US20140102891A1 - Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells - Google Patents

Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells Download PDF

Info

Publication number
US20140102891A1
US20140102891A1 US14/104,203 US201314104203A US2014102891A1 US 20140102891 A1 US20140102891 A1 US 20140102891A1 US 201314104203 A US201314104203 A US 201314104203A US 2014102891 A1 US2014102891 A1 US 2014102891A1
Authority
US
United States
Prior art keywords
layer
sputtering
cigs
target
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/104,203
Inventor
Dennis R. Hollars
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Apollo Ding Rong Solar Technology Co Ltd
Original Assignee
Miasole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miasole filed Critical Miasole
Priority to US14/104,203 priority Critical patent/US20140102891A1/en
Assigned to HANERGY HOLDING GROUP LTD. reassignment HANERGY HOLDING GROUP LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIASOLE
Publication of US20140102891A1 publication Critical patent/US20140102891A1/en
Assigned to APOLLO PRECISION FUJIAN LIMITED reassignment APOLLO PRECISION FUJIAN LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANERGY HOLDING GROUP LTD.
Assigned to BEIJING APOLLO DING RONG SOLAR TECHNOLOGY CO., LTD. reassignment BEIJING APOLLO DING RONG SOLAR TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: APOLLO PRECISION FUJIAN LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero-junctions, X being an element of Group VI of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention disclosed herein relates generally to the field of photovoltaics, and more specifically to a unique high throughput roll-to-roll vacuum deposition system and method for the manufacturing of thin-film solar cells based upon absorbing layers that contain copper, indium, gallium, aluminum, and selenium and have a polycrystalline chalcopyrite structure.
  • thin-film photovoltaics is used to distinguish this type of solar cell from the more common silicon based cell, which uses a relatively thick silicon wafer. While single crystal silicon cells still hold the record for conversion efficiency at over 20%, thin-film cells have been produced which perform close to this level. Therefore, performance of the thin-film cells is no longer the major issue that limits their commercial use. The most important factor now driving the commercialization of thin-film solar cells is cost. Currently, a widely accepted technology solution for the scale up to low-cost manufacturing does not exist.
  • the copper sulfide absorber layer proposed in '938 has been shown to be unstable in the field, and some of the other layers are no longer used. In particular, it is undesirable to have a pinch roller running on a newly formed coating layer.
  • the inventors estimated that their continuous technique could reduce the manufacturing cost by as much as a factor of two over the conventional batch process for silicon. While a factor of two is still significant today, greater reductions in cost must be achieved if solar power is to become competitive with conventional sources of power generation.
  • Matsuda et al in U.S. Pat. No. 5,571,749 ('749) issued 5 Nov. 1996 teach a roll-to-roll coating system based on plasma chemical vapor deposition (CVD) techniques. Their system is a single linear vacuum chamber with a series of six gas gates for process isolation. The web substrate is passed through the machine in belt-like fashion similar to the method of '938, but the web remains in vacuum for the whole process.
  • the solar cell absorbing layer is made from amorphous silicon deposited from the decomposition of silane gas. Different dopants are introduced along the belt path to create the required p-n junctions. Similar techniques are used at Uni-Solar of Troy, Mich. to make a variety of amorphous silicon solar cells.
  • amorphous silicon cells The conversion efficiency of amorphous silicon cells is inferior to that of the other thin film cells, and they suffer a loss of efficiency during the initial few weeks of exposure to solar radiation through a mechanism known as the Stabler-Wronski effect. Because of this the efficiencies of amorphous silicon remain well below that of other thin-film materials, and no one has yet found a way to mitigate the effect.
  • Wendt et al disclose a roll-to-roll system in U.S. Pat. No. 6,372,538 ('538) issued 16 Apr. 2002 that teaches a method for depositing a thin film solar cell based upon a copper indium/gallium diselenide (CIGS) absorber layer.
  • the system is described as consisting of nine separate individual processing chambers in which a roll-to-roll process may be used at each chamber.
  • the overall system is similar to that described in '938, but without the continuous belt-like transport of the substrate through all of the chambers at once.
  • the roll of thin material (polyimide in this case) is not continuously fed through a single vacuum system as it is in '749.
  • Wendt et al teach conventional planar magnetron sputtering for the deposition of a molybdenum back contact layer onto the polyimide film. Adjustments are made to the argon gas pressure and some oxygen is introduced to adjust the film stress to accommodate the expansion of the polyimide when it is heated for the CIGS deposition. Incorporation of oxygen into the molybdenum layer increases its resistivity, requiring the layer to be thicker to provide adequate electrical conductivity.
  • the CIGS materials are deposited over the molybdenum layer in a separate chamber using an array of thermal evaporators each depositing one of the components. The use of the polyimide substrate material presents at least two problems in processing.
  • the preferred width of the polyimide web is 33 cm, and it runs at a typical line speed of 30 cm per minute. With respect to the present invention, such production rates (about a square foot per minute) are not considered large-scale; rather, rates 5 to 10 times faster with attendant cost reductions are necessary to make solar power competitive with power from conventional sources.
  • Copper indium diselenide (CuInSe 2 or CIS) and its higher band gap variants copper indium gallium diselenide (Cu(In/Ga)Se 2 or CIGS), copper indium aluminum diselenide (Cu(In/Al)Se 2 ), and any of these compounds with sulfur replacing some of the selenium represent a group of materials that have desirable properties for use as the absorber layer in thin-film solar cells.
  • the acronyms CIS and CIGS have been in common use in the literature for sometime.
  • the aluminum bearing variants have no common acronym as yet, so CIGS is used here in an expanded sense to represent the entire group of CIS based alloys. To function as a solar absorber layer these materials must be p-type semiconductors.
  • Gallium usually replaces 20% to 30% of the normal indium content to raise the band gap; however, there are significant and useful variations outside of this range. If gallium is replaced by aluminum, smaller amounts of aluminum are required to achieve the same band gap.
  • CIGS thin-film solar cells are normally produced by first depositing a molybdenum (moly) base electrical contact layer onto a substrate such as glass, stainless steel foil, or other functional substrate material. A relatively thick layer of CIGS is then deposited on the moly layer by one of two widely used techniques.
  • the metals Cu/In/Ga
  • PVD physical vapor deposition
  • a selenium bearing gas is reacted with the metals layer in a diffusion furnace at temperatures ranging up to about 600° C. to form the final CIGS composition.
  • the most commonly used selenium bearing gas is hydrogen selenide, which is extremely toxic to humans and requires great care in its use.
  • a second technique avoids the use of hydrogen selenide gas by co-evaporating all of the CIGS constituents onto a hot substrate from separate thermal evaporation sources. While the deposition rates are relatively high for thermal evaporation, the sources are difficult to control to achieve both the required stoichiometry and thickness uniformity over large areas of a substrate. Neither of these techniques for forming the CIGS layer is readily scalable to efficient large-scale production.
  • moly is used as the back contact layer because of the high temperature required for the CIGS deposition.
  • Other metals silver, aluminum, copper etc.
  • Moly has a very high melting point (2610 C), which helps to avoid this problem, although it will react with selenium at high temperatures.
  • 2610 C very high melting point
  • moly still has a rather poor reflection at the interface with the CIGS layer, resulting in decreased efficiency since the light that penetrates the absorber initially is not reflected back through the CIGS effectively for a second chance at being absorbed. Therefore, replacing the moly with a better reflecting layer can allow a decrease in the thickness of the absorber layer as well as provide improved cell performance by moving the absorption events closer to the p-n junction.
  • CMOS cadmium sulfide
  • CBD chemical bath deposition
  • Cadmium is toxic and the chemical bath waste poses an environmental disposal problem, adding to the expense of manufacturing the cell.
  • CBD zinc sulfide (ZnS) has been used successfully as a substitute for CdS, and has produced cells of comparable quality.
  • the CBD method for ZnS is not as toxic as CdS; but, remains a relatively expensive and time-consuming process step, which should be avoided if possible.
  • Radio frequency (RF) sputter deposition of and ZnS has been demonstrated on a small scale.
  • RF sputtering over large areas is difficult to control because the plasma is highly influenced by the chamber geometry in the conventional method of implementing RF sputtering.
  • An improved method of RF sputtering ZnS is needed to reduce the process complexity as well as to eliminate the toxic cadmium from the process.
  • the window or buffer layer is covered with a relatively thick transparent electrically conducting oxide, which is also an n-type semiconductor.
  • zinc oxide ZnO
  • ITO indium tin oxide
  • aluminum doped ZnO has been shown to perform about as well as ITO, and it has become the material of choice in the industry.
  • a thin “intrinsic” (meaning highly resistive) ZnO layer is often deposited on top of the buffer layer to cover any plating flaws in the CdS (hence “buffer” layer) before the cell is completed by the deposition of the transparent top conductive layer.
  • an antireflection coating may be applied as a final step.
  • this step is more important for silicon cells than for GIGS cells in which some level of antireflection is provided by the encapsulation material when the cells are made into modules.
  • an antireflection coating may be applied to the outer surface of the glass.
  • FIG. 1 A conventional prior art CIGS solar cell structure is shown in FIG. 1 . Because of the large range in the thickness of the different layers, they are depicted schematically. The materials most often used for each of the layers are also indicated in the figure. The arrow at the top of the figure shows the direction of the solar illumination on the cell.
  • Element 1 is the substrate, and it is massive in relation to the thin-film layers that are deposited upon it. Glass is the substrate that has been commonly used in solar cell research; however, it is more likely that for large-scale production some type of foil-like substrate will be used.
  • Layer 2 is the back electrical contact for the cell. Traditionally, it has been moly with a thickness of about 0.5 to 1.0 microns.
  • Layer 3 is the CIGS p-type semiconductor absorber layer. It is usually about 2 to 3 microns thick, but could be somewhat thinner and attain the same or improved efficiency if the reflection of the back electrode layer ( 2 ) were improved. It would be extremely desirable to produce this layer by magnetron sputtering. This would enable a large-scale manufacturing process because magnetrons can readily be made in large sizes, and thickness and composition control can be excellent. A major provision of this invention is to demonstrate how this can be done with CIGS materials.
  • Layer 4 is the n-type semiconductor layer that completes the formation of the p-n junction. It is much thinner than the absorber layer (about 0.05 microns), and it should be highly transparent to the solar radiation.
  • the window layer since it lets the light pass down to the absorber layer. It is also referred to as a buffer layer because it seems to help protect the p-n junction from damage induced by the deposition of the next layer. So far the use of CdS has resulted in the highest efficiency cells for the CIGS type absorber materials. But CdS is environmentally toxic, and it is difficult to deposit uniformly in large-scale by either the chemical bath method or by conventional RF magnetron sputtering. In addition, CdS is not highly transparent to the green and blue region of the solar spectrum, which makes it less compatible with higher band gap absorber layers.
  • the dual cylindrical rotary magnetron technology can easily be extended to the reactive sputtering of sulfides and selenides, if facility improvements are made to handle the delivery of small amounts of the hydrogen sulfide and hydrogen selenide gases to the reactive deposition region.
  • ZnS and ZnSe can be readily deposited with the dual cylindrical rotary magnetron system in the reactive mode.
  • ZnS deposited by other methods has already been used instead of CdS in a laboratory demonstration cell that achieved a conversion efficiency of 18%.
  • both ZnS and ZnSe have larger band gaps than CdS, so they are more efficient window materials.
  • the less desirable method of conventional RF sputtering would work marginally for depositing thin layers of any remaining materials that cannot be readily formed into conducting targets.
  • Layer 5 is the top transparent electrode, which completes the functioning cell. This layer needs to be both highly conductive and as transparent as possible to solar radiation. ZnO has been the traditional material used with CIGS, but indium tin oxide (ITO), Al doped ZnO, and a few other materials could perform as well.
  • Layer 6 is the antireflection (AR) coating, which can allow a significant amount of extra light into the cell. Depending on the intended use of the cell, it might be deposited directly on the top conductor (as illustrated), or on a separate cover glass, or both. For space-based power it is desirable to eliminate the cover glass, which adds significantly to expensive launch weight.
  • AR antireflection
  • the AR coating would reduce the reflection of the cell to very near zero over the spectral region that photoelectric absorption occurs, and at the same time increase the reflection in the other spectral regions to reduce heating.
  • Simple AR coatings do not adequately cover the relatively broad spectral absorption region of a solar cell, so multiple layer designs that are more expensive must be used to do the job more efficiently. Coatings that both perform the AR function and increase the reflection of unwanted radiation require even more layers and significant coating system sophistication.
  • Aguilera et al in U.S. Pat. No. 6,107,564 issued 22 Aug. 2000 thoroughly review the prior art, and offer some improved AR coating designs for solar cell covers.
  • the moly back contact layer is not a good reflector, nevertheless it has become the standard for thin-film type solar cells. Finding a better reflecting material that would otherwise withstand the processing conditions could improve the cell performance.
  • the task is not simple.
  • the back layer simultaneously should be a good conductor, be able to withstand high processing temperatures, and it should be a good reflector.
  • Many metals in the periodic table meet at least one of these requirements, and any metal could be made thick enough to provide enough conductivity to function as the back electrical contact.
  • the requirement of high processing temperatures eliminates the low melting point metals from consideration. Metals like tin, lead, indium, zinc, bismuth, and a few others melt at temperatures below the processing temperature for the CIGS or most other solar absorber materials.
  • metals like gold, platinum, palladium, rhodium, ruthenium, iridium, and osmium which otherwise have good conduction and reasonable reflection properties.
  • magnesium which is highly reactive
  • the remaining candidates include aluminum, copper, silver, and nickel, and only nickel (and to a lesser extent molybdenum) resists forming insulating and poorly reflecting selenium compounds at the CIGS interface.
  • nickel will severely degrade CIGS material if it is allowed to diffuse into it.
  • the use of the term large-scale in the context of the present invention implies the coating of either discrete substrates or continuous webs that have width dimensions of about a meter or more.
  • This invention provides an apparatus and a method for sputter depositing all of the layers in the solar cell, and particularly the CIGS layer, which greatly increases the deposition area over which the required properties of the material can be achieved and controlled. It also provides improvements to the back contact/reflecting layer and the elimination of cadmium from the process.
  • the ZnO layer provides conductivity and inhibits migration, but like all useful clear conducting oxides, it is an n-type semiconductor.
  • a weak p-n junction is formed, which acts to apply an undesirable small reverse electrical bias to the cell.
  • the primary p-n junction must then overcome this back bias to cause useful current to flow, thus degrading the net efficiency.
  • the ZnO barrier layer should not be an n-type semiconductor; and secondly, alloys generally have poorer conductivity and reflectivity than the pure metals.
  • the transition metal nitrides borides, silicides, and carbides, several have high electrical conductivity; and additionally, they have high melting temperatures and are relatively inert. A few have desirable optical properties.
  • the most optimum materials are the nitrides of some of the transition metals, and in particular titanium nitride (TiN), zirconium nitride (ZrN), and hafnium nitride (HfN).
  • nitrides have high melting points (about 3000 C for ZrN) and higher electrical conductivity than their parent metals; therefore, they do not act as semiconductors. Additionally, they have good optical properties; specifically, low indices of refraction similar to the noble metals. These properties make them very useful for forming an improved back contact/reflecting layer in solar cells. All of the above mentioned nitrides work well, but zirconium nitride has somewhat better optical and electrical properties, and it is the one discussed herein as representative of the entire class of metal nitrides.
  • FIG. 2 shows the computed reflectivity in air of 0.5 micron thick (opaque) films of molybdenum, niobium, nickel, copper, silver, aluminum, and zirconium nitride from 400 to 1200 nm.
  • This spectral range covers the principal region of the solar radiant output, which lies above a photon energy of about 1 electron volt (ev).
  • ev electron volt
  • zirconium nitride The metallic nature of zirconium nitride is evidenced by its relatively high reflectivity as compared to molybdenum, niobium, and nickel.
  • the reflectivity of a metal in air depends upon the optical indices of the air and the metal, which of course vary with wavelength.
  • the simple formula for the reflection at the air/metal interface is:
  • n o is the refractive index of air ( ⁇ 1) and n m and k m are the refractive index and extinction coefficient of the metal.
  • the refractive index is much smaller than one, and the extinction coefficient is larger than one, so the k m 2 term dominates and the reflection approaches 100% for thick films.
  • the k m 2 term dominates and the reflection approaches 100% for thick films.
  • n and k are greater than one in the visible spectral region, so their reflections work out to be substantially less because of the (n m ⁇ +n o ) 2 terms.
  • FIG. 3 shows the computed reflection of these metals at the interface between the CIGS layer and the metal back conducting and reflecting layer, which is the way the layer actually functions in the solar cell. Note that, as suggested above, the reflection of the molybdenum is greatly reduced from its value in air—by more than a factor of 2 in the most critical spectral regions.
  • niobium and nickel fair somewhat better, but are also reduced significantly.
  • the reflections of the other metals are not reduced as much because their refractive indices differ more markedly from the value 3.
  • Nickel is a better reflector than molybdenum, and it would be more economical; however, its tendency to diffuse is a potential problem, and since it is magnetic, it is more difficult to sputter than non-magnetic metals.
  • Zirconium nitride would be an excellent solution, with much better reflection than molybdenum, niobium, or nickel. However, the zirconium nitride would need to be about 1.5 microns thick to provide the same total electrical conductivity as 0.5 microns of molybdenum. It is possible to manufacture such a thick film with some economy using reactive sputtering; however, there is a better solution.
  • FIG. 4 shows the reflection of the metals in the previous two figures when a 15 nm thick barrier layer of zirconium nitride is placed between the CIGS layer (or a CdTe layer) and the metal layer.
  • the reflection of the molybdenum, niobium, and nickel are significantly improved, while the reflections of the other metals are slightly reduced.
  • the thickness of the zirconium nitride layer is further increased, the reflectance at the interface for all of the metals approaches that of the thick zirconium nitride shown in FIG. 7 (over 70%).
  • FIG. 5 shows the reflection at a wavelength of 800 nm for molybdenum and silver at the absorber/reflector interface as the thickness of the zirconium nitride layer varies from zero to 200 nm.
  • the reflection first increases sharply as the thickness of the zirconium nitride barrier layer increases, but it begins to roll off at a thickness of about 30 nm and changes very slowly after a thickness of about 60 nm. At a thickness of 100 urn further change in the reflection is imperceptible. Reflection results for niobium and nickel (not shown) behave in a manner very similar to molybdenum.
  • the reflections start at a higher level than molybdenum, but they quickly approach the same limit. For silver the reflection starts out at high reflection (about 95%) and falls to that of thick zirconium nitride over about the same thickness range as the case for molybdenum.
  • metals that are poor reflectors need thicker zirconium nitride barrier layers, and metals that are very good reflectors should have thinner barrier layers, i.e. just enough to do the job of protecting the absorber/reflector interface. So a thin layer of ZrN acts like a metal and prevents the formation of an inverse p-n junction. It improves the reflection of the optically poor metals, and protects the CIGS layer from diffusion by the highly reflective metals. Since the optical properties are separated from the conductivity requirements of the back contact layer, a wider range of choices for the base metal layer are possible.
  • the present invention relates to a roll-to-roll deposition apparatus and method for producing an all sputtered thin-film CIGS solar cell, wherein the CIGS absorber layer is formed by co-deposition from a pair of rectangular planar or cylindrical rotary magnetrons using direct current (DC) sputtering.
  • the buffer layer of ZnS is RF sputtered from a conventional planar magnetron housed in a special chamber, thus replacing the toxic CdS with a more benign material.
  • the remaining layers in the cell are formed by deposition from dual magnetrons utilizing DC and alternating current (AC) sputtering.
  • AC alternating current
  • the back contact/reflecting layer is improved by the addition of a material not used in solar cells previously.
  • the CIGS layer is deposited from dual cylindrical rotary magnetrons, used in the configuration that is described in U.S. Pat. No. 6,365,010 (which is incorporated herein by reference), in which one target contains copper and selenium while the second target contains indium, gallium, and selenium or indium, aluminum, and selenium.
  • a primary objective of the present invention is to provide a large-scale manufacturing system for the economical production of thin-film CIGS solar cells.
  • An additional objective of the invention is to provide a manufacturing protocol for solar cells in which high temperature toxic gases and toxic wet chemical baths are eliminated from the process.
  • Another objective of the invention is to provide a manufacturing process for CIGS solar cells, which significantly lowers their cost, specifically by improvements in the back contact/reflection layer and the elimination of cadmium and the disposal of its toxic wastes.
  • a further objective of the invention is to provide an apparatus and manufacturing process for CIGS solar cells, which significantly increases the size of substrate that can be used, including primarily continuous webs of material deposited in a special customized and modularized roll-to-roll coating machine with increased capabilities and efficiencies.
  • the present invention is a method of manufacturing a solar cell that includes providing a substrate, depositing a conductive film on a surface of the substrate wherein the conductive film includes a plurality of discrete layers of conductive materials, depositing at least one p-type semiconductor absorber layer on the conductive film, wherein the p-type semiconductor absorber layer includes a copper indium diselenide (CIS) based alloy material, depositing an n-type semiconductor layer on the p-type semiconductor absorber layer to form a p-n junction, and depositing a transparent electrically conductive top contact layer on the n-type semiconductor layer.
  • CIS copper indium diselenide
  • a method of manufacturing a solar cell includes providing a substrate, depositing a conductive film on a surface of the substrate, depositing at least one p-type semi conductor absorber layer on the conductive film wherein the p-type semiconductor absorber layer includes a copper indium diselenide (CIS) based alloy material, and wherein the deposition of the p-type semiconductor absorber layer includes co-sputtering the CIS material from a pair of conductive targets, depositing an n-type semiconductor layer on the p-type semiconductor absorber layer to form a p-n junction, and depositing a transparent electrically conductive top contact layer on the n-type semiconductor layer.
  • CIS copper indium diselenide
  • a method of manufacturing a solar cell includes providing a substrate, depositing a conductive film on a surface of the substrate, depositing at least one p-type semiconductor absorber layer on the conductive film wherein the p-type semiconductor absorber layer includes a copper indium diselenide (CIS) based alloy material and wherein the deposition of the p-type semiconductor absorber layer includes reactively AC sputtering material from a pair of identical conductive targets in a sputtering atmosphere comprising argon gas and hydrogen selenide gas, depositing an n-type semiconductor layer on the p-type semiconductor absorber layer to form a p-n junction, and depositing a transparent electrically conductive top contact layer on the n-type semiconductor layer.
  • CIS copper indium diselenide
  • a solar cell in yet one more aspect of the present invention, includes a substrate, a conductive film disposed on a surface of the substrate wherein the conductive film includes a plurality of discrete layers of conductive materials, at least one p-type semiconductor absorber layer disposed on the conductive film wherein the p-type semiconductor absorber layer includes a copper indium diselenide (CIS) based alloy material, an n-type semiconductor layer disposed on the p-type semiconductor absorber layer wherein the p-type semiconductor absorber layer and the n-type semiconductor layer form a p-n junction, and a transparent electrically conductive top contact layer on the n-type semiconductor layer.
  • CIS copper indium diselenide
  • a vacuum sputtering apparatus includes an input module for paying out substrate material from a roll of the substrate material, at least one process module for receiving the substrate material from the input module, and an output module.
  • the process module includes a rotatable coating drum around which the substrate material extends, a heater array for heating the coating drum, and one or more sputtering magnetrons each having a magnetron housing and a plurality of conductive sputtering targets disposed in the magnetron housing and facing the coating drum for sputtering material onto the substrate material.
  • the output module receives the substrate material from the process module.
  • FIG. 1 is a schematic illustration of the prior art structure of a basic CIGS solar cell.
  • FIG. 2 shows the computed reflection in air of metals commonly considered useful as solar cell back contact layers. Included is a new class of materials represented by zirconium nitride.
  • FIG. 3 shows the computed internal reflection at the interface between a CIGS absorber layer and the metals and zirconium nitride shown in FIG. 2 .
  • FIG. 4 shows the computed internal reflection at the interface between a CIGS absorber layer and the metals shown in FIG. 2 with a 15 nm thick layer of zirconium nitride placed at the interface.
  • FIG. 5 shows the reflection at 800 nm at the absorber/reflector interface in a solar cell as a function of the thickness of a zirconium nitride barrier layer.
  • FIG. 6 shows the structure of the basic solar cell of the present invention, wherein a thin zirconium nitride is inserted between the CIGS layer and the back conducting/reflecting metal layer.
  • FIG. 7 shows an alternative structure for the solar cell of the present invention, wherein the back conducting/reflecting layer is improved with copper and silver layers.
  • FIG. 8 shows schematically the co-sputtering of CIGS material from conventional dual rectangular planar magnetrons.
  • FIG. 9 illustrates schematically the preferred embodiment of the DC co-sputtering of CIGS material from dual cylindrical rotary magnetrons.
  • FIG. 10 shows schematically an alternative method of using AC power to co-sputter the CMS material.
  • FIG. 11 shows schematically an alternative AC reactive sputtering method using dual cylindrical rotary magnetrons with identical metal alloy targets to form the GIGS material.
  • FIG. 12 illustrates schematically the use of three sets of dual magnetrons to increase the deposition rate and grade the composition of the CIGS layer to vary its band gap.
  • FIG. 13 shows the structure of a preferred embodiment of an improved all sputtered version of the basic solar cell of the present invention.
  • FIG. 14 shows a highly simplified schematic diagram of the side view of a roll-to-roll modular sputtering machine used to manufacture the solar cell depicted in FIG. 13 .
  • FIG. 15 shows a more detailed schematic diagram of a section of a process module with details of the construction of the coating drum and the magnetron.
  • the invention will now be described and compared with respect to the conventional prior art CIGS solar cell structure.
  • the new cell structure and the manufacturing process will be detailed in relation to a modular roll-to-roll sputter deposition system designed specifically to provide an optimum implementation of the process.
  • forming an element “on a substrate” can include forming the element directly on the substrate with no intermediate materials/elements therebetween, as well as forming the element indirectly on the substrate with one or more intermediate materials/elements therebetween.
  • FIG. 6 illustrates one of the simplest embodiments of a basic solar cell according to the present invention, which includes a zirconium nitride barrier layer.
  • the figure is similar to the conventional solar cell shown in FIG. 1 except for the added barrier layer 2 a of zirconium nitride between the CIGS layer 3 and electrical contact layer 2 .
  • electrical contact layer 2 can now be any of the metals that were discussed above or any economical metal with adequate conductivity.
  • the alloys claimed by Iwasaki et al in '204 will work since the zirconium nitride barrier layer will block diffusion while retaining good reflectivity. Pure silver would give the optimum in performance; however, it would be a relatively expensive solution.
  • Aluminum is the cheapest good reflector, but its melting point is relatively low (660 C) compared to the other metals, and it getters oxygen from the background water vapor in a vacuum system, which lowers its conductivity.
  • FIG. 7 An alternate embodiment of the solar cell of the present invention is shown in FIG. 7 , where electrical contact layer 2 is made from copper instead of molybdenum. Copper is relatively inexpensive and a very good conductor. At about 0.2 microns thickness, it provides as much electrical conductivity as 0.5 microns of molybdenum.
  • Layer 2 a is a thin barrier layer of zirconium nitride that has a thickness in the range of approximately 10 to 20 nm. At this point the layer structure is the same as that discussed in FIG. 6 , and it could be used in this form, especially with CIGS because of its modest band gap. However, the lower reflection shoreward of about 600 nm (see FIG.
  • aluminum could be substituted for both the copper and the silver.
  • the substrate were a metal foil instead of glass, the base metal layer could be made thinner while retaining the necessary reflectivity, since the metal foil would provide most of the conductivity.
  • the CIGS absorber The next layer to be described is the CIGS absorber.
  • the preferred deposition method for the CIGS material is DC magnetron sputtering; however, AC reactive magnetron sputtering is also a viable alternative method diminished only by the added necessity of handling small amounts of the toxic gas hydrogen selenide. Both methods utilize the magnetron technology taught in '010 as the most desirable method; although, the invention may be practiced less effectively with conventional planar magnetrons.
  • DC magnetron sputtering has not been done with the CIGS material is that the electrical conductivity is too low because of its semiconductor nature. DC sputtering requires metal-like electrical conductivity as well as good thermal conductivity to allow high power for high deposition rates.
  • one important idea in this invention is to divide the CIGS material into two parts, each part having properties that would permit the fabrication of a conductive sputtering target. For the majority of semiconductors that are serious candidates for use as absorber layers in solar cells this would be impossible, but the results of recent experiments demonstrate that it works for CIGS. After several failed attempts of various combinations, it was discovered that copper and selenium could be combined into a conductive matrix provided that the material was processed properly. A homogeneous mixture of powders consisting of approximately two parts Se and one part Cu remains highly conductive if it is cold pressed and annealed at a temperature somewhat below the melting point of Se (217° C.). Small samples made at 208 to 210° C.
  • the electrical resistance was less than one ohm.
  • the annealing temperature is raised to about 400 C the resistance goes up by a factor of more than a million as might be expected from the formation of CuSe 2 .
  • the conductive properties of the lower temperature material are not easily reconciled with the existing phase diagrams for the Cu—Se binary system. If chemical reactions between the Cu and Se do not occur at the low annealing temperature then the Se could be acting as a binder to hold a highly conductive copper matrix together. For this to be the case, the Cu would have to diffuse rapidly at the low annealing temperature, which is unlikely.
  • the Cu 2 Se phase is the only Cu/Se phase known to be conductive, so it probably forms although it does not appear to be consistent with the phase diagram for this composition and temperature. However, since the material changes its appearance after annealing, it seems to favor a reaction having occurred. Similar experiments in which the Cu was replaced with In did not yield highly conductive matrices. In fact the resistance increased with indium content even at low annealing temperatures. Since In and Se have low melting points, the observed result might be expected, and unlike the Cu, it is consistent with the In—Se phase diagram.
  • the Cu/Se has been made with the necessary properties for high rate DC magnetron sputtering.
  • the target for the rest of the material must contain the indium and gallium needed to complete the CIGS structure. In and Ga are readily melted together to form a low temperature solder which can be poured or cast into a mold surrounding a backing or carrier tube to form the target. Good mixing and rapid quenching is required to prevent segregation and formation of the low temperature eutectic.
  • a more desirable approach is to form the target by compressing metal powders, and in particular to include the gallium as gallium selenide (Ga 2 Se 3 ). The target remains conductive and the low temperature eutectic is avoided.
  • Additional Se may also be added and reacted with the In to form the insulating In 2 Se 3 phase, but as long as enough free in is left to form a conductive matrix, the target will sputter adequately. About half of the In/Ga target can be Se, and remain conductive enough to sputter since it takes three atoms of Se for every two atoms of In or Ga. Replacing the gallium with aluminum raises the eutectic melting point substantially, without causing any further technical difficulties.
  • the inclusion of selenium in the In/Ga or In/Al target in addition to the selenium from the copper target provides an overpressure of selenium during the deposition process that is highly desirable.
  • this target construction technology offers is a way to dope the materials in many different and potentially beneficial ways. For example, it has been known for a long time that a very small amount of sodium (Na) added to the CIGS can improve its performance. Initially, it was noticed that cells made on soda lime glass had higher efficiency than those made on other substrates, particularly, stainless steel. Later it was discovered that traces of Na from the glass were diffusing into the CIGS during deposition. However, a way to add a small but controlled amount of Na easily for non-glass substrates has proved difficult. With the target forming method of this invention it is easy to introduce trace amounts (e.g. about 0.1%) of NaSe 2 into either the Cu/Se or the In/Ga/Se to achieve the desired doping in the absorber layer.
  • trace amounts e.g. about 0.1%) of NaSe 2 into either the Cu/Se or the In/Ga/Se to achieve the desired doping in the absorber layer.
  • sputtering CIGS material is made with respect to a pair of sputtering targets: one comprising of Cu and Se, and the other In, Ga, and Se.
  • the ratio of Cu to Se is approximately 1 to 2, but may be varied to accommodate process variations and requirements.
  • the In to Ga ratio is varied to change the band gap, and it can range from In alone (band gap of 1 ev) to about 30% Ga (band gap of 1.3 ev). It should be noted that changes in the ratios of the materials in each target as well as the additions of small levels of doping (as described above for Na) with other elements are considered to be consistent with the basic invention.
  • FIG. 8 Conventional DC rectangular planar magnetron co-sputtering of the CIGS material is shown schematically in FIG. 8 .
  • the view is a cross-section taken perpendicular to the long axes of the magnetrons.
  • Elements 7 represent the main bodies of the conventional magnetrons, which house the magnetic assemblies (not shown) that form the sputtering “racetrack” and the means of cooling targets 8 and 9 .
  • the magnetrons are oriented so that a line perpendicular to each target intersects at substrate 10 , which is approximately 10 cm away.
  • Each magnetron is powered by a DC power supply 11 , which is grounded to chamber wall/shield 12 that serves as the system anode.
  • baffle 13 is placed between the magnetrons to help restrict material sputtered from one source from depositing on, and reacting with, that of the other source. The reacted material would be largely insulating and therefore undesirable since it builds up over time on areas of the planar target that are not sputtering.
  • the baffle should not protrude toward the substrate so far that the flux reaching the substrate is significantly reduced. If grounded, as indicated, it could function as an anode or partial anode for each magnetron. All sputtering processes use a working gas, which is almost universally argon. Since it is inert, it may be introduced almost anywhere in the system. In FIGS. 8 through 12 the argon injection location is not shown explicitly; however, injection at the rear or sides of the magnetron is conventional and appropriate.
  • one of the targets, 8 for instance, comprises the conductive Cu/Se material, while target 9 comprises the conductive In/Ga/Se material.
  • a substrate 10 is heated to a temperature of between 400 and 600 C, and is transported past the magnetrons at a uniform rate as indicated by the arrow.
  • Argon is introduced as the working gas at a pressure of approximately 1 to 2 millitorr, and DC power is applied to sputter the materials.
  • One power supply ( 11 ) is adjusted to achieve an acceptable sputtering rate for one of the two targets. The other power supply is then adjusted until the reacted coating on the heated substrate has the correct copper deficient composition.
  • the correct composition will be achieved with power supply adjustments alone. In general this may not be the case, in part because the individual elements may have different sputtering patterns. Thus, one constituent may be preferentially collected on nearby shielding, shifting the coating composition slightly from that expected from the original target composition. Adjustments in the compositions of each target by only few percent will correct the discrepancy, but the exact composition is dependent on many factors including machine geometry, sputtering pressure and sputtering power, so the correct compositions must be worked out for each unique machine setup. Once the compositions are determined, they remain constant until there is a change in the process or system geometry. Such small variations in target composition to accommodate system geometry are considered to fall within the scope of this invention.
  • a sputtering groove 14 (dashed line) gradually forms defining the “racetrack” on each target as the deposition process proceeds.
  • the well-known cosine distribution which describes the local flux emission pattern, is oriented perpendicular to the emitting surface. Therefore, the flux distribution at the substrate gradually changes as the target erodes and the groove forms. If the patterns from the two magnetrons do not change in synchronism with each other, the composition of the CIGS material deposited at the substrate will change with time, requiring adjustments to be determined and applied to the process almost continuously.
  • baffle 13 will not totally stop flux mixing between the targets over extended run times. This means that eventually significant amounts of partially insulating reaction products will build up on regions of the targets that are not being sputtered (i.e. at the edges of the “racetrack”). This can lead to arcing and defects in the CIGS film.
  • the utilization of the target material ranges from about 25 to 40% for the planar targets, and they must be changed often, thus raising the manufacturing costs.
  • baffle 13 (shown dashed) is not as important in the rotary magnetron embodiment. If the diameter of the rotary target is equal to the planar target width, and the target material is the same thickness, then the rotary target has over three times the initial inventory of material as the planar. And, because the utilization is more than double that of the planar, the rotary targets will run more than six times as long as the planar targets before target changes are necessary. This is a significant cost saving factor for large-scale manufacturing.
  • Either the planar or the rotary magnetrons could be run in AC mode. This is illustrated in FIG. 10 for the rotary magnetrons, but the setup would apply as well to the planar magnetrons.
  • the two DC power supplies 11 are replaced by a single AC power supply 15 .
  • a variable impedance load 16 In order to vary the deposition rates between the targets to maintain a copper deficient film composition, a variable impedance load 16 must be inserted into one of the legs of the AC supply. Since AC operation with dual magnetrons does not require a separate anode, the chamber wall/shields 12 no longer need to be grounded and neither does baffle 13 .
  • This alternative setup using AC power when the conductive targets will support DC operation offers little advantage for the rotary magnetrons, but since the planar magnetrons are not self-cleaning, it could offer some protection from arcing in that setup.
  • FIG. 11 shows this setup for a pair of rotary magnetrons. It differs from that shown in FIG. 10 in a number of respects.
  • targets 8 and 9 are now identical, consisting of an alloy of the metals copper, indium, and gallium (or aluminum) selected to give a slightly copper deficient composition and a desired band gap. Basically the atomic ratio of copper to indium plus gallium or aluminum should be slightly less than one, with the ratio of indium to gallium or aluminum determining the band gap.
  • the metal targets can be made using conventional melting and casting techniques. Since the targets are now identical in composition, baffle 13 may also be eliminated.
  • hydrogen selenide gas is fed into the system near the substrate through, for example, nozzles 17 to react with the sputtered metal atoms and form the CIGS material in a continuous process.
  • the best candidates for high efficiency thin-film solar absorbers contain materials that must be made in complex structures, or that form or use compounds and gases that are toxic.
  • materials that show some promise for changing this situation, and those are the nitrides of the IIIA elements aluminum, gallium, and indium.
  • the nitrides of various mixtures of In/Ga and In/Al display a range of band gaps that span the range of the solar spectrum. So far the techniques for making them as p-type semiconductors have not been perfected.
  • Such an absorber system would be ideal for production with the rotary magnetrons of '010.
  • the setup would be like that shown in FIG. 11 except the toxic reactive gas hydrogen selenide would be replaced with harmless nitrogen.
  • the transition metal nitride layer i.e. ZrN
  • the throughput of the sputtering machine can be improved by using two or more pairs of magnetrons to deposit the layer. Because the cost of the magnetrons is moderate compared to the overall cost of the vacuum system, the increased production rates more than offset the moderate increase in the initial capital costs. For an in-line machine that coats discrete substrates, throughput can also be increased by placing magnetron sources on, both sides of the machine, and coating two substrates on the same pass. The need to use multiple pairs of magnetrons to increase the rate of deposition of the CIGS layer presents another opportunity that is exploited in the present invention. This is discussed below using a representative example.
  • FIG. 12 illustrates schematically the CIGS deposition region within a sputtering machine equipped with three pairs of rotary (shown) or planar (not shown) magnetrons. It could represent a region from an in-line machine, or if arranged in an arc, a region from a roll-to-roll coater with a web substrate carried on a drum. With respect to the direction of motion of substrate 10 (indicated by the arrow), the first pair of magnetrons is 18 , the second 19 , and the third 20 . In each pair of magnetrons, one of the targets is Cu/Se with a properly adjusted composition as discussed above.
  • the second target in each group would be, for example, just In/Se for 18 , In/Se with 15% Ga for 19 , and In/Se with 30% Ga for 20 .
  • the Ga content of the CIGS layer would be step-wise graded from bottom to top with little or no Ga in the bottom region and some maximum amount of Ga in the top region. This will grade the band gap from about 1 ev at the bottom to about 1.3 ev near the top of the layer. Inverting the target sequence or coating in the reverse direction would invert the band gap grading.
  • Some smoothing of the stepped boundary could be obtained by placing the magnetrons close enough together to allow some overlap in their deposition patterns; however, thermal diffusion of the material will cause some grading at the interface between regions in any event.
  • the band gap of the CIGS can be engineered to optimize the efficiency of the cell.
  • Conventional wisdom would suggest forming the highest band gap regions it the top layer and the lowest band gap regions at the bottom in the same order as that used in multi-junction cells.
  • inverting this structure in a single junction cell generally leads to improved efficiency through a broadening of the voltage gradient across the absorber.
  • Ga (or Al) in the CIGS the band gap is about 1 electron volt (ev), while the optimum for the solar spectrum is about 1.4 to 1.5 ev.
  • Replacing In with 30% Ga raises the band gap to about 1.2 ev. Further additions of Ga start to lower cell efficiency.
  • the band gap can exceed 1.6 ev.
  • Aluminum raises the band gap faster than Ga, allowing a bandgap of 1.45 without exceeding 30%.
  • Sulfur replacement of some of the selenium also raises the band gap, but less effectively than Ga.
  • the targets when fabricated as described herein, remain conductive enough to co-sputter by DC methods. If p-type nitrides can be perfected, the magnetron targets would be fabricated with varying ratios of In/Ga and In/Al to achieve similar graded band gaps, and it could be accomplished by standard reactive AC sputtering with nitrogen as described in '010.
  • the conventional plated CdS n-type window or buffer layer is not used because of the toxicity and waste disposal problems associated with cadmium.
  • a substitute material that has been shown to work about as well is ZnS, as previously noted. This material can readily be made in the present invention by AC reactive sputtering from elemental zinc targets used in the setup described in FIG. 11 .
  • the reactive gas that is injected through nozzles 17 is hydrogen sulfide instead of hydrogen selenide. Since hydrogen sulfide is also a dangerous gas, it is not the method of choice for depositing the layer. Since the layer is very thin, it can be RF sputtered without negatively impacting the manufacturing rate.
  • This interface damage to the p-n junction may be minimized or eliminated with the use of a very thin sacrificial layer of a pure metal placed over the CIGS layer before the transparent conductive overcoat is applied.
  • a very thin sacrificial layer of a pure metal placed over the CIGS layer before the transparent conductive overcoat is applied.
  • zinc, cadmium, and mercury doping will change CIGS from p to n-type, but only zinc is substantially free of toxicity and waste disposal problems. If a thin layer of zinc is used, it can serve a dual role. First, it can diffuse into the CIGS layer doping it to n-type, and therefore move the p-n junction away from the interface forming a homojunction.
  • Oxidative Damage to the interface is not necessarily limited to high-energy oxygen ions. Both sulfur and selenium form high-energy ions in a sputtering plasma in a manner similar to oxygen. Metals other than zinc might be used; however, they would form p-n heterojunctions. For example, thin layers of some of the transition metals would protect the CIGS from oxidation, but would not move the p-n junction by diffusion into the CIGS. In particular zirconium will be converted to zirconium oxide, which is also an n-type semiconductor, and it is one of the alternative materials mentioned by Ullal, Zweibel, and von Roedern.
  • a sacrificial layer as just described can help protect the p-n junction and maintain a higher voltage across the depletion region. It is useful because highly conductive ZnO will not support hole stability as well as a less conductive n-type interface material. For this reason it has become common practice to use what is called “intrinsic” ZnO or i-ZnO as an initial thin overcoat for the CdS to help maintain the depletion zone in regions where the chemical bath plated CdS is marginal. This form of ZnO is made by adding more oxygen to the process to make a less conductive and more transparent form of the material. Of course the use of i-ZnO alone is damaging to the interface because of the energetic oxygen ions. Therefore sacrificial metallic layers can substitute for the conventional plated CdS as long as the oxide that is produced is an n-type semiconductor.
  • the top transparent electrode layer is deposited.
  • a transparent and conductive form of ZnO has been the conventional material used for this layer, largely because it is less costly compared to materials like indium tin oxide (ITO) that is widely used in the display industry.
  • ITO indium tin oxide
  • ZnO is both less conductive and less thermally stable than ITO; however, ZnO doped with aluminum has the approximate performance of ITO while retaining much of the cost advantage of ZnO.
  • the required level of aluminum doping to achieve this result is about 2 per cent. Similar amounts of other dopants have been shown to work almost as well (see “New n-Type Transparent Conduction Oxides” by T. Minami in MRS Bulletin, August 2000).
  • FIG. 13 shows the preferred all sputtered CIGS solar cell structure of the present invention.
  • Layer 1 (the substrate) is a high temperature metal or polymer foil. Stainless steel, copper, and aluminum are the preferred metal foils for terrestrial power production, while very thin titanium and polyimide are preferred foils for space power applications.
  • Electrically conductive layers 2 , 2 a , 2 b , and 2 c are Cu, ZrN, Ag and ZrN, respectively, as previously described in FIG. 7 .
  • the CIGS in layer 3 has a graded band gap created by changes in the composition of successive targets as shown and described in FIG. 12 .
  • the method of deposition may be either the DC co-sputtered film described in FIG. 9 or the reactively sputtered film described in FIG. 11 .
  • Semiconductor layer 4 is RF sputtered ZnS (or ZnSe) replacing the CdS of the conventional cell.
  • layer 4 a may be included as a sacrificial metal layer that becomes an n-type semiconductor upon subsequent reaction during the deposition of the next layer (i.e. with oxygen, sulfur, or selenium).
  • Layer 5 is the transparent top electrode and comprises of reactively deposited aluminum doped ZnO to take advantage of the improvement in performance over the conventional ZnO. As previously explained, a very thin portion of the aluminum doped ZnO at the layer 4 interface may have a higher resistivity to improve the junction voltage.
  • Layer 6 is the optional anti-reflection (AR) film and is actually a multi-layer stack (not shown) designed to optimize the light absorption in the cell. Such an AR stack would be used in a space power application where environmental degradation from weather is not an issue.
  • the basic cells layers 1 through 5
  • the AR layer if used, is applied to the outer surface of the glass cover instead of directly to the cell.
  • FIG. 14 A simplified schematic side view of a roll-to-roll modular sputtering machine for making the improved solar cell of FIG. 13 is illustrated in FIG. 14 .
  • the machine In the direction perpendicular to the view plane the machine is sized to support substrates between about two and four feet wide. This width is not a fundamental equipment limit; rather, it recognizes the practical difficulty of obtaining quality substrate material in wider rolls.
  • the machine is equipped with an input, or load, module 21 a and a symmetrical output, or unload, module 21 b . Between the input and output modules are process modules 22 a , 22 b , and 22 c .
  • the number of process modules may be varied to match the requirements of the coating that is being produced.
  • Bach module has a means of pumping to provide the required vacuum and to handle the flow of process gases during the coating operation.
  • the vacuum pumps are indicated schematically by elements 23 on the bottom of each module.
  • a real module could have a number of pumps placed at other locations selected to provide optimum pumping of process gases.
  • High throughput turbomolecular pumps are preferred for this application.
  • the modules are connected together at slit valves 24 , which contain very narrow low conductance isolation slots to prevent process gases from mixing between modules. These slots may be separately pumped if required to increase the isolation even further. Alternatively, a single large chamber may be internally segregated to effectively provide the module regions, but it then becomes much harder to add a module at a later time if process evolution requires it.
  • Each process module is equipped with a rotating coating drum 25 on which web substrate 26 is supported.
  • Arrayed around each coating drum is a set of dual cylindrical rotary magnetron housings 27 .
  • Conventional planar magnetrons could be substituted for the dual cylindrical rotary magnetrons; however, efficiency would be reduced and the process would not be as stable over long run times.
  • the coating drum may be sized larger or smaller to accommodate a different number of magnetrons than the five illustrated in the drawing.
  • Web substrate 26 is managed throughout the machine by rollers 28 . More guide rollers may be used in a real machine. Those shown here are the minimum needed to present a coherent explanation of the process.
  • the input and output modules each contain a web splicing region 29 where the web can be cut and spliced to a leader or trailer section to facilitate loading and unloading of the roll.
  • Heater arrays 30 are placed in locations where necessary to provide web heating depending upon process requirements. These heaters are a matrix of high temperature quartz lamps laid out across the width of the coating drum (and web). Infrared sensors provide a feedback signal to servo the lamp power and provide uniform heating across the drum.
  • coating drums 25 are equipped with an internal controllable flow of water or other fluid to provide web temperature regulation.
  • the input module accommodates the web substrate on a large spool 31 , which is appropriate for metal foils (stainless steel, copper, etc.) to prevent the material from taking a set during storage.
  • the output module contains a similar spool to take up the web.
  • the pre-cleaned substrate web first passes by heater array 30 in module 21 a , which provides at least enough heat to remove surface adsorbed water.
  • the web can pass over roller 32 , which can be a special roller configured as a cylindrical rotary magnetron. This allows the surface of electrically conducting (metallic) webs to be continuously cleaned by DC, AC, or RF sputtering as it passes around the roller/magnetron.
  • the sputtered web material is caught on shield 33 , which is periodically changed.
  • Another roller/magnetron may be added (not shown) to clean the back surface of the web if required.
  • Direct sputter cleaning of conductive web will cause the same electrical bias to be present on the web throughout the machine, which, depending on the particular process involved, might be undesirable in other sections of the machine.
  • the biasing can be avoided by sputter cleaning with linear ion guns instead of magnetrons, or the cleaning could be accomplished in a separate smaller machine prior to loading into the large roll coater.
  • a corona glow discharge treatment could be performed at this position without introducing an electrical bias.
  • the web is polyimide material electrical biases are not passed downstream through the system. However, polyimide contains excessive amounts of water. For adhesion purposes and to limit the water desorption, a thin layer of metal (typically chromium or titanium) is routinely added. This makes the surface conductive with similar issues encountered with the metallic foil substrates.
  • the web passes into the first process module 22 a through valve 24 and the low conductance isolation slots.
  • the coating drum is maintained at an appropriate process temperature by heater array 30 .
  • the full stack of reflection layers begins with the first two magnetrons depositing the base copper layer ( 2 in FIG. 13 ).
  • the next magnetron provides a thin ZrN layer, followed by the thin silver layer and the final thin ZrN layer.
  • the band gap is low enough that little is gained by the thin silver and final thin ZrN layer.
  • the reflector may consist of just the base copper layer and the first ZrN layer. Future higher band gap materials could benefit from the extra silver and ZrN layers.
  • the web then passes into the next process module, 22 b , for deposition of the p-type graded CIGS layer.
  • Heater array 30 maintains the drum and web at the required process temperature.
  • the first magnetron deposits a layer of copper indium diselenide while the next three magnetrons put down layers with increasing amounts of gallium (or aluminum), thus increasing and grading the band gap as previously described.
  • the grading may be inverted by rearrangement of the same set of magnetrons.
  • the last magnetron in the module deposits a thin layer of n-type ZnS (or ZnSe) by RF sputtering from a planar magnetron, or a sacrificial metallic layer, which becomes part of the top n-type layer and defines the p-n junction.
  • the first magnetron deposits a thin layer of aluminum doped ZnO which has a higher resistance to form and maintain the p-n junction in coordination with the previous layer.
  • the remaining four magnetrons deposit a relatively thick, highly conductive and transparent aluminum doped ZnO layer that completes the top electrode.
  • Extra magnetron stations could be added for sputtering grid lines using an endless belt mask rotating around the magnetrons. If an AR layer is to be placed on top of the cell, the machine would have an additional process module(s) in which the appropriate layer stack would be deposited.
  • the extra modules could also be equipped with moving, roll compatible, masking templates to provide a metallic grid and bus bar for making electrical contact to the top electrode.
  • the extra modules and masking equipment adds significantly to the cost of producing the cell, and may only be justified for high value added applications like space power systems.
  • a dual cylindrical rotary magnetron 34 becomes the means to pre-wet the back of the substrate foil with solder.
  • Metallic tin probably has the best properties of the available solder materials for use with a stainless steel foil, but there are many solder formulations that will work. Pre-wetting may be unnecessary for a copperfoil if it is kept clean.
  • An ion gun sputter pre-cleaning of the back surface of the foil before the solder sputtering may also be done in the output module similar to that in the input module.
  • the web temperature must be below the melting point of the pre-wetting solder (about 232 C for tin).
  • FIG. 15 shows a typical process module with an expanded section revealing details of coating drum 25 and magnetron housing 27 .
  • the coating drum is constructed with a double wall defining a gap 35 through which a cooling gas or liquid may be circulated to regulate the temperature of the drum and web 26 .
  • the web is maintained in tight contact against the outer surface of the drum.
  • Magnetron housing 27 consists of a local rectangular chamber 36 that contains rotary magnetrons 37 and 38 and the associated mounting hardware (not shown).
  • the entire housing can be located at a variable but uniform distance, represented by gap 39 , from the surface of the coating drum and web. This variable gap allows control of the flow of the sputtering gases from chamber 36 into the larger process module 22 a , which is vigorously pumped.
  • Argon sputtering gas is fed into chamber 36 through a set of tubes 40 which are spaced uniformly along its length.
  • the reactive gas e.g. oxygen, nitrogen, hydrogen sulfide, hydrogen selenide, etc.
  • the reactive gas is fed into chamber 36 through two sets of tubes 41 , each set being equally spaced along its length.
  • Internal baffles 42 create corridors which direct the reactive gas to the substrate, yet prevent coating flux from changing the conductance path of the gas with time, insuring a steady state process.
  • Rectangular chamber 36 has been referred to as a “mini” chamber within the larger vacuum chamber.
  • the major improvements are that dual cylindrical rotary magnetrons are substituted for the single rectangular magnetron of the prior art, and the method of injection of the sputtering gases has been improved.
  • Rectangular “mini” chamber 36 provides the key to the use of RF sputtering for the deposition of the ZnS (or ZnSe) buffer layer from a single planar magnetron, as opposed to the rotary magnetrons that are illustrated.
  • This chamber forms an isolated geometrically uniform structure that in turn provides a uniform electrical environment for the RF sputtering. This allows the RF sputtering to proceed uniformly along the length of the magnetron.
  • the chamber is protected from contamination from the other neighboring sputtering sources, so that minor back sputtering from the chamber walls consists only of the ZnS material. Thus the ZnS n-type layer is protected from extraneous doping by foreign contaminants.

Abstract

A method of manufacturing improved thin-film solar cells entirely by sputtering includes a high efficiency back contact/reflecting multi-layer containing at least one barrier layer consisting of a transition metal nitride. A copper indium gallium diselenide (Cu(InXGa1-X)Se2) absorber layer (X ranging from 1 to approximately 0.7) is co-sputtered from specially prepared electrically conductive targets using dual cylindrical rotary magnetron technology. The band gap of the absorber layer can be graded by varying the gallium content, and by replacing the gallium partially or totally with aluminum. Alternately the absorber layer is reactively sputtered from metal alloy targets in the presence of hydrogen selenide gas. RF sputtering is used to deposit a non-cadmium containing window layer of ZnS. The top transparent electrode is reactively sputtered aluminum doped ZnO. A unique modular vacuum roll-to-roll sputtering machine is described. The machine is adapted to incorporate dual cylindrical rotary magnetron technology to manufacture the improved solar cell material in a single pass.

Description

  • This application claims the benefit of U.S. Provisional Application No. 60/415,009, filed Sep. 30, 2002; and of U.S. Provisional Application No. 60/435,814, filed Dec. 19, 2002.
  • FIELD OF THE INVENTION
  • The invention disclosed herein relates generally to the field of photovoltaics, and more specifically to a unique high throughput roll-to-roll vacuum deposition system and method for the manufacturing of thin-film solar cells based upon absorbing layers that contain copper, indium, gallium, aluminum, and selenium and have a polycrystalline chalcopyrite structure.
  • BACKGROUND OF THE INVENTION
  • Interest in thin-film photovoltaics has expanded in recent years. This is due primarily to improvements in conversion efficiency of cells made at the laboratory scale, and the anticipation that manufacturing costs can be significantly reduced compared to the older and more expensive crystalline and polycrystalline silicon technology. The term “thin-film” is used to distinguish this type of solar cell from the more common silicon based cell, which uses a relatively thick silicon wafer. While single crystal silicon cells still hold the record for conversion efficiency at over 20%, thin-film cells have been produced which perform close to this level. Therefore, performance of the thin-film cells is no longer the major issue that limits their commercial use. The most important factor now driving the commercialization of thin-film solar cells is cost. Currently, a widely accepted technology solution for the scale up to low-cost manufacturing does not exist.
  • Attempts have been made and are now being made to remedy the problem, but progress has been slow. While a large infrastructure exists for the sputter coating of glass for the architectural window market, this process is not readily adapted to the production of solar cells for several reasons. First, the glass that is coated in large-scale machines is relatively thick compared to that used in solar modules. Also, the glass must be heated to temperatures far above that required in the window industry, causing large yield losses from fracturing and breakage. Handling large sheets of glass is expensive in terms of floor space and equipment, and the extra layers in a solar cell require additional large coating chambers with appropriate gas isolation between chambers. Finally, and maybe most importantly, efficient sputtering targets have not yet been made for the deposition of the absorber layer, which in many respects is the most challenging aspect of making a thin-film solar cell.
  • An early attempt to improve manufacturing of solar cells with a roll-to-roll technique was proposed by Barnett et al in U.S. Pat. No. 4,318,938 ('938) issued 9 Mar. 1982. They describe a roll-to-roll machine, which consists essentially of a series of individual batch processing chambers each adapted to the formation of a different layer. A thin foil substrate is continuously fed from a roll in a linear belt-like fashion through the series of individual chambers where it receives the required layers. Several of the layers are formed by evaporation of the desired material in vacuum chambers. The metal foil is transferred continuously from air to vacuum and back to air several times. The patent does not describe how this is accomplished, other than the statement that such technology can be purchased. Much has changed in recent years. The copper sulfide absorber layer proposed in '938 has been shown to be unstable in the field, and some of the other layers are no longer used. In particular, it is undesirable to have a pinch roller running on a newly formed coating layer. However, the inventors estimated that their continuous technique could reduce the manufacturing cost by as much as a factor of two over the conventional batch process for silicon. While a factor of two is still significant today, greater reductions in cost must be achieved if solar power is to become competitive with conventional sources of power generation.
  • Matsuda et al in U.S. Pat. No. 5,571,749 ('749) issued 5 Nov. 1996 teach a roll-to-roll coating system based on plasma chemical vapor deposition (CVD) techniques. Their system is a single linear vacuum chamber with a series of six gas gates for process isolation. The web substrate is passed through the machine in belt-like fashion similar to the method of '938, but the web remains in vacuum for the whole process. The solar cell absorbing layer is made from amorphous silicon deposited from the decomposition of silane gas. Different dopants are introduced along the belt path to create the required p-n junctions. Similar techniques are used at Uni-Solar of Troy, Mich. to make a variety of amorphous silicon solar cells. The conversion efficiency of amorphous silicon cells is inferior to that of the other thin film cells, and they suffer a loss of efficiency during the initial few weeks of exposure to solar radiation through a mechanism known as the Stabler-Wronski effect. Because of this the efficiencies of amorphous silicon remain well below that of other thin-film materials, and no one has yet found a way to mitigate the effect.
  • Wendt et al disclose a roll-to-roll system in U.S. Pat. No. 6,372,538 ('538) issued 16 Apr. 2002 that teaches a method for depositing a thin film solar cell based upon a copper indium/gallium diselenide (CIGS) absorber layer. The system is described as consisting of nine separate individual processing chambers in which a roll-to-roll process may be used at each chamber. Thus the overall system is similar to that described in '938, but without the continuous belt-like transport of the substrate through all of the chambers at once. Also the roll of thin material (polyimide in this case) is not continuously fed through a single vacuum system as it is in '749. Wendt et al teach conventional planar magnetron sputtering for the deposition of a molybdenum back contact layer onto the polyimide film. Adjustments are made to the argon gas pressure and some oxygen is introduced to adjust the film stress to accommodate the expansion of the polyimide when it is heated for the CIGS deposition. Incorporation of oxygen into the molybdenum layer increases its resistivity, requiring the layer to be thicker to provide adequate electrical conductivity. The CIGS materials are deposited over the molybdenum layer in a separate chamber using an array of thermal evaporators each depositing one of the components. The use of the polyimide substrate material presents at least two problems in processing. First, it contains a relatively large amount of adsorbed water, which is evolved in the vacuum system and can have negative effects on the process. And secondly, it cannot withstand the higher temperatures used for the deposition of high quality CIGS material. Thin foils of stainless steel would have neither of these problems. The preferred width of the polyimide web is 33 cm, and it runs at a typical line speed of 30 cm per minute. With respect to the present invention, such production rates (about a square foot per minute) are not considered large-scale; rather, rates 5 to 10 times faster with attendant cost reductions are necessary to make solar power competitive with power from conventional sources.
  • Copper indium diselenide (CuInSe2 or CIS) and its higher band gap variants copper indium gallium diselenide (Cu(In/Ga)Se2 or CIGS), copper indium aluminum diselenide (Cu(In/Al)Se2), and any of these compounds with sulfur replacing some of the selenium represent a group of materials that have desirable properties for use as the absorber layer in thin-film solar cells. The acronyms CIS and CIGS have been in common use in the literature for sometime. The aluminum bearing variants have no common acronym as yet, so CIGS is used here in an expanded sense to represent the entire group of CIS based alloys. To function as a solar absorber layer these materials must be p-type semiconductors. This is accomplished by establishing a slight deficiency in copper, while maintaining a chalcopyrite crystalline structure. Gallium usually replaces 20% to 30% of the normal indium content to raise the band gap; however, there are significant and useful variations outside of this range. If gallium is replaced by aluminum, smaller amounts of aluminum are required to achieve the same band gap.
  • CIGS thin-film solar cells are normally produced by first depositing a molybdenum (moly) base electrical contact layer onto a substrate such as glass, stainless steel foil, or other functional substrate material. A relatively thick layer of CIGS is then deposited on the moly layer by one of two widely used techniques. In the precursor technique, the metals (Cu/In/Ga) are first deposited onto the substrate using a physical vapor deposition (PVD) process (i.e. evaporation or sputtering), chemical bath, or electroplating process. Subsequently, a selenium bearing gas is reacted with the metals layer in a diffusion furnace at temperatures ranging up to about 600° C. to form the final CIGS composition. The most commonly used selenium bearing gas is hydrogen selenide, which is extremely toxic to humans and requires great care in its use. A second technique avoids the use of hydrogen selenide gas by co-evaporating all of the CIGS constituents onto a hot substrate from separate thermal evaporation sources. While the deposition rates are relatively high for thermal evaporation, the sources are difficult to control to achieve both the required stoichiometry and thickness uniformity over large areas of a substrate. Neither of these techniques for forming the CIGS layer is readily scalable to efficient large-scale production.
  • In part, moly is used as the back contact layer because of the high temperature required for the CIGS deposition. Other metals (silver, aluminum, copper etc.) tend to diffuse into and/or react with the selenium in the CIGS at the elevated deposition temperatures, and create an undesirable doping or interface between the contact layer and the CIGS layer. Moly has a very high melting point (2610 C), which helps to avoid this problem, although it will react with selenium at high temperatures. However, even if the reactive interface is minimized, moly still has a rather poor reflection at the interface with the CIGS layer, resulting in decreased efficiency since the light that penetrates the absorber initially is not reflected back through the CIGS effectively for a second chance at being absorbed. Therefore, replacing the moly with a better reflecting layer can allow a decrease in the thickness of the absorber layer as well as provide improved cell performance by moving the absorption events closer to the p-n junction.
  • The n-type material most often used with CIGS absorbers to form the thin “window” or “buffer” layer is cadmium sulfide (CdS). It is much thinner than the CIGS layer and is usually applied by chemical bath deposition (CBD). Cadmium is toxic and the chemical bath waste poses an environmental disposal problem, adding to the expense of manufacturing the cell. CBD zinc sulfide (ZnS) has been used successfully as a substitute for CdS, and has produced cells of comparable quality. The CBD method for ZnS is not as toxic as CdS; but, remains a relatively expensive and time-consuming process step, which should be avoided if possible. Radio frequency (RF) sputter deposition of and ZnS has been demonstrated on a small scale. However, RF sputtering over large areas is difficult to control because the plasma is highly influenced by the chamber geometry in the conventional method of implementing RF sputtering. An improved method of RF sputtering ZnS is needed to reduce the process complexity as well as to eliminate the toxic cadmium from the process.
  • Finally, the window or buffer layer is covered with a relatively thick transparent electrically conducting oxide, which is also an n-type semiconductor. In the past zinc oxide (ZnO) has been used as an alternative to the traditional, but more expensive, indium tin oxide (ITO). Recently, aluminum doped ZnO has been shown to perform about as well as ITO, and it has become the material of choice in the industry. A thin “intrinsic” (meaning highly resistive) ZnO layer is often deposited on top of the buffer layer to cover any plating flaws in the CdS (hence “buffer” layer) before the cell is completed by the deposition of the transparent top conductive layer. In order to further optimize the performance of the cell, an antireflection coating may be applied as a final step. Because of differences in refractive index, this step is more important for silicon cells than for GIGS cells in which some level of antireflection is provided by the encapsulation material when the cells are made into modules. In the case of GIGS an antireflection coating may be applied to the outer surface of the glass.
  • The difficulties inherent in the deposition of CIGS related absorber layers as well as the buffer layer have prevented these thin-film solar cells from being readily manufactured in large scale with improved economies and lower costs. Concurrent improvements in the back reflector and elimination of cadmium and its waste disposal problems can also lower the cost per watt of generated solar power.
  • A conventional prior art CIGS solar cell structure is shown in FIG. 1. Because of the large range in the thickness of the different layers, they are depicted schematically. The materials most often used for each of the layers are also indicated in the figure. The arrow at the top of the figure shows the direction of the solar illumination on the cell. Element 1 is the substrate, and it is massive in relation to the thin-film layers that are deposited upon it. Glass is the substrate that has been commonly used in solar cell research; however, it is more likely that for large-scale production some type of foil-like substrate will be used. Layer 2 is the back electrical contact for the cell. Traditionally, it has been moly with a thickness of about 0.5 to 1.0 microns. While moly has been shown to be compatible with CIGS chemistry and the relatively high temperature of the CIGS deposition, it has some disadvantages. It is more expensive than other metals that are better conductors (aluminum or copper for example), and it is not a good reflector in the spectral region of the maximum solar output. Thus light that does not create electron-hole pairs in the CIGS absorber on its first transit is not efficiently reflected back through the absorber for a second chance at causing a photoelectric event. Light that is absorbed in the moly, including the part of the solar spectrum that falls outside of the CIGS absorption band, only contributes to heating of the cell, which lowers its overall conversion efficiency. A better back electrode material is desirable in a large-scale manufacturing system.
  • Layer 3 is the CIGS p-type semiconductor absorber layer. It is usually about 2 to 3 microns thick, but could be somewhat thinner and attain the same or improved efficiency if the reflection of the back electrode layer (2) were improved. It would be extremely desirable to produce this layer by magnetron sputtering. This would enable a large-scale manufacturing process because magnetrons can readily be made in large sizes, and thickness and composition control can be excellent. A major provision of this invention is to demonstrate how this can be done with CIGS materials. Layer 4 is the n-type semiconductor layer that completes the formation of the p-n junction. It is much thinner than the absorber layer (about 0.05 microns), and it should be highly transparent to the solar radiation. Traditionally, it has been called the window layer, since it lets the light pass down to the absorber layer. It is also referred to as a buffer layer because it seems to help protect the p-n junction from damage induced by the deposition of the next layer. So far the use of CdS has resulted in the highest efficiency cells for the CIGS type absorber materials. But CdS is environmentally toxic, and it is difficult to deposit uniformly in large-scale by either the chemical bath method or by conventional RF magnetron sputtering. In addition, CdS is not highly transparent to the green and blue region of the solar spectrum, which makes it less compatible with higher band gap absorber layers.
  • At the 26th IEEE Photovoltaic Specialists Conference in October of 1977 Ullal, Zweibel, and von Roedern suggested a list of fifteen non-cadmium containing n-type materials that might be used as substitutes for the CdS layer. Of those materials SnO2, ZnO, ZrO2, and doped ZnO, are readily deposited by ordinary reactive magnetron sputtering of the metal in an argon and oxygen atmosphere. The reactive sputtering method that uses dual cylindrical rotary magnetrons as taught in U.S. Pat. No. 6,365,010 ('010) is especially useful for depositing these oxide layers. However, the dual cylindrical rotary magnetron technology can easily be extended to the reactive sputtering of sulfides and selenides, if facility improvements are made to handle the delivery of small amounts of the hydrogen sulfide and hydrogen selenide gases to the reactive deposition region. Using this technique two of the other materials on the list, ZnS and ZnSe, can be readily deposited with the dual cylindrical rotary magnetron system in the reactive mode. ZnS deposited by other methods has already been used instead of CdS in a laboratory demonstration cell that achieved a conversion efficiency of 18%. In addition, both ZnS and ZnSe have larger band gaps than CdS, so they are more efficient window materials. The less desirable method of conventional RF sputtering would work marginally for depositing thin layers of any remaining materials that cannot be readily formed into conducting targets.
  • Layer 5 is the top transparent electrode, which completes the functioning cell. This layer needs to be both highly conductive and as transparent as possible to solar radiation. ZnO has been the traditional material used with CIGS, but indium tin oxide (ITO), Al doped ZnO, and a few other materials could perform as well. Layer 6 is the antireflection (AR) coating, which can allow a significant amount of extra light into the cell. Depending on the intended use of the cell, it might be deposited directly on the top conductor (as illustrated), or on a separate cover glass, or both. For space-based power it is desirable to eliminate the cover glass, which adds significantly to expensive launch weight. Ideally, the AR coating would reduce the reflection of the cell to very near zero over the spectral region that photoelectric absorption occurs, and at the same time increase the reflection in the other spectral regions to reduce heating. Simple AR coatings do not adequately cover the relatively broad spectral absorption region of a solar cell, so multiple layer designs that are more expensive must be used to do the job more efficiently. Coatings that both perform the AR function and increase the reflection of unwanted radiation require even more layers and significant coating system sophistication. Aguilera et al in U.S. Pat. No. 6,107,564 issued 22 Aug. 2000 thoroughly review the prior art, and offer some improved AR coating designs for solar cell covers.
  • As previously mentioned the moly back contact layer is not a good reflector, nevertheless it has become the standard for thin-film type solar cells. Finding a better reflecting material that would otherwise withstand the processing conditions could improve the cell performance. The task is not simple. The back layer simultaneously should be a good conductor, be able to withstand high processing temperatures, and it should be a good reflector. Many metals in the periodic table meet at least one of these requirements, and any metal could be made thick enough to provide enough conductivity to function as the back electrical contact. The requirement of high processing temperatures eliminates the low melting point metals from consideration. Metals like tin, lead, indium, zinc, bismuth, and a few others melt at temperatures below the processing temperature for the CIGS or most other solar absorber materials. The motivation to lower the cost of the cell excludes metals like gold, platinum, palladium, rhodium, ruthenium, iridium, and osmium which otherwise have good conduction and reasonable reflection properties. With the exception of magnesium, which is highly reactive, all of the rest of the metals on the left half of the periodic chart of the elements are relatively poor reflectors, including molybdenum. The remaining candidates include aluminum, copper, silver, and nickel, and only nickel (and to a lesser extent molybdenum) resists forming insulating and poorly reflecting selenium compounds at the CIGS interface. However, nickel will severely degrade CIGS material if it is allowed to diffuse into it.
  • It is desirable to improve the large-scale manufacturability of thin-film solar cells in order to reduce their cost and make them competitive with conventional sources of electrical power generation. The use of the term large-scale in the context of the present invention implies the coating of either discrete substrates or continuous webs that have width dimensions of about a meter or more. This invention provides an apparatus and a method for sputter depositing all of the layers in the solar cell, and particularly the CIGS layer, which greatly increases the deposition area over which the required properties of the material can be achieved and controlled. It also provides improvements to the back contact/reflecting layer and the elimination of cadmium from the process.
  • SUMMARY OF THE INVENTION
  • An approach to solving problems with conventional CIGS solar cells is presented by Iwasaki et al in U.S. Pat. No. 5,986,204 ('204). They consider the same list of candidate metals that were just discussed above; however, they propose using alloys of silver-aluminum and copper-aluminum for the back conductor. A limitation to use of these alloys is that they must be applied at relatively low process temperatures, below about 120 C, which are marginally appropriate for amorphous silicon absorber layers, but would not work for CIGS at its normal processing temperatures. In addition the patent teaches the use of a clear conducting oxide (ZnO) as a barrier layer between the alloy and the absorber layer, as well as placing the alloy on a textured base metal layer to increase the scattering angle. The ZnO layer provides conductivity and inhibits migration, but like all useful clear conducting oxides, it is an n-type semiconductor. When it is placed against the p-type absorber layer, a weak p-n junction is formed, which acts to apply an undesirable small reverse electrical bias to the cell. The primary p-n junction must then overcome this back bias to cause useful current to flow, thus degrading the net efficiency.
  • Iwasaki et al are on the right track, but there are two impediments to the performance of their reflector. First, the ZnO barrier layer should not be an n-type semiconductor; and secondly, alloys generally have poorer conductivity and reflectivity than the pure metals. Among the transition metal nitrides, borides, silicides, and carbides, several have high electrical conductivity; and additionally, they have high melting temperatures and are relatively inert. A few have desirable optical properties. The most optimum materials are the nitrides of some of the transition metals, and in particular titanium nitride (TiN), zirconium nitride (ZrN), and hafnium nitride (HfN). These nitrides have high melting points (about 3000 C for ZrN) and higher electrical conductivity than their parent metals; therefore, they do not act as semiconductors. Additionally, they have good optical properties; specifically, low indices of refraction similar to the noble metals. These properties make them very useful for forming an improved back contact/reflecting layer in solar cells. All of the above mentioned nitrides work well, but zirconium nitride has somewhat better optical and electrical properties, and it is the one discussed herein as representative of the entire class of metal nitrides.
  • FIG. 2 shows the computed reflectivity in air of 0.5 micron thick (opaque) films of molybdenum, niobium, nickel, copper, silver, aluminum, and zirconium nitride from 400 to 1200 nm. This spectral range covers the principal region of the solar radiant output, which lies above a photon energy of about 1 electron volt (ev). For a single junction solar cell a band gap of 1.4 to 1.5 ev is the optimum for highest efficiency, and in this region niobium and molybdenum, have reflection that is inferior to that of any of the other metals. The metallic nature of zirconium nitride is evidenced by its relatively high reflectivity as compared to molybdenum, niobium, and nickel. The reflectivity of a metal in air depends upon the optical indices of the air and the metal, which of course vary with wavelength. The simple formula for the reflection at the air/metal interface is:
  • R = ( n m - n 0 ) 2 + k m 2 ( n m + n o ) 2 + k m 2
  • where no is the refractive index of air (˜1) and nm and km are the refractive index and extinction coefficient of the metal. For a metal like silver the refractive index is much smaller than one, and the extinction coefficient is larger than one, so the km 2 term dominates and the reflection approaches 100% for thick films. In the case of molybdenum, niobium, and nickel both n and k are greater than one in the visible spectral region, so their reflections work out to be substantially less because of the (nm−\+no)2 terms.
  • It happens that most semiconductors also have a refractive index of about 3, and this is particularly true for CIGS and CdTe, two of the leading contenders for thin-film solar cell absorbers. The formula for the reflection suggests that the back reflection layer should not have n and k values near to 3. It seems that few if any in the industry have noticed or discussed this potential problem with molybdenum in particular. FIG. 3 shows the computed reflection of these metals at the interface between the CIGS layer and the metal back conducting and reflecting layer, which is the way the layer actually functions in the solar cell. Note that, as suggested above, the reflection of the molybdenum is greatly reduced from its value in air—by more than a factor of 2 in the most critical spectral regions. The reflections of niobium and nickel fair somewhat better, but are also reduced significantly. The reflections of the other metals are not reduced as much because their refractive indices differ more markedly from the value 3. Nickel is a better reflector than molybdenum, and it would be more economical; however, its tendency to diffuse is a potential problem, and since it is magnetic, it is more difficult to sputter than non-magnetic metals. Zirconium nitride would be an excellent solution, with much better reflection than molybdenum, niobium, or nickel. However, the zirconium nitride would need to be about 1.5 microns thick to provide the same total electrical conductivity as 0.5 microns of molybdenum. It is possible to manufacture such a thick film with some economy using reactive sputtering; however, there is a better solution.
  • FIG. 4 shows the reflection of the metals in the previous two figures when a 15 nm thick barrier layer of zirconium nitride is placed between the CIGS layer (or a CdTe layer) and the metal layer. The reflection of the molybdenum, niobium, and nickel are significantly improved, while the reflections of the other metals are slightly reduced. As the thickness of the zirconium nitride layer is further increased, the reflectance at the interface for all of the metals approaches that of the thick zirconium nitride shown in FIG. 7 (over 70%). In fact calculations predict that, at a zirconium nitride barrier layer thickness of approximately 100 nm (or 0.10 microns), the metal layer underneath the zirconium nitride has little to no effect on the reflectance of light back through the CIGS layer—it becomes totally dominated by the properties of the zirconium nitride barrier layer.
  • As an example FIG. 5 shows the reflection at a wavelength of 800 nm for molybdenum and silver at the absorber/reflector interface as the thickness of the zirconium nitride layer varies from zero to 200 nm. For molybdenum the reflection first increases sharply as the thickness of the zirconium nitride barrier layer increases, but it begins to roll off at a thickness of about 30 nm and changes very slowly after a thickness of about 60 nm. At a thickness of 100 urn further change in the reflection is imperceptible. Reflection results for niobium and nickel (not shown) behave in a manner very similar to molybdenum. The reflections start at a higher level than molybdenum, but they quickly approach the same limit. For silver the reflection starts out at high reflection (about 95%) and falls to that of thick zirconium nitride over about the same thickness range as the case for molybdenum. In general metals that are poor reflectors need thicker zirconium nitride barrier layers, and metals that are very good reflectors should have thinner barrier layers, i.e. just enough to do the job of protecting the absorber/reflector interface. So a thin layer of ZrN acts like a metal and prevents the formation of an inverse p-n junction. It improves the reflection of the optically poor metals, and protects the CIGS layer from diffusion by the highly reflective metals. Since the optical properties are separated from the conductivity requirements of the back contact layer, a wider range of choices for the base metal layer are possible.
  • Accordingly, the present invention relates to a roll-to-roll deposition apparatus and method for producing an all sputtered thin-film CIGS solar cell, wherein the CIGS absorber layer is formed by co-deposition from a pair of rectangular planar or cylindrical rotary magnetrons using direct current (DC) sputtering. The buffer layer of ZnS is RF sputtered from a conventional planar magnetron housed in a special chamber, thus replacing the toxic CdS with a more benign material. The remaining layers in the cell are formed by deposition from dual magnetrons utilizing DC and alternating current (AC) sputtering. Thus the cell is manufactured in a single pass through a large modular vacuum deposition machine with no wet processes or high temperature gas diffusion processes involved. The back contact/reflecting layer is improved by the addition of a material not used in solar cells previously. In a preferred embodiment of the invention, the CIGS layer is deposited from dual cylindrical rotary magnetrons, used in the configuration that is described in U.S. Pat. No. 6,365,010 (which is incorporated herein by reference), in which one target contains copper and selenium while the second target contains indium, gallium, and selenium or indium, aluminum, and selenium.
  • A primary objective of the present invention is to provide a large-scale manufacturing system for the economical production of thin-film CIGS solar cells.
  • An additional objective of the invention is to provide a manufacturing protocol for solar cells in which high temperature toxic gases and toxic wet chemical baths are eliminated from the process.
  • Another objective of the invention is to provide a manufacturing process for CIGS solar cells, which significantly lowers their cost, specifically by improvements in the back contact/reflection layer and the elimination of cadmium and the disposal of its toxic wastes.
  • A further objective of the invention is to provide an apparatus and manufacturing process for CIGS solar cells, which significantly increases the size of substrate that can be used, including primarily continuous webs of material deposited in a special customized and modularized roll-to-roll coating machine with increased capabilities and efficiencies.
  • The present invention is a method of manufacturing a solar cell that includes providing a substrate, depositing a conductive film on a surface of the substrate wherein the conductive film includes a plurality of discrete layers of conductive materials, depositing at least one p-type semiconductor absorber layer on the conductive film, wherein the p-type semiconductor absorber layer includes a copper indium diselenide (CIS) based alloy material, depositing an n-type semiconductor layer on the p-type semiconductor absorber layer to form a p-n junction, and depositing a transparent electrically conductive top contact layer on the n-type semiconductor layer.
  • In another aspect of the present invention, a method of manufacturing a solar cell includes providing a substrate, depositing a conductive film on a surface of the substrate, depositing at least one p-type semi conductor absorber layer on the conductive film wherein the p-type semiconductor absorber layer includes a copper indium diselenide (CIS) based alloy material, and wherein the deposition of the p-type semiconductor absorber layer includes co-sputtering the CIS material from a pair of conductive targets, depositing an n-type semiconductor layer on the p-type semiconductor absorber layer to form a p-n junction, and depositing a transparent electrically conductive top contact layer on the n-type semiconductor layer.
  • In yet another aspect of the present invention, a method of manufacturing a solar cell includes providing a substrate, depositing a conductive film on a surface of the substrate, depositing at least one p-type semiconductor absorber layer on the conductive film wherein the p-type semiconductor absorber layer includes a copper indium diselenide (CIS) based alloy material and wherein the deposition of the p-type semiconductor absorber layer includes reactively AC sputtering material from a pair of identical conductive targets in a sputtering atmosphere comprising argon gas and hydrogen selenide gas, depositing an n-type semiconductor layer on the p-type semiconductor absorber layer to form a p-n junction, and depositing a transparent electrically conductive top contact layer on the n-type semiconductor layer.
  • In yet one more aspect of the present invention, a solar cell includes a substrate, a conductive film disposed on a surface of the substrate wherein the conductive film includes a plurality of discrete layers of conductive materials, at least one p-type semiconductor absorber layer disposed on the conductive film wherein the p-type semiconductor absorber layer includes a copper indium diselenide (CIS) based alloy material, an n-type semiconductor layer disposed on the p-type semiconductor absorber layer wherein the p-type semiconductor absorber layer and the n-type semiconductor layer form a p-n junction, and a transparent electrically conductive top contact layer on the n-type semiconductor layer.
  • In still yet one more aspect of the present invention, a vacuum sputtering apparatus includes an input module for paying out substrate material from a roll of the substrate material, at least one process module for receiving the substrate material from the input module, and an output module. The process module includes a rotatable coating drum around which the substrate material extends, a heater array for heating the coating drum, and one or more sputtering magnetrons each having a magnetron housing and a plurality of conductive sputtering targets disposed in the magnetron housing and facing the coating drum for sputtering material onto the substrate material. The output module receives the substrate material from the process module.
  • Other objects and features of the present invention will become apparent by a review of the specification, claims and appended figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic illustration of the prior art structure of a basic CIGS solar cell.
  • FIG. 2 shows the computed reflection in air of metals commonly considered useful as solar cell back contact layers. Included is a new class of materials represented by zirconium nitride.
  • FIG. 3 shows the computed internal reflection at the interface between a CIGS absorber layer and the metals and zirconium nitride shown in FIG. 2.
  • FIG. 4 shows the computed internal reflection at the interface between a CIGS absorber layer and the metals shown in FIG. 2 with a 15 nm thick layer of zirconium nitride placed at the interface.
  • FIG. 5 shows the reflection at 800 nm at the absorber/reflector interface in a solar cell as a function of the thickness of a zirconium nitride barrier layer.
  • FIG. 6 shows the structure of the basic solar cell of the present invention, wherein a thin zirconium nitride is inserted between the CIGS layer and the back conducting/reflecting metal layer.
  • FIG. 7 shows an alternative structure for the solar cell of the present invention, wherein the back conducting/reflecting layer is improved with copper and silver layers.
  • FIG. 8 shows schematically the co-sputtering of CIGS material from conventional dual rectangular planar magnetrons.
  • FIG. 9 illustrates schematically the preferred embodiment of the DC co-sputtering of CIGS material from dual cylindrical rotary magnetrons.
  • FIG. 10 shows schematically an alternative method of using AC power to co-sputter the CMS material.
  • FIG. 11 shows schematically an alternative AC reactive sputtering method using dual cylindrical rotary magnetrons with identical metal alloy targets to form the GIGS material.
  • FIG. 12 illustrates schematically the use of three sets of dual magnetrons to increase the deposition rate and grade the composition of the CIGS layer to vary its band gap.
  • FIG. 13 shows the structure of a preferred embodiment of an improved all sputtered version of the basic solar cell of the present invention.
  • FIG. 14 shows a highly simplified schematic diagram of the side view of a roll-to-roll modular sputtering machine used to manufacture the solar cell depicted in FIG. 13.
  • FIG. 15 shows a more detailed schematic diagram of a section of a process module with details of the construction of the coating drum and the magnetron.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The invention will now be described and compared with respect to the conventional prior art CIGS solar cell structure. The new cell structure and the manufacturing process will be detailed in relation to a modular roll-to-roll sputter deposition system designed specifically to provide an optimum implementation of the process.
  • It should be noted that, as used herein, the terms “over” and “on” both inclusively include “directly on” (no intermediate materials, elements or space disposed therebetween) and “indirectly on” (intermediate materials, elements or space disposed therebetween). For example, forming an element “on a substrate” can include forming the element directly on the substrate with no intermediate materials/elements therebetween, as well as forming the element indirectly on the substrate with one or more intermediate materials/elements therebetween.
  • FIG. 6 illustrates one of the simplest embodiments of a basic solar cell according to the present invention, which includes a zirconium nitride barrier layer. The figure is similar to the conventional solar cell shown in FIG. 1 except for the added barrier layer 2 a of zirconium nitride between the CIGS layer 3 and electrical contact layer 2. As suggested above, electrical contact layer 2 can now be any of the metals that were discussed above or any economical metal with adequate conductivity. The alloys claimed by Iwasaki et al in '204 will work since the zirconium nitride barrier layer will block diffusion while retaining good reflectivity. Pure silver would give the optimum in performance; however, it would be a relatively expensive solution. Aluminum is the cheapest good reflector, but its melting point is relatively low (660 C) compared to the other metals, and it getters oxygen from the background water vapor in a vacuum system, which lowers its conductivity.
  • An alternate embodiment of the solar cell of the present invention is shown in FIG. 7, where electrical contact layer 2 is made from copper instead of molybdenum. Copper is relatively inexpensive and a very good conductor. At about 0.2 microns thickness, it provides as much electrical conductivity as 0.5 microns of molybdenum. Layer 2 a is a thin barrier layer of zirconium nitride that has a thickness in the range of approximately 10 to 20 nm. At this point the layer structure is the same as that discussed in FIG. 6, and it could be used in this form, especially with CIGS because of its modest band gap. However, the lower reflection shoreward of about 600 nm (see FIG. 4) can be remedied by a thin layer 2 b of silver (40 to 50 nm) deposited on top of the zirconium nitride layer, and an additional barrier layer 2 c of zirconium nitride between the silver and the CIGS layers. With this structure the internal reflection at the silver/ZrN/CIGS interface is practically indistinguishable from the reflection curve labeled “silver” in FIG. 4, and the use of large amounts of the more expensive silver is avoided. If the CIGS processing temperature could be significantly lowered from the current value of about 550 C, then the intermediate barrier layer 2 a between the copper and silver could be eliminated for temperatures below which copper and silver would rapidly inter-diffuse. Alternatively, for a low enough processing temperature aluminum could be substituted for both the copper and the silver. Of course, if the substrate were a metal foil instead of glass, the base metal layer could be made thinner while retaining the necessary reflectivity, since the metal foil would provide most of the conductivity.
  • The next layer to be described is the CIGS absorber. In this invention the preferred deposition method for the CIGS material is DC magnetron sputtering; however, AC reactive magnetron sputtering is also a viable alternative method diminished only by the added necessity of handling small amounts of the toxic gas hydrogen selenide. Both methods utilize the magnetron technology taught in '010 as the most desirable method; although, the invention may be practiced less effectively with conventional planar magnetrons. One reason DC magnetron sputtering has not been done with the CIGS material is that the electrical conductivity is too low because of its semiconductor nature. DC sputtering requires metal-like electrical conductivity as well as good thermal conductivity to allow high power for high deposition rates. Conceptually, one important idea in this invention is to divide the CIGS material into two parts, each part having properties that would permit the fabrication of a conductive sputtering target. For the majority of semiconductors that are serious candidates for use as absorber layers in solar cells this would be impossible, but the results of recent experiments demonstrate that it works for CIGS. After several failed attempts of various combinations, it was discovered that copper and selenium could be combined into a conductive matrix provided that the material was processed properly. A homogeneous mixture of powders consisting of approximately two parts Se and one part Cu remains highly conductive if it is cold pressed and annealed at a temperature somewhat below the melting point of Se (217° C.). Small samples made at 208 to 210° C. had good physical strength, and the electrical resistance was less than one ohm. When the annealing temperature is raised to about 400 C the resistance goes up by a factor of more than a million as might be expected from the formation of CuSe2. But the conductive properties of the lower temperature material are not easily reconciled with the existing phase diagrams for the Cu—Se binary system. If chemical reactions between the Cu and Se do not occur at the low annealing temperature then the Se could be acting as a binder to hold a highly conductive copper matrix together. For this to be the case, the Cu would have to diffuse rapidly at the low annealing temperature, which is unlikely. The Cu2Se phase is the only Cu/Se phase known to be conductive, so it probably forms although it does not appear to be consistent with the phase diagram for this composition and temperature. However, since the material changes its appearance after annealing, it seems to favor a reaction having occurred. Similar experiments in which the Cu was replaced with In did not yield highly conductive matrices. In fact the resistance increased with indium content even at low annealing temperatures. Since In and Se have low melting points, the observed result might be expected, and unlike the Cu, it is consistent with the In—Se phase diagram.
  • Regardless of the inconsistency with the phase diagram, the Cu/Se has been made with the necessary properties for high rate DC magnetron sputtering. The target for the rest of the material must contain the indium and gallium needed to complete the CIGS structure. In and Ga are readily melted together to form a low temperature solder which can be poured or cast into a mold surrounding a backing or carrier tube to form the target. Good mixing and rapid quenching is required to prevent segregation and formation of the low temperature eutectic. A more desirable approach is to form the target by compressing metal powders, and in particular to include the gallium as gallium selenide (Ga2Se3). The target remains conductive and the low temperature eutectic is avoided. Additional Se may also be added and reacted with the In to form the insulating In2Se3 phase, but as long as enough free in is left to form a conductive matrix, the target will sputter adequately. About half of the In/Ga target can be Se, and remain conductive enough to sputter since it takes three atoms of Se for every two atoms of In or Ga. Replacing the gallium with aluminum raises the eutectic melting point substantially, without causing any further technical difficulties. The inclusion of selenium in the In/Ga or In/Al target in addition to the selenium from the copper target provides an overpressure of selenium during the deposition process that is highly desirable.
  • Another advantage this target construction technology offers is a way to dope the materials in many different and potentially beneficial ways. For example, it has been known for a long time that a very small amount of sodium (Na) added to the CIGS can improve its performance. Initially, it was noticed that cells made on soda lime glass had higher efficiency than those made on other substrates, particularly, stainless steel. Later it was discovered that traces of Na from the glass were diffusing into the CIGS during deposition. However, a way to add a small but controlled amount of Na easily for non-glass substrates has proved difficult. With the target forming method of this invention it is easy to introduce trace amounts (e.g. about 0.1%) of NaSe2 into either the Cu/Se or the In/Ga/Se to achieve the desired doping in the absorber layer.
  • The following description of sputtering CIGS material is made with respect to a pair of sputtering targets: one comprising of Cu and Se, and the other In, Ga, and Se. The ratio of Cu to Se is approximately 1 to 2, but may be varied to accommodate process variations and requirements. The In to Ga ratio is varied to change the band gap, and it can range from In alone (band gap of 1 ev) to about 30% Ga (band gap of 1.3 ev). It should be noted that changes in the ratios of the materials in each target as well as the additions of small levels of doping (as described above for Na) with other elements are considered to be consistent with the basic invention.
  • Conventional DC rectangular planar magnetron co-sputtering of the CIGS material is shown schematically in FIG. 8. The view is a cross-section taken perpendicular to the long axes of the magnetrons. Elements 7 represent the main bodies of the conventional magnetrons, which house the magnetic assemblies (not shown) that form the sputtering “racetrack” and the means of cooling targets 8 and 9. The magnetrons are oriented so that a line perpendicular to each target intersects at substrate 10, which is approximately 10 cm away. Each magnetron is powered by a DC power supply 11, which is grounded to chamber wall/shield 12 that serves as the system anode. Alternatively, separate anodes (not shown) intimately associated with each magnetron could be provided as is common in the art. Baffle 13 is placed between the magnetrons to help restrict material sputtered from one source from depositing on, and reacting with, that of the other source. The reacted material would be largely insulating and therefore undesirable since it builds up over time on areas of the planar target that are not sputtering. The baffle should not protrude toward the substrate so far that the flux reaching the substrate is significantly reduced. If grounded, as indicated, it could function as an anode or partial anode for each magnetron. All sputtering processes use a working gas, which is almost universally argon. Since it is inert, it may be introduced almost anywhere in the system. In FIGS. 8 through 12 the argon injection location is not shown explicitly; however, injection at the rear or sides of the magnetron is conventional and appropriate.
  • Still referring to FIG. 8, one of the targets, 8 for instance, comprises the conductive Cu/Se material, while target 9 comprises the conductive In/Ga/Se material. A substrate 10 is heated to a temperature of between 400 and 600 C, and is transported past the magnetrons at a uniform rate as indicated by the arrow. Argon is introduced as the working gas at a pressure of approximately 1 to 2 millitorr, and DC power is applied to sputter the materials. One power supply (11) is adjusted to achieve an acceptable sputtering rate for one of the two targets. The other power supply is then adjusted until the reacted coating on the heated substrate has the correct copper deficient composition. If the several constituents in each target have the same sputtering distribution pattern (although the two target patterns may differ from each other) then the correct composition will be achieved with power supply adjustments alone. In general this may not be the case, in part because the individual elements may have different sputtering patterns. Thus, one constituent may be preferentially collected on nearby shielding, shifting the coating composition slightly from that expected from the original target composition. Adjustments in the compositions of each target by only few percent will correct the discrepancy, but the exact composition is dependent on many factors including machine geometry, sputtering pressure and sputtering power, so the correct compositions must be worked out for each unique machine setup. Once the compositions are determined, they remain constant until there is a change in the process or system geometry. Such small variations in target composition to accommodate system geometry are considered to fall within the scope of this invention.
  • Process problems develop with the rectangular planar magnetron embodiment when the targets are sputtered for long periods of time, as would be the case for a large-scale manufacturing operation. A sputtering groove 14 (dashed line) gradually forms defining the “racetrack” on each target as the deposition process proceeds. The well-known cosine distribution, which describes the local flux emission pattern, is oriented perpendicular to the emitting surface. Therefore, the flux distribution at the substrate gradually changes as the target erodes and the groove forms. If the patterns from the two magnetrons do not change in synchronism with each other, the composition of the CIGS material deposited at the substrate will change with time, requiring adjustments to be determined and applied to the process almost continuously.
  • A second problem is that baffle 13 will not totally stop flux mixing between the targets over extended run times. This means that eventually significant amounts of partially insulating reaction products will build up on regions of the targets that are not being sputtered (i.e. at the edges of the “racetrack”). This can lead to arcing and defects in the CIGS film. Finally, the utilization of the target material ranges from about 25 to 40% for the planar targets, and they must be changed often, thus raising the manufacturing costs.
  • If cylindrical rotary magnetrons are substituted for the planar magnetrons in FIG. 8, the setup becomes that shown in FIG. 9, where common and similar elements are labeled with the same numerals. If they are operated identically to that of the planar magnetron setup, the problems associated with the planar magnetron embodiment are largely eliminated. Since they rotate, a sputtering groove never forms. So the composition of the coating remains constant as the target material is consumed, because the emission pattern of the flux, remains fixed. Also, because of the rotation and subsequent continual target cleaning, there can be no long term increasing build up of reacted material on the targets for the same reasons that pertain to reactive sputtering as detailed in '010. For this reason baffle 13 (shown dashed) is not as important in the rotary magnetron embodiment. If the diameter of the rotary target is equal to the planar target width, and the target material is the same thickness, then the rotary target has over three times the initial inventory of material as the planar. And, because the utilization is more than double that of the planar, the rotary targets will run more than six times as long as the planar targets before target changes are necessary. This is a significant cost saving factor for large-scale manufacturing.
  • Either the planar or the rotary magnetrons could be run in AC mode. This is illustrated in FIG. 10 for the rotary magnetrons, but the setup would apply as well to the planar magnetrons. The two DC power supplies 11 are replaced by a single AC power supply 15. In order to vary the deposition rates between the targets to maintain a copper deficient film composition, a variable impedance load 16 must be inserted into one of the legs of the AC supply. Since AC operation with dual magnetrons does not require a separate anode, the chamber wall/shields 12 no longer need to be grounded and neither does baffle 13. This alternative setup using AC power when the conductive targets will support DC operation offers little advantage for the rotary magnetrons, but since the planar magnetrons are not self-cleaning, it could offer some protection from arcing in that setup.
  • As mentioned above AC reactive sputtering of the CIGS material is a viable alternative to DC sputtering if facility arrangements are made to handle small amounts of hydrogen selenide gas, or other potentially useful gases. FIG. 11 shows this setup for a pair of rotary magnetrons. It differs from that shown in FIG. 10 in a number of respects.
  • First, targets 8 and 9 are now identical, consisting of an alloy of the metals copper, indium, and gallium (or aluminum) selected to give a slightly copper deficient composition and a desired band gap. Basically the atomic ratio of copper to indium plus gallium or aluminum should be slightly less than one, with the ratio of indium to gallium or aluminum determining the band gap. The metal targets can be made using conventional melting and casting techniques. Since the targets are now identical in composition, baffle 13 may also be eliminated. In addition to using argon as the conventional sputtering gas, hydrogen selenide gas is fed into the system near the substrate through, for example, nozzles 17 to react with the sputtered metal atoms and form the CIGS material in a continuous process.
  • To date the best candidates for high efficiency thin-film solar absorbers contain materials that must be made in complex structures, or that form or use compounds and gases that are toxic. At the present time there is one class of materials that show some promise for changing this situation, and those are the nitrides of the IIIA elements aluminum, gallium, and indium. The nitrides of various mixtures of In/Ga and In/Al display a range of band gaps that span the range of the solar spectrum. So far the techniques for making them as p-type semiconductors have not been perfected. Such an absorber system would be ideal for production with the rotary magnetrons of '010. The setup would be like that shown in FIG. 11 except the toxic reactive gas hydrogen selenide would be replaced with harmless nitrogen. The transition metal nitride layer (i.e. ZrN) previously discussed is formed precisely in this way.
  • Since the CIGS layer (or other absorber layer) is relatively thick, the throughput of the sputtering machine can be improved by using two or more pairs of magnetrons to deposit the layer. Because the cost of the magnetrons is moderate compared to the overall cost of the vacuum system, the increased production rates more than offset the moderate increase in the initial capital costs. For an in-line machine that coats discrete substrates, throughput can also be increased by placing magnetron sources on, both sides of the machine, and coating two substrates on the same pass. The need to use multiple pairs of magnetrons to increase the rate of deposition of the CIGS layer presents another opportunity that is exploited in the present invention. This is discussed below using a representative example.
  • FIG. 12 illustrates schematically the CIGS deposition region within a sputtering machine equipped with three pairs of rotary (shown) or planar (not shown) magnetrons. It could represent a region from an in-line machine, or if arranged in an arc, a region from a roll-to-roll coater with a web substrate carried on a drum. With respect to the direction of motion of substrate 10 (indicated by the arrow), the first pair of magnetrons is 18, the second 19, and the third 20. In each pair of magnetrons, one of the targets is Cu/Se with a properly adjusted composition as discussed above. However, the second target in each group would be, for example, just In/Se for 18, In/Se with 15% Ga for 19, and In/Se with 30% Ga for 20. In this way the Ga content of the CIGS layer would be step-wise graded from bottom to top with little or no Ga in the bottom region and some maximum amount of Ga in the top region. This will grade the band gap from about 1 ev at the bottom to about 1.3 ev near the top of the layer. Inverting the target sequence or coating in the reverse direction would invert the band gap grading. Some smoothing of the stepped boundary could be obtained by placing the magnetrons close enough together to allow some overlap in their deposition patterns; however, thermal diffusion of the material will cause some grading at the interface between regions in any event.
  • The advantage of being able to adjust the CIGS composition easily by using multiple sets of targets is that the band gap of the CIGS can be engineered to optimize the efficiency of the cell. Conventional wisdom would suggest forming the highest band gap regions it the top layer and the lowest band gap regions at the bottom in the same order as that used in multi-junction cells. However, in practice inverting this structure in a single junction cell generally leads to improved efficiency through a broadening of the voltage gradient across the absorber. Without Ga (or Al) in the CIGS the band gap is about 1 electron volt (ev), while the optimum for the solar spectrum is about 1.4 to 1.5 ev. Replacing In with 30% Ga raises the band gap to about 1.2 ev. Further additions of Ga start to lower cell efficiency. If Ga totally replaces In, the band gap can exceed 1.6 ev. Aluminum raises the band gap faster than Ga, allowing a bandgap of 1.45 without exceeding 30%. Sulfur replacement of some of the selenium also raises the band gap, but less effectively than Ga. Many combinations are possible, and for a wide range of additive materials the targets, when fabricated as described herein, remain conductive enough to co-sputter by DC methods. If p-type nitrides can be perfected, the magnetron targets would be fabricated with varying ratios of In/Ga and In/Al to achieve similar graded band gaps, and it could be accomplished by standard reactive AC sputtering with nitrogen as described in '010.
  • The conventional plated CdS n-type window or buffer layer is not used because of the toxicity and waste disposal problems associated with cadmium. A substitute material that has been shown to work about as well is ZnS, as previously noted. This material can readily be made in the present invention by AC reactive sputtering from elemental zinc targets used in the setup described in FIG. 11. In this case the reactive gas that is injected through nozzles 17 is hydrogen sulfide instead of hydrogen selenide. Since hydrogen sulfide is also a dangerous gas, it is not the method of choice for depositing the layer. Since the layer is very thin, it can be RF sputtered without negatively impacting the manufacturing rate. However, as stated before, conventional RF sputtering presents challenges in large-scale because of the non-uniformity associated with variable machine geometry. The method of RF sputtering described below will overcome the objection presented by variable geometry. ZnSe could be RF sputtered using the same RF technique, but it is less desirable than ZnS because its band gap is smaller, although both materials have larger band gaps than CdS.
  • Since most transparent conducting oxides are n-type semiconductors, it is somewhat of a mystery that the conventional ZnO, being an n-type semiconductor, cannot also be used as the window layer to make the p-n junction. All previous attempts to do this have failed to yield a cell with high efficiency unless a plated CdS “buffer” layer is placed in between the absorber and the ZnO. Some studies have pointed to the formation of gallium oxide at the interface as being at least part of the problem, although indium oxide and selenium oxide could form as well. Oxidation damage to the interface can be caused by energetic negative oxygen ions from the sputtering plasma bombarding the CIGS surface during the initial growth phase of the ZnO overcoat. Also, the energetic ions may cause physical damage to the interface.
  • This interface damage to the p-n junction may be minimized or eliminated with the use of a very thin sacrificial layer of a pure metal placed over the CIGS layer before the transparent conductive overcoat is applied. It is well known that zinc, cadmium, and mercury doping will change CIGS from p to n-type, but only zinc is substantially free of toxicity and waste disposal problems. If a thin layer of zinc is used, it can serve a dual role. First, it can diffuse into the CIGS layer doping it to n-type, and therefore move the p-n junction away from the interface forming a homojunction. Secondly, it can “take the brunt” of the negative ion bombardment converting to ZnO or ZnS in the process, thus reducing or eliminating damage to the CIGS interface. Damage to the interface is not necessarily limited to high-energy oxygen ions. Both sulfur and selenium form high-energy ions in a sputtering plasma in a manner similar to oxygen. Metals other than zinc might be used; however, they would form p-n heterojunctions. For example, thin layers of some of the transition metals would protect the CIGS from oxidation, but would not move the p-n junction by diffusion into the CIGS. In particular zirconium will be converted to zirconium oxide, which is also an n-type semiconductor, and it is one of the alternative materials mentioned by Ullal, Zweibel, and von Roedern.
  • The use of a sacrificial layer as just described can help protect the p-n junction and maintain a higher voltage across the depletion region. It is useful because highly conductive ZnO will not support hole stability as well as a less conductive n-type interface material. For this reason it has become common practice to use what is called “intrinsic” ZnO or i-ZnO as an initial thin overcoat for the CdS to help maintain the depletion zone in regions where the chemical bath plated CdS is marginal. This form of ZnO is made by adding more oxygen to the process to make a less conductive and more transparent form of the material. Of course the use of i-ZnO alone is damaging to the interface because of the energetic oxygen ions. Therefore sacrificial metallic layers can substitute for the conventional plated CdS as long as the oxide that is produced is an n-type semiconductor.
  • After the n-type layer is properly formed to create the p-n junction, the top transparent electrode layer is deposited. A transparent and conductive form of ZnO has been the conventional material used for this layer, largely because it is less costly compared to materials like indium tin oxide (ITO) that is widely used in the display industry. ZnO is both less conductive and less thermally stable than ITO; however, ZnO doped with aluminum has the approximate performance of ITO while retaining much of the cost advantage of ZnO. The required level of aluminum doping to achieve this result is about 2 per cent. Similar amounts of other dopants have been shown to work almost as well (see “New n-Type Transparent Conduction Oxides” by T. Minami in MRS Bulletin, August 2000). Currently, large scale sputtering of the ITO in the display industry is accomplished primarily by using planar ceramic targets, which are conductive but expensive to fabricate. Control of the reactive process in large scale when metallic targets are used has met with little success. A similar problem exists with the large-scale control of the reactive process for depositing aluminum doped ZnO. In principle this problem can be solved by using ceramic targets as is done with the PTO, but the extra cost for the target fabrication offsets much of the advantage gained from the cheaper materials. In this invention the rotary magnetrons as described in '010 allow the use of the cheaper metallic targets, and provide the necessary control of the reactive process for large-scale implementation. The reactive sputtering setup is identical to that described in FIG. 11 where targets 8 and 9 are both metallic zinc targets with the appropriate doping of aluminum. In addition to the usual argon sputtering gas, oxygen is supplied to the deposition region through nozzles 17.
  • FIG. 13 shows the preferred all sputtered CIGS solar cell structure of the present invention. Layer 1 (the substrate) is a high temperature metal or polymer foil. Stainless steel, copper, and aluminum are the preferred metal foils for terrestrial power production, while very thin titanium and polyimide are preferred foils for space power applications. Electrically conductive layers 2, 2 a, 2 b, and 2 c are Cu, ZrN, Ag and ZrN, respectively, as previously described in FIG. 7. The CIGS in layer 3 has a graded band gap created by changes in the composition of successive targets as shown and described in FIG. 12. The method of deposition may be either the DC co-sputtered film described in FIG. 9 or the reactively sputtered film described in FIG. 11. Semiconductor layer 4 is RF sputtered ZnS (or ZnSe) replacing the CdS of the conventional cell. As an additional feature, layer 4 a may be included as a sacrificial metal layer that becomes an n-type semiconductor upon subsequent reaction during the deposition of the next layer (i.e. with oxygen, sulfur, or selenium). Layer 5 is the transparent top electrode and comprises of reactively deposited aluminum doped ZnO to take advantage of the improvement in performance over the conventional ZnO. As previously explained, a very thin portion of the aluminum doped ZnO at the layer 4 interface may have a higher resistivity to improve the junction voltage. Layer 6 is the optional anti-reflection (AR) film and is actually a multi-layer stack (not shown) designed to optimize the light absorption in the cell. Such an AR stack would be used in a space power application where environmental degradation from weather is not an issue. For terrestrial applications the basic cells (layers 1 through 5) are laminated to a protective glass cover sheet in a sealed module (not shown), and the AR layer, if used, is applied to the outer surface of the glass cover instead of directly to the cell. One might additionally sputter current collection grid lines on the top conducting oxide, and if the substrate is a metal foil, a thin solder wetting layer (tin for example) may be sputtered on the back.
  • A simplified schematic side view of a roll-to-roll modular sputtering machine for making the improved solar cell of FIG. 13 is illustrated in FIG. 14. In the direction perpendicular to the view plane the machine is sized to support substrates between about two and four feet wide. This width is not a fundamental equipment limit; rather, it recognizes the practical difficulty of obtaining quality substrate material in wider rolls. The machine is equipped with an input, or load, module 21 a and a symmetrical output, or unload, module 21 b. Between the input and output modules are process modules 22 a, 22 b, and 22 c. The number of process modules may be varied to match the requirements of the coating that is being produced. Bach module has a means of pumping to provide the required vacuum and to handle the flow of process gases during the coating operation. The vacuum pumps are indicated schematically by elements 23 on the bottom of each module. A real module could have a number of pumps placed at other locations selected to provide optimum pumping of process gases. High throughput turbomolecular pumps are preferred for this application. The modules are connected together at slit valves 24, which contain very narrow low conductance isolation slots to prevent process gases from mixing between modules. These slots may be separately pumped if required to increase the isolation even further. Alternatively, a single large chamber may be internally segregated to effectively provide the module regions, but it then becomes much harder to add a module at a later time if process evolution requires it.
  • Each process module is equipped with a rotating coating drum 25 on which web substrate 26 is supported. Arrayed around each coating drum is a set of dual cylindrical rotary magnetron housings 27. Conventional planar magnetrons could be substituted for the dual cylindrical rotary magnetrons; however, efficiency would be reduced and the process would not be as stable over long run times. The coating drum may be sized larger or smaller to accommodate a different number of magnetrons than the five illustrated in the drawing. Web substrate 26 is managed throughout the machine by rollers 28. More guide rollers may be used in a real machine. Those shown here are the minimum needed to present a coherent explanation of the process. In an actual machine some rollers are bowed to spread the web, some move to provide web steering, some provide web tension feedback to servo controllers, and others are mere idlers to run the web in desired positions. The input/output spools and the coating drums are actively driven and controlled by feedback signals to keep the web in constant tension throughout the machine. In addition, the input and output modules each contain a web splicing region 29 where the web can be cut and spliced to a leader or trailer section to facilitate loading and unloading of the roll. Heater arrays 30 are placed in locations where necessary to provide web heating depending upon process requirements. These heaters are a matrix of high temperature quartz lamps laid out across the width of the coating drum (and web). Infrared sensors provide a feedback signal to servo the lamp power and provide uniform heating across the drum. In addition coating drums 25 are equipped with an internal controllable flow of water or other fluid to provide web temperature regulation.
  • The input module accommodates the web substrate on a large spool 31, which is appropriate for metal foils (stainless steel, copper, etc.) to prevent the material from taking a set during storage. The output module contains a similar spool to take up the web. The pre-cleaned substrate web first passes by heater array 30 in module 21 a, which provides at least enough heat to remove surface adsorbed water. Subsequently, the web can pass over roller 32, which can be a special roller configured as a cylindrical rotary magnetron. This allows the surface of electrically conducting (metallic) webs to be continuously cleaned by DC, AC, or RF sputtering as it passes around the roller/magnetron. The sputtered web material is caught on shield 33, which is periodically changed. Another roller/magnetron may be added (not shown) to clean the back surface of the web if required. Direct sputter cleaning of conductive web will cause the same electrical bias to be present on the web throughout the machine, which, depending on the particular process involved, might be undesirable in other sections of the machine. The biasing can be avoided by sputter cleaning with linear ion guns instead of magnetrons, or the cleaning could be accomplished in a separate smaller machine prior to loading into the large roll coater. Also, a corona glow discharge treatment could be performed at this position without introducing an electrical bias. If the web is polyimide material electrical biases are not passed downstream through the system. However, polyimide contains excessive amounts of water. For adhesion purposes and to limit the water desorption, a thin layer of metal (typically chromium or titanium) is routinely added. This makes the surface conductive with similar issues encountered with the metallic foil substrates.
  • Next the web passes into the first process module 22 a through valve 24 and the low conductance isolation slots. The coating drum is maintained at an appropriate process temperature by heater array 30. Following the direction of drum rotation (arrow) the full stack of reflection layers begins with the first two magnetrons depositing the base copper layer (2 in FIG. 13). The next magnetron provides a thin ZrN layer, followed by the thin silver layer and the final thin ZrN layer. For a CIGS absorber layer the band gap is low enough that little is gained by the thin silver and final thin ZrN layer. In this case the reflector may consist of just the base copper layer and the first ZrN layer. Future higher band gap materials could benefit from the extra silver and ZrN layers.
  • The web then passes into the next process module, 22 b, for deposition of the p-type graded CIGS layer. Heater array 30 maintains the drum and web at the required process temperature. The first magnetron deposits a layer of copper indium diselenide while the next three magnetrons put down layers with increasing amounts of gallium (or aluminum), thus increasing and grading the band gap as previously described. The grading may be inverted by rearrangement of the same set of magnetrons. The last magnetron in the module deposits a thin layer of n-type ZnS (or ZnSe) by RF sputtering from a planar magnetron, or a sacrificial metallic layer, which becomes part of the top n-type layer and defines the p-n junction.
  • Next the web is transferred into the final process module, 22 c, where again heater array 30 maintains the appropriate process temperature. The first magnetron deposits a thin layer of aluminum doped ZnO which has a higher resistance to form and maintain the p-n junction in coordination with the previous layer. The remaining four magnetrons deposit a relatively thick, highly conductive and transparent aluminum doped ZnO layer that completes the top electrode. Extra magnetron stations (not shown) could be added for sputtering grid lines using an endless belt mask rotating around the magnetrons. If an AR layer is to be placed on top of the cell, the machine would have an additional process module(s) in which the appropriate layer stack would be deposited. The extra modules could also be equipped with moving, roll compatible, masking templates to provide a metallic grid and bus bar for making electrical contact to the top electrode. The extra modules and masking equipment adds significantly to the cost of producing the cell, and may only be justified for high value added applications like space power systems.
  • Finally, the web passes into output module 21 b, where it is wound onto the take up spool. However, an additional operation can be performed here, which is beneficial in the later processing of the cells into modules. A dual cylindrical rotary magnetron 34 becomes the means to pre-wet the back of the substrate foil with solder. Metallic tin probably has the best properties of the available solder materials for use with a stainless steel foil, but there are many solder formulations that will work. Pre-wetting may be unnecessary for a copperfoil if it is kept clean. An ion gun sputter pre-cleaning of the back surface of the foil before the solder sputtering may also be done in the output module similar to that in the input module. In addition the web temperature must be below the melting point of the pre-wetting solder (about 232 C for tin).
  • FIG. 15 shows a typical process module with an expanded section revealing details of coating drum 25 and magnetron housing 27. The coating drum is constructed with a double wall defining a gap 35 through which a cooling gas or liquid may be circulated to regulate the temperature of the drum and web 26. The web is maintained in tight contact against the outer surface of the drum. Magnetron housing 27 consists of a local rectangular chamber 36 that contains rotary magnetrons 37 and 38 and the associated mounting hardware (not shown). The entire housing can be located at a variable but uniform distance, represented by gap 39, from the surface of the coating drum and web. This variable gap allows control of the flow of the sputtering gases from chamber 36 into the larger process module 22 a, which is vigorously pumped. Thus a large pressure differential is maintained between the background pressure in rectangular chamber 36 and the process module (22 a), and each magnetron is effectively isolated from its neighbors. Argon sputtering gas, indicated by the arrow, is fed into chamber 36 through a set of tubes 40 which are spaced uniformly along its length. For reactive sputtering, the reactive gas (e.g. oxygen, nitrogen, hydrogen sulfide, hydrogen selenide, etc.) is fed into chamber 36 through two sets of tubes 41, each set being equally spaced along its length. Internal baffles 42 create corridors which direct the reactive gas to the substrate, yet prevent coating flux from changing the conductance path of the gas with time, insuring a steady state process. This setup closely resembles that disclosed by Chahroudi in U.S. Pat. No. 4,298,444 issued 3 Nov. 1981, and is incorporated herein by reference. Rectangular chamber 36 has been referred to as a “mini” chamber within the larger vacuum chamber. The major improvements are that dual cylindrical rotary magnetrons are substituted for the single rectangular magnetron of the prior art, and the method of injection of the sputtering gases has been improved.
  • Rectangular “mini” chamber 36 provides the key to the use of RF sputtering for the deposition of the ZnS (or ZnSe) buffer layer from a single planar magnetron, as opposed to the rotary magnetrons that are illustrated. This chamber forms an isolated geometrically uniform structure that in turn provides a uniform electrical environment for the RF sputtering. This allows the RF sputtering to proceed uniformly along the length of the magnetron. In addition, the chamber is protected from contamination from the other neighboring sputtering sources, so that minor back sputtering from the chamber walls consists only of the ZnS material. Thus the ZnS n-type layer is protected from extraneous doping by foreign contaminants.
  • It is to be understood that the present invention is not limited to the embodiment(s) described above and illustrated herein, but encompasses any and all variations falling within the scope of the appended claims. For example, as is apparent from the claims and specification, not all method steps need be performed in the exact order illustrated or claimed, but rather in any order that allows the proper formation of the solar cells of the present invention.

Claims (11)

What is claimed is:
1. A method of making a conductive sputtering target comprising a mixture of copper, indium and at least one of aluminum and gallium, the method comprising forming the target by powder metallurgy or casting such that an atomic ratio of copper to indium and at least one of aluminum and gallium in the target is less than one.
2. The method of claim 1, wherein the target consists essentially of the mixture of copper, indium and aluminum, such that the atomic ratio of copper to indium and aluminum is less than one.
3. The method of claim 1, wherein the target consists essentially of the mixture of copper, indium and gallium, such that the atomic ratio of copper to indium and gallium is less than one.
4. The method of claim 1, further comprising disposing the target on a planar or cylindrical rotary magnetron.
5. The method of claim 1, wherein the target is formed by powder metallurgy.
6. The method of claim 1, wherein the target is formed by casting.
7. A conductive sputtering target comprising a mixture of copper, indium and at least one of aluminum and gallium, such that an atomic ratio of copper to indium and at least one of aluminum and gallium is less than one.
8. The target of claim 7, wherein the target consists essentially of the mixture of copper, indium and aluminum, such that the atomic ratio of copper to indium and aluminum is less than one.
9. The target of claim 7, wherein the target consists essentially of the mixture of copper, indium and gallium, such that the atomic ratio of copper to indium and gallium is less than one.
10. The target of claim 7, wherein the target is disposed on a planar or cylindrical rotary magnetron.
11. The target of claim 7, wherein the target further comprises sodium.
US14/104,203 2002-09-30 2013-12-12 Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells Abandoned US20140102891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/104,203 US20140102891A1 (en) 2002-09-30 2013-12-12 Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US41500902P 2002-09-30 2002-09-30
US43581402P 2002-12-19 2002-12-19
US10/671,238 US6974976B2 (en) 2002-09-30 2003-09-24 Thin-film solar cells
US10/973,714 US7544884B2 (en) 2002-09-30 2004-10-25 Manufacturing method for large-scale production of thin-film solar cells
US12/320,087 US7838763B2 (en) 2002-09-30 2009-01-16 Manufacturing apparatus and method for large-scale production of thin-film solar cells
US12/835,562 US20100276282A1 (en) 2002-09-30 2010-07-13 Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells
US13/173,507 US8618410B2 (en) 2002-09-30 2011-06-30 Manufacturing apparatus and method for large-scale production of thin-film solar cells
US14/104,203 US20140102891A1 (en) 2002-09-30 2013-12-12 Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/173,507 Continuation US8618410B2 (en) 2002-09-30 2011-06-30 Manufacturing apparatus and method for large-scale production of thin-film solar cells

Publications (1)

Publication Number Publication Date
US20140102891A1 true US20140102891A1 (en) 2014-04-17

Family

ID=32073349

Family Applications (7)

Application Number Title Priority Date Filing Date
US10/671,238 Expired - Lifetime US6974976B2 (en) 2002-09-30 2003-09-24 Thin-film solar cells
US10/973,714 Active 2025-11-09 US7544884B2 (en) 2002-09-30 2004-10-25 Manufacturing method for large-scale production of thin-film solar cells
US12/320,087 Expired - Lifetime US7838763B2 (en) 2002-09-30 2009-01-16 Manufacturing apparatus and method for large-scale production of thin-film solar cells
US12/835,573 Abandoned US20100278683A1 (en) 2002-09-30 2010-07-13 Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells
US12/835,562 Abandoned US20100276282A1 (en) 2002-09-30 2010-07-13 Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells
US13/173,507 Expired - Lifetime US8618410B2 (en) 2002-09-30 2011-06-30 Manufacturing apparatus and method for large-scale production of thin-film solar cells
US14/104,203 Abandoned US20140102891A1 (en) 2002-09-30 2013-12-12 Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US10/671,238 Expired - Lifetime US6974976B2 (en) 2002-09-30 2003-09-24 Thin-film solar cells
US10/973,714 Active 2025-11-09 US7544884B2 (en) 2002-09-30 2004-10-25 Manufacturing method for large-scale production of thin-film solar cells
US12/320,087 Expired - Lifetime US7838763B2 (en) 2002-09-30 2009-01-16 Manufacturing apparatus and method for large-scale production of thin-film solar cells
US12/835,573 Abandoned US20100278683A1 (en) 2002-09-30 2010-07-13 Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells
US12/835,562 Abandoned US20100276282A1 (en) 2002-09-30 2010-07-13 Manufacturing Apparatus and Method for Large-Scale Production of Thin-Film Solar Cells
US13/173,507 Expired - Lifetime US8618410B2 (en) 2002-09-30 2011-06-30 Manufacturing apparatus and method for large-scale production of thin-film solar cells

Country Status (5)

Country Link
US (7) US6974976B2 (en)
EP (1) EP1556902A4 (en)
AU (1) AU2003275239A1 (en)
TW (1) TWI250658B (en)
WO (1) WO2004032189A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156009B2 (en) 2016-12-05 2018-12-18 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Silver copper indium gallium selenide reactive sputtering method and apparatus, and photovoltaic cell containing same

Families Citing this family (480)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222513B2 (en) 2006-04-13 2012-07-17 Daniel Luch Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture
US7507903B2 (en) * 1999-03-30 2009-03-24 Daniel Luch Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US8664030B2 (en) 1999-03-30 2014-03-04 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8138413B2 (en) 2006-04-13 2012-03-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US20090111206A1 (en) 1999-03-30 2009-04-30 Daniel Luch Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture
US8076568B2 (en) * 2006-04-13 2011-12-13 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US7898054B2 (en) * 2000-02-04 2011-03-01 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US20110067754A1 (en) * 2000-02-04 2011-03-24 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US7898053B2 (en) * 2000-02-04 2011-03-01 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US8198696B2 (en) 2000-02-04 2012-06-12 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
WO2003010143A1 (en) * 2001-07-26 2003-02-06 Samsung Electronics Co., Ltd. Dialkylhydroxybenzoic acid derivatives containing metal chelating groups and their therapeutic uses
JP4012957B2 (en) * 2002-06-07 2007-11-28 本田技研工業株式会社 Method for producing compound thin film solar cell
US20060063680A1 (en) * 2002-07-26 2006-03-23 Metal Oxide Technologies, Inc. System and method for joining superconductivity tape
WO2004032189A2 (en) * 2002-09-30 2004-04-15 Miasolé Manufacturing apparatus and method for large-scale production of thin-film solar cells
US7535019B1 (en) 2003-02-18 2009-05-19 Nanosolar, Inc. Optoelectronic fiber
SE0301350D0 (en) * 2003-05-08 2003-05-08 Forskarpatent I Uppsala Ab A thin-film solar cell
US8642455B2 (en) * 2004-02-19 2014-02-04 Matthew R. Robinson High-throughput printing of semiconductor precursor layer from nanoflake particles
US20070163638A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. Photovoltaic devices printed from nanostructured particles
US7700464B2 (en) 2004-02-19 2010-04-20 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from nanoflake particles
US8846141B1 (en) 2004-02-19 2014-09-30 Aeris Capital Sustainable Ip Ltd. High-throughput printing of semiconductor precursor layer from microflake particles
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US8329501B1 (en) 2004-02-19 2012-12-11 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from inter-metallic microflake particles
US7605328B2 (en) 2004-02-19 2009-10-20 Nanosolar, Inc. Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
US20070163643A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of chalcogen layer and the use of an inter-metallic material
US7115304B2 (en) * 2004-02-19 2006-10-03 Nanosolar, Inc. High throughput surface treatment on coiled flexible substrates
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US8309163B2 (en) 2004-02-19 2012-11-13 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor and inter-metallic material
US8372734B2 (en) * 2004-02-19 2013-02-12 Nanosolar, Inc High-throughput printing of semiconductor precursor layer from chalcogenide nanoflake particles
US20070166453A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of chalcogen layer
US20060060237A1 (en) * 2004-09-18 2006-03-23 Nanosolar, Inc. Formation of solar cells on foil substrates
US8623448B2 (en) * 2004-02-19 2014-01-07 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles
US7604843B1 (en) 2005-03-16 2009-10-20 Nanosolar, Inc. Metallic dispersion
DE102004010689B3 (en) * 2004-02-27 2005-06-30 Schott Ag Absorber with radiation-selective absorber coating for use of thermic solar energy has oxide diffusion blocking layer provided by oxidized components of metal substrate
SE0400631D0 (en) * 2004-03-11 2004-03-11 Forskarpatent I Uppsala Ab Thin film solar cell and manufacturing method
US7736940B2 (en) 2004-03-15 2010-06-15 Solopower, Inc. Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication
JP5259178B2 (en) 2004-03-15 2013-08-07 ソロパワー、インコーポレイテッド Method and apparatus for depositing a thin layer of semiconductor for solar cell manufacture
US7122398B1 (en) * 2004-03-25 2006-10-17 Nanosolar, Inc. Manufacturing of optoelectronic devices
WO2006017349A1 (en) 2004-07-12 2006-02-16 Cardinal Cg Company Low-maintenance coatings
US7732229B2 (en) * 2004-09-18 2010-06-08 Nanosolar, Inc. Formation of solar cells with conductive barrier layers and foil substrates
US7838868B2 (en) 2005-01-20 2010-11-23 Nanosolar, Inc. Optoelectronic architecture having compound conducting substrate
US8541048B1 (en) 2004-09-18 2013-09-24 Nanosolar, Inc. Formation of photovoltaic absorber layers on foil substrates
US20090032108A1 (en) * 2007-03-30 2009-02-05 Craig Leidholm Formation of photovoltaic absorber layers on foil substrates
CA2583174A1 (en) * 2004-10-04 2006-04-20 Cardinal Cg Company Thin film coating and temporary protection technology, insulating glazing units, and associated methods
EP1805547A2 (en) * 2004-10-25 2007-07-11 The Regents of the University of California Stacked layer electrode for organic electronic devices
WO2006053032A1 (en) * 2004-11-10 2006-05-18 Daystar Technologies, Inc. Thermal process for creation of an in-situ junction layer in cigs
JP2008520102A (en) * 2004-11-10 2008-06-12 デイスター テクノロジーズ,インコーポレイティド Method and photovoltaic device using alkali-containing layer
JP2008520108A (en) * 2004-11-10 2008-06-12 デイスター テクノロジーズ,インコーポレイティド Vertical production of photovoltaic devices
TW200637022A (en) 2004-11-10 2006-10-16 Daystar Technologies Inc Pallet based system for forming thin-film solar cells
US20060096536A1 (en) * 2004-11-10 2006-05-11 Daystar Technologies, Inc. Pressure control system in a photovoltaic substrate deposition apparatus
US8092660B2 (en) 2004-12-03 2012-01-10 Cardinal Cg Company Methods and equipment for depositing hydrophilic coatings, and deposition technologies for thin films
US7923114B2 (en) 2004-12-03 2011-04-12 Cardinal Cg Company Hydrophilic coatings, methods for depositing hydrophilic coatings, and improved deposition technology for thin films
US8927315B1 (en) 2005-01-20 2015-01-06 Aeris Capital Sustainable Ip Ltd. High-throughput assembly of series interconnected solar cells
US7196262B2 (en) * 2005-06-20 2007-03-27 Solyndra, Inc. Bifacial elongated solar cell devices
US7394016B2 (en) * 2005-10-11 2008-07-01 Solyndra, Inc. Bifacial elongated solar cell devices with internal reflectors
US8344238B2 (en) * 2005-07-19 2013-01-01 Solyndra Llc Self-cleaning protective coatings for use with photovoltaic cells
WO2007019188A2 (en) 2005-08-05 2007-02-15 First Solar, Inc. Manufacture of photovoltaic devices
JP5324222B2 (en) * 2005-08-22 2013-10-23 キュー・ワン・ナノシステムズ・インコーポレイテッド Nanostructure and photovoltaic cell implementing it
US20070044832A1 (en) * 2005-08-25 2007-03-01 Fritzemeier Leslie G Photovoltaic template
US20070074970A1 (en) * 2005-09-20 2007-04-05 Cp Technologies, Inc. Device and method of manufacturing sputtering targets
US20070151862A1 (en) * 2005-10-03 2007-07-05 Dobson Kevin D Post deposition treatments of electrodeposited cuinse2-based thin films
US20070111367A1 (en) * 2005-10-19 2007-05-17 Basol Bulent M Method and apparatus for converting precursor layers into photovoltaic absorbers
US7833821B2 (en) * 2005-10-24 2010-11-16 Solopower, Inc. Method and apparatus for thin film solar cell manufacturing
US20070093006A1 (en) * 2005-10-24 2007-04-26 Basol Bulent M Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto
US7713773B2 (en) 2005-11-02 2010-05-11 Solopower, Inc. Contact layers for thin film solar cells employing group IBIIIAVIA compound absorbers
WO2007070880A1 (en) * 2005-12-15 2007-06-21 University Of Delaware Post-deposition treatments of electrodeposited cu(in-ga)se2-based thin films
US8059658B1 (en) 2005-12-23 2011-11-15 Extreme Networks, Inc. Method and system for automatic expansion and contraction of IP host forwarding database
DE102005062977B3 (en) * 2005-12-28 2007-09-13 Sulfurcell Solartechnik Gmbh Method and apparatus for converting metallic precursor layers to chalcopyrite layers of CIGSS solar cells
US7259322B2 (en) * 2006-01-09 2007-08-21 Solyndra, Inc. Interconnects for solar cell devices
US8084685B2 (en) * 2006-01-12 2011-12-27 Heliovolt Corporation Apparatus for making controlled segregated phase domain structures
US20070160763A1 (en) * 2006-01-12 2007-07-12 Stanbery Billy J Methods of making controlled segregated phase domain structures
DE102006004869B4 (en) * 2006-01-27 2007-12-20 Universität Stuttgart Method for producing series-connected solar cells and apparatus for carrying out the method
JP4993916B2 (en) * 2006-01-31 2012-08-08 昭和シェル石油株式会社 In solder-coated copper foil ribbon conductor and connection method thereof
US20070184573A1 (en) * 2006-02-08 2007-08-09 Guardian Industries Corp., Method of making a thermally treated coated article with transparent conductive oxide (TCO) coating for use in a semiconductor device
WO2007101099A2 (en) * 2006-02-23 2007-09-07 Van Duren Jeroen K J High-throughput printing of chalcogen layer and the use of an inter-metallic material
US8183458B2 (en) 2007-03-13 2012-05-22 Solyndra Llc Photovoltaic apparatus having a filler layer and method for making the same
US20090014055A1 (en) * 2006-03-18 2009-01-15 Solyndra, Inc. Photovoltaic Modules Having a Filling Material
US20070215195A1 (en) * 2006-03-18 2007-09-20 Benyamin Buller Elongated photovoltaic cells in tubular casings
US20080302418A1 (en) * 2006-03-18 2008-12-11 Benyamin Buller Elongated Photovoltaic Devices in Casings
US20070215197A1 (en) * 2006-03-18 2007-09-20 Benyamin Buller Elongated photovoltaic cells in casings
US9236512B2 (en) 2006-04-13 2016-01-12 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9006563B2 (en) 2006-04-13 2015-04-14 Solannex, Inc. Collector grid and interconnect structures for photovoltaic arrays and modules
US8729385B2 (en) 2006-04-13 2014-05-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8884155B2 (en) 2006-04-13 2014-11-11 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9865758B2 (en) 2006-04-13 2018-01-09 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8822810B2 (en) 2006-04-13 2014-09-02 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US8298380B2 (en) * 2006-05-23 2012-10-30 Guardian Industries Corp. Method of making thermally tempered coated article with transparent conductive oxide (TCO) coating in color compression configuration, and product made using same
DE102006026672A1 (en) 2006-06-02 2007-12-06 Würth Solar Gmbh & Co. Kg Sputter deposition of molybdenum layers
US8071419B2 (en) * 2006-06-12 2011-12-06 Nanosolar, Inc. Thin-film devices formed from solid particles
US20070283996A1 (en) * 2006-06-13 2007-12-13 Miasole Photovoltaic module with insulating interconnect carrier
US20070283997A1 (en) * 2006-06-13 2007-12-13 Miasole Photovoltaic module with integrated current collection and interconnection
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
KR100838167B1 (en) 2006-07-18 2008-06-13 주식회사 엘지화학 Manufacturing Method of Back Contacts for CIGS Solar Cell
KR100909179B1 (en) * 2006-07-24 2009-07-22 주식회사 엘지화학 Method for manufacturing a CIS-based solar cell absorption layer
US20080029152A1 (en) * 2006-08-04 2008-02-07 Erel Milshtein Laser scribing apparatus, systems, and methods
US7879685B2 (en) * 2006-08-04 2011-02-01 Solyndra, Inc. System and method for creating electric isolation between layers comprising solar cells
JP5246839B2 (en) * 2006-08-24 2013-07-24 独立行政法人産業技術総合研究所 Semiconductor thin film manufacturing method, semiconductor thin film manufacturing apparatus, photoelectric conversion element manufacturing method, and photoelectric conversion element
US20080053519A1 (en) * 2006-08-30 2008-03-06 Miasole Laminated photovoltaic cell
US7892413B2 (en) * 2006-09-27 2011-02-22 Solopower, Inc. Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films
US7410542B2 (en) * 2006-10-10 2008-08-12 Paul Terrance Nolan Variable environment, scale-able, roll to roll system and method for manufacturing thin film electronics on flexible substrates
US20100139557A1 (en) * 2006-10-13 2010-06-10 Solopower, Inc. Reactor to form solar cell absorbers in roll-to-roll fashion
US8323735B2 (en) 2006-10-13 2012-12-04 Solopower, Inc. Method and apparatus to form solar cell absorber layers with planar surface
US20080175993A1 (en) * 2006-10-13 2008-07-24 Jalal Ashjaee Reel-to-reel reaction of a precursor film to form solar cell absorber
US9103033B2 (en) * 2006-10-13 2015-08-11 Solopower Systems, Inc. Reel-to-reel reaction of precursor film to form solar cell absorber
US20090050208A1 (en) * 2006-10-19 2009-02-26 Basol Bulent M Method and structures for controlling the group iiia material profile through a group ibiiiavia compound layer
US9147778B2 (en) * 2006-11-07 2015-09-29 First Solar, Inc. Photovoltaic devices including nitrogen-containing metal contact
US8057850B2 (en) * 2006-11-09 2011-11-15 Alliance For Sustainable Energy, Llc Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors
KR20090110293A (en) * 2006-11-10 2009-10-21 솔로파워, 인코포레이티드 Reel-to-reel reaction of precursor film to form solar cell absorber
DE102006055662B3 (en) * 2006-11-23 2008-06-26 Gfe Metalle Und Materialien Gmbh Coating material based on a copper-indium-gallium alloy, in particular for the production of sputtering targets, tube cathodes and the like
DE102006057068B3 (en) * 2006-11-29 2008-05-15 Hahn-Meitner-Institut Berlin Gmbh Reactive magnetron sputtering for the large-area deposition of chalcopyrite absorber layers for thin-film solar cells
US20080142071A1 (en) * 2006-12-15 2008-06-19 Miasole Protovoltaic module utilizing a flex circuit for reconfiguration
US8153889B2 (en) * 2007-01-22 2012-04-10 Solopower, Inc. Roll-to-roll integration of thin film solar modules
US20080178927A1 (en) * 2007-01-30 2008-07-31 Thomas Brezoczky Photovoltaic apparatus having an elongated photovoltaic device using an involute-based concentrator
US8816192B1 (en) * 2007-02-09 2014-08-26 Borealis Technical Limited Thin film solar cell
TWI383059B (en) * 2007-02-12 2013-01-21 Hon Hai Prec Ind Co Ltd Apparatus and method for sputtering
US20080196759A1 (en) * 2007-02-16 2008-08-21 Thomas Brezoczky Photovoltaic assembly with elongated photovoltaic devices and integrated involute-based reflectors
KR101039519B1 (en) 2007-02-24 2011-06-08 주식회사 엘지화학 Process for Preparation of Copper Aluminum Oxide
DE102007009615A1 (en) * 2007-02-26 2008-08-28 Leybold Optics Gmbh Vacuum coating apparatus for front surface of strip material has two process chambers containing process roller, connected by transfer chamber containing strip feed and strip winding rollers, rear surface of strip contacting all rollers
US20080216885A1 (en) 2007-03-06 2008-09-11 Sergey Frolov Spectrally adaptive multijunction photovoltaic thin film device and method of producing same
WO2008140627A1 (en) * 2007-04-18 2008-11-20 Translucent Photonics, Inc. Thin film solar cell
US8563348B2 (en) * 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
WO2008153690A1 (en) * 2007-05-22 2008-12-18 Miasole High rate sputtering apparatus and method
US20080300918A1 (en) * 2007-05-29 2008-12-04 Commercenet Consortium, Inc. System and method for facilitating hospital scheduling and support
US20100236630A1 (en) * 2007-05-30 2010-09-23 University Of Florida Research Foundation Inc. CHEMICAL VAPOR DEPOSITION OF CuInxGa1-x(SeyS1-y)2 THIN FILMS AND USES THEREOF
US8034317B2 (en) * 2007-06-18 2011-10-11 Heliovolt Corporation Assemblies of anisotropic nanoparticles
US8697980B2 (en) * 2007-06-19 2014-04-15 Hanergy Holding Group Ltd. Photovoltaic module utilizing an integrated flex circuit and incorporating a bypass diode
US20100101624A1 (en) * 2007-06-20 2010-04-29 Emanuela Fioretti Photovoltaic module and modular panel made with it to collect radiant solar energy
DE102007029028A1 (en) * 2007-06-23 2009-01-08 Leybold Optics Gmbh Cathode sputter surface coating source has two components of different heat conductivity positioned in enriched zones
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US20090013292A1 (en) * 2007-07-03 2009-01-08 Mentor Graphics Corporation Context dependent timing analysis and prediction
US20090014065A1 (en) * 2007-07-12 2009-01-15 Applied Materials, Inc. Method for the production of a transparent conductive oxide coating
US20090014058A1 (en) * 2007-07-13 2009-01-15 Miasole Rooftop photovoltaic systems
US20090014057A1 (en) * 2007-07-13 2009-01-15 Miasole Photovoltaic modules with integrated devices
US20090014049A1 (en) * 2007-07-13 2009-01-15 Miasole Photovoltaic module with integrated energy storage
EP2017367A1 (en) 2007-07-18 2009-01-21 Applied Materials, Inc. Sputter coating device and method of depositing a layer on a substrate
CN101373795A (en) * 2007-08-20 2009-02-25 鸿富锦精密工业(深圳)有限公司 Solar battery
US8465589B1 (en) 2009-02-05 2013-06-18 Ascent Solar Technologies, Inc. Machine and process for sequential multi-sublayer deposition of copper indium gallium diselenide compound semiconductors
US8648253B1 (en) 2010-10-01 2014-02-11 Ascent Solar Technologies, Inc. Machine and process for continuous, sequential, deposition of semiconductor solar absorbers having variable semiconductor composition deposited in multiple sublayers
US8039052B2 (en) * 2007-09-06 2011-10-18 Intermolecular, Inc. Multi-region processing system and heads
EP3327170B1 (en) 2007-09-12 2020-11-04 Flisom AG Apparatus for manufacturing a compound film
EP2261186B1 (en) 2007-09-14 2017-11-22 Cardinal CG Company Low maintenance coating technology
TWI487131B (en) * 2007-09-14 2015-06-01 Hon Hai Prec Ind Co Ltd Apparatus and method for making solar cell
US20090078303A1 (en) * 2007-09-24 2009-03-26 Solyndra, Inc. Encapsulated Photovoltaic Device Used With A Reflector And A Method of Use for the Same
US8759671B2 (en) * 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US20090169723A1 (en) * 2007-10-02 2009-07-02 University Of Delaware I-iii-vi2 photovoltaic absorber layers
EP2206141A4 (en) * 2007-10-17 2012-10-10 Yann Roussillon Improved solution deposition assembly
US20090293955A1 (en) * 2007-11-07 2009-12-03 Qualcomm Incorporated Photovoltaics with interferometric masks
US8187434B1 (en) 2007-11-14 2012-05-29 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
US20110017298A1 (en) 2007-11-14 2011-01-27 Stion Corporation Multi-junction solar cell devices
JP4620105B2 (en) * 2007-11-30 2011-01-26 昭和シェル石油株式会社 Method for manufacturing light absorption layer of CIS thin film solar cell
EP2232576A2 (en) * 2007-12-06 2010-09-29 Craig Leidholm Methods and devices for processing a precursor layer in a group via environment
FR2924863B1 (en) * 2007-12-07 2017-06-16 Saint Gobain IMPROVEMENTS TO ELEMENTS CAPABLE OF COLLECTING LIGHT.
US8425753B2 (en) * 2008-05-19 2013-04-23 Solopower, Inc. Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films
US8409418B2 (en) 2009-02-06 2013-04-02 Solopower, Inc. Enhanced plating chemistries and methods for preparation of group IBIIIAVIA thin film solar cell absorbers
EP2232575A4 (en) * 2007-12-14 2012-07-11 Miasole Photovoltaic devices protected from environment
WO2009077605A2 (en) * 2007-12-19 2009-06-25 Oerlikon Trading Ag, Trübbach Method for obtaining high performance thin film devices deposited on highly textured substrates
US20090215215A1 (en) * 2008-02-21 2009-08-27 Sunlight Photonics Inc. Method and apparatus for manufacturing multi-layered electro-optic devices
US8440903B1 (en) 2008-02-21 2013-05-14 Stion Corporation Method and structure for forming module using a powder coating and thermal treatment process
US20090211622A1 (en) * 2008-02-21 2009-08-27 Sunlight Photonics Inc. Multi-layered electro-optic devices
US8075723B1 (en) 2008-03-03 2011-12-13 Stion Corporation Laser separation method for manufacture of unit cells for thin film photovoltaic materials
US8772078B1 (en) 2008-03-03 2014-07-08 Stion Corporation Method and system for laser separation for exclusion region of multi-junction photovoltaic materials
KR20100126717A (en) * 2008-03-04 2010-12-02 솔렉슨트 코포레이션 Process for making solar cells
US20110197947A1 (en) 2008-03-20 2011-08-18 Miasole Wire network for interconnecting photovoltaic cells
US20100043863A1 (en) * 2008-03-20 2010-02-25 Miasole Interconnect assembly
US8912429B2 (en) * 2008-03-20 2014-12-16 Hanergy Holding Group Ltd. Interconnect assembly
US7842534B2 (en) * 2008-04-02 2010-11-30 Sunlight Photonics Inc. Method for forming a compound semi-conductor thin-film
NL1035265C2 (en) * 2008-04-07 2009-10-08 Meco Equip Eng Method and device for the electroplating of non-metallic glassy substrates.
US10211353B2 (en) * 2008-04-14 2019-02-19 Sunlight Photonics Inc. Aligned bifacial solar modules
US8980008B2 (en) 2008-04-15 2015-03-17 Hanergy Hi-Tech Power (Hk) Limited Apparatus and methods for manufacturing thin-film solar cells
US20090260678A1 (en) * 2008-04-16 2009-10-22 Agc Flat Glass Europe S.A. Glass substrate bearing an electrode
US20090272422A1 (en) * 2008-04-27 2009-11-05 Delin Li Solar Cell Design and Methods of Manufacture
US8207012B2 (en) * 2008-04-28 2012-06-26 Solopower, Inc. Method and apparatus for achieving low resistance contact to a metal based thin film solar cell
US20090266399A1 (en) * 2008-04-28 2009-10-29 Basol Bulent M Metallic foil substrate and packaging technique for thin film solar cells and modules
US20090283137A1 (en) * 2008-05-15 2009-11-19 Steven Thomas Croft Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
CN102089366B (en) * 2008-05-20 2013-06-19 宇部兴产株式会社 Polyimide metal laminate and solar cell
US20090291231A1 (en) * 2008-05-21 2009-11-26 Applied Materials, Inc. Method and apparatus for producing a solar cell module with integrated laser patterning
EP2124264A1 (en) * 2008-05-21 2009-11-25 Applied Materials, Inc. Method and apparatus for producing a solar cell module with integrated laser patterning
WO2009141411A1 (en) * 2008-05-21 2009-11-26 Applied Materials Inc. Method and apparatus for producing a solar cell module with integrated laser patterning
US7939454B1 (en) 2008-05-31 2011-05-10 Stion Corporation Module and lamination process for multijunction cells
US20090301562A1 (en) * 2008-06-05 2009-12-10 Stion Corporation High efficiency photovoltaic cell and manufacturing method
US8642138B2 (en) 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US8795466B2 (en) * 2008-06-14 2014-08-05 Intevac, Inc. System and method for processing substrates with detachable mask
US9087943B2 (en) * 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8003432B2 (en) 2008-06-25 2011-08-23 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
EP2141739A3 (en) * 2008-06-30 2011-01-12 Intevac, Inc. System and method for substrate transport
US9157145B2 (en) 2008-07-29 2015-10-13 Intevac, Inc. Processing tool with combined sputter and evaporation deposition sources
US8207008B1 (en) 2008-08-01 2012-06-26 Stion Corporation Affixing method and solar decal device using a thin film photovoltaic
US8071165B2 (en) * 2008-08-08 2011-12-06 International Solar Electric Technology, Inc. Chemical vapor deposition method and system for semiconductor devices
DE102008041437A1 (en) * 2008-08-21 2010-06-10 Carl Baasel Lasertechnik Gmbh & Co. Kg Method for processing coating system arranged on flexible substrate, particularly during manufacturing of thin film solar module, involves applying foil on carrier, where foil is made up of flexible substrate
US20110017257A1 (en) * 2008-08-27 2011-01-27 Stion Corporation Multi-junction solar module and method for current matching between a plurality of first photovoltaic devices and second photovoltaic devices
US20100051932A1 (en) * 2008-08-28 2010-03-04 Seo-Yong Cho Nanostructure and uses thereof
US20100051090A1 (en) * 2008-08-28 2010-03-04 Stion Corporation Four terminal multi-junction thin film photovoltaic device and method
US7855089B2 (en) * 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
WO2010036776A2 (en) * 2008-09-24 2010-04-01 Alliance For Sustainable Energy, Llc Thin film electronic devices with conductive and transparent gas and moisture permeation barriers
US20100154874A1 (en) * 2008-09-29 2010-06-24 Takashi Hirose Photoelectric conversion device and manufacturing method thereof
US8008112B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8026122B1 (en) 2008-09-29 2011-09-27 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8008111B1 (en) * 2008-09-29 2011-08-30 Stion Corporation Bulk copper species treatment of thin film photovoltaic cell and manufacturing method
US8008110B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
ITFI20080184A1 (en) * 2008-09-29 2010-03-29 Marco Maltagliati SYSTEM FOR COATING, VACUUM TREATMENT OR IN CONTROLLED ATMOSPHERE OF MATERIALS IN THE FORM OF METALLIC, NON-METALLIC AND TEXTILE FLEXIBLE RIBBONS.
US8569613B1 (en) * 2008-09-29 2013-10-29 Stion Corporation Multi-terminal photovoltaic module including independent cells and related system
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US20100078059A1 (en) * 2008-09-30 2010-04-01 Stion Corporation Method and structure for thin film tandem photovoltaic cell
US7947524B2 (en) * 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US7910399B1 (en) * 2008-09-30 2011-03-22 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8383450B2 (en) * 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US7863074B2 (en) * 2008-09-30 2011-01-04 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8741689B2 (en) * 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
DE102008050196A1 (en) * 2008-10-01 2010-04-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for depositing a gradient layer
US20110018103A1 (en) * 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8003430B1 (en) 2008-10-06 2011-08-23 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US20100096006A1 (en) * 2008-10-16 2010-04-22 Qualcomm Mems Technologies, Inc. Monolithic imod color enhanced photovoltaic cell
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
EP2180529A1 (en) 2008-10-21 2010-04-28 Applied Materials, Inc. Transparent conductive zinc oxide film and production method thereof
EP2355920A4 (en) * 2008-10-28 2012-11-14 Solopower Inc Improved drum design for web processing
JP5336151B2 (en) * 2008-10-31 2013-11-06 キヤノンアネルバ株式会社 Thin film forming apparatus and method of manufacturing magnetic recording medium
US8586857B2 (en) * 2008-11-04 2013-11-19 Miasole Combined diode, lead assembly incorporating an expansion joint
US9059351B2 (en) 2008-11-04 2015-06-16 Apollo Precision (Fujian) Limited Integrated diode assemblies for photovoltaic modules
US20100122730A1 (en) * 2008-11-17 2010-05-20 Corneille Jason S Power-loss-inhibiting current-collector
US8344243B2 (en) * 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
US8110428B2 (en) * 2008-11-25 2012-02-07 Sunlight Photonics Inc. Thin-film photovoltaic devices
US20100126580A1 (en) * 2008-11-26 2010-05-27 Farrell James F CdTe deposition process for solar cells
FR2939240B1 (en) * 2008-12-03 2011-02-18 Saint Gobain LAYERED ELEMENT AND PHOTOVOLTAIC DEVICE COMPRISING SUCH A MEMBER
US20100140078A1 (en) * 2008-12-05 2010-06-10 Solopower, Inc. Method and apparatus for forming contact layers for continuous workpieces
US8835748B2 (en) * 2009-01-06 2014-09-16 Sunlight Photonics Inc. Multi-junction PV module
EP2216831A1 (en) * 2009-02-05 2010-08-11 Applied Materials, Inc. Modular PVD system for flex PV
US20100196591A1 (en) * 2009-02-05 2010-08-05 Applied Materials, Inc. Modular pvd system for flex pv
US8115095B2 (en) * 2009-02-20 2012-02-14 Miasole Protective layer for large-scale production of thin-film solar cells
US8110738B2 (en) 2009-02-20 2012-02-07 Miasole Protective layer for large-scale production of thin-film solar cells
KR101179443B1 (en) 2009-02-20 2012-09-04 미아솔 Protective layer for large-scale production of thin-film solar cells
KR20100098008A (en) * 2009-02-27 2010-09-06 삼성전자주식회사 Solar cell
JP5287380B2 (en) * 2009-03-13 2013-09-11 Tdk株式会社 Solar cell and method for manufacturing solar cell
US8563850B2 (en) * 2009-03-16 2013-10-22 Stion Corporation Tandem photovoltaic cell and method using three glass substrate configuration
US20100236628A1 (en) * 2009-03-17 2010-09-23 Chris Schmidt Composition and method of forming an insulating layer in a photovoltaic device
US20100236629A1 (en) * 2009-03-19 2010-09-23 Chuan-Lung Chuang CIGS Solar Cell Structure And Method For Fabricating The Same
CN102362355A (en) * 2009-03-25 2012-02-22 陶氏环球技术有限责任公司 Method of forming protective layer on thin-film photovoltaic articles and articles made with such layer
KR101072204B1 (en) * 2009-03-31 2011-10-11 엘지이노텍 주식회사 Solar cell and method of fabricating the same
US7897020B2 (en) * 2009-04-13 2011-03-01 Miasole Method for alkali doping of thin film photovoltaic materials
US7785921B1 (en) 2009-04-13 2010-08-31 Miasole Barrier for doped molybdenum targets
US8134069B2 (en) 2009-04-13 2012-03-13 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
US20100258174A1 (en) * 2009-04-14 2010-10-14 Michael Ghebrebrhan Global optimization of thin film photovoltaic cell front coatings
US20110177622A1 (en) * 2009-12-28 2011-07-21 Global Solar Energy, Inc. Apparatus and methods of mixing and depositing thin film photovoltaic compositions
JP4773543B2 (en) * 2009-04-17 2011-09-14 昭和シェル石油株式会社 Solar cell module with edge space
WO2010124059A2 (en) * 2009-04-24 2010-10-28 Wakonda Technologies, Inc. Crystalline thin-film photovoltaic structures and methods for forming the same
US20100273279A1 (en) * 2009-04-27 2010-10-28 Applied Materials, Inc. Production line for the production of multiple sized photovoltaic devices
US8241943B1 (en) 2009-05-08 2012-08-14 Stion Corporation Sodium doping method and system for shaped CIGS/CIS based thin film solar cells
WO2010132138A1 (en) * 2009-05-12 2010-11-18 First Solar, Inc. Photovolaic device
US8372684B1 (en) 2009-05-14 2013-02-12 Stion Corporation Method and system for selenization in fabricating CIGS/CIS solar cells
DE102009022059A1 (en) * 2009-05-20 2010-11-25 Schott Solar Ag Radiation-selective absorber coating and absorber tube with radiation-selective absorber coating
US8247243B2 (en) 2009-05-22 2012-08-21 Nanosolar, Inc. Solar cell interconnection
US9371247B2 (en) * 2009-05-29 2016-06-21 Corsam Technologies Llc Fusion formable sodium free glass
US8251576B1 (en) 2009-05-30 2012-08-28 Mia Sole Cold lift-off test for strength of film stack subjected to thermal loading
TWI405342B (en) * 2009-06-01 2013-08-11 Nexpower Technology Corp The structure and production method of solar cell
WO2010144460A1 (en) * 2009-06-08 2010-12-16 University Of Toledo Flexible photovoltaic cells having a polyimide material layer and method of producing same
CN101575697B (en) * 2009-06-09 2010-11-03 北京科技大学 ZnO-based transparent conductive film co-doped with Al-F and preparation method thereof
DE102009025428A1 (en) * 2009-06-16 2010-12-23 Schott Solar Ag Thin-film solar cell and method for the production
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US9284639B2 (en) * 2009-07-30 2016-03-15 Apollo Precision Kunming Yuanhong Limited Method for alkali doping of thin film photovoltaic materials
US10586689B2 (en) * 2009-07-31 2020-03-10 Guardian Europe S.A.R.L. Sputtering apparatus including cathode with rotatable targets, and related methods
US8721930B2 (en) * 2009-08-04 2014-05-13 Precursor Energetics, Inc. Polymeric precursors for AIGS silver-containing photovoltaics
WO2011017236A2 (en) * 2009-08-04 2011-02-10 Precursor Energetics, Inc. Polymeric precursors for cis and cigs photovoltaics
JP2013501381A (en) * 2009-08-04 2013-01-10 プリカーサー エナジェティクス, インコーポレイテッド Method for photovoltaic absorbers with controlled stoichiometry
JP2013501054A (en) * 2009-08-04 2013-01-10 プリカーサー エナジェティクス, インコーポレイテッド CAIGAS Aluminum-Containing Polymer Precursor for Photovoltaic Device
US8228088B1 (en) 2009-08-07 2012-07-24 Brett Hinze Automated solar module testing
US20110030794A1 (en) * 2009-08-10 2011-02-10 Edward Teng Apparatus And Method For Depositing A CIGS Layer
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
TW201108425A (en) * 2009-08-26 2011-03-01 Ind Tech Res Inst Solar cell and fabrication method thereof
KR20110023007A (en) * 2009-08-28 2011-03-08 삼성전자주식회사 Thin film solar cell and method of manufacturing the same
WO2011028269A1 (en) * 2009-09-04 2011-03-10 Heliovolt Corporation Cadmium-free thin film for use in solar cells
US8256621B2 (en) * 2009-09-11 2012-09-04 Pro-Pak Industries, Inc. Load tray and method for unitizing a palletized load
US20110067998A1 (en) * 2009-09-20 2011-03-24 Miasole Method of making an electrically conductive cadmium sulfide sputtering target for photovoltaic manufacturing
US9512516B1 (en) 2009-09-24 2016-12-06 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Cooling water jet pack for high power rotary cathodes
US10347473B2 (en) * 2009-09-24 2019-07-09 The United States Of America, As Represented By The Secretary Of The Navy Synthesis of high-purity bulk copper indium gallium selenide materials
TW201112438A (en) * 2009-09-25 2011-04-01 Zhi-Huang Lai Target, manufacturing process of manufacturing thin film solar cell and the products thereof
FR2951022B1 (en) * 2009-10-07 2012-07-27 Nexcis MANUFACTURE OF THIN LAYERS WITH PHOTOVOLTAIC PROPERTIES, BASED ON TYPE I-III-VI2 ALLOY, BY SUCCESSIVE ELECTRO-DEPOSITS AND THERMAL POST-TREATMENT.
CN102471062B (en) * 2009-10-14 2014-04-16 大阳日酸株式会社 Method and apparatus for supplying hydrogen selenide mixed gas for solar cells
US8709548B1 (en) 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by spray forming
US20110089030A1 (en) * 2009-10-20 2011-04-21 Miasole CIG sputtering target and methods of making and using thereof
US8709335B1 (en) 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by cold spraying
US8342229B1 (en) 2009-10-20 2013-01-01 Miasole Method of making a CIG target by die casting
US8012788B1 (en) * 2009-10-21 2011-09-06 Sunlight Photonics Inc. Multi-stage formation of thin-films for photovoltaic devices
US7910396B2 (en) * 2009-10-21 2011-03-22 Sunlight Photonics, Inc. Three-stage formation of thin-films for photovoltaic devices
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8440498B2 (en) 2009-10-28 2013-05-14 Nanosolar, Inc. Thin-film devices formed from solid particles
US20110108099A1 (en) * 2009-11-11 2011-05-12 Solopower, Inc. Method of forming transparent zinc oxide layers for high efficiency photovoltaic cells
FR2953222B1 (en) * 2009-12-02 2011-12-30 Commissariat Energie Atomique DEPOSITION OF A THIN LAYER OF CU (IN, GA) X2 BY CATHODE SPRAY
US20110143019A1 (en) 2009-12-14 2011-06-16 Amprius, Inc. Apparatus for Deposition on Two Sides of the Web
US8399286B2 (en) * 2009-12-14 2013-03-19 Miasole Semiconductor device and method of making thereof
US8303779B2 (en) * 2009-12-16 2012-11-06 Primestar Solar, Inc. Methods for forming a transparent conductive oxide layer on a substrate
WO2011084171A1 (en) * 2009-12-17 2011-07-14 Precursor Energetics, Inc. Molecular precursors for optoelectronics
TWI396295B (en) * 2009-12-18 2013-05-11 Jenn Feng New Energy Co Ltd Preparation method of non - vacuum wet copper indium gallium selenium solar cells
CN101740722B (en) * 2009-12-25 2013-01-02 中国科学院光电技术研究所 Almost perfect absorbing structure for wide wave band
US8889469B2 (en) * 2009-12-28 2014-11-18 Aeris Capital Sustainable Ip Ltd. Multi-nary group IB and VIA based semiconductor
US8729543B2 (en) 2011-01-05 2014-05-20 Aeris Capital Sustainable Ip Ltd. Multi-nary group IB and VIA based semiconductor
US20110162696A1 (en) * 2010-01-05 2011-07-07 Miasole Photovoltaic materials with controllable zinc and sodium content and method of making thereof
WO2011083646A1 (en) * 2010-01-07 2011-07-14 Jx日鉱日石金属株式会社 Sputtering target, compound semiconductor thin film, solar cell having compound semiconductor thin film, and method for manufacturing compound semiconductor thin film
US8895838B1 (en) 2010-01-08 2014-11-25 Magnolia Solar, Inc. Multijunction solar cell employing extended heterojunction and step graded antireflection structures and methods for constructing the same
US8356640B1 (en) 2010-01-14 2013-01-22 Mia Solé Apparatuses and methods for fabricating wire current collectors and interconnects for solar cells
US9303316B1 (en) * 2010-01-15 2016-04-05 Apollo Precision Kunming Yuanhong Limited Continuous web apparatus and method using an air to vacuum seal and accumulator
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US8021641B2 (en) 2010-02-04 2011-09-20 Alliance For Sustainable Energy, Llc Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom
EP2360293A1 (en) * 2010-02-11 2011-08-24 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and apparatus for depositing atomic layers on a substrate
US9202954B2 (en) * 2010-03-03 2015-12-01 Q1 Nanosystems Corporation Nanostructure and photovoltaic cell implementing same
US8969720B2 (en) 2010-03-17 2015-03-03 Dow Global Technologies Llc Photoelectronically active, chalcogen-based thin film structures incorporating tie layers
US20110226320A1 (en) * 2010-03-18 2011-09-22 Patrick Little Solar cell having a transparent conductive oxide contact layer with an oxygen gradient
US20110232758A1 (en) * 2010-03-25 2011-09-29 Rohm And Haas Electronic Materials Llc Thin film photovoltaic cell
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US8142521B2 (en) * 2010-03-29 2012-03-27 Stion Corporation Large scale MOCVD system for thin film photovoltaic devices
US8257561B2 (en) 2010-03-30 2012-09-04 Primestar Solar, Inc. Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
CA2791288A1 (en) * 2010-03-31 2011-10-06 Mustang Vacuum Systems, Llc Cylindrical rotating magnetron sputtering cathode device and method of depositing material using radio frequency emissions
TWI439558B (en) * 2010-04-07 2014-06-01 Nat Applied Res Laboratories Transparent conductive thin film of a new material structure and its manufacturing method
KR101144068B1 (en) * 2010-04-20 2012-05-23 주성엔지니어링(주) Apparatus and method for manufacturing of thin film type solar cell
US8865259B2 (en) * 2010-04-26 2014-10-21 Singulus Mocvd Gmbh I.Gr. Method and system for inline chemical vapor deposition
US20110266141A1 (en) * 2010-04-29 2011-11-03 Primestar Solar, Inc. System and methods for high-rate co-sputtering of thin film layers on photovoltaic module substrates
TWI424576B (en) * 2010-04-30 2014-01-21 Axuntek Solar Energy See-through solar battery module and manufacturing method thereof
CN101824601A (en) * 2010-05-06 2010-09-08 深圳丹邦投资集团有限公司 Method for preparing Cu2SixSn1-xS3 photovoltaic film
WO2011146115A1 (en) 2010-05-21 2011-11-24 Heliovolt Corporation Liquid precursor for deposition of copper selenide and method of preparing the same
US9061344B1 (en) 2010-05-26 2015-06-23 Apollo Precision (Fujian) Limited Apparatuses and methods for fabricating wire current collectors and interconnects for solar cells
DE102010017246A1 (en) * 2010-06-04 2011-12-08 Solibro Gmbh Solar cell module and manufacturing method therefor
US20120000765A1 (en) * 2010-06-30 2012-01-05 Primestar Solar, Inc. Methods of arc detection and suppression during rf sputtering of a thin film on a substrate
US8525019B2 (en) 2010-07-01 2013-09-03 Primestar Solar, Inc. Thin film article and method for forming a reduced conductive area in transparent conductive films for photovoltaic modules
US9461186B2 (en) 2010-07-15 2016-10-04 First Solar, Inc. Back contact for a photovoltaic module
KR101791033B1 (en) * 2010-07-23 2017-10-27 로터스 어플라이드 테크놀로지, 엘엘씨 Substrate transport mechanism contacting a single side of a flexible web substrate for roll-to-roll thin film deposition
US20120018828A1 (en) * 2010-07-23 2012-01-26 Stion Corporation Sodium Sputtering Doping Method for Large Scale CIGS Based Thin Film Photovoltaic Materials
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
EP2599892B1 (en) 2010-07-30 2020-10-14 JX Nippon Mining & Metals Corporation Sputtering target and/or coil and process for producing same
US20120034764A1 (en) * 2010-08-05 2012-02-09 Aventa Technologies Llc System and method for fabricating thin-film photovoltaic devices
TWI458116B (en) * 2010-08-09 2014-10-21 Tsmc Solar Ltd Apparatus and method for depositing a cigs layer
US9142408B2 (en) 2010-08-16 2015-09-22 Alliance For Sustainable Energy, Llc Liquid precursor for deposition of indium selenide and method of preparing the same
TW201230379A (en) 2010-09-15 2012-07-16 Precursor Energetics Inc Deposition processes and devices for photovoltaics
US8460521B2 (en) 2010-09-28 2013-06-11 Primestar Solar, Inc. Sputtering cathode having a non-bonded semiconducting target
US8349144B2 (en) 2010-09-28 2013-01-08 Primestar Solar, Inc. Methods of sputtering using a non-bonded semiconducting target
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US10026859B2 (en) 2010-10-04 2018-07-17 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Small gauge wire solar cell interconnect
US8563354B1 (en) 2010-10-05 2013-10-22 University Of South Florida Advanced 2-step, solid source deposition approach to the manufacture of CIGS solar modules
EA201390523A1 (en) * 2010-10-12 2013-08-30 Сэн-Гобэн Гласс Франс THIN-LAYER SOLAR MODULE WITH MULTILAYERED SHEET STRUCTURE
US7935558B1 (en) * 2010-10-19 2011-05-03 Miasole Sodium salt containing CIG targets, methods of making and methods of use thereof
US9169548B1 (en) 2010-10-19 2015-10-27 Apollo Precision Fujian Limited Photovoltaic cell with copper poor CIGS absorber layer and method of making thereof
US8048707B1 (en) * 2010-10-19 2011-11-01 Miasole Sulfur salt containing CIG targets, methods of making and methods of use thereof
US8956888B2 (en) 2010-11-03 2015-02-17 Apollo Precision Fujian Limited Photovoltaic device and method and system for making photovoltaic device
KR101273771B1 (en) * 2010-11-09 2013-06-12 경희대학교 산학협력단 Roll-to-Roll sputtering system
US9018100B2 (en) * 2010-11-10 2015-04-28 Western Digital (Fremont), Llc Damascene process using PVD sputter carbon film as CMP stop layer for forming a magnetic recording head
CN101985734A (en) * 2010-11-12 2011-03-16 河南师范大学 Method for preparing copper-indium-gallium-selenium film
US8426725B2 (en) 2010-12-13 2013-04-23 Ascent Solar Technologies, Inc. Apparatus and method for hybrid photovoltaic device having multiple, stacked, heterogeneous, semiconductor junctions
US20130316490A1 (en) * 2010-12-28 2013-11-28 Universite Du Luxembourg Solar cell and solar cell production method
TW201232792A (en) * 2010-12-29 2012-08-01 Auria Solar Co Ltd Thin film solar cell and fabricating method thereof
US20120168304A1 (en) * 2010-12-30 2012-07-05 Hien Minh Huu Le Physical Vapor Deposition Tool with Gas Separation
CN102108491A (en) * 2010-12-30 2011-06-29 东莞市康达机电工程有限公司 High-temperature solar selective absorbing coating and preparation method thereof
US8998606B2 (en) 2011-01-14 2015-04-07 Stion Corporation Apparatus and method utilizing forced convection for uniform thermal treatment of thin film devices
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US9150958B1 (en) 2011-01-26 2015-10-06 Apollo Precision Fujian Limited Apparatus and method of forming a sputtering target
KR101219948B1 (en) * 2011-01-27 2013-01-21 엘지이노텍 주식회사 Solar cell apparatus and method of fabricating the same
US20120192938A1 (en) * 2011-02-01 2012-08-02 Shaban Yasser R Method and apparatus involving high-efficiency photovoltaic with p-type oxidant
DE102011012034A1 (en) 2011-02-22 2012-08-23 Heraeus Materials Technology Gmbh & Co. Kg Tubular sputtering target
KR101782965B1 (en) 2011-02-28 2017-09-29 한국전자통신연구원 method for manufacturing solar cell and vacuum deposition equipment used the same
US8734619B1 (en) 2011-03-02 2014-05-27 Hanergy Holding Group Ltd. Method of sensing local sputtering target selenization
US9231123B1 (en) * 2011-03-08 2016-01-05 Apollo Precision (Fujian) Limited Flexible connectors for building integrable photovoltaic modules
US9112080B1 (en) 2011-03-11 2015-08-18 Apollo Precision (Kunming) Yuanhong Limited Electrical connectors of building integrable photovoltaic modules
KR101371077B1 (en) * 2011-03-30 2014-03-07 씨디에스(주) Apparatus for forming thin film
US8951824B1 (en) 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells
US8791703B2 (en) 2011-04-13 2014-07-29 Hanergy Holding Group Ltd. Electrostatic probes for mapping conductive web bagginess
TWI538235B (en) 2011-04-19 2016-06-11 弗里松股份有限公司 Thin-film photovoltaic device and fabrication method
JP5930791B2 (en) * 2011-04-28 2016-06-08 日東電工株式会社 Vacuum film-forming method and laminate obtained by the method
US8247686B2 (en) 2011-05-31 2012-08-21 Primestar Solar, Inc. Multi-layer N-type stack for cadmium telluride based thin film photovoltaic devices and methods of making
US8241930B2 (en) 2011-05-31 2012-08-14 Primestar Solar, Inc. Methods of forming a window layer in a cadmium telluride based thin film photovoltaic device
US8188562B2 (en) 2011-05-31 2012-05-29 Primestar Solar, Inc. Multi-layer N-type stack for cadmium telluride based thin film photovoltaic devices and methods of making
KR20140053962A (en) * 2011-06-17 2014-05-08 프리커서 에너제틱스, 인코퍼레이티드. Deposition processes for photovoltaics
JP5963193B2 (en) * 2011-07-29 2016-08-03 日東電工株式会社 Manufacturing method of laminate
JP5959099B2 (en) * 2011-07-29 2016-08-02 日東電工株式会社 Manufacturing method of laminate
US9209322B2 (en) * 2011-08-10 2015-12-08 Ascent Solar Technologies, Inc. Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates
US9780242B2 (en) 2011-08-10 2017-10-03 Ascent Solar Technologies, Inc. Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates
EP2742535B1 (en) 2011-08-10 2017-07-26 Ascent Solar Technologies, Inc. Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
MX2014002172A (en) * 2011-08-24 2015-01-22 Nuvosun Inc Substrate rollers.
US8642884B2 (en) * 2011-09-09 2014-02-04 International Business Machines Corporation Heat treatment process and photovoltaic device based on said process
US20130074933A1 (en) * 2011-09-23 2013-03-28 Bang-Yen Chou Photovoltaic device and method for making the same
KR101777598B1 (en) * 2011-10-17 2017-09-14 한국전자통신연구원 method for manufacturing solar cell
FR2982422B1 (en) * 2011-11-09 2013-11-15 Saint Gobain CONDUCTIVE SUBSTRATE FOR PHOTOVOLTAIC CELL
CN102409310A (en) * 2011-11-10 2012-04-11 中国航天科技集团公司第五研究院第五一○研究所 Method for continuously coating gradient cermet film by flexible metal substrate double target co-sputtering
CN102358937A (en) * 2011-11-10 2012-02-22 中国航天科技集团公司第五研究院第五一○研究所 Continuous preparation method of cermet conposite membrane with large-area flexible metal substrate and high heat absorption
KR101371859B1 (en) * 2011-11-11 2014-03-10 엘지이노텍 주식회사 Solar cell and method of fabricating the same
US20130118569A1 (en) * 2011-11-14 2013-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming thin film solar cell with buffer-free fabrication process
US9577133B2 (en) 2011-11-16 2017-02-21 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Flexible connectors of building integrable photovoltaic modules for enclosed jumper attachment
JP5697581B2 (en) * 2011-11-16 2015-04-08 株式会社東芝 Photoelectric conversion element and solar cell
US20150090587A1 (en) * 2011-12-09 2015-04-02 Applied Materials, Inc. Rotatable sputter target
US9218945B2 (en) 2011-12-12 2015-12-22 Apollo Precision Beijing Limited Magnetron with gradually increasing magnetic field out of turnarounds
US9013021B2 (en) * 2011-12-21 2015-04-21 Intermolecular, Inc. Optical absorbers
US10043921B1 (en) 2011-12-21 2018-08-07 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic cell with high efficiency cigs absorber layer with low minority carrier lifetime and method of making thereof
US20130160831A1 (en) * 2011-12-22 2013-06-27 Miasole Reactive Sputtering of ZnS(O,H) and InS(O,H) for Use as a Buffer Layer
WO2013109977A1 (en) * 2012-01-18 2013-07-25 NuvoSun, Inc. Systems for forming photovoltaic cells on flexible substrates
BR112014017495A8 (en) * 2012-01-19 2017-07-04 Nuvosun Inc method to form a photovoltaic cell and photovoltaic cell
US8871143B2 (en) * 2012-01-20 2014-10-28 Leonard Nanis Amalgam method for forming a sputter target useful in the manufacture of thin-film solar photovoltaic cells
US8785235B2 (en) * 2012-02-10 2014-07-22 Tsmc Solar Ltd. Apparatus and method for producing solar cells
US9496426B2 (en) 2012-02-10 2016-11-15 Alliance For Sustainable Energy, Llc Thin film photovoltaic devices with a minimally conductive buffer layer
US9151597B2 (en) 2012-02-13 2015-10-06 First Solar, Inc. In situ substrate detection for a processing system using infrared detection
CN103258896A (en) * 2012-02-17 2013-08-21 任丘市永基光电太阳能有限公司 Manufacturing technology of soft CIGS thin film solar cell absorbing layer
US9054245B2 (en) 2012-03-02 2015-06-09 First Solar, Inc. Doping an absorber layer of a photovoltaic device via diffusion from a window layer
US9614108B1 (en) 2012-04-20 2017-04-04 Magnolia Solar, Inc. Optically-thin chalcogenide solar cells
US11367800B1 (en) 2012-04-20 2022-06-21 Magnolia Solar, Inc. Optically-thin III-V solar cells and methods for constructing the same
US9419151B2 (en) * 2012-04-25 2016-08-16 Guardian Industries Corp. High-reflectivity back contact for photovoltaic devices such as copper—indium-diselenide solar cells
US8809674B2 (en) 2012-04-25 2014-08-19 Guardian Industries Corp. Back electrode configuration for electroplated CIGS photovoltaic devices and methods of making same
US9935211B2 (en) 2012-04-25 2018-04-03 Guardian Glass, LLC Back contact structure for photovoltaic devices such as copper-indium-diselenide solar cells
US9246025B2 (en) 2012-04-25 2016-01-26 Guardian Industries Corp. Back contact for photovoltaic devices such as copper-indium-diselenide solar cells
WO2013173633A1 (en) * 2012-05-16 2013-11-21 Alliance For Sustainable Energy, Llc Methods and materials for the improvement of photovoltaic device performance
US9105797B2 (en) 2012-05-31 2015-08-11 Alliance For Sustainable Energy, Llc Liquid precursor inks for deposition of In—Se, Ga—Se and In—Ga—Se
CN102694077B (en) * 2012-06-11 2014-08-06 林刘毓 Preparation method of CIGS (copper indium gallium diselenide) thin-film solar cell
US9255323B2 (en) 2012-06-18 2016-02-09 Apollo Precision Fujian Limited Sputtering target including a feature to reduce chalcogen build up and arcing on a backing tube
US8822816B2 (en) * 2012-06-27 2014-09-02 International Business Machines Corporation Niobium thin film stress relieving layer for thin-film solar cells
CN102751388B (en) * 2012-07-18 2015-03-11 林刘毓 Preparation method of Cu-In-Ga-Se thin-film solar cell
US8871560B2 (en) * 2012-08-09 2014-10-28 International Business Machines Corporation Plasma annealing of thin film solar cells
US9177876B2 (en) * 2012-08-27 2015-11-03 Intermolecular, Inc. Optical absorbers
US9246039B2 (en) 2012-10-12 2016-01-26 International Business Machines Corporation Solar cell with reduced absorber thickness and reduced back surface recombination
US9379259B2 (en) * 2012-11-05 2016-06-28 International Business Machines Corporation Double layered transparent conductive oxide for reduced schottky barrier in photovoltaic devices
US20150270423A1 (en) 2012-11-19 2015-09-24 Alliance For Sustainable Energy, Llc Devices and methods featuring the addition of refractory metals to contact interface layers
JP6377338B2 (en) * 2012-11-20 2018-08-22 株式会社東芝 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and solar cell
KR20140071058A (en) * 2012-12-03 2014-06-11 코닝정밀소재 주식회사 Roll-to-roll sputtering apparatus
US9689912B2 (en) * 2012-12-07 2017-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Rapid analysis of buffer layer thickness for thin film solar cells
TWI492399B (en) * 2012-12-13 2015-07-11 Univ Nat Taiwan Method for manufacturing a thin film solar cell
US9029737B2 (en) 2013-01-04 2015-05-12 Tsmc Solar Ltd. Method and system for forming absorber layer on metal coated glass for photovoltaic devices
US9082911B2 (en) 2013-01-28 2015-07-14 Q1 Nanosystems Corporation Three-dimensional metamaterial device with photovoltaic bristles
EP2759619B1 (en) 2013-01-29 2016-01-27 VOLTASOLAR Srl Plant and process for the production of a semiconductor film
AT13564U1 (en) * 2013-01-31 2014-03-15 Plansee Se CU-GA-IN-NA Target
US9698285B2 (en) 2013-02-01 2017-07-04 First Solar, Inc. Photovoltaic device including a P-N junction and method of manufacturing
US20140264998A1 (en) 2013-03-14 2014-09-18 Q1 Nanosystems Corporation Methods for manufacturing three-dimensional metamaterial devices with photovoltaic bristles
US9954126B2 (en) 2013-03-14 2018-04-24 Q1 Nanosystems Corporation Three-dimensional photovoltaic devices including cavity-containing cores and methods of manufacture
WO2014151532A1 (en) * 2013-03-15 2014-09-25 First Solar, Inc. Method of reducing semiconductor window layer loss during thin film photovoltaic device fabrication, and resulting device structure
US11876140B2 (en) * 2013-05-02 2024-01-16 First Solar, Inc. Photovoltaic devices and method of making
CN104183663B (en) 2013-05-21 2017-04-12 第一太阳能马来西亚有限公司 Photovoltaic device and manufacturing method thereof
US20140360864A1 (en) * 2013-06-07 2014-12-11 Tsmc Solar Ltd. Apparatus and methods for forming chalcopyrite layers onto a substrate
US10062800B2 (en) 2013-06-07 2018-08-28 First Solar, Inc. Photovoltaic devices and method of making
JP6189122B2 (en) * 2013-07-19 2017-08-30 日東電工株式会社 Sputtering equipment
KR102190248B1 (en) * 2013-08-06 2020-12-14 삼성디스플레이 주식회사 Sputtering device and sputtering method
US9583655B2 (en) * 2013-10-08 2017-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method of making photovoltaic device having high quantum efficiency
CN109830269B (en) 2013-10-10 2023-09-19 思高博塔公司 Method for selecting a material composition and designing a material having a target property
DE102013111981A1 (en) * 2013-10-30 2015-04-30 Hanergy Holding Group Ltd. Method for producing a thin-film solar cell module and thin-film solar cell module
WO2015081379A1 (en) * 2013-12-04 2015-06-11 Newsouth Innovations Pty Limited A photovoltaic cell and a method of forming a photovoltaic cell
CN104716223A (en) * 2013-12-11 2015-06-17 中国电子科技集团公司第十八研究所 Preparation method for integrated film making and annealing of flexible substrate in roll-to-roll mode
WO2015100480A1 (en) * 2013-12-30 2015-07-09 Владимир Яковлевич ШИРИПОВ Method for forming thin cigs films for solar cells and device for the implementation thereof
US20150259158A1 (en) * 2014-03-12 2015-09-17 John Swyers Continuous entrance/exit port for chambers of different pressure and/or gases
TWI677105B (en) 2014-05-23 2019-11-11 瑞士商弗里松股份有限公司 Method of fabricating thin-film optoelectronic device and thin-film optoelectronic device obtainable by said method
CN104308154B (en) * 2014-10-09 2016-02-24 西北工业大学 The manufacture method of big L/D ratio structure mini metal heat sink
CN104393064A (en) * 2014-10-31 2015-03-04 徐东 Back electrode Mo thin film of solar cell and preparation method thereof
KR101688401B1 (en) 2014-10-31 2016-12-22 한국과학기술연구원 Method and module structure for manufacturing thin film solar
US10529883B2 (en) 2014-11-03 2020-01-07 First Solar, Inc. Photovoltaic devices and method of manufacturing
FR3030582A1 (en) * 2014-12-18 2016-06-24 Commissariat Energie Atomique MATERIAL WITH INCREASING GAP
CN104532175B (en) * 2015-01-16 2017-05-10 中国计量学院 Production method of aluminum alloy for hydrogen production
WO2016197094A1 (en) 2015-06-04 2016-12-08 Total Shade Inc. Window insulating and power generation system
WO2017037339A1 (en) * 2015-09-02 2017-03-09 Beneq Oy Apparatus for processing a surface of substrate and method operating the apparatus
EP3163632A1 (en) * 2015-11-02 2017-05-03 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Photovoltaic device and method for manufacturing the same
US10128391B2 (en) 2016-06-22 2018-11-13 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic module with flexible wire interconnection
WO2018001523A1 (en) * 2016-07-01 2018-01-04 Applied Materials, Inc. Deposition apparatus for coating a flexible substrate and method of coating a flexible substrate
US20180127875A1 (en) * 2016-11-04 2018-05-10 National Chung Shan Institute Of Science And Technology Apparatus for performing selenization and sulfurization process on glass substrate
WO2018093985A1 (en) 2016-11-17 2018-05-24 Cardinal Cg Company Static-dissipative coating technology
KR102106358B1 (en) * 2017-01-05 2020-05-04 가부시키가이샤 아루박 Film forming method and winding-type film forming device
CN106816490A (en) * 2017-01-23 2017-06-09 中山大学 A kind of preparation method of the CuInGaSe absorbed layer film of alkali metal doping
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
CN111095513B (en) 2017-08-18 2023-10-31 应用材料公司 High-pressure high-temperature annealing chamber
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
CN107611013A (en) * 2017-09-01 2018-01-19 苏州云舒新材料科技有限公司 A kind of preparation method of ZnS solar battery film materials
US10425035B2 (en) 2017-09-15 2019-09-24 Miasolé Hi-Tech Corp. Module connector for flexible photovoltaic module
KR102585074B1 (en) 2017-11-11 2023-10-04 마이크로머티어리얼즈 엘엘씨 Gas delivery system for high pressure processing chamber
KR20200075892A (en) 2017-11-17 2020-06-26 어플라이드 머티어리얼스, 인코포레이티드 Condenser system for high pressure treatment systems
CN109913812A (en) * 2017-12-13 2019-06-21 湘潭宏大真空技术股份有限公司 A kind of magnetron sputtering method being used to prepare CIGS thin film
CN207552434U (en) * 2017-12-14 2018-06-29 米亚索乐装备集成(福建)有限公司 A kind of Sputting film-plating apparatus for solar cell
KR102536820B1 (en) 2018-03-09 2023-05-24 어플라이드 머티어리얼스, 인코포레이티드 High pressure annealing process for metal containing materials
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US20200010947A1 (en) * 2018-07-05 2020-01-09 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Shielded sputter deposition apparatus and method
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
US11271126B2 (en) 2019-03-21 2022-03-08 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic panels with folded panel edges and methods of forming the same
CN110295354A (en) * 2019-08-05 2019-10-01 暨南大学 A kind of direct current reaction magnetron sputtering deposition method of transition metal oxide film
US11728449B2 (en) * 2019-12-03 2023-08-15 Applied Materials, Inc. Copper, indium, gallium, selenium (CIGS) films with improved quantum efficiency
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626688A (en) * 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
US5728231A (en) * 1995-05-15 1998-03-17 Matsushita Electric Industrial Co., Ltd. Precursor for semiconductor thin films and method for producing semiconductor thin films
WO1999010932A1 (en) * 1997-08-22 1999-03-04 Free Energy Europe B.V. A method of manufacturing solar cells, particularly thin film solar cells, and solar cells obtained by using such a method
JP2009120863A (en) * 2007-11-12 2009-06-04 Mitsubishi Materials Corp MANUFACTURING METHOD OF Cu-In-Ga TERNARY SINTERED ALLOY SPUTTERING TARGET

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2757301A1 (en) 1977-12-22 1979-07-05 Leybold Heraeus Gmbh & Co Kg Multiple element solar cell - has semiconductor elements enclosed between conductive and insulating layers with ends folded over and interlocked
US4298444A (en) * 1978-10-11 1981-11-03 Heat Mirror Associates Method for multilayer thin film deposition
US4318938A (en) * 1979-05-29 1982-03-09 The University Of Delaware Method for the continuous manufacture of thin film solar cells
US4372538A (en) * 1981-01-05 1983-02-08 C-R-O, Inc. Metal cutting machine with cut piece pickup and transport magnets
US4465575A (en) * 1981-09-21 1984-08-14 Atlantic Richfield Company Method for forming photovoltaic cells employing multinary semiconductor films
US4415427A (en) * 1982-09-30 1983-11-15 Gte Products Corporation Thin film deposition by sputtering
US4529621A (en) * 1983-10-05 1985-07-16 Utah Computer Industries, Inc. Process for depositing a thin-film layer of magnetic material onto an insulative dielectric layer of a semiconductor substrate
US4466877A (en) * 1983-10-11 1984-08-21 Shatterproof Glass Corporation Magnetron cathode sputtering apparatus
US4798660A (en) * 1985-07-16 1989-01-17 Atlantic Richfield Company Method for forming Cu In Se2 films
US4818357A (en) * 1987-05-06 1989-04-04 Brown University Research Foundation Method and apparatus for sputter deposition of a semiconductor homojunction and semiconductor homojunction products created by same
US4834856A (en) * 1988-01-21 1989-05-30 Wehner Gottfried K Method and apparatus for sputtering a superconductor onto a substrate
US5141564A (en) * 1988-05-03 1992-08-25 The Boeing Company Mixed ternary heterojunction solar cell
US4838935A (en) * 1988-05-31 1989-06-13 Cominco Ltd. Method for making tungsten-titanium sputtering targets and product
US5439575A (en) * 1988-06-30 1995-08-08 Board Of Trustees Of The University Of Illinois Hybrid method for depositing semi-conductive materials
JP2719039B2 (en) * 1990-09-21 1998-02-25 株式会社富士電機総合研究所 Method for forming CuInSe 2 lower compound thin film
US5108574A (en) * 1991-01-29 1992-04-28 The Boc Group, Inc. Cylindrical magnetron shield structure
US5273911A (en) * 1991-03-07 1993-12-28 Mitsubishi Denki Kabushiki Kaisha Method of producing a thin-film solar cell
JPH05262504A (en) * 1991-09-27 1993-10-12 Matsushita Electric Ind Co Ltd Compound semiconductor, production of its thin film and semiconductor device using the same
US5578503A (en) * 1992-09-22 1996-11-26 Siemens Aktiengesellschaft Rapid process for producing a chalcopyrite semiconductor on a substrate
US5306646A (en) * 1992-12-23 1994-04-26 Martin Marietta Energy Systems, Inc. Method for producing textured substrates for thin-film photovoltaic cells
US5441897A (en) * 1993-04-12 1995-08-15 Midwest Research Institute Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells
US5477088A (en) * 1993-05-12 1995-12-19 Rockett; Angus A. Multi-phase back contacts for CIS solar cells
DE4333407C1 (en) * 1993-09-30 1994-11-17 Siemens Ag Solar cell comprising a chalcopyrite absorber layer
JP3571785B2 (en) * 1993-12-28 2004-09-29 キヤノン株式会社 Method and apparatus for forming deposited film
JP3651932B2 (en) * 1994-08-24 2005-05-25 キヤノン株式会社 Back surface reflective layer for photovoltaic device, method for forming the same, photovoltaic device and method for manufacturing the same
US5730852A (en) * 1995-09-25 1998-03-24 Davis, Joseph & Negley Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
US5824566A (en) * 1995-09-26 1998-10-20 Canon Kabushiki Kaisha Method of producing a photovoltaic device
BR9707399A (en) * 1996-02-09 1999-07-20 Procter & Gamble Surface cleaning article
US5986204A (en) * 1996-03-21 1999-11-16 Canon Kabushiki Kaisha Photovoltaic cell
JP3249408B2 (en) * 1996-10-25 2002-01-21 昭和シェル石油株式会社 Method and apparatus for manufacturing thin film light absorbing layer of thin film solar cell
JP3249407B2 (en) * 1996-10-25 2002-01-21 昭和シェル石油株式会社 Thin-film solar cells composed of chalcopyrite-based multi-compound semiconductor thin-film light-absorbing layers
US6107564A (en) * 1997-11-18 2000-08-22 Deposition Sciences, Inc. Solar cell cover and coating
JP3089407B2 (en) * 1998-10-09 2000-09-18 工業技術院長 Method for producing solar cell thin film
WO2000028104A1 (en) * 1998-11-06 2000-05-18 Scivac Sputtering apparatus and process for high rate coatings
JP2000150932A (en) * 1998-11-11 2000-05-30 Fujikura Ltd Manufacture of solar battery
JP2000150931A (en) * 1998-11-11 2000-05-30 Fujikura Ltd Manufacture of solar battery
DE19921515A1 (en) * 1999-05-10 2000-11-30 Ist Inst Fuer Solartechnologie Thin-film solar cell based on the Ia / IIIb / VIa compound semiconductors and process for their production
AU2249201A (en) * 1999-11-16 2001-05-30 Midwest Research Institute A novel processing approach towards the formation of thin-film Cu(In,Ga)Se2
US6372538B1 (en) 2000-03-16 2002-04-16 University Of Delaware Fabrication of thin-film, flexible photovoltaic module
US6310281B1 (en) * 2000-03-16 2001-10-30 Global Solar Energy, Inc. Thin-film, flexible photovoltaic module
JP2002064062A (en) * 2000-08-17 2002-02-28 Honda Motor Co Ltd Film formation method of compound semiconductor
JP4288641B2 (en) * 2000-08-17 2009-07-01 本田技研工業株式会社 Compound semiconductor deposition system
JP4056702B2 (en) * 2001-01-19 2008-03-05 松下電器産業株式会社 Method for producing compound semiconductor thin film
FR2820241B1 (en) * 2001-01-31 2003-09-19 Saint Gobain TRANSPARENT SUBSTRATE PROVIDED WITH AN ELECTRODE
AU2003207295A1 (en) * 2002-02-14 2003-09-04 Honda Giken Kogyo Kabushiki Kaisha Light absorbing layer forming method
US6986204B2 (en) * 2002-03-13 2006-01-17 Glenn Joseph K Method of constructing panelized roof structures
US6890790B2 (en) * 2002-06-06 2005-05-10 Micron Technology, Inc. Co-sputter deposition of metal-doped chalcogenides
WO2004032189A2 (en) * 2002-09-30 2004-04-15 Miasolé Manufacturing apparatus and method for large-scale production of thin-film solar cells
CN101454899B (en) 2006-03-28 2012-05-02 索洛能源公司 Photovoltaic modules and technique for manufacturing photovoltaic modules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626688A (en) * 1994-12-01 1997-05-06 Siemens Aktiengesellschaft Solar cell with chalcopyrite absorber layer
US5728231A (en) * 1995-05-15 1998-03-17 Matsushita Electric Industrial Co., Ltd. Precursor for semiconductor thin films and method for producing semiconductor thin films
WO1999010932A1 (en) * 1997-08-22 1999-03-04 Free Energy Europe B.V. A method of manufacturing solar cells, particularly thin film solar cells, and solar cells obtained by using such a method
JP2009120863A (en) * 2007-11-12 2009-06-04 Mitsubishi Materials Corp MANUFACTURING METHOD OF Cu-In-Ga TERNARY SINTERED ALLOY SPUTTERING TARGET

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MACHINE TRANSLATION 2009-120863 dated June 2009. *
Suryanarayana et al. "Synthesis and processing of a Cu-In-Ga-Se sputtering target", Thin Solid Films, 332 (1998) 340-344. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156009B2 (en) 2016-12-05 2018-12-18 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Silver copper indium gallium selenide reactive sputtering method and apparatus, and photovoltaic cell containing same

Also Published As

Publication number Publication date
US7838763B2 (en) 2010-11-23
US20040063320A1 (en) 2004-04-01
US6974976B2 (en) 2005-12-13
US20090145746A1 (en) 2009-06-11
US20100276282A1 (en) 2010-11-04
US20110259418A1 (en) 2011-10-27
EP1556902A2 (en) 2005-07-27
AU2003275239A1 (en) 2004-04-23
US20050109392A1 (en) 2005-05-26
EP1556902A4 (en) 2009-07-29
TW200414551A (en) 2004-08-01
WO2004032189A3 (en) 2005-03-31
AU2003275239A8 (en) 2004-04-23
US20100278683A1 (en) 2010-11-04
US7544884B2 (en) 2009-06-09
WO2004032189A2 (en) 2004-04-15
US8618410B2 (en) 2013-12-31
TWI250658B (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US7838763B2 (en) Manufacturing apparatus and method for large-scale production of thin-film solar cells
US7576017B2 (en) Method and apparatus for forming a thin-film solar cell using a continuous process
US7785921B1 (en) Barrier for doped molybdenum targets
CN101521249B (en) Manufacturing apparatus and method for large-scale production of thin-film solar cells
US7897020B2 (en) Method for alkali doping of thin film photovoltaic materials
JP5785931B2 (en) Method and apparatus for delivering controllable sodium to thin film photovoltaic materials
US7935558B1 (en) Sodium salt containing CIG targets, methods of making and methods of use thereof
US20100236628A1 (en) Composition and method of forming an insulating layer in a photovoltaic device
CA2586966A1 (en) Method and apparatus for forming a thin-film solar cell using a continuous process
US20130160831A1 (en) Reactive Sputtering of ZnS(O,H) and InS(O,H) for Use as a Buffer Layer
US20120031492A1 (en) Gallium-Containing Transition Metal Thin Film for CIGS Nucleation
US10211351B2 (en) Photovoltaic cell with high efficiency CIGS absorber layer with low minority carrier lifetime and method of making thereof
US20110162696A1 (en) Photovoltaic materials with controllable zinc and sodium content and method of making thereof
US9284639B2 (en) Method for alkali doping of thin film photovoltaic materials
JPH06204537A (en) Thin film semiconductor solar cell
US20170236710A1 (en) Machine and process for continuous, sequential, deposition of semiconductor solar absorbers having variable semiconductor composition deposited in multiple sublayers
CN115763625A (en) Preparation device and method of copper indium gallium selenide thin-film solar cell

Legal Events

Date Code Title Description
AS Assignment

Owner name: HANERGY HOLDING GROUP LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIASOLE;REEL/FRAME:032092/0694

Effective date: 20140109

AS Assignment

Owner name: APOLLO PRECISION FUJIAN LIMITED, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HANERGY HOLDING GROUP LTD.;REEL/FRAME:034826/0132

Effective date: 20141125

AS Assignment

Owner name: BEIJING APOLLO DING RONG SOLAR TECHNOLOGY CO., LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:APOLLO PRECISION FUJIAN LIMITED;REEL/FRAME:037855/0478

Effective date: 20160225

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION