by boiling with sodium hydroxide solution.) The product was thus obtained with the molecular weight of 408.55 (C25H32N2O3); MS (ESI): 409 (M+H+).
  • N—[(S)-6-(1-Hydroxy-1-methylethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • A mixture of N—((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (1.0 g) and THF (10 ml) was cooled to −78° C. (dry ice bath), and a solution of methyllithium (2.0 ml; 1.6 M in diethyl ether) was added dropwise. One minute after the addition had ended, a solution of butyllithium (1.4 ml; 2.5 M in toluene) was added dropwise. One minute after the addition had ended, acetone (0.14 g) was added. After warming to room temperature, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic phases were dried over magnesium sulfate and concentrated. The residue was chromatographed on silica gel (eluent: 1:2 heptane/ethyl acetate). The product was thus obtained with the molecular weight of 409.53 (C25H31NO4); MS (ESI): 410 (M+H+).
  • Example 8-1 N-{(S)-6-[1-(2,2-Dimethylpropylamino)-1-methylethyl]-1,2,3,4-tetrahydronaphthalen-2-yl}-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00253
  • Method H-2
  • To a mixture of N—[(S)-6-(1-amino-1-methylethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (30 mg), THF (1 ml), methanol (0.5 ml), trimethylacetaldehyde (10 mg) and acetic acid (9 mg) was added polymer-bound sodium cyanoborohydride (0.15 mmol), and the suspension was agitated at room temperature for 12 hours. The polymer was filtered off with suction and the filtrate was concentrated. The residue was purified by preparative HPLC. The product was thus obtained with the molecular weight of 478.68 (C30H42N2O3); MS (ESI): 479 (M+H+).
  • In Table 2, examples which have been obtained by reductive alkylation of the appropriate amines by method H-2 with the appropriate carbonyl compounds (aldehyde or ketone) are summarized. If N,N-dialkylations of primary amines are to be achieved by method H-2, 2-3 equivalents of the carbonyl component and correspondingly more sodium cyanoborohydride are used.
  • TABLE 2
    ESI-
    Ex. Molecular MS
    No. Structure weight [M + H]+
    8-2
    Figure US20140088077A1-20140327-C00254
    436.27 437
    8-3
    Figure US20140088077A1-20140327-C00255
    490.32 491
    8-4
    Figure US20140088077A1-20140327-C00256
    488.30 489
    8-5
    Figure US20140088077A1-20140327-C00257
    476.30 477
    8-6
    Figure US20140088077A1-20140327-C00258
    448.27 449
    8-7
    Figure US20140088077A1-20140327-C00259
    476.30 477
    8-8
    Figure US20140088077A1-20140327-C00260
    448.27 449
    8-9
    Figure US20140088077A1-20140327-C00261
    488.30 489
    8-10
    Figure US20140088077A1-20140327-C00262
    464.30 465
    8-11
    Figure US20140088077A1-20140327-C00263
    478.32 479
    8-12
    Figure US20140088077A1-20140327-C00264
    492.34 493
    8-13
    Figure US20140088077A1-20140327-C00265
    504.34 505
    8-14
    Figure US20140088077A1-20140327-C00266
    464.30 465
    8-15
    Figure US20140088077A1-20140327-C00267
    476.30 477
    8-16
    Figure US20140088077A1-20140327-C00268
    464.30 465
    8-17
    Figure US20140088077A1-20140327-C00269
    476.30 477
    8-18
    Figure US20140088077A1-20140327-C00270
    464.30 465
    8-19
    Figure US20140088077A1-20140327-C00271
    450.29 451
    8-20
    Figure US20140088077A1-20140327-C00272
    558.38 559
    8-21
    Figure US20140088077A1-20140327-C00273
    464.30 465
    8-22
    Figure US20140088077A1-20140327-C00274
    506.35 507
    8-23
    Figure US20140088077A1-20140327-C00275
    518.31 519
    8-24
    Figure US20140088077A1-20140327-C00276
    516.34 517
    8-25
    Figure US20140088077A1-20140327-C00277
    504.34 505
    8-26
    Figure US20140088077A1-20140327-C00278
    518.31 519
    8-27
    Figure US20140088077A1-20140327-C00279
    516.34 517
    8-28
    Figure US20140088077A1-20140327-C00280
    504.34 505
  • Example 9-1 5-[(S)-1-(Tetrahydrofuran-2-yl)methoxy]pyridine-2-carboxylic acid ((S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)amide
  • Figure US20140088077A1-20140327-C00281
  • According to method F, 5-hydroxypyridine-2-carboxylic acid ((S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)amide was alkylated with methanesulfonic acid (S)-1-(tetrahydrofuran-2-yl)methyl ester (DMF, 12 h, 80° C.). The product was thus obtained with the molecular weight of 463.63 (C28H37N3O3); MS (ESI): 464 (M+H+).
  • 5-Hydroxypyridine-2-carboxylic acid ((S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)amide Method A-2
  • A mixture of 5-hydroxypyridine-2-carboxylic acid (0.54 g) and DMF (3 ml) was admixed with (3-dimethylaminopropyl)ethylcarbodiimide (EDC; 0.80 g) and benzotriazol-1-ol (HOBt; 0.60 g), and stirred for 5 minutes. Then ethyldiisopropylamine (0.80 ml) and (S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-ylamine (1.00 g) were added and the mixture was stirred for 12 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic phase was dried over sodium sulfate, filtered and concentrated. The product was thus obtained with the molecular weight of 379.51 (C23H29N3O2); MS (ESI): 380 (M+H+).
  • In an analogous manner, N—((S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-hydroxybenzamide was obtained by reacting 4-hydroxybenzoic acid with (S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-ylamine.
  • In Table 3, examples which have been prepared by alkylating N—((S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)-4-hydroxybenzamide according to method F with the appropriate alkylating agents (e.g. bromides, iodides or sulfonic esters) are compiled.
  • TABLE 3
    Ex. Molecular- ESI-MS
    No. Structure weight [M + H]+
    9-2
    Figure US20140088077A1-20140327-C00282
    462.63 463
    9-3
    Figure US20140088077A1-20140327-C00283
    464.60 465
    9-4
    Figure US20140088077A1-20140327-C00284
    476.66 477
    9-5
    Figure US20140088077A1-20140327-C00285
    476.66 477
    9-6
    Figure US20140088077A1-20140327-C00286
    462.64 463
  • Example 10 N-{(S)-6-[(R)-1-(4-Methylpiperidin-1-yl)ethyl]-1,2,3,4-tetrahydronaphthalen-2-yl}-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00287
  • A mixture of N—[(S)-6-(R)-1-aminoethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (50 mg), 1,5-dibromo-3-methylpentane (31 mg), ethyldiisopropylamine (0.10 ml) and acetonitrile (1 ml) was heated to 40° C. for 8 hours. The cooled reaction mixture was concentrated and the residue was purified by preparative HPLC. The product was thus obtained with the molecular weight of 476.66 (C30H40N2O3); MS (ESI): 477 (M+H+).
  • Example 11 N—[(S)-6-((R)-1-Azepan-1-ylethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00288
  • A mixture of N—[(S)-6-(R)-1-aminoethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide (50 mg), 1,6-dibromohexane (31 mg), ethyldiisopropylamine (0.10 ml) and acetonitrile (1 ml) was heated to 40° C. for 8 hours. The cooled reaction mixture was concentrated and the residue was purified by preparative HPLC. The product was thus obtained with the molecular weight of 476.66 (C30H40N2O3); MS (ESI): 477 (M+H+).
  • Example 12 N—((S)-6-Azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)-3-fluoro-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzamide
  • Figure US20140088077A1-20140327-C00289
  • According to method A-2,3-fluoro-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzoic acid was reacted with (S)-6-azepan-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-ylamine. The product was thus obtained with the molecular weight of 480.63 (C29H37FN2O3); MS (ESI): 481 (M+H+).
  • 3-Fluoro-4-[(S)-1-(tetrahydrofuran-2-yl)methoxy]benzoic acid
  • According to method F, 3-fluoro-4-hydroxybenzoic acid ethyl ester was alkylated with methanesulfonic acid (S)-1-(tetrahydrofuran-2-yl)methyl ester, and the reaction product was hydrolyzed by method E. The product was thus obtained with the molecular weight of 240.23 (C12H13FO4); MS (ESI): 241 (M+H+).
  • Example 13 2-[(S)-6-(4-Methoxypiperidin-1-ylmethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-6-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-2H-isoquinolin-1-one
  • Figure US20140088077A1-20140327-C00290
  • A mixture of 6-[(S)-1-(tetrahydrofuran-2-yl)methoxy]isochromen-1-one (50 mg), NMP (0.2 ml) and (S)-6-(4-methoxypiperidin-1-ylmethyl)-1,2,3,4-tetrahydronaphthalen-2-ylamine (55 mg) was heated to 220° C. in a microwave reactor for 3×30 minutes. The cooled reaction mixture was purified by preparative HPLC. The product was thus obtained with the molecular weight of 502.66 (C31H38N2O4); MS (ESI): 503 (M+H+).
  • 6-[(S)-1-(Tetrahydrofuran-2-yl)methoxy]isochromen-1-one
  • To a solution of 6-hydroxyisochromen-1-one (2 g) in DMF (50 ml) were added methanesulfonic acid (S)-1-(tetrahydrofuran-2-yl)methyl ester (2.7 g) and cesium carbonate (12 g), and the mixture was stirred at 80° C. for 7 hours. After water had been added, the mixture was extracted with dichloromethane. The organic phases were dried over magnesium sulfate and concentrated. The product was thus obtained with the molecular weight of 246.27 (C14H1404); MS (ESI): 247 (M+H+).
  • 6-Hydroxyisochromen-1-one Method N
  • To a solution of 6-methoxyisochromen-1-one (9.3 g) in dichloromethane (300 ml) was added, at 0° C., a solution of boron tribromide (1 M in dichloromethane, 130 ml), and the mixture was stirred at room temperature for 16 hours. After sodium carbonate solution had been added, the mixture was washed with ethyl acetate. The aqueous phase was acidified with 2 N HCl and extracted with ethyl acetate. The organic phases were dried over magnesium sulfate and concentrated. The residue was chromatographed on silica gel. The product was thus obtained with the molecular weight of 162.15 (C9H6O3); MS (ESI): 163 (M+H+).
  • 6-Methoxyisochromen-1-one
  • A solution of 6-methoxyisochroman-1-one (15.1 g), N-bromosuccinimide (NBS; 27 g) and benzoyl peroxide (500 mg) in tetrachloromethane (250 ml) was heated to reflux while irradiating with light for 3 hours. The mixture was filtered and the filtrate was concentrated. The residue was dissolved in triethylamine (100 ml) and stirred at room temperature for 48 hours. The reaction mixture was partitioned between water and ethyl acetate and adjusted to pH 1 with concentrated hydrochloric acid. The organic phase was removed, dried over magnesium sulfate and concentrated. The residue was chromatographed on silica gel. The product was thus obtained with the molecular weight of 176.17 (C10H803); MS (ESI): 177 (M+H+).
  • 6-Methoxyisochroman-1-one
  • To a solution of diisopropylamine (33.5 ml) in dry THF (190 ml) was added dropwise, at −78° C., n-butyllithium (1.6 M solution in hexane, 145.9 ml). Subsequently, the reaction mixture was warmed to room temperature for 5 minutes and then cooled again to −78° C., and a solution of 4-methoxy-2-methylbenzoic acid (10 g) in dry THF (210 ml) was added dropwise. After stirring at this temperature for 10 minutes, paraformaldehyde (7 g) was added.
  • The reaction mixture was then allowed to come to room temperature and stirred at this temperature for 4 hours. The reaction mixture was admixed with water, then the THF was removed under reduced pressure and then the aqueous phase was extracted with diethyl ether. The aqueous phase was acidified with conc. HCl, and the resulting precipitate was filtered off and washed repeatedly with water. The product was thus obtained with the molecular weight of 178.06 (C10H10O3); MS (ESI): 179 (M+H+).
  • Example 14 2-[(S)-6-(4-Methoxypiperidin-1-ylmethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-6-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-3,4-dihydro-2H-isoquinolin-1-one
  • Figure US20140088077A1-20140327-C00291
  • According to method F, 6-hydroxy-2-[(S)-6-(4-methoxypiperidin-1-ylmethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-3,4-dihydro-2H-isoquinolin-1-one was alkylated with methanesulfonic acid (S)-1-(tetrahydrofuran-2-yl)methyl ester. The product was thus obtained with the molecular weight of 504.68 (C31H40N2O4); MS (ESI): 505 (M+H+).
  • 6-Hydroxy-2-[(S)-6-(4-methoxypiperidin-1-ylmethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-3,4-dihydro-2H-isoquinolin-1-one
  • A mixture of 6-methoxy-2-[(S)-6-(4-methoxypiperidin-1-ylmethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-3,4-dihydro-2H-isoquinolin-1-one (0.59 g), NMP (2 ml), thiophenol (150 mg) and potassium carbonate (235 mg) was heated to 210° C. in a microwave reactor for 40 minutes. The cooled reaction mixture was purified by chromatography on silica gel (eluent: 9:1 dichloromethane/methanol). The product was thus obtained with the molecular weight of 420.56 (C26H32N2O3); MS (ESI): 421 (M+H+).
  • 6-Methoxy-2-[(S)-6-(4-methoxypiperidin-1-ylmethyl)-1,2,3,4-tetrahydronaphthalen-2-yl]-3,4-dihydro-2H-isoquinolin-1-one Method O
  • A mixture of 6-methoxyisochroman-1-one (1.30 g) and thionyl chloride (0.87 g) was admixed with one drop of DMF and heated to reflux for 5 hours. Volatile fractions were distilled off. The residue was taken up in THF (2 ml) and added dropwise to a mixture, cooled to 0° C., of (S)-6-(4-methoxypiperidin-1-ylmethyl)-1,2,3,4-tetrahydronaphthalen-2-ylamine (2.00 g), THF (20 ml) and triethylamine (1.0 ml). After 15 minutes, potassium tert-butoxide (0.82 g) was added and the cooling bath was removed after 30 minutes. After a further 12 hours at room temperature, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic phase was dried over sodium sulfate and concentrated. The residue was purified by preparative HPLC. The product was thus obtained with the molecular weight of 434.58 (C27H34N2O3); MS (ESI): 435 (M+H+).
  • Example 15-1 2-((S)-6-Pyrrolidin-1-ylmethyl-1,2,3,4-tetrahydronaphthalen-2-yl)-6-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-3,4-dihydro-2H-isoquinolin-1-one
  • Figure US20140088077A1-20140327-C00292
  • According to method H-1, (S)-6-{1-oxo-6-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-3,4-dihydro-1H-isoquinolin-2-yl}-5,6,7,8-tetrahydronaphthalene-2-carbaldehyde was reacted with pyrrolidine. The product was thus obtained with the molecular weight of 460.62 (C29H36N2O3); MS (ESI): 461 (M+H+).
  • (S)-6-{1-oxo-6-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-3,4-dihydro-1H-isoquinolin-2-yl}-5,6,7,8-tetrahydronaphthalene-2-carbaldehyde Method P
  • A mixture of 2-((S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-6-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-3,4-dihydro-2H-isoquinolin-1-one (1.10 g), palladium(II) acetate (16.2 mg), butyldi-1-adamantylphosphine (77 mg), TMEDA (0.27 ml) and toluene (22 ml) was heated to 120° C. in an autoclave under a hydrogen/carbon monoxide atmosphere for 14 hours. The cooled reaction mixture was diluted with ethyl acetate and washed first with dilute hydrochloric acid and then with sodium hydrogen carbonate solution. The organic phase was dried over sodium sulfate and concentrated. The residue was purified by preparative HPLC. The product was thus obtained with the molecular weight of 405.50 (C25H27NO4); MS (ESI): 406 (M+H+).
  • 2-((S)-6-Bromo-1,2,3,4-tetrahydronaphthalen-2-yl)-6-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-3,4-dihydro-2H-isoquinolin-1-one
  • According to method 0, 6-[(S)-1-(tetrahydrofuran-2-yl)methoxy]isochroman-1-one was reacted with (S)-6-bromo-1,2,3,4-tetrahydronaphthalen-2-ylamine (J. Org. Chem. 1995, 60, 4324). The product was thus obtained with the molecular weight of 456.38 (C24H26BrNO3); MS (ESI): 456 (M+H+).
  • 6-[(S)-1-(Tetrahydrofuran-2-yl)methoxy]isochroman-1-one
  • A mixture of 6-hydroxyisochroman-1-one (332 mg), methanesulfonic acid (S)-1-(tetrahydrofuran-2-yl)methyl ester (284 mg), cesium carbonate (1.28 g) and DMF (8 ml) was heated to 70° C. for 7 hours. The cooled reaction mixture was partitioned between water and ethyl acetate. The organic phase was dried and concentrated. The crude product was purified by chromatography on silica gel. The product was thus obtained with the molecular weight of 248.28 (C14H16O4); MS (ESI): 249 (M+H+).
  • 6-Hydroxyisochroman-1-one
  • According to method N, 6-methoxyisochroman-1-one was treated with boron tribromide.
  • In Table 4, examples which have been obtained by reacting (S)-6-{1-oxo-6-[(S)-1-(tetrahydrofuran-2-yl)methoxy]-3,4-dihydro-1H-isoquinolin-2-yl}-5,6,7,8-tetrahydronaphthalene-2-carbaldehyde with amines according to method H-1 are compiled.
  • TABLE 4
    ESI-
    Ex. Molecular MS
    No. Structure weight [M + H]+
    15-2
    Figure US20140088077A1-20140327-C00293
    488.68 489
    15-3
    Figure US20140088077A1-20140327-C00294
    460.62 461
    15-4
    Figure US20140088077A1-20140327-C00295
    476.66 477
    15-5
    Figure US20140088077A1-20140327-C00296
    532.73 533
    15-6
    Figure US20140088077A1-20140327-C00297
    476.66 477
    15-7
    Figure US20140088077A1-20140327-C00298
    490.65 491
    15-8
    Figure US20140088077A1-20140327-C00299
    462.64 463
    15-9
    Figure US20140088077A1-20140327-C00300
    488.68 489
    15-10
    Figure US20140088077A1-20140327-C00301
    486.66 487
    15-11
    Figure US20140088077A1-20140327-C00302
    488.68 489
    15-12
    Figure US20140088077A1-20140327-C00303
    504.68 505
    15-13
    Figure US20140088077A1-20140327-C00304
    478.64 479
    15-14
    Figure US20140088077A1-20140327-C00305
    474.65 475
    15-15
    Figure US20140088077A1-20140327-C00306
    474.65 475
    15-16
    Figure US20140088077A1-20140327-C00307
    488.68 489
    15-17
    Figure US20140088077A1-20140327-C00308
    500.69 501
  • In Table 5, results which have been obtained in the above-described calcium mobilization assay are summarized for illustrative purposes.
  • TABLE 5
    Ex. No. IC50/μM
     1 0.09
     2 0.67
     3-2 3.29
     3-14 0.10
     3-26 0.36
     3-32 0.13
     3-33 0.27
     3-34 0.10
     3-37 0.34
     3-40 0.18
     3-44 0.31
     3-48 0.21
     3-51 0.19
     3-61 0.30
     3-64 0.18
     3-71 0.75
     3-72 1.85
     3-77 0.12
     3-84 0.17
     3-86 0.12
     3-100 0.33
     3-103 0.20
     3-120 2.41
     3-135 0.15
     3-166 0.11
     3-194 0.09
     3-195 0.11
     8-1 0.24
     8-3 0.23
     8-8 0.18
     8-16 0.12
     8-26 0.23
     9-2 1.28
     9-3 0.17
     9-4 0.44
     9-5 0.31
    10 0.11
    12 0.30
    13 1.40
    14 0.63
  • In Table 6, results which have been determined in the above-described hERG inhibition assay and in the test for kinetic solubility are compiled for illustrative purposes. It is found that inventive compounds advantageously combine low hERG inhibition with a high solubility in aqueous systems at a physiologically relevant pH of 7.4. In contrast, prior art compounds frequently exhibit a lower solubility. For example, for example No. 110 ((S)-enantiomer) from US2005/0075324, a solubility of <10 μm was found. The publication Bioorg. Med. Chem. Lett. 2007, 17, 814-818 (table footnote on page 817) also describes the sparing solubility of the prior art compounds.
  • TABLE 6
    hERG Inh. Neph. sol.
    Ex. No. IC50/μM pH 7.4/μM
     1 >30 >500
    3-6  >10 >500
    3-34  >30 50
    3-83  >30 >500
    3-154 >10 >500
    3-166 >10 450
    14 >10 >500
  • Table 7 lists examples with an aminochromane base skeleton, which can be prepared by the processes described above by way of example. In order to obtain inventive compounds, for example, by the process described in Scheme 2 or by way of example in Example 3-1, it is possible to proceed, for example, from 7-bromochroman-3-one, which is supplied commercially (Anichem LLC; 195 Black Horse Lane; North Brunswick, N.J., 08902; USA) or by the following route:
  • 7-Bromochroman-3-one
  • A mixture of 4-bromo-2-hydroxybenzaldehyde (20 g), acrylonitrile (26.4 g) and DABCO (0.78 g) was heated at reflux for 8 hours. After cooling, the reaction mixture was diluted with ethyl acetate and washed with water. The organic phase was concentrated and the residue was filtered through silica gel. The 7-bromo-2H-chromene-3-carbonitrile thus obtained (7.5 g) was boiled at reflux with sodium hydroxide solution (10.2 g of sodium hydroxide in 100 ml of water) for 8 hours. The cooled reaction mixture was washed with methyl tert-butyl ether, acidified with hydrochloric acid and extracted with ethyl acetate. Concentration of the organic phase gave 7-bromo-2H-chromene-3-carboxylic acid. This acid (3.0 g) was heated to 85° C. with DPPA (3.2 g), triethylamine (1.6 ml) and toluene (30 ml) for 12 hours. Then hydrochloric acid (6 N) was added and the mixture was heated to reflux for 2 hours. The cooled reaction mixture was extracted with ethyl acetate and the organic phase was concentrated. The product was thus obtained with the molecular weight of 227.06 (C9H7BrO2); MS (ESI): 227 (M+H+).
  • The examples of Table 7 serve to illustrate further possible embodiments of the invention, without restricting it.
  • TABLE 7
    Ex. Molecular- Calc
    No. Structure weight [M + H]+
    I-1
    Figure US20140088077A1-20140327-C00309
    436.55 437
    I-2
    Figure US20140088077A1-20140327-C00310
    436.55 437
    I-3
    Figure US20140088077A1-20140327-C00311
    408.54 409
    I-4
    Figure US20140088077A1-20140327-C00312
    406.53 407
    I-5
    Figure US20140088077A1-20140327-C00313
    424.54 425
    I-6
    Figure US20140088077A1-20140327-C00314
    424.54 425
    I-7
    Figure US20140088077A1-20140327-C00315
    424.54 425
    I-8
    Figure US20140088077A1-20140327-C00316
    438.57 439
    I-9
    Figure US20140088077A1-20140327-C00317
    424.54 425
    I-10
    Figure US20140088077A1-20140327-C00318
    438.57 439
    I-11
    Figure US20140088077A1-20140327-C00319
    424.54 425
    I-12
    Figure US20140088077A1-20140327-C00320
    464.48 464
    I-13
    Figure US20140088077A1-20140327-C00321
    410.51 411
    I-14
    Figure US20140088077A1-20140327-C00322
    420.55 421
    I-15
    Figure US20140088077A1-20140327-C00323
    436.55 437
    I-16
    Figure US20140088077A1-20140327-C00324
    450.58 451
    I-17
    Figure US20140088077A1-20140327-C00325
    436.55 437
    I-18
    Figure US20140088077A1-20140327-C00326
    463.58 464
    I-19
    Figure US20140088077A1-20140327-C00327
    418.58 419
    I-20
    Figure US20140088077A1-20140327-C00328
    433.60 434
    I-21
    Figure US20140088077A1-20140327-C00329
    458.56 459
    I-22
    Figure US20140088077A1-20140327-C00330
    418.54 419
    I-23
    Figure US20140088077A1-20140327-C00331
    447.58 448
    I-24
    Figure US20140088077A1-20140327-C00332
    445.56 446
    I-25
    Figure US20140088077A1-20140327-C00333
    437.58 438
    I-26
    Figure US20140088077A1-20140327-C00334
    453.58 454
    I-27
    Figure US20140088077A1-20140327-C00335
    453.58 454
    I-28
    Figure US20140088077A1-20140327-C00336
    487.04 487
    I-29
    Figure US20140088077A1-20140327-C00337
    482.62 483
    I-30
    Figure US20140088077A1-20140327-C00338
    466.62 467
    I-31
    Figure US20140088077A1-20140327-C00339
    492.66 493
    I-32
    Figure US20140088077A1-20140327-C00340
    462.59 463

Claims (21)

We claim:
1. A compound of formula I
Figure US20140088077A1-20140327-C00341
wherein:
R1 and R2
are each independently H, (C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, (C3-C8)-alkenyl, (C3-C8)-alkynyl, CO(R9), (C(R10)(R11))q-R12, CO(C(R13)(R14))r-R15, CO—O(C1-C8)-alkyl, and CO(C(R13)(R14))r—N(R16)(R17);
R10 and R11 are each independently H, (C1-C6)-alkyl, hydroxy-(C1-C2)-alkyl, F, and OH;
R9, R13, R14, R16, and R17 are each independently H or (C1-C6)-alkyl;
or
R16 and R17, each independently taken together with the nitrogen atom to which they are attached form a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C6)-alkyl, oxygen and sulfur;
q and r are each independently 0, 1, 2, 3, 4, 5, 6;
R12 and R15 are each independently H, OH, F, O—(C1-C6)-alkyl, S—(C1-C6)-alkyl, O-phenyl, CN, COO(R25), N(R26)CO(C1-C6)-alkyl, N(R27)(R28), CON(R29)(R30), SO2(C1-C6)-alkyl, or 3-12-membered mono-, bi- or spirocyclic ring, which may contain one to four heteroatoms from the group of N, O and S, and the 3-12-membered ring is optionally substituted by F, Cl, Br, OH, CF3, NO2, CN, OCF3, oxo, O—(C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, S—(C1-C6)-alkyl, (C1-C6)-alkyl, (C2-C6)-alkenyl, (C3-C8)-cycloalkyl, O—(C3-C8)-cycloalkyl, (C3-C8)-cycloalkenyl, O—(C3-C8)-cycloalkenyl, (C2-C6)-alkynyl, N(R31)(R32), COO(R33), SO2(C1-C6)-alkyl and COOH;
R25, R26, R27, R28, R29, R30, R31, R32 and R33 are each independently H or (C1-C8)-alkyl;
or
R27 and R28, R29 and R30, and R31 and R32 each independently taken together with the nitrogen atom to which they are attached form a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C6)-alkyl, oxygen and sulfur;
L1 is C(R34)(R35), C(R36)(R37)C(R38)(R39), or (C3-C6)-cycloalkyl;
optionally, R1 may be joined to one of R34, R35, R36, R37, R38 or R39 radicals, so as to form a 5-6-membered ring;
R34, R35, R36, R37, R38 and R39 are each independently H or (C1-C8)-alkyl;
R3, R4, and R5 are independently H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O—(C1-C6)-alkyl, S—(C1-C6)-alkyl, O—(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, CON(R40)(R41), or CO(R42);
R40, R41 and R42 are each independently H or (C1-C8)-alkyl;
or
R40 and R41 taken together with the nitrogen atom to which they are attached form a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group consisting of NH, N—(C1-C6)-alkyl, oxygen, and sulfur;
X is O or C(R43)(R43′);
R6, R6′, R7, R7′, R43 and R43′ are each independently H, F, (C1-C8)-alkyl, OH, or O—(C1-C6)-alkyl;
or
R6 and R6′, or R43 and R43′ together are oxo;
R8 is H or (C1-C8)-alkyl;
L2 is a bond or C(R44)(R45);
R44 and R45 are each independently H or (C1-C8)-alkyl;
A is a 5-6-membered aromatic ring that may include up to 2 heteroatoms selected from the group of nitrogen, oxygen and sulfur, and is optionally substituted by one or more of the substituents selected from H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O—(C1-C6)-alkyl, O—(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, N(R54)(R55), SO2—CH3, CON(R56)(R57), N(R58)CO(R59), and CO(R60);
provided that when L2 is a bond, then C(O)NR8 may be joined to an ortho substituent of A via a bridge containing one or two elements from the group of carbon and nitrogen, so as to form a 9- to 10-membered bicyclic ring overall;
R54, R55, R56, R57, R58, R59, and R60 are each independently H or (C1-C8)-alkyl;
or
R54 and R55, and R56 and R57 each independently taken together with the nitrogen atom to which they are attached form a 5-6-membered ring which, apart from the nitrogen atom, may also include 0-1 further heteroatom from the group of NH, N—(C1-C6)-alkyl, oxygen and sulfur;
L3 is a bond or a linker having from 1 to 4 members, where the members are selected from the group consisting of O, S, SO2, N(R61), CO, C(R62)(R63), and C≡C, to give rise to a chemically viable radical, and the linker does not have any O—CO or COO groups;
B is (C1-C6)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C6)-alkyl, or a 3 to 10-membered mono-, bi- or spirocyclic nonaromatic ring, which may include from 0 to 3 heteroatoms selected from the group of oxygen, nitrogen and sulfur, where the ring system is optionally substituted by one or more substituents selected from F, CF3, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C4)-alkyl, oxo, CO(R64), and hydroxyl; and
R61, R62, R63, and R64 are each independently H or (C1-C8)-alkyl;
provided that when X is C(R43)(R43′), then
L3 is C(R62)(R63)O, and
B is a 4- to 10-membered mono-, bi- or spirocyclic nonaromatic ring which includes from 1 to 3 heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur, where the ring is optionally by one or more substituents selected from F, CF3, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, hydroxy-(C1-C4)-alkyl, oxo, CO(R64), and hydroxyl;
or a physiologically compatible salt thereof.
2. The compound according to claim 1, wherein:
L2 is a bond;
or a physiologically compatible salt thereof.
3. The compound according to claim 1, wherein:
A is selected from the group of
Figure US20140088077A1-20140327-C00342
which is optionally by one or more of the substituents selected from H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O—(C1-C6)-alkyl, O—(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, N(R54)(R55), SO2—CH3, CON(R56)(R57), N(R58)CO(R59), and CO(R60);
or a physiologically compatible salt thereof.
4. The compound according to claim 1, wherein:
L3 is a bond, O, or C(R62)(R63)O;
or a physiologically compatible salt thereof.
5. The compound according to claim 1, wherein:
B is a 4- to 6-membered nonaromatic ring which includes from 1 to 2 oxygen atoms, where the ring system is optionally substituted by one or more substituents selected from (C1-C6)-alkyl and hydroxyl;
or a physiologically compatible salt thereof.
6. The compound according to claim 1, wherein:
B-L3 is
Figure US20140088077A1-20140327-C00343
or a physiologically compatible salt thereof.
7. The compound according to claim 1, which is a compound of formula II
Figure US20140088077A1-20140327-C00344
wherein:
L1, R3, R4 and R8 are each as defined in claim 1;
R, R′, R″ and R′″ are each independently H, F, Cl, Br, I, OH, CF3, NO2, CN, OCF3, O—(C1-C6)-alkyl, O—(C1-C4)-alkoxy-(C1-C4)-alkyl, (C1-C6)-alkyl, N(R54)(R55), SO2—CH3, CON(R56)(R57), N(R58)CO(R59), and CO(R60);
L3 is CH2O; and
B is a 4- to 6-membered nonaromatic ring which includes from 1 to 2 oxygen atoms, wherein the ring is optionally substituted by one or more substituents selected from F, (C1-C6)-alkyl, O—(C1-C8)-alkyl, (C1-C4)-alkoxy-(C1-C4)-alkyl, oxo, hydroxyl, preferably (C1-C6)-alkyl and hydroxyl;
or a physiologically compatible salt thereof.
8. The compound according to claim 7, wherein:
B-L3 is
Figure US20140088077A1-20140327-C00345
or a physiologically compatible salt thereof.
9. The compound according to claim 1, which is a compound of formula III
Figure US20140088077A1-20140327-C00346
wherein R1, R2, R3, R4, R8, A, L1, L3 and B are each as defined in claim 1;
or a physiologically compatible salt thereof.
10. The compound according to claim 1, which is a compound of formula IV
Figure US20140088077A1-20140327-C00347
wherein R1, R2, R3, R4, X, L1, L3 and B are each as defined in claim 1, and the broken line indicates an optional double bond;
or a physiologically compatible salt thereof.
11. A pharmaceutical composition comprising the compound according to claim 1 or a physiologically compatible salt thereof, in combination with a pharmacologically acceptable carrier or excipient.
12. The pharmaceutical composition according to claim 11, further comprising one or more active ingredients which are effective in treating a metabolic disorder or a disease associated therewith.
13. The pharmaceutical composition according to claim 11, further comprising one or more antidiabetics.
14. The pharmaceutical composition according to claim 11, further comprising one or more lipid modulators.
15. The pharmaceutical composition according to claim 11, further comprising one or more antiobesity agents.
16. A pharmaceutical composition comprising the compound according to claim 7 or a physiologically compatible salt thereof, in combination with a pharmacologically acceptable carrier or excipient.
17. A pharmaceutical composition comprising the compound according to claim 8 or a physiologically compatible salt thereof, in combination with a pharmacologically acceptable carrier or excipient.
18. A pharmaceutical composition comprising the compound according to claim 9 or a physiologically compatible salt thereof, in combination with a pharmacologically acceptable carrier or excipient.
19. A pharmaceutical composition comprising the compound according to claim 10 or a physiologically compatible salt thereof, in combination with a pharmacologically acceptable carrier or excipient.
20. A method for treating a disorder of fatty acid metabolism, glucose utilization disorder, a disorder in which insulin resistance plays a role, diabetes mellitus or a sequel associated therewith, dyslipidemia or a consequence thereof, nonalcoholic fatty liver or a variant thereof, a state associated with metabolic syndrome, or obesity or a sequel associated therewith, in a patient in need thereof, comprising administering to the patient a pharmaceutically effective amount of the compound according to claim 1 or a physiologically compatible salt thereof.
21. A process for preparing a pharmaceutical composition comprising the compound according to claim 1 or a physiologically compatible salt thereof, in combination with a pharmacologically acceptable carrier or excipient, comprising mixing the compound according to claim 1 or the physiologically compatible salt thereof with the pharmacologically acceptable carrier or excipient, and converting the mixture into to a form suitable for administration.
US14/094,976 2007-08-15 2013-12-03 Novel substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments Abandoned US20140088077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/094,976 US20140088077A1 (en) 2007-08-15 2013-12-03 Novel substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP07291010A EP2025674A1 (en) 2007-08-15 2007-08-15 Substituted tetra hydro naphthalines, method for their manufacture and their use as drugs
EP07291010.2 2007-08-15
PCT/EP2008/006700 WO2009021740A2 (en) 2007-08-15 2008-08-14 Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments
US12/705,140 US8609731B2 (en) 2007-08-15 2010-02-12 Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments
US14/094,976 US20140088077A1 (en) 2007-08-15 2013-12-03 Novel substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/705,140 Division US8609731B2 (en) 2007-08-15 2010-02-12 Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments

Publications (1)

Publication Number Publication Date
US20140088077A1 true US20140088077A1 (en) 2014-03-27

Family

ID=38823517

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/705,140 Expired - Fee Related US8609731B2 (en) 2007-08-15 2010-02-12 Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments
US14/094,976 Abandoned US20140088077A1 (en) 2007-08-15 2013-12-03 Novel substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/705,140 Expired - Fee Related US8609731B2 (en) 2007-08-15 2010-02-12 Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments

Country Status (26)

Country Link
US (2) US8609731B2 (en)
EP (2) EP2025674A1 (en)
JP (1) JP2010535827A (en)
KR (1) KR20100063700A (en)
CN (1) CN101784536A (en)
AR (1) AR068059A1 (en)
AU (1) AU2008286316A1 (en)
BR (1) BRPI0815206A2 (en)
CA (1) CA2695955A1 (en)
CL (1) CL2008002414A1 (en)
CO (1) CO6331303A2 (en)
CR (1) CR11235A (en)
DO (1) DOP2010000059A (en)
EC (1) ECSP109967A (en)
MA (1) MA31611B1 (en)
MX (1) MX2010001503A (en)
NI (1) NI201000024A (en)
PA (1) PA8793401A1 (en)
PE (1) PE20090986A1 (en)
RU (1) RU2010109416A (en)
SV (1) SV2010003480A (en)
TN (1) TN2010000075A1 (en)
TW (1) TW200930711A (en)
UY (1) UY31288A1 (en)
WO (1) WO2009021740A2 (en)
ZA (1) ZA201000520B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017172505A1 (en) * 2016-03-29 2017-10-05 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110015225A1 (en) * 2008-04-01 2011-01-20 Takeda Pharmaceutical Company Limited Heterocyclic compound
US8383647B2 (en) 2009-01-30 2013-02-26 Takeda Pharmaceutical Company Limited Quinoline derivative
AR075402A1 (en) 2009-02-13 2011-03-30 Sanofi Aventis OXYGENATE AND / OR NITROGEN HETEROCICLIC DERIVATIVES OF TETRAHYDRONAFTALENE, DRUGS THAT CONTAIN THEM AND USE OF THE SAME IN THE TREATMENT OF METABOLIC DISORDERS, SUCH AS OBESITY, AMONG OTHERS.
JP5711151B2 (en) * 2010-01-06 2015-04-30 武田薬品工業株式会社 Indole derivatives

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524882B2 (en) * 2002-07-30 2009-04-28 Merck & Co., Inc. PPAR alpha selective compounds for the treatment of dyslipidemia and other lipid disorders

Family Cites Families (970)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3371278D1 (en) 1982-06-14 1987-06-11 Merrill Edward Wilson Process and apparatus for measuring blood viscosity directly and rapidly
FR2713225B1 (en) 1993-12-02 1996-03-01 Sanofi Sa Substituted N-piperidino-3-pyrazolecarboxamide.
US7396814B2 (en) 1995-06-07 2008-07-08 Palatin Technologies, Inc. Metallopeptide compositions for treatment of sexual dysfunction
KR19990077319A (en) 1996-01-17 1999-10-25 한센 핀 베네드, 안네 제헤르 Condensed 1,2,4-thiadiazine and condensed 1,4-thiazine derivatives, processes for their preparation and their use
DE122010000020I1 (en) 1996-04-25 2010-07-08 Prosidion Ltd Method for lowering the blood glucose level in mammals
UA72181C2 (en) 1996-08-30 2005-02-15 Ново Нордіск А/С Derivatives of glucanolike peptide-1
JP4339402B2 (en) 1996-12-31 2009-10-07 ドクター・レディーズ・ラボラトリーズ・リミテッド Novel heterocyclic compounds, processes for their preparation and pharmaceutical compositions containing them, and their use in the treatment of diabetes and related diseases
DE19726167B4 (en) 1997-06-20 2008-01-24 Sanofi-Aventis Deutschland Gmbh Insulin, process for its preparation and pharmaceutical preparation containing it
WO1999003861A1 (en) 1997-07-16 1999-01-28 Novo Nordisk A/S Fused 1,2,4-thiadiazine derivatives, their preparation and use
AU766219B2 (en) 1998-02-02 2003-10-09 1149336 Ontario Inc. Method of regulating glucose metabolism, and reagents related thereto
EE200000504A (en) 1998-03-12 2002-02-15 Teijin Limited Benzofuryl-a-pyrone derivatives, pharmaceutical composition, lipid metabolism enhancer, triglyceride biosynthesis inhibitor, blood triglyceride lowering agent, blood HDL elevating agent, prophylaxis of arteriosclerosis
US6221897B1 (en) 1998-06-10 2001-04-24 Aventis Pharma Deutschland Gmbh Benzothiepine 1,1-dioxide derivatives, a process for their preparation, pharmaceuticals comprising these compounds, and their use
FR2783246B1 (en) 1998-09-11 2000-11-17 Aventis Pharma Sa AZETIDINE DERIVATIVES, THEIR PREPARATION AND THE MEDICINES CONTAINING THEM
DE19845405C2 (en) 1998-10-02 2000-07-13 Aventis Pharma Gmbh Aryl-substituted propanolamine derivatives and their use
BR9915961A (en) 1998-12-07 2001-08-21 Sod Conseils Rech Applic Glp-1 analogs
AUPP891299A0 (en) 1999-02-26 1999-03-25 Fujisawa Pharmaceutical Co., Ltd. New 6-membered cyclic compounds
EP1173438A1 (en) 1999-04-16 2002-01-23 Novo Nordisk A/S Substituted imidazoles, their preparation and use
AU3957600A (en) 1999-04-26 2000-11-10 Boehringer Ingelheim International Gmbh Piperidyl-imidazole derivatives, their preparations and therapeutic uses
NZ515087A (en) 1999-04-28 2003-11-28 Aventis Pharma Gmbh Tri-aryl acid derivatives as PPAR receptor ligands
EE200100556A (en) 1999-04-28 2003-02-17 Aventis Pharma Deutschland Gmbh A diaryl acid derivative, a pharmaceutical composition containing it, and the use of the compound in the manufacture of a medicament
EP1175421A1 (en) 1999-04-30 2002-01-30 Neurogen Corporation 9H-PYRIMIDO[4,5-b]INDOLE DERIVATIVES: CRF1 SPECIFIC LIGANDS
KR100718830B1 (en) 1999-06-23 2007-05-17 사노피-아벤티스 도이칠란트 게엠베하 Substituted benzimidazoles and a process for their production
US7235625B2 (en) 1999-06-29 2007-06-26 Palatin Technologies, Inc. Multiple agent therapy for sexual dysfunction
EP1076066A1 (en) 1999-07-12 2001-02-14 Zealand Pharmaceuticals A/S Peptides for lowering blood glucose levels
WO2001016094A1 (en) 1999-09-01 2001-03-08 Aventis Pharma Deutschland Gmbh Sulfonyl carboxamide derivatives, method for their production and their use as medicaments
EP1214060A2 (en) 1999-09-10 2002-06-19 Novo Nordisk A/S Method of inhibiting protein tyrosine phosphatase 1b and/or t-cell protein tyrosine phosphatase and/or other ptpases with an asp residue at position 48
WO2001019830A1 (en) 1999-09-10 2001-03-22 Novo Nordisk A/S MODULATORS OF PROTEIN TYROSINE PHOSPHATASES (PTPases)
EP1214325B1 (en) 1999-09-10 2005-11-09 Novo Nordisk A/S MODULATORS OF PROTEIN TYROSINE PHOSPHATASES (PTPases)
WO2001021577A2 (en) 1999-09-20 2001-03-29 Takeda Chemical Industries, Ltd. Melanin concentrating hormone antagonist
DE19951360A1 (en) 1999-10-26 2001-05-03 Aventis Pharma Gmbh Substituted indoles
FR2800375B1 (en) 1999-11-03 2004-07-23 Sanofi Synthelabo TRICYCLIC DERIVATIVES OF PYRAZOLECARBOXYLIC ACID, THEIR PREPARATION, THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
PE20011010A1 (en) 1999-12-02 2001-10-18 Glaxo Group Ltd OXAZOLES AND THIAZOLES REPLACED AS AGONIST OF THE RECEPTOR ACTIVATED BY THE HUMAN PEROXISOMAS PROLIFERATOR
FR2805818B1 (en) 2000-03-03 2002-04-26 Aventis Pharma Sa AZETIDINE DERIVATIVES, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
FR2805817B1 (en) 2000-03-03 2002-04-26 Aventis Pharma Sa PHARMACEUTICAL COMPOSITIONS CONTAINING AZETIDINE DERIVATIVES, NOVEL AZETIDINE DERIVATIVES AND THEIR PREPARATION
CN1205188C (en) 2000-03-23 2005-06-08 索尔瓦药物有限公司 4,5-dihydro-1h-pyrazole derivatives having cbi-antagonistic activity
KR100502876B1 (en) 2000-04-28 2005-07-21 아사히 가세이 파마 가부시키가이샤 Novel Bicyclic Compounds
US6838465B2 (en) 2000-05-11 2005-01-04 Banyu Pharmaceutical Co., Ltd. N-acyltetrahydroisoquinoline derivatives
SE0001899D0 (en) 2000-05-22 2000-05-22 Pharmacia & Upjohn Ab New compounds
AU6497701A (en) 2000-05-30 2001-12-11 Merck & Co Inc Melanocortin receptor agonists
JP4611608B2 (en) 2000-06-16 2011-01-12 スミスクライン ビーチャム ピー エル シー Piperidine for use as an orexin receptor antagonist
WO2002002744A2 (en) 2000-07-05 2002-01-10 Synaptic Pharmaceutical Corporation Dna encoding a human melanin concentrating hormone receptor (mch1) and uses thereof
AU783403B2 (en) 2000-07-05 2005-10-20 H. Lundbeck A/S Selective melanin concentrating hormone-1 (MCH1) receptor antagonists and uses thereof
EA200300064A1 (en) 2000-07-31 2003-06-26 Смитклайн Бичем Пи-Эл-Си CARBOXAMIDE CONNECTIONS AND THEIR APPLICATION AS ANTAGONISTS OF HUMAN 11CBY RECEPTOR
DE60120748T2 (en) 2000-11-10 2007-05-16 Eli Lilly And Co., Indianapolis 3-SUBSTITUTED OXINDOLE DERIVATIVES AS BETA-3 AGONISTS
US20030022891A1 (en) 2000-12-01 2003-01-30 Anandan Palani MCH antagonists and their use in the treatment of obesity
HUP0401073A2 (en) 2000-12-21 2004-09-28 Aventis Pharma Deutschland Gmbh. Diphenyl azetidinone derivatives, method for the production thereof, medicaments containing these compounds, and their use
SK7822003A3 (en) 2000-12-21 2003-12-02 Aventis Pharma Gmbh Novel 1,2-diphenzylazetidinones, method for producing the same, medicaments containing said compounds, and the use thereof for treating disorders of the lipid metabolism
BR0116411A (en) 2000-12-21 2003-11-11 Vertex Pharma Pyrazole compounds useful as protein kinase inhibitors
IL156552A0 (en) 2000-12-21 2004-01-04 Aventis Pharma Gmbh Diphenyl azetidinone derivatives, method for the production thereof, medicaments containing these compounds, and their use
PE20020856A1 (en) 2001-02-13 2002-11-11 Aventis Pharma Gmbh 1,2,3,4-TETRAHYDRONAFTIL ACILATED AMINES
TWI291957B (en) 2001-02-23 2008-01-01 Kotobuki Pharmaceutical Co Ltd Beta-lactam compounds, process for repoducing the same and serum cholesterol-lowering agents containing the same
RU2281941C2 (en) 2001-03-22 2006-08-20 Солвей Фармасьютикалс Б.В. Derivatives of 4,5-dihydro-1h-pyrazole possessing cb1-antagonistic activity
EP1392298B1 (en) 2001-05-04 2009-02-18 Amgen Inc. Fused heterocyclic compounds
EP1258247A1 (en) 2001-05-14 2002-11-20 Aventis Pharma Deutschland GmbH Adenosine analogues for the treatment of insulin resistance syndrome and diabetes
GB0113233D0 (en) 2001-05-31 2001-07-25 Glaxo Group Ltd Chemical compounds
DE60236006D1 (en) 2001-06-28 2010-05-27 Alonim Holding Agricultural Co METHOD FOR ANODIZING MAGNESIUM AND MAGNESIUM ALLOYS AND FOR PRODUCING CONDUCTIVE LAYERS ON AN ANODIZED SURFACE
AU2002319627A1 (en) 2001-07-20 2003-03-03 Merck And Co., Inc. Substituted imidazoles as cannabinoid receptor modulators
US7718802B2 (en) 2001-08-10 2010-05-18 Palatin Technologies, Inc. Substituted melanocortin receptor-specific piperazine compounds
US7655658B2 (en) 2001-08-10 2010-02-02 Palatin Technologies, Inc. Thieno [2,3-D]pyrimidine-2,4-dione melanocortin-specific compounds
US7732451B2 (en) 2001-08-10 2010-06-08 Palatin Technologies, Inc. Naphthalene-containing melanocortin receptor-specific small molecule
JP2005504043A (en) 2001-08-10 2005-02-10 パラチン テクノロジーズ インク. Peptidomimetics of biologically active metal peptides
RS50889B (en) 2001-08-31 2010-08-31 Sanofi-Aventis Deutschland Gmbh. Diaryl cycloalkyl derivatives, method for producing the same and the use thereof as ppar activators
CA2456606C (en) 2001-09-21 2010-01-26 Solvay Pharmaceuticals B.V. 4,5-dihydro-1h-pyrazole derivatives having cb1-antagonistic activity
MXPA03009439A (en) 2001-09-21 2004-02-12 Solvay Pharm Bv 4,5-dihydro-1h-pyrazole derivatives having potent cb1-antagonistic activity.
US7109216B2 (en) 2001-09-21 2006-09-19 Solvay Pharmaceuticals B.V. 1H-imidazole derivatives having CB1 agonistic, CB1 partial agonistic or CB1-antagonistic activity
US6509367B1 (en) 2001-09-22 2003-01-21 Virginia Commonwealth University Pyrazole cannabinoid agonist and antagonists
JP2005532982A (en) 2001-09-24 2005-11-04 バイエル・フアーマシユーチカルズ・コーポレーシヨン Production and use of pyrrole derivatives for the treatment of obesity
AR036608A1 (en) 2001-09-24 2004-09-22 Bayer Corp IMIDAZOL DERIVATIVES, PHARMACEUTICAL COMPOSITIONS AND THE USE OF SUCH DERIVATIVES FOR THE MANUFACTURE OF A MEDICINAL PRODUCT FOR THE TREATMENT OF OBESITY
CA2464981A1 (en) 2001-10-25 2003-05-01 Takeda Chemical Industries, Ltd. Quinoline compound
WO2003043999A1 (en) 2001-11-22 2003-05-30 Biovitrum Ab Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1
AU2002353716A1 (en) 2001-11-22 2003-06-10 Biovitrum Ab Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1
BR0214342A (en) 2001-11-22 2004-09-14 Biovitrum Ab 11 - Beta - Hydroxy Steroid Dehydrogenase Inhibitors Type 1
WO2003045313A2 (en) 2001-11-27 2003-06-05 Merck & Co. Inc. 2-aminoquinoline compounds
CA2474168A1 (en) 2002-02-01 2003-08-14 Merck & Co., Inc. 11-beta-hydroxysteroid dehydrogenase 1 inhibitors useful for the treatment of diabetes, obesity and dyslipidemia
US20050124652A1 (en) 2002-02-04 2005-06-09 Rustum Boyce Guanidino compounds
KR20040095239A (en) 2002-02-27 2004-11-12 화이자 프로덕츠 인코포레이티드 Acc inhibitors
AU2003215325B8 (en) 2002-03-05 2008-10-09 Eli Lilly And Company Purine derivatives as kinase inhibitors
HUP0200849A2 (en) 2002-03-06 2004-08-30 Sanofi-Synthelabo N-aminoacetyl-pyrrolidine-2-carbonitrile derivatives, pharmaceutical compositions containing them and process for producing them
FR2836915B1 (en) 2002-03-11 2008-01-11 Aventis Pharma Sa AMINOINDAZOLE DERIVATIVES, PREPARATION METHOD AND INTERMEDIATES THEREOF AS MEDICAMENTS AND PHARMACEUTICAL COMPOSITIONS COMPRISING THE SAME
WO2003087037A1 (en) 2002-04-05 2003-10-23 Merck & Co., Inc. Substituted aryl amides
AU2003226928A1 (en) * 2002-04-09 2003-10-27 7Tm Pharma A/S Novel aminotetraline compounds for use in mch receptor related disorders
WO2003087044A2 (en) 2002-04-09 2003-10-23 7Tm Pharma A/S Novel carboxamide compounds for use in mch receptor related disorders
IL164249A0 (en) 2002-04-11 2005-12-18 Aventis Pharma Gmbh Acyl-3-carboxphenylurea derivatives, processes forpreparing them and their use
FR2838438A1 (en) 2002-04-11 2003-10-17 Sanofi Synthelabo DIPHENYLPYRIDINE DERIVATIVES, THEIR PREPARATION, THE PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME
FR2838439B1 (en) 2002-04-11 2005-05-20 Sanofi Synthelabo TERPHENYL DERIVATIVES, THEIR PREPARATION, PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
US7667053B2 (en) 2002-04-12 2010-02-23 Merck & Co., Inc. Bicyclic amides
EP1505968A1 (en) 2002-05-13 2005-02-16 Eli Lilly And Company Multicyclic compounds for use as melanin concentrating hormone antagonists in the treatment of obesity and diabetes
AU2003234929A1 (en) 2002-05-17 2003-12-02 Kyowa Hakko Kogyo Co., Ltd. Therapeutic agent for diabetes
TWI329111B (en) 2002-05-24 2010-08-21 X Ceptor Therapeutics Inc Azepinoindole and pyridoindole derivatives as pharmaceutical agents
US7595311B2 (en) 2002-05-24 2009-09-29 Exelixis, Inc. Azepinoindole derivatives as pharmaceutical agents
AR040241A1 (en) 2002-06-10 2005-03-23 Merck & Co Inc INHIBITORS OF 11-BETA-HYDROXIESTEROID DEHYDROGRENASE 1 FOR THE TREATMENT OF DIABETES OBESITY AND DISLIPIDEMIA
DE10226462A1 (en) 2002-06-13 2003-12-24 Aventis Pharma Gmbh Fluorinated cycloalkyl-derivatized benzoylguanidines, process for their preparation, their use as medicament, and medicament containing them
HUP0202001A2 (en) 2002-06-14 2005-08-29 Sanofi-Aventis Azabicyclo-octane and nonane derivatives with ddp-iv inhibiting activity
DE10227507A1 (en) 2002-06-19 2004-01-08 Aventis Pharma Deutschland Gmbh Cationically substituted diphenylazetidinones, processes for their preparation, medicaments containing these compounds and their use
DE10227508A1 (en) 2002-06-19 2004-01-08 Aventis Pharma Deutschland Gmbh Acid group-substituted diphenylazetidinones, processes for their preparation, pharmaceutical compositions containing them and their use
DE10227506A1 (en) 2002-06-19 2004-01-08 Aventis Pharma Deutschland Gmbh Ring-substituted diphenylazetidinones, processes for their preparation, pharmaceutical compositions containing them and their use
US20040002524A1 (en) 2002-06-24 2004-01-01 Richard Chesworth Benzimidazole compounds and their use as estrogen agonists/antagonists
EP1375508A1 (en) 2002-06-27 2004-01-02 Aventis Pharma Deutschland GmbH N6-substituted adenosine analogues and their use as pharmaceutical agents
AU2003248888A1 (en) 2002-07-09 2004-01-23 Palatin Technologies, Inc. Peptide composition for treatment of sexual dysfunction
DE10231370B4 (en) 2002-07-11 2006-04-06 Sanofi-Aventis Deutschland Gmbh Thiophene glycoside derivatives, medicaments containing these compounds and methods of making these medicaments
JP2006502247A (en) 2002-07-12 2006-01-19 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Heterocycle-substituted benzoylureas, processes for their preparation and their use as medicaments
KR20050025189A (en) 2002-07-27 2005-03-11 아스트라제네카 아베 Chemical compounds
NZ537685A (en) 2002-07-29 2007-06-29 Hoffmann La Roche Novel benzodioxoles
AU2003250539A1 (en) 2002-08-07 2004-02-25 Mitsubishi Pharma Corporation Dihydropyrazolopyridine compounds
DE10237723A1 (en) 2002-08-17 2004-07-08 Aventis Pharma Deutschland Gmbh Use of IKappaB kinase inhibitors in pain therapy
DE10237722A1 (en) 2002-08-17 2004-08-19 Aventis Pharma Deutschland Gmbh Indole or benzimidazole derivatives for the modulation of IKappaB kinase
US20040242572A1 (en) * 2002-08-24 2004-12-02 Boehringer Ingelheim International Gmbh New carboxamide compounds having melanin concentrating hormone antagonistic activity, pharmaceutical preparations comprising these compounds and process for their manufacture
DE10238865A1 (en) 2002-08-24 2004-03-11 Boehringer Ingelheim International Gmbh New carboxamides are melanin-concentrating hormone receptor antagonists, useful for treating e.g. metabolic diseases, diabetes, eating disorders, cardiovascular disease, emotional disorders, reproductive and memory disorders
AU2003278249B8 (en) 2002-09-05 2010-11-18 Aventis Pharma S.A. Novel aminoindazole derivatives as medicines and pharmaceutical compositions containing same
CA2498272A1 (en) 2002-09-11 2004-03-25 Merck & Co., Inc. Piperazine urea derivatives as melanocortin-4 receptor agonists
EP1539746B1 (en) 2002-09-12 2006-11-15 F. Hoffmann-La Roche Ag N-substituted-1h-indol-5-propionic acid compounds as ppar agonists useful for the treatment of diabetes
AU2003275242B2 (en) 2002-09-27 2010-03-04 Merck Sharp & Dohme Corp. Substituted pyrimidines
US20050256159A1 (en) 2002-10-11 2005-11-17 Astrazeneca Ab 1,4-disubstituted piperidine derivatives and their use as 11,betahsd1 inhibitors
US20040077650A1 (en) 2002-10-18 2004-04-22 Pfizer Inc. Cannabinoid receptor ligands and uses thereof
JP4352001B2 (en) 2002-10-18 2009-10-28 メルク エンド カムパニー インコーポレーテッド Beta-amino heterocyclic dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes
TW200504033A (en) 2002-10-23 2005-02-01 Procter & Gamble Melanocortin receptor ligands
EP1556040A1 (en) 2002-10-24 2005-07-27 Sterix Limited Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1 and type 2
AU2003291342A1 (en) 2002-11-05 2004-06-07 Arena Pharmaceuticals, Inc. Benzotriazoles and methods of prophylaxis or treatment of metabolic-related disorders thereof
US20060058315A1 (en) 2002-11-07 2006-03-16 Astrazeneca Ab 2-Oxo-ethanesulfonamide derivates
FR2847253B1 (en) 2002-11-19 2007-05-18 Aventis Pharma Sa NOVEL DERIVATIVES OF PYRIDAZINONES AS MEDICAMENTS AND PHARMACEUTICAL COMPOSITIONS COMPRISING THEM
MY134457A (en) 2002-11-22 2007-12-31 Merck & Co Inc Substituted amides
GB0227813D0 (en) 2002-11-29 2003-01-08 Astrazeneca Ab Chemical compounds
UY28103A1 (en) 2002-12-03 2004-06-30 Boehringer Ingelheim Pharma NEW IMIDAZO-PIRIDINONAS REPLACED, ITS PREPARATION AND ITS EMPLOYMENT AS MEDICATIONS
DE10258008B4 (en) 2002-12-12 2006-02-02 Sanofi-Aventis Deutschland Gmbh Heterocyclic fluoroglycoside derivatives, medicaments containing these compounds and methods of making these medicaments
DE10258007B4 (en) 2002-12-12 2006-02-09 Sanofi-Aventis Deutschland Gmbh Aromatic fluoroglycoside derivatives, medicaments containing these compounds and methods for the preparation of these medicaments
EP1575901B1 (en) 2002-12-19 2012-10-10 Merck Sharp & Dohme Corp. Substituted amides
AU2003299791A1 (en) 2002-12-20 2004-07-22 Bayer Pharmaceuticals Corporation Substituted 3,5-dihydro-4h-imidazol-4-ones for the treatment of obesity
JO2397B1 (en) 2002-12-20 2007-06-17 ميرك شارب اند دوم كوربوريشن Triazole Derivatives As Inhibitors Of 11-Beta -Hydroxysteriod Dehydrogenase-1
WO2004056744A1 (en) 2002-12-23 2004-07-08 Janssen Pharmaceutica N.V. Adamantyl acetamides as hydroxysteroid dehydrogenase inhibitors
FR2849032B1 (en) 2002-12-23 2006-04-28 Sanofi Synthelabo 5- (4-BROMOPHENYL) -1- (2,4-DICHLOROPHENYL) -4-ETHYL-N - (PIPERIDIN-1-YL) -1H-PYRAZOLE-3-CARBOXAMIDE DERIVATIVE, ITS PREPARATION, ITS THERAPEUTIC APPLICATION
GB0230088D0 (en) 2002-12-24 2003-01-29 Astrazeneca Ab Therapeutic agents
GB0230087D0 (en) 2002-12-24 2003-01-29 Astrazeneca Ab Therapeutic agents
DK1585739T3 (en) 2003-01-06 2011-06-20 Lilly Co Eli Substituted arylcyclopropylacetamides as glucokinase activators
EP1599468B1 (en) 2003-01-14 2007-10-03 Arena Pharmaceuticals, Inc. 1,2,3-trisubstituted aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto such as diabetes and hyperglycemia
TW200503994A (en) 2003-01-24 2005-02-01 Novartis Ag Organic compounds
US7176210B2 (en) 2003-02-10 2007-02-13 Pfizer Inc. Cannabinoid receptor ligands and uses thereof
JP4621198B2 (en) 2003-02-11 2011-01-26 プロシディオン・リミテッド Tri (cyclo) substituted amide glucokinase activating compound
PL378117A1 (en) 2003-02-11 2006-03-06 Prosidion Limited Tri(cyclo) substituted amide compounds
BRPI0407387A (en) 2003-02-13 2006-02-07 Aventis Pharma Gmbh Nitrogen-substituted hexahydropyrazine [1,2-a] pyrimidin-4,7-dione derivatives, processes for their preparation and their application with medicament
RU2005128497A (en) 2003-02-13 2006-01-27 Санофи-Авентис Дойчленд Гмбх (De) SUBSTITUTED DERIVATIVES OF HEXAHYDROPYRAZINO (1,2-A) PYRIMIDIN-4,7-DION, METHODS FOR THEIR PRODUCTION AND THEIR APPLICATION AS MEDICINES
KR100728425B1 (en) 2003-02-19 2007-06-13 에프. 호프만-라 로슈 아게 Sulfonamide substituted xanthine derivatives for use as pepck inhibitors
WO2004078717A1 (en) 2003-03-03 2004-09-16 Merck & Co., Inc. Acylated piperazine derivatives as melanocortin-4 receptor agonists
EP1460069A1 (en) 2003-03-20 2004-09-22 MyoContract Ltd. Substituted cyclohexyl and piperidinyl derivatives as melanocortin-4 receptor modulators
EP1460075A1 (en) 2003-03-21 2004-09-22 Sanofi-Synthelabo Substituted 8-Pyridinyl-6,7,8,9-Tetrahydropyrimido[1,2-a]Pyrimidin-4-one and 8-Phenyl-6-7,8,9-Tetrahydropyrimido[1,2-a]Pyrimidin-4-one derivatives
JP4637089B2 (en) 2003-03-26 2011-02-23 アクテリオン ファーマシューティカルズ リミテッド Acetamide derivatives
CN1764458A (en) 2003-03-26 2006-04-26 麦克公司 Bicyclic piperidine derivatives as the melanocortin-4 receptor agonist
DE10314610A1 (en) 2003-04-01 2004-11-04 Aventis Pharma Deutschland Gmbh New diphenylazetidinone with improved physiological properties, process for its preparation, medicaments containing these compounds and its use
EP1615647B1 (en) 2003-04-11 2010-01-20 High Point Pharmaceuticals, LLC Pharmaceutical use of fused 1,2,4-triazoles
CA2521832A1 (en) 2003-04-11 2004-10-28 Smithkline Beecham Corporation Heterocyclic mchr1 antagonists
EP1615698B1 (en) 2003-04-11 2010-09-29 High Point Pharmaceuticals, LLC New amide derivatives and pharmaceutical use thereof
EP1615637A1 (en) 2003-04-11 2006-01-18 Novo Nordisk A/S Pharmaceutical use of substituted 1,2,4-triazoles
WO2004089471A2 (en) 2003-04-11 2004-10-21 Novo Nordisk A/S NEW PYRAZOLO[1,5-a] PYRIMIDINES DERIVATIVES AND PHARMACEUTICAL USE THEREOF
US7268133B2 (en) 2003-04-23 2007-09-11 Pfizer, Inc. Patent Department Cannabinoid receptor ligands and uses thereof
US20040214856A1 (en) 2003-04-23 2004-10-28 Pfizer Inc Cannabinoid receptor ligands and uses thereof
US7145012B2 (en) 2003-04-23 2006-12-05 Pfizer Inc. Cannabinoid receptor ligands and uses thereof
CN100472485C (en) 2003-04-25 2009-03-25 松下电器产业株式会社 Multi-medium information sharing system
US7049323B2 (en) 2003-04-25 2006-05-23 Bristol-Myers Squibb Company Amidoheterocycles as modulators of the melanocortin-4 receptor
JP2006525298A (en) 2003-05-01 2006-11-09 ヴァーナリス リサーチ リミテッド Azetidine carboxamide derivatives and their use in the treatment of CB1 receptor mediated disorders
KR20060017763A (en) 2003-05-01 2006-02-27 베르날리스 리서치 리미티드 The use of azetidinecarboxamide derivatives in therapy
US20070173486A1 (en) 2003-05-01 2007-07-26 Vernalis Research Limited Azetidinecarboxamide derivatives and their use in the treatment of cb1 receptor mediated disordrs
WO2004099157A1 (en) 2003-05-07 2004-11-18 Pfizer Products Inc. Cannabinoid receptor ligands and uses thereof
AU2004238240A1 (en) 2003-05-09 2004-11-25 Merck & Co., Inc. Benzimidazoles, compositions containing such compounds and methods of use
US7067529B2 (en) 2003-05-19 2006-06-27 Hoffmann-La Roche Inc. Glutamine fructose-y-phosphate amidotransferase (GFAT) inhibitors
EP1631558A1 (en) 2003-05-21 2006-03-08 Biovitrum Ab Inhibitors of 11-beta-hydroxy steroid dehydrogenase type i
AU2004249120B2 (en) 2003-05-23 2008-07-24 Glaxosmithkline Guanidino-substituted quinazolinone compounds as MC4-R agonists
EP1638947B1 (en) 2003-05-29 2010-08-04 Merck Sharp & Dohme Corp. Triazole derivatives as inhibitors of 11-beta hydroxysteroid dehydrogenase-1
WO2004106343A2 (en) 2003-05-30 2004-12-09 Ufc Limited Agelastatin derivatives of antitumour and gsk-3beta-inhibiting alkaloids
JP2004359630A (en) 2003-06-06 2004-12-24 Yamanouchi Pharmaceut Co Ltd Difluorodiphenylmethane derivative and its salt
US7232823B2 (en) 2003-06-09 2007-06-19 Pfizer, Inc. Cannabinoid receptor ligands and uses thereof
RU2006100298A (en) 2003-06-11 2006-05-10 Мерк энд Ко., Инк. (US) SUBSTITUTED 3-ALKYL-AND 3-ALKENYLASETIDINE DERIVATIVES
ATE406365T1 (en) 2003-06-13 2008-09-15 Janssen Pharmaceutica Nv SUBSTITUTED INDAZOLYL(INDOLYL)MALEIMIDE DERIVATIVES AS KINASE INHIBITORS
US20040259887A1 (en) 2003-06-18 2004-12-23 Pfizer Inc Cannabinoid receptor ligands and uses thereof
GB0314049D0 (en) 2003-06-18 2003-07-23 Astrazeneca Ab Therapeutic agents
GB0314057D0 (en) 2003-06-18 2003-07-23 Astrazeneca Ab Therapeutic agents
US20060135523A1 (en) 2003-06-18 2006-06-22 Astrazeneca Ab 2-substituted 5,6-diaryl-pyrazine derivatives as cb1 modulator
GB0314261D0 (en) 2003-06-19 2003-07-23 Astrazeneca Ab Therapeutic agents
AU2004251616A1 (en) 2003-06-19 2005-01-06 Eli Lilly And Company Melanocortin receptor 4(MC4) agonists and their uses
CA2528785A1 (en) 2003-06-20 2005-01-06 Matthias Heinrich Nettekoven 2-amidobenzothiazoles as cb1 receptor inverse agonists
SE0301882D0 (en) 2003-06-25 2003-06-25 Biovitrum Ab New use I
SE0301886D0 (en) 2003-06-25 2003-06-25 Biovitrum Ab New use V
WO2004113310A1 (en) 2003-06-25 2004-12-29 Biovitrum Ab Use of an inhibitor of 11-b-hydroxysteroid dehydrogenase type 1 compounds for promoting wound healing
SE0301888D0 (en) 2003-06-25 2003-06-25 Biovitrum Ab New use VII
FR2856683A1 (en) 2003-06-25 2004-12-31 Sanofi Synthelabo 4-CYANOPYRAZOLE-3-CARBOXAMIDE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
WO2005000974A2 (en) 2003-06-27 2005-01-06 Day-Glo Color Corp. Water-based spray marking composition
CN100555588C (en) 2003-06-27 2009-10-28 日本电气株式会社 The manufacture method of thin-film transistor, thin film transistor base plate, electronic equipment and polycrystalline semiconductor thin film
JP2005015434A (en) 2003-06-27 2005-01-20 Kotobuki Seiyaku Kk Serum cholesterol-lowering agent or prophylactic or therapeutic agent for atherosclerosis
PL379516A1 (en) 2003-07-09 2006-10-02 Forbes Medi-Tech Inc. Novel compounds and compositions comprising sterols and/or stanols and cholesterol biosynthesis inhibitors and use thereof in treating or preventing a variety of diseases and conditions
WO2005005477A2 (en) 2003-07-11 2005-01-20 Novo Nordisk A/S Stabilised insulin compositions
EP1644370A4 (en) 2003-07-11 2008-06-04 Bristol Myers Squibb Co Tetrahydroquinoline derivatives as cannabinoid receptor modulators
FR2857570A1 (en) 2003-07-18 2005-01-21 Didier Leandri Device for suspending stemmed glasses around drinks bucket comprises clamp hooked on bucket upper edge and bracket with suspension head connected to clamp lower end enables hooking of upturned stemmed glass
CA2532808A1 (en) 2003-07-22 2005-02-03 Merck & Co., Inc. Piperidine derivatives as melanocortin-4 receptor agonists
DE10333935A1 (en) 2003-07-25 2005-02-24 Aventis Pharma Deutschland Gmbh New bicyclic cyano-heterocycles, process for their preparation and their use as pharmaceuticals
PE20050249A1 (en) 2003-07-25 2005-06-01 Aventis Pharma Gmbh NEW CYANOPYRROLIDES AND PROCEDURE FOR THEIR PREPARATION AS MEDICINES
DE10334309A1 (en) 2003-07-28 2005-03-03 Aventis Pharma Deutschland Gmbh Substituted thiazole-Benzoisothiazoldioxidderivate, processes for their preparation and their use
US20050026984A1 (en) 2003-07-29 2005-02-03 Aventis Pharma S.A. Substituted thieno [2,3-c] pyrazoles and their use as medicinal products
US7008953B2 (en) 2003-07-30 2006-03-07 Agouron Pharmaceuticals, Inc. 3, 5 Disubstituted indazole compounds, pharmaceutical compositions, and methods for mediating or inhibiting cell proliferation
CA2534221A1 (en) 2003-08-07 2005-02-24 Merck & Co., Inc. Pyrazole carboxamides as inhibitors of 11-beta-hydroxysteroid dehydrogenase-1
US7326706B2 (en) 2003-08-15 2008-02-05 Bristol-Myers Squibb Company Pyrazine modulators of cannabinoid receptors
WO2005021495A2 (en) 2003-08-25 2005-03-10 Microbia Inc. Quaternary salt derivatives of 1,4-diphenylazetidin-2-ones
EP1660446A2 (en) 2003-08-28 2006-05-31 Microbia, Inc. Tethered dimers and trimers of 1,4-diphenylazetidn-2-ones
CN1956949A (en) 2003-09-18 2007-05-02 默克公司 Substituted sulfonamides
EP2932981B1 (en) 2003-09-19 2021-06-16 Novo Nordisk A/S Albumin-binding derivatives of GLP-1
AR045651A1 (en) 2003-09-19 2005-11-02 Solvay Pharm Bv THIAZOL DERIVATIVES AS CANNABINOID RECEPTOR MODULATORS
CA2539596A1 (en) 2003-09-30 2005-04-07 Kilian Waldemar Conde-Frieboes Melanocortin receptor agonists
US20060247239A1 (en) 2003-10-01 2006-11-02 Hu Xiufeng E Melanin concentrating hormone antagonists
MXPA06003654A (en) * 2003-10-01 2006-06-05 Procter & Gamble Melanin concentrating hormone antagonists.
EP1522541A1 (en) 2003-10-07 2005-04-13 Lipideon Biotechnology AG Novel hypocholesterolemic compounds
TW200519105A (en) 2003-10-20 2005-06-16 Lg Life Science Ltd Novel inhibitors of DPP-IV, methods of preparing the same, and pharmaceutical compositions containing the same as an active agent
WO2005042516A2 (en) 2003-10-22 2005-05-12 Neurocrine Biosciences, Inc. Ligands of melanocortin receptors and compositions and methods related thereto
US20050192286A1 (en) 2003-10-22 2005-09-01 Neurocrine Biosciences, Inc. Ligands of melanocortin receptors and compositions and methods related thereto
CN1870988A (en) 2003-10-30 2006-11-29 默克公司 2-azetidinones as anti-hypercholesterolemic agents
WO2005042692A2 (en) 2003-10-31 2005-05-12 Forbes Medi-Tech Inc. A method of inhibiting the expression of genes which mediate cellular cholesterol influx in animal cells and inhibiting the production of proteins resulting from the expression of such genes using cholesterol absorption inhibitors
GB0325402D0 (en) 2003-10-31 2003-12-03 Astrazeneca Ab Compounds
BRPI0416287A (en) 2003-11-07 2007-01-23 Hoffmann La Roche compounds, process for the manufacture thereof, pharmaceutical compositions comprising them, method for the treatment and / or prevention of diseases that are modulated by accß inhibitors and their use
WO2005047293A1 (en) 2003-11-07 2005-05-26 Neurocrine Biosciences, Inc. Melanin-concentrating hormone receptor antagonists and compositions and methods related thereto
WO2005047248A1 (en) 2003-11-10 2005-05-26 Microbia, Inc. 4-biarylyl-1-phenylazetidin-2-ones
WO2005047251A1 (en) 2003-11-12 2005-05-26 Lg Life Sciences Ltd. Melanocortin receptor agonists
KR20050045927A (en) 2003-11-12 2005-05-17 주식회사 엘지생명과학 Melanocortin receptor agonists
EP1686996A4 (en) 2003-11-19 2008-11-12 Novartis Vaccines & Diagnostic Quinazolinone compounds with reduced bioaccumulation
JP4922615B2 (en) 2003-11-26 2012-04-25 武田薬品工業株式会社 Receptor function regulator
EP1538159A1 (en) 2003-12-05 2005-06-08 Santhera Pharmaceuticals (Schweiz) GmbH Substituted N-benzyl-lactam derivatives as melanocortin-4 receptor agonists
WO2005060985A1 (en) 2003-12-10 2005-07-07 Merck & Co., Inc. Inhibition of voluntary ethanol consumption with selective melanocortin 4-receptor agonists
DE10359098A1 (en) 2003-12-17 2005-07-28 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel 2- (piperazin-1-yl) and 2 - ([1,4] diazepan-1-yl) imidazo [4,5-d] pyridazin-4-ones, their preparation and their use as pharmaceuticals
TW200528455A (en) 2003-12-19 2005-09-01 Bristol Myers Squibb Co Azabicyclic heterocycles as cannabinoid receptor modulators
AU2004312001B2 (en) 2003-12-19 2009-08-27 Merck & Co., Inc. Cyclic guanidines, compositions containing such compounds and methods of use
EP1557417B1 (en) 2003-12-19 2007-03-07 Sanofi-Aventis Substituted 8'-pyri(mi)dinyl-dihydrospiro-[cycloalkylamine]-pyrimido[1,2-a] pyrimidin-6-one derivatives
BRPI0417820A (en) 2003-12-19 2007-03-27 Bristol Myers Squibb Co azabicyclic heterocycles as cannabinoid receptor modulators
RU2006126122A (en) 2003-12-19 2008-01-27 Бристол-Маерс Сквибб Компани (Us) ASABICYCLIC HETEROCYCLES AS MODULATORS OF A CANNABIOID RECEPTOR
WO2005063247A1 (en) 2003-12-22 2005-07-14 Amgen Inc. Aryl sulfonamide compounds and uses related thereto
GB0329778D0 (en) 2003-12-23 2004-01-28 Astrazeneca Ab Chemical compounds
ATE485267T1 (en) 2003-12-23 2010-11-15 Astrazeneca Ab DIPHENYLAZETIDINONE DERIVATIVES WITH CHOLESTERINE ABSORPTION INHIBITING EFFECT
AU2004308332B2 (en) 2003-12-23 2008-04-10 Merck Sharp & Dohme Corp. Anti-hypercholesterolemic compounds
CA2549955A1 (en) 2003-12-24 2005-07-07 Prosidion Limited Heterocyclic derivatives as gpcr receptor agonists
MXPA06007715A (en) 2004-01-06 2007-01-26 Johnson & Johnson (3-oxo-3, 4-dihydro-quinoxalin-2-yl-amino) -benzamide derivatives and related compound as glycogen phosphorylase inhibitors for the treatment of diabetes and obesity.
BRPI0507120A (en) 2004-01-28 2007-06-19 Hoffmann La Roche compounds, process for the manufacture thereof, pharmaceutical compositions comprising them, method for treating and / or prophylaxis of diseases that are associated with cb1 receptor modulation and their use
DE502005007840D1 (en) 2004-01-31 2009-09-17 Sanofi Aventis Deutschland 7-PHENYLAMINO-4-CHINOLONE-3-CARBOXYLIC ACID DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS MEDICAMENTS
WO2005080361A1 (en) 2004-02-02 2005-09-01 Pfizer Products Inc. Histamine-3 receptor modulators
DE102004005172A1 (en) 2004-02-02 2005-08-18 Aventis Pharma Deutschland Gmbh Indazole derivatives as inhibitors of the hormone sensitive lipase
HUP0400405A3 (en) 2004-02-10 2009-03-30 Sanofi Synthelabo Pyrimidine derivatives, process for producing them, their use, pharmaceutical compositions containing them and their intermediates
DE102004006325A1 (en) 2004-02-10 2005-08-25 Bayer Healthcare Ag New benzazepine derivatives useful for treating or preventing dyslipidemia, arteriosclerosis, restenosis and ischemia
FR2866340B1 (en) 2004-02-13 2006-11-24 Sanofi Synthelabo OXAZOLE DERIVATIVES, THEIR PREPARATION AND THEIR USE IN THERAPEUTICS.
KR20060124756A (en) 2004-02-17 2006-12-05 라보라토리오스 델 드라. 에스테브.에스.에이. Substituted azetidine compounds, their preparation and use as medicaments
CA2554686A1 (en) 2004-02-18 2005-09-01 Astrazeneca Ab Compounds
PT1725536E (en) 2004-02-19 2009-01-22 Solvay Pharm Bv Imidazoline derivatives having cb1-antagonistic activity
ATE440085T1 (en) 2004-02-20 2009-09-15 Astrazeneca Ab 3-SUBSTITUTED 1,5-DIPHENYLPYRAZOLE DERIVATIVES SUITABLE AS CB1 MODULATORS
GB0403780D0 (en) 2004-02-20 2004-03-24 Astrazeneca Ab Therapeutic agents
US20070244041A1 (en) 2004-02-23 2007-10-18 Reoscience A/S Peptide Yy Analogues
WO2005082893A2 (en) 2004-02-25 2005-09-09 Eli Lilly And Company Histamine h3 receptor antagonists, preparation and therapeutic uses
DE102004010194A1 (en) 2004-03-02 2005-10-13 Aventis Pharma Deutschland Gmbh 4-Benzimidazol-2-yl-pyridazin-3-one derivatives, their preparation and use in medicaments
BRPI0508259A (en) 2004-03-04 2007-07-31 Kissei Pharmaceutical fused heterocyclic derivative, medicinal composition containing same, and medicinal use thereof
JP2007527918A (en) 2004-03-08 2007-10-04 アムジェン インコーポレイテッド Therapeutic modulation of PPAR gamma activity
US7504400B2 (en) 2004-03-10 2009-03-17 Janssen Pharmaceutica N.V. MTP inhibiting aryl piperydines or piperazines substituted with 5-membered heterocycles
DE102004012068A1 (en) 2004-03-12 2005-09-29 Boehringer Ingelheim Pharma Gmbh & Co. Kg New alkyl-containing 5-acylindolinones, their preparation and their use as pharmaceuticals
JP2007530690A (en) 2004-03-29 2007-11-01 メルク エンド カムパニー インコーポレーテッド Diaryltriazoles as inhibitors of 11-β-hydroxysteroid dehydrogenase-1
US7608627B2 (en) 2004-04-05 2009-10-27 Takeda Pharmaceutical Company Limited 6-azaindole compound
EP1586318A1 (en) 2004-04-05 2005-10-19 Neuropharma S.A.U. Thiadiazolidinones as GSK-3 inhibitors
EP1736467A4 (en) 2004-04-06 2009-07-01 Dainippon Sumitomo Pharma Co Novel sulfonamide derivative
EP1734930A2 (en) 2004-04-09 2006-12-27 Smithkline Beecham Corporation Low dose pharmaceutical products
WO2005103039A1 (en) 2004-04-15 2005-11-03 Neurocrine Biosciences, Inc. 2- (3-aminopyrrolidin-1-yl) pyridines as melanin-concentrating hormone receptor an tagonists
JPWO2005108370A1 (en) 2004-04-16 2008-03-21 味の素株式会社 Benzene compounds
BRPI0511029A (en) 2004-05-12 2007-11-27 Aventis Pharma Inc 2 - {[2- (2-Methyl-amino-pyrimidin-4-yl) -1h-indol-5-carbonyl] -amino} -3- (phenyl pyridin-2-yl-amino) -propionic acid as substantially pure a kappa kinase inhibitor
EP1604988A1 (en) 2004-05-18 2005-12-14 Sanofi-Aventis Deutschland GmbH Pyridazinone derivatives, methods for producing them and their use as pharmaceuticals
WO2005118573A1 (en) 2004-05-28 2005-12-15 Smithkline Beecham Corporation Novel diazepine compounds as ligands of the melanocortin 1 and/or 4 receptors
DE102004026532A1 (en) 2004-05-29 2006-01-05 Sanofi-Aventis Deutschland Gmbh Substituted Oxazole Benzoisothiazoldioxidderivate, process for their preparation and their use
DE102004028241B4 (en) 2004-06-11 2007-09-13 Sanofi-Aventis Deutschland Gmbh New fluoroglycoside derivatives of pyrazoles, medicines containing these compounds and manufacture of these medicines
FR2871463B1 (en) 2004-06-11 2006-09-22 Merck Sante Soc Par Actions Si AROYL-O-PIPERIDINE-STRUCTURED DERIVATIVES, PROCESSES FOR THEIR PREPARATION, PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND THERAPEUTIC APPLICATIONS THEREOF
CA2570694A1 (en) 2004-06-24 2006-02-02 Incyte Corporation Amido compounds and their use as pharmaceuticals
WO2006012173A1 (en) 2004-06-24 2006-02-02 Incyte Corporation Amido compounds and their use as pharmaceuticals
WO2006012093A1 (en) 2004-06-24 2006-02-02 Eli Lilly And Company Compounds and methods for treating dyslipidemia
WO2006001318A1 (en) 2004-06-24 2006-01-05 Shionogi & Co., Ltd. Sulfonamide compound
WO2006017257A2 (en) 2004-07-12 2006-02-16 Phenomix Corporation Azetidinone derivatives
DE102004034697A1 (en) 2004-07-17 2006-02-09 Sanofi-Aventis Deutschland Gmbh Salicylthiazoles substituted with diphenylamine or diphenylamine derivatives, process for their preparation and their use
FR2873368B1 (en) 2004-07-26 2008-01-04 Merck Sante Soc Par Actions Si GUANIDINE DERIVATIVES AND THEIR USES IN THERAPEUTICS
FR2873694B1 (en) 2004-07-27 2006-12-08 Merck Sante Soc Par Actions Si NEW AZA-INDOLES INHIBITORS OF MTP AND APOB
WO2006010546A2 (en) 2004-07-28 2006-02-02 F. Hoffman-La Roche Ag Aryl-pyridine derivatives as 11-beta-hsd1 inhibitors
FR2873693B1 (en) 2004-07-29 2006-09-15 Sanofi Synthelabo AMINO-TROPANE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
FR2873690B1 (en) 2004-07-29 2006-10-13 Sanofi Synthelabo OXOPIPERIDINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
DE102004037554A1 (en) 2004-08-03 2006-03-16 Sanofi-Aventis Deutschland Gmbh Substituted 8-aminoalkylthio-xanthines, process for their preparation and their use as medicaments
DE102004038268A1 (en) 2004-08-06 2006-03-16 Sanofi-Aventis Deutschland Gmbh Substituted, bicyclic 8-pyrrolidino-xanthines, process for their preparation and their use as medicaments
DE102004038270A1 (en) 2004-08-06 2006-03-16 Sanofi-Aventis Deutschland Gmbh Substituted bicyclic 8-amino-xanthines, process for their preparation and their use as medicaments
WO2006017542A1 (en) 2004-08-06 2006-02-16 Merck & Co., Inc. Sulfonyl compounds as inhibitors of 11-beta-hydroxysteroid dehydrogenase-1
DE102004038269A1 (en) 2004-08-06 2006-03-16 Sanofi-Aventis Deutschland Gmbh Substituted bicyclic 8-piperidino-xanthines, process for their preparation and their use as pharmaceuticals
WO2006018150A1 (en) 2004-08-11 2006-02-23 Boehringer Ingelheim International Gmbh D-xylopyranosyl-phenyl-substituited cyclene, medicaments containing said compounds, use thereof and method for the production thereof
JP2008509898A (en) 2004-08-12 2008-04-03 プロシディオン・リミテッド Substituted phenylacetamides and their use as glucokinase activators
DE102004039507A1 (en) 2004-08-14 2006-03-02 Sanofi-Aventis Deutschland Gmbh Substituted 8-aminoalkoxi-xanthines, process for their preparation and their use as medicaments
JP2008509982A (en) 2004-08-16 2008-04-03 プロシディオン・リミテッド Aryl urea derivatives
JP2008510018A (en) 2004-08-18 2008-04-03 メタバシス・セラピューティクス・インコーポレイテッド Novel thiazole inhibitor of fructose-1,6-bisphosphatase
UA87328C2 (en) 2004-08-30 2009-07-10 Янссен Фармацевтика Н.В. N-2 adamantanyl-2-phenoxy-acetamide derivatives as 11-beta hydroxysteroid dehydrogenase inhibitors
AU2005284485A1 (en) 2004-09-11 2006-03-23 Sanofi-Aventis Deutschland Gmbh 7-azaindoles and their use as PPAR agonists
PT1797042E (en) 2004-09-29 2009-02-12 Hoffmann La Roche Indozolone derivatives as 11b-hsd1 inhibitors
MX2007003785A (en) 2004-09-29 2007-07-12 Kissei Pharmaceutical 1-( ??-d-glycopyranosyl)-3-substituted nitrogenous heterocyclic compound, medicinal composition containing the same, and medicinal use thereof.
AU2005292134B2 (en) 2004-10-01 2010-12-23 Merck Sharp & Dohme Corp. Aminopiperidines as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
EP1799710A2 (en) 2004-10-07 2007-06-27 Novo Nordisk A/S Protracted glp-1 compounds
US8030273B2 (en) 2004-10-07 2011-10-04 Novo Nordisk A/S Protracted exendin-4 compounds
US8138342B2 (en) 2004-10-12 2012-03-20 High Point Pharmacueticals, LLC 11β-hydroxysteroid dehydrogenase type 1 active spiro compounds
CN101076524A (en) 2004-10-12 2007-11-21 法马科皮亚药物研发公司 Bicyclic compounds as selective melanin concentrating hormone receptor antagonists for the treatment of obesity and related disorders
JP2006111553A (en) 2004-10-13 2006-04-27 Dainippon Sumitomo Pharma Co Ltd Sulfonyloxyindole derivative and medicinal composition containing the same
WO2006045564A1 (en) 2004-10-22 2006-05-04 Smithkline Beecham Corporation Xanthine derivatives with hm74a receptor activity
WO2006045565A1 (en) 2004-10-22 2006-05-04 Smithkline Beecham Corporation Xanthine derivatives with hm74a receptor activity
AR051596A1 (en) 2004-10-26 2007-01-24 Irm Llc CONDENSED HETEROCICLIC COMPOUNDS NITROGENATED AS INHIBITORS OF THE ACTIVITY OF THE CANABINOID RECEIVER 1; PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM AND THEIR EMPLOYMENT IN THE PREPARATION OF MEDICINES FOR THE TREATMENT OF FOOD DISORDERS
PL1807072T3 (en) 2004-10-29 2009-06-30 Lilly Co Eli Cycloalkyl lactam derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
US20090093463A1 (en) 2004-11-02 2009-04-09 Agouron Pharmaceuticals Inc. Novel compounds of substituted and unsubtituted adamantyl amides
JP2006131559A (en) 2004-11-05 2006-05-25 Takeda Chem Ind Ltd Nitrogen-containing heterocyclic compound
EP1666467A1 (en) 2004-11-08 2006-06-07 Evotec AG 11Beta-HSD1 Inhibitors
EP1659113A1 (en) 2004-11-08 2006-05-24 Evotec AG Inhibitors of 11beta-hydroxy steroid dehydrogenase type 1 (11beta-HSD1)
WO2006051662A1 (en) 2004-11-09 2006-05-18 Taisho Pharmaceutical Co., Ltd. Thiazole derivative
JP2006160733A (en) 2004-11-15 2006-06-22 Taisho Pharmaceut Co Ltd Medicine containing cyanofluoropyrrolidine derivative as active ingredient
AU2005309606B2 (en) 2004-11-29 2011-01-06 Merck Sharp & Dohme Corp. Fused aminopiperidines as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
WO2007024993A2 (en) 2005-08-26 2007-03-01 Merck & Co., Inc. Fused aminopiperidines as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
WO2006059744A1 (en) 2004-11-30 2006-06-08 Nippon Chemiphar Co., Ltd. ACTIVATOR OF PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR δ
AU2005311930B9 (en) 2004-12-03 2009-09-10 Merck Sharp & Dohme Corp. Substituted piperazines as CB1 antagonists
JP2008521864A (en) 2004-12-03 2008-06-26 トランステック・ファーマ、インコーポレイテッド Heteroaromatic glucokinase activator
DE102004058449A1 (en) 2004-12-03 2006-06-14 Merck Patent Gmbh tetrahydropyran
JP2008007405A (en) 2004-12-07 2008-01-17 Takeda Chem Ind Ltd Carboxamide derivative
WO2006065826A2 (en) 2004-12-15 2006-06-22 Merck & Co., Inc. Process to chiral beta amino acid derivatives by asymmetric hydrogenation
DE102004060542A1 (en) 2004-12-16 2006-07-06 Sanofi-Aventis Deutschland Gmbh Hydroxybiphenyl carboxylic acids and derivatives, process for their preparation and their use
EP1888544A2 (en) 2004-12-17 2008-02-20 Takeda San Diego, Inc. Hydroxysteroid dehydrogenase inhibitors
JP2008524137A (en) 2004-12-18 2008-07-10 バイエル・ヘルスケア・アクチェンゲゼルシャフト (5S) -3-[(S) -Fluoro (4-trifluoromethylphenyl) methyl-5,6,7,8-tetrahydroquinolin-5-ol derivatives and their use as CETP inhibitors
WO2006067224A2 (en) 2004-12-23 2006-06-29 Biovitrum Ab (Publ) Spiro-benzodioxole and spiro-benzodioxane compounds as orexin receptor antagonists
US20080146614A1 (en) 2004-12-23 2008-06-19 Leifeng Cheng Therapeutic Agents
PE20060949A1 (en) 2004-12-23 2006-10-11 Arena Pharm Inc FUSED DERIVATIVES OF PIRAZOLE AS NIACIN RECEPTOR AGONISTS
JP2008525401A (en) 2004-12-23 2008-07-17 アストラゼネカ アクチボラグ Remedy
JP4980928B2 (en) 2004-12-24 2012-07-18 プロシディオン・リミテッド G protein-coupled receptor (GPR116) agonist and use thereof for the treatment of obesity and diabetes
BRPI0518651A2 (en) 2004-12-24 2008-12-02 Dainippon Sumitomo Pharma compound, a prodrug thereof, or a pharmaceutically acceptable compound or prodrug salt, pharmaceutical composition, dipeptidyl peptidase iv inhibitor, use of a compound, a prodrug thereof or a compound or prodrug salt pharmaceutically acceptable method of treating diabetes
EP1838706A1 (en) 2004-12-24 2007-10-03 Prosidion Limited G-protein coupled receptor agonists
US7635699B2 (en) 2004-12-29 2009-12-22 Bristol-Myers Squibb Company Azolopyrimidine-based inhibitors of dipeptidyl peptidase IV and methods
EP1848430B1 (en) 2004-12-31 2017-08-02 Dr. Reddy's Laboratories Ltd. Novel benzylamine derivatives as cetp inhibitors
DE102005000666B3 (en) 2005-01-04 2006-10-05 Sanofi-Aventis Deutschland Gmbh Sulfonylpyrrolidines, process for their preparation and their use as pharmaceuticals
AU2006204017B2 (en) 2005-01-05 2011-10-06 Abbvie Inc. Adamantyl derivatives as inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme
WO2006073167A1 (en) 2005-01-07 2006-07-13 Ono Pharmaceutical Co., Ltd. Pyrrolidine derivatives
DE102005001053A1 (en) 2005-01-07 2006-07-20 Merck Patent Gmbh Square acid derivatives
TW200637839A (en) 2005-01-07 2006-11-01 Taisho Pharmaceutical Co Ltd 1-thio-d-glucitol derivatives
MY148521A (en) 2005-01-10 2013-04-30 Arena Pharm Inc Substituted pyridinyl and pyrimidinyl derivatives as modulators of metabolism and the treatment of disorders related thereto
DE102005002130A1 (en) 2005-01-17 2006-07-27 Sanofi-Aventis Deutschland Gmbh New substituted aminomethylene sulfonamides useful as hormone sensitive lipase inhibitors in medicaments for treatment and/or prevention of non-insulin dependent diabetes mellitus, diabetic syndrome or obesity
EP1841770B1 (en) 2005-01-19 2009-11-11 Merck & Co., Inc. Bicyclic pyrimidines as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
JP2008100916A (en) 2005-01-24 2008-05-01 Dainippon Sumitomo Pharma Co Ltd Indoles and pharmaceutical formulation containing the same
AR053329A1 (en) 2005-01-31 2007-05-02 Tanabe Seiyaku Co INDOL DERIVATIVES USEFUL AS INHIBITORS OF GLUCOSE CONVEYORS DEPENDENT ON SODIUM (SGLT)
US7750032B2 (en) 2005-02-03 2010-07-06 Irm Llc Compounds and compositions as PPAR modulators
US20090156582A1 (en) 2005-02-09 2009-06-18 Tetsuya Tsukamoto Pyrazole Compound
US20090005321A1 (en) 2005-02-09 2009-01-01 Microbia, Inc. Phenylazetidinone Derivatives
PL1856090T3 (en) 2005-02-11 2010-02-26 Lilly Co Eli Substituted thiophene derivatives as glucagon receptor antagonists, preparation and therapeutic uses
GB0503053D0 (en) 2005-02-14 2005-03-23 Smithkline Beecham Corp Chemical compounds
US20080221108A1 (en) 2005-02-14 2008-09-11 Richard Hatley Anthranilic Acid Derivatives As Hm74A Receptor Agonists
GB0503056D0 (en) 2005-02-14 2005-03-23 Smithkline Beecham Corp Chemical compounds
CA2597269A1 (en) 2005-02-15 2006-08-24 Kissei Pharmaceutical Co., Ltd. 1-substituted-7-(beta-d-glycopyranosyloxy)(aza)indole compound and pharmaceutical containing the same
KR20070107000A (en) 2005-02-15 2007-11-06 노보 노르디스크 에이/에스 3,4-dihydro-1h-isoquinoline-2-carboxylic acid 5-aminopyridin-2-yl esters
FR2882054B1 (en) 2005-02-17 2007-04-13 Sanofi Aventis Sa 1,5-DIARYLPYRROLE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
FR2882365B1 (en) 2005-02-21 2007-09-07 Sanofi Aventis Sa 2- (1,5-DIPHENYL-1H-PYRAZOL-3-YL) -1,3,4-OXADIAZOLE DERIVATIVES AND THEIR PREPARATION AND THERAPEUTIC USE
ZA200708144B (en) 2005-02-25 2008-11-26 Takeda Pharmaceutical Pyridyl acetic acid compounds
GB0504857D0 (en) 2005-03-09 2005-04-13 Imp College Innovations Ltd Novel compounds and their effects on feeding behaviour
CN101137660B (en) 2005-03-09 2011-06-15 霍夫曼-拉罗奇有限公司 Benzothiazole, thiazolopyridine, benzooxazole and oxazolopyridine derivatives as antidiabetic compounds
WO2006096847A1 (en) 2005-03-09 2006-09-14 The Board Of Trustees Of The Leland Stanford Junior University Obestatin and its uses
FR2883000B1 (en) 2005-03-14 2007-06-01 Merck Sante Soc Par Actions Si TRIFLUOROMETHYLBENZAMIDE DERIVATIVES AND THEIR USES IN THERAPEUTICS
DE102005012873B4 (en) 2005-03-19 2007-05-03 Sanofi-Aventis Deutschland Gmbh Aminocarbonyl-substituted 8-N-benzimidazoles, process for their preparation and their use as pharmaceuticals
DE102005012874A1 (en) 2005-03-19 2006-09-21 Sanofi-Aventis Deutschland Gmbh Amide-substituted 8-N-benzimidazoles, process for their preparation and their use as pharmaceuticals
TW200700387A (en) 2005-03-21 2007-01-01 Akzo Nobel Nv 1-benzylindole-2-carboxamide derivatives
WO2006102674A2 (en) 2005-03-24 2006-09-28 Microbia, Inc. Diphenylheterocycle cholesterol absorption inhibitors
WO2006104030A1 (en) 2005-03-25 2006-10-05 Daiichi Sankyo Company, Limited Thiazole compound
TWI357902B (en) 2005-04-01 2012-02-11 Lg Life Science Ltd Dipeptidyl peptidase-iv inhibiting compounds, meth
CA2602234C (en) 2005-04-01 2014-01-14 Eli Lilly And Company Histamine h3 receptor agents, preparation and therapeutic uses
DK1868999T3 (en) 2005-04-06 2009-08-17 Hoffmann La Roche Pyridine-3-carboxamide derivatives as reverse CB1 agonists
WO2006106423A2 (en) 2005-04-07 2006-10-12 Pfizer Inc. Amino sulfonyl derivatives as inhibitors of human 11-.beta.-hydrosysteroid dehydrogenase
WO2006113150A1 (en) 2005-04-13 2006-10-26 Merck & Co., Inc. Niacin receptor agonists, compositions containing such compounds and methods of treatment
WO2006108842A1 (en) 2005-04-15 2006-10-19 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted (heteroaryloxy-benzyl)-benzene derivatives as sglt inhibitors
DE102005017605B4 (en) 2005-04-16 2007-03-15 Sanofi-Aventis Deutschland Gmbh Substituted 2-aminoalkylthio-benzimidazoles, process for their preparation and their use as medicaments
CA2606288A1 (en) 2005-04-18 2006-10-26 Neurogen Corporation Subtituted heteroaryl cb1 antagonists
SG164371A1 (en) 2005-04-19 2010-09-29 Surface Logix Inc Inhibitors of microsomal triglyceride transfer protein and apo-b secretion
EP2308839B1 (en) 2005-04-20 2017-03-01 Takeda Pharmaceutical Company Limited Fused heterocyclic compounds
DE102005018389A1 (en) 2005-04-20 2006-10-26 Sanofi-Aventis Deutschland Gmbh Azole derivatives as inhibitors of lipases and phospholipases
CA2605479A1 (en) 2005-04-20 2006-10-26 Pfizer Products Inc. Acylaminobicyclic heteroaromatic compounds and uses thereof
JP2008539255A (en) 2005-04-26 2008-11-13 マイクロビア インコーポレーテッド 4-Bialyl-1-phenylazetidin-2-one glucuronide derivatives for hypercholesterolemia
EP1877373A2 (en) 2005-05-05 2008-01-16 Microbia, Inc. Biphenylazetidinone cholesterol absorption inhibitors
WO2006121860A2 (en) 2005-05-06 2006-11-16 Bayer Pharmaceuticals Corporation Glucagon-like peptide 1 (glp-1) receptor agonists and their pharmacological methods of use
FR2885627B3 (en) 2005-05-10 2007-06-22 Espace Production Internationa METHOD FOR MANUFACTURING SOIL COATING BLADES AND BLADES THEREOF, DECORATED SHEET FOR FLOOR COVERING PANELS
WO2006122186A2 (en) 2005-05-10 2006-11-16 Microbia, Inc. 1,4-diphenyl-3-hydroxyalkyl-2-azetidinone derivatives for treating hypercholestrolemia
AU2006244043A1 (en) 2005-05-11 2006-11-16 Microbia, Inc. Processes for production of phenolic 4-biphenylylazetidin-2-ones
PT1881850E (en) 2005-05-13 2010-11-26 Lilly Co Eli Glp-1 pegylated compounds
BRPI0610133A2 (en) 2005-05-17 2010-06-01 Schering Corp heterocycles as nicotinic acid receptor agonists for the treatment of dyslipidemia
CN101222950A (en) 2005-05-25 2008-07-16 迈克罗比亚公司 Processes for production of 4-(biphenylyl)azetidin-2-one phosphonic acids
JP5069678B2 (en) 2005-05-25 2012-11-07 メルク・シャープ・エンド・ドーム・コーポレイション Aminocyclohexane as a dipeptidyl peptidase IV inhibitor for the treatment or prevention of diabetes
TW200714597A (en) 2005-05-27 2007-04-16 Astrazeneca Ab Chemical compounds
AU2006255944B2 (en) 2005-06-08 2010-03-04 Japan Tobacco Inc. Heterocyclic compound
DE102005026808A1 (en) 2005-06-09 2006-12-14 Sanofi-Aventis Deutschland Gmbh Benzooxazol-2-one derivatives as inhibitors of lipases and phospholipases
DE102005026762A1 (en) 2005-06-09 2006-12-21 Sanofi-Aventis Deutschland Gmbh Azolopyridin-2-one derivatives as inhibitors of lipases and phospholipases
US7579360B2 (en) 2005-06-09 2009-08-25 Bristol-Myers Squibb Company Triazolopyridine 11-beta hydroxysteroid dehydrogenase type I inhibitors
DE102005026809A1 (en) 2005-06-09 2006-12-14 Sanofi-Aventis Deutschland Gmbh Benzothiazol-2-one derivatives as inhibitors of lipases and phospholipases
JP2008543837A (en) 2005-06-15 2008-12-04 メルク エンド カムパニー インコーポレーテッド Anti-hypercholesterolemic compound
AU2006257646A1 (en) 2005-06-16 2006-12-21 Pfizer Inc. N-(pyridin-2-YL)-sulfonamide derivatives
WO2006134481A1 (en) 2005-06-16 2006-12-21 Pfizer Inc. Inhibitors of 11-beta hydroxysteroid dehydrogenase type 1
US7572808B2 (en) 2005-06-17 2009-08-11 Bristol-Myers Squibb Company Triazolopyridine cannabinoid receptor 1 antagonists
US7605289B2 (en) 2005-06-17 2009-10-20 Amgen, Inc. Benzamide derivatives and uses related thereto
EP1928859A1 (en) 2005-06-17 2008-06-11 Carex SA Pyrazole derivates as cannabinoid receptor modulators
UY29607A1 (en) 2005-06-20 2007-01-31 Astrazeneca Ab CHEMICAL COMPOUNDS
AR057380A1 (en) 2005-06-22 2007-11-28 Astrazeneca Ab CHEMICAL COMPOUNDS DERIVED FROM 2-AZETIDINONE AND THERAPEUTIC USE OF THE SAME
AR057383A1 (en) 2005-06-22 2007-12-05 Astrazeneca Ab CHEMICAL COMPOUNDS DERIVED FROM 2-AZETIDINONE, PHARMACEUTICAL FORMULATION AND A COMPOUND PREPARATION PROCESS
MY148538A (en) 2005-06-22 2013-04-30 Astrazeneca Ab Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions
MX2007015779A (en) 2005-06-22 2008-02-22 Hoffmann La Roche ( 6-FLU0R0-BENZ0[l, 3] DIOXOLYL) -MORPHOLIN-4-YL-METHANONES AND THEIR USE AS CBl LIGANDS.
SA06270191B1 (en) 2005-06-22 2010-03-29 استرازينيكا ايه بي Novel 2-Azetidinone Derivatives as Cholesterol Absorption Inhibitors for the Treatment of Hyperlipidaemic Conditions
AR054482A1 (en) 2005-06-22 2007-06-27 Astrazeneca Ab DERIVATIVES OF AZETIDINONE FOR THE TREATMENT OF HYPERLIPIDEMIAS
AR056866A1 (en) 2005-06-22 2007-10-31 Astrazeneca Ab CHEMICAL COMPOUNDS DERIVED FROM 2-AZETIDINONE, A PHARMACEUTICAL FORMULATION AND A COMPOSITE PREPARATION PROCESS
WO2007001939A1 (en) 2005-06-27 2007-01-04 Janssen Pharmaceutica N.V. Tetrahydro-pyranopyrazole compounds displaying cannabinoid modulating activities
WO2007000445A1 (en) 2005-06-29 2007-01-04 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzyl-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture
AU2006264649A1 (en) 2005-06-30 2007-01-11 Prosidion Limited GPCR agonists
US20090325924A1 (en) 2005-06-30 2009-12-31 Stuart Edward GPCR Agonists
AU2006264651A1 (en) 2005-06-30 2007-01-11 Prosidion Limited G-protein coupled receptor agonists
PL1904455T3 (en) 2005-07-05 2012-01-31 Hoffmann La Roche Pyridazine derivatives
ES2382815T3 (en) 2005-07-08 2012-06-13 Novo Nordisk A/S Dicycloalkylcarbamoyl ureas as glucokinase activators
JPWO2007007688A1 (en) 2005-07-08 2009-01-29 持田製薬株式会社 3,5-diamino-1,2,4-triazole derivative
CA2614518A1 (en) 2005-07-08 2007-01-18 Novo-Nordisk A/S Dicycloalkyl urea glucokinase activators
WO2007007040A1 (en) 2005-07-09 2007-01-18 Astrazeneca Ab 2 -heterocyclyloxybenzoyl amino heterocyclyl compounds as modulators of glucokinase for the treatment of type 2 diabetes
US20080234273A1 (en) 2005-07-09 2008-09-25 Mckerrecher Darren Heteroaryl Benzamide Derivatives for Use as Glk Activators in the Treatment of Diabetes
AU2006268406C1 (en) 2005-07-09 2011-02-24 Astrazeneca Ab Heteroaryl benzamide derivatives for use as GLK activators in the treatment of diabetes
KR100965040B1 (en) 2005-07-11 2010-06-21 미쓰비시 타나베 파마 코퍼레이션 An oxime derivative and preparations thereof
CA2614544C (en) 2005-07-13 2013-09-10 Banyu Pharmaceutical Co., Ltd. Heterocycle-substituted benzimidazole derivative
JP2007022943A (en) 2005-07-13 2007-02-01 Dai Ichi Seiyaku Co Ltd Squalene synthesis enzyme inhibitor
CA2615938C (en) 2005-07-14 2014-04-29 Novo-Nordisk A/S Urea glucokinase activators
DE102005033100B3 (en) 2005-07-15 2007-01-25 Sanofi-Aventis Deutschland Gmbh Novel 1,4-benzothiazepine-1,1-dioxide derivative with improved properties, drugs containing this compound and methods for their preparation
EP1757587A1 (en) 2005-07-15 2007-02-28 Laboratorios Del Dr. Esteve, S.A. Substituted pyrazoline compounds, their preparation and use as medicaments
WO2007009705A1 (en) 2005-07-15 2007-01-25 Laboratorios Del Dr. Esteve, S.A. (rac)-n-piperidinyl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydr0-1h-pyrazole-3-carboxamide hydrates
DE102005033099A1 (en) 2005-07-15 2007-01-18 Sanofi-Aventis Deutschland Gmbh Novel 1,4-benzothiazepine 1,1-dioxide derivative with improved properties, process for its preparation, medicines containing it and its use
MX2007016024A (en) 2005-07-18 2008-03-10 Novo Nordisk As Peptides for use in the treatment of obesity.
WO2007011811A1 (en) 2005-07-19 2007-01-25 Merck & Co., Inc. Spirochromanone derivatives as acetyl coenzyme a carboxylase (acc) inhibitors
WO2007015767A1 (en) 2005-07-20 2007-02-08 Eli Lilly And Company Pyridine derivatives as dipeptedyl peptidase inhibitors
WO2007015744A1 (en) 2005-07-21 2007-02-08 Incyte Corporation Disubstituted thienyl compounds and their use as pharmaceuticals
ATE449097T1 (en) 2005-07-21 2009-12-15 Hoffmann La Roche PYRIDOÄ2,3-DÜPYRIMIDINE-2,4-DIAMINE COMPOUNDS AS PTPIB INHIBITORS
UY29694A1 (en) 2005-07-28 2007-02-28 Boehringer Ingelheim Int METHODS TO PREVENT AND TREAT METABOLIC AND NEW DISORDERS DERIVED FROM PIRAZOL-O-GLUCOSIDO
JP5084503B2 (en) 2005-07-29 2012-11-28 武田薬品工業株式会社 Cyclopropanecarboxylic acid compound
WO2007017124A1 (en) 2005-07-29 2007-02-15 Laboratorios Del Dr. Esteve, S.A. Amorphous phase of a substituted pyrazoline, its preparation and use as medicament
WO2007017126A2 (en) 2005-07-29 2007-02-15 Laboratorios Del Dr. Esteve, S.A. POLYMORPH OF N-PIPERIDINYL-5- (4-CHLOROPHENYL) -1- (2, 4-DICHLOROPHENYL) -4, 5-DIHYDRO-lH-PYRAZOLE- 3 -CARBOXAMIDE AND ITS USE AS A CAMNABINOID RECEPTOR MODULATOR
WO2007016460A2 (en) 2005-07-29 2007-02-08 Mayo Foundation For Medical Education And Research Skin pressure reduction by partial magnetic levitation
CA2617042A1 (en) 2005-07-29 2007-02-01 Takeda Pharmaceutical Company Limited Spiro-cyclic compound
FR2889190A1 (en) 2005-08-01 2007-02-02 Merck Sante Soc Par Actions Si New imidazole carboxamides, useful to treat e.g. pathologies associated with the insulin resistance syndrome, are fructose-1,6-biphosphatase inhibitors
EP1909797A4 (en) 2005-08-02 2013-02-27 Neurogen Corp Dipiperazinyl ketones and related analogues
EP1912968A1 (en) 2005-08-04 2008-04-23 Pfizer Limited Piperidinoyl-pyrrolidine and piperidinoyl-piperidine compounds
ES2267400B1 (en) 2005-08-04 2008-03-01 Universitat De Valencia PIGMENTARY COMPOSITIONS IN WATER BASED FOR POLYCHROMATIC MARKING OF INORGANIC MATERIALS WITH LASER.
EP1915356A1 (en) 2005-08-08 2008-04-30 AstraZeneca AB Therapeutic agents
US20080306087A1 (en) 2005-08-08 2008-12-11 Astrazeneca Ab Therapeutic Agents
WO2007017649A1 (en) 2005-08-09 2007-02-15 Astrazeneca Ab Heteroarylcarbamoylbenzene derivatives for the treatment of diabetes
GB0516462D0 (en) 2005-08-10 2005-09-14 Smithkline Beecham Corp Novel compounds
JP2009504592A (en) 2005-08-10 2009-02-05 スミスクライン・ビーチャム・コーポレイション Xanthine derivatives as selective HM74A agonists
WO2007020502A2 (en) 2005-08-16 2007-02-22 Pharmacia & Upjohn Company Llc Cannabinoid receptor ligands and uses thereof
ATE430744T1 (en) 2005-08-18 2009-05-15 Hoffmann La Roche THIAZOLYLPIPERIDINE DERIVATIVES USEFUL AS H3 RECEPTOR MODULATORS
WO2007026215A1 (en) 2005-08-29 2007-03-08 Glenmark Pharmaceuticals S.A. Pyrazole derivatives as cannabinoid receptor ligands, pharmaceutical compositions containing? them, and processes for their preparation
WO2007027532A2 (en) 2005-08-29 2007-03-08 Merck & Co., Inc. Niacin receptor agonists, compositions containing such compounds and methods of treatment
AU2006285834A1 (en) 2005-08-31 2007-03-08 Astellas Pharma Inc. Thiazole derivative
JP2007063225A (en) 2005-09-01 2007-03-15 Takeda Chem Ind Ltd Imidazopyridine compound
WO2007028145A2 (en) 2005-09-02 2007-03-08 Dara Biosciences, Inc. Agents and methods for reducing protein tyrosine phosphatase 1b activity in the central nervous system
WO2007029086A2 (en) 2005-09-05 2007-03-15 Ranbaxy Laboratories Limited Derivatives of 3-azabicyclo[3.1.0]hexane as dipeptidyl peptidase-iv inhibitors
GB2429975A (en) 2005-09-08 2007-03-14 Univ Edinburgh 1,5-substituted-1H-tetrazole 11beta-hydroxysteroid dehydrogenase type 1 inhibitors
MXPA05009633A (en) 2005-09-08 2007-03-07 Silanes Sa De Cv Lab Stable pharmaceutical composition comprising immediate-release glimepiride and delayed-release metformin.
ES2289888B1 (en) 2005-09-08 2008-12-16 Consejo Superior Investig. Cientificas DERIVATIVES OF PIRAZOLCARBOXAMIDA, ITS PROCESSING PROCEDURE AND ITS APPLICATIONS AS INVESTED ANTAGONISTS / AGONISTS OF THE CANNABINOID CB1 AND OPIOID MU.
AU2006291234A1 (en) 2005-09-14 2007-03-22 Amgen Inc. Conformationally constrained 3- (4-hydroxy-phenyl) - substituted-propanoic acids useful for treating metabolic disorders
GB0518817D0 (en) 2005-09-15 2005-10-26 Astrazeneca Ab Therapeutic agents
GB0518819D0 (en) 2005-09-15 2005-10-26 Astrazeneca Ab Therapeutic agents
JP2009508832A (en) 2005-09-16 2009-03-05 アストラゼネカ アクチボラグ Heterobicyclic compounds as glucokinase activators
RS20080112A (en) 2005-09-16 2009-05-06 Arena Pharmaceuticals Inc., Modulators of metabolism and the treatment of disorders related thereto
EP1931652A2 (en) 2005-09-21 2008-06-18 Incyte Corporation Amido compounds and their use as pharmaceuticals
CA2623088A1 (en) 2005-09-21 2007-04-12 7Tm Pharma A/S Y4 selective receptor agonists for therapeutic interventions
US7851590B2 (en) 2005-09-21 2010-12-14 7Tm Pharma A/S Y2 selective receptor agonists for therapeutic interventions
MY148863A (en) 2005-09-23 2013-06-14 Janssen Pharmaceutica Nv Hexahydro-cyclooctyl pyrazole cannabinoid modulators
CA2623525A1 (en) 2005-09-23 2007-04-05 Janssen Pharmaceutica N.V. Tetrahydro-indazolyl cannabinoid modulators
US8293900B2 (en) 2005-09-29 2012-10-23 Merck Sharp & Dohme Corp Acylated spiropiperidine derivatives as melanocortin-4 receptor modulators
CA2624105C (en) 2005-09-29 2014-02-18 Sanofi-Aventis Phenyl-[1,2,4]-oxadiazol-5-one derivatives with phenyl group, processes for their preparation and their use as pharmaceuticals
GT200600429A (en) 2005-09-30 2007-04-30 ORGANIC COMPOUNDS
CA2623958C (en) 2005-09-30 2013-05-28 Banyu Pharmaceutical Co., Ltd. 2-heteroaryl-substituted indole derivative
JP2009513573A (en) 2005-09-30 2009-04-02 メルク エンド カムパニー インコーポレーテッド Cholesteryl ester transfer protein inhibitor
EP1933836A2 (en) 2005-09-30 2008-06-25 Merck & Co., Inc. Acylated piperidine derivatives as melanocortin-4 receptor agonists
GT200600428A (en) 2005-09-30 2007-05-21 ORGANIC COMPOUNDS
EP1934256A2 (en) 2005-09-30 2008-06-25 Compugen Ltd. Hepatocyte growth factor receptor splice variants and methods of using same
AR056560A1 (en) 2005-10-06 2007-10-10 Astrazeneca Ab PIRROLOPIRIDINONES AS MODULATORS CB1
DE102005048897A1 (en) 2005-10-12 2007-04-19 Sanofi-Aventis Deutschland Gmbh Diacylindazole derivatives as inhibitors of lipases and phospholipases
TW200745031A (en) 2005-10-13 2007-12-16 Merck & Co Inc Acyl indoles, compositions containing such compounds and methods of use
JP2009013065A (en) 2005-10-14 2009-01-22 Astellas Pharma Inc Condensed heterocyclic compound
US20070105819A1 (en) 2005-10-17 2007-05-10 Roger Olsson CB-1 modulating compounds and their use
DE102005049954A1 (en) 2005-10-19 2007-05-31 Sanofi-Aventis Deutschland Gmbh Triazolopyridine derivatives as inhibitors of lipases and phospholipases
DE102005049953A1 (en) 2005-10-19 2007-04-26 Sanofi-Aventis Deutschland Gmbh Carbamoylbenzotriazole derivatives as inhibitors of lipases and phospholipases
RU2008119842A (en) 2005-10-20 2009-12-10 Мерк энд Ко., Инк. (US) TRIAZOLE DERIVATIVES AS 11-BETA-HYDROXISTEROID-DEHYDROHENASE-1 INHIBITORS
AR056876A1 (en) 2005-10-21 2007-10-31 Tanabe Seiyaku Co PIRAZOLO COMPOUNDS [1-5-A] PYRIMIDINE, CB1 CANABINOID RECEPTORS ANTAGONISTS, PHARMACEUTICAL COMPOSITIONS CONTAINING AND USES IN THE TREATMENT OF CENTRAL NERVOUS SYSTEM DISEASES, SUCH AS PSYCHOTIC AND NEIGHBORHOODS
EP1944301A4 (en) 2005-10-27 2012-01-04 Msd Kk Novel benzoxathiin derivative
DE102005052101A1 (en) 2005-10-28 2007-05-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg New beta-agonists, process for their preparation and their use as medicines
KR20080069189A (en) 2005-11-01 2008-07-25 트랜스테크 파르마, 인크. Pharmaceutical use of substituted amides
JP2009513720A (en) 2005-11-01 2009-04-02 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Substituted cycloalkyl pyrrolones as allosteric modulators of glucokinase
WO2007051810A2 (en) 2005-11-01 2007-05-10 Transtech Pharma Pharmaceutical use of substituted amides
ES2372540T3 (en) 2005-11-01 2012-01-23 Array Biopharma, Inc. GLUCOCINASE ACTIVATORS.
BRPI0618067A2 (en) 2005-11-03 2011-08-16 Prosidion Ltd compound or a pharmaceutically acceptable salt thereof, pharmaceutical composition, and use and process for the preparation of a compound or a pharmaceutically acceptable salt thereof
US20080293741A1 (en) 2005-11-03 2008-11-27 Matthew Colin Thor Fyfe Tricyclo Substituted Amides as Glucokinase Modulators
US20090005391A1 (en) 2005-11-03 2009-01-01 Matthew Colin Thor Fyfe Tricyclo Substituted Amides
WO2007052843A1 (en) 2005-11-04 2007-05-10 Takeda Pharmaceutical Company Limited Heterocyclic amide compound and use thereof
JP2007131570A (en) 2005-11-09 2007-05-31 Mitsubishi Pharma Corp Novel aminopyrrolidine derivative
UA95613C2 (en) 2005-11-09 2011-08-25 Уеллстат Терепьютикс Корпорейшн Compounds for the treatment of metabolic disorders
JP4371164B2 (en) 2005-11-10 2009-11-25 萬有製薬株式会社 Aza-substituted spiro derivatives
JP5198280B2 (en) 2005-11-17 2013-05-15 イーライ リリー アンド カンパニー Glucagon receptor antagonists and their preparation and therapeutic use
EP1951661B1 (en) 2005-11-17 2012-08-08 Eli Lilly And Company Glucagon receptor antagonists, preparation and therapeutic uses
EP1966199B1 (en) 2005-11-18 2010-10-20 F. Hoffmann-La Roche AG Azaindole-2-carboxamide derivatives
EP1948614A2 (en) 2005-11-18 2008-07-30 Takeda San Diego, Inc. Glucokinase activators
WO2007057768A2 (en) 2005-11-18 2007-05-24 Pfizer Products Inc. Sulfonyl derivatives
GB0523609D0 (en) 2005-11-19 2005-12-28 Vernalis R&D Ltd Piperazine derivatives
CA2630665C (en) 2005-11-21 2011-03-15 Shionogi & Co., Ltd. Heterocyclic compound having inhibitory activity on 11-.beta.-hydroxysteroid dehydrogenase type i
BRPI0618140A2 (en) 2005-11-22 2011-08-16 Lilly Co Eli pharmaceutically acceptable compound or salt thereof, pharmaceutical composition, and use of a compound or salt thereof
EP1951696A2 (en) 2005-11-22 2008-08-06 Amgen Inc. Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1
DE102005055726A1 (en) 2005-11-23 2007-08-30 Sanofi-Aventis Deutschland Gmbh Hydroxy-substituted diphenylazetidinones, processes for their preparation, medicaments containing these compounds and their use
DK1957484T3 (en) 2005-11-23 2010-05-10 Lilly Co Eli Glucagon Receptor Antagonists, Preparation and Therapeutic Uses
WO2007060992A1 (en) 2005-11-25 2007-05-31 Kaneka Corporation Agent for preventing or improving metabolic syndrome or insulin-resistance syndrome
AR058199A1 (en) 2005-11-28 2008-01-23 Merck & Co Inc DERIVATIVES OF 3- RENTED ALQUILAZETIDINA WITH HETEROCICLOS
WO2007064272A1 (en) 2005-11-29 2007-06-07 Astrazeneca Ab Benzhydryl amide derivatives as cannabinoid receptor antagonists or inverse agonists
WO2007063928A1 (en) 2005-11-30 2007-06-07 Toray Industries, Inc. Novel noncyclic amine carboxamide derivative and salt thereof
DE602006011363D1 (en) 2005-12-01 2010-02-04 Hoffmann La Roche Heteroaryl-substituted steroid derivatives as L-CPT1 inhibitors
CN1978445B (en) 2005-12-02 2010-09-01 中国科学院上海药物研究所 Compound serving as human-derived adenoside mononucleoside activated protein kinase activator, and its preparing method and use
UA94921C2 (en) 2005-12-08 2011-06-25 Новартис Аг 1-orthofluorophenyl substituted 1, 2, 5-thiazolidinedione derivatives as ptp-as inhibitors
UA94724C2 (en) 2005-12-08 2011-06-10 Новартис Аг Thiadiazolidinone derivatives as antidiabetic agents
CN101321761A (en) 2005-12-09 2008-12-10 霍夫曼-拉罗奇有限公司 Tricyclic amide derivatives useful for treating obesity
AU2006326564B2 (en) 2005-12-14 2011-06-23 Merck Sharp & Dohme Corp. Fused aminopiperidines as dipeptidyl peptidase-4 inhibitors for the treatment or prevention of diabetes
CA2632027A1 (en) 2005-12-14 2007-06-21 Amgen Inc. Diaza heterocyclic sulfonamide derivatives and their uses
EP1963318B1 (en) 2005-12-15 2009-11-25 F. Hoffmann-la Roche AG Pyrrolo[2,3-c]pyridine derivatives
CA2633243C (en) 2005-12-15 2014-05-27 Exelixis, Inc. Azepinoindole derivatives as pharmaceutical agents
EP1801098A1 (en) 2005-12-16 2007-06-27 Merck Sante 2-Adamantylurea derivatives as selective 11B-HSD1 inhibitors
AU2006326067A1 (en) 2005-12-16 2007-06-21 F. Hoffmann-La Roche Ag Pyrrolo [2 , 3-b] pyridine derivatives as H3 receptor modulators
CN101379069A (en) 2005-12-19 2009-03-04 塔夫茨大学信托人 Soft protease inhibitors and pro-soft forms thereof
JP2009520825A (en) 2005-12-20 2009-05-28 武田薬品工業株式会社 Glucokinase activator
CN101341148A (en) 2005-12-21 2009-01-07 霍夫曼-拉罗奇有限公司 New salt and polymorph of DPP-IV inhibitor
WO2007075629A2 (en) 2005-12-21 2007-07-05 Schering Corporation Phenoxypiperidines and analogs thereof useful as histamine h3 antagonists
US20090227612A1 (en) 2005-12-22 2009-09-10 Boonsaeng Park Aminopyrimidine Derivatives Inhibiting Protein Kinase Activity, Method For The Preparation Thereof And Pharmaceutical Composition Containing Same
CA2631390C (en) 2005-12-22 2014-03-11 Per Sauerberg Phenoxy acetic acids as ppar delta activators
JP2009520763A (en) 2005-12-23 2009-05-28 ノバルティス アクチエンゲゼルシャフト Fused heterocyclic compounds useful as DPP-IV inhibitors
US20090156465A1 (en) 2005-12-30 2009-06-18 Sattigeri Jitendra A Derivatives of beta-amino acid as dipeptidyl peptidase-iv inhibitors
WO2007081755A2 (en) 2006-01-09 2007-07-19 Metabasis Therapeutics, Inc. Indole-benzimidazole and indazole inhibitors of tyrosine phosphatases
UY30082A1 (en) 2006-01-11 2007-08-31 Boehringer Ingelheim Int CRYSTAL FORM OF 1- (1-METHYLETHYL) -4` - ((2-FLUORO-4-METOXIFENIL) METHYL) -5`- METHYL-1H-PIRAZOL-3`-OBD-GLUCOPYRANOSIDE, A METHOD FOR PREPARATION AND USE OF THE SAME TO PREPARE MEDICATIONS
CN100999517B (en) 2006-01-11 2010-12-15 北京摩力克科技有限公司 Pyrazole formylamine derivate, its pharmaceutical composition and preparation process
EP1976840A1 (en) 2006-01-13 2008-10-08 F.Hoffmann-La Roche Ag Cyclohexyl piperazinyl methanone derivatives and their use as histamine h3 receptor modulators
EP1987000A2 (en) 2006-01-13 2008-11-05 Schering Corporation Diaryl piperidines as cb1 modulators
CA2635211A1 (en) 2006-01-13 2007-08-02 Merck & Co., Inc. Triazole derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase-1
JP2009523781A (en) 2006-01-18 2009-06-25 エヴォルヴァ エスアー PPAR regulator
PE20071320A1 (en) 2006-01-18 2007-12-29 Schering Corp CANNABINOID RECEPTOR MODULATORS
WO2007133820A2 (en) 2006-01-19 2007-11-22 Neurogen Corporation Diaryl triazolones as cb1 antagonists
US20090069302A1 (en) 2006-01-20 2009-03-12 Smithkline Beecham Corporation Chemical compounds
US20090170847A1 (en) 2006-01-23 2009-07-02 Seung Chul Lee Imidazopyridine Derivatives Inhibiting Protein Kinase Activity, Method for the Preparation Thereof and Pharmaceutical Composition Containing Same
CN101370779B (en) 2006-01-23 2011-07-20 霍夫曼-拉罗奇有限公司 Cyclohexyl sulfonamide derivatives having H3 receptor activity
CN101007798B (en) 2006-01-24 2011-01-26 中国人民解放军军事医学科学院毒物药物研究所 Benzodioxole derivatives and their preparation method and medicinal uses
CN101007804B (en) 2006-01-25 2011-05-11 中国人民解放军军事医学科学院毒物药物研究所 1,3-benzodioxole-2,2-dicarboxylic acid derivatives and their preparation method and medicinal uses
CA2636757A1 (en) 2006-01-25 2007-08-02 Tesfaye Biftu Aminocyclohexanes as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
FR2896798A1 (en) 2006-01-27 2007-08-03 Sanofi Aventis Sa SULFONAMIDE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
JP5236499B2 (en) 2006-01-27 2013-07-17 アレイ バイオファーマ、インコーポレイテッド Glucokinase activator
CA2627692A1 (en) 2006-01-30 2007-08-02 Irm Llc Spiro imidazole derivatives as ppar modulators
JP2009525275A (en) 2006-01-30 2009-07-09 アイアールエム・リミテッド・ライアビリティ・カンパニー Polycyclic 1,2,3,4-tetrahydro-isoquinoline derivatives and compositions containing them as PPAR modulators
US20090088368A1 (en) 2006-01-30 2009-04-02 Irm Llc Compositions comprising them as ppar modulators
WO2007086080A2 (en) 2006-01-30 2007-08-02 Glenmark Pharmaceuticals Limited NOVEL IMIDAZO[1,2-a]PYRIDINE CANNABINOID RECEPTOR LIGANDS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
BRPI0707408A2 (en) 2006-01-31 2011-05-03 Incyte Corp starch compounds and their use as pharmaceuticals
UY30117A1 (en) 2006-01-31 2007-06-29 Tanabe Seiyaku Co AMIS TRISUSTITUDED COMPOUND
PE20071025A1 (en) 2006-01-31 2007-10-17 Mitsubishi Tanabe Pharma Corp TRISUSTITUTED AMINE COMPOUND
WO2007088450A2 (en) 2006-02-01 2007-08-09 Pfizer Products Inc. Chromane antagonist of the h-3 receptor
WO2007088462A1 (en) 2006-02-01 2007-08-09 Pfizer Products Inc. Spirochromane antagonists of the h-3 receptor
EP1816125A1 (en) 2006-02-02 2007-08-08 Ranbaxy Laboratories, Ltd. Novel crystalline forms of an antagonist of CB1 cannabinoid receptor and preparation method thereof
FR2896799B1 (en) 2006-02-02 2008-03-28 Sanofi Aventis Sa SULFONAMIDE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
ES2452031T3 (en) 2006-02-03 2014-03-31 Eli Lilly & Company Compounds and procedures to modulate FX receivers
US7691876B2 (en) 2006-02-07 2010-04-06 Hoffmann-La Roche Inc. Heterobicyclic amide compounds
EP2007726B1 (en) 2006-02-07 2011-03-02 F. Hoffmann-La Roche AG Benzamide and heteroarene derivatives as cetp inhibitors
EP1983993A4 (en) 2006-02-07 2010-09-22 Merck Sharp & Dohme Niacin receptor agonists, compositions containing such compounds and methods of treatment
WO2007091948A2 (en) 2006-02-07 2007-08-16 Astrazeneca Ab Novel spiro [imidazolidine-4, 3´-indole] 2, 2´,5´(1h) triones for treatment of conditions associated with vanilloid receptor 1
US7572823B2 (en) 2006-02-07 2009-08-11 Hoffmann-La Roche Inc. Heteroaryl carboxamide compounds
US7678818B2 (en) 2006-02-07 2010-03-16 Hoffmann-La Roche Inc. Anthranilamide and 2-amino-heteroarene-carboxamide compounds
BRPI0707537A2 (en) 2006-02-07 2011-05-03 Wyeth Corp 11-beta hsd1 inhibitors
US7745477B2 (en) 2006-02-07 2010-06-29 Hoffman-La Roche Inc. Heteroaryl and benzyl amide compounds
ATE525072T1 (en) 2006-02-09 2011-10-15 Athersys Inc PYRAZOLES FOR THE TREATMENT OF OBESITY AND OTHER CNS DISEASES
EP1993696A4 (en) 2006-02-10 2010-04-07 Gunderboom Inc Filter cartridges for fluid intake systems
CA2637884A1 (en) 2006-02-13 2007-08-23 Wellstat Therapeutics Corporation Compounds for the treatment of metabolic disorders
EP1987051A2 (en) 2006-02-14 2008-11-05 Intercept Pharmaceuticals, Inc. Bile acid derivatives as fxr ligands for the prevention or treatment of fxr-mediated diseases or conditions
DE102006006648A1 (en) 2006-02-14 2007-08-23 Merck Patent Gmbh Mandelsäurehydrazide
WO2007095513A1 (en) 2006-02-14 2007-08-23 Janssen Pharmaceutica, Nv Tetrahydr0-2h-indaz0le derivatives for use as cannabinoid modulators
EP1996567B1 (en) 2006-02-15 2013-09-18 AbbVie Inc. Novel acetyl-coa carboxylase (acc) inhibitors and their use in diabetes, obesity and metabolic syndrome
KR20080102395A (en) 2006-02-15 2008-11-25 베링거 인겔하임 인터내셔날 게엠베하 Glycopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture
WO2007095603A2 (en) 2006-02-15 2007-08-23 Abbott Laboratories Novel acetyl-coa carboxylase (acc) inhibitors and their use in diabetes, obesity and metabolic syndrome
WO2007097931A2 (en) 2006-02-15 2007-08-30 Merck & Co., Inc. Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
ITRM20060090A1 (en) 2006-02-22 2007-08-23 Sigma Tau Ind Farmaceuti NEW COMPOUNDS CPT INHIBITORS AT LEVEL OF THE SNC AS ANTI-DIABETIC AND OR ANTI-BESIDE DRUGS
ES2402581T3 (en) 2006-02-23 2013-05-06 Pfizer Limited Piperidinoylpyrrolidines as type 4 melanocortin receptor agonists
WO2007096186A1 (en) 2006-02-23 2007-08-30 Santhera Pharmaceuticals (Schweiz) Ag Substituted phenylpiperidine derivatives as melanocortin-4 receptor modulators
US7728031B2 (en) 2006-02-24 2010-06-01 Abbott Laboratories Octahydro-pyrrolo[3,4-b]pyrrole derivatives
WO2007100789A2 (en) 2006-02-24 2007-09-07 Wyeth Gpat3 encodes a mammalian, microsomal acyl-coa:glycerol 3-phosphate acyltransferase
WO2007100833A2 (en) 2006-02-24 2007-09-07 Wyeth Gpat4 encodes a mammalian, microsomal acyl-coa:glycerol 3-phosphate acyltransferase
WO2007099553A2 (en) 2006-02-27 2007-09-07 Cadila Healthcare Limited 1,3-dioxane carboxylic acids
WO2007096764A2 (en) 2006-02-27 2007-08-30 Glenmark Pharmaceuticals S.A. Bicyclic heteroaryl derivatives as cannabinoid receptor modulators
KR20080098615A (en) 2006-02-28 2008-11-11 웰스태트 테러퓨틱스 코포레이션 Compounds for the treatment of metabolic disorders
WO2007099385A1 (en) 2006-03-01 2007-09-07 Glenmark Pharmaceuticals S.A. Dipeptidyl peptidase iv inhibitor compounds and compositions
US7834178B2 (en) 2006-03-01 2010-11-16 Bristol-Myers Squibb Company Triazine 11-beta hydroxysteroid dehydrogenase type 1 inhibitors
JP2007230909A (en) 2006-03-01 2007-09-13 Univ Of Tokyo Substituted isoxazole derivative
TW200808807A (en) 2006-03-02 2008-02-16 Incyte Corp Modulators of 11-β hydroxyl steroid dehydrogenase type 1, pharmaceutical compositions thereof, and methods of using the same
WO2007099423A1 (en) 2006-03-02 2007-09-07 Pfizer Products Inc. 1-pyrrolidine indane derivatives as histamine-3 receptor antagonists
TW200745099A (en) 2006-03-02 2007-12-16 Sankyo Co Optically active thiazolidinedione derivatives
WO2007103719A2 (en) 2006-03-03 2007-09-13 Incyte Corporation MODULATORS OF 11-β HYDROXYL STEROID DEHYDROGENASE TYPE 1, PHARMACEUTICAL COMPOSITIONS THEREOF, AND METHODS OF USING THE SAME
EP1993543A2 (en) 2006-03-03 2008-11-26 Merck & Co., Inc. Novel crystalline forms of antidiabetic compounds
US20080051452A1 (en) 2006-03-06 2008-02-28 Avestha Gengraine Technologies Pvt. Ltd. Hexanoic acid derivatives as dipeptidyl peptidase inhibitors
US20070270492A1 (en) 2006-03-06 2007-11-22 Avestha Gengraine Technologies Pvt. Ltd. Nananoic acid derivatives as dipeptidyl peptidase inhibitors
TW200800979A (en) 2006-03-07 2008-01-01 Lundbeck & Co As H Halogenated sulfonamide derivatives
JP2009132620A (en) 2006-03-07 2009-06-18 Astellas Pharma Inc Phenylthiazole derivative
WO2007104034A2 (en) 2006-03-08 2007-09-13 Takeda San Diego, Inc. Glucokinase activators
US7943612B2 (en) 2006-03-09 2011-05-17 High Point Pharmaceuticals, Llc Compounds that modulate PPAR activity, their preparation and use
ZA200807715B (en) 2006-03-09 2009-11-25 Pharmacopeia Inc 9-Heteroarylpurine MNK2 inhibitors for treating metabolic disorders
WO2007105650A1 (en) 2006-03-10 2007-09-20 Ajinomoto Co., Inc. 4-hydroxyisoleucine derivative and process for producing the derivative
DE602007011904D1 (en) 2006-03-10 2011-02-24 Neurogen Corp PIPERAZINYL OXOALKYL TETRAHYDROISOCHINOLINE AND RELATED ANALOGUE
CN101437398A (en) 2006-03-10 2009-05-20 詹里恩探索公司 Cannabinoid receptor antagonists/inverse agonists useful fortreating obesity
JP2009539762A (en) 2006-03-13 2009-11-19 ファイザー・プロダクツ・インク Tetralin antagonist of H3 receptor
CA2646430A1 (en) 2006-03-14 2007-09-20 Amgen Inc. Bicyclic carboxylic acid derivatives useful for treating metabolic disorders
JP5252435B2 (en) 2006-03-15 2013-07-31 ノボ・ノルデイスク・エー/エス Amylin derivatives
EP1834641A1 (en) 2006-03-16 2007-09-19 Sanofi-Aventis Use of CRF1 receptor antagonists for preparing a drug for treating metabolic syndrome and/or obesity and/or dyslipoproteinemia
EP1995243A4 (en) 2006-03-16 2009-07-22 Astellas Pharma Inc Triazole derivative or salt thereof
JP5243696B2 (en) 2006-03-17 2013-07-24 田辺三菱製薬株式会社 Benzene derivatives
DE102006012548A1 (en) 2006-03-18 2007-09-20 Bayer Healthcare Ag Substituted chromanol derivatives and their use
WO2007107550A1 (en) 2006-03-21 2007-09-27 High Point Pharmaceuticals, Llc Adamantane derivatives for the treatment of the metabolic syndrome
RU2470016C2 (en) 2006-03-22 2012-12-20 Ф.Хоффманн-Ля Рош Аг Bipirazole derivative
EP2004619A1 (en) 2006-03-23 2008-12-24 Amgen Inc. 1-phenylsulfonyl-diaza heterocyclic amide compounds and their uses as modulators of hydroxsteroid dehydrogenases
US7666912B2 (en) 2006-03-23 2010-02-23 Massachusetts Eye And Ear Infirmary Compositions and methods for reducing body fat
AU2007229850A1 (en) 2006-03-23 2007-10-04 Merck & Co., Inc. Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
MX2008012185A (en) 2006-03-23 2008-10-02 Inotek Pharmaceuticals Corp Purine compounds and methods of use thereof.
CN101437816B (en) 2006-03-24 2013-08-14 阿雷生物药品公司 2-aminopyridine analogs as glucokinase activators
FR2898892A1 (en) 2006-03-24 2007-09-28 Genfit Sa New poly-substituted N-(phenethyl)benzamide derivatives are peroxisome proliferator activated receptor activators useful to treat e.g. type-2 diabetes, insulin-resistance, metabolic disorders, atherosclerosis and cardiovascular diseases
FR2898894B1 (en) 2006-03-24 2008-06-06 Genfit Sa SUBSTITUTED N- (PHENETHYL) BENZAMIDE DERIVATIVE COMPOUNDS, PREPARATION AND USES
US20070254911A1 (en) 2006-03-27 2007-11-01 Mingde Xia Tetrahydro-Pyrazolo[3,4-c]Pyridine Cannabinoid Modulators
JP2007291075A (en) 2006-03-27 2007-11-08 Sankyo Co Ltd New compound sterenin and method for producing the same
WO2007112402A1 (en) 2006-03-27 2007-10-04 Janssen Pharmaceutica N.V. Tetrahydro-1h-1,2,6-triaza-azulene cannabinoid modulators
DE102006014688A1 (en) 2006-03-28 2007-10-04 Sanofi-Aventis New bicyclic pyrazolone or isoxazolone derivatives useful as endothelial lipase inhibitors, e.g. for treating disorders of fat metabolism or glucose utilization
TW200806669A (en) 2006-03-28 2008-02-01 Merck & Co Inc Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
US20100261758A1 (en) 2006-03-28 2010-10-14 Novartis Ag Heterocyclic amides for use as pharmaceuticals
WO2007112347A1 (en) 2006-03-28 2007-10-04 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
JP2009531376A (en) 2006-03-28 2009-09-03 ハイ ポイント ファーマシューティカルズ,リミティド ライアビリティ カンパニー Benzothiazole having histamine H3 receptor activity
DE102006014685A1 (en) 2006-03-28 2007-10-04 Sanofi-Aventis New bicyclic imidazolone derivatives useful as endothelial lipase inhibitors, e.g. for treating disorders of fat metabolism or glucose utilization
WO2007126934A2 (en) 2006-03-29 2007-11-08 Merck & Co., Inc. Amidoethylthioether orexin receptor antagonists
US8685961B2 (en) 2006-03-29 2014-04-01 Merck Sharp & Dohme Corp. Diazepan orexin receptor antagonists
GB0606429D0 (en) 2006-03-30 2006-05-10 Novartis Ag Organic compounds
MX2008012400A (en) 2006-03-30 2008-10-10 Irm Llc Azolopyrimidines as inhibitors of cannabinoid 1 activity.
EP2038267A2 (en) 2006-03-31 2009-03-25 Novartis AG Thiadiazolidinone inhibitors of ptpase
EP2004643A1 (en) 2006-03-31 2008-12-24 Novartis AG Organic compounds
EA016264B1 (en) 2006-03-31 2012-03-30 Янссен Фармацевтика Н.В. Benzoimidazol-2-yl pyrimidines and pyrazines as modulators of the histamine hreceptor
US7851654B2 (en) 2006-04-03 2010-12-14 Industry-Academic Cooperation Foundation Gyeongsang National University Chalcone derivatives, pharmaceutically acceptable salt, method for preparation and uses thereof
EP2004601B1 (en) 2006-04-03 2011-03-02 Matrix Laboratories Limited Novel dipeptidyl peptidase iv inhibitors and processes for their preparation and pharmaceutical compositions containing them
US7645748B2 (en) 2006-04-03 2010-01-12 Forbes Medi-Tech Inc. Sterol/stanol phosphorylnitroderivatives and use thereof
CN101050194B (en) 2006-04-05 2013-08-21 上海恒瑞医药有限公司 Derivative of bicyclo-octanes class, preparation method, and application of medicine
JP2009532453A (en) 2006-04-06 2009-09-10 プロシディオン・リミテッド Heterocyclic GPCR agonist
US8053447B2 (en) 2006-04-07 2011-11-08 High Point Pharmaceuticals, Llc 11β-hydroxysteroid dehydrogenase type 1 active compounds
EP1842846A1 (en) 2006-04-07 2007-10-10 Santhera Pharmaceuticals (Schweiz) AG Phenylpiperidine derivatives as melanocortin-4 receptor modulators
US7435833B2 (en) 2006-04-07 2008-10-14 Abbott Laboratories Inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme
JP5302883B2 (en) 2006-04-07 2013-10-02 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Thienopyrimidine having MNK1 / MNK2 inhibitory activity for pharmaceutical composition
US20100029716A1 (en) 2006-04-10 2010-02-04 Concert Pharmaceuticals, Inc. Novel 1,2,3,4- tetrahydroquinoline derivatives
CA2646917A1 (en) 2006-04-11 2007-10-18 Actelion Pharmaceuticals Ltd Novel sulfonamide compounds
GB0607196D0 (en) 2006-04-11 2006-05-17 Prosidion Ltd G-protein coupled receptor agonists
CA2648642A1 (en) 2006-04-11 2007-10-25 Merck & Co., Inc. Niacin receptor agonists, compositions containing such compounds and methods of treatment
TW200806627A (en) 2006-04-11 2008-02-01 Novartis Ag Organic compounds
JP2009533393A (en) 2006-04-12 2009-09-17 プロビオドルグ エージー Enzyme inhibitor
CN101421235A (en) 2006-04-12 2009-04-29 霍夫曼-拉罗奇有限公司 5-amido-2-carboxamide indoles
WO2007120593A1 (en) 2006-04-12 2007-10-25 Wyeth Anilino-pyrimidine phenyl and benzothiophene analogs
EP2015769A4 (en) 2006-04-13 2013-12-25 Ipsen Pharma Pharmaceutical compositions of hglp-1, exendin-4 and analogs thereof
FR2899899A1 (en) 2006-04-14 2007-10-19 Sanofi Aventis Sa AMINOMETHYL PYRIDINE DERIVATIVES, THEIR PREPARATION AND THERAPEUTIC USE THEREOF
US20090281097A1 (en) 2006-04-14 2009-11-12 Takeda Pharmaceutical Company Limited Nitrogen-containing heterocyclic compound
JP2007284090A (en) 2006-04-14 2007-11-01 Dic Plastics Inc Lid locking structure and container
WO2007119837A1 (en) 2006-04-14 2007-10-25 Ajinomoto Co., Inc. Lipase inhibitor
PE20080188A1 (en) 2006-04-18 2008-03-10 Janssen Pharmaceutica Nv DERIVATIVES OF BENZOAZEPINE-OXY-ACETIC ACID AS PPAR-DELTA AGONISTS USED TO INCREASE HDL-C, REDUCE LDL-C AND REDUCE CHOLESTEROL
CN102643248A (en) 2006-04-18 2012-08-22 日本化学医药株式会社 Activating agent for peroxisome proliferator activated receptor
WO2007120102A1 (en) 2006-04-19 2007-10-25 Astrazeneca Ab New substituted oxindole derivatives
ES2487967T3 (en) 2006-04-20 2014-08-25 Pfizer Products Inc. Heterocyclic amido compounds condensed with phenyl for the prevention and treatment of glucokinase mediated diseases
EP2573111A1 (en) 2006-04-20 2013-03-27 Amgen Inc. GLP-1 compounds
WO2007122970A1 (en) 2006-04-20 2007-11-01 Osaka University Ligand capable of binding to nuclear receptor
US20070254952A1 (en) 2006-04-21 2007-11-01 Yuguang Wang Cannabinoid receptor modulators
GB0607953D0 (en) 2006-04-21 2006-05-31 Novartis Ag Organic compounds
AU2007240450B2 (en) 2006-04-21 2011-12-22 Eli Lilly And Company Cyclohexylimidazole lactam derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
EP2016047B1 (en) 2006-04-21 2013-08-28 Eli Lilly And Company Biphenyl amide lactam derivatives as inhibitors of 11- beta-hydroxysteroid dehydrogenase 1
GB0607951D0 (en) 2006-04-21 2006-05-31 Novartis Ag Organic compounds
EA015675B1 (en) 2006-04-21 2011-10-31 Эли Лилли Энд Компани Cyclohexylpyrazole-lactam derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
GB0607954D0 (en) 2006-04-21 2006-05-31 Novartis Ag Organic compounds
TW200815377A (en) 2006-04-24 2008-04-01 Astellas Pharma Inc Oxadiazolidinedione compound
AU2007244955B2 (en) 2006-04-24 2011-12-08 Eli Lilly And Company Inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
EA016415B1 (en) 2006-04-24 2012-04-30 Эли Лилли Энд Компани Inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
BRPI0710262A2 (en) 2006-04-24 2011-08-09 Lilly Co Eli compound, pharmaceutical composition, and intermediate
WO2007122634A2 (en) 2006-04-24 2007-11-01 Jubilant Biosys Limited Pyrimidinediones as tyrosine kinase inhibitors
CN101432277B (en) 2006-04-25 2013-12-25 伊莱利利公司 Inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
PT2035379E (en) 2006-04-25 2010-07-13 Lilly Co Eli Inhibitors of 11-beta-hydroxysteroid dehydrogenase 1
ES2336849T3 (en) 2006-04-25 2010-04-16 Eli Lilly And Company INHIBITORS OF 11-BETA-HYDROXIESTEROID DEHYDROGENASE 1.
US7659281B2 (en) 2006-04-25 2010-02-09 Bristol-Myers Squibb Company HMG-CoA reductase inhibitors
WO2007121687A1 (en) 2006-04-26 2007-11-01 Institute Of Pharmacology And Toxicology Academy Of Military Medical Sciences P.L.A. China 4-methyl-1h-diaryl pyrazole derivatives and their uses as medicament
EP2013209B1 (en) 2006-04-26 2011-01-19 Actelion Pharmaceuticals Ltd. Pyrazolo-tetrahydropyridine derivatives as orexin receptor antagonists
WO2007122411A1 (en) 2006-04-26 2007-11-01 Astrazeneca Ab Diazepan-1-yl-sulfonyl derivatives for the treatment of metabolic syndrome
WO2007126043A1 (en) 2006-04-27 2007-11-08 Mitsubishi Tanabe Pharma Corporation Use as drugs of carboxylic acid derivatives having thiazole rings
AR060623A1 (en) 2006-04-27 2008-07-02 Astrazeneca Ab COMPOUNDS DERIVED FROM 2-AZETIDINONE AND A PREPARATION METHOD
US20070254863A1 (en) 2006-04-27 2007-11-01 Jochen Antel Use of CBx cannabinoid receptor modulators as potassium channel modulators
MX2008013844A (en) 2006-04-28 2008-11-10 Lilly Co Eli Pieridinyl substituted pyrrolidinones as inhibitors of 11-beta-hydroxysteroid dehydrogenase 1.
EP2019824A2 (en) 2006-04-28 2009-02-04 Transtech Pharma, Inc. Benzamide glucokinase activators
EP1849785A1 (en) 2006-04-28 2007-10-31 Neuropharma, S.A. N-(2-Thiazolyl)-amide derivatives as GSK-3 inhibitors
EP2019823B1 (en) 2006-04-28 2010-11-24 TransTech Pharma, Inc. Benzamide glucokinase activators
MX2008013511A (en) 2006-04-28 2008-10-28 Shionogi & Co Amine derivative having npy y5 receptor antagonist activity.
JP2009535420A (en) 2006-05-01 2009-10-01 インサイト・コーポレイション Tetra-substituted ureas as modulators of 11-beta hydroxyl steroid dehydrogenase type 1
JP2009167103A (en) 2006-05-02 2009-07-30 Taisho Pharmaceutical Co Ltd Pyrazolyl 5-thioglycoside compound
JP2009167104A (en) 2006-05-02 2009-07-30 Taisho Pharmaceutical Co Ltd Phenyl 5-thio glycoside compound
EP1854806A1 (en) 2006-05-02 2007-11-14 MPG Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Thioglycosides as pharmaceutically active agents
MX2008014024A (en) 2006-05-04 2008-11-14 Boehringer Ingelheim Int Polymorphs.
EP1852108A1 (en) 2006-05-04 2007-11-07 Boehringer Ingelheim Pharma GmbH & Co.KG DPP IV inhibitor formulations
ES2389569T3 (en) 2006-05-05 2012-10-29 Jenrin Discovery Inverse antagonists / agonists of cannabinoid receptors
US20090326042A1 (en) 2006-05-05 2009-12-31 Isis Pharmaceuticals, Inc Compounds and methods for modulating expression of crp
US20080247964A1 (en) 2006-05-08 2008-10-09 Yuelian Xu Substituted azaspiro derivatives
WO2007128801A1 (en) 2006-05-08 2007-11-15 Novartis Ag Combination of organic compounds
ES2553154T3 (en) 2006-05-09 2015-12-04 Novo Nordisk A/S Insulin derivative
MX2008014061A (en) 2006-05-09 2008-11-14 Novo Nordisk As Insulin derivative.
WO2007129188A1 (en) 2006-05-10 2007-11-15 Pfizer Japan Inc. Cyclopropanecarboxamide compound
US20120088746A1 (en) 2006-05-10 2012-04-12 Pfizer Inc. Amide derivatives as ion-channel ligands and pharmaceutical compositions and methods of using the same
AU2007247385B2 (en) 2006-05-10 2011-07-14 Novartis Ag Bicyclic derivatives as CETP inhibitors
CA2650515A1 (en) 2006-05-11 2007-11-22 Novartis Ag Benzylamine derivatives as cetp inhibitors
DE102006021874B4 (en) 2006-05-11 2008-03-27 Sanofi-Aventis 4,5-diphenyl-pyrimidinyl-amino substituted carboxylic acids, process for their preparation and their use as medicaments
DE502007001453D1 (en) 2006-05-11 2009-10-15 Sanofi Aventis 4,5-Diphenyl-pyrimidine-substituted carboxylic acids, process for their preparation and their use as medicament
DE102006021872B4 (en) 2006-05-11 2008-04-17 Sanofi-Aventis 4,5-Diphenyl-pyrimidinyl-oxy or -mercapto substituted carboxylic acids, process for their preparation and their use as medicaments
WO2007134149A2 (en) 2006-05-11 2007-11-22 Janssen Pharmaceutica N.V. 3,4-dihydro-2h-benzo[1,4]oxazine and thiazine derivatives as cetp inhibitors
DE102006021878A1 (en) 2006-05-11 2007-11-15 Sanofi-Aventis Phenylamino-benzoxazole substituted carboxylic acids, process for their preparation and their use as medicaments
CA2651942A1 (en) 2006-05-11 2008-07-03 Janssen Pharmaceutica N.V. 1,2,3,4-tetrahydro-quinoline derivatives as cetp inhibitors
WO2007133756A2 (en) 2006-05-15 2007-11-22 Neurogen Corporation Crf1 receptor ligands comprising heteroaryl fused bicycles
US7851468B2 (en) 2006-05-15 2010-12-14 Cephalon, Inc. Substituted pyrazolo[3,4-d]pyrimidines
PE20080069A1 (en) 2006-05-15 2008-02-22 Merck & Co Inc BICYCLE COMPOUNDS AS AGONISTS OF THE RECEPTOR 40 COUPLED TO PROTEIN G (GPR40)
CA2651777A1 (en) 2006-05-15 2007-11-29 Merck & Co., Inc. Pro-drugs of tertiary alcohols
JP2009537525A (en) 2006-05-16 2009-10-29 メルク エンド カムパニー インコーポレーテッド Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
US7432255B2 (en) 2006-05-16 2008-10-07 Hoffmann-La Roche Inc. 1H-indol-5-yl-piperazin-1-yl-methanone derivatives
WO2007136603A2 (en) 2006-05-16 2007-11-29 Merck & Co., Inc. Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
JP2009537564A (en) 2006-05-17 2009-10-29 インサイト・コーポレイション Heterocyclic inhibitors of 11-beta hydroxyl steroid dehydrogenase type I and methods using the same
EP2024334A4 (en) 2006-05-18 2009-09-30 Merck & Co Inc Substituted esters as cannabinoid-1 receptor modulators
WO2007137008A2 (en) 2006-05-18 2007-11-29 Wellstat Therapeutics Corporation Compounds for the treatment of metabolic disorders
WO2007134958A1 (en) 2006-05-18 2007-11-29 F. Hoffmann-La Roche Ag Thiazolo-pyramidine / pyridine urea derivatives as adenosine a2b receptor antagonists
ATE533744T1 (en) 2006-05-19 2011-12-15 Wyeth Llc N-BENZOYPYRROLIDINE-3-YLAMINE AS HISTAMINE-3 ANTAGONISTS
RU2437876C2 (en) 2006-05-19 2011-12-27 Тайсо Фармасьютикал Ко., Лтд. C-phenyl glycitol compound for treating diabetes
JP5230613B2 (en) 2006-05-23 2013-07-10 テラコス・インコーポレイテッド Glucose transporter inhibitor and method of use thereof
WO2007135111A1 (en) 2006-05-23 2007-11-29 High Point Pharmaceuticals, Llc 6- (4-cyclopropylpiperazin-1-yl) -2 ' -methyl- [3, 4 ' ] -bipyridine and its use as a medicament
WO2007135427A1 (en) 2006-05-23 2007-11-29 Astrazeneca Ab 1,4-disubstituted piperazine and 1,4-disubstituted azepane as 11 -beta-hydroxysteroid dehydrogenase 1 inhibitors
WO2007134986A1 (en) 2006-05-23 2007-11-29 F. Hoffmann-La Roche Ag Pyridopyrimidinone derivatives
CA2651378C (en) 2006-05-24 2012-08-28 Eli Lilly And Company Fxr agonists
EP2029558B1 (en) 2006-05-24 2010-03-10 Eli Lilly And Company Compounds and methods for modulating fxr
JP5105297B2 (en) 2006-05-25 2012-12-26 味の素株式会社 PPAR activity regulator
US20100292266A1 (en) 2006-05-26 2010-11-18 Richard Apodaca Oxazolyl Piperidine Modulators of Fatty Acid Amide Hydrolase
TW200806625A (en) 2006-05-26 2008-02-01 Astrazeneca Ab Therapeutic compounds
EP2029604A2 (en) 2006-05-26 2009-03-04 Novartis AG Aldosterone synthase and/or 11beta-hydroxylase inhibitors
US8815312B2 (en) 2006-05-26 2014-08-26 Nestec S.A. Methods of use and nutritional compositions of Touchi Extract
NZ571972A (en) 2006-05-29 2011-09-30 High Point Pharmaceuticals Llc 3- (1, 3-benz0di0x0l-5-yl) -6- (4-cyclopropylpiperazin-1-yl) -pyridazine, its salts and solvates and its use as histamine h3 receptor antagonist
CA2652158A1 (en) 2006-05-30 2007-12-06 Matthias Heinrich Nettekoven Piperidinyl pyrimidine derivatives
NZ573028A (en) 2006-05-30 2011-11-25 Janssen Pharmaceutica Nv Substituted pyridyl amide compounds as modulators of the histamine h3 receptor
WO2007138431A2 (en) 2006-05-30 2007-12-06 Pfizer Products Inc. Azabicyclic ether histamine-3 antagonists
ATE522518T1 (en) 2006-05-31 2011-09-15 Takeda San Diego Inc INDAZOLE AND ISOINDOLE DERIVATIVES AS GLUCOKINASE ACTIVATE SUBSTANCES
WO2007140385A2 (en) 2006-05-31 2007-12-06 Abbott Laboratories Thiazole compounds as cannabinoid receptor ligands and uses thereof
WO2007140439A2 (en) 2006-05-31 2007-12-06 Abbott Laboratories Compounds as cannabinoid receptor ligands and uses thereof
WO2007138050A1 (en) 2006-05-31 2007-12-06 Solvay Pharmaceuticals B.V. Sulphur containing pyrazole derivatives as selective cannabinoid cb1 receptor antagonists
WO2007137962A1 (en) 2006-06-01 2007-12-06 F. Hoffmann-La Roche Ag Thiazole derivatives
US20080241869A1 (en) 2006-06-02 2008-10-02 San Diego State University Research Foundation Compositions and methods for ameliorating hyperlipidemia
FR2901792A1 (en) 2006-06-06 2007-12-07 Negma Lerads Soc Par Actions S PPAR ACTIVATOR DERIVATIVES, PREPARATION METHOD AND THERAPEUTIC APPLICATION
JP2009190971A (en) 2006-06-06 2009-08-27 Mitsubishi Tanabe Pharma Corp 2-cyanopyrrolidine derivative
TW200808695A (en) 2006-06-08 2008-02-16 Amgen Inc Benzamide derivatives and uses related thereto
US20070287674A1 (en) 2006-06-08 2007-12-13 Hej Research Institute Of Chemistry New treatment of diabetes mellitus
AU2007259143A1 (en) 2006-06-08 2007-12-21 Amgen Inc. Benzamide derivatives and uses related thereto
EP2035373B1 (en) 2006-06-09 2011-05-04 Action Pharma A/S Phenyl pyrrole aminoguanidine derivatives
US20080051387A1 (en) 2006-06-09 2008-02-28 Yuelian Xu Tetrahydropyrido[3,4-d]pyrimidines and related analogues
WO2008035359A2 (en) 2006-06-12 2008-03-27 Cadila Healthcare Limited Oximinophenoxyalkanoic acid and phenylalkanoic acid derivatives
WO2007146761A2 (en) 2006-06-12 2007-12-21 Neurogen Corporation Diaryl pyrimidinones and related compounds
WO2007144394A2 (en) 2006-06-16 2007-12-21 High Point Pharmaceuticals, Llc. Pharmaceutical use of substituted piperidine carboxamides
WO2007149865A2 (en) 2006-06-19 2007-12-27 University Of Utah Research Foundation Methods and compositions related to inhibition of ceramide synthesis
US7629346B2 (en) 2006-06-19 2009-12-08 Hoffmann-La Roche Inc. Pyrazinecarboxamide derivatives as CB1 antagonists
JP2009541283A (en) 2006-06-20 2009-11-26 アストラゼネカ アクチボラグ Remedy
CN101472896A (en) 2006-06-20 2009-07-01 阿斯利康(瑞典)有限公司 Therapeutic agents
WO2007148185A2 (en) 2006-06-21 2007-12-27 Pfizer Products Inc. Substituted 3 -amino- pyrrolidino-4 -lactams as dpp inhibitors
EP2044074A2 (en) 2006-06-23 2009-04-08 Incyte Corporation Purinone derivatives as hm74a agonists
WO2008001160A1 (en) 2006-06-23 2008-01-03 The Procter & Gamble Company Melanin concentrating hormone antagonists
DE602007010312D1 (en) 2006-06-23 2010-12-16 Incyte Corp PURINONE DERIVATIVES AS HM74A AGONISTS
DE102006028862A1 (en) 2006-06-23 2007-12-27 Merck Patent Gmbh 3-amino-imidazo [1,2-a] pyridine
US20070299062A1 (en) 2006-06-26 2007-12-27 The Procter & Gamble Company Melanin concentrating hormone antagonists
TW200811170A (en) 2006-06-27 2008-03-01 Sanofi Aventis Urea derivatives of tropane, their preparation and their therapeutic application
TW200811158A (en) 2006-06-27 2008-03-01 Sanofi Aventis Piperidine or pyrrolidine urea derivatives, their preparation and their therapeutic application
CN102731451B (en) 2006-06-27 2015-07-29 武田药品工业株式会社 Fused ring compound
CN101096363B (en) 2006-06-27 2011-05-11 中国人民解放军军事医学科学院毒物药物研究所 2,4,5-three-substituted thiazole compound, preparation method, medicament composition and pharmacy use thereof
TW200815417A (en) 2006-06-27 2008-04-01 Astrazeneca Ab New compounds II
PL2040713T3 (en) 2006-06-27 2014-11-28 Intercept Pharmaceuticals Inc Bile acid derivatives as fxr ligands for the prevention or treatment of fxr-mediated deseases or conditions
TW200815418A (en) 2006-06-27 2008-04-01 Astrazeneca Ab New compounds I
US7919598B2 (en) 2006-06-28 2011-04-05 Bristol-Myers Squibb Company Crystal structures of SGLT2 inhibitors and processes for preparing same
US20080004281A1 (en) 2006-06-28 2008-01-03 Kalypsys, Inc. Methods for the modulation of crp by the selective modulation of ppar delta
CN101479249B (en) 2006-06-29 2012-10-10 霍夫曼-拉罗奇有限公司 Benzimidazole derivatives, method for the production thereof, their use as FXR agonists and pharmaceutical preparations containing the same
EP2038269A1 (en) 2006-06-29 2009-03-25 Janssen Pharmaceutica N.V. Substituted benzamide modulators of the histamine h3 receptor
WO2008002817A1 (en) 2006-06-29 2008-01-03 Janssen Pharmaceutica N.V. Butyl and butynyl benzyl amine compounds
CN101511790A (en) 2006-06-29 2009-08-19 詹森药业有限公司 Substituted aminomethyl benzamide compounds
JP2009542673A (en) 2006-06-29 2009-12-03 アリーナ ファーマシューティカルズ, インコーポレイテッド Histamine H3-receptor modulator useful for the treatment of histamine H3-receptor related disorders
CA2656089A1 (en) 2006-06-29 2008-01-03 Janssen Pharmaceutica N.V. Substituted benzyl amine compounds
US8115017B2 (en) 2006-06-29 2012-02-14 Taisho Pharmaceutical Co., Ltd C-phenyl 1-thioglucitol compound
US20080004325A1 (en) 2006-06-29 2008-01-03 Wyeth PTP1B inhibitors
GB0613196D0 (en) 2006-07-03 2006-08-09 Imp Innovations Ltd Novel compounds and their effects on feeding behaviour
AR061793A1 (en) 2006-07-05 2008-09-24 Mitsubishi Tanabe Pharma Corp PIRAZOLO COMPOUND [1,5-A] PYRIMIDINE AND PHARMACEUTICAL COMPOSITION
CA2655692C (en) 2006-07-05 2012-01-03 F. Hoffmann-La Roche Ag Alkyl-pyridazine derivatives as inhibitors of 11 beta hydroxysteroid dehydrogenase type 1(11b-hsd 1)
DE102006031176A1 (en) 2006-07-06 2008-01-10 Bayer Healthcare Ag Substituted benzoxepinoisoxazoles and their use
US7910747B2 (en) 2006-07-06 2011-03-22 Bristol-Myers Squibb Company Phosphonate and phosphinate pyrazolylamide glucokinase activators
US7888504B2 (en) 2006-07-06 2011-02-15 Bristol-Myers Squibb Company Glucokinase activators and methods of using same
TW200811140A (en) 2006-07-06 2008-03-01 Arena Pharm Inc Modulators of metabolism and the treatment of disorders related thereto
EP2046753A2 (en) 2006-07-06 2009-04-15 Brystol-Myers Squibb Company Pyridone/hydroxypyridine 11-beta hydroxysteroid dehydrogenase type i inhibitors
JP5194588B2 (en) 2006-07-06 2013-05-08 大正製薬株式会社 Diabetes preventive or therapeutic agent containing 1-thio-D-glucitol derivative as an active ingredient
TW200811147A (en) 2006-07-06 2008-03-01 Arena Pharm Inc Modulators of metabolism and the treatment of disorders related thereto
US20080009534A1 (en) 2006-07-07 2008-01-10 Bristol-Myers Squibb Company Substituted acid derivatives useful as antidiabetic and antiobesity agents and method
US7795291B2 (en) 2006-07-07 2010-09-14 Bristol-Myers Squibb Company Substituted acid derivatives useful as anti-atherosclerotic, anti-dyslipidemic, anti-diabetic and anti-obesity agents and method
US7803799B2 (en) 2006-07-07 2010-09-28 National Health Research Institutes Selenophene compounds
CN101100458A (en) 2006-07-07 2008-01-09 上海艾力斯医药科技有限公司 Bibenzimidazole derivative with PPARgamma exciting agent activity and application thereof
FR2903404B1 (en) 2006-07-10 2008-08-22 Servier Lab NOVEL TETRACYCLIC DERIVATIVES, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAME
CA2656875C (en) 2006-07-11 2011-09-06 Pfizer Inc. Substituted n-bicyclicalkyl bicyclic carboxyamide compounds
US7297710B1 (en) 2006-07-12 2007-11-20 Sanofi-Aventis Derivatives of N-[(1,5-diphenyl-1H-pyrazol-3-yl)methyl]sulfonamide, their preparation and their application in therapeutics
WO2008008887A2 (en) 2006-07-13 2008-01-17 Smithkline Beecham Corporation Gpr119 agonists for treating metabolic disorders
CA2657078A1 (en) 2006-07-13 2008-01-17 High Point Pharmaceuticals, Llc 11beta-hydroxysteroid dehydrogenase type 1 active compounds
FR2903695B1 (en) 2006-07-13 2008-10-24 Merck Sante Soc Par Actions Si USE OF AMPAP ACTIVATOR IMIDAZOLE DERIVATIVES, PROCESS FOR PREPARING THEM AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
EP1878721A1 (en) 2006-07-13 2008-01-16 Novo Nordisk A/S 4-Piperidylbenzamides as 11-beta-hydroxysteroid dehydrogenase type 1 inhibitors
CN101489989A (en) 2006-07-13 2009-07-22 协和发酵麒麟株式会社 Pentadienamide derivatives
CA2657787A1 (en) 2006-07-14 2008-01-17 Merck And Co., Inc. 2-substituted proline bis-amide orexin receptor antagonists
JP5372318B2 (en) 2006-07-14 2013-12-18 パナソニック株式会社 Method for manufacturing electrochemical capacitor
JP2009543785A (en) 2006-07-14 2009-12-10 メルク エンド カムパニー インコーポレーテッド Cross-linked diazepan orexin receptor antagonist
SI2049529T1 (en) 2006-07-14 2010-11-30 Merck Sharp & Dohme Substituted diazepan orexin receptor antagonists
WO2008008547A2 (en) 2006-07-14 2008-01-17 Ams Research Corporation Balloon dilation for implantable prosthesis
TWI332501B (en) 2006-07-14 2010-11-01 Lg Life Sciences Ltd Melanocortin receptor agonists
CN101490077A (en) 2006-07-17 2009-07-22 诺瓦提斯公司 Sulphonylaminocarbonyl derivatives of bile acid amides for use as immunomodulators
WO2008010061A2 (en) 2006-07-17 2008-01-24 Glenmark Pharmaceuticals S.A. 3-azabicyclo [3.1.0] hexane vanilloid receptor ligands, pharmaceutical compositions containing them, and processes for their preparation
DE102006033140A1 (en) 2006-07-18 2008-01-24 Merck Patent Gmbh Aminoindazolharnstoffderivate
CA2659155A1 (en) 2006-07-20 2008-01-24 Amgen Inc. Substituted azole aromatic heterocycles as inhibitors of 11.beta.-hsd-1
JP5042311B2 (en) 2006-07-20 2012-10-03 ノバルティス アーゲー Aminopiperidine derivatives as CETP inhibitors
GB2454615A (en) 2006-07-21 2009-05-13 Lupin Ltd Antidiabetic azabicyclo (3.1.0) hexan compounds
FR2903984B1 (en) 2006-07-24 2008-10-03 Genfit Sa SUBSTITUTED IMIDAZOLONE DERIVATIVES, PREPARATION AND USES
TWI418556B (en) 2006-07-27 2013-12-11 Mitsubishi Tanabe Pharma Corp Indole derivatives
TWI432446B (en) 2006-07-27 2014-04-01 Chugai Pharmaceutical Co Ltd Fused ring spiroketal derivative and use thereof as anti-diabetic drug
US20100022589A1 (en) 2006-07-27 2010-01-28 Mccoull William Pyridine-3-carboxamide compounds and their use for inhibiting 11-beta-hydroxysteroid dehydrogenase
JP2008031064A (en) 2006-07-27 2008-02-14 Astellas Pharma Inc Diacylpiperazine derivative
EP2049548A1 (en) 2006-07-27 2009-04-22 UCB Pharma, S.A. Fused oxazoles & thiazoles as histamine h3- receptor ligands
TWI403516B (en) 2006-07-27 2013-08-01 Chugai Pharmaceutical Co Ltd To replace spirocyclic alcohol derivatives, and its use as a therapeutic agent for diabetes
US20080027014A1 (en) 2006-07-28 2008-01-31 Tanabe Seiyaku Co., Ltd. Novel SGLT inhibitors
FR2904316B1 (en) 2006-07-31 2008-09-05 Sanofi Aventis Sa N- (AMINO-HETEROARYL) -1H-INDOLE-2-CARBOXAMIDE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC USE.
WO2008016730A2 (en) 2006-08-02 2008-02-07 Targeted Molecular Diagnostics, Llc Compositions and methods for reducing cellular fat
KR20090034969A (en) 2006-08-02 2009-04-08 시그마타우 인두스트리에 파르마슈티케 리우니테 에스.피.에이. Derivatives of 4-trimethylammonium-3-aminobutyrate and 4-trimethylphosphonium-3-aminobutyrate as cpt-inhibitors
WO2008016123A1 (en) 2006-08-03 2008-02-07 Takeda Pharmaceutical Company Limited GSK-3β INHIBITOR
US7514433B2 (en) 2006-08-03 2009-04-07 Hoffmann-La Roche Inc. 1H-indole-6-yl-piperazin-1-yl-methanone derivatives
JP5270545B2 (en) 2006-08-03 2013-08-21 タフツ ユニバーシティー/トラスティーズ オブ タフツ カレッジ Flushing-free niacin analogs and their use
WO2008016175A1 (en) 2006-08-03 2008-02-07 Nippon Chemiphar Co., Ltd. Activator for peroxisome proliferator activated receptor
EP2058309A4 (en) 2006-08-04 2010-12-22 Takeda Pharmaceutical Fused heterocyclic compound
TW200817424A (en) 2006-08-04 2008-04-16 Daiichi Sankyo Co Ltd Benzylphenyl glucopyranoside derivatives
WO2008019309A1 (en) 2006-08-04 2008-02-14 Metabasis Therapeutics, Inc. Novel inhibitors of fructose 1,6-bisphosphatase
KR100826108B1 (en) 2006-08-04 2008-04-29 한국화학연구원 Furan-2-carboxylic acid?derivatives and process for the preparation thereof
EP1887006A1 (en) 2006-08-07 2008-02-13 Krka Polymorphic forms of rosiglitazone base
JP5406716B2 (en) 2006-08-07 2014-02-05 アイアンウッド ファーマシューティカルズ インコーポレイテッド Indole compounds
RU2009108280A (en) 2006-08-08 2010-09-20 Санофи-Авентис (Fr) Arylamino-arylalkyl-substituted imidazolidine-2,4-dione, methods for their preparation containing these compounds and their use
WO2008017670A1 (en) 2006-08-08 2008-02-14 Boehringer Ingelheim International Gmbh Pyrrolo [3, 2 -d] pyrimidines as dpp-iv inhibitors for the treatment of diabetes mellitus
CN103980151A (en) 2006-08-09 2014-08-13 史密丝克莱恩比彻姆公司 Novel compounds as antagonists or inverse agonists at opioid receptors
JP2010500372A (en) 2006-08-09 2010-01-07 スミスクライン ビーチャム コーポレーション Novel compounds as antagonists or inverse agonists for opioid receptors
WO2008017852A1 (en) 2006-08-11 2008-02-14 Palatin Technologies, Inc. Diamine-containing, tetra- substituted piperazine compounds as melanocortin receptor modulators
US7750019B2 (en) 2006-08-11 2010-07-06 Kowa Company, Ltd. Pyrimidine compound having benzyl(pyridylmethyl)amine structure and medicament comprising the same
WO2008022015A2 (en) 2006-08-11 2008-02-21 Trustees Of Tufts College Retro-inverso incretin analogues, and methods of use thereof
TWI433839B (en) 2006-08-11 2014-04-11 Neomed Inst New benzimidazole derivatives 290
JP5384343B2 (en) 2006-08-15 2014-01-08 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Glucopyranosyl-substituted cyclopropylbenzene derivatives, pharmaceutical compositions containing such compounds, their use as SGLT inhibitors and methods for their preparation
BRPI0715893A2 (en) 2006-08-15 2013-09-17 Actelion Pharmaceuticals Ltd azetidine compound and use for the preparation of a medicament for the prevention or treatment of dysthymic or sleep disorders
JP5399244B2 (en) 2006-08-17 2014-01-29 アミリン・ファーマシューティカルズ,リミテッド・ライアビリティ・カンパニー DPP-IV resistant GIP hybrid polypeptide with selectable properties
JP2009256208A (en) 2006-08-17 2009-11-05 Dainippon Sumitomo Pharma Co Ltd Phthalide derivative or pharmaceutically acceptable salt of the same
US20080045513A1 (en) 2006-08-18 2008-02-21 N.V. Organon Combination faah inhibitor and analgesic, anti-inflammatory or anti-pyretic agent
US20090247499A1 (en) 2006-08-21 2009-10-01 Fletcher Joan M Sulfonylated piperazines as cannabinoid-1 receptor modulators
CA2661334C (en) 2006-08-23 2011-11-29 Pfizer Products Inc. Pyrimidone compounds as gsk-3 inhibitors
WO2008023720A1 (en) 2006-08-23 2008-02-28 Astellas Pharma Inc. Urea compound or salt thereof
ZA200901163B (en) 2006-08-23 2010-08-25 Neurogen Corp 2-Phenoxy pyrimidinone analogues
WO2008024433A2 (en) 2006-08-23 2008-02-28 Neurogen Corporation Haloalkyl-substituted pyrimidinone derivatives
US7727978B2 (en) 2006-08-24 2010-06-01 Bristol-Myers Squibb Company Cyclic 11-beta hydroxysteroid dehydrogenase type I inhibitors
EP2064187A2 (en) 2006-08-25 2009-06-03 Vitae Pharmaceuticals, Inc. Inhibitors of 11beta-hydroxysteroid dehydrogenase type 1
CA2659352A1 (en) 2006-08-28 2008-03-06 Actelion Pharmaceuticals Ltd 1,4,5,6,7,8-hexahydro-1,2,5-triaza-azulene derivatives as orexin receptor antagonists
EP1894924A1 (en) 2006-08-29 2008-03-05 Phenex Pharmaceuticals AG Heterocyclic FXR binding compounds
WO2008029217A2 (en) 2006-08-29 2008-03-13 Orchid Research Laboratories Limited Dipeptidyl peptidase iv inhibitors
EP1894928A1 (en) 2006-08-29 2008-03-05 PheneX Pharmaceuticals AG Heterocyclic fxr binding compounds
US20080103123A1 (en) 2006-08-30 2008-05-01 Biovitrum New compounds
JP5187901B2 (en) 2006-08-30 2013-04-24 塩野義製薬株式会社 Hydrazine amide derivatives
CL2007002499A1 (en) 2006-08-30 2008-03-14 Phenomix Corp SALES CITRATE AND TARTRATE OF COMPOUNDS DERIVED FROM PIRROLIDINILAMINOACETILPIRROLIDINBORONICO ACID, DPP-IV INHIBITORS; PREPARATION METHOD; SOLID FORM; PHARMACEUTICAL COMBINATION, USEFUL FOR THE TREATMENT OF DIABETES.
US8088777B2 (en) 2006-08-30 2012-01-03 Shionogi & Co., Ltd. Urea derivative
AU2007290359B2 (en) 2006-09-01 2012-09-20 Vertex Pharmaceuticals Incorporated 5- (2-furyl)-1, 3-thiazole derivatives useful as inhibitors of phosphatidylinositol 3-kinase
WO2008028188A2 (en) 2006-09-01 2008-03-06 The Ticket Reserve Demand aggregation for future items contingent upon threshold demand
US7470697B2 (en) 2006-09-01 2008-12-30 Adenosine Therapeutics, Llc Pyrrolo[3,2-D] pyrimidines that are selective antagonists of A2B adenosine receptors
JP2010502702A (en) 2006-09-05 2010-01-28 シェーリング コーポレイション Pharmaceutical composition for use in lipid management and therapeutic treatment of atherosclerosis and fatty liver
JP2008063256A (en) 2006-09-06 2008-03-21 Astellas Pharma Inc beta-AMINO ACID DERIVATIVE
AU2007292816B2 (en) 2006-09-07 2011-11-17 Amgen Inc. Benzo-fused compounds for use in treating metabolic disorders
US20080096799A1 (en) 2006-09-07 2008-04-24 Forbes Medi-Tech (Research), Inc. Compounds for and methods of treating insulin resistance and inflammation
WO2008028662A1 (en) 2006-09-07 2008-03-13 Santhera Pharmaceuticals (Schweiz) Ag N-[1-(3-amino-4-phenyl-butyryl)-4-hydroxy-pyrrolidin-2-ylmethyl}-propionamide and related compounds as dpp-iv inhibitors for the treatment of type 2 diabetes mellitus
US7714008B2 (en) 2006-09-07 2010-05-11 Amgen Inc. Heterocyclic GPR40 modulators
DE102006042143A1 (en) 2006-09-08 2008-03-27 Bayer Healthcare Aktiengesellschaft Novel substituted bipyridine derivatives and their use
WO2008032156A1 (en) 2006-09-08 2008-03-20 Pfizer Products Inc. Diaryl ether derivatives and uses thereof
AU2007293040A1 (en) 2006-09-08 2008-03-13 The Scripps Research Institute Substituted oxazole ketone modulators of fatty acid amide hydrolase
CA2663189A1 (en) 2006-09-12 2008-03-20 Pfizer Products Inc. Benzimidazolone derivatives
KR100886466B1 (en) 2006-09-12 2009-03-04 (주)한국씨엔에스팜 New stigmasterol derivatives or pharmaceutically acceptable salts thereof, process for the preparation thereof and composition comprising the same for inhibiting obesity or for preventing and treating hyperlipidemia
WO2008033934A1 (en) 2006-09-13 2008-03-20 The Institutes For Pharmaceutical Discovery, Llc Substituted heteroaryl carboxylic acid derivatives as ptb-1b inhibitors
WO2008033455A2 (en) 2006-09-13 2008-03-20 The Institutes For Pharmaceutical Discovery, Llc Biphenyl and heteroaryl phenyl derivatives as protein tyrosine phosphatases inhibitors
WO2008033932A2 (en) 2006-09-13 2008-03-20 The Institutes For Pharmaceutical Discovery, Llc Biarylthiazole carboxylic acid derivatives as protein tyrosine phosphatase-ib inhibitors
WO2008033931A1 (en) 2006-09-13 2008-03-20 The Institutes For Pharmaceutical Discovery, Llc Para-xylylene carboxylic acids and isothiazolones useful as protein tyrosine phosphatases (ptps) in particular ptp-ib
CA2663279C (en) 2006-09-13 2016-05-17 Takeda Pharmaceutical Company Limited Use of 2-6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2h-pyrimidin-1-ylmethyl-4-fluoro-benzonitrile for treating diabetes, cancer, autoimmune disorders and hiv infection
US20100016274A1 (en) 2006-09-14 2010-01-21 Koppel Gary A Beta-lactam cannabinoid receptor modulators
US7781593B2 (en) 2006-09-14 2010-08-24 Hoffmann-La Roche Inc. 5-phenyl-nicotinamide derivatives
EP2069302B1 (en) 2006-09-15 2010-08-25 Pfizer Inc. Substituted pyridylmethyl bicyclocarboxyamide compounds
CN101528746A (en) 2006-09-15 2009-09-09 先灵公司 Spirocyclic azetidinone derivatives for the treatment of disorders of lipid metabolism, pain, diabetes and other disorders
EP2091534A1 (en) 2006-09-15 2009-08-26 Schering Corporation Azetidinone derivatives and methods of use thereof
WO2008033464A2 (en) 2006-09-15 2008-03-20 Schering Corporation Azetidinone derivatives for the treatment of disorders of the lipid metabolism
WO2008035356A2 (en) 2006-09-20 2008-03-27 Glenmark Pharmaceuticals Limited Novel cannabinoid receptor ligands, pharmaceutical compositions containing them, and process for their preparation
WO2008036021A1 (en) 2006-09-20 2008-03-27 Astrazeneca Ab Tetrahydro-lh-pyrido [3,4 -b] indole derivatives as cbl receptor ligands
WO2008036022A1 (en) 2006-09-20 2008-03-27 Astrazeneca Ab Tetrahydro-lh-pyrido[3,4-b] indole derivatives as cb1 receptor ligands
WO2008036541A1 (en) 2006-09-20 2008-03-27 Eli Lilly And Company Thiophene pyrazolopyrimidine compounds
KR101088239B1 (en) 2006-09-20 2011-11-30 일라이 릴리 앤드 캄파니 Thiazole pyrazolopyrimidines as crf1 receptor antagonists
US7858587B2 (en) 2006-09-21 2010-12-28 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted difluorobenzyl-benzene derivates, medicaments containing such compounds, their use and process for their manufacture
EP2074141B1 (en) 2006-09-22 2016-08-10 Novo Nordisk A/S Protease resistant insulin analogues
CA2664245A1 (en) 2006-09-27 2008-04-03 Merck & Co., Inc. Acylated piperidine derivatives as melanocortin-4 receptor modulators
TWI499414B (en) 2006-09-29 2015-09-11 Lexicon Pharmaceuticals Inc Inhibitors of sodium glucose co-transporter 2 and methods of their use
WO2008039023A1 (en) 2006-09-29 2008-04-03 Green Cross Corporation Heteroaryl-pyrazole derivatives as cannabinoid cb1 receptor antagonists
KR20090077051A (en) 2006-09-29 2009-07-14 액테리온 파마슈티칼 리미티드 3-aza-bicyclo[3.1.0]hexane derivatives
WO2008037628A1 (en) 2006-09-29 2008-04-03 F. Hoffmann-La Roche Ag Sulfonamide derivatives
WO2008039882A1 (en) 2006-09-30 2008-04-03 Sanofi-Aventis U.S. Llc A combination of niacin and a prostaglandin d2 receptor antagonist
TW200821284A (en) 2006-10-03 2008-05-16 Merck & Co Inc Glucagon receptor antagonist compounds, compositions containing such compounds and methods of use
BRPI0717845A2 (en) 2006-10-04 2015-06-16 Hoffmann La Roche Use of compounds, pharmaceutical compositions and methods for the treatment and / or prophylaxis of diseases that can be treated with HDL-cholesterol elevating agents and compounds.
PE20081152A1 (en) 2006-10-06 2008-08-10 Wyeth Corp N-SUBSTITUTED AZACYCLYLAMINES AS HISTAMINE-3 ANTAGONISTS
WO2008044656A1 (en) 2006-10-06 2008-04-17 Taisho Pharmaceutical Co., Ltd. Imidazolidinone derivative
GB0619860D0 (en) 2006-10-06 2006-11-15 Birkeland Innovasjon As Treatment of insulin resistance and disorders associated therewith
AR063028A1 (en) 2006-10-06 2008-12-23 Banyu Pharma Co Ltd HETEROCICLIC DERIVATIVES OF PIRIDIN-2-CARBOXAMIDE GLUCOKINASE ACTIVATORS, USEFUL FOR THE TREATMENT OF DIABETES AND OBESITY AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
WO2008040974A1 (en) 2006-10-07 2008-04-10 Peakdale Molecular Limited Indoles for use as dpp-iv inhibitors
US8022061B2 (en) 2006-10-10 2011-09-20 Amgen Inc. N-aryl pyrazole compounds, compositions, and methods for their use
EP1911747A1 (en) 2006-10-11 2008-04-16 Laboratorios del Dr. Esteve S.A. Sulfonamide substituted pyrazoline compounds, their preparation and use as CB1 modulators
WO2008044700A1 (en) 2006-10-11 2008-04-17 Takeda Pharmaceutical Company Limited GSK-3β INHIBITOR
WO2008046071A2 (en) 2006-10-12 2008-04-17 Transition Therapeutics Inc. Compounds and methods of treating metabolic syndrome and inflammation
US20080107725A1 (en) 2006-10-13 2008-05-08 Albano Antonio A Pharmaceutical Solid Dosage Forms Comprising Amorphous Compounds Micro-Embedded in Ionic Water-Insoluble Polymers
WO2008044111A1 (en) 2006-10-13 2008-04-17 Pfizer Products Inc. Pharmaceutical formulation tablet
EP2072522A4 (en) 2006-10-13 2010-01-06 Chugai Pharmaceutical Co Ltd Thioglucose spiroketal derivative and use thereof as therapeutic agent for diabetes
US7705005B2 (en) 2006-10-13 2010-04-27 Glaxo Group Limited Bicyclic heteroaromatic compounds
AU2007311178A1 (en) 2006-10-16 2008-04-24 Vidyo, Inc. Systems and methods for signaling and performing temporal level switching in scalable video coding
DE102006048728A1 (en) 2006-10-16 2008-04-17 Merck Patent Gmbh 3-amino-imidazo {1,2-a] pyridine
WO2008048648A2 (en) 2006-10-17 2008-04-24 Acadia Pharmaceuticals Inc. Cb1-modulating compounds and their use
TW200825054A (en) 2006-10-18 2008-06-16 Wyeth Corp Quinoline compounds
EP2298772A1 (en) 2006-10-18 2011-03-23 Takeda Pharmaceutical Company Limited Fused heterocyclic compounds
CA2666489C (en) 2006-10-19 2012-10-02 F. Hoffmann-La Roche Ag Imidazolone and imidazolidinone derivatives as 11b-hsd1 inhibitors for diabetes
US8410087B2 (en) 2006-10-19 2013-04-02 Takeda Pharmaceutical Company Limited Indole compound
JP2010506915A (en) 2006-10-20 2010-03-04 メルク エンド カムパニー インコーポレーテッド Niacin receptor agonists, compositions comprising such compounds, and therapeutic methods
TW200825072A (en) 2006-10-20 2008-06-16 Arete Therapeutics Inc Soluble epoxide hydrolase inhibitors
WO2008051875A2 (en) 2006-10-20 2008-05-02 Arete Therapeutics, Inc. Adamantylurea compounds as soluble epoxide hydrolase inhibitors
TW200825063A (en) 2006-10-23 2008-06-16 Astrazeneca Ab Chemical compounds
JP2010512305A (en) 2006-10-23 2010-04-22 ファイザー株式会社 Substituted phenylmethylbicyclocarboxamide compounds
KR100812538B1 (en) 2006-10-23 2008-03-11 한올제약주식회사 Controlled release complex formulation comprising metformin and glimepiride
KR101387459B1 (en) 2006-10-24 2014-05-14 얀센 파마슈티카 엔.브이. Mtp inhibiting tetrahydro-naphthalene-1-carboxylic acid derivatives
JO2653B1 (en) 2006-10-24 2012-06-17 شركة جانسين فارماسوتيكا ان. في Piperidine Or Piperazine Substituted Tetrahydro-Naphthalene-1-Carboxylic Acid Mtp Inhibiting Compounds.apoB
US20080103201A1 (en) 2006-10-26 2008-05-01 Wijayabandara Mirihanage Don J Novel alpha-Glucosidase inhibitor from Tabernaemontana dichotoma
SA07280576B1 (en) 2006-10-26 2011-06-22 استرازينيكا ايه بي Benzoyl amino heterocyclyl compounds as glucokinase (GLK) activators
CA2667550A1 (en) 2006-10-27 2008-05-02 Boehringer Ingelheim International Gmbh Crystalline form of 4-(.beta.-d-glucopyranos-1-yl)-1-methyl-2-[4-((s)-tetrahydrofuran-3-yloxy)-benzyl]-benzene, a method for its preparation and the use thereof for preparing medicaments
WO2008049711A1 (en) 2006-10-27 2008-05-02 Novo Nordisk A/S Peptide extended insulins
WO2008054674A2 (en) 2006-10-31 2008-05-08 Merck & Co., Inc. Antidiabetic bicyclic compounds
AU2007314405A1 (en) 2006-10-31 2008-05-08 Merck & Co., Inc. Antidiabetic bicyclic compounds
US7858645B2 (en) 2006-11-01 2010-12-28 Hoffmann-La Roche Inc. Indazole derivatives
US8067447B2 (en) 2006-11-01 2011-11-29 Bristol-Myers Squibb Company Modulators of glucocorticoid receptor, AP-1, and/or NF-κB activity and use thereof
JP2010508358A (en) 2006-11-01 2010-03-18 ブリストル−マイヤーズ スクイブ カンパニー Glucocorticoid receptor, AP-1 and / or modulator of NF-κB activity, and use thereof
CN101535238A (en) 2006-11-01 2009-09-16 普罗诺瓦生物医药挪威公司 Alpha-substituted omega-3 lipids that are activators or modulators of the peroxisome proliferators-activated receptor (PPAR)
EP2089355A2 (en) 2006-11-01 2009-08-19 Brystol-Myers Squibb Company Modulators of glucocorticoid receptor, ap-1, and/or nf- kappa b activity and use thereof
ATE550337T1 (en) 2006-11-01 2012-04-15 Bristol Myers Squibb Co MODULATORS OF GLUCOCORTICOID RECEPTOR, AP-1 AND/OR NF-KAPPA-B ACTIVITY AND THEIR USE
WO2008057855A2 (en) 2006-11-01 2008-05-15 Bristol-Myers Squibb Company Heterocyclic compounds as modulators of glucocorticoid receptor, ap-i, and/or np-kappa-b activity
EP1918281A1 (en) 2006-11-02 2008-05-07 Laboratorios del Dr. Esteve S.A. Phenylamino-substituted piperidine compounds, their preparation and use as medicaments
WO2008057336A2 (en) 2006-11-02 2008-05-15 Merck & Co., Inc. Heterocyclyl-substituted anti-hypercholesterolemic compounds
CN101535249A (en) 2006-11-02 2009-09-16 塞诺菲-安万特德国有限公司 Novel diphenylazetidinone substituted by piperazine-1-sulfonic acid having improved pharmacological properties
EP2086965B1 (en) 2006-11-02 2010-02-10 Vertex Pharmaceuticals, Inc. Aminopyridines and aminopyrimidines useful as inhibitors of protein kinases
WO2008053446A2 (en) 2006-11-02 2008-05-08 Piramal Life Sciences Limited Benzoxazepine compounds, their preparation and use
TW200827346A (en) 2006-11-03 2008-07-01 Astrazeneca Ab Chemical compounds
EP1918285A1 (en) 2006-11-03 2008-05-07 Merck Sante Diazepane-acetamide derivatives as selective 11beta-HSD1 inhibitors
AU2007315848A1 (en) 2006-11-03 2008-05-08 Glenmark Pharmaceuticals S.A. Bridged bicyclic indazoles as cannabinoid receptor ligands
EP2079753A1 (en) 2006-11-06 2009-07-22 Boehringer Ingelheim International GmbH Glucopyranosyl-substituted benzyl-benzonitrile derivatives, medicaments containing such compounds, their use and process for their manufacture
WO2008056377A2 (en) 2006-11-06 2008-05-15 Cadila Healthcare Limited Polymorphic forms of rimonabant
EP1921080B1 (en) 2006-11-07 2009-08-05 Sanofi-Aventis Subsitituted 8-piperidinyl-2-pyridinyl-pyrimido(1,2-a)pyrimidin-6-one and 8-piperidinyl-2-pyrimidinyl-pyrimido(1,2-a)pyrimidin-6-one derivatives
JP5337040B2 (en) 2006-11-09 2013-11-06 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Combination therapy with SGLT-2 inhibitors and pharmaceutical compositions thereof
JP2010043001A (en) 2006-11-09 2010-02-25 Sanwa Kagaku Kenkyusho Co Ltd Glp-1 derivative and use thereof
EP1921072A1 (en) 2006-11-10 2008-05-14 Laboratorios del Dr. Esteve S.A. 1,2,3-Triazole derivatives as cannabinoid-receptor modulators
GB0622569D0 (en) 2006-11-11 2006-12-20 7Tm Pharma As Cannabinoid receptor modulators
JP2010509392A (en) 2006-11-13 2010-03-25 ファイザー・プロダクツ・インク Diaryl, dipyridinyl and aryl-pyridinyl derivatives and uses thereof
DE102006053637B4 (en) 2006-11-14 2011-06-30 Sanofi-Aventis Deutschland GmbH, 65929 Novel fluorine-substituted 1,4-benzothiepine-1,1-dioxide derivatives, pharmaceutical compositions containing them and their use
DE102006053635B4 (en) 2006-11-14 2011-06-30 Sanofi-Aventis Deutschland GmbH, 65929 Novel benzyl-substituted 1,4-benzothiepine-1,1-dioxide derivatives, drugs containing these compounds and their use
WO2008058631A1 (en) 2006-11-14 2008-05-22 Sanofi-Aventis Deutschland Gmbh Novel 1,4-benzothiepin-1,1-dioxide derivatives with improved properties, method for producing the same, drugs containing said compounds and use thereof
DE102006053636B4 (en) 2006-11-14 2008-09-18 Sanofi-Aventis Deutschland Gmbh New cyclohexyl substituted 1,4-benzothiepine 1,1-dioxide derivatives and their use
EP2086961A1 (en) 2006-11-15 2009-08-12 Novartis AG Heterocyclic derivatives as cetp inhibitors
BRPI0718809A2 (en) 2006-11-15 2013-12-03 Novartis Ag ORGANIC COMPOUNDS
US7964732B2 (en) 2006-11-17 2011-06-21 Pfizer Inc. Substituted bicyclocarboxyamide compounds
EP2111865B1 (en) 2006-11-17 2019-10-02 National University Corporation Kagawa University Utilization of the function of rare sugar as promoter for the migration of glucokinase from nucleus to cytoplasm
WO2008064107A2 (en) 2006-11-20 2008-05-29 Bristol-Myers Squibb Company 7,8-dihydro-1,6-naphthyridin-5(6h)-ones and related bicyclic compounds as inhibitors of dipeptidyl peptidase iv and methods
WO2008061355A1 (en) 2006-11-24 2008-05-29 Matregen Corp. Glp-1 depot systems, and methods of manufacture and uses thereof
WO2008076243A2 (en) 2006-12-14 2008-06-26 Merck & Co., Inc. Acyl bipiperidinyl compounds, compositions containing such compounds and methods of treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524882B2 (en) * 2002-07-30 2009-04-28 Merck & Co., Inc. PPAR alpha selective compounds for the treatment of dyslipidemia and other lipid disorders

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017172505A1 (en) * 2016-03-29 2017-10-05 Merck Sharp & Dohme Corp. Antidiabetic bicyclic compounds
US10676458B2 (en) 2016-03-29 2020-06-09 Merch Sharp & Dohne Corp. Rahway Antidiabetic bicyclic compounds

Also Published As

Publication number Publication date
TN2010000075A1 (en) 2011-09-26
JP2010535827A (en) 2010-11-25
TW200930711A (en) 2009-07-16
CL2008002414A1 (en) 2009-07-17
KR20100063700A (en) 2010-06-11
ZA201000520B (en) 2010-10-27
MA31611B1 (en) 2010-08-02
AR068059A1 (en) 2009-11-04
WO2009021740A2 (en) 2009-02-19
EP2025674A1 (en) 2009-02-18
CR11235A (en) 2010-05-19
CN101784536A (en) 2010-07-21
AU2008286316A1 (en) 2009-02-19
MX2010001503A (en) 2010-03-10
PE20090986A1 (en) 2009-08-14
BRPI0815206A2 (en) 2015-03-31
DOP2010000059A (en) 2010-02-28
EP2188273A2 (en) 2010-05-26
UY31288A1 (en) 2009-03-31
US20100249097A1 (en) 2010-09-30
WO2009021740A3 (en) 2009-05-14
ECSP109967A (en) 2010-03-31
EP2188273B1 (en) 2014-10-22
CA2695955A1 (en) 2009-02-19
SV2010003480A (en) 2010-05-26
NI201000024A (en) 2010-07-29
RU2010109416A (en) 2011-09-20
US8609731B2 (en) 2013-12-17
CO6331303A2 (en) 2011-10-20
PA8793401A1 (en) 2009-03-31

Similar Documents

Publication Publication Date Title
US8530413B2 (en) Heterocyclically substituted methoxyphenyl derivatives with an oxo group, processes for preparation thereof and use thereof as medicaments
US9156796B2 (en) Benzoimidazole-carboxylic acid amide derivatives as APJ receptor modulators
US8822495B2 (en) Azacyclyl-substituted aryldihydroisoquinolinones, process for their preparation and their use as medicaments
US8648038B2 (en) (2-aryloxyacetylamino)phenylpropionic acid derivatives, processes for preparation thereof and use thereof as medicaments
US8841290B2 (en) Substituted tetrahydronaphthalenes, method for the production thereof, and use thereof as drugs
US8859494B2 (en) Spirocyclically substituted 1,3-propane dioxide derivatives, processes for preparation thereof and use thereof as a medicament
US8501771B2 (en) Aminoalcohol-substituted aryldihydroisoquinolinones, process for their preparation and their use as medicaments
US20110059910A1 (en) Novel aromatic fluoroglycoside derivatives, pharmaceuticals comprising said compounds and the use thereof
US8933024B2 (en) Azolopyridin-3-one derivatives as inhibitors of lipases and phospholipases
US20140088077A1 (en) Novel substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments
JP2011503127A (en) Novel crystalline diphenylazetidinone hydrates, drugs containing these compounds and their use
US8552199B2 (en) Substituted indanes, method for the production thereof, and use thereof as drugs
US8809324B2 (en) Substituted phenyl-oxathiazine derivatives, method for producing them, drugs containing said compounds and the use thereof
US8901114B2 (en) Oxathiazine derivatives substituted with carbocycles or heterocycles, method for producing same, drugs containing said compounds, and use thereof
US8828995B2 (en) Branched oxathiazine derivatives, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof
US8809325B2 (en) Benzyl-oxathiazine derivatives substituted with adamantane and noradamantane, medicaments containing said compounds and use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANOFI, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHWINK, LOTHAR;STENGELIN, SIEGFRIED;GOSSEL, MATTHIAS;AND OTHERS;SIGNING DATES FROM 20131114 TO 20131115;REEL/FRAME:031704/0005

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION