US20140150992A1 - Threaded cooling apparatus with integrated cooling channels and heat exchanger - Google Patents

Threaded cooling apparatus with integrated cooling channels and heat exchanger Download PDF

Info

Publication number
US20140150992A1
US20140150992A1 US13/691,259 US201213691259A US2014150992A1 US 20140150992 A1 US20140150992 A1 US 20140150992A1 US 201213691259 A US201213691259 A US 201213691259A US 2014150992 A1 US2014150992 A1 US 2014150992A1
Authority
US
United States
Prior art keywords
heat exchanger
cooling
coolant
threaded
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/691,259
Inventor
Christopher R. Koontz
Scott T. Johnson
Shadi S. Merhi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Priority to US13/691,259 priority Critical patent/US20140150992A1/en
Assigned to RAYTHEON COMPANY reassignment RAYTHEON COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHNSON, SCOTT T., KOONTZ, CHRISTOPHER R., MERHI, SHADI S.
Publication of US20140150992A1 publication Critical patent/US20140150992A1/en
Priority to US16/589,840 priority patent/US11231239B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/20Fastening; Joining with threaded elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/4062Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink heatsink to or through board or cabinet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • This disclosure is generally directed to cooling systems. More specifically, this disclosure relates to a threaded cooling apparatus with integrated cooling channels and heat exchanger.
  • Electronic devices routinely require mechanisms for rejecting or transferring heat away from electronic components. Many electronic devices are designed to reject heat through the tops of their packaging. Due to mechanical assembly tolerances and design differences, however, different components often have surfaces that vary with respect to one another and from device to device. Any cooling system designed to mate to the top surfaces of an array of components often needs to accommodate vertical height variations among those components.
  • a first approach includes mounting electronic components directly on a flat heat exchanger.
  • a flat heat exchanger covering multiple heat sources is typically a monolithic assembly of a single material, where a heat exchanger element is not separable from the larger assembly.
  • a heat exchanger element becomes fouled or clogged, the whole assembly often must be replaced.
  • the complete assembly often needs to be manufactured with the same material, which can result in greater cost, greater weight, and lower overall heat exchange efficiency.
  • a second approach involves mounting a heat exchanger on an electronic component and plumbing the heat exchanger with flexible coolant lines.
  • mounting multiple heat exchangers on multiple components typically requires many fluidic couplings, which often is impractical for assembly and is susceptible to leaks.
  • fluidic couplings are often different mechanisms from mechanical fasteners that provide mechanical coupling of a heat exchanger to a larger assembly.
  • the design and installation complexity of heat exchanger elements increases proportionally with the number of mechanical and fluid interconnects.
  • a third approach includes conducting heat away from electronic components through a conforming thermal interface material, but these materials often experience very large temperature gradients.
  • a fourth approach involves deflecting flexible cooling elements to engage electronic components, but flexible cooling elements often require large amounts of space, thereby limiting the pitch or density of the electronic components.
  • This disclosure provides a threaded cooling apparatus with integrated cooling channels and heat exchanger.
  • a threaded cooling apparatus in a first embodiment, includes a head having a heat exchanger and a shaft having a threaded section configured to mechanically fasten the head to a structure.
  • the heat exchanger is configured to exchange heat with a coolant flowing through the head.
  • the shaft also includes first and second cooling channels. The first cooling channel is configured to deliver the coolant to the heat exchanger, and the second cooling channel is configured to exhaust the coolant from the heat exchanger.
  • a system in a second embodiment, includes a threaded cooling apparatus and a manifold.
  • the threaded cooling apparatus includes a head having a heat exchanger and a shaft having a threaded section.
  • the heat exchanger is configured to exchange heat with a coolant flowing through the head.
  • the shaft also includes first and second cooling channels, where the first cooling channel is configured to deliver the coolant to the heat exchanger and the second cooling channel is configured to exhaust the coolant from the heat exchanger.
  • the manifold includes first and second coolant channels.
  • the first coolant channel is configured to provide the coolant to the first cooling channel of the threaded cooling apparatus, and the second coolant channel is configured to return the coolant from the second cooling channel of the threaded cooling apparatus.
  • the threaded section is configured to mechanically fasten the head to the manifold.
  • a method in a third embodiment, includes inserting a threaded cooling apparatus into a structure, where the threaded cooling apparatus includes a head and a shaft.
  • the head includes a heat exchanger
  • the shaft includes a threaded section configured to mechanically fasten the head to the structure.
  • the method also includes providing coolant to the heat exchanger through a first cooling channel in the shaft, where the heat exchanger is configured to exchange heat with the coolant flowing through the head.
  • the method further includes exhausting the coolant from the heat exchanger through a second cooling channel in the shaft.
  • FIGS. 1A and 1B illustrate a first example threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure
  • FIGS. 2A and 2B illustrate an example mechanical and fluid coupling of the threaded cooling apparatus of FIGS. 1A and 1B in accordance with this disclosure
  • FIGS. 3A and 3B illustrate a second example threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure
  • FIG. 4 illustrates a third example threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure
  • FIG. 5 illustrates a fourth example threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure
  • FIGS. 6A through 6C illustrate a fifth example threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure
  • FIG. 7 illustrates an example system having multiple threaded cooling apparatuses with integrated cooling channels and heat exchangers in accordance with this disclosure.
  • FIG. 8 illustrates an example method for cooling one or more components using a threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure.
  • FIGS. 1 through 8 described below, and the various embodiments used to describe the principles of the present invention in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the invention. Those skilled in the art will understand that the principles of the present invention may be implemented in any type of suitably arranged device or system.
  • FIGS. 1A and 1B illustrate a first example threaded cooling apparatus 100 with integrated cooling channels and heat exchanger in accordance with this disclosure.
  • the apparatus 100 has the form of a bolt with a head 102 and a threaded section 104 .
  • the head 102 generally represents any suitable structure that can be turned to screw/unscrew the threaded section 104 into another structure.
  • the head 102 represents a hexagonal bolt head.
  • the head 102 could represent any other suitable structure that is capable of containing a heat exchanger (described below).
  • the head 102 could also support other mechanisms for turning the apparatus 100 , such as a screw head.
  • the head 102 could be formed from any suitable material(s) and in any suitable manner, and the method of manufacturing can affect the materials used (or vice versa).
  • the threaded section 104 represents a portion of the apparatus 100 that includes a thread wrapped helically around a central shaft 106 , which is connected to the head 102 .
  • the threaded section 104 helps to couple the apparatus 100 to a larger device or system, such as by engaging a threaded receptacle in the larger device or system.
  • the threaded section 104 could include a thread having any suitable thread size and threads per inch.
  • the threaded section 104 could be formed from any suitable material(s) and in any suitable manner.
  • the threaded section 104 may or may not be formed from the same material(s) as the head 102 .
  • the shaft 106 of the apparatus 100 could have any other suitable cross-sectional shape.
  • the threaded section 104 extends along the shaft 106 from the head 102 of the apparatus 100 down to a flow restrictor 108 .
  • the flow restrictor 108 represents a circular or other structure around the shaft 106 . As described below, the flow restrictor 108 helps to restrict bypass flow of coolant between cooling channels in the apparatus 100 .
  • the apparatus 100 includes multiple cooling channels through at least a portion of the shaft 106 .
  • a cooling channel 110 is formed through the shaft 106 of the apparatus 100 , and cooling channels 112 a - 112 b are formed through or near the threaded section 104 of the apparatus 100 .
  • the cooling channels 110 , 112 a - 112 b support the flow of coolant (such as a liquid or gas) to and from a heat exchanger 114 within the head 102 of the apparatus 100 .
  • the cooling channel 110 provides coolant to the heat exchanger 114
  • the cooling channels 112 a - 112 b exhaust returned coolant that has interacted with the heat exchanger 114 . Coolant flow could also be reversed depending on the implementation.
  • Each cooling channel 110 , 112 a - 112 b represents any suitable path for coolant through at least part of the shaft 106 of the apparatus 100 .
  • the cooling channel 110 extends the entire length of the shaft 106 from the location where the head 102 joins the shaft 106 to the bottom of the shaft 106 .
  • each cooling channel 112 a - 112 b here is shown as residing between the threaded section 104 and the central shaft 106 of the apparatus 100 .
  • the cooling channels 112 a - 112 b could be formed in other ways.
  • cooling channels 112 a - 112 b could be formed as grooves or other paths through the threaded section 104 , so the thread in the threaded section 104 is not continuous but is instead divided in locations where the cooling channels 112 a - 112 b are present.
  • Each of the cooling channels 110 , 112 a - 112 b could also be formed in any suitable manner.
  • the cooling channel 110 could be formed by drilling or otherwise forming an opening through the shaft 106 of the apparatus 100 .
  • the cooling channels 112 a - 112 b could be formed by machining or otherwise forming a path through or under the threaded section 104 of the apparatus 100 .
  • the heat exchanger 114 could include any suitable heat exchanging elements.
  • the heat exchanger 114 could contain extended surfaces (fins), such as straight, wavy, or offset fins. The fins could be stamped, perforated, or machined. A porous medium could be used in the heat exchanger 114 without fins.
  • the heat exchanger 114 could include straight or radial channels.
  • the heat exchanger 114 could have multiple levels of coolant plumbing, such as a lower chamber and an upper chamber separated by small openings to supply and return coolant from one chamber to the other.
  • the heat exchanger 114 could support jet impingement cooling, single-phase cooling, or multi-phase cooling.
  • the heat exchanger 114 could contain a phase-change material (such as paraffin) that remains within the heat exchanger 114 , while coolant could run through another portion of the heat exchanger 114 . Any combination of these or other features could also be used in the heat exchanger 114 .
  • phase-change material such as paraffin
  • the heat exchanger 114 and the apparatus 100 in general could be formed from any suitable material(s).
  • Example materials include aluminum or an aluminum alloy (such as 6061-T6), titanium, copper, a copper-based matrix composite (such as GLIDCOP), a nickel-iron alloy (such as INVAR), steel, or stainless steel.
  • the apparatus 100 could be formed in any suitable manner.
  • Example techniques include brazing, welding (such as friction welding), diffusion bonding, soldering, polymeric bonding, additive manufacturing, machining, and stamping.
  • the heat exchanger 114 and the shaft 106 may be fabricated from the same piece of material or as separate pieces. If separate pieces are used, the pieces may be mechanically coupled, such as by using any of the processes above or by threading one end of the shaft 106 into a receptacle in the heat exchanger 114 .
  • the head 102 of a fabricated bolt can be machined to form a cavity for the heat exchanger 114 , and channels in the shaft 106 of the bolt can be machined to form the cooling channels. Machining can be performed to create connections between the bolt head and the shaft's channels, a fin core can be placed into the cavity in the bolt head 102 , and a cap can be brazed onto the bolt head 102 .
  • thin foils of metal could be etched with a desired pattern, and the foils can be joined using diffusion bonding.
  • Wire electrical discharge machining (EDM) or other machining can be used to create a part with no external features, and machining can occur to create external features like helical grooves and coolant channels.
  • additive manufacturing also known as “3D printing”
  • 3D printing can be used to create the main structure, and helical grooves in the shaft can be created during the additive manufacturing process or after the additive manufacturing process is complete (such as by machining the resulting structure).
  • a heat exchanger 114 can be fabricated in the head 102 having a single supply/return coolant receptacle with helical grooves.
  • a threaded shaft 106 can be fabricated with helical grooves to mate with the head 102 on one end and helical grooves to mate with another structure on the opposite end. The threaded shaft 106 can be inserted into the head 102 .
  • the apparatus 100 integrates a threaded shaft having coolant channels with a high-performance cooling mechanism to create a modularized heat exchanger with all mechanical and fluidic connections combined into a single device.
  • the modularized heat exchanger can be easily installed in a larger device or system using a single threaded connection, possibly creating an array of heat exchanger elements, and each modularized heat exchanger can be easily replaced by simply exchanging one threaded apparatus with another threaded apparatus (not necessarily with the same size of heat exchanger). Among other things, this can help to reduce repair costs associated with the apparatus 100 or the larger device/system.
  • the apparatus 100 also provides cooling capabilities in a small package by integrating a heat exchanger and coolant supply/return lines in a single assembly.
  • the apparatus 100 is height adjustable, which can help to reduce or eliminate tolerance issues when component heights vary and can provide a fine pitch-scalable solution.
  • the apparatus 100 can be used to help reduce hardware temperatures with a “conforming” heat exchanger element that translates perpendicular to the surface of a coolant manifold. Beyond that, the apparatus 100 allows the heat exchanger to be placed in close proximity to a heat source to be cooled, reducing parasitic temperature rises.
  • the apparatus 100 can be manufactured in a wide variety of sizes to accommodate various devices to be cooled, such as semiconductor elements of various sizes and packaging densities.
  • the apparatus 100 could also be used in a wide range of applications.
  • the apparatus 100 may be used to reject heat from a heat source into a coolant or to reject heat from the coolant into a heat sink.
  • Example applications include automotive, aerospace, and electronics cooling.
  • the apparatus 100 could be used to reject heat from a single semiconductor element or an array of semiconductor elements in an electronic assembly.
  • the apparatus 100 could be inserted into a coolant manifold, and the head 102 of the apparatus 100 could be placed on or near one or more semiconductor elements. Heat from the semiconductor elements is transferred to the coolant flowing through the cooling channels 110 , 112 a - 112 b via the heat exchanger 114 .
  • the apparatus 100 could also be used in coolant or hydraulic lines where miniature non-integral heat exchanger elements are needed or to reject heat from the hydraulic fluid. Other example uses can include rejecting heat from laser diodes, power transformers, power electronics, combustion chambers or assemblies with combustion chambers (such as automotive combustion engines, turbines, or rocket engines), or any other application where one would wish to transfer heat into or out of a coolant.
  • the apparatus 100 could further be used in installations where clogging, fouling, or corrosion of a heat exchanger is frequent, necessitating frequent replacement of the heat exchanger.
  • the apparatus 100 could be used in applications where composite/polymer manifold structures are used.
  • the apparatus 100 need not be used as a mechanical fastener, meaning it is not used to mechanically couple components in a secure manner. As a result, the apparatus 100 need not have the same strength or be capable of handling the same torque as conventional bolts (although it could depending on the design, composition, and manufacture).
  • FIGS. 1A and 1B illustrate a first example of a threaded cooling apparatus 100 with integrated cooling channels and heat exchanger
  • the apparatus 100 is shown here as having the form of a bolt.
  • the apparatus 100 could be implemented using any other suitable fastener, and the overall apparatus may or may not resemble a standard type of fastener (such as when the head 102 does not fit within a socket wrench).
  • any number of cooling channels within the apparatus 100 could be used to supply coolant to the heat exchanger 114
  • any number of cooling channels within the apparatus 100 could be used to exhaust returned coolant from the heat exchanger 114 .
  • FIGS. 2A and 2B illustrate an example mechanical and fluid coupling of the threaded cooling apparatus 100 of FIGS. 1A and 1B in accordance with this disclosure.
  • the apparatus 100 has been inserted into a manifold 200 having multiple coolant channels 202 and 204 .
  • the manifold 200 represents any suitable structure that delivers coolant to and returns coolant from a threaded cooling apparatus.
  • the manifold 200 could represent a portion of a coldplate, and one or multiple threaded cooling apparatuses 100 could be inserted into the coldplate.
  • the manifold 200 could be formed from any suitable material(s) and in any suitable manner.
  • the coolant channel 202 in the manifold 200 can deliver coolant to the apparatus 100 , and the coolant flows into the apparatus 100 through the cooling channel 110 .
  • the coolant reaches the heat exchanger 114 in the head 102 of the apparatus 100 , which exchanges heat with the coolant.
  • the coolant then flows through the cooling channels 112 a - 112 b to the coolant channel 204 in the manifold 200 .
  • the flow of coolant could be reversed.
  • seals 206 and 208 help limit coolant flow around or out of the apparatus 100 .
  • the seal 206 helps to reduce or prevent coolant from flowing around the apparatus 100 and out of the manifold 200 into the ambient environment.
  • the seal 208 helps to reduce or prevent coolant flow between the channels 202 and 204 in the manifold 200 that bypasses the heat exchanger 114 .
  • the flow restrictor 108 can similarly help to reduce or prevent coolant flow between the channels 202 and 204 in the manifold 200 that bypasses the heat exchanger 114 .
  • the flow restrictor 108 can apply compressive pressure on the seal 208 to improve sealing.
  • the seals 206 and 208 may be replaceable and available in different sizes to accommodate different height adjustments of apparatus 100 .
  • Each seal 206 and 208 represents any suitable structure for helping to reduce or prevent coolant flow in specified areas, such as rubber or other O-rings.
  • the seal 206 can withstand larger pressure differentials than the seal 208 .
  • the seal 206 can withstand pressure differentials of about 50 pounds per square inch (psi) or more, while the seal 208 can withstand pressure differentials of about 10 pounds psi or less.
  • the apparatus 100 need not be used as a mechanical fastener, so the apparatus 100 need not have the same strength or be capable of handling the same torque as conventional bolts (although it could).
  • the seals 206 and 208 are compressible.
  • the apparatus 100 can be raised or lowered by small amounts within the manifold 200 while still allowing the seals 206 and 208 to reduce or prevent coolant leakage.
  • This allows the apparatus 100 to vary in height relative to the surface of the manifold 200 (or other surface into which the apparatus 100 is inserted).
  • the height of the apparatus 100 could vary by a distance of about ⁇ 0.01 inches ( ⁇ 0.254 mm), although the precision of this value could vary depending on the pitch of the threads in the threaded section 104 .
  • each apparatus 100 When multiple apparatuses 100 are inserted into the same structure like a coldplate, the height of each apparatus 100 could vary independently from the others, which allows the apparatuses 100 to conform to the heights of various heat sources (such as semiconductor chips). This also helps to reduce or eliminate the need for using thermal gap filler pads to absorb mechanical tolerances, which can be beneficial since gap filler pads typically have poor thermal performance. This further helps to avoid the use of materials that experience large temperature gradients and can increase the pitch or density of cooled components since flexible manifolds are not needed (although these could still be used with the apparatus 100 ). Furthermore, the seals 206 and 208 can be replaceable, and the thickness and the material of each seal can be customizable.
  • FIGS. 2A and 2B illustrate one example mechanical and fluid coupling of the threaded cooling apparatus 100 of FIGS. 1A and 1B
  • various changes may be made to FIGS. 2A and 2B .
  • the apparatus 100 could include a single cooling channel 112 a or 112 b for exhausting returned coolant from the heat exchanger 114 .
  • the apparatus 100 could be used in any other suitable structure.
  • FIGS. 3A and 3B illustrate a second example threaded cooling apparatus 300 with integrated cooling channels and heat exchanger in accordance with this disclosure.
  • the apparatus 300 has been inserted into the manifold of FIGS. 2A and 2B .
  • the apparatus 300 includes a head 302 and a threaded section 304 , and the head 302 includes a heat exchanger 314 .
  • These components may be the same as or similar to corresponding components described above and could be formed from the same or similar materials and in the same or similar manner.
  • a cooling channel 310 provides coolant to the heat exchanger 314 , and a cooling channel 312 exhausts returned coolant from the heat exchanger 314 (although the coolant flows could be reversed).
  • a seal 316 is located between the head 302 of the apparatus 300 and the manifold or other structure to help prevent coolant from flowing around the apparatus 300 into the ambient environment.
  • the apparatus 300 does not include a flow restrictor (such as flow restrictor 108 ), which can reduce or eliminate the need for a second seal in the apparatus 300 . Instead, the lower threaded area of the threaded section 304 could help to limit coolant flow between the coolant channels 202 and 204 of the manifold.
  • FIG. 3B illustrates an example way for implementing the cooling channel 312 in the apparatus 300 .
  • the cooling channel 312 is formed as a groove in the side of the threaded section 304 .
  • the groove splits the thread in the threaded section 304 , which still allows the apparatus 300 to be inserted into a threaded receptacle while allowing coolant flow through the groove.
  • the cooling channel 312 could be implemented in any other suitable manner, such as by not adding threads to the upper area of the threaded section 304 .
  • FIG. 4 illustrates a third example threaded cooling apparatus 400 with integrated cooling channels and heat exchanger in accordance with this disclosure.
  • the apparatus 400 has been inserted into the manifold of FIGS. 2A and 2B .
  • the apparatus 400 includes a head 402 and a threaded section 404 , and the head 402 includes a heat exchanger 414 .
  • Cooling channels 410 - 412 provide coolant to and exhaust returned coolant from the heat exchanger 414 .
  • a seal 416 is located between the head 402 and the manifold or other structure.
  • These components may be the same as or similar to corresponding components described above and could be formed from the same or similar materials and in the same or similar manner.
  • the cooling channel 410 forms an angle and exits the apparatus 400 along the side rather than on bottom. Due to mechanical tolerances, it may be impractical to use a combination of a lower threaded area, a middle threaded area, and an upper threaded area in the threaded section 404 . In some circumstances, only the middle area of the threaded section 404 may be threaded, and the upper and lower areas of the threaded section 404 may not contain threads.
  • FIG. 5 illustrates a fourth example threaded cooling apparatus 500 with integrated cooling channels and heat exchanger in accordance with this disclosure.
  • the apparatus 500 has been inserted into the manifold of FIGS. 2A and 2B .
  • the apparatus 500 includes a head 502 and a threaded section 504 , and the head 502 includes a heat exchanger 514 .
  • Cooling channels 510 - 512 provide coolant to and exhaust returned coolant from the heat exchanger 514 .
  • a seal 516 is located between the head 502 and the manifold or other structure, and a seal 518 is located between the coolant channels 202 - 204 of the manifold.
  • the cooling channel 510 forms an angle and exits the apparatus 500 along the side rather than on bottom.
  • the threaded section 504 contains a helical thread only near the bottom of the apparatus 500 .
  • FIGS. 6A through 6C illustrate a fifth example threaded cooling apparatus 600 with integrated cooling channels and heat exchanger in accordance with this disclosure.
  • the apparatus 600 includes a head 602 and a threaded section 604 .
  • a cooling channel 610 can be used to deliver coolant to a heat exchanger 614 in the head 602 , and one or more cooling channels 612 a - 612 b could exhaust coolant from the heat exchanger 614 .
  • FIG. 6B illustrates the apparatus 600 with a top of the head 602 removed to reveal the heat exchanger 614 .
  • Various seals are omitted here for simplicity.
  • the apparatus 600 represents a non-standard fastener with a rectangular head, although other shapes (including standard hexagonal shapes) could be used. Moreover, the head 602 is much larger than those shown in earlier figures. Among other things, this can enable the use of a larger heat exchanger within the apparatus.
  • FIGS. 3A through 6C illustrate additional examples of threaded cooling apparatuses with integrated cooling channels and heat exchanger
  • various changes may be made to FIGS. 3A through 6C .
  • any number of cooling channels within an apparatus could be used to supply coolant to a heat exchanger, and any number of cooling channels within an apparatus could be used to exhaust returned coolant from a heat exchanger.
  • various features from different figures could be combined as needed or desired.
  • Features shown in one or more of the apparatuses described above could be used in other apparatuses described above.
  • any fastener that includes a heat exchanger integrated into a head of the fastener and multiple cooling channels for coolant flow to and from the heat exchanger falls within the scope of this disclosure.
  • any suitable technique can be used to adjust the height of an apparatus over a manifold or other structure into which the apparatus is inserted, including rotation of the apparatus.
  • FIG. 7 illustrates an example system 700 having multiple threaded cooling apparatuses with integrated cooling channels and heat exchangers in accordance with this disclosure.
  • the system 700 includes an electronic assembly 702 having a substrate 704 and multiple integrated circuit chips 706 .
  • the substrate 704 represents any suitable structure configured to carry and support integrated circuit chips, such as a printed circuit board.
  • the integrated circuit chips 706 represent any suitable semiconductor chips, which can be configured to support any desired functionality.
  • the electronic assembly 702 could represent a computer motherboard, a ball grid array (BGA), or other structure containing multiple chips.
  • BGA ball grid array
  • different integrated circuit chips 706 can have different lengths, widths, and/or heights (although this need not be the case).
  • the system 700 also includes a cooling system 708 having a manifold 710 and multiple threaded cooling apparatuses 712 .
  • the manifold 710 is configured to deliver coolant to and receive coolant from the threaded cooling apparatuses 712 .
  • the threaded cooling apparatuses 712 thermally couple to the integrated circuit chips 706 in the electronic assembly 702 and remove heat away from the integrated circuit chips 706 .
  • Each threaded cooling apparatus 712 could include any suitable fastener that includes a heat exchanger integrated into a head of the fastener and multiple cooling channels for coolant flow to and from the heat exchanger (such as any of the devices described above).
  • Each threaded cooling apparatus 712 could be individually adjusted in height in order to contact and effectively remove heat from the associated integrated circuit chip(s) 706 .
  • FIG. 7 illustrates one example of a system 700 having multiple threaded cooling apparatuses with integrated cooling channels and heat exchangers
  • the system 700 could include any number of electronic assemblies 702 and cooling systems 708 .
  • the electronic assembly 702 could include any number of substrates 704 and integrated circuit chips 706
  • the cooling system 708 could include any number of manifolds 710 and threaded cooling apparatuses 712 .
  • a single threaded cooling apparatus 712 could thermally couple to multiple integrated circuit chips 706 .
  • FIG. 8 illustrates an example method 800 for cooling one or more components using a threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure.
  • the method 800 is described as involving the use of the apparatus 100 connected to the manifold 200 .
  • the method 800 could involve the use of any other suitable threaded cooling apparatus (such as those described above) in any suitable larger structure.
  • a threaded cooling apparatus is inserted into a structure that provides coolant at step 802 .
  • the height of the apparatus is adjusted as needed at step 804 . This could include, for example, rotating the apparatus 100 or taking other suitable action so that the top surface of the apparatus 100 is at a desired height above the manifold 200 .
  • the desired height could be based, for example, on a device or system to be cooled using the apparatus 100 , such as the height of one or more semiconductor chips.
  • Coolant is supplied to the apparatus through a first channel at step 806 , and the coolant is supplied to a heat exchanger within the apparatus at step 808 .
  • the apparatus helps to provide cooling to or rejects heat to an external device or system at step 810 .
  • This could include, for example, transferring heat away from the external device or system into the coolant via the heat exchanger 114 .
  • the coolant is returned to the structure at step 812 . This could include, for example, exhausting returned coolant to the manifold 200 through the cooling channel(s) 112 a - 112 b.
  • FIG. 8 illustrates one example of a method 800 for cooling one or more components using a threaded cooling apparatus with integrated cooling channels and heat exchanger
  • the method 800 could involve the use of multiple threaded apparatuses, such as multiple apparatuses inserted into a coldplate, and those multiple threaded apparatuses may or may not be identical.
  • steps in FIG. 8 could overlap, occur in parallel, or occur multiple times.
  • the term “or” is inclusive, meaning and/or.

Abstract

A threaded cooling apparatus includes a head having a heat exchanger and a shaft having a threaded section configured to mechanically fasten the head to a structure. The heat exchanger is configured to exchange heat with a coolant flowing through the head. The shaft also includes first and second cooling channels. The first cooling channel is configured to deliver the coolant to the heat exchanger, and the second cooling channel is configured to exhaust the coolant from the heat exchanger. The apparatus may also include a first seal between the head and the structure that is configured to reduce or prevent coolant loss. The apparatus may further include a second seal that is configured to reduce or prevent coolant flow between the first and second cooling channels that bypasses the heat exchanger.

Description

    GOVERNMENT LICENSE RIGHTS
  • This invention was made with U.S. government support under Contract No. FA8650-04-G-0002-0001 awarded by the U.S. Department of Defense. The U.S. government may have certain rights in the invention.
  • TECHNICAL FIELD
  • This disclosure is generally directed to cooling systems. More specifically, this disclosure relates to a threaded cooling apparatus with integrated cooling channels and heat exchanger.
  • BACKGROUND
  • Electronic devices routinely require mechanisms for rejecting or transferring heat away from electronic components. Many electronic devices are designed to reject heat through the tops of their packaging. Due to mechanical assembly tolerances and design differences, however, different components often have surfaces that vary with respect to one another and from device to device. Any cooling system designed to mate to the top surfaces of an array of components often needs to accommodate vertical height variations among those components.
  • Different cooling systems have used various approaches to transfer heat away from electronic components, but these approaches have various shortcomings. A first approach includes mounting electronic components directly on a flat heat exchanger. However, it is typically impractical to mount all components on a single heat exchanger. Also, a flat heat exchanger covering multiple heat sources is typically a monolithic assembly of a single material, where a heat exchanger element is not separable from the larger assembly. As a result, if one heat exchanger element becomes fouled or clogged, the whole assembly often must be replaced. Additionally, if a particular material is required in the heat exchanger element for efficient heat exchange, the complete assembly often needs to be manufactured with the same material, which can result in greater cost, greater weight, and lower overall heat exchange efficiency.
  • A second approach involves mounting a heat exchanger on an electronic component and plumbing the heat exchanger with flexible coolant lines. However, mounting multiple heat exchangers on multiple components typically requires many fluidic couplings, which often is impractical for assembly and is susceptible to leaks. Moreover, fluidic couplings are often different mechanisms from mechanical fasteners that provide mechanical coupling of a heat exchanger to a larger assembly. The design and installation complexity of heat exchanger elements increases proportionally with the number of mechanical and fluid interconnects. A third approach includes conducting heat away from electronic components through a conforming thermal interface material, but these materials often experience very large temperature gradients. A fourth approach involves deflecting flexible cooling elements to engage electronic components, but flexible cooling elements often require large amounts of space, thereby limiting the pitch or density of the electronic components.
  • SUMMARY
  • This disclosure provides a threaded cooling apparatus with integrated cooling channels and heat exchanger.
  • In a first embodiment, a threaded cooling apparatus includes a head having a heat exchanger and a shaft having a threaded section configured to mechanically fasten the head to a structure. The heat exchanger is configured to exchange heat with a coolant flowing through the head. The shaft also includes first and second cooling channels. The first cooling channel is configured to deliver the coolant to the heat exchanger, and the second cooling channel is configured to exhaust the coolant from the heat exchanger.
  • In a second embodiment, a system includes a threaded cooling apparatus and a manifold. The threaded cooling apparatus includes a head having a heat exchanger and a shaft having a threaded section. The heat exchanger is configured to exchange heat with a coolant flowing through the head. The shaft also includes first and second cooling channels, where the first cooling channel is configured to deliver the coolant to the heat exchanger and the second cooling channel is configured to exhaust the coolant from the heat exchanger. The manifold includes first and second coolant channels. The first coolant channel is configured to provide the coolant to the first cooling channel of the threaded cooling apparatus, and the second coolant channel is configured to return the coolant from the second cooling channel of the threaded cooling apparatus. The threaded section is configured to mechanically fasten the head to the manifold.
  • In a third embodiment, a method includes inserting a threaded cooling apparatus into a structure, where the threaded cooling apparatus includes a head and a shaft. The head includes a heat exchanger, and the shaft includes a threaded section configured to mechanically fasten the head to the structure. The method also includes providing coolant to the heat exchanger through a first cooling channel in the shaft, where the heat exchanger is configured to exchange heat with the coolant flowing through the head. The method further includes exhausting the coolant from the heat exchanger through a second cooling channel in the shaft.
  • Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions, and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of this disclosure and its features, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
  • FIGS. 1A and 1B illustrate a first example threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure;
  • FIGS. 2A and 2B illustrate an example mechanical and fluid coupling of the threaded cooling apparatus of FIGS. 1A and 1B in accordance with this disclosure;
  • FIGS. 3A and 3B illustrate a second example threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure;
  • FIG. 4 illustrates a third example threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure;
  • FIG. 5 illustrates a fourth example threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure;
  • FIGS. 6A through 6C illustrate a fifth example threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure;
  • FIG. 7 illustrates an example system having multiple threaded cooling apparatuses with integrated cooling channels and heat exchangers in accordance with this disclosure; and
  • FIG. 8 illustrates an example method for cooling one or more components using a threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure.
  • DETAILED DESCRIPTION
  • FIGS. 1 through 8, described below, and the various embodiments used to describe the principles of the present invention in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the invention. Those skilled in the art will understand that the principles of the present invention may be implemented in any type of suitably arranged device or system.
  • FIGS. 1A and 1B illustrate a first example threaded cooling apparatus 100 with integrated cooling channels and heat exchanger in accordance with this disclosure. As shown in FIG. 1A, the apparatus 100 has the form of a bolt with a head 102 and a threaded section 104. The head 102 generally represents any suitable structure that can be turned to screw/unscrew the threaded section 104 into another structure. In this example, the head 102 represents a hexagonal bolt head. However, the head 102 could represent any other suitable structure that is capable of containing a heat exchanger (described below). The head 102 could also support other mechanisms for turning the apparatus 100, such as a screw head. The head 102 could be formed from any suitable material(s) and in any suitable manner, and the method of manufacturing can affect the materials used (or vice versa).
  • The threaded section 104 represents a portion of the apparatus 100 that includes a thread wrapped helically around a central shaft 106, which is connected to the head 102. The threaded section 104 helps to couple the apparatus 100 to a larger device or system, such as by engaging a threaded receptacle in the larger device or system. The threaded section 104 could include a thread having any suitable thread size and threads per inch. The threaded section 104 could be formed from any suitable material(s) and in any suitable manner. The threaded section 104 may or may not be formed from the same material(s) as the head 102. Also, while shown as having a cylindrical cross-section, the shaft 106 of the apparatus 100 could have any other suitable cross-sectional shape.
  • In this example, the threaded section 104 extends along the shaft 106 from the head 102 of the apparatus 100 down to a flow restrictor 108. The flow restrictor 108 represents a circular or other structure around the shaft 106. As described below, the flow restrictor 108 helps to restrict bypass flow of coolant between cooling channels in the apparatus 100.
  • As shown in FIG. 1B, the apparatus 100 includes multiple cooling channels through at least a portion of the shaft 106. A cooling channel 110 is formed through the shaft 106 of the apparatus 100, and cooling channels 112 a-112 b are formed through or near the threaded section 104 of the apparatus 100. The cooling channels 110, 112 a-112 b support the flow of coolant (such as a liquid or gas) to and from a heat exchanger 114 within the head 102 of the apparatus 100. In some embodiments, the cooling channel 110 provides coolant to the heat exchanger 114, and the cooling channels 112 a-112 b exhaust returned coolant that has interacted with the heat exchanger 114. Coolant flow could also be reversed depending on the implementation.
  • Each cooling channel 110, 112 a-112 b represents any suitable path for coolant through at least part of the shaft 106 of the apparatus 100. In this example, the cooling channel 110 extends the entire length of the shaft 106 from the location where the head 102 joins the shaft 106 to the bottom of the shaft 106. Also, each cooling channel 112 a-112 b here is shown as residing between the threaded section 104 and the central shaft 106 of the apparatus 100. However, the cooling channels 112 a-112 b could be formed in other ways. For instance, the cooling channels 112 a-112 b could be formed as grooves or other paths through the threaded section 104, so the thread in the threaded section 104 is not continuous but is instead divided in locations where the cooling channels 112 a-112 b are present.
  • Each of the cooling channels 110, 112 a-112 b could also be formed in any suitable manner. For example, the cooling channel 110 could be formed by drilling or otherwise forming an opening through the shaft 106 of the apparatus 100. The cooling channels 112 a-112 b could be formed by machining or otherwise forming a path through or under the threaded section 104 of the apparatus 100.
  • The heat exchanger 114 could include any suitable heat exchanging elements. For example, the heat exchanger 114 could contain extended surfaces (fins), such as straight, wavy, or offset fins. The fins could be stamped, perforated, or machined. A porous medium could be used in the heat exchanger 114 without fins. The heat exchanger 114 could include straight or radial channels. The heat exchanger 114 could have multiple levels of coolant plumbing, such as a lower chamber and an upper chamber separated by small openings to supply and return coolant from one chamber to the other. The heat exchanger 114 could support jet impingement cooling, single-phase cooling, or multi-phase cooling. The heat exchanger 114 could contain a phase-change material (such as paraffin) that remains within the heat exchanger 114, while coolant could run through another portion of the heat exchanger 114. Any combination of these or other features could also be used in the heat exchanger 114.
  • The heat exchanger 114 and the apparatus 100 in general could be formed from any suitable material(s). Example materials include aluminum or an aluminum alloy (such as 6061-T6), titanium, copper, a copper-based matrix composite (such as GLIDCOP), a nickel-iron alloy (such as INVAR), steel, or stainless steel.
  • In addition, the apparatus 100 could be formed in any suitable manner. Example techniques include brazing, welding (such as friction welding), diffusion bonding, soldering, polymeric bonding, additive manufacturing, machining, and stamping. The heat exchanger 114 and the shaft 106 may be fabricated from the same piece of material or as separate pieces. If separate pieces are used, the pieces may be mechanically coupled, such as by using any of the processes above or by threading one end of the shaft 106 into a receptacle in the heat exchanger 114.
  • As a particular manufacturing example, the head 102 of a fabricated bolt can be machined to form a cavity for the heat exchanger 114, and channels in the shaft 106 of the bolt can be machined to form the cooling channels. Machining can be performed to create connections between the bolt head and the shaft's channels, a fin core can be placed into the cavity in the bolt head 102, and a cap can be brazed onto the bolt head 102.
  • As another particular manufacturing example, thin foils of metal (such as those about 0.004 inches thick) could be etched with a desired pattern, and the foils can be joined using diffusion bonding. Wire electrical discharge machining (EDM) or other machining can be used to create a part with no external features, and machining can occur to create external features like helical grooves and coolant channels.
  • As a third particular manufacturing example, additive manufacturing (also known as “3D printing”) can be used to create the main structure, and helical grooves in the shaft can be created during the additive manufacturing process or after the additive manufacturing process is complete (such as by machining the resulting structure).
  • As a fourth particular manufacturing example, a heat exchanger 114 can be fabricated in the head 102 having a single supply/return coolant receptacle with helical grooves. A threaded shaft 106 can be fabricated with helical grooves to mate with the head 102 on one end and helical grooves to mate with another structure on the opposite end. The threaded shaft 106 can be inserted into the head 102.
  • In this way, the apparatus 100 integrates a threaded shaft having coolant channels with a high-performance cooling mechanism to create a modularized heat exchanger with all mechanical and fluidic connections combined into a single device. The modularized heat exchanger can be easily installed in a larger device or system using a single threaded connection, possibly creating an array of heat exchanger elements, and each modularized heat exchanger can be easily replaced by simply exchanging one threaded apparatus with another threaded apparatus (not necessarily with the same size of heat exchanger). Among other things, this can help to reduce repair costs associated with the apparatus 100 or the larger device/system. The apparatus 100 also provides cooling capabilities in a small package by integrating a heat exchanger and coolant supply/return lines in a single assembly. Moreover, as described below, because the apparatus 100 is threaded, the apparatus 100 is height adjustable, which can help to reduce or eliminate tolerance issues when component heights vary and can provide a fine pitch-scalable solution. Further, the apparatus 100 can be used to help reduce hardware temperatures with a “conforming” heat exchanger element that translates perpendicular to the surface of a coolant manifold. Beyond that, the apparatus 100 allows the heat exchanger to be placed in close proximity to a heat source to be cooled, reducing parasitic temperature rises. In addition, the apparatus 100 can be manufactured in a wide variety of sizes to accommodate various devices to be cooled, such as semiconductor elements of various sizes and packaging densities.
  • The apparatus 100 could also be used in a wide range of applications. For example, the apparatus 100 may be used to reject heat from a heat source into a coolant or to reject heat from the coolant into a heat sink. Example applications include automotive, aerospace, and electronics cooling. As particular examples, the apparatus 100 could be used to reject heat from a single semiconductor element or an array of semiconductor elements in an electronic assembly. For instance, the apparatus 100 could be inserted into a coolant manifold, and the head 102 of the apparatus 100 could be placed on or near one or more semiconductor elements. Heat from the semiconductor elements is transferred to the coolant flowing through the cooling channels 110, 112 a-112 b via the heat exchanger 114. The apparatus 100 could also be used in coolant or hydraulic lines where miniature non-integral heat exchanger elements are needed or to reject heat from the hydraulic fluid. Other example uses can include rejecting heat from laser diodes, power transformers, power electronics, combustion chambers or assemblies with combustion chambers (such as automotive combustion engines, turbines, or rocket engines), or any other application where one would wish to transfer heat into or out of a coolant. The apparatus 100 could further be used in installations where clogging, fouling, or corrosion of a heat exchanger is frequent, necessitating frequent replacement of the heat exchanger. In addition, the apparatus 100 could be used in applications where composite/polymer manifold structures are used. Note that the apparatus 100 need not be used as a mechanical fastener, meaning it is not used to mechanically couple components in a secure manner. As a result, the apparatus 100 need not have the same strength or be capable of handling the same torque as conventional bolts (although it could depending on the design, composition, and manufacture).
  • Although FIGS. 1A and 1B illustrate a first example of a threaded cooling apparatus 100 with integrated cooling channels and heat exchanger, various changes may be made to FIGS. 1A and 1B. For example, the apparatus 100 is shown here as having the form of a bolt. However, the apparatus 100 could be implemented using any other suitable fastener, and the overall apparatus may or may not resemble a standard type of fastener (such as when the head 102 does not fit within a socket wrench). Also, any number of cooling channels within the apparatus 100 could be used to supply coolant to the heat exchanger 114, and any number of cooling channels within the apparatus 100 could be used to exhaust returned coolant from the heat exchanger 114.
  • FIGS. 2A and 2B illustrate an example mechanical and fluid coupling of the threaded cooling apparatus 100 of FIGS. 1A and 1B in accordance with this disclosure. As shown in FIG. 2A, the apparatus 100 has been inserted into a manifold 200 having multiple coolant channels 202 and 204. The manifold 200 represents any suitable structure that delivers coolant to and returns coolant from a threaded cooling apparatus. For example, the manifold 200 could represent a portion of a coldplate, and one or multiple threaded cooling apparatuses 100 could be inserted into the coldplate. The manifold 200 could be formed from any suitable material(s) and in any suitable manner.
  • As shown in FIG. 2B, the coolant channel 202 in the manifold 200 can deliver coolant to the apparatus 100, and the coolant flows into the apparatus 100 through the cooling channel 110. The coolant reaches the heat exchanger 114 in the head 102 of the apparatus 100, which exchanges heat with the coolant. The coolant then flows through the cooling channels 112 a-112 b to the coolant channel 204 in the manifold 200. As noted above, however, the flow of coolant could be reversed.
  • As shown in FIGS. 2A and 2B, seals 206 and 208 help limit coolant flow around or out of the apparatus 100. In this example, the seal 206 helps to reduce or prevent coolant from flowing around the apparatus 100 and out of the manifold 200 into the ambient environment. In contrast, the seal 208 helps to reduce or prevent coolant flow between the channels 202 and 204 in the manifold 200 that bypasses the heat exchanger 114. The flow restrictor 108 can similarly help to reduce or prevent coolant flow between the channels 202 and 204 in the manifold 200 that bypasses the heat exchanger 114. For example, the flow restrictor 108 can apply compressive pressure on the seal 208 to improve sealing. The seals 206 and 208 may be replaceable and available in different sizes to accommodate different height adjustments of apparatus 100.
  • Each seal 206 and 208 represents any suitable structure for helping to reduce or prevent coolant flow in specified areas, such as rubber or other O-rings. In some embodiments, the seal 206 can withstand larger pressure differentials than the seal 208. In particular embodiments, the seal 206 can withstand pressure differentials of about 50 pounds per square inch (psi) or more, while the seal 208 can withstand pressure differentials of about 10 pounds psi or less. Once again, as noted above, the apparatus 100 need not be used as a mechanical fastener, so the apparatus 100 need not have the same strength or be capable of handling the same torque as conventional bolts (although it could).
  • Note that in this example, the seals 206 and 208 are compressible. As a result, the apparatus 100 can be raised or lowered by small amounts within the manifold 200 while still allowing the seals 206 and 208 to reduce or prevent coolant leakage. This allows the apparatus 100 to vary in height relative to the surface of the manifold 200 (or other surface into which the apparatus 100 is inserted). In particular embodiments, the height of the apparatus 100 could vary by a distance of about ±0.01 inches (±0.254 mm), although the precision of this value could vary depending on the pitch of the threads in the threaded section 104. When multiple apparatuses 100 are inserted into the same structure like a coldplate, the height of each apparatus 100 could vary independently from the others, which allows the apparatuses 100 to conform to the heights of various heat sources (such as semiconductor chips). This also helps to reduce or eliminate the need for using thermal gap filler pads to absorb mechanical tolerances, which can be beneficial since gap filler pads typically have poor thermal performance. This further helps to avoid the use of materials that experience large temperature gradients and can increase the pitch or density of cooled components since flexible manifolds are not needed (although these could still be used with the apparatus 100). Furthermore, the seals 206 and 208 can be replaceable, and the thickness and the material of each seal can be customizable.
  • Although FIGS. 2A and 2B illustrate one example mechanical and fluid coupling of the threaded cooling apparatus 100 of FIGS. 1A and 1B, various changes may be made to FIGS. 2A and 2B. For example, as noted above, the apparatus 100 could include a single cooling channel 112 a or 112 b for exhausting returned coolant from the heat exchanger 114. Also, the apparatus 100 could be used in any other suitable structure.
  • FIGS. 3A and 3B illustrate a second example threaded cooling apparatus 300 with integrated cooling channels and heat exchanger in accordance with this disclosure. As shown in FIG. 3A, the apparatus 300 has been inserted into the manifold of FIGS. 2A and 2B. Here, the apparatus 300 includes a head 302 and a threaded section 304, and the head 302 includes a heat exchanger 314. These components may be the same as or similar to corresponding components described above and could be formed from the same or similar materials and in the same or similar manner.
  • A cooling channel 310 provides coolant to the heat exchanger 314, and a cooling channel 312 exhausts returned coolant from the heat exchanger 314 (although the coolant flows could be reversed). A seal 316 is located between the head 302 of the apparatus 300 and the manifold or other structure to help prevent coolant from flowing around the apparatus 300 into the ambient environment. The apparatus 300 does not include a flow restrictor (such as flow restrictor 108), which can reduce or eliminate the need for a second seal in the apparatus 300. Instead, the lower threaded area of the threaded section 304 could help to limit coolant flow between the coolant channels 202 and 204 of the manifold. Due to mechanical tolerances, it may be impractical to use both a lower threaded area and an upper threaded area in the threaded section 304. In some circumstances, only the lower area of the threaded section 304 may be threaded, and the upper area of the threaded section 304 may not contain threads.
  • FIG. 3B illustrates an example way for implementing the cooling channel 312 in the apparatus 300. As shown in FIG. 3B, the cooling channel 312 is formed as a groove in the side of the threaded section 304. The groove splits the thread in the threaded section 304, which still allows the apparatus 300 to be inserted into a threaded receptacle while allowing coolant flow through the groove. Of course, the cooling channel 312 could be implemented in any other suitable manner, such as by not adding threads to the upper area of the threaded section 304.
  • FIG. 4 illustrates a third example threaded cooling apparatus 400 with integrated cooling channels and heat exchanger in accordance with this disclosure. As shown in FIG. 4, the apparatus 400 has been inserted into the manifold of FIGS. 2A and 2B. Here, the apparatus 400 includes a head 402 and a threaded section 404, and the head 402 includes a heat exchanger 414. Cooling channels 410-412 provide coolant to and exhaust returned coolant from the heat exchanger 414. A seal 416 is located between the head 402 and the manifold or other structure. These components may be the same as or similar to corresponding components described above and could be formed from the same or similar materials and in the same or similar manner. However, in this example, the cooling channel 410 forms an angle and exits the apparatus 400 along the side rather than on bottom. Due to mechanical tolerances, it may be impractical to use a combination of a lower threaded area, a middle threaded area, and an upper threaded area in the threaded section 404. In some circumstances, only the middle area of the threaded section 404 may be threaded, and the upper and lower areas of the threaded section 404 may not contain threads.
  • FIG. 5 illustrates a fourth example threaded cooling apparatus 500 with integrated cooling channels and heat exchanger in accordance with this disclosure. As shown in FIG. 5, the apparatus 500 has been inserted into the manifold of FIGS. 2A and 2B. Here, the apparatus 500 includes a head 502 and a threaded section 504, and the head 502 includes a heat exchanger 514. Cooling channels 510-512 provide coolant to and exhaust returned coolant from the heat exchanger 514. A seal 516 is located between the head 502 and the manifold or other structure, and a seal 518 is located between the coolant channels 202-204 of the manifold. The cooling channel 510 forms an angle and exits the apparatus 500 along the side rather than on bottom. In this example, the threaded section 504 contains a helical thread only near the bottom of the apparatus 500.
  • In these figures, the apparatuses 300-500 are shown as having the form of bolts. However, an apparatus having integrated cooling channels and a heat exchanger could be implemented using any other suitable fastener, including non-standard fasteners. FIGS. 6A through 6C illustrate a fifth example threaded cooling apparatus 600 with integrated cooling channels and heat exchanger in accordance with this disclosure. In this example, the apparatus 600 includes a head 602 and a threaded section 604. A cooling channel 610 can be used to deliver coolant to a heat exchanger 614 in the head 602, and one or more cooling channels 612 a-612 b could exhaust coolant from the heat exchanger 614. FIG. 6B illustrates the apparatus 600 with a top of the head 602 removed to reveal the heat exchanger 614. Various seals are omitted here for simplicity.
  • In this example, the apparatus 600 represents a non-standard fastener with a rectangular head, although other shapes (including standard hexagonal shapes) could be used. Moreover, the head 602 is much larger than those shown in earlier figures. Among other things, this can enable the use of a larger heat exchanger within the apparatus.
  • Although FIGS. 3A through 6C illustrate additional examples of threaded cooling apparatuses with integrated cooling channels and heat exchanger, various changes may be made to FIGS. 3A through 6C. For example, any number of cooling channels within an apparatus could be used to supply coolant to a heat exchanger, and any number of cooling channels within an apparatus could be used to exhaust returned coolant from a heat exchanger. Also, note that various features from different figures could be combined as needed or desired. Features shown in one or more of the apparatuses described above could be used in other apparatuses described above.
  • As can be seen in the figures described above, there are a variety of configurations for plumbing coolant through or across a threaded fastener to a heat exchanger within a head of the threaded fastener. In general, any fastener that includes a heat exchanger integrated into a head of the fastener and multiple cooling channels for coolant flow to and from the heat exchanger falls within the scope of this disclosure. Also, note that any suitable technique can be used to adjust the height of an apparatus over a manifold or other structure into which the apparatus is inserted, including rotation of the apparatus.
  • FIG. 7 illustrates an example system 700 having multiple threaded cooling apparatuses with integrated cooling channels and heat exchangers in accordance with this disclosure. As shown in FIG. 7, the system 700 includes an electronic assembly 702 having a substrate 704 and multiple integrated circuit chips 706. The substrate 704 represents any suitable structure configured to carry and support integrated circuit chips, such as a printed circuit board. The integrated circuit chips 706 represent any suitable semiconductor chips, which can be configured to support any desired functionality. In particular embodiments, the electronic assembly 702 could represent a computer motherboard, a ball grid array (BGA), or other structure containing multiple chips. As shown here, different integrated circuit chips 706 can have different lengths, widths, and/or heights (although this need not be the case).
  • The system 700 also includes a cooling system 708 having a manifold 710 and multiple threaded cooling apparatuses 712. The manifold 710 is configured to deliver coolant to and receive coolant from the threaded cooling apparatuses 712. The threaded cooling apparatuses 712 thermally couple to the integrated circuit chips 706 in the electronic assembly 702 and remove heat away from the integrated circuit chips 706. Each threaded cooling apparatus 712 could include any suitable fastener that includes a heat exchanger integrated into a head of the fastener and multiple cooling channels for coolant flow to and from the heat exchanger (such as any of the devices described above). Each threaded cooling apparatus 712 could be individually adjusted in height in order to contact and effectively remove heat from the associated integrated circuit chip(s) 706.
  • Although FIG. 7 illustrates one example of a system 700 having multiple threaded cooling apparatuses with integrated cooling channels and heat exchangers, various changes may be made to FIG. 7. For example, the system 700 could include any number of electronic assemblies 702 and cooling systems 708. Also, the electronic assembly 702 could include any number of substrates 704 and integrated circuit chips 706, and the cooling system 708 could include any number of manifolds 710 and threaded cooling apparatuses 712. In addition, while shown as having a one-to-one relationship between the integrated circuit chips 706 and the threaded cooling apparatuses 712, this need not be the case. For instance, a single threaded cooling apparatus 712 could thermally couple to multiple integrated circuit chips 706.
  • FIG. 8 illustrates an example method 800 for cooling one or more components using a threaded cooling apparatus with integrated cooling channels and heat exchanger in accordance with this disclosure. For ease of explanation, the method 800 is described as involving the use of the apparatus 100 connected to the manifold 200. However, the method 800 could involve the use of any other suitable threaded cooling apparatus (such as those described above) in any suitable larger structure.
  • As shown in FIG. 8, a threaded cooling apparatus is inserted into a structure that provides coolant at step 802. This could include, for example, inserting the apparatus 100 into the manifold 200. The height of the apparatus is adjusted as needed at step 804. This could include, for example, rotating the apparatus 100 or taking other suitable action so that the top surface of the apparatus 100 is at a desired height above the manifold 200. The desired height could be based, for example, on a device or system to be cooled using the apparatus 100, such as the height of one or more semiconductor chips.
  • Coolant is supplied to the apparatus through a first channel at step 806, and the coolant is supplied to a heat exchanger within the apparatus at step 808. This could include, for example, receiving coolant at the heat exchanger 114 from the manifold 200 through the cooling channel 110. This could also include exchanging heat with the coolant at the heat exchanger 114. In this way, the apparatus helps to provide cooling to or rejects heat to an external device or system at step 810. This could include, for example, transferring heat away from the external device or system into the coolant via the heat exchanger 114. This could alternatively include transferring heat to the external device or system from the coolant via the heat exchanger 114. The coolant is returned to the structure at step 812. This could include, for example, exhausting returned coolant to the manifold 200 through the cooling channel(s) 112 a-112 b.
  • Although FIG. 8 illustrates one example of a method 800 for cooling one or more components using a threaded cooling apparatus with integrated cooling channels and heat exchanger, various changes may be made to FIG. 8. For example, the method 800 could involve the use of multiple threaded apparatuses, such as multiple apparatuses inserted into a coldplate, and those multiple threaded apparatuses may or may not be identical. Also, while shown as a series of steps, various steps in FIG. 8 could overlap, occur in parallel, or occur multiple times.
  • It may be advantageous to set forth definitions of certain words and phrases used throughout this patent document. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrase “associated with,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, have a relationship to or with, or the like. The phrase “at least one of,” when used with a list of items, means that different combinations of one or more of the listed items may be used, and only one item in the list may be needed. For example, “at least one of: A, B, and C” includes any of the following combinations: A, B, C, A and B, A and C, B and C, and A and B and C.
  • While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.

Claims (20)

What is claimed is:
1. A threaded cooling apparatus comprising:
a head comprising a heat exchanger; and
a shaft comprising a threaded section configured to mechanically fasten the head to a structure;
wherein the heat exchanger is configured to exchange heat with a coolant flowing through the head; and
wherein the shaft further comprises first and second cooling channels, the first cooling channel configured to deliver the coolant to the heat exchanger, the second cooling channel configured to exhaust the coolant from the heat exchanger.
2. The apparatus of claim 1, wherein the heat exchanger is configured to translate perpendicular to a surface of the structure based on rotation of the apparatus.
3. The apparatus of claim 1, further comprising:
a first seal between the head and the structure, the first seal configured to reduce or prevent coolant loss.
4. The apparatus of claim 3, further comprising:
a second seal configured to reduce or prevent coolant flow between the first and second cooling channels that bypasses the heat exchanger.
5. The apparatus of claim 1, wherein the head and the shaft form a bolt.
6. The apparatus of claim 1, wherein the first cooling channel extends along an entire length of the shaft.
7. The apparatus of claim 1, wherein the first cooling channel extends along part but not all of a length of the shaft and is angled so that an entry to the first cooling channel is located along a side of the shaft.
8. The apparatus of claim 1, wherein the second cooling channel comprises a groove through at least part of the shaft.
9. A system comprising:
a threaded cooling apparatus comprising:
a head comprising a heat exchanger; and
a shaft comprising a threaded section;
wherein the heat exchanger is configured to exchange heat with a coolant flowing through the head; and
wherein the shaft further comprises first and second cooling channels, the first cooling channel configured to deliver the coolant to the heat exchanger, the second cooling channel configured to exhaust the coolant from the heat exchanger;
a manifold comprising first and second coolant channels, the first coolant channel configured to provide the coolant to the first cooling channel of the threaded cooling apparatus, the second coolant channel configured to return the coolant from the second cooling channel of the threaded cooling apparatus;
wherein the threaded section is configured to mechanically fasten the head to the manifold.
10. The system of claim 9, wherein the heat exchanger is configured to translate perpendicular to a surface of the manifold based on rotation of the threaded cooling apparatus.
11. The system of claim 9, wherein the threaded cooling apparatus further comprises a first seal between the head and the manifold, the first seal configured to reduce or prevent coolant loss.
12. The system of claim 11, wherein the threaded cooling apparatus further comprises a second seal configured to reduce or prevent coolant flow between the first and second cooling channels that bypasses the heat exchanger.
13. The system of claim 9, wherein the threaded cooling apparatus comprises a bolt.
14. The system of claim 9, wherein the first cooling channel extends along an entire length of the shaft.
15. The system of claim 9, wherein the first cooling channel extends along part but not all of a length of the shaft and is angled so that an entry to the first cooling channel is located along a side of the shaft
16. The system of claim 9, wherein the second cooling channel comprises a groove through at least part of the shaft.
17. A method comprising:
inserting a threaded cooling apparatus into a structure, the threaded cooling apparatus comprising a head and a shaft, the head comprising a heat exchanger, the shaft comprising a threaded section configured to mechanically fasten the head to the structure;
providing coolant to the heat exchanger through a first cooling channel in the shaft, the heat exchanger configured to exchange heat with the coolant flowing through the head; and
exhausting the coolant from the heat exchanger through a second cooling channel in the shaft.
18. The method of claim 17, wherein during insertion the heat exchanger translates perpendicular to a surface of the structure based on rotation of the threaded cooling apparatus.
19. The method of claim 17, wherein the threaded cooling apparatus further comprises a first seal between the head and the manifold, the first seal configured to reduce or prevent coolant loss.
20. The method of claim 19, wherein the threaded cooling apparatus further comprises a second seal configured to reduce or prevent coolant flow between the first and second cooling channels that bypasses the heat exchanger.
US13/691,259 2012-11-30 2012-11-30 Threaded cooling apparatus with integrated cooling channels and heat exchanger Abandoned US20140150992A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/691,259 US20140150992A1 (en) 2012-11-30 2012-11-30 Threaded cooling apparatus with integrated cooling channels and heat exchanger
US16/589,840 US11231239B2 (en) 2012-11-30 2019-10-01 Threaded cooling apparatus with integrated cooling channels and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/691,259 US20140150992A1 (en) 2012-11-30 2012-11-30 Threaded cooling apparatus with integrated cooling channels and heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/589,840 Division US11231239B2 (en) 2012-11-30 2019-10-01 Threaded cooling apparatus with integrated cooling channels and heat exchanger

Publications (1)

Publication Number Publication Date
US20140150992A1 true US20140150992A1 (en) 2014-06-05

Family

ID=50824281

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/691,259 Abandoned US20140150992A1 (en) 2012-11-30 2012-11-30 Threaded cooling apparatus with integrated cooling channels and heat exchanger
US16/589,840 Active 2033-05-20 US11231239B2 (en) 2012-11-30 2019-10-01 Threaded cooling apparatus with integrated cooling channels and heat exchanger

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/589,840 Active 2033-05-20 US11231239B2 (en) 2012-11-30 2019-10-01 Threaded cooling apparatus with integrated cooling channels and heat exchanger

Country Status (1)

Country Link
US (2) US20140150992A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150253071A1 (en) * 2014-03-04 2015-09-10 Conocophillips Company Heat exchanger for a liquefied natural gas facility
US9254535B2 (en) 2014-06-20 2016-02-09 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9662840B1 (en) 2015-11-06 2017-05-30 Velo3D, Inc. Adept three-dimensional printing
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
US9962767B2 (en) 2015-12-10 2018-05-08 Velo3D, Inc. Apparatuses for three-dimensional printing
US20180126649A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10315252B2 (en) 2017-03-02 2019-06-11 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743011A (en) * 1971-11-04 1973-07-03 Modine Mfg Co Heat exchanger
US3908188A (en) * 1974-08-14 1975-09-23 Us Air Force Heat sink for microstrip circuit
US4131785A (en) * 1976-02-18 1978-12-26 Electro-Therm, Inc. Electrically heated liquid tank employing heat pipe heat transfer means
US4227102A (en) * 1978-05-10 1980-10-07 Rozenfeld Lev M Electrical machine with cryogenic cooling
US4494171A (en) * 1982-08-24 1985-01-15 Sundstrand Corporation Impingement cooling apparatus for heat liberating device
US4580625A (en) * 1983-04-13 1986-04-08 Nippondenso Co., Ltd. Automotive oil cooler
US4638854A (en) * 1983-06-15 1987-01-27 Noren Don W Heat pipe assembly
US4696339A (en) * 1984-11-02 1987-09-29 Suddeutsche Kuhlerfabrik Julius Fr. Behr, Gmbh & Co. Kg Oil cooler
US4882654A (en) * 1988-12-22 1989-11-21 Microelectronics And Computer Technology Corporation Method and apparatus for adjustably mounting a heat exchanger for an electronic component
US4909315A (en) * 1988-09-30 1990-03-20 Microelectronics And Computer Technology Corporation Fluid heat exchanger for an electronic component
US4977444A (en) * 1987-10-26 1990-12-11 Hitachi, Ltd. Semiconductor cooling apparatus
US5263536A (en) * 1991-07-19 1993-11-23 Thermo Electron Technologies Corp. Miniature heat exchanger
US6549407B1 (en) * 2001-12-27 2003-04-15 Intel Corporation Heat exchanger retention mechanism
US6778393B2 (en) * 2002-12-02 2004-08-17 International Business Machines Corporation Cooling device with multiple compliant elements
US6892801B1 (en) * 2004-01-15 2005-05-17 Sun Microsystems, Inc. Thermal control apparatus for electronic systems
US20090272512A1 (en) * 2008-05-01 2009-11-05 Acer Incorporated Liquid cooling heat dissipating device
US20110232864A1 (en) * 2010-03-29 2011-09-29 Zaffetti Mark A Compact two sided cold plate with threaded inserts

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743011A (en) * 1971-11-04 1973-07-03 Modine Mfg Co Heat exchanger
US3908188A (en) * 1974-08-14 1975-09-23 Us Air Force Heat sink for microstrip circuit
US4131785A (en) * 1976-02-18 1978-12-26 Electro-Therm, Inc. Electrically heated liquid tank employing heat pipe heat transfer means
US4227102A (en) * 1978-05-10 1980-10-07 Rozenfeld Lev M Electrical machine with cryogenic cooling
US4494171A (en) * 1982-08-24 1985-01-15 Sundstrand Corporation Impingement cooling apparatus for heat liberating device
US4580625A (en) * 1983-04-13 1986-04-08 Nippondenso Co., Ltd. Automotive oil cooler
US4638854A (en) * 1983-06-15 1987-01-27 Noren Don W Heat pipe assembly
US4696339A (en) * 1984-11-02 1987-09-29 Suddeutsche Kuhlerfabrik Julius Fr. Behr, Gmbh & Co. Kg Oil cooler
US4977444A (en) * 1987-10-26 1990-12-11 Hitachi, Ltd. Semiconductor cooling apparatus
US4909315A (en) * 1988-09-30 1990-03-20 Microelectronics And Computer Technology Corporation Fluid heat exchanger for an electronic component
US4882654A (en) * 1988-12-22 1989-11-21 Microelectronics And Computer Technology Corporation Method and apparatus for adjustably mounting a heat exchanger for an electronic component
US5263536A (en) * 1991-07-19 1993-11-23 Thermo Electron Technologies Corp. Miniature heat exchanger
US6549407B1 (en) * 2001-12-27 2003-04-15 Intel Corporation Heat exchanger retention mechanism
US6778393B2 (en) * 2002-12-02 2004-08-17 International Business Machines Corporation Cooling device with multiple compliant elements
US6892801B1 (en) * 2004-01-15 2005-05-17 Sun Microsystems, Inc. Thermal control apparatus for electronic systems
US20090272512A1 (en) * 2008-05-01 2009-11-05 Acer Incorporated Liquid cooling heat dissipating device
US20110232864A1 (en) * 2010-03-29 2011-09-29 Zaffetti Mark A Compact two sided cold plate with threaded inserts

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
US20150253071A1 (en) * 2014-03-04 2015-09-10 Conocophillips Company Heat exchanger for a liquefied natural gas facility
US11435138B2 (en) * 2014-03-04 2022-09-06 Conocophillips Company Heat exchanger for a liquefied natural gas facility
US9573225B2 (en) 2014-06-20 2017-02-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9254535B2 (en) 2014-06-20 2016-02-09 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9486878B2 (en) 2014-06-20 2016-11-08 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10493564B2 (en) 2014-06-20 2019-12-03 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9573193B2 (en) 2014-06-20 2017-02-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9586290B2 (en) 2014-06-20 2017-03-07 Velo3D, Inc. Systems for three-dimensional printing
US9403235B2 (en) 2014-06-20 2016-08-02 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10507549B2 (en) 2014-06-20 2019-12-17 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9821411B2 (en) 2014-06-20 2017-11-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9399256B2 (en) 2014-06-20 2016-07-26 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9346127B2 (en) 2014-06-20 2016-05-24 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10195693B2 (en) 2014-06-20 2019-02-05 Vel03D, Inc. Apparatuses, systems and methods for three-dimensional printing
US11293309B2 (en) 2014-11-03 2022-04-05 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US9662840B1 (en) 2015-11-06 2017-05-30 Velo3D, Inc. Adept three-dimensional printing
US10065270B2 (en) 2015-11-06 2018-09-04 Velo3D, Inc. Three-dimensional printing in real time
US9676145B2 (en) 2015-11-06 2017-06-13 Velo3D, Inc. Adept three-dimensional printing
US10357957B2 (en) 2015-11-06 2019-07-23 Velo3D, Inc. Adept three-dimensional printing
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
US10058920B2 (en) 2015-12-10 2018-08-28 Velo3D, Inc. Skillful three-dimensional printing
US10183330B2 (en) 2015-12-10 2019-01-22 Vel03D, Inc. Skillful three-dimensional printing
US9962767B2 (en) 2015-12-10 2018-05-08 Velo3D, Inc. Apparatuses for three-dimensional printing
US10207454B2 (en) 2015-12-10 2019-02-19 Velo3D, Inc. Systems for three-dimensional printing
US10688722B2 (en) 2015-12-10 2020-06-23 Velo3D, Inc. Skillful three-dimensional printing
US10286603B2 (en) 2015-12-10 2019-05-14 Velo3D, Inc. Skillful three-dimensional printing
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
US10252335B2 (en) 2016-02-18 2019-04-09 Vel03D, Inc. Accurate three-dimensional printing
US9931697B2 (en) 2016-02-18 2018-04-03 Velo3D, Inc. Accurate three-dimensional printing
US10434573B2 (en) 2016-02-18 2019-10-08 Velo3D, Inc. Accurate three-dimensional printing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10286452B2 (en) 2016-06-29 2019-05-14 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10259044B2 (en) 2016-06-29 2019-04-16 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US20180126649A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10369629B2 (en) 2017-03-02 2019-08-06 Veo3D, Inc. Three-dimensional printing of three-dimensional objects
US10888925B2 (en) 2017-03-02 2021-01-12 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10357829B2 (en) 2017-03-02 2019-07-23 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10315252B2 (en) 2017-03-02 2019-06-11 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Also Published As

Publication number Publication date
US20200049429A1 (en) 2020-02-13
US11231239B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
US11231239B2 (en) Threaded cooling apparatus with integrated cooling channels and heat exchanger
CN113994772B (en) Cooling module based on direct contact fluid
US7515418B2 (en) Adjustable height liquid cooler in liquid flow through plate
US8358000B2 (en) Double side cooled power module with power overlay
CN112930078B (en) Cold plate assembly for electronic components
US7215545B1 (en) Liquid cooled diamond bearing heat sink
US8391008B2 (en) Power electronics modules and power electronics module assemblies
US7460369B1 (en) Counterflow microchannel cooler for integrated circuits
US9298231B2 (en) Methods of fabricating a coolant-cooled electronic assembly
EP2834841B1 (en) Semiconductor cooling apparatus
CN107359146B (en) Heat superconducting plate fin type radiator with fins on surface
US9553038B2 (en) Semiconductor cooling apparatus
CN111601489A (en) Multilayer tandem cascade liquid cooling plate
CN112997303A (en) Impingement jet cooling plate for power electronics with enhanced heat transfer
CN201138905Y (en) Integrate heat radiating device under condition of small space and multiple heat supplies
EP3432696B1 (en) Heat transfer assembly for a heat emitting device
JP2001284513A (en) Power semiconductor device
CN114096795A (en) Heat transfer system and electrical or optical component
CN116234229A (en) Cooling module and method of assembling cooling module to electronic circuit module
CN114646235A (en) Heat exchanger, in particular for power electronics
EP3955716A1 (en) Cooling device and method of manufacturing the same
JP2023518671A (en) Heterogeneous integrated module with thermal management device
CN104075601A (en) Groove type heat pipe radiator
US20230284421A1 (en) Actively Cooled Heat-Dissipation Lids for Computer Processors and Assemblies
Skuriat Direct jet impingement cooling of power electronics

Legal Events

Date Code Title Description
AS Assignment

Owner name: RAYTHEON COMPANY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOONTZ, CHRISTOPHER R.;JOHNSON, SCOTT T.;MERHI, SHADI S.;SIGNING DATES FROM 20121114 TO 20121129;REEL/FRAME:029387/0860

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION