US20140105985A1 - Topical use of levofloxacin for reducing lung inflammation - Google Patents

Topical use of levofloxacin for reducing lung inflammation Download PDF

Info

Publication number
US20140105985A1
US20140105985A1 US14/134,348 US201314134348A US2014105985A1 US 20140105985 A1 US20140105985 A1 US 20140105985A1 US 201314134348 A US201314134348 A US 201314134348A US 2014105985 A1 US2014105985 A1 US 2014105985A1
Authority
US
United States
Prior art keywords
levofloxacin
aerosol
pulmonary
concentration
ofloxacin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/134,348
Inventor
Michael N. Dudley
Ruslan Y. Tsivkovski
David C. Griffith
Olga Rodny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horizon Orphan LLC
Original Assignee
Mpex Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mpex Pharmaceuticals Inc filed Critical Mpex Pharmaceuticals Inc
Priority to US14/134,348 priority Critical patent/US20140105985A1/en
Publication of US20140105985A1 publication Critical patent/US20140105985A1/en
Assigned to MPEX PHARMACEUTICALS, INC. reassignment MPEX PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUDLEY, MICHAEL N, GRIFFITH, DAVID C, RODNY, OLGA, TSIVKOVSKI, RUSLAN Y
Assigned to TRIPEX PHARMACEUTICALS, LLC reassignment TRIPEX PHARMACEUTICALS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MPEX PHARMACEUTICAL, INC.
Assigned to RAPTOR PHARMACEUTICALS INC reassignment RAPTOR PHARMACEUTICALS INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TRIPEX PHARMACEUTICALS, LLC
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: RAPTOR PHARMACEUTICALS INC.
Assigned to HORIZON ORPHAN LLC. reassignment HORIZON ORPHAN LLC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RAPTOR PHARMACEUTICALS INC.
Priority to US15/729,930 priority patent/US11020481B2/en
Priority to US17/240,273 priority patent/US20220080047A1/en
Assigned to HORIZON THERAPEUTICS U.S. HOLDING LLC (FKA RAPTOR PHARMACEUTICALS INC.) reassignment HORIZON THERAPEUTICS U.S. HOLDING LLC (FKA RAPTOR PHARMACEUTICALS INC.) RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/536Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines ortho- or peri-condensed with carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/5381,4-Oxazines, e.g. morpholine ortho- or peri-condensed with carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53831,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/7036Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin having at least one amino group directly attached to the carbocyclic ring, e.g. streptomycin, gentamycin, amikacin, validamycin, fortimicins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/14Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to methods and compositions for the treatment of pulmonary inflammation.
  • methods and compositions using aerosol levofloxacin or ofloxacin to reduce pulmonary inflammation are provided.
  • Inflammation is a response of vascularized tissue to injury; it is perceived as redness, heat, swelling, and pain and is usually accompanied by loss of function to varying degrees. In its acute form it is of short duration, involving increased vascular transudation and interstitial edema and infiltration of inflammatory cells, predominantly of neutrophils. In moist mucosal tissues, such as that which lines the respiratory tract, there may also be loss of surface epithelial cells and secretion of mucus. This form of inflammatory response is considered protective and is, therefore, in the short term, beneficial to the host. However, if the injury is repeated or severe, the character of the inflammatory infiltrate may change to one predominantly of mononuclear cell (i.e., lymphocytes, monocytes, and macrophages) and it may become persistent.
  • mononuclear cell i.e., lymphocytes, monocytes, and macrophages
  • Chronic inflammation may develop from unresolved symptomatic acute inflammation or may evolve insidiously over a period of months without apparent acute onset of clinical manifestations.
  • Histopathologic features of chronic inflammation include the predominance of macrophages and lymphocytes, proliferation of nurturing structurally heterogeneous and hyperpermeable small blood vessels, fibrosis, and necrosis.
  • Activated macrophages and lymphocytes are interactive in releasing inflammatory mediators or cytokines that amplify immune reactivity.
  • Cytokines include a family of biologic response modifiers including interleukins, chemokines, interferons, growth factors, and leukocyte colony-stimulating factors.
  • cytokines are secreted by leukocytes, connective tissue cells, and endothelial cells.
  • Chemokines consist of 8- to 10-kd proteins that stimulate leukocyte recruitment and migration as part of the host response to antigenic insults. In chronic inflammation, the protracted inflammatory response is often accompanied simultaneously by tissue destruction and repair.
  • Some embodiments include methods for treating a pulmonary inflammation in a subject in which the methods include administering to the subject in need thereof an aerosol of a solution including levofloxacin or ofloxacin and a divalent or trivalent cation.
  • Some embodiments include methods for treating a pulmonary inflammation in a subject, wherein the pulmonary inflammation is induced by one or more pro-inflammatory cytokines, in which the methods include administering to the subject in need thereof an aerosol of a solution including levofloxacin or ofloxacin and a divalent or trivalent cation to achieve a reduction in the pulmonary concentration of said cytokine by at least 10%.
  • Some embodiments include methods for treating a pulmonary inflammation in a subject in which the methods include administering to the subject in need thereof an aerosol of a solution including levofloxacin or ofloxacin and a divalent or trivalent cation to achieve a reduction in the pulmonary concentration of one or more pro-inflammatory cytokines including IL-1 ⁇ , IL-6 and IL-8, whereby the pulmonary inflammation is reduced or suppressed.
  • FIG. 2A shows a graph of IL-6 levels produced by HBE135 cells in response to treatment with control, LPS, and LPS with levofloxacin, moxifloxacin, or ciprofloxacin.
  • FIG. 2B shows a graph of IL-8 produced by HBE135 cells in response to treatment with control, LPS, and LPS with levofloxacin, moxifloxacin, or ciprofloxacin.
  • FIG. 3A shows a graph of percentage cell survival for NL20 cells treated with increasing concentrations of levofloxacin, moxifloxacin, or ciprofloxacin.
  • FIG. 3B shows a graph of percentage cell survival for HBE135 cells treated with increasing concentrations of levofloxacin, moxifloxacin, or ciprofloxacin.
  • FIG. 6 shows a graph of IL-6 and IL-8 levels produced by HBE135 cells in response to treatment with LPS, and LPS with increasing concentrations of levofloxacin or tobramycin.
  • FIG. 7C shows a graph of IL-6 levels in THP-1 cells treated with control; LPS; and 10 ⁇ g/ml, 30 ⁇ g/ml, 100 ⁇ g/ml, 300 ⁇ g/ml levofloxacin and LPS.
  • FIG. 7D shows a graph of IL-8 levels in THP-1 cells treated with control; LPS; and 10 ⁇ g/ml, 30 ⁇ g/ml, 100 ⁇ g/ml, 300 ⁇ g/ml levofloxacin and LPS.
  • FIG. 9 shows shows a graph of the relative luciferase activity of a NFkB promoter construct in NL20 cells stimulated with control; TNF ⁇ ; TNF ⁇ and 100 ⁇ g/ml levofloxacin; and TNF ⁇ and 100 ⁇ g/ml levofloxacin.
  • Cells were transfected with the reporter plasmid, and after 24 h treated with TNF ⁇ alone or TNF ⁇ with antibiotics, then incubated for an additional 8 h.
  • NFkB-dependent luciferase activity was measured using a commercial assay. The results were expressed as means ⁇ SD of six replicates.
  • the present invention relates to methods and compositions for the treatment of disorders and diseases associated with pulmonary inflammation.
  • methods and compositions to reduce inflammation using aerosol levofloxacin or ofloxacin formulated with a divalent or trivalent cation are provided.
  • Some embodiments include treating acute or chronic inflammation of the lung or the upper airway by topically administering aerosol levofloxacin or ofloxacin formulated with a divalent or trivalent cation directly to the inflammation site.
  • levofloxacin topical administration of levofloxacin formulated with divalent or trivalent cations can significantly decrease the level of cytokine and chemokine production in vitro and in vivo. Such decreases in the levels of pro-inflammatory cytokines may produce a reduction in neutrophil-mediated inflammations. Examples of pro-inflammatory cytokines include IL-1, IL-6, IL-7, and IL-8. High concentrations of levofloxacin can be administered to the lungs and upper airways by inhalation. Surprisingly, formulations of levofloxacin with divalent or trivalent cations have greater availability in the lungs compared to formulations of levofloxacin only.
  • the present invention relates to methods and compositions for reducing inflammation in the lungs and upper airway by administration of aerosolized fluoroquinolones, such as levofloxacin, formulated with divalent or trivalent cations, such as Mg 2+ .
  • NSAID non-steroidal anti-inflammatory drugs
  • azithromycin have been associated with benefits in certain CF patient subgroups (Flume P A, et al. Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med 2007; 176:957-969, incorporated by reference in its entirety).
  • the antibiotic erythromycin reduces the incidence of pulmonary exacerbations in COPD patients (Seemungal T A, et al. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med 2008; 178:1139-1147, incorporated by reference in its entirety).
  • the efficacy of azithromycin and erythromycin in these settings are likely due in large part to immunomodulatory and anti-inflammatory effects rather than antibacterial effects.
  • fluoroquinolones may have an immunomodulatory activity as well as an anti-bacterial activity. These activities may be distinct and only apparent in vivo at concentrations that are also cytotoxic. Some fluoroquinolones may affect their immunomodulatory activity through various signaling pathways that relate to the production and secretion of various cytokines and chemokines. However, not all fluoroquinolones show immunomodulatory activity. Moreover, different fluoroquinolones illicit different responses, such as the induction or inhibition of particular cytokines and chemokines. The immunomodulatory activity may also depend on cell type, immune stimulant, and concentration of the fluoroquinolone.
  • fluoroquinolones such as moxifloxacin and grepafloxacin, but not ciprofloxacin, can inhibit secretion of pro-inflammatory factor such as IL-8, IL-6, ERK1/2, MK, and NF ⁇ B in human lung epithelia cells (Blau, H., K. et al. 2007.
  • Moxifloxacin but not ciprofloxacin or azithromycin selectively inhibits IL-8, IL-6, ERK1/2, MK, and NF-kappaB activation in a cystic fibrosis epithelial cell line.
  • Levofloxacin inhibits TNF- ⁇ and IFN ⁇ production in tonsillar lymphocytes at 50 mg/L, and IL-8 production at 5 mg/L.
  • levofloxacin inhibits RANTES-release in nasal epithelial cells from patients of nasal polyposis.
  • the inhibitory activity of levofloxacin on the production of pro-inflammatory factors is much lower than that for other fluoroquinolones such as ciprofloxacin and moxifloxacin.
  • the inhibitory activity of levofloxacin on the production of pro-inflammatory factors such as TNF- ⁇ , IL-1 and IL-8 requires 100 mg/L levofloxacin.
  • immortalized human airway epithelia cells retain certain features of airway epithelium and have been extensively used to characterize immunomodulatory effects of other antibiotics (Blau H, et al. Moxifloxacin but not ciprofloxacin or azithromycin selectively inhibits IL-8, IL-6, ERK1/2, MK, and NF-kappaB activation in a cystic fibrosis epithelial cell line. Am J Physiol Lung Cell Mol Physiol 2007; 292:L343-352; and Donnarumma G, et al.
  • IL-6 and IL-8 are of high importance in regulating inflammatory response in CF lungs, with latter having the strongest potential to induce neutrophil chemotaxis (Strieter R M. Interleukin-8: a very important chemokine of the human airway epithelium. Am J Physiol Lung Cell Mol Physiol 2002; 283:L688-689, incorporated by reference in its entirety). It has been discovered that levofloxacin produces a dose-dependent reduction of TNF ⁇ - and LPS-induced IL-6 and IL-8 levels in cultured human airway epithelia cells. Levofloxacin also decreases LPS-induced IL-1 ⁇ , IL-6 and IL-8 production in human monocytic cells. In addition, levofloxacin reduces IL-6 and IL-8 production in vivo.
  • administering refers to a method of giving a dosage of an anti-inflammatory pharmaceutical composition to a vertebrate.
  • the preferred method of administration can vary depending on various factors, e.g., the components of the pharmaceutical composition, the site of the inflammation, and the severity of an actual inflammation.
  • a “carrier” or “excipient” is a compound or material used to facilitate administration of the compound, for example, to increase the solubility of the compound.
  • Solid carriers include, e.g., starch, lactose, dicalcium phosphate, sucrose, and kaolin.
  • Liquid carriers include, e.g., sterile water, saline, buffers, non-ionic surfactants, and edible oils such as oil, peanut and sesame oils.
  • various adjuvants such as are commonly used in the art may be included.
  • mamal is used in its usual biological sense. Thus, it specifically includes humans, cattle, horses, dogs, and cats, but also includes many other species.
  • pharmaceutically acceptable carrier or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like.
  • the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
  • pharmaceutically acceptable salt refers to salts that retain the biological effectiveness and properties of the compounds of this invention and, which are not biologically or otherwise undesirable.
  • the compounds of this invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.
  • Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids. Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, naphtoic acid, oleic acid, palmitic acid, pamoic (emboic) acid, stearic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, ascorbic acid, glucoheptonic acid, glucuronic acid, lactic acid, lactobioic acid, tartaric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like.
  • Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, specifically such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, histidine, arginine, lysine, benethamine, N-methyl-glucamine, and ethanolamine.
  • Other acids include dodecylsufuric acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, and saccharin.
  • Solidvate refers to the compound formed by the interaction of a solvent and fluoroquinolone antimicrobial, a metabolite, or salt thereof. Suitable solvates are pharmaceutically acceptable solvates including hydrates.
  • a therapeutically effective amount or “pharmaceutically effective amount” is meant a fluoroquinolone anti-inflammatory agent, as disclosed for this invention, which has a therapeutic effect.
  • the doses of fluoroquinolone anti-inflammatory agent which are useful in treatment are therapeutically effective amounts.
  • a therapeutically effective amount means those amounts of fluoroquinolone anti-inflammatory agent which produce the desired therapeutic effect as judged by clinical trial results and/or model animal anti-inflammatory studies.
  • the fluoroquinolone anti-inflammatory agent are administered in a pre-determined dose, and thus a therapeutically effective amount would be an amount of the dose administered.
  • This amount and the amount of the fluoroquinolone anti-inflammatory agent can be routinely determined by one of skill in the art, and will vary, depending on several factors, such as the particular inflammation involved, for example, the site of inflammation, the severity of inflammation. This amount can further depend upon the patient's height, weight, sex, age and medical history. For prophylactic treatments, a therapeutically effective amount is that amount which would be effective to prevent a particular inflammation.
  • a “therapeutic effect” relieves, to some extent, one or more of the symptoms of the inflammation, and includes curing an inflammation. “Curing” means that the symptoms of inflammation are eliminated. However, certain long-term or permanent effects of the inflammation may exist even after a cure is obtained (such as extensive tissue damage). As used herein, a “therapeutic effect” is defined as a statistically significant reduction in an inflammation, emergence of inflammation, or improvement in inflammation symptoms as measured by human clinical results or animal studies.
  • Treat,” “treatment,” or “treating,” as used herein refers to administering a pharmaceutical composition for prophylactic and/or therapeutic purposes.
  • prophylactic treatment refers to treating a patient who is not yet having an inflammation, but who is susceptible to, or otherwise at risk of, a particular inflammation such that there is a reduced onset of an inflammation.
  • therapeutic treatment refers to administering treatment to a patient already suffering from an inflammation.
  • treating is the administration to a mammal (either for therapeutic or prophylactic purposes) of therapeutically effective amounts of a fluoroquinolone anti-inflammatory agent.
  • dosing interval refers to the time between administrations of the two sequential doses of a pharmaceutical's during multiple dosing regimens.
  • dosing intervals are 12 hours and 24 hours, respectively.
  • the “peak period” of a pharmaceutical's in vivo concentration is defined as that time of the pharmaceutical dosing interval when the pharmaceutical concentration is not less than 50% of its maximum plasma or site-of-inflammation concentration. In some embodiments, “peak period” is used to describe an interval of anti-inflammatory dosing.
  • the “respirable delivered dose” is the amount of drug inhaled during the inspiratory phase of the breath simulator that is equal to or less than 5 microns using a simulator programmed to the European Standard pattern of 15 breaths per minute, with an inspiration to expiration ratio of 1:1.
  • pulmonary concentration can include the concentration of a substance in the lung of a subject, the concentration of a substance in the sputum of a subject, and/or the concentration of a substance in the bronchial alveoial lavage of a subject. As will be understood, “pulmonary concentration” can be measured by various methods.
  • a method for treating an inflammation in an animal, specifically including in a mammal, by treating an animal suffering from such an inflammation with a fluoroquinolone anti-inflammatory agent formulated with a divalent or trivalent cation and having improved pulmonary availability.
  • fluoroquinolone anti-inflammatory agents may be administered following aerosol formation and inhalation.
  • this method of treatment is especially appropriate for the treatment of pulmonary inflammations that are difficult to treat using an anti-inflammatory agent delivered parenterally due to the need for high parenteral dose levels (which can cause undesirable side effects), or due to lack of any clinically effective anti-inflammatory agents.
  • this method may be used to administer a fluoroquinolone anti-inflammatory agent directly to the site of inflammation. Such a method may reduce systemic exposure and maximizes the amount of anti-inflammatory agent to the site of inflammation.
  • the aerosol fluoroquinolone therapy may be administered as a treatment or prophylaxis in combination or alternating therapeutic sequence with other aerosol, oral or parenteral antibiotics.
  • this may include aerosol tobramycin and/or other aminoglycoside, aerosol aztreonam and/or other beta- or mono-bactam, carbapenems, aerosol ciprofloxacin and/or other fluoroquinolones, aerosol azithromycin and/or other macrolides or ketolides, tetracycline and/or other tetracyclines, quinupristin and/or other streptogramins, linezolid and/or other oxazolidinones, vancomycin and/or other glycopeptides, erythromycin, and chloramphenicol and/or other phenicols, and colisitin and/or other polymyxins.
  • compositions and methods provided herein can include the aerosol fluoroquinolone therapy administered as a treatment or prophylaxis in combination or alternating therapeutic sequence with an additional active agent.
  • additional agents can include antibiotics.
  • More additional agents can include bronchodilators, anticholinergics, glucocorticoids, eicosanoid inhibitors, and combinations thereof.
  • glucocorticoids examples include prednisone, fluticasone, budesonide, mometasone, ciclesonide, and beclomethasone.
  • eicosanoids examples include montelukast, pranlukast, zafirlukast, zileuton, ramatroban, and seratrodast.
  • More additional agents can include pulmozyme, hypertonic saline, agents that restore chloride channel function in CF, inhaled beta-agonists, inhaled antimuscarinic agents, inhaled corticosteroids, and inhaled or oral phosphodiesterase inhibitors.
  • More additional agents can include CFTR modulators, for example, VX-770, atluren, VX-809. More additional agents can include agents to restore airway surface liquid, for example, denufosol, mannitol, GS-9411, and SPI-8811 More additional agents can include anti-inflammatory agents, for example, ibuprofen, sildenafil, and simavastatin. More additional agent include anti-inflammatory agents. Examples of anti-inflammatory agents include steroidal and non-steriodal anti-inflammatory agent.
  • steroidal anti-inflammatory agents include 21-acetoxypregnenolone, alclometasone, algestone, amcinonide, beclomethasone, betamethasone, chloroprednisone, ciclesonide, clobetasol, clobetasone, clocortolone, cloprednol, corticosterone, cortisone, cortivazol, deflazacort, desciclesonide, desonide, desoximetasone, dexamethasone, diflorasone, diflucortolone, difluprednate, enoxolone, fluazacort, flucloronide, flumethasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin butyl, fluocortolone, fluorometholone, fluperolone acetate, fluprednidene acetate, fluprednisolone
  • nonsteriodal anti-inflammatory agents include COX inhibitors (COX-1 or COX nonspecific inhibitors) (e.g., salicylic acid derivatives, aspirin, sodium salicylate, choline magnesium trisalicylate, salsalate, diflunisal, sulfasalazine and olsalazine; para-aminophenol derivatives such as acetaminophen; indole and indene acetic acids such as indomethacin and sulindac; heteroaryl acetic acids such as tolmetin, dicofenac and ketorolac; arylpropionic acids such as ibuprofen, naproxen, flurbiprofen, ketoprofen, fenoprofen and oxaprozin; anthranilic acids (fenamates) such as mefenamic acid and meloxicam; enolic acids such as the oxicams (piroxicam, meloxicam) and
  • the divalent or trivalent cation concentration can be from about 25 mM to about 400 mM, from about 50 mM to about 400 mM, from about 100 mM to about 300 mM, from about 100 mM to about 250 mM, from about 125 mM to about 250 mM, from about 150 mM to about 250 mM, from about 175 mM to about 225 mM, from about 180 mM to about 220 mM, and from about 190 mM to about 210 mM.
  • the chloride concentration can be from about 25 mM to about 800 mM, from about 50 mM to about 400 mM, from about 100 mM to about 300 mM, from about 100 mM to about 250 mM, from about 125 mM to about 250 mM, from about 150 mM to about 250 mM, from about 175 mM to about 225 mM, from about 180 mM to about 220 mM, and from about 190 mM to about 210 mM.
  • the magnesium chloride, magnesium sulfate, zinc chloride, or copper chloride can have a concentration from about 5% to about 25%, from about 10% to about 20%, and from about 15% to about 20%.
  • the ratio of fluoroquinolone to divalent or trivalent cation can be 1:1 to 2:1 or 1:1 to 1:2.
  • Non-limiting fluoroquinolones for use as described herein include levofloxacin, ofloxacin, ciprofloxacin, enoxacin, gatifloxacin, gemifloxacin, lomefloxacin, moxifloxacin, norfloxacin, pefloxacin, sparfloxacin, garenoxacin, sitafloxacin, and DX-619.
  • the formulation can have a fluoroquinolone concentration, for example, levofloxacin or ofloxacin, greater than about 50 mg/ml, about 60 mg/ml, about 70 mg/ml, about 80 mg/ml, about 90 mg/ml, about 100 mg/ml, about 110 mg/ml, about 120 mg/ml, about 130 mg/ml, about 140 mg/ml, about 150 mg/ml, about 160 mg/ml, about 170 mg/ml, about 180 mg/ml, about 190 mg/ml, and about 200 mg/ml.
  • levofloxacin or ofloxacin greater than about 50 mg/ml, about 60 mg/ml, about 70 mg/ml, about 80 mg/ml, about 90 mg/ml, about 100 mg/ml, about 110 mg/ml, about 120 mg/ml, about 130 mg/ml, about 140 mg/ml, about 150 mg/ml, about 160 mg/ml, about 170 mg/ml, about
  • the formulation can have a fluoroquinolone concentration, for example, levofloxacin or ofloxacin, from about 50 mg/ml to about 200 mg/ml, from about 75 mg/ml to about 150 mg/ml, from about 80 mg/ml to about 125 mg/ml, from about 80 mg/ml to about 120 mg/ml, from about 90 mg/ml to about 125 mg/ml, from about 90 mg/ml to about 120 mg/ml, and from about 90 mg/ml to about 110 mg/ml.
  • a fluoroquinolone concentration for example, levofloxacin or ofloxacin
  • the formulation can have an osmolality from about 300 mOsmol/kg to about 500 mOsmol/kg, from about 325 mOsmol/kg to about 450 mOsmol/kg, from about 350 mOsmol/kg to about 425 mOsmol/kg, and from about 350 mOsmol/kg to about 400 mOsmol/kg.
  • the osmolality of the formulation is greater than about 300 mOsmol/kg, about 325 mOsmol/kg, about 350 mOsmol/kg, about 375 mOsmol/kg, about 400 mOsmol/kg, about 425 mOsmol/kg, about 450 mOsmol/kg, about 475 mOsmol/kg, and about 500 mOsmol/kg.
  • the formulation can have a pH from about 4.5 to about 8.5, from about 5.0 to about 8.0, from about 5.0 to about 7.0, from about 5.0 to about 6.5, from about 5.5 to about 6.5, and from 6.0 to about 6.5.
  • the formulation can comprise a conventional pharmaceutical carrier, excipient or the like (e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like), or auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like (e.g., sodium acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine acetate, triethanolamine oleate, and the like).
  • the formulation can lack a conventional pharmaceutical carrier, excipient or the like.
  • Some embodiments include a formulation lacking lactose. Some embodiments comprise lactose at a concentration less than about 10%, 5%, 1%, or 0.1%. In some embodiments, the formulation can consist essentially of levofloxacin or ofloxacin and a divalent or trivalent cation.
  • a formulation can comprise a levofloxacin concentration between about 75 mg/ml to about 150 mg/ml, a magnesium chloride concentration between about 150 mM to about 250 mM, a pH between about 5 to about 7; an osmolality of between about 300 mOsmol/kg to about 500 mOsmol/kg, and lacks lactose.
  • a formulation comprises a levofloxacin concentration about 100 mg/ml, a magnesium chloride concentration about 200 mM, a pH about 6.2 an osmolality about 383 mOsmol/kg, and lacks lactose.
  • a formulation consists essentially of a levofloxacin concentration about 100 mg/ml, a magnesium chloride concentration about 200 mM, a pH about 6.2 an osmolality about 383 mOsmol/kg, and lacks lactose.
  • a formulation consists of a levofloxacin concentration about 100 mg/ml, a magnesium chloride concentration about 200 mM, a pH about 6.2 an osmolality about 383 mOsmol/kg, and lacks lactose.
  • the fluoroquinolone anti-inflammatory agents formulated with divalent or trivalent cations and having improved pulmonary availability may be administered at a therapeutically effective dosage, e.g., a dosage sufficient to provide treatment for the disease states previously described.
  • a therapeutically effective dosage e.g., a dosage sufficient to provide treatment for the disease states previously described.
  • the amount of active compound administered will, of course, be dependent on the subject and disease state being treated, the severity of the inflammation, the manner and schedule of administration and the judgment of the prescribing physician; for example, a likely dose range for aerosol administration of levofloxacin would be about 20 to 300 mg per day, the active agents being selected for longer or shorter pulmonary half-lives, respectively. In some embodiments, a likely dose range for aerosol administration of levofloxacin would be about 20 to 300 mg BID (twice daily).
  • fluoroquinolone antimicrobial agents disclosed herein or the pharmaceutically acceptable salts thereof can be via any of the accepted modes of administration for agents that serve similar utilities including, but not limited to, aerosol inhalation. Methods, devices and compositions for delivery are described in U.S. Patent Application Publication No. 2006/0276,483, incorporated by reference in its entirety.
  • compositions include solid, semi-solid, liquid and aerosol dosage forms, such as, for example, powders, liquids, suspensions, complexations, liposomes, particulates, or the like.
  • the compositions are provided in unit dosage forms suitable for single administration of a precise dose.
  • the fluoroquinolone anti-inflammatory agent can be administered either alone or in some alternatives, in combination with a conventional pharmaceutical carrier, excipient or the like (e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like).
  • a conventional pharmaceutical carrier e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like.
  • the pharmaceutical composition can also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like (e.g., sodium acetate, sodium citrate, cyclodextrin derivatives, sorbitan monolaurate, triethanolamine acetate, triethanolamine oleate,
  • the pharmaceutical formulation will contain about 0.005% to 95%, preferably about 0.5% to 50% by weight of a compound of the invention.
  • Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa.
  • the compositions will take the form of a unit dosage form such as vial containing a liquid, solid to be suspended, dry powder, lyophilate, or other composition and thus the composition may contain, along with the active ingredient, a diluent such as lactose, sucrose, dicalcium phosphate, or the like; a lubricant such as magnesium stearate or the like; and a binder such as starch, gum acacia, polyvinylpyrrolidine, gelatin, cellulose, cellulose derivatives or the like.
  • a diluent such as lactose, sucrose, dicalcium phosphate, or the like
  • a lubricant such as magnesium stearate or the like
  • a binder such as starch, gum acacia, polyvinylpyrrolidine, gelatin, cellulose, cellulose derivatives or the like.
  • Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc. an active compound as defined above and optional pharmaceutical adjuvants in a carrier (e.g., water, saline, aqueous dextrose, glycerol, glycols, ethanol or the like) to form a solution or suspension.
  • a carrier e.g., water, saline, aqueous dextrose, glycerol, glycols, ethanol or the like
  • Solutions to be aerosolized can be prepared in conventional forms, either as liquid solutions or suspensions, as emulsions, or in solid forms suitable for dissolution or suspension in liquid prior to aerosol production and inhalation.
  • the percentage of active compound contained in such aerosol compositions is highly dependent on the specific nature thereof, as well as the activity of the compound and the needs of the subject.
  • composition will comprise 1.0%-50.0% of the active agent in solution.
  • compositions described herein can be administered with a frequency of about 1, 2, 3, 4, or more times daily, 1, 2, 3, 4, 5, 6, 7 or more times weekly, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more times monthly.
  • the compositions are administered twice daily.
  • Pulmonary drug delivery may be accomplished by inhalation of an aerosol through the mouth and throat.
  • Particles having a mass median aerodynamic diameter (MMAD) of greater than about 5 microns generally do not reach the lung; instead, they tend to impact the back of the throat and are swallowed and possibly orally absorbed.
  • Particles having diameters of about 2 to about 5 microns are small enough to reach the upper- to mid-pulmonary region (conducting airways), but are too large to reach the alveoli. Smaller particles, i.e., about 0.5 to about 2 microns, are capable of reaching the alveolar region.
  • Particles having diameters smaller than about 0.5 microns can also be deposited in the alveolar region by sedimentation, although very small particles may be exhaled.
  • a nebulizer is selected on the basis of allowing the formation of an aerosol of a fluoroquinolone anti-inflammatory agent disclosed herein having an mMAD predominantly between about 2 to about 5 microns.
  • the delivered amount of fluoroquinolone anti-inflammatory agent provides a therapeutic effect for respiratory infections.
  • the nebulizer can deliver an aerosol comprising a mass median aerodynamic diameter from about 2 microns to about 5 microns with a geometric standard deviation less than or equal to about 2.5 microns, a mass median aerodynamic diameter from about 2.5 microns to about 4.5 microns with a geometric standard deviation less than or equal to about 1.8 microns, and a mass median aerodynamic diameter from about 2.8 microns to about 4.3 microns with a geometric standard deviation less than or equal to about 2 microns.
  • the aerosol can be produced a jet nebulizer.
  • the aerosol can be produced using a vibrating mesh nebulizer.
  • An example of a vibrating mesh nebulizer includes the PART E-FLOW® nebulizer. More examples of nebulizers are provided in U.S. Pat. Nos. 4,268,460; 4,253,468; 4,046,146; 3,826,255; 4,649,911; 4,510,929; 4,624,251; 5,164,740; 5,586,550; 5,758,637; 6,644,304; 6,338,443; 5,906,202; 5,934,272; 5,960,792; 5,971,951; 6,070,575; 6,192,876; 6,230,706; 6,349,719; 6,367,470; 6,543,442; 6,584,971; 6,601,581; 4,263,907; 5,709,202; 5,823,179; 6,192,876; 6,644,304; 5,549,102; 6,083,922; 6,161,536; 6,264,922; 6,557,549; and 6,612,303
  • nebulizers that can be used with the formulations described herein include Respirgard II®, Aeroneb®, Aeroneb® Pro, and Aeroneb® Go produced by Aerogen; AERx® and AERx EssenceTM produced by Aradigm; Porta-Neb®, Freeway FreedomTM, Sidestream, Ventstream and I-neb produced by Respironics, Inc.; and PAM LC-Plus®, PAM LC-Star®, produced by PAM, GmbH.
  • Respirgard II®, Aeroneb®, Aeroneb® Pro, and Aeroneb® Go produced by Aerogen
  • AERx® and AERx EssenceTM produced by Aradigm
  • Porta-Neb® Freeway FreedomTM, Sidestream, Ventstream and I-neb produced by Respironics, Inc.
  • PAM LC-Plus® PAM LC-Star®, produced by PAM, GmbH.
  • U.S. Pat. No. 6,196,219 is hereby incorporated
  • the amount of levofloxacin or ofloxacin that can be administered to the lungs can include at least about 20 mg, about 30 mg, about 40 mg, about 50 mg, about 60 mg, about 70 mg, about 80 mg, about 90 mg, about 100 mg, about 110 mg, about 120 mg, about 125 mg, about 130 mg, about 140 mg, about 150 mg, about 160 mg, about 170 mg, about 180 mg, about 190 mg, about 200 mg, about 210 mg, about 220 mg, about 230 mg, about 240 mg, about 250 mg, about 260 mg, about 270 mg, about 280 mg, about 290 mg, about 300 mg, about 310 mg, about 320 mg, about 330 mg, about 340 mg, about 350 mg, about 460 mg, about 470 mg, about 480 mg, about 490 mg, about 500 mg, about 510 mg, about 520 mg, about 530 mg, about 540 mg, about 550 mg, about 560 mg, about 570 mg, about 580 mg, about 590 mg, about 600 mg,
  • the aerosol can be administered to the lungs in less than about 120 minutes, about 100 minutes, about 90 minutes, about 80 minutes, about 70 minutes, about 60 minutes, about 20 minutes, about 10 minutes, about 5 minutes, about 4 minutes, about 3 minutes, about 2 minutes, and about 1 minute.
  • the inflammation can be acute or chronic inflammation of the lung or the upper airway.
  • pulmonary inflammation can refer to acute or chronic inflammation of at least a portion of the respiratory tract, such as the lungs and upper airway.
  • disorders and diseases associated with pulmonary inflammation can include asthma, cystic fibrosis, pulmonary fibrosis, chronic bronchitis, bronchiectasis, chronic granulomatous disease, sinusitis, chronic obstructive pulmonary disease, and pneumonia.
  • Some embodiments include methods to achieve a reduction in pulmonary inflammation.
  • a reduction can include reducing the signs and symptoms of a pulmonary inflammation.
  • methods include achieving a reduction in the levels of pro-inflammatory cytokines in the lungs.
  • a reduction in the levels of pro-inflammatory cytokines in the lungs can be measured by various methods, such as a reduction in the levels of pro-inflammatory cytokines in sputum and/or BAL.
  • methods include achieving a reduction in the levels of IL-1 ⁇ , IL-6, and IL-8 in the lungs.
  • NL20 cells and HBE135 cells are immortalized human airway epithelial cells that retain certain features of airway epithelium and have been extensively used to characterize immunomodulatory effects of other antibiotics (Blau H, et al. Moxifloxacin but not ciprofloxacin or azithromycin selectively inhibits IL-8, IL-6, ERK1/2, JNK, and NF-kappaB activation in a cystic fibrosis epithelial cell line. Am J Physiol Lung Cell Mol Physiol 2007; 292:L343-352; and Donnarumma G, et al.
  • NL20 cells were maintained in Ham's F12 medium with 2 mM L-glutamine, 0.1 mM nonessential amino acids, 5 ⁇ g/ml insulin, 10 ng/ml epidermal growth factor, 1 ⁇ g/ml transferrin, 500 ng/ml hydrocortisone and 4% FBS.
  • HBE135 cells were routinely grown in keratinocyte-serum free medium with 5 ng/ml of human recombinant EGF and 0.05 mg/ml of bovine pituitary extract (Invitrogen, San Diego, Calif.) supplemented with 5 ⁇ g/ml insulin and 500 ng/ml hydrocortisone.
  • NL20 cells were seeded on 24-well tissue culture plates at 2 ⁇ 10 4 cell/ml. The day after seeding, cells received normal growth medium without serum for an additional 24 h. The same serum-free media was used for all subsequent treatments of NL20 cells.
  • IL-6 and IL-8 production in NL20 monolayers was induced by treatment with 10 ng/ml of TNF ⁇ .
  • HBE135 Cells were aliquoted into 24-well tissue culture plates at 1 ⁇ 10 5 cells/ml and were used for cytokine production experiments approximately 24 hours after plating without additional media changes.
  • IL-6 and IL-8 production in HBE135 cells was induced by treatment with 5 ⁇ g/ml of LPS from P. aeruginosa.
  • TNF- ⁇ induced a several-fold increase in IL-6 and IL-8 production in NL20 cells ( FIGS. 1A and 1B ).
  • LPS induced an increase in the level of IL-8 in HBE135 cells ( FIG. 2B ).
  • IL-8 levels were reduced by approximately 20-30% ( FIGS. 1A and 1B ).
  • No significant change in IL-6 levels was observed in cells treated with levofloxacin or ciprofloxacin.
  • an increase in IL-6 levels was observed.
  • FIGS. 2A and 2B show the levels of IL-6 and IL-8 in cells.
  • HBE135 cells treated with 10 ⁇ g/ml and 30 ⁇ g/ml levofloxacin, moxifloxacin or ciprofloxacin. This experiment shows that low concentrations of levofloxacin can reduce the levels of IL-8 in HBE135 cells stimulated with LPS.
  • cytotoxicity of levofloxacin, moxifloxacin and ciprofloxacin on NL20 and HBE135 cell lines were measured using an Alamar Blue assay. After 48 hour incubation with the antibiotic, cells were incubated in fresh growth media containing 5% Alamar Blue dye and fluorescence was recorded at 0 h and 4 h to assess antibiotic cytotoxicity. Higher levofloxacin concentrations were less cytotoxic to either NL20 or HBE135 cells compared to moxifloxacin and ciprofloxacin ( FIGS. 3A and 3B ). Moxifloxacin and ciprofloxacin were significantly cytotoxic to NL20 cells at 300 ⁇ g/ml.
  • NL20 cells induced with TNF ⁇ and HBE135 cells induced with LPS were treated with 300 ⁇ g/ml levofloxacin or 300 ⁇ g/ml levofloxacin formulated with MgCl 2 .
  • TNF ⁇ -induced NL20 cells and LPS-induced HBE135 cells were treated with 10-300 ⁇ g/ml levofloxacin, or tobramycin. No significant changes in cell viability in cytotoxicity assays were observed between any treatment (data not shown).
  • FIG. 5A In NL20 cells treated with 10 ng/ml TNF ⁇ , an increase in IL-6 production from 3.4 ⁇ 0.2 pg/ml to 40.3 ⁇ 2.3 pg/ml was observed ( FIG. 5A ). IL-8 production increased from 3.3 ⁇ 0.2 pg/ml to 197.3 ⁇ 28.9 pg/ml ( FIG. 5B ). Incubation of NL20 cells with 5 ⁇ g/ml LPS did not produce significant increases in either IL-6 or IL-8 production (data not shown). The addition of 10 ⁇ g/ml or 30 ⁇ g/ml levofloxacin did not significantly change the level of IL-6 and IL-8 produced by NL20 cells.
  • levofloxacin demonstrates an ability to reduce pro-inflammatory cytokine production in vitro in NL20 cells
  • HBE135 cells with 5 ⁇ g/ml LPS increased IL-6 production from 46.1 ⁇ 6.4 pg/ml to 86.3 ⁇ 6.4 pg/ml and IL-8 production from 280.7 ⁇ 54.9 pg/ml to 541.9 ⁇ 54.8 pg/ml.
  • Incubation of HBE135 cells with 10 or 30 ⁇ g/ml levofloxacin and LPS cells did not significantly change IL-6 and IL-8 levels.
  • 100 ⁇ g/ml and 300 ⁇ g/ml levofloxacin resulted in a 45% and 40% decrease in IL-6 levels, respectively ( FIG. 6 ).
  • Levels of IL-8 decreased by 30% and 20% in HBE135 cells treated with 100 ⁇ g/ml and 300 ⁇ g/ml levofloxacin, respectively ( FIG. 6 ). Incubation of cells with 10 ⁇ g/ml, 30 ⁇ g/ml, or 100 ⁇ g/ml tobramycin did not affect the levels of IL-6, while 300 ⁇ g/ml of tobramycin increased levels of IL-6 by 30%. Treatment with 30 ⁇ g/ml to 300 ⁇ g/ml tobramycin increased IL-8 production by 20% to 30% (p ⁇ 0.05).
  • levofloxacin can induce a dose-related reduction in the production of the pro-inflammatory cytokines, IL-6 and IL-8, in cultured human lung epithelial cell lines.
  • 300 ⁇ g/ml levofloxacin reduced levels of IL-6 by 4-fold and IL-8 by 2-fold (p ⁇ 0.05); in contrast, tobramycin increased IL-6 levels by 50%, but had no effect on IL-8.
  • THP-1 The human monocyte cell line, THP-1 is an established in vitro model of human monocytic cells and is capable to secrete a greater variety of cytokines compared to NL20 and HBE135 cells.
  • THP-1 cells were cultured in RPMI-1640 medium with 10%FBS, 0.05 mM 2-mecraptoethanol.
  • THP-1 cells were seeded on 24-well tissue culture plates at 1 ⁇ 10 6 cells/ml in growth media without serum. The following day, 100 ng/ml LPS from P. aeruginosa and antibiotics were added and cells incubated for 24 hours before media collection to assess cytokine production. Quantification of IL-6, IL-8, IL-1 ⁇ and TNF ⁇ production was performed as described above for NL20 cells.
  • FIGS. 7A , 7 B, 7 C, and 7 D Stimulation of THP-1 with 10 ng/ml of LPS increased IL-1 ⁇ , TNF ⁇ , IL-6 and IL-8 levels by 60-, 200-, 30- and 600-fold, respectively.
  • FIGS. 7A , 7 B, 7 C, and 7 D Co-incubation of LPS and at 100 ⁇ g/ml and 300 ⁇ g/ml levofloxacin resulted in a 40% and 70% decrease in IL-1 ⁇ levels, respectively ( FIG. 7A ).
  • 300 ⁇ g/ml levofloxacin increased TNF ⁇ production ( FIG. 7B ).
  • the human monocyte cell line, THP-1 is an established in vitro model of human monocytic cells and is capable to secrete a greater variety of cytokines compared to NL20 and HBE135 cells.
  • IL-8 mRNA expression in NL20 monolayers was induced by treatment with 10 ng/ml TNF ⁇ . Levofloxacin was added simultaneously with TNF ⁇ . After 24 h incubation, the cell monolayer was washed with PBS, total cellular RNA was prepared and reverse transcription was performed using a human IL-8 specific primer and the “Cells-to-cDNA” kit from Ambion (Austin, Tex.).
  • cDNA was subjected to real-time PCR analysis using PowerSYBR Green PCR master mix and a GeneAmp 5700 Instrument (Applied Biosystems; Warrington, UK). All data were normalized to the housekeeping gene ⁇ -actin. Stimulation of NL-20 cells with TNF ⁇ , produced a statistically significant (p ⁇ 0.005) 20-fold increase in IL-8 mRNA levels ( FIG. 8 ). This increase correlates with the increased levels of IL-8 protein induced by TNF ⁇ . Addition of 100 ⁇ g/ml and 300 ⁇ g/ml levofloxacin had no significant effect on the level of IL-8 mRNA expression ( FIG. 4 ). These results suggest that levofloxacin reduces levels of the IL-8 secreted protein by modulating processes that include protein translation and/or protein secretion.
  • the human monocyte cell line, THP-1 is an established in vitro model of human monocytic cells and is capable to secrete a greater variety of cytokines compared to NL20 and HBE135 cells.
  • Cells were seeded on 96-well plate at 3 ⁇ 10 4 cells/well and transfected the following day with a pMetLuc-NFkB reporter plasmid (Clontech) encoding a secreted luciferase protein under the control of a NFkB-regulated promoter.
  • a pSEAP-Control plasmid (Clontech) encoding a secreted alkaline phosphatase under the control of a strong constitutive promoter.
  • Chronic bronchitis patients having acute or chronic pulmonary inflammation are administered aerosol levofloxacin formulated with MgCl 2 . After treatment, a reduction in the acute inflammation is observed. A reduction in the levels of pro-inflammatory cytokines is observed. A reduction in the levels of IL-1 ⁇ , IL-6, and IL-8 in the lungs is observed. A reduction in the levels of IL-1 ⁇ , IL-6, and IL-8 in the sputum and/or BAL is observed.
  • Bronchiectasis patients having acute or chronic pulmonary inflammation are administered aerosol levofloxacin formulated with MgCl 2 . After treatment, a reduction in the acute inflammation is observed. A reduction in the levels of pro-inflammatory cytokines is observed. A reduction in the levels of IL-1 ⁇ , IL-6, and IL-8 in the lungs is observed. A reduction in the levels of IL-1 ⁇ , IL-6, and IL-8 in the sputum and/or BAL is observed.
  • Non-CF bronchiectasis patients having acute or chronic pulmonary inflammation are administered aerosol levofloxacin formulated with MgCl 2 . After treatment, a reduction in the acute inflammation is observed. A reduction in the levels of pro-inflammatory cytokines is observed. A reduction in the levels of IL-1 ⁇ , IL-6, and IL-8 in the lungs is observed. A reduction in the levels of IL-1 ⁇ , IL-6, and IL-8 in the sputum and/or BAL is observed.
  • a group of items linked with the conjunction ‘and’ should not be read as requiring that each and every one of those items be present in the grouping, but rather should be read as ‘and/or’ unless expressly stated otherwise.
  • a group of items linked with the conjunction ‘or’ should not be read as requiring mutual exclusivity among that group, but rather should be read as ‘and/or’ unless expressly stated otherwise.
  • the articles ‘a’ and ‘an’ should be construed as referring to one or more than one (i.e., to at least one) of the grammatical objects of the article.
  • ‘an element’ means one element or more than one element.

Abstract

The present invention relates to methods and compositions for the treatment of pulmonary inflammation. In particular, methods and compositions using aerosol levofloxacin or ofloxacin to reduce pulmonary inflammation are provided.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. Ser. No. 12/574,666 entitled “TOPICAL USE OF LEVOFLOXACIN FOR REDUCING LUNG INFLAMMATION” filed on Oct. 6, 2009 which claims priority to U.S. Provisional Application No. 61/103,496, entitled “Topical Use of Levofloxacin for Reducing Lung Inflammation,” filed on Oct. 7, 2008, which are hereby incorporated by reference in their entireties.
  • FIELD OF THE INVENTION
  • The present invention relates to methods and compositions for the treatment of pulmonary inflammation. In particular, methods and compositions using aerosol levofloxacin or ofloxacin to reduce pulmonary inflammation are provided.
  • BACKGROUND
  • Inflammation is a response of vascularized tissue to injury; it is perceived as redness, heat, swelling, and pain and is usually accompanied by loss of function to varying degrees. In its acute form it is of short duration, involving increased vascular transudation and interstitial edema and infiltration of inflammatory cells, predominantly of neutrophils. In moist mucosal tissues, such as that which lines the respiratory tract, there may also be loss of surface epithelial cells and secretion of mucus. This form of inflammatory response is considered protective and is, therefore, in the short term, beneficial to the host. However, if the injury is repeated or severe, the character of the inflammatory infiltrate may change to one predominantly of mononuclear cell (i.e., lymphocytes, monocytes, and macrophages) and it may become persistent.
  • Inflammatory diseases afflict millions of people across the world leading to suffering, economic loss and premature death. As well as inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), other inflammatory diseases include allergic rhinitis, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and psoriasis. Inflammatory sinus diseases include sinusitis due to infections of acute, subacute and chronic duration; allergic rhinitis; and inflammation due to other underlying causes such as allergies, hay fever, allergic rhinitis, rhinitis, and asthma, affecting the nasal cavity or the four sinuses, each which have left and right halves, the frontal sinuses, the maxillary sinuses the ethmoid sinuses, and the sphenoid sinuses.
  • Chronic inflammation may develop from unresolved symptomatic acute inflammation or may evolve insidiously over a period of months without apparent acute onset of clinical manifestations. Histopathologic features of chronic inflammation include the predominance of macrophages and lymphocytes, proliferation of nurturing structurally heterogeneous and hyperpermeable small blood vessels, fibrosis, and necrosis. Activated macrophages and lymphocytes are interactive in releasing inflammatory mediators or cytokines that amplify immune reactivity. Cytokines include a family of biologic response modifiers including interleukins, chemokines, interferons, growth factors, and leukocyte colony-stimulating factors. The cytokines are secreted by leukocytes, connective tissue cells, and endothelial cells. Chemokines consist of 8- to 10-kd proteins that stimulate leukocyte recruitment and migration as part of the host response to antigenic insults. In chronic inflammation, the protracted inflammatory response is often accompanied simultaneously by tissue destruction and repair.
  • SUMMARY
  • The present invention relates to methods and compositions for the treatment of pulmonary inflammation. In particular, methods and compositions using aerosol levofloxacin or ofloxacin to reduce pulmonary inflammation are provided.
  • Some embodiments include methods for treating a pulmonary inflammation in a subject in which the methods include administering to the subject in need thereof an aerosol of a solution including levofloxacin or ofloxacin and a divalent or trivalent cation.
  • Some embodiments include methods for treating a pulmonary inflammation in a subject, wherein the pulmonary inflammation is induced by one or more pro-inflammatory cytokines, in which the methods include administering to the subject in need thereof an aerosol of a solution including levofloxacin or ofloxacin and a divalent or trivalent cation to achieve a reduction in the pulmonary concentration of said cytokine by at least 10%.
  • Some embodiments include methods for treating a pulmonary inflammation in a subject in which the methods include administering to the subject in need thereof an aerosol of a solution including levofloxacin or ofloxacin and a divalent or trivalent cation to achieve a reduction in the pulmonary concentration of one or more pro-inflammatory cytokines including IL-1β, IL-6 and IL-8, whereby the pulmonary inflammation is reduced or suppressed.
  • Some embodiments include methods for treating a pulmonary inflammation in a subject, wherein the pulmonary inflammation is induced by one or more mediators including TNFα and LPS, in which the methods include administering to the subject in need thereof an aerosol of a solution including levofloxacin or ofloxacin and a divalent or trivalent cation.
  • Some embodiments include methods for reducing the pulmonary concentration of a pro-inflammatory cytokine in a subject, in which the methods include administering to the subject in need thereof an aerosol of a solution including levofloxacin or ofloxacin and a divalent or trivalent cation, whereby the pulmonary concentration of the cytokine is reduced.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A shows a graph of IL-6 levels produced by NL20 cells in response to treatment with control, TNFα, and TNFα with levofloxacin, moxifloxacin, or ciprofloxacin. FIG. 1B shows a graph of IL-8 produced by NL20 cells in response to treatment with control, TNFα, and TNFα with levofloxacin, moxifloxacin, or ciprofloxacin.
  • FIG. 2A shows a graph of IL-6 levels produced by HBE135 cells in response to treatment with control, LPS, and LPS with levofloxacin, moxifloxacin, or ciprofloxacin. FIG. 2B shows a graph of IL-8 produced by HBE135 cells in response to treatment with control, LPS, and LPS with levofloxacin, moxifloxacin, or ciprofloxacin.
  • FIG. 3A shows a graph of percentage cell survival for NL20 cells treated with increasing concentrations of levofloxacin, moxifloxacin, or ciprofloxacin. FIG. 3B shows a graph of percentage cell survival for HBE135 cells treated with increasing concentrations of levofloxacin, moxifloxacin, or ciprofloxacin.
  • FIG. 4A shows a graph of relative IL-6 levels produced by NL20 cells treated with TNF-α in response to increasing concentrations of levofloxacin and levofloxacin formulated with MgCl2. FIG. 4B shows a graph of relative IL-8 levels produced by NL20 cells treated with TNF-α in response to increasing concentrations of levofloxacin and levofloxacin formulated with MgCl2. FIG. 4C shows a graph of relative IL-6 levels produced by HBE135 cells treated with LPS in response to increasing concentrations of levofloxacin and levofloxacin formulated with MgCl2. FIG. 4D shows a graph of relative IL-8 levels produced by HBE cells treated with LPS in response to increasing concentrations of levofloxacin and levofloxacin formulated with MgCl2.
  • FIG. 5A shows a graph of IL-6 levels produced by NL20 cells in response to treatment with control, TNF-α, and TNF-α with 10 μg/ml, 30 μg/ml, 100 μg/ml, or 300 μg/ml levofloxacin or tobramycin. FIG. 5B shows a graph of IL-8 levels produced by NL20 cells in response to treatment with control, TNFα, and TNFα with 10 μg/ml, 30 μg/ml, 100 μg/ml, or 300 μg/ml levofloxacin or tobramycin. Results are means±SD of three replicates. *P<0.005.
  • FIG. 6 shows a graph of IL-6 and IL-8 levels produced by HBE135 cells in response to treatment with LPS, and LPS with increasing concentrations of levofloxacin or tobramycin. IL-6 and IL-8 levels are shown relative to cells treated with LPS only (n=3). *P<0.05, cells treated with LPS and antibiotics compared to LPS only. **P<0.005, cells treated with LPS and antibiotics compared to LPS only.
  • FIG. 7A shows a graph of IL-1β levels in THP-1 cells treated with control; LPS; and 10 μg/ml, 30 μg/ml, 100 μg/ml, 300 μg/ml levofloxacin and LPS. FIG. 7B shows a graph of TNFα levels in THP-1 cells treated with control; LPS; and 10 μg/ml, 30 μg/ml, 100 μg/ml, 300 μg/ml levofloxacin and LPS. FIG. 7C shows a graph of IL-6 levels in THP-1 cells treated with control; LPS; and 10 μg/ml, 30 μg/ml, 100 μg/ml, 300 μg/ml levofloxacin and LPS. FIG. 7D shows a graph of IL-8 levels in THP-1 cells treated with control; LPS; and 10 μg/ml, 30 μg/ml, 100 μg/ml, 300 μg/ml levofloxacin and LPS. Cells were incubated with LPS alone or LPS with levofloxacin for 24 h. Cytokine concentration in cell media was determined by ELISA. The results were expressed as mean±SD (n=3). *P<0.05, cells treated with LPS and antibiotics compared to LPS only. **P<0.005, for cells treated with LPS and antibiotics compared to LPS only.
  • FIG. 8 shows a graph of the relative level of IL-8 mRNA in NL20 cells stimulated with control; TNFα; TNFα and 100 μg/ml levofloxacin; and TNFα and 100 μg/ml levofloxacin. Cells were seeded, serum-starved for 24 h and TNFα alone or TNFα with antibiotic were added and incubated for 24 h. Levels of mRNA were measured by real-time PCR. The results were expressed as means±SD of four replicates.
  • FIG. 9 shows shows a graph of the relative luciferase activity of a NFkB promoter construct in NL20 cells stimulated with control; TNFα; TNFα and 100 μg/ml levofloxacin; and TNFα and 100 μg/ml levofloxacin. Cells were transfected with the reporter plasmid, and after 24 h treated with TNFα alone or TNFα with antibiotics, then incubated for an additional 8 h. NFkB-dependent luciferase activity was measured using a commercial assay. The results were expressed as means±SD of six replicates.
  • FIG. 10A shows a graph of MIP-2 levels in BAL of mice treated with 60 mg/kg saline, 60 mg/kg levofloxacin formulated with MgCl2, or 60 mg/kg tobramycin. FIG. 10B shows a graph of IL-6 levels in BAL of mice treated with 60 mg/kg saline, 60 mg/kg levofloxacin formulated with MgCl2, or 60 mg/kg tobramycin.
  • DETAILED DESCRIPTION
  • The present invention relates to methods and compositions for the treatment of disorders and diseases associated with pulmonary inflammation. In particular, methods and compositions to reduce inflammation using aerosol levofloxacin or ofloxacin formulated with a divalent or trivalent cation are provided. Some embodiments include treating acute or chronic inflammation of the lung or the upper airway by topically administering aerosol levofloxacin or ofloxacin formulated with a divalent or trivalent cation directly to the inflammation site.
  • Damage to the lungs and subsequent decline in pulmonary function that occurs in chronic inflammation is mediated primarily by neutrophil tissue infiltration that induces subsequent damage through the release of various hydrolytic and oxidative enzymes. This inflammatory cascade at the mucosal surface is mediated by bacteria producing lipopolysacchararide (LPS), and the LPS inducing TNFα release from macrophages or directly at the lung epithelial surface. Release of both TNFα, as well as inflammatory cytokines, for example IL-8 and IL-6, results in neutrophil activation and chemotaxis. While bacterial infections plays a large role in the inflammatory process, it is also believed that impaired chloride secretion in cystic fibrosis or other diseases is also partially responsible for increased cytokine levels (Perez A. et al, Am J. Physiol. Lung Cell Mol Physiol (2007) 292:383-395, incorporated by reference in its entirety).
  • It has been discovered that topical administration of levofloxacin formulated with divalent or trivalent cations can significantly decrease the level of cytokine and chemokine production in vitro and in vivo. Such decreases in the levels of pro-inflammatory cytokines may produce a reduction in neutrophil-mediated inflammations. Examples of pro-inflammatory cytokines include IL-1, IL-6, IL-7, and IL-8. High concentrations of levofloxacin can be administered to the lungs and upper airways by inhalation. Surprisingly, formulations of levofloxacin with divalent or trivalent cations have greater availability in the lungs compared to formulations of levofloxacin only. Accordingly, the present invention relates to methods and compositions for reducing inflammation in the lungs and upper airway by administration of aerosolized fluoroquinolones, such as levofloxacin, formulated with divalent or trivalent cations, such as Mg2+.
  • Therapeutic approaches for decreasing chronic inflammation are a viable strategy to improve lung function in CF and COPD patients. Anti-inflammatory properties of non-steroidal anti-inflammatory drugs (NSAID) (e.g., ibuprofen) and azithromycin have been associated with benefits in certain CF patient subgroups (Flume P A, et al. Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med 2007; 176:957-969, incorporated by reference in its entirety). In addition, the antibiotic erythromycin reduces the incidence of pulmonary exacerbations in COPD patients (Seemungal T A, et al. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med 2008; 178:1139-1147, incorporated by reference in its entirety). The efficacy of azithromycin and erythromycin in these settings are likely due in large part to immunomodulatory and anti-inflammatory effects rather than antibacterial effects.
  • Some fluoroquinolones may have an immunomodulatory activity as well as an anti-bacterial activity. These activities may be distinct and only apparent in vivo at concentrations that are also cytotoxic. Some fluoroquinolones may affect their immunomodulatory activity through various signaling pathways that relate to the production and secretion of various cytokines and chemokines. However, not all fluoroquinolones show immunomodulatory activity. Moreover, different fluoroquinolones illicit different responses, such as the induction or inhibition of particular cytokines and chemokines. The immunomodulatory activity may also depend on cell type, immune stimulant, and concentration of the fluoroquinolone. For example, fluoroquinolones such as moxifloxacin and grepafloxacin, but not ciprofloxacin, can inhibit secretion of pro-inflammatory factor such as IL-8, IL-6, ERK1/2, MK, and NFκB in human lung epithelia cells (Blau, H., K. et al. 2007. Moxifloxacin but not ciprofloxacin or azithromycin selectively inhibits IL-8, IL-6, ERK1/2, MK, and NF-kappaB activation in a cystic fibrosis epithelial cell line. Am J Physiol Lung Cell Mol Physiol 292:L343-52; Donnarumma, G., I. et al. 2007. Anti-inflammatory effects of moxifloxacin and human beta-defensin 2 association in human lung epithelial cell line (A549) stimulated with lipopolysaccharide. Peptides 28:2286-92; Hashimoto, S., K. et al. 2000. Grepafloxacin inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in human airway epithelial cells. Life Sci 66:PL 77-82, incorporated by reference in their entireties). However, in all studies cells were treated with antibiotic concentrations less than 50 μg/ml, which corresponds to serum drug concentrations that may be attained after systemic dosing.
  • Levofloxacin inhibits TNF-α and IFNγ production in tonsillar lymphocytes at 50 mg/L, and IL-8 production at 5 mg/L. In addition, levofloxacin inhibits RANTES-release in nasal epithelial cells from patients of nasal polyposis. However, the inhibitory activity of levofloxacin on the production of pro-inflammatory factors is much lower than that for other fluoroquinolones such as ciprofloxacin and moxifloxacin. For example, the inhibitory activity of levofloxacin on the production of pro-inflammatory factors such as TNF-α, IL-1 and IL-8 requires 100 mg/L levofloxacin.
  • As described herein, immortalized human airway epithelia cells retain certain features of airway epithelium and have been extensively used to characterize immunomodulatory effects of other antibiotics (Blau H, et al. Moxifloxacin but not ciprofloxacin or azithromycin selectively inhibits IL-8, IL-6, ERK1/2, MK, and NF-kappaB activation in a cystic fibrosis epithelial cell line. Am J Physiol Lung Cell Mol Physiol 2007; 292:L343-352; and Donnarumma G, et al. Anti-inflammatory effects of moxifloxacin and human beta-defensin 2 association in human lung epithelial cell line (A549) stimulated with lipopolysaccharide. Peptides 2007; 28:2286-2292, incorporated by reference in their entireties). IL-6 and IL-8 production in those cells can be strongly induced by TNFα or by bacterial LPS that is present in high concentrations in lung fluids of CF and COPD patients (Sagel S D, et al. Sputum biomarkers of inflammation in cystic fibrosis lung disease. Proc Am Thorac Soc 2007; 4:406-417, incorporated by reference in its entirety). Both IL-6 and IL-8 are of high importance in regulating inflammatory response in CF lungs, with latter having the strongest potential to induce neutrophil chemotaxis (Strieter R M. Interleukin-8: a very important chemokine of the human airway epithelium. Am J Physiol Lung Cell Mol Physiol 2002; 283:L688-689, incorporated by reference in its entirety). It has been discovered that levofloxacin produces a dose-dependent reduction of TNFα- and LPS-induced IL-6 and IL-8 levels in cultured human airway epithelia cells. Levofloxacin also decreases LPS-induced IL-1β, IL-6 and IL-8 production in human monocytic cells. In addition, levofloxacin reduces IL-6 and IL-8 production in vivo.
  • Definitions
  • The term “administration” or “administering” refers to a method of giving a dosage of an anti-inflammatory pharmaceutical composition to a vertebrate. The preferred method of administration can vary depending on various factors, e.g., the components of the pharmaceutical composition, the site of the inflammation, and the severity of an actual inflammation.
  • A “carrier” or “excipient” is a compound or material used to facilitate administration of the compound, for example, to increase the solubility of the compound. Solid carriers include, e.g., starch, lactose, dicalcium phosphate, sucrose, and kaolin. Liquid carriers include, e.g., sterile water, saline, buffers, non-ionic surfactants, and edible oils such as oil, peanut and sesame oils. In addition, various adjuvants such as are commonly used in the art may be included. These and other such compounds are described in the literature, e.g., in the Merck Index, Merck & Company, Rahway, N.J. Considerations for the inclusion of various components in pharmaceutical compositions are described, e.g., in Gilman et al. (Eds.) (1990); Goodman and Gilman's: The Pharmacological Basis of Therapeutics, 8th Ed., Pergamon Press, incorporated by reference herein in its entirety.
  • The term “mammal” is used in its usual biological sense. Thus, it specifically includes humans, cattle, horses, dogs, and cats, but also includes many other species.
  • The term “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
  • The term “pharmaceutically acceptable salt” refers to salts that retain the biological effectiveness and properties of the compounds of this invention and, which are not biologically or otherwise undesirable. In many cases, the compounds of this invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto. Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids. Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, naphtoic acid, oleic acid, palmitic acid, pamoic (emboic) acid, stearic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, ascorbic acid, glucoheptonic acid, glucuronic acid, lactic acid, lactobioic acid, tartaric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like. Pharmaceutically acceptable base addition salts can be formed with inorganic and organic bases. Inorganic bases from which salts can be derived include, for example, sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like; particularly preferred are the ammonium, potassium, sodium, calcium and magnesium salts. Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, specifically such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, histidine, arginine, lysine, benethamine, N-methyl-glucamine, and ethanolamine. Other acids include dodecylsufuric acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, and saccharin.
  • “Solvate” refers to the compound formed by the interaction of a solvent and fluoroquinolone antimicrobial, a metabolite, or salt thereof. Suitable solvates are pharmaceutically acceptable solvates including hydrates.
  • By “therapeutically effective amount” or “pharmaceutically effective amount” is meant a fluoroquinolone anti-inflammatory agent, as disclosed for this invention, which has a therapeutic effect. The doses of fluoroquinolone anti-inflammatory agent which are useful in treatment are therapeutically effective amounts. Thus, as used herein, a therapeutically effective amount means those amounts of fluoroquinolone anti-inflammatory agent which produce the desired therapeutic effect as judged by clinical trial results and/or model animal anti-inflammatory studies. In particular embodiments, the fluoroquinolone anti-inflammatory agent are administered in a pre-determined dose, and thus a therapeutically effective amount would be an amount of the dose administered. This amount and the amount of the fluoroquinolone anti-inflammatory agent can be routinely determined by one of skill in the art, and will vary, depending on several factors, such as the particular inflammation involved, for example, the site of inflammation, the severity of inflammation. This amount can further depend upon the patient's height, weight, sex, age and medical history. For prophylactic treatments, a therapeutically effective amount is that amount which would be effective to prevent a particular inflammation.
  • A “therapeutic effect” relieves, to some extent, one or more of the symptoms of the inflammation, and includes curing an inflammation. “Curing” means that the symptoms of inflammation are eliminated. However, certain long-term or permanent effects of the inflammation may exist even after a cure is obtained (such as extensive tissue damage). As used herein, a “therapeutic effect” is defined as a statistically significant reduction in an inflammation, emergence of inflammation, or improvement in inflammation symptoms as measured by human clinical results or animal studies.
  • “Treat,” “treatment,” or “treating,” as used herein refers to administering a pharmaceutical composition for prophylactic and/or therapeutic purposes. The term “prophylactic treatment” refers to treating a patient who is not yet having an inflammation, but who is susceptible to, or otherwise at risk of, a particular inflammation such that there is a reduced onset of an inflammation. The term “therapeutic treatment” refers to administering treatment to a patient already suffering from an inflammation. Thus, in preferred embodiments, treating is the administration to a mammal (either for therapeutic or prophylactic purposes) of therapeutically effective amounts of a fluoroquinolone anti-inflammatory agent.
  • The term “dosing interval” refers to the time between administrations of the two sequential doses of a pharmaceutical's during multiple dosing regimens. For example, in the case of orally administered ciprofloxacin, which is administered twice daily (traditional regimen of 400 mg b.i.d) and orally administered levofloxacin, which is administered once a day (500 mg or 750 mg q.d.), the dosing intervals are 12 hours and 24 hours, respectively.
  • As used herein, the “peak period” of a pharmaceutical's in vivo concentration is defined as that time of the pharmaceutical dosing interval when the pharmaceutical concentration is not less than 50% of its maximum plasma or site-of-inflammation concentration. In some embodiments, “peak period” is used to describe an interval of anti-inflammatory dosing.
  • The “respirable delivered dose” is the amount of drug inhaled during the inspiratory phase of the breath simulator that is equal to or less than 5 microns using a simulator programmed to the European Standard pattern of 15 breaths per minute, with an inspiration to expiration ratio of 1:1.
  • As used herein “pulmonary concentration” can include the concentration of a substance in the lung of a subject, the concentration of a substance in the sputum of a subject, and/or the concentration of a substance in the bronchial alveoial lavage of a subject. As will be understood, “pulmonary concentration” can be measured by various methods.
  • Methods of Treatment or Prophylaxis
  • In some embodiments, a method is provided for treating an inflammation in an animal, specifically including in a mammal, by treating an animal suffering from such an inflammation with a fluoroquinolone anti-inflammatory agent formulated with a divalent or trivalent cation and having improved pulmonary availability. In some embodiments, fluoroquinolone anti-inflammatory agents may be administered following aerosol formation and inhalation. Thus, this method of treatment is especially appropriate for the treatment of pulmonary inflammations that are difficult to treat using an anti-inflammatory agent delivered parenterally due to the need for high parenteral dose levels (which can cause undesirable side effects), or due to lack of any clinically effective anti-inflammatory agents. In one such embodiment, this method may be used to administer a fluoroquinolone anti-inflammatory agent directly to the site of inflammation. Such a method may reduce systemic exposure and maximizes the amount of anti-inflammatory agent to the site of inflammation.
  • In some embodiments, the aerosol fluoroquinolone therapy may be administered as a treatment or prophylaxis in combination or alternating therapeutic sequence with other aerosol, oral or parenteral antibiotics. By non-limiting example this may include aerosol tobramycin and/or other aminoglycoside, aerosol aztreonam and/or other beta- or mono-bactam, carbapenems, aerosol ciprofloxacin and/or other fluoroquinolones, aerosol azithromycin and/or other macrolides or ketolides, tetracycline and/or other tetracyclines, quinupristin and/or other streptogramins, linezolid and/or other oxazolidinones, vancomycin and/or other glycopeptides, erythromycin, and chloramphenicol and/or other phenicols, and colisitin and/or other polymyxins.
  • In addition, compositions and methods provided herein can include the aerosol fluoroquinolone therapy administered as a treatment or prophylaxis in combination or alternating therapeutic sequence with an additional active agent. As discussed above, some such additional agents can include antibiotics. More additional agents can include bronchodilators, anticholinergics, glucocorticoids, eicosanoid inhibitors, and combinations thereof. Examples of bronchodilators include salbutamol, levosalbuterol, terbutaline, fenoterol, terbutlaine, pirbuterol, procaterol, bitolterol, rimiterol, carbuterol, tulobuterol, reproterol, salmeterol, formoterol, arformoterol, bambuterol, clenbuterol, indacterol, theophylline, roflumilast, cilomilast. Examples of anticholinergics include ipratropium, and tiotropium. Examples of glucocorticoids include prednisone, fluticasone, budesonide, mometasone, ciclesonide, and beclomethasone. Examples of eicosanoids include montelukast, pranlukast, zafirlukast, zileuton, ramatroban, and seratrodast. More additional agents can include pulmozyme, hypertonic saline, agents that restore chloride channel function in CF, inhaled beta-agonists, inhaled antimuscarinic agents, inhaled corticosteroids, and inhaled or oral phosphodiesterase inhibitors. More additional agents can include CFTR modulators, for example, VX-770, atluren, VX-809. More additional agents can include agents to restore airway surface liquid, for example, denufosol, mannitol, GS-9411, and SPI-8811 More additional agents can include anti-inflammatory agents, for example, ibuprofen, sildenafil, and simavastatin. More additional agent include anti-inflammatory agents. Examples of anti-inflammatory agents include steroidal and non-steriodal anti-inflammatory agent. Examples of steroidal anti-inflammatory agents include 21-acetoxypregnenolone, alclometasone, algestone, amcinonide, beclomethasone, betamethasone, chloroprednisone, ciclesonide, clobetasol, clobetasone, clocortolone, cloprednol, corticosterone, cortisone, cortivazol, deflazacort, desciclesonide, desonide, desoximetasone, dexamethasone, diflorasone, diflucortolone, difluprednate, enoxolone, fluazacort, flucloronide, flumethasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin butyl, fluocortolone, fluorometholone, fluperolone acetate, fluprednidene acetate, fluprednisolone, flurandrenolide, fluticasone propionate, formocortal, halcinonide, halobetasol propionate, halometasone, halopredone acetate, hydrocortamate, hydrocortisone, loteprednol etabonate, mazipredone, medrysone, meprednisone, methylprednisolone, mometasone furoate, paramethasone, prednicarbate, prednisolone, prednisolone 25-diethylamino-acetate, prednisolone sodium phosphate, prednisone, prednival, prednylidene, rimexolone, tixocortol, triamcinolone, triamcinolone acetonide, triamcinolone benetonide, triamcinolone hexacetonide, any of their derivatives, analogues, and combinations thereof. Examples of nonsteriodal anti-inflammatory agents include COX inhibitors (COX-1 or COX nonspecific inhibitors) (e.g., salicylic acid derivatives, aspirin, sodium salicylate, choline magnesium trisalicylate, salsalate, diflunisal, sulfasalazine and olsalazine; para-aminophenol derivatives such as acetaminophen; indole and indene acetic acids such as indomethacin and sulindac; heteroaryl acetic acids such as tolmetin, dicofenac and ketorolac; arylpropionic acids such as ibuprofen, naproxen, flurbiprofen, ketoprofen, fenoprofen and oxaprozin; anthranilic acids (fenamates) such as mefenamic acid and meloxicam; enolic acids such as the oxicams (piroxicam, meloxicam) and alkanones such as nabumetone) and selective COX-2 inhibitors (e.g., diaryl-substituted furanones such as rofecoxib; diaryl-substituted pyrazoles such as celecoxib; indole acetic acids such as etodolac and sulfonanilides such as nimesulide).
  • Pharmaceutical Compositions
  • For purposes of the method described herein, a fluoroquinolone anti-inflammatory agent formulated with a divalent or trivalent cation having improved pulmonary availability may be administered using an inhaler. In some embodiments, a fluoroquinolone anti-inflammatory agent disclosed herein is produced as a pharmaceutical composition suitable for aerosol formation, good taste, storage stability, and patient safety and tolerability. In some embodiments, the isoform content of the manufactured fluoroquinolone may be optimized for tolerability, anti-inflammatory activity and stability.
  • Formulations can include a divalent or trivalent cation. The divalent or trivalent cation can include, for example, magnesium, calcium, zinc, copper, aluminum, and iron. In some embodiments, the solution comprises magnesium chloride, magnesium sulfate, zinc chloride, or copper chloride. In some embodiments, the divalent or trivalent cation concentration can be from about 25 mM to about 400 mM, from about 50 mM to about 400 mM, from about 100 mM to about 300 mM, from about 100 mM to about 250 mM, from about 125 mM to about 250 mM, from about 150 mM to about 250 mM, from about 175 mM to about 225 mM, from about 180 mM to about 220 mM, and from about 190 mM to about 210 mM. In some embodiments, the chloride concentration can be from about 25 mM to about 800 mM, from about 50 mM to about 400 mM, from about 100 mM to about 300 mM, from about 100 mM to about 250 mM, from about 125 mM to about 250 mM, from about 150 mM to about 250 mM, from about 175 mM to about 225 mM, from about 180 mM to about 220 mM, and from about 190 mM to about 210 mM. In some embodiments, the magnesium chloride, magnesium sulfate, zinc chloride, or copper chloride can have a concentration from about 5% to about 25%, from about 10% to about 20%, and from about 15% to about 20%. In some embodiments, the ratio of fluoroquinolone to divalent or trivalent cation can be 1:1 to 2:1 or 1:1 to 1:2.
  • Non-limiting fluoroquinolones for use as described herein include levofloxacin, ofloxacin, ciprofloxacin, enoxacin, gatifloxacin, gemifloxacin, lomefloxacin, moxifloxacin, norfloxacin, pefloxacin, sparfloxacin, garenoxacin, sitafloxacin, and DX-619.
  • The formulation can have a fluoroquinolone concentration, for example, levofloxacin or ofloxacin, greater than about 50 mg/ml, about 60 mg/ml, about 70 mg/ml, about 80 mg/ml, about 90 mg/ml, about 100 mg/ml, about 110 mg/ml, about 120 mg/ml, about 130 mg/ml, about 140 mg/ml, about 150 mg/ml, about 160 mg/ml, about 170 mg/ml, about 180 mg/ml, about 190 mg/ml, and about 200 mg/ml. In some embodiments, the formulation can have a fluoroquinolone concentration, for example, levofloxacin or ofloxacin, from about 50 mg/ml to about 200 mg/ml, from about 75 mg/ml to about 150 mg/ml, from about 80 mg/ml to about 125 mg/ml, from about 80 mg/ml to about 120 mg/ml, from about 90 mg/ml to about 125 mg/ml, from about 90 mg/ml to about 120 mg/ml, and from about 90 mg/ml to about 110 mg/ml.
  • The formulation can have an osmolality from about 300 mOsmol/kg to about 500 mOsmol/kg, from about 325 mOsmol/kg to about 450 mOsmol/kg, from about 350 mOsmol/kg to about 425 mOsmol/kg, and from about 350 mOsmol/kg to about 400 mOsmol/kg. In some embodiments, the osmolality of the formulation is greater than about 300 mOsmol/kg, about 325 mOsmol/kg, about 350 mOsmol/kg, about 375 mOsmol/kg, about 400 mOsmol/kg, about 425 mOsmol/kg, about 450 mOsmol/kg, about 475 mOsmol/kg, and about 500 mOsmol/kg.
  • The formulation can have a pH from about 4.5 to about 8.5, from about 5.0 to about 8.0, from about 5.0 to about 7.0, from about 5.0 to about 6.5, from about 5.5 to about 6.5, and from 6.0 to about 6.5.
  • The formulation can comprise a conventional pharmaceutical carrier, excipient or the like (e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like), or auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like (e.g., sodium acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine acetate, triethanolamine oleate, and the like). In some embodiments, the formulation can lack a conventional pharmaceutical carrier, excipient or the like. Some embodiments include a formulation lacking lactose. Some embodiments comprise lactose at a concentration less than about 10%, 5%, 1%, or 0.1%. In some embodiments, the formulation can consist essentially of levofloxacin or ofloxacin and a divalent or trivalent cation.
  • In some embodiments, a formulation can comprise a levofloxacin concentration between about 75 mg/ml to about 150 mg/ml, a magnesium chloride concentration between about 150 mM to about 250 mM, a pH between about 5 to about 7; an osmolality of between about 300 mOsmol/kg to about 500 mOsmol/kg, and lacks lactose.
  • In some embodiments, a formulation comprises a levofloxacin concentration about 100 mg/ml, a magnesium chloride concentration about 200 mM, a pH about 6.2 an osmolality about 383 mOsmol/kg, and lacks lactose. In some embodiments, a formulation consists essentially of a levofloxacin concentration about 100 mg/ml, a magnesium chloride concentration about 200 mM, a pH about 6.2 an osmolality about 383 mOsmol/kg, and lacks lactose. In some embodiments, a formulation consists of a levofloxacin concentration about 100 mg/ml, a magnesium chloride concentration about 200 mM, a pH about 6.2 an osmolality about 383 mOsmol/kg, and lacks lactose.
  • Administration
  • The fluoroquinolone anti-inflammatory agents formulated with divalent or trivalent cations and having improved pulmonary availability may be administered at a therapeutically effective dosage, e.g., a dosage sufficient to provide treatment for the disease states previously described. The amount of active compound administered will, of course, be dependent on the subject and disease state being treated, the severity of the inflammation, the manner and schedule of administration and the judgment of the prescribing physician; for example, a likely dose range for aerosol administration of levofloxacin would be about 20 to 300 mg per day, the active agents being selected for longer or shorter pulmonary half-lives, respectively. In some embodiments, a likely dose range for aerosol administration of levofloxacin would be about 20 to 300 mg BID (twice daily).
  • Administration of the fluoroquinolone antimicrobial agents disclosed herein or the pharmaceutically acceptable salts thereof can be via any of the accepted modes of administration for agents that serve similar utilities including, but not limited to, aerosol inhalation. Methods, devices and compositions for delivery are described in U.S. Patent Application Publication No. 2006/0276,483, incorporated by reference in its entirety.
  • Pharmaceutically acceptable compositions include solid, semi-solid, liquid and aerosol dosage forms, such as, for example, powders, liquids, suspensions, complexations, liposomes, particulates, or the like. Preferably, the compositions are provided in unit dosage forms suitable for single administration of a precise dose.
  • The fluoroquinolone anti-inflammatory agent can be administered either alone or in some alternatives, in combination with a conventional pharmaceutical carrier, excipient or the like (e.g., mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, sodium crosscarmellose, glucose, gelatin, sucrose, magnesium carbonate, and the like). If desired, the pharmaceutical composition can also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents and the like (e.g., sodium acetate, sodium citrate, cyclodextrin derivatives, sorbitan monolaurate, triethanolamine acetate, triethanolamine oleate, and the like). Generally, depending on the intended mode of administration, the pharmaceutical formulation will contain about 0.005% to 95%, preferably about 0.5% to 50% by weight of a compound of the invention. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa.
  • In one preferred embodiment, the compositions will take the form of a unit dosage form such as vial containing a liquid, solid to be suspended, dry powder, lyophilate, or other composition and thus the composition may contain, along with the active ingredient, a diluent such as lactose, sucrose, dicalcium phosphate, or the like; a lubricant such as magnesium stearate or the like; and a binder such as starch, gum acacia, polyvinylpyrrolidine, gelatin, cellulose, cellulose derivatives or the like.
  • Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, etc. an active compound as defined above and optional pharmaceutical adjuvants in a carrier (e.g., water, saline, aqueous dextrose, glycerol, glycols, ethanol or the like) to form a solution or suspension. Solutions to be aerosolized can be prepared in conventional forms, either as liquid solutions or suspensions, as emulsions, or in solid forms suitable for dissolution or suspension in liquid prior to aerosol production and inhalation. The percentage of active compound contained in such aerosol compositions is highly dependent on the specific nature thereof, as well as the activity of the compound and the needs of the subject. However, percentages of active ingredient of 0.01% to 90% in solution are employable, and will be higher if the composition is a solid, which will be subsequently diluted to the above percentages. In some embodiments, the composition will comprise 1.0%-50.0% of the active agent in solution.
  • Compositions described herein can be administered with a frequency of about 1, 2, 3, 4, or more times daily, 1, 2, 3, 4, 5, 6, 7 or more times weekly, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more times monthly. In particular embodiments, the compositions are administered twice daily.
  • Aerosol delivery
  • For pulmonary administration, the upper airways are avoided in favor of the middle and lower airways. Pulmonary drug delivery may be accomplished by inhalation of an aerosol through the mouth and throat. Particles having a mass median aerodynamic diameter (MMAD) of greater than about 5 microns generally do not reach the lung; instead, they tend to impact the back of the throat and are swallowed and possibly orally absorbed. Particles having diameters of about 2 to about 5 microns are small enough to reach the upper- to mid-pulmonary region (conducting airways), but are too large to reach the alveoli. Smaller particles, i.e., about 0.5 to about 2 microns, are capable of reaching the alveolar region. Particles having diameters smaller than about 0.5 microns can also be deposited in the alveolar region by sedimentation, although very small particles may be exhaled.
  • In one embodiment, a nebulizer is selected on the basis of allowing the formation of an aerosol of a fluoroquinolone anti-inflammatory agent disclosed herein having an mMAD predominantly between about 2 to about 5 microns. In one embodiment, the delivered amount of fluoroquinolone anti-inflammatory agent provides a therapeutic effect for respiratory infections. The nebulizer can deliver an aerosol comprising a mass median aerodynamic diameter from about 2 microns to about 5 microns with a geometric standard deviation less than or equal to about 2.5 microns, a mass median aerodynamic diameter from about 2.5 microns to about 4.5 microns with a geometric standard deviation less than or equal to about 1.8 microns, and a mass median aerodynamic diameter from about 2.8 microns to about 4.3 microns with a geometric standard deviation less than or equal to about 2 microns. In some embodiments, the aerosol can be produced a jet nebulizer. In some embodiments, the aerosol can be produced using a vibrating mesh nebulizer. An example of a vibrating mesh nebulizer includes the PART E-FLOW® nebulizer. More examples of nebulizers are provided in U.S. Pat. Nos. 4,268,460; 4,253,468; 4,046,146; 3,826,255; 4,649,911; 4,510,929; 4,624,251; 5,164,740; 5,586,550; 5,758,637; 6,644,304; 6,338,443; 5,906,202; 5,934,272; 5,960,792; 5,971,951; 6,070,575; 6,192,876; 6,230,706; 6,349,719; 6,367,470; 6,543,442; 6,584,971; 6,601,581; 4,263,907; 5,709,202; 5,823,179; 6,192,876; 6,644,304; 5,549,102; 6,083,922; 6,161,536; 6,264,922; 6,557,549; and 6,612,303 all of which are hereby incorporated by reference in their entireties. More commercial examples of nebulizers that can be used with the formulations described herein include Respirgard II®, Aeroneb®, Aeroneb® Pro, and Aeroneb® Go produced by Aerogen; AERx® and AERx Essence™ produced by Aradigm; Porta-Neb®, Freeway Freedom™, Sidestream, Ventstream and I-neb produced by Respironics, Inc.; and PAM LC-Plus®, PAM LC-Star®, produced by PAM, GmbH. By further non-limiting example, U.S. Pat. No. 6,196,219, is hereby incorporated by reference in its entirety.
  • The amount of levofloxacin or ofloxacin that can be administered to the lungs can include at least about 20 mg, about 30 mg, about 40 mg, about 50 mg, about 60 mg, about 70 mg, about 80 mg, about 90 mg, about 100 mg, about 110 mg, about 120 mg, about 125 mg, about 130 mg, about 140 mg, about 150 mg, about 160 mg, about 170 mg, about 180 mg, about 190 mg, about 200 mg, about 210 mg, about 220 mg, about 230 mg, about 240 mg, about 250 mg, about 260 mg, about 270 mg, about 280 mg, about 290 mg, about 300 mg, about 310 mg, about 320 mg, about 330 mg, about 340 mg, about 350 mg, about 460 mg, about 470 mg, about 480 mg, about 490 mg, about 500 mg, about 510 mg, about 520 mg, about 530 mg, about 540 mg, about 550 mg, about 560 mg, about 570 mg, about 580 mg, about 590 mg, about 600 mg, about 610 mg, about 620 mg, about 630 mg, about 640 mg, about 650 mg, about 660 mg, about 670 mg, about 680 mg, about 690 mg, about 700 mg, about 710 mg, about 720 mg, about 730 mg, about 740 mg, about 750 mg, about 760 mg, about 770 mg, about 780 mg, about 790 mg, and about 800 mg.
  • The aerosol can be administered to the lungs in less than about 120 minutes, about 100 minutes, about 90 minutes, about 80 minutes, about 70 minutes, about 60 minutes, about 20 minutes, about 10 minutes, about 5 minutes, about 4 minutes, about 3 minutes, about 2 minutes, and about 1 minute.
  • Indications
  • Some embodiments of the methods and compositions described herein relate to treating particular disorders and diseases associated inflammation. In particular embodiments, the inflammation can be acute or chronic inflammation of the lung or the upper airway. As used herein “pulmonary inflammation” can refer to acute or chronic inflammation of at least a portion of the respiratory tract, such as the lungs and upper airway. Examples of such disorders and diseases associated with pulmonary inflammation can include asthma, cystic fibrosis, pulmonary fibrosis, chronic bronchitis, bronchiectasis, chronic granulomatous disease, sinusitis, chronic obstructive pulmonary disease, and pneumonia.
  • Some embodiments include methods to achieve a reduction in pulmonary inflammation. A reduction can include reducing the signs and symptoms of a pulmonary inflammation. In some embodiments, methods include achieving a reduction in the levels of pro-inflammatory cytokines in the lungs. A reduction in the levels of pro-inflammatory cytokines in the lungs can be measured by various methods, such as a reduction in the levels of pro-inflammatory cytokines in sputum and/or BAL. In some embodiments, methods include achieving a reduction in the levels of IL-1β, IL-6, and IL-8 in the lungs.
  • EXAMPLES
  • Example 1
  • In Vitro Activity of Levofloxacin, Ciprofloxacin and Moxifloxacin at Low Concentrations on IL-6 and IL-8 Production
  • NL20 cells and HBE135 cells are immortalized human airway epithelial cells that retain certain features of airway epithelium and have been extensively used to characterize immunomodulatory effects of other antibiotics (Blau H, et al. Moxifloxacin but not ciprofloxacin or azithromycin selectively inhibits IL-8, IL-6, ERK1/2, JNK, and NF-kappaB activation in a cystic fibrosis epithelial cell line. Am J Physiol Lung Cell Mol Physiol 2007; 292:L343-352; and Donnarumma G, et al. Anti-inflammatory effects of moxifloxacin and human beta-defensin 2 association in human lung epithelial cell line (A549) stimulated with lipopolysaccharide. Peptides 2007; 28:2286-2292, incorporated by reference in their entireties). IL-6 and IL-8 production in the NL20 and HBE135 cells was induced by adding TNFα or Lipopolysaccharide (LPS) from Pseudomonas aeruginosa, respectively. The effect of antibiotics on cytokine levels was assessed by ELISA assay.
  • NL20 cells were maintained in Ham's F12 medium with 2 mM L-glutamine, 0.1 mM nonessential amino acids, 5 μg/ml insulin, 10 ng/ml epidermal growth factor, 1 μg/ml transferrin, 500 ng/ml hydrocortisone and 4% FBS. HBE135 cells were routinely grown in keratinocyte-serum free medium with 5 ng/ml of human recombinant EGF and 0.05 mg/ml of bovine pituitary extract (Invitrogen, San Diego, Calif.) supplemented with 5 μg/ml insulin and 500 ng/ml hydrocortisone.
  • NL20 cells were seeded on 24-well tissue culture plates at 2×104 cell/ml. The day after seeding, cells received normal growth medium without serum for an additional 24 h. The same serum-free media was used for all subsequent treatments of NL20 cells. IL-6 and IL-8 production in NL20 monolayers was induced by treatment with 10 ng/ml of TNFα. HBE135 Cells were aliquoted into 24-well tissue culture plates at 1×105 cells/ml and were used for cytokine production experiments approximately 24 hours after plating without additional media changes. IL-6 and IL-8 production in HBE135 cells was induced by treatment with 5 μg/ml of LPS from P. aeruginosa. After 48 h, cell medium was collected, clarified and the amount of IL-6 and IL-8 released into the medium was quantified using QuantiGlo chemiluminescent ELISA kits (R&D Systems, Minneapolis, Minn.). To test the effect of antibiotics on IL-6 and IL-8 secretion, antibiotics were added to culture media along with LPS or TNF-α and processed as described above.
  • TNF-α induced a several-fold increase in IL-6 and IL-8 production in NL20 cells (FIGS. 1A and 1B). LPS induced an increase in the level of IL-8 in HBE135 cells (FIG. 2B). In NL20 cells treated with 10 μg/ml and 30 μg/ml levofloxacin, moxifloxacin or ciprofloxacin, IL-8 levels were reduced by approximately 20-30% (FIGS. 1A and 1B). No significant change in IL-6 levels was observed in cells treated with levofloxacin or ciprofloxacin. However, in NL20 cells treated with 30 μg/ml ciprofloxacin, an increase in IL-6 levels was observed. FIGS. 2A and 2B show the levels of IL-6 and IL-8 in cells. In HBE135 cells treated with 10 μg/ml and 30 μg/ml levofloxacin, moxifloxacin or ciprofloxacin. This experiment shows that low concentrations of levofloxacin can reduce the levels of IL-8 in HBE135 cells stimulated with LPS.
  • Example 2 In Vitro Ccytotoxicity of Levofloxacin, Ciprofloxacin and Moxifloxacin
  • The cytotoxicity of levofloxacin, moxifloxacin and ciprofloxacin on NL20 and HBE135 cell lines were measured using an Alamar Blue assay. After 48 hour incubation with the antibiotic, cells were incubated in fresh growth media containing 5% Alamar Blue dye and fluorescence was recorded at 0 h and 4 h to assess antibiotic cytotoxicity. Higher levofloxacin concentrations were less cytotoxic to either NL20 or HBE135 cells compared to moxifloxacin and ciprofloxacin (FIGS. 3A and 3B). Moxifloxacin and ciprofloxacin were significantly cytotoxic to NL20 cells at 300 μg/ml.
  • Example 3 In Vitro Activity of Levofloxacin on IL-6 and IL-8 Production
  • NL20 cells induced with TNFα and HBE135 cells induced with LPS were treated with 300 μg/ml levofloxacin or 300 μg/ml levofloxacin formulated with MgCl2. An approximate 10-fold and 5-fold reduction in IL-6 and IL-8 levels, respectively, was observed in NL20 cells treated with 300 μg/ml levofloxacin or 300 μg/ml levofloxacin formulated with MgCl2. (FIGS. 4A and 4B). In addition, reductions in IL-6 and IL-8 levels were observed in HBE cells treated with 300 μg/ml levofloxacin or 300 μg/ml levofloxacin formulated with MgCl2 (FIGS. 4C and 4D). Levofloxacin and levofloxacin formulated with MgCl2 had similar activity in vitro.
  • Example 5 In Vitro Activity of Levofloxacin and Tobramycin
  • TNFα-induced NL20 cells and LPS-induced HBE135 cells were treated with 10-300 μg/ml levofloxacin, or tobramycin. No significant changes in cell viability in cytotoxicity assays were observed between any treatment (data not shown).
  • In NL20 cells treated with 10 ng/ml TNFα, an increase in IL-6 production from 3.4±0.2 pg/ml to 40.3±2.3 pg/ml was observed (FIG. 5A). IL-8 production increased from 3.3±0.2 pg/ml to 197.3±28.9 pg/ml (FIG. 5B). Incubation of NL20 cells with 5 μg/ml LPS did not produce significant increases in either IL-6 or IL-8 production (data not shown). The addition of 10 μg/ml or 30 μg/ml levofloxacin did not significantly change the level of IL-6 and IL-8 produced by NL20 cells. However, 100 μg/ml and 300 μg/ml levofloxacin resulted in 2- to 4-fold reductions in IL-6 levels, respectively (p<0.005) (FIG. 5A). Levels of IL-8 decreased by 50% and 60% in NL20 cells treated with 100 μg/ml and 300 μg/ml levofloxacin, respectively (p<0.005) (FIG. 5B). 10 μg/ml to 100 μg/ml tobramycin did not significantly affect production of IL-6 or IL-8 (FIGS. 5A and 5B). However, 300 μg/ml tobramycin produced an increase in IL-6 production (FIG. 5A). Thus, levofloxacin demonstrates an ability to reduce pro-inflammatory cytokine production in vitro in NL20 cells
  • Incubation of HBE135 cells with 5 μg/ml LPS increased IL-6 production from 46.1±6.4 pg/ml to 86.3±6.4 pg/ml and IL-8 production from 280.7±54.9 pg/ml to 541.9±54.8 pg/ml. Incubation of HBE135 cells with 10 or 30 μg/ml levofloxacin and LPS cells did not significantly change IL-6 and IL-8 levels. However, 100 μg/ml and 300 μg/ml levofloxacin resulted in a 45% and 40% decrease in IL-6 levels, respectively (FIG. 6). Levels of IL-8 decreased by 30% and 20% in HBE135 cells treated with 100 μg/ml and 300 μg/ml levofloxacin, respectively (FIG. 6). Incubation of cells with 10 μg/ml, 30 μg/ml, or 100 μg/ml tobramycin did not affect the levels of IL-6, while 300 μg/ml of tobramycin increased levels of IL-6 by 30%. Treatment with 30 μg/ml to 300 μg/ml tobramycin increased IL-8 production by 20% to 30% (p<0.05).
  • These in vitro studies demonstrated that levofloxacin can induce a dose-related reduction in the production of the pro-inflammatory cytokines, IL-6 and IL-8, in cultured human lung epithelial cell lines. 300 μg/ml levofloxacin reduced levels of IL-6 by 4-fold and IL-8 by 2-fold (p<0.05); in contrast, tobramycin increased IL-6 levels by 50%, but had no effect on IL-8. These findings suggest that high concentrations of levofloxacin obtained in pulmonary tissues following treatment with aerosol levofloxacin formulated with MgCl2 will provide antinflammatory benefits in patients with chronic pulmonary infections.
  • Example 6 In Vitro Activity of Levofloxacin in Human Monocytic Cells
  • The human monocyte cell line, THP-1 is an established in vitro model of human monocytic cells and is capable to secrete a greater variety of cytokines compared to NL20 and HBE135 cells. THP-1 cells were cultured in RPMI-1640 medium with 10%FBS, 0.05 mM 2-mecraptoethanol. THP-1 cells were seeded on 24-well tissue culture plates at 1×106 cells/ml in growth media without serum. The following day, 100 ng/ml LPS from P. aeruginosa and antibiotics were added and cells incubated for 24 hours before media collection to assess cytokine production. Quantification of IL-6, IL-8, IL-1β and TNFα production was performed as described above for NL20 cells.
  • Stimulation of THP-1 with 10 ng/ml of LPS increased IL-1β, TNFα, IL-6 and IL-8 levels by 60-, 200-, 30- and 600-fold, respectively (FIGS. 7A, 7B, 7C, and 7D). Co-incubation of LPS and at 100 μg/ml and 300 μg/ml levofloxacin resulted in a 40% and 70% decrease in IL-1β levels, respectively (FIG. 7A). 300 μg/ml levofloxacin increased TNFα production (FIG. 7B). Incubation with increased concentrations of levofloxacin caused dose-dependent decrease of IL-6 production, with 300 μg/ml levofloxacin reducing IL-6 levels by five-fold (FIG. 7C). Levels of IL-8 were significantly decreased by 100 μg/ml and 300 μg/ml levofloxacin (FIG. 7D).
  • Example 7 In Vitro Cctivity of Levofloxacin on IL-8 mRNA Expression
  • The human monocyte cell line, THP-1 is an established in vitro model of human monocytic cells and is capable to secrete a greater variety of cytokines compared to NL20 and HBE135 cells. IL-8 mRNA expression in NL20 monolayers was induced by treatment with 10 ng/ml TNFα. Levofloxacin was added simultaneously with TNFα. After 24 h incubation, the cell monolayer was washed with PBS, total cellular RNA was prepared and reverse transcription was performed using a human IL-8 specific primer and the “Cells-to-cDNA” kit from Ambion (Austin, Tex.). cDNA was subjected to real-time PCR analysis using PowerSYBR Green PCR master mix and a GeneAmp 5700 Instrument (Applied Biosystems; Warrington, UK). All data were normalized to the housekeeping gene β-actin. Stimulation of NL-20 cells with TNFα, produced a statistically significant (p<0.005) 20-fold increase in IL-8 mRNA levels (FIG. 8). This increase correlates with the increased levels of IL-8 protein induced by TNFα. Addition of 100 μg/ml and 300 μg/ml levofloxacin had no significant effect on the level of IL-8 mRNA expression (FIG. 4). These results suggest that levofloxacin reduces levels of the IL-8 secreted protein by modulating processes that include protein translation and/or protein secretion.
  • Example 8 In Vitro Activity of Levofloxacin on NFkB Activity
  • NFkB and AP-1 are important regulators in the transcriptional activity of some pro-inflammatory cytokines. This example relates to the effect of levofloxacin on the transcriptional regulatory activity of NFkB.
  • The human monocyte cell line, THP-1 is an established in vitro model of human monocytic cells and is capable to secrete a greater variety of cytokines compared to NL20 and HBE135 cells. Cells were seeded on 96-well plate at 3×104 cells/well and transfected the following day with a pMetLuc-NFkB reporter plasmid (Clontech) encoding a secreted luciferase protein under the control of a NFkB-regulated promoter. To normalize transfection efficiency, cells were cotransfected with a pSEAP-Control plasmid (Clontech) encoding a secreted alkaline phosphatase under the control of a strong constitutive promoter. 24 hours after transfection, media was replaced with fresh serum-free media containing 10 ng/ml TNF-α and levofloxacin. 8 hours after incubation, cell supernates were collected, and luciferase and alkaline phosphatase activities were measured using the “Ready-to-Glow Dual Secreted Reporter assay” (Clontech, Mountain View, Calif.). Cells transfected with the reporter plasmid encoding luciferase gene under control of NFkB transcription factor produced a low basal level of luciferase activity. Stimulation with TNFα, a known activator of the NFkB pathway, resulted in an almost 20-fold increase in promoter activity (FIG. 9). Addition of 100 μg/ml and 300 μg/ml levofloxacin did not produce a significant effect on the level of reporter gene activity. This suggests that levofloxacin did not affect TNFα-stimulated transcriptional activity of NFkB.
  • Example 9 In Vivo Anti-Inflammatory Activity of Levofloxacin Formulated with MgCl2
  • Mice (n=4) were injected with 50 μg LPS by an intraperitoneal route. Thirty minutes after LPS treatment, mice were treated using a microspray aerosol device (PennCentury, Philadelphia) with 60 mg/kg saline control, levofloxacin formulated with MgCl2, or tobramycin. Mice were sacrificed 6 hours after aerosolized treatment, and bronchoalveolar (BAL) fluid was collected by lavage with 1 ml saline. IL-6 and MIP-2 (murine homolog of human IL-8) levels were determined by ELISA.
  • Treatments with saline, levofloxacin formulated with MgCl2, and tobramycin resulted in mean MIP-2 levels of 515 pg/ml, 233 pg/ml, and 502 pg/ml, respectively (FIG. 10A). Treatment with levofloxacin formulated with MgCl2 resulted in more than a 2-fold reduction in MIP-2 levels relative to the saline control. Moreover, the reduction was significantly greater than both saline and tobramycin treated mice (p<0.05). A similar trend was observed in IL-6 levels (FIG. 10B). Treatment with levofloxacin produced IL-6 levels more than 2-fold lower than IL-6 levels in the saline control (p<0.05). Treatment with tobramycin resulted in an increase in IL-6 levels compared to the saline control. This in vivo data is consistent with the in vitro data of Example 5, where treatment with levofloxacin decreased levels of IL-6 and IL-8, while tobramycin had no significant effect on IL-8 levels and a trend towards increasing IL-6 levels.
  • This in vivo study shows that treatment with high concentrations of levofloxacin formulated with MgCl2 can reduce pro-inflammatory cytokines that include IL-6 and IL-8. Accordingly, these findings suggest that in addition to potent antibacterial effects, high concentrations of levofloxacin may have anti-inflammatory benefits in patients susceptible to acute and chronic inflammations, for example patients with CF and COPD.
  • Example 10 Anti-Inflammatory Activity of Levofloxacin Formulated with MgCl2 in CF Patients
  • CF patients having acute or chronic pulmonary inflammation are administered aerosol levofloxacin formulated with MgCl2. After treatment, a reduction in the acute inflammation is observed. A reduction in the levels of pro-inflammatory cytokines is observed. A reduction in the levels of IL-1β, IL-6, and IL-8 in the lungs is observed. A reduction in the levels of IL-1β, IL-6, and IL-8 in the sputum and/or BAL is observed.
  • Example 11 Anti-Inflammatory Activity of Levofloxacin Formulated with MgCl2 in COPD Patients
  • COPD patients having acute or chronic pulmonary inflammation are administered aerosol levofloxacin formulated with MgCl2. After treatment, a reduction in the acute inflammation is observed. A reduction in the levels of pro-inflammatory cytokines is observed. A reduction in the levels of IL-1β, IL-6, and IL-8 in the lungs is observed. A reduction in the levels of IL-1β, IL-6, and IL-8 in the sputum and/or BAL is observed.
  • Example 12 Anti-Inflammatory Activity of Levofloxacin Formulated with MgCl2 in Chronic Bronchitis Patients
  • Chronic bronchitis patients having acute or chronic pulmonary inflammation are administered aerosol levofloxacin formulated with MgCl2. After treatment, a reduction in the acute inflammation is observed. A reduction in the levels of pro-inflammatory cytokines is observed. A reduction in the levels of IL-1β, IL-6, and IL-8 in the lungs is observed. A reduction in the levels of IL-1β, IL-6, and IL-8 in the sputum and/or BAL is observed.
  • Example 13 Anti-Inflammatory Activity of Levofloxacin Formulated with MgCl2 in Bronchiectasis Patients
  • Bronchiectasis patients having acute or chronic pulmonary inflammation are administered aerosol levofloxacin formulated with MgCl2. After treatment, a reduction in the acute inflammation is observed. A reduction in the levels of pro-inflammatory cytokines is observed. A reduction in the levels of IL-1β, IL-6, and IL-8 in the lungs is observed. A reduction in the levels of IL-1β, IL-6, and IL-8 in the sputum and/or BAL is observed.
  • Example 14 Anti-Inflammatory Activity of Levofloxacin Formulated with MgCl2 in Non-CF Bronchiectasis Patients
  • Non-CF bronchiectasis patients having acute or chronic pulmonary inflammation are administered aerosol levofloxacin formulated with MgCl2. After treatment, a reduction in the acute inflammation is observed. A reduction in the levels of pro-inflammatory cytokines is observed. A reduction in the levels of IL-1β, IL-6, and IL-8 in the lungs is observed. A reduction in the levels of IL-1β, IL-6, and IL-8 in the sputum and/or BAL is observed.
  • To the extent publications and patents or patent applications incorporated by reference herein contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
  • Unless otherwise defined, all terms (including technical and scientific terms) are to be given their ordinary and customary meaning to a person of ordinary skill in the art, and are not to be limited to a special or customized meaning unless expressly so defined herein.
  • Terms and phrases used in this application, and variations thereof, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing, the term ‘including’ should be read to mean ‘including, without limitation’ or the like; the term ‘comprising’ as used herein is synonymous with ‘including,’ ‘containing,’ or ‘characterized by,’ and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps; the term ‘example’ is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof; adjectives such as ‘known’, ‘normal’, ‘standard’, and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass known, normal, or standard technologies that may be available or known now or at any time in the future; and use of terms like ‘preferably,’ preferred,‘desired,’ or ‘desirable,’ and words of similar meaning should not be understood as implying that certain features are critical, essential, or even important to the structure or function of the invention, but instead as merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the invention. Likewise, a group of items linked with the conjunction ‘and’ should not be read as requiring that each and every one of those items be present in the grouping, but rather should be read as ‘and/or’ unless expressly stated otherwise. Similarly, a group of items linked with the conjunction ‘or’ should not be read as requiring mutual exclusivity among that group, but rather should be read as ‘and/or’ unless expressly stated otherwise. In addition, as used in this application, the articles ‘a’ and ‘an’ should be construed as referring to one or more than one (i.e., to at least one) of the grammatical objects of the article. By way of example, ‘an element’ means one element or more than one element.
  • The presence in some instances of broadening words and phrases such as ‘one or more’, ‘at least’, ‘but not limited to’, or other like phrases shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases may be absent.
  • All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification are to be understood as being modified in all instances by the term ‘about.’ Accordingly, unless indicated to the contrary, the numerical parameters set forth herein are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of any claims in any application claiming priority to the present application, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
  • Furthermore, although the foregoing has been described in some detail by way of illustrations and examples for purposes of clarity and understanding, it is apparent to those skilled in the art that certain changes and modifications may be practiced. Therefore, the description and examples should not be construed as limiting the scope of the invention to the specific embodiments and examples described herein, but rather to also cover all modification and alternatives coming with the true scope and spirit of the invention.

Claims (49)

What is claimed is:
1. A method for treating a pulmonary inflammation in a subject comprising administering to said subject in need thereof an aerosol of a solution comprising levofloxacin or ofloxacin and a divalent or trivalent cation.
2. The method of claim 1, wherein the pulmonary inflammation is associated with at least one disorder selected from asthma, cystic fibrosis (CF), pulmonary fibrosis, chronic bronchitis (CB), bronchiectasis, chronic granulomatous disease, sinusitis, chronic obstructive pulmonary disease (COPD), or pneumonia.
3. The method of claim 1, wherein the solution consists essentially of levofloxacin or ofloxacin and the divalent or trivalent cation.
4. The method of claim 1, wherein the solution comprises chloride.
5. The method of claim 1, wherein the solution comprises no lactose.
6. The method of claim 1, wherein the solution comprises a divalent or trivalent cation concentration from about 100 mM to about 300 mM, and a levofloxacin or ofloxacin concentration from between about 75 mg/ml to about 150 mg/ml.
7. The method of claim 1, wherein the solution comprises a divalent or trivalent cation concentration from about 150 mM to about 250 mM, and a levofloxacin or ofloxacin concentration from between about 90 mg/ml to about 125 mg/ml.
8. The method of claim 1, wherein the solution comprises an osmolality from about 300 mOsmol/kg to about 500 mOsmol/kg, and a pH from about 5 to about 8.
9. The method of claim 1, wherein the solution comprises an osmolality from about 350 mOsmol/kg to about 425 mOsmol/kg, and a pH from about 5 to about 6.5.
10. The method of claim 1, wherein the solution comprises a pH from about 5.5 to about 6.5.
11. The method of claim 1, wherein the divalent or trivalent cation is selected from magnesium, calcium, zinc, copper, aluminum, and iron.
12. The method of claim 1, wherein the solution comprises magnesium chloride.
13. The method of claim 1, wherein the solution comprises a levofloxacin or ofloxacin concentration between about 90 mg/ml to about 110 mg/ml, a magnesium chloride concentration between about 175 mM to about 225 mM, a pH between about 5 to about 7; an osmolarity of between about 300 mOsmol/kg to about 500 mOsmol/kg, and lacks lactose.
14. The method of claim 1, wherein the aerosol comprises a mass median aerodynamic diameter from about 2 microns to about 5 microns with a geometric standard deviation less than or equal to about 2.5 microns.
15. The method of claim 1, wherein the aerosol comprises a mass median aerodynamic diameter from about 2.5 microns to about 4.5 microns with a geometric standard deviation less than or equal to about 1.8 microns.
16. The method of claim 1, wherein the aerosol comprises a mass median aerodynamic diameter from about 2.8 microns to about 4.3 microns with a geometric standard deviation less than or equal to about 2 microns.
17. The method of claim 1, comprising producing the aerosol with a vibrating mesh nebulizer.
18. The method of claim 17, wherein the vibrating mesh nebulizer is a PART E-FLOW® nebulizer.
19. The method of claim 1, wherein at least about 20 mg of levofloxacin or ofloxacin is administered to the lung.
20. The method of claim 1, wherein at least about 100 mg of levofloxacin or ofloxacin is administered to the lung.
21. The method of claim 1, wherein at least about 125 mg of levofloxacin or ofloxacin is administered to the lung.
22. The method of claim 1, wherein at least about 150 mg of levofloxacin or ofloxacin is administered to the lung.
23. The method of claim 1, wherein the aerosol is administered to the lung in less than about 10 minutes.
24. The method of claim 1, wherein the aerosol is administered to the lung in less than about 5 minutes.
25. The method of claim 1, wherein the aerosol is administered to the lung in less than about 3 minutes.
26. The method of claim 1, wherein the aerosol is administered to the lung in less than about 2 minutes.
27. The method of claim 1, comprising administering the aerosol once daily.
28. The method of claim 1, comprising administering the aerosol twice daily.
29. The method of claim 1, further comprising co-administering an additional active agent selected from the group consisting of anti-inflammatory agent, antibiotic, bronchodilator, anticholinergic, glucocorticoid, eicosanoid inhibitor, and combinations thereof.
30. The method of claim 29, wherein co-administering comprises inhaling the additional active agent.
31. The method of claim 29, wherein the antibiotic is selected from the group consisting of tobramycin, aztreonam, ciprofloxacin, azithromycin, erythromycin tetracycline, quinupristin, linezolid, vancomycin, and chloramphenicol, colisitin and combinations thereof.
32. The method of claim 29, wherein the bronchodilator is selected from the group consisting of salbutamol, levosalbuterol, terbutaline, fenoterol, terbutlaine, pirbuterol, procaterol, bitolterol, rimiterol, carbuterol, tulobuterol, reproterol, salmeterol, formoterol, arformoterol, bambuterol, clenbuterol, indacterol, theophylline, roflumilast, cilomilast, and combinations thereof.
33. The method of claim 29, wherein the anticholinergic is selected from the group consisting of ipratropium, tiotropium, and combinations thereof.
34. The method of claim 29, wherein the glucocorticoid is selected from the group consisting of prednisone, fluticasone, budesonide, mometasone, ciclesonide, beclomethasone, and combinations thereof.
35. The method of claim 29, wherein the eicosanoid is selected from the group consisting of montelukast, pranlukast, zafirlukast, zileuton, ramatroban, seratrodast, and combinations thereof.
36. A method for treating a pulmonary inflammation in a subject, wherein the pulmonary inflammation is induced by one or more pro-inflammatory cytokines, said method comprising administering to said subject in need thereof an aerosol of a solution comprising levofloxacin or ofloxacin and a divalent or trivalent cation to achieve a reduction in the pulmonary concentration of said cytokine by at least 10%.
37. The method of claim 36, wherein the pulmonary concentration of said cytokine is reduced by at least 20%.
38. The method of claim 36, wherein the pulmonary concentration of said cytokine is reduced by at least 40%.
39. The method of claim 36, wherein the pulmonary concentration of said cytokine is reduced by at least 60%.
40. The method of claim 36, wherein the pulmonary concentration of said cytokine is reduced by at least 80%.
41. A method for treating a pulmonary inflammation in a subject comprising administering to said subject in need thereof an aerosol of a solution comprising levofloxacin or ofloxacin and a divalent or trivalent cation to achieve a reduction in the pulmonary concentration of one or more pro-inflammatory cytokines selected from IL-1β, IL-6 and IL-8, whereby the pulmonary inflammation is reduced or suppressed.
42. The method of claim 41, wherein the cytokine comprises IL-1β.
43. The method of claim 41, wherein the cytokine comprises IL-6.
44. The method of claim 41, wherein the cytokine comprises IL-8.
45. A method for treating a pulmonary inflammation in a subject, wherein the pulmonary inflammation is induced by one or more mediators selected from TNFα and LPS, said method comprising administering to said subject in need thereof an aerosol of a solution comprising levofloxacin or ofloxacin and a divalent or trivalent cation.
46. A method for reducing the pulmonary concentration of a pro-inflammatory cytokine in a subject, said method comprising administering to said subject in need thereof an aerosol of a solution comprising levofloxacin or ofloxacin and a divalent or trivalent cation, whereby the pulmonary concentration of said cytokine is reduced.
47. The method of claim 46, wherein the cytokine comprises IL-1β.
48. The method of claim 46, wherein the cytokine comprises IL-6.
49. The method of claim 46, wherein the cytokine comprises IL-8.
US14/134,348 2008-10-07 2013-12-19 Topical use of levofloxacin for reducing lung inflammation Abandoned US20140105985A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/134,348 US20140105985A1 (en) 2008-10-07 2013-12-19 Topical use of levofloxacin for reducing lung inflammation
US15/729,930 US11020481B2 (en) 2008-10-07 2017-10-11 Topical use of levofloxacin for reducing lung inflammation
US17/240,273 US20220080047A1 (en) 2008-10-07 2021-04-26 Topical use of levofloxacin for reducing lung inflammation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10349608P 2008-10-07 2008-10-07
US12/574,666 US8629139B2 (en) 2008-10-07 2009-10-06 Topical use of Levofloxacin for reducing lung inflammation
US14/134,348 US20140105985A1 (en) 2008-10-07 2013-12-19 Topical use of levofloxacin for reducing lung inflammation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/574,666 Continuation US8629139B2 (en) 2008-10-07 2009-10-06 Topical use of Levofloxacin for reducing lung inflammation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/729,930 Continuation US11020481B2 (en) 2008-10-07 2017-10-11 Topical use of levofloxacin for reducing lung inflammation

Publications (1)

Publication Number Publication Date
US20140105985A1 true US20140105985A1 (en) 2014-04-17

Family

ID=41397491

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/574,666 Active 2030-08-21 US8629139B2 (en) 2008-10-07 2009-10-06 Topical use of Levofloxacin for reducing lung inflammation
US14/134,348 Abandoned US20140105985A1 (en) 2008-10-07 2013-12-19 Topical use of levofloxacin for reducing lung inflammation
US15/729,930 Active US11020481B2 (en) 2008-10-07 2017-10-11 Topical use of levofloxacin for reducing lung inflammation
US17/240,273 Abandoned US20220080047A1 (en) 2008-10-07 2021-04-26 Topical use of levofloxacin for reducing lung inflammation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/574,666 Active 2030-08-21 US8629139B2 (en) 2008-10-07 2009-10-06 Topical use of Levofloxacin for reducing lung inflammation

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/729,930 Active US11020481B2 (en) 2008-10-07 2017-10-11 Topical use of levofloxacin for reducing lung inflammation
US17/240,273 Abandoned US20220080047A1 (en) 2008-10-07 2021-04-26 Topical use of levofloxacin for reducing lung inflammation

Country Status (14)

Country Link
US (4) US8629139B2 (en)
EP (1) EP2346509B1 (en)
JP (4) JP2012505222A (en)
CN (1) CN102325532B (en)
CA (1) CA2739893C (en)
DK (1) DK2346509T3 (en)
ES (1) ES2809177T3 (en)
HR (1) HRP20201150T8 (en)
HU (1) HUE050147T2 (en)
IL (1) IL212189A0 (en)
PL (1) PL2346509T3 (en)
PT (1) PT2346509T (en)
SI (1) SI2346509T1 (en)
WO (1) WO2010042549A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140066441A1 (en) * 2005-05-18 2014-03-06 Mpex Pharmaceuticals, Inc. Aerosolized fluoroquinolones and uses thereof
US10149854B2 (en) 2008-10-07 2018-12-11 Horizon Orphan Llc Aerosol fluoroquinolone formulations for improved pharmacokinetics
US10231975B2 (en) 2009-09-04 2019-03-19 Horizon Orphan Llc Use of aerosolized levofloxacin for treating cystic fibrosis
US11020481B2 (en) 2008-10-07 2021-06-01 Horizon Orphan Llc Topical use of levofloxacin for reducing lung inflammation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI3219705T1 (en) 2005-12-28 2020-08-31 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions of the amorphous form of n-(2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl)-1,4-dihydro-4-oxoquinoline-3-carboxamide
CA2770355A1 (en) * 2009-08-19 2011-02-24 Mpex Pharmaceuticals, Inc. Use of aerosolized antibiotics for treating chronic obstructive pulmonary disease
AU2015275224C1 (en) * 2009-09-04 2017-11-16 Horizon Therapeutics U.S. Holding Llc Use of aerosolized levofloxacin for treating cystic fibrosis
US9572774B2 (en) 2011-05-19 2017-02-21 Savara Inc. Dry powder vancomycin compositions and associated methods
GB201113662D0 (en) * 2011-08-08 2011-09-21 Prosonix Ltd Pharmaceutical compositions
US20160068527A1 (en) * 2013-04-09 2016-03-10 Cresset Biomolecular Discovery Ltd. The Treatment of Inflammatory Disorders
US9701639B2 (en) 2014-10-07 2017-07-11 Vertex Pharmaceuticals Incorporated Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator
US9968616B2 (en) 2014-10-25 2018-05-15 The Chinese University Of Hong Kong Discovery of FDA-approved drugs as inhibitors of fatty acid binding protein 4 using molecular docking screening
WO2023003003A1 (en) * 2021-07-20 2023-01-26 興和株式会社 Novel inhalant
WO2023022198A1 (en) * 2021-08-19 2023-02-23 国立大学法人東北大学 Novel prophylactic or therapeutic agent for novel coronavirus infection-related disease
CN116270525A (en) * 2023-02-22 2023-06-23 南京华盖制药有限公司 Inhalable bionic nano material for treating pulmonary bacterial infectious pneumonia and preparation method and application thereof
CN116925997B (en) * 2023-07-27 2024-04-02 湖北医药学院 Application of levofloxacin in preparing medicine for promoting cell proliferation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090247458A1 (en) * 2007-10-25 2009-10-01 Revalesio Corporation Compositions and methods for treating cystic fibrosis
US7838532B2 (en) * 2005-05-18 2010-11-23 Mpex Pharmaceuticals, Inc. Aerosolized fluoroquinolones and uses thereof
US8357696B2 (en) * 2005-05-18 2013-01-22 Mpex Pharmaceuticals, Inc. Aerosolized fluoroquinolones and uses thereof
US8629139B2 (en) * 2008-10-07 2014-01-14 Mpex Pharmaceuticals, Inc. Topical use of Levofloxacin for reducing lung inflammation
US8815838B2 (en) * 2008-10-07 2014-08-26 David C. Griffith Aerosol fluoroquinolone formulations for improved pharmacokinetics

Family Cites Families (265)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US696219A (en) 1901-08-23 1902-03-25 Paul Willemain Building containing acetylene-gas-generating apparatus.
US2587215A (en) 1949-04-27 1952-02-26 Frank P Priestly Inhalator
BE555319A (en) 1956-03-21 1900-01-01
US2858691A (en) 1956-09-04 1958-11-04 Mosler Lock Company Key changed tumbler clamp
BE556587A (en) 1957-01-31 1957-04-11
GB901107A (en) 1959-06-29 1962-07-11 Pfizer Therapeutic composition and method of preparing same
US3669113A (en) 1966-03-07 1972-06-13 Fisons Ltd Inhalation device
US3507277A (en) 1966-09-17 1970-04-21 Fisons Pharmaceuticals Ltd Inhalation device
US3456644A (en) 1967-01-19 1969-07-22 Dart Ind Inc Inhalation-actuated aerosol dispensing device
US3456646A (en) 1967-01-19 1969-07-22 Dart Ind Inc Inhalation-actuated aerosol dispensing device
US3456645A (en) 1967-01-19 1969-07-22 Dart Ind Inc Inhalation-actuated aerosol dispensing device
GB1268051A (en) 1968-06-07 1972-03-22 Fisons Pharmaceuticals Ltd Inhalation device
US3565070A (en) 1969-02-28 1971-02-23 Riker Laboratories Inc Inhalation actuable aerosol dispenser
US3636949A (en) 1969-08-08 1972-01-25 Armstrong Kropp Dev Corp Inhalation-initiated aerosol dispenser
BE758834A (en) 1969-11-13 1971-05-12 Riker Laboratoires Inc AEROSOL DISPENSER ACTIVATED BY INHALATION
GB1383761A (en) 1971-02-25 1974-02-12 Woodcraft Dc Inhalation device for use with an aerosol container
US3732864A (en) 1971-06-07 1973-05-15 Schering Corp Inhalation coordinated aerosol dispensing device
IT941426B (en) 1971-07-17 1973-03-01 Isf Spa SWIRL-CHAMBER INHALER FOR POWDER-SHAPING MEDICINAL SUBSTANCES
US3826255A (en) 1972-06-22 1974-07-30 Hudson Oxygen Therapy Sales Co Intermittent positive pressure breathing manifold
FR2224175B1 (en) 1973-04-04 1978-04-14 Isf Spa
IT1016489B (en) 1974-03-18 1977-05-30 Isf Spa INHALER
US3971377A (en) 1974-06-10 1976-07-27 Alza Corporation Medicament dispensing process for inhalation therapy
IT1017153B (en) 1974-07-15 1977-07-20 Isf Spa APPARATUS FOR INHALATIONS
YU41046B (en) 1974-08-22 1986-10-31 Schering Ag Medicine inholating device
SU628930A1 (en) 1974-11-26 1978-10-25 Московский научно-исследовательский институт туберкулеза Device for introducing medicinal powders
US3948264A (en) 1975-05-21 1976-04-06 Mead Johnson & Company Inhalation device
US4147166A (en) 1977-05-02 1979-04-03 American Cyanamid Company Oral inhalator powder dispenser
US4268460A (en) 1977-12-12 1981-05-19 Warner-Lambert Company Nebulizer
US4253468A (en) 1978-08-14 1981-03-03 Steven Lehmbeck Nebulizer attachment
US4263907A (en) 1979-05-14 1981-04-28 Lindsey Joseph W Respirator nebulizer
BR8007911A (en) 1979-12-06 1981-06-16 Glaxo Group Ltd PERFECTED INHALER
JPS5746986A (en) 1980-09-02 1982-03-17 Dai Ichi Seiyaku Co Ltd Pyrido(1,2,3-de)(1,4)benzoxazine derivative
SI8110592A8 (en) 1981-03-06 1996-06-30 Pliva Pharm & Chem Works Process for preparing of n-methyl-11-aza-10-deoxo-10-dihydroerythromycine a and derivatives thereof
SE438261B (en) 1981-07-08 1985-04-15 Draco Ab USE IN A DOSHALATOR OF A PERFORED MEMBRANE
US4688218A (en) 1981-07-15 1987-08-18 Etablissement Public De Diffusion Dit "Telediffusion De France" Multiplex channels for continuous flow for numerical signal
US4470412A (en) 1982-03-19 1984-09-11 Trutek Research, Inc. Inhalation valve
US4510929A (en) 1982-04-30 1985-04-16 Bordoni Maurice E Disposable radioactive aerosol inhalation apparatus
US4994599A (en) 1987-11-20 1991-02-19 Abbott Laboratories Intermediates for producing quinolone-3-carboxylic acids
US4730000A (en) 1984-04-09 1988-03-08 Abbott Laboratories Quinoline antibacterial compounds
US4649911A (en) 1983-09-08 1987-03-17 Baylor College Of Medicine Small particle aerosol generator for treatment of respiratory disease including the lungs
GB8328808D0 (en) 1983-10-28 1983-11-30 Riker Laboratories Inc Inhalation responsive dispensers
JPS60202822A (en) 1984-03-28 1985-10-14 Dai Ichi Seiyaku Co Ltd Antiviral agent
US4624251A (en) 1984-09-13 1986-11-25 Riker Laboratories, Inc. Apparatus for administering a nebulized substance
US4648393A (en) 1984-11-02 1987-03-10 Ackrad Laboratories, Inc. Breath activated medication spray
FR2575678B1 (en) 1985-01-04 1988-06-03 Saint Gobain Vitrage PNEUMATIC POWDER EJECTOR
US4805811A (en) 1985-03-29 1989-02-21 Aktiebolaget Draco Dosage device
NO166131C (en) 1985-06-20 1991-06-05 Daiichi Seiyaku Co ANALOGUE PROCEDURE FOR THE PREPARATION OF S (-) - PYRIDOBENZOKSAZINE COMPOUNDS.
GB2178965B (en) 1985-07-30 1988-08-03 Glaxo Group Ltd Devices for administering medicaments to patients
US4977154A (en) 1985-12-12 1990-12-11 Warner-Lambert Company 5-amino and 5-hydroxy-6-fluoroquinolones as antibacterial agents
US4809692A (en) 1986-01-31 1989-03-07 Trudell Medical Pediatric asthmatic medication inhaler
IT1204826B (en) 1986-03-04 1989-03-10 Chiesi Farma Spa INHALATION PHARMACEUTICAL COMPOSITIONS
US4926852B1 (en) 1986-06-23 1995-05-23 Univ Johns Hopkins Medication delivery system phase one
US4790305A (en) 1986-06-23 1988-12-13 The Johns Hopkins University Medication delivery system
JPS63188627A (en) 1987-01-31 1988-08-04 Rooto Seiyaku Kk Antiallergic and antiphlogistic agents
DE3704907A1 (en) 1987-02-17 1988-08-25 Bayer Ag TOPICALLY APPLICABLE PREPARATIONS OF GYRASE INHIBITORS IN COMBINATION WITH CORTICOSTEROIDS
US5119806A (en) 1987-05-12 1992-06-09 Glaxo Inc. Inhalation device
KR910000142B1 (en) 1987-05-29 1991-01-21 니혼 다바고 상교오 가부시기가이샤 Filter for cigarette
MX12213A (en) 1987-07-09 1993-05-01 Pfizer METHOD OF PREPARATION OF CRYSTALLINE AZYTHROMYCIN DIHYDRATE
US4857311A (en) 1987-07-31 1989-08-15 Massachusetts Institute Of Technology Polyanhydrides with improved hydrolytic degradation properties
US4907538A (en) 1988-05-09 1990-03-13 Little Suamico Products Inc. Multiple bin cow feeder
US4832015A (en) 1988-05-19 1989-05-23 Trudell Medical Pediatric asthmatic inhaler
IT1217890B (en) 1988-06-22 1990-03-30 Chiesi Farma Spa DOSED AEROSOL INHALATION DEVICE
FR2636716B1 (en) 1988-09-21 1990-12-07 Staubli Sa Ets DEVICE FOR COUPLING ELEMENT HOLDER PLATES OF MULTIPLE FITTINGS
EP0363060B1 (en) 1988-10-04 1994-04-27 The Johns Hopkins University Aerosol inhaler
DK479189D0 (en) 1989-01-06 1989-09-28 Hans Gernot Schenk INHALER
US5012804A (en) 1989-03-06 1991-05-07 Trudell Medical Medication inhaler with adult mask
US5012803A (en) 1989-03-06 1991-05-07 Trudell Medical Modular medication inhaler
GB8908647D0 (en) 1989-04-17 1989-06-01 Glaxo Group Ltd Device
EP0470154B1 (en) 1989-04-28 1996-06-05 Riker Laboratories, Inc. Dry powder inhalation device
US4955371A (en) 1989-05-08 1990-09-11 Transtech Scientific, Inc. Disposable inhalation activated, aerosol device for pulmonary medicine
IT1237118B (en) 1989-10-27 1993-05-18 Miat Spa MULTI-DOSE INHALER FOR POWDER DRUGS.
WO1991009525A1 (en) 1989-12-29 1991-07-11 Abbott Laboratories Quinolone carboxylic acid--metal ion--acid complexes
US5113855A (en) 1990-02-14 1992-05-19 Newhouse Michael T Powder inhaler
US5192548A (en) 1990-04-30 1993-03-09 Riker Laboratoires, Inc. Device
GB9015077D0 (en) 1990-07-09 1990-08-29 Riker Laboratories Inc Inhaler
GB9015522D0 (en) 1990-07-13 1990-08-29 Braithwaite Philip W Inhaler
IT1243344B (en) 1990-07-16 1994-06-10 Promo Pack Sa MULTI-DOSE INHALER FOR POWDER MEDICATIONS
US5060643A (en) 1990-08-07 1991-10-29 Tenax Corporation Breath-activated inhalation device
FR2665635A1 (en) 1990-08-10 1992-02-14 Merck Sharp & Dohme FLUID PHARMACEUTICAL COMPOSITION BASED ON METAL COMPLEX AND PROCESS FOR PREPARING THE SAME.
GB9026025D0 (en) 1990-11-29 1991-01-16 Boehringer Ingelheim Kg Inhalation device
US5258528A (en) 1990-11-30 1993-11-02 Warner-Lambert Company Individual stereoisomers of pyrrolidine methanamines substituted on the ring nitrogen by a 1-phenylethyl group
US5217004A (en) 1990-12-13 1993-06-08 Tenax Corporation Inhalation actuated dispensing apparatus
US5040527A (en) 1990-12-18 1991-08-20 Healthscan Products Inc. Metered dose inhalation unit with slide means
US5404871A (en) 1991-03-05 1995-04-11 Aradigm Delivery of aerosol medications for inspiration
US5164740A (en) 1991-04-24 1992-11-17 Yehuda Ivri High frequency printing mechanism
AU651882B2 (en) 1991-05-14 1994-08-04 Visiomed Group Limited Aerosol inhalation device
PT656207E (en) 1991-06-10 2001-11-30 Schering Corp AEROSOLS FORMULATIONS WITHOUT CHLOROFLUOROCARBONETS
AU662919B2 (en) 1991-07-02 1995-09-21 Inhale, Inc. Method and device for delivering aerosolized medicaments
IT1250691B (en) 1991-07-22 1995-04-21 Giancarlo Santus THERAPEUTIC COMPOSITIONS FOR INTRANASAL ADMINISTRATION INCLUDING KETOROLAC.
DE59108798D1 (en) 1991-11-07 1997-08-28 Ritzau Pari Werk Gmbh Paul Nebulizers, in particular for use in devices for inhalation therapy
DE4140689B4 (en) 1991-12-10 2007-11-22 Boehringer Ingelheim Kg Inhalable powders and process for their preparation
DE4142238A1 (en) 1991-12-20 1993-06-24 Boehringer Ingelheim Kg POWDER INHALATOR WITH POWDER SUPPORT FROM REGULAR MICROSTRUCTURES
WO1993024165A1 (en) 1992-05-29 1993-12-09 Ggu Gesellschaft Für Gesundheits- Und Umweltforschung Mbh & Co. Vertriebs Kg Device for generating inhalable active substance particles
US5785049A (en) 1994-09-21 1998-07-28 Inhale Therapeutic Systems Method and apparatus for dispersion of dry powder medicaments
US5284133A (en) 1992-07-23 1994-02-08 Armstrong Pharmaceuticals, Inc. Inhalation device with a dose-timer, an actuator mechanism, and patient compliance monitoring means
EG20543A (en) 1992-10-30 1999-07-31 Procter & Gamble Process for preparing of novel antimicrobial -5- (n-heterosubstituted amino) quinolones
NZ250105A (en) 1992-11-09 1996-07-26 Monaghan Canadian Ltd Inhalator mask; one-way valve opens upon exhalation
RU2111020C1 (en) 1992-12-18 1998-05-20 Шеринг Корпорейшн Powdered drug inhaler
US5558085A (en) 1993-01-29 1996-09-24 Aradigm Corporation Intrapulmonary delivery of peptide drugs
US5364838A (en) 1993-01-29 1994-11-15 Miris Medical Corporation Method of administration of insulin
US5934272A (en) 1993-01-29 1999-08-10 Aradigm Corporation Device and method of creating aerosolized mist of respiratory drug
US5709202A (en) 1993-05-21 1998-01-20 Aradigm Corporation Intrapulmonary delivery of aerosolized formulations
US5532239A (en) 1993-08-02 1996-07-02 Assistance Publique - Hopitaux De Paris Therapeutic application of fluoroquinolone derivatives
MY115155A (en) 1993-09-09 2003-04-30 Upjohn Co Substituted oxazine and thiazine oxazolidinone antimicrobials.
US5688792A (en) 1994-08-16 1997-11-18 Pharmacia & Upjohn Company Substituted oxazine and thiazine oxazolidinone antimicrobials
US5388572A (en) 1993-10-26 1995-02-14 Tenax Corporation (A Connecticut Corp.) Dry powder medicament inhalator having an inhalation-activated piston to aerosolize dose and deliver same
GB9322014D0 (en) 1993-10-26 1993-12-15 Co Ordinated Drug Dev Improvements in and relating to carrier particles for use in dry powder inhalers
US5404781A (en) 1994-06-09 1995-04-11 Ko Shin Electric And Machinery Co., Ltd. Anti-sway means for a saw web
US5642730A (en) 1994-06-17 1997-07-01 Trudell Medical Limited Catheter system for delivery of aerosolized medicine for use with pressurized propellant canister
US5820873A (en) 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5508269A (en) 1994-10-19 1996-04-16 Pathogenesis Corporation Aminoglycoside formulation for aerosolization
GB9501841D0 (en) 1995-01-31 1995-03-22 Co Ordinated Drug Dev Improvements in and relating to carrier particles for use in dry powder inhalers
AU4990696A (en) 1995-02-24 1996-09-11 Nanosystems L.L.C. Aerosols containing nanoparticle dispersions
US5758637A (en) 1995-08-31 1998-06-02 Aerogen, Inc. Liquid dispensing apparatus and methods
US6427682B1 (en) 1995-04-05 2002-08-06 Aerogen, Inc. Methods and apparatus for aerosolizing a substance
US5586550A (en) 1995-08-31 1996-12-24 Fluid Propulsion Technologies, Inc. Apparatus and methods for the delivery of therapeutic liquids to the respiratory system
US5921237A (en) 1995-04-24 1999-07-13 Dura Pharmaceuticals, Inc. Dry powder inhaler
US6672304B1 (en) 1995-06-08 2004-01-06 Innovative Devices, Llc Inhalation actuated device for use with metered dose inhalers (MDIs)
PL182198B1 (en) 1995-06-21 2001-11-30 Asta Medica Ag Pharmaceutic powder holding container with integrated measuring device and powdered
CA2176298C (en) 1995-06-27 2009-01-27 Dennis D. Copeland A single high dose fluoroquinolone treatment
AUPN417395A0 (en) 1995-07-14 1995-08-10 Techbase Pty. Ltd. An improved spacer
JP5042447B2 (en) 1995-07-21 2012-10-03 第一三共株式会社 Mixed preparation
GB9515182D0 (en) 1995-07-24 1995-09-20 Co Ordinated Drug Dev Improvements in and relating to powders for use in dry powder inhalers
US6209538B1 (en) 1995-08-02 2001-04-03 Robert A. Casper Dry powder medicament inhalator having an inhalation-activated flow diverting means for triggering delivery of medicament
SE9502799D0 (en) 1995-08-10 1995-08-10 Astra Ab Device in inhalers
CN1104899C (en) 1995-12-21 2003-04-09 美国辉瑞有限公司 Injectable quinolone formulations
US5694920A (en) 1996-01-25 1997-12-09 Abrams; Andrew L. Inhalation device
US6026809A (en) 1996-01-25 2000-02-22 Microdose Technologies, Inc. Inhalation device
US5823179A (en) 1996-02-13 1998-10-20 1263152 Ontario Inc. Nebulizer apparatus and method
US6083922A (en) 1996-04-02 2000-07-04 Pathogenesis, Corp. Method and a tobramycin aerosol formulation for treatment prevention and containment of tuberculosis
FR2747311B1 (en) 1996-04-10 1998-08-14 Pf Medicament POWDER AND COMPRESSED AIR INHALER
US6838552B1 (en) 1997-08-14 2005-01-04 Vanderbilt University Diagnosis and management of infection caused by Chlamydia
US6579854B1 (en) 1996-08-14 2003-06-17 Vanderbilt University Diagnosis and management of infection caused by chlamydia
US5906202A (en) 1996-11-21 1999-05-25 Aradigm Corporation Device and method for directing aerosolized mist to a specific area of the respiratory tract
CA2227314A1 (en) 1997-01-24 1998-07-24 Hoechst Aktiengesellschaft Preparation of concealed taste preparations of antibacterially active quinolone derivatives
US6349719B2 (en) 1997-02-24 2002-02-26 Aradigm Corporation Formulation and devices for monitoring the efficacy of the delivery of aerosols
US6006747A (en) 1997-03-20 1999-12-28 Dura Pharmaceuticals, Inc. Dry powder inhaler
US6406880B1 (en) 1997-05-02 2002-06-18 Integrated Research Technology, Llc Betaines as adjuvants to susceptibility testing and antimicrobial therapy
US6890526B2 (en) 1997-05-06 2005-05-10 Vanderbilt University Methods and reagents for the treatment of multiple sclerosis
US6664239B2 (en) 1997-05-06 2003-12-16 Vanderbilt University Diagnosis and management of infection caused by Chlamydia
US6884784B1 (en) 1997-05-06 2005-04-26 Vanderbilt University Diagnosis and management of infection caused by chlamydia
US6756369B2 (en) 1997-05-06 2004-06-29 Vanderbilt University Diagnosis and management of infection caused by Chlamydia
US5855564A (en) 1997-08-20 1999-01-05 Aradigm Corporation Aerosol extrusion mechanism
US20010044584A1 (en) 1997-08-28 2001-11-22 Kensey Kenneth R. In vivo delivery methods and compositions
US6293279B1 (en) 1997-09-26 2001-09-25 Trudell Medical International Aerosol medication delivery apparatus and system
US20030082107A1 (en) 1997-10-01 2003-05-01 Dugger Harry A. Buccal, polar and non-polar spray or capsule containing drugs for treating an infectious disease or cancer
EP1021172B1 (en) 1997-10-08 2002-04-10 Sepracor, Inc. Dosage form for aerosol administration
US6003512A (en) 1997-11-13 1999-12-21 Lovelace Respiratory Research Institute Dust gun-aerosol generator and generation
EP1149602B1 (en) 1997-11-19 2015-01-07 Aptar France SAS Spray device for an inhaler suitable for respiratory therapies
ID21415A (en) 1997-12-05 1999-06-10 Upjohn Co QUINOLON MAGNESIUM ANTIBIOTIC COMPOUNDS
US6192876B1 (en) 1997-12-12 2001-02-27 Astra Aktiebolag Inhalation apparatus and method
US6223746B1 (en) 1998-02-12 2001-05-01 Iep Pharmaceutical Devices Inc. Metered dose inhaler pump
US6026807A (en) 1998-02-27 2000-02-22 Diemolding Corporation Metered dose inhaler cloud chamber
GB9810299D0 (en) 1998-05-15 1998-07-15 Glaxo Group Ltd Use of nitric oxide synthase inhibitors
US6257233B1 (en) 1998-06-04 2001-07-10 Inhale Therapeutic Systems Dry powder dispersing apparatus and methods for their use
AU748867B2 (en) 1998-07-24 2002-06-13 Jagotec Ag Medicinal aerosol formulations
CN1133432C (en) 1998-08-21 2004-01-07 千寿制药株式会社 Aqueous liquid preparations
NZ510690A (en) 1998-09-25 2002-10-25 Cubist Pharm Inc Methods for administration of antibiotics
US6395746B1 (en) 1998-09-30 2002-05-28 Alcon Manufacturing, Ltd. Methods of treating ophthalmic, otic and nasal infections and attendant inflammation
GB2343122B (en) 1998-10-26 2003-01-08 Medic Aid Ltd Improvements in and relating to nebulisers
US6070575A (en) 1998-11-16 2000-06-06 Aradigm Corporation Aerosol-forming porous membrane with certain pore structure
US6584971B1 (en) 1999-01-04 2003-07-01 Medic-Aid Limited Drug delivery apparatus
US6350199B1 (en) 1999-03-16 2002-02-26 International Game Technology Interactive gaming machine and method with customized game screen presentation
US7919119B2 (en) 1999-05-27 2011-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US6338443B1 (en) 1999-06-18 2002-01-15 Mercury Enterprises, Inc. High efficiency medical nebulizer
CA2282066C (en) 1999-06-29 2010-09-07 Smithkline Beecham Corporation Methods of use of quinolone compounds against atypical upper respiratory pathogenic bacteria
US6576224B1 (en) 1999-07-06 2003-06-10 Sinuspharma, Inc. Aerosolized anti-infectives, anti-inflammatories, and decongestants for the treatment of sinusitis
US20020061281A1 (en) 1999-07-06 2002-05-23 Osbakken Robert S. Aerosolized anti-infectives, anti-inflammatories, and decongestants for the treatment of sinusitis
US6586008B1 (en) 1999-08-25 2003-07-01 Advanced Inhalation Research, Inc. Use of simple amino acids to form porous particles during spray drying
IL149085A0 (en) 1999-10-29 2002-11-10 Inhale Therapeutic Syst A dry powder composition containing a di or tripeptide
US6294178B1 (en) 1999-11-01 2001-09-25 Robert E. Weinstein Method and device for coordinating topical and oral sinusitis treatments
JP2003513046A (en) 1999-11-01 2003-04-08 アルコン,インコーポレイテッド Pharmaceutical composition containing fluoroquinolone antibiotic and xanthan gum
US6962151B1 (en) 1999-11-05 2005-11-08 Pari GmbH Spezialisten für effektive Inhalation Inhalation nebulizer
US20010049366A1 (en) 2000-02-09 2001-12-06 Alcon Universal Ltd. Topical solution formulations containing an antibiotic and a corticosteroid
US6667042B2 (en) 2000-02-24 2003-12-23 Advancis Pharmaceutical Corp. Fluroquinilone antibiotic product, use and formulation thereof
US6544555B2 (en) 2000-02-24 2003-04-08 Advancis Pharmaceutical Corp. Antibiotic product, use and formulation thereof
US6663890B2 (en) 2000-02-24 2003-12-16 Advancis Pharmaceutical Corp. Metronidazole antibiotic product, use and formulation thereof
US6669948B2 (en) 2000-02-24 2003-12-30 Advancis Pharmaceutical Corp. Antibiotic product, use and formulation thereof
US6730320B2 (en) 2000-02-24 2004-05-04 Advancis Pharmaceutical Corp. Tetracycline antibiotic product, use and formulation thereof
US6667057B2 (en) 2000-02-24 2003-12-23 Advancis Pharmaceutical Corp. Levofloxacin antibiotic product, use and formulation thereof
US6663891B2 (en) 2000-02-24 2003-12-16 Advancis Pharmaceutical Corp. Erythromyacin antibiotic product, use and formulation thereof
CA2826724C (en) 2000-04-11 2016-02-02 Trudell Medical International Aerosol delivery apparatus with positive expiratory pressure capacity
WO2003030868A1 (en) 2001-10-09 2003-04-17 Bristol-Myers Squibb Company Flashmelt oral dosage formulation
US6608078B2 (en) 2000-05-08 2003-08-19 Wockhardt Limited Antibacterial chiral 8-(substituted piperidino)-benzo [i,j] quinolizines, processes, compositions and methods of treatment
US6716819B2 (en) 2000-05-19 2004-04-06 University Of Iowa Research Foundation Use of xylitol to reduce ionic strength and activate endogenous antimicrobials for prevention and treatment of infections
PE20020044A1 (en) 2000-06-16 2002-01-30 Upjohn Co THIAZINE OXAZOLIDINONE
US6492328B2 (en) 2000-06-28 2002-12-10 The University Of Iowa Research Foundation Novispirins: antimicrobial peptides
WO2002006301A2 (en) 2000-06-30 2002-01-24 University Of Cincinnati Peptides with antioxidant and antimicrobial properties
AU2001282988B2 (en) 2000-07-26 2006-01-05 Atopic Pty Ltd Methods for treating atopic disorders
WO2002018345A1 (en) 2000-08-29 2002-03-07 Chiron Corporation Quinoline antibacterial compounds and methods of use thereof
JPWO2002024167A1 (en) 2000-09-19 2004-01-29 第一製薬株式会社 Pharmaceutical composition
US6298656B1 (en) 2000-09-29 2001-10-09 Siemens Westinghouse Power Corporation Compressed air steam generator for cooling combustion turbine transition section
US6601581B1 (en) 2000-11-01 2003-08-05 Advanced Medical Applications, Inc. Method and device for ultrasound drug delivery
US6689769B2 (en) 2000-12-21 2004-02-10 Pharmacia & Upjohn Company Antimicrobial quinolone derivatives and use of the same to treat bacterial infections
US6626173B2 (en) 2001-01-08 2003-09-30 Iep Pharmaceutical Devices Inc. Dry powder inhaler
WO2002072102A1 (en) 2001-03-05 2002-09-19 Ortho-Mcneil Pharmaceutical, Inc. Taste masked liquid pharmaceutical compositions
US6523536B2 (en) 2001-03-12 2003-02-25 Birdsong Medical Devices, Inc. Dual-canister inhaler having a spacer and easy to operate lever mechanism
CN1322528A (en) * 2001-04-19 2001-11-21 刘文通 Rhinitis treating medicine
US6878713B2 (en) 2001-04-25 2005-04-12 Wockhardt Limited Generation triple-targeting, chiral, broad-spectrum antimicrobial 7-substituted piperidino-quinolone carboxylic acid derivatives, their preparation, compositions and use as medicaments
US6589955B2 (en) 2001-06-20 2003-07-08 Bristol-Myers Squibb Company Pediatric formulation of gatifloxacin
US6681768B2 (en) 2001-06-22 2004-01-27 Sofotec Gmbh & Co. Kg Powder formulation disintegrating system and method for dry powder inhalers
US20030138403A1 (en) 2001-06-29 2003-07-24 Maxygen Aps Interferon formulations
ES2222294T3 (en) 2001-07-02 2005-02-01 Chiesi Farmaceutici S.P.A. OPTIMIZED FORMULATION OF TOBRAMYCIN FOR ADMINISTRATION IN THE FORM OF AEROSOL.
DK1418890T3 (en) 2001-08-16 2008-08-11 Baxter Int Propellant-based microparticle formulations
MXPA04003879A (en) 2001-10-24 2005-02-17 Pari Gmbh Kit for the preparation of a pharmaceutical composition.
WO2003051300A2 (en) 2001-12-13 2003-06-26 Activbiotics, Inc. Metal complexes and formulations of rifamycin analogues and uses therof
US20030143265A1 (en) 2001-12-19 2003-07-31 Seiichi Araki Method for treatment of sepsis
US20030171340A1 (en) 2002-02-07 2003-09-11 Jenefir Isbister Methods of disease treatment using metal-complexed tetracycline antibiotics
EP1490027A4 (en) 2002-03-05 2010-11-10 Transave Inc Methods for entrapment of bioactive agent in a liposome or lipid complex
WO2003075935A1 (en) 2002-03-11 2003-09-18 Eisai Co., Ltd. Drugs containing riboflavin-type compounds
JP4290381B2 (en) 2002-04-11 2009-07-01 学校法人 聖マリアンナ医科大学 Emulsion containing pyridonecarboxylic acid compound
US7607436B2 (en) 2002-05-06 2009-10-27 The Research Foundation Of State University Of New York Methods, devices and formulations for targeted endobronchial therapy
CA2483914A1 (en) 2002-05-07 2003-11-20 Nektar Therapeutics Capsules for dry powder inhalers and methods of making and using same
US7423153B2 (en) 2002-05-10 2008-09-09 Teva Pharmaceutical Industries Ltd. Crystalline forms of gatifloxacin
US20040045546A1 (en) 2002-09-05 2004-03-11 Peirce Management, Llc Pharmaceutical delivery system for oral inhalation through nebulization consisting of inert substrate impregnated with substance (S) to be solubilized or suspended prior to use
US20040152701A1 (en) 2002-12-02 2004-08-05 Dr. Reddy's Laboratories Limited Novel anhydrous crystalline form of Levofloxacin and process for preparation there of
WO2004055025A1 (en) 2002-12-16 2004-07-01 Ranbaxy Laboratories Limited Pure levofloxacin hemihydrate and processes for preparation thereof
MXPA05007466A (en) 2003-01-09 2006-03-08 Arizeke Pharmaceuticals Inc Methods of treating lung diseases.
KR101173696B1 (en) 2003-02-10 2012-08-13 바이엘 파마 악티엔게젤샤프트 Treatment of bacterial diseases of the respiratory organs by locally applying fluoroquinolones
US20060258677A1 (en) 2003-02-15 2006-11-16 Teva Pharmaceutical Industries Ltd. Novel crystalline forms of gatifloxacin and processes for preparation
DK1459739T3 (en) 2003-03-19 2008-05-19 Jordanian Pharmaceutical Mfg Non-hydroscopic pharmaceutical compositions containing non-hydrated quinoline carboxylic acids
DE10318235A1 (en) 2003-04-22 2004-11-11 Clariant Gmbh Easily dispersible pigments with rapid color strength development
US20070248693A1 (en) 2003-08-02 2007-10-25 Elizabeth Mazzio Nutraceutical composition and method of use for treatment / prevention of cancer
PL2520654T3 (en) 2003-08-26 2017-08-31 The Regents Of The University Of Colorado, A Body Corporate Inhibitors of serine protease activity and their use in methods and compositions for treatment of bacterial infections
SE0302665D0 (en) 2003-10-07 2003-10-07 Astrazeneca Ab Novel Process
CN1312076C (en) 2003-10-14 2007-04-25 长沙理工大学 Ceramic glass pigment produced by using ferrochrome alloy as raw material and production method thereof
US20070071686A1 (en) 2003-10-15 2007-03-29 Pari Gmbh Liquid preparation containing tobramycin
ATE432064T1 (en) 2003-11-17 2009-06-15 Nektar Therapeutics INTRODUCTION OF AN AEROSOL INTO A VENTILATOR CIRCUIT
US7452524B2 (en) 2004-01-27 2008-11-18 Gilead Sciences, Inc. Method for improvement of tolerance for therapeutically effective agents delivered by inhalation
US7947741B2 (en) 2004-03-17 2011-05-24 Mpex Pharmaceuticals, Inc. Use and administration of bacterial efflux pump inhibitors
US7148404B2 (en) 2004-05-04 2006-12-12 Novozymes A/S Antimicrobial polypeptides
JP2008502720A (en) 2004-05-21 2008-01-31 エムペックス・ファーマシューティカルズ・インコーポレーテッド Bacterial efflux pump inhibitors and methods of treating bacterial infections
US7632869B2 (en) 2004-05-24 2009-12-15 Bausch & Lomb Incorporated Antimicrobial compositions and uses thereof
WO2006002140A2 (en) 2004-06-21 2006-01-05 Nektar Therapeutics Compositions comprising amphotericin b
BRPI0513455A (en) 2004-07-22 2008-05-06 Pfizer Prod Inc flavor masking formulation comprising the drug in a delayed dissolution form and / or cyclodextrin in an improved dissolution form
WO2006033713A2 (en) 2004-08-09 2006-03-30 Chiron Corporation Methods for ciprofloxacin inhalation
US7388077B2 (en) 2004-11-12 2008-06-17 Novozymes A/S Polypeptides having antimicrobial activity and polynucleotides encoding the same
JP2008528510A (en) 2005-01-20 2008-07-31 サートリス ファーマシューティカルズ, インコーポレイテッド Use of sirtuin-activating compounds to treat flushing and / or drug-induced weight gain
JP5235416B2 (en) 2005-01-21 2013-07-10 ワーナー・チルコット・カンパニー・エルエルシー Tetracycline metal complexes in solid dosage forms.
EP1862184A4 (en) 2005-03-24 2012-12-19 Daiichi Sankyo Co Ltd Pharmaceutical composition
CA2603179A1 (en) 2005-04-05 2006-10-12 The Scripps Research Institute Compositions and methods for enhancing drug sensitivity and treating drug resistant infections and diseases
HUE038814T2 (en) 2005-05-18 2018-11-28 Horizon Orphan Llc Aerosolized fluoroquinolones and uses thereof
MX2008000131A (en) 2005-07-01 2008-04-04 Cinv Ag Medical devices comprising a reticulated composite material.
CA2632028A1 (en) 2005-12-14 2007-06-21 Activbiotics, Inc. Rifamycin analogs and uses thereof
WO2007085057A1 (en) 2006-01-25 2007-08-02 The Council Of The Queensland Institute Of Medical Research A medical protocol
WO2007090123A2 (en) 2006-01-30 2007-08-09 University Of Chicago Mgra is a redox regulator of antibiotic sensitivity and virulence
RU2008136460A (en) 2006-02-10 2010-03-20 Пари Фарма ГмбХ (DE) PHARMACEUTICAL AEROSOL
US9155792B2 (en) 2006-02-13 2015-10-13 Trustees Of Boston University RecA inhibitors with antibiotic activity, compositions and methods of use
US20070197548A1 (en) 2006-02-17 2007-08-23 Murthy Yerramilli V S Fluoroquinolone compositions
PL2032521T3 (en) 2006-06-27 2010-05-31 Sandoz Ag New method for salt preparation
WO2008025560A1 (en) 2006-09-01 2008-03-06 Pari Pharma Gmbh Methods for taste masking of nebulised compositions for nasal and pulmonary inhalation therapy
US20080276935A1 (en) 2006-11-20 2008-11-13 Lixiao Wang Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs
EP1938822A1 (en) * 2006-12-21 2008-07-02 Novartis AG Combination therapy for the treatment of airways disease
US8080394B2 (en) 2007-04-27 2011-12-20 Brigham And Women's Hospital Method for determining predisposition to pulmonary infection
EP2030644A1 (en) * 2007-08-31 2009-03-04 PARI Pharma GmbH Aerosols for sinunasal drug delivery
GB0719248D0 (en) 2007-10-03 2007-11-14 Generics Uk Ltd Compounds and methods for pharmaceutical use
US20090197212A1 (en) 2008-02-04 2009-08-06 Maxitrol Company Premix Burner Control System and Method
WO2009140587A1 (en) 2008-05-15 2009-11-19 Novartis Ag Pulmonary delivery of a fluoroquinolone
BRPI1006626B8 (en) 2009-04-24 2021-05-25 Mpex Pharmaceuticals Inc use of a fluoroquinolone antibiotic to produce a drug to treat a bacterial lung infection
JP2013502579A (en) 2009-08-19 2013-01-24 エムペックス ファーマスーティカルズ,インコーポレイテッド Riboflavin-based aerosol and use as a placebo in clinical trials
CA2770355A1 (en) 2009-08-19 2011-02-24 Mpex Pharmaceuticals, Inc. Use of aerosolized antibiotics for treating chronic obstructive pulmonary disease
PL2473170T3 (en) * 2009-09-04 2020-03-31 Horizon Orphan Llc Use of aerosolized levofloxacin for treating cystic fibrosis
WO2014032184A1 (en) 2012-08-31 2014-03-06 Alectos Therapeutics Inc. Glycosidase inhibitors and uses thereof
TWI777923B (en) 2015-07-30 2022-09-21 美商地平線罕見醫學製藥有限責任公司 Fucosidase inhibitors
JP6966835B2 (en) 2016-02-05 2021-11-17 ホライズン オーファン リミテッド ライアビリティ カンパニー Fluoroquinolone preparation for cystic fibrosis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838532B2 (en) * 2005-05-18 2010-11-23 Mpex Pharmaceuticals, Inc. Aerosolized fluoroquinolones and uses thereof
US8357696B2 (en) * 2005-05-18 2013-01-22 Mpex Pharmaceuticals, Inc. Aerosolized fluoroquinolones and uses thereof
US8524734B2 (en) * 2005-05-18 2013-09-03 Mpex Pharmaceuticals, Inc. Aerosolized fluoroquinolones and uses thereof
US20090247458A1 (en) * 2007-10-25 2009-10-01 Revalesio Corporation Compositions and methods for treating cystic fibrosis
US8629139B2 (en) * 2008-10-07 2014-01-14 Mpex Pharmaceuticals, Inc. Topical use of Levofloxacin for reducing lung inflammation
US8815838B2 (en) * 2008-10-07 2014-08-26 David C. Griffith Aerosol fluoroquinolone formulations for improved pharmacokinetics

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dal Negro et al., "Tobramycin Nebulizer Solution in Severe COPD Patients Colonized with Pseudomonas Aeruginosa: Effects on Bronchial Inflammation" Advances in Therapeutics (2008) vol. 20 pp. 1019-1030 *
Geddes, D. M., "5. Bronchiectasis and Cystic Fibrosis" Airways Obstruction (published 1981 by MTP Press Ltd) pp. 40-50 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140066441A1 (en) * 2005-05-18 2014-03-06 Mpex Pharmaceuticals, Inc. Aerosolized fluoroquinolones and uses thereof
US10987357B2 (en) 2005-05-18 2021-04-27 Horizon Orphan, LLC Aerosolized fluoroquinolones and uses thereof
US10149854B2 (en) 2008-10-07 2018-12-11 Horizon Orphan Llc Aerosol fluoroquinolone formulations for improved pharmacokinetics
US10722519B2 (en) 2008-10-07 2020-07-28 Horizon Orphan Llc Aerosol fluoroquinolone formulations for improved pharmacokinetics
US11020481B2 (en) 2008-10-07 2021-06-01 Horizon Orphan Llc Topical use of levofloxacin for reducing lung inflammation
US10231975B2 (en) 2009-09-04 2019-03-19 Horizon Orphan Llc Use of aerosolized levofloxacin for treating cystic fibrosis
US10792289B2 (en) 2009-09-04 2020-10-06 Horizon Orphan Llc Use of aerosolized levofloxacin for treating cystic fibrosis

Also Published As

Publication number Publication date
IL212189A0 (en) 2011-06-30
PL2346509T3 (en) 2021-03-08
JP2017025106A (en) 2017-02-02
DK2346509T3 (en) 2020-08-03
ES2809177T3 (en) 2021-03-03
WO2010042549A1 (en) 2010-04-15
CN102325532B (en) 2015-06-17
EP2346509A1 (en) 2011-07-27
CA2739893A1 (en) 2010-04-15
CN102325532A (en) 2012-01-18
EP2346509B1 (en) 2020-05-13
HUE050147T2 (en) 2020-11-30
JP2014159461A (en) 2014-09-04
HRP20201150T1 (en) 2021-01-22
US20180085462A1 (en) 2018-03-29
US11020481B2 (en) 2021-06-01
JP2015044825A (en) 2015-03-12
US20220080047A1 (en) 2022-03-17
HRP20201150T8 (en) 2021-06-25
US20100087386A1 (en) 2010-04-08
JP2012505222A (en) 2012-03-01
PT2346509T (en) 2020-08-05
CA2739893C (en) 2016-10-04
SI2346509T1 (en) 2020-08-31
US8629139B2 (en) 2014-01-14
JP6099609B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
US20220080047A1 (en) Topical use of levofloxacin for reducing lung inflammation
JP7169693B2 (en) Treatment of respiratory diseases
AU2002351181B2 (en) Methods and compositions for treating lesions of the respiratory epithelium
ES2739979T3 (en) Use of levofloxacin spray for the treatment of cystic fibrosis
WO2002085308A3 (en) Antisense and anti-inflammatory based compositions to treat respiratory disorders
CA2558212A1 (en) Interferon-beta for anti-virus therapy for respiratory diseases
CA2888428C (en) Ciclesonide for the treatment of airway disease in horses
JP2021533156A (en) Compositions Containing Mucolytics for the Treatment of Excessive Mucus and Devices for Dosing thereof
AU2003292120B2 (en) New synergistic combination comprising roflumilast and formoterol
Rozanski et al. Advances in respiratory therapy
TW201016215A (en) Compositions and uses of antiviral active pharmaceutical agents
US11850259B2 (en) Methods of treating viral infections affecting the respiratory tract using topically administered lithium agents
AU2015275224B2 (en) Use of aerosolized levofloxacin for treating cystic fibrosis
J Ragavan Advances in Mucomodulator Therapy for Treatment of Excess Airway Mucus in Patients with Asthma, Chronic Obstructive Pulmonary Disease and Cystic Fibrosis
JPWO2020201038A5 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: MPEX PHARMACEUTICALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUDLEY, MICHAEL N;TSIVKOVSKI, RUSLAN Y;GRIFFITH, DAVID C;AND OTHERS;SIGNING DATES FROM 20091118 TO 20091201;REEL/FRAME:032752/0265

AS Assignment

Owner name: TRIPEX PHARMACEUTICALS, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MPEX PHARMACEUTICAL, INC.;REEL/FRAME:036906/0924

Effective date: 20150819

AS Assignment

Owner name: RAPTOR PHARMACEUTICALS INC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRIPEX PHARMACEUTICALS, LLC;REEL/FRAME:037102/0573

Effective date: 20151001

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:RAPTOR PHARMACEUTICALS INC.;REEL/FRAME:040479/0578

Effective date: 20161025

AS Assignment

Owner name: HORIZON ORPHAN LLC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:RAPTOR PHARMACEUTICALS INC.;REEL/FRAME:040827/0163

Effective date: 20161025

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: HORIZON THERAPEUTICS U.S. HOLDING LLC (FKA RAPTOR PHARMACEUTICALS INC.), ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:065178/0955

Effective date: 20231006