US20140180148A1 - ECG Adapter System and Method - Google Patents

ECG Adapter System and Method Download PDF

Info

Publication number
US20140180148A1
US20140180148A1 US14/044,932 US201314044932A US2014180148A1 US 20140180148 A1 US20140180148 A1 US 20140180148A1 US 201314044932 A US201314044932 A US 201314044932A US 2014180148 A1 US2014180148 A1 US 2014180148A1
Authority
US
United States
Prior art keywords
connector
lead
adapter
ecg
lead receptacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/044,932
Inventor
Scott R. Coggins
Mark J. Callahan
Steven A. Holley
Dimitrios J. Theodorou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to US14/044,932 priority Critical patent/US20140180148A1/en
Publication of US20140180148A1 publication Critical patent/US20140180148A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • A61B5/04286
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/303Patient cord assembly, e.g. cable harness
    • A61B5/0408
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/22Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
    • A61B2562/225Connectors or couplings
    • A61B2562/227Sensors with electrical connectors

Definitions

  • the present disclosure relates to medical equipment.
  • the present disclosure relates to an ECG lead system including one or more ECG lead sets, an adapter system, an extension cable and methods for coupling the one or more ECG lead sets with the adapter.
  • Electrocardiograph (ECG) lead systems are used to obtain biopotential signals containing information indicative of the electrical activity associated with the heart and pulmonary system.
  • ECG electrodes are applied to the skin of a patient in various locations and coupled to an ECG device, e.g., an “ECG monitor” or “ECG telemetry.” Placement of the electrodes is dependant on the information sought by the clinician.
  • a 3-lead configuration requires the placement of three electrodes; one electrode adjacent each clavicle bone (RA, LA) on the upper chest and a third electrode adjacent the patient's lower left abdomen (LL).
  • a 5-lead configuration requires the placement of the three electrodes in the 3-lead configuration with the addition of a fourth electrode adjacent the sternum (Va) and a fifth electrode on the patient's lower right abdomen (RL).
  • a 12-lead configuration requires the placement of 10 electrodes on the patient's body.
  • Electrodes which represent the patient's limbs, include the left arm electrode (LA lead), the right arm electrode (RA lead), the left leg electrode (LL lead), and the right leg electrode (RL lead).
  • Six chest electrodes (V1-V6 leads) are placed on the patient's chest at various locations near the heart.
  • Three standard limb leads are constructed from measurements between the right arm and left arm (Lead I), the right arm and the left leg (Lead H) and the left arm to left leg (Lead III).
  • the present disclosure relates to medical equipment.
  • an electrocardiograph (ECG) adapter including an adapter body having a first end and a second end.
  • a monitor connector is positioned at the first end of the adapter body, the monitor connector adapted for coupling to an input of an ECG monitor.
  • a first lead receptacle is positioned at the second end of the adapter body, the first lead receptacle configured to receive a first connector having a first pin configuration.
  • a second lead receptacle is positioned at the second end of the adapter body, the second lead receptacle located adjacent the first lead receptacle and configured to receive a second connector having a second pin configuration different from the first pin configuration.
  • the first lead receptacle includes a 2-pin configuration for receiving the first connector and the second lead receptacle includes a 6-pin configuration for receiving the second connector.
  • the first lead receptacle includes a single pin configuration.
  • the second lead receptacle is adapted to connect to a second connector having a plurality of electrodes.
  • the plurality of electrodes may include 5 electrodes. Additionally, a single electrode may be disposed at the proximal end of the first connector.
  • first connector is adapted to function when the second connector is disconnected.
  • second connector is adapted to function when the first connector is disconnected.
  • functionality of the first connector is independent of the functionality of the second connector.
  • first connector and second connector are adapted to function when both the first connector and the second connector are connected.
  • the first and second connectors are disposable connectors.
  • the present disclosure further relates to a method of coupling an electrocardiograph (ECG) monitor to one or more lead sets via an adapter.
  • the method includes the steps of positioning a monitor connector at a first end of the adapter, the monitor connector adapted for coupling to an input of the ECG monitor; positioning a first lead receptacle at a second end of the adapter, the first lead receptacle configured to receive a first connector having a first pin configuration and positioning a second lead receptacle at the second end of the adapter, the second lead receptacle located adjacent the first lead receptacle and configured to receive a second connector having a second pin configuration different from the first pin configuration.
  • ECG electrocardiograph
  • the present disclosure further relates to an electrocardiograph (ECG) lead set system including a first ECG lead set including a plurality of lead wires for coupling to a plurality of first electrodes and a second ECG lead set including a single wire for coupling to a second electrode.
  • ECG electrocardiograph
  • the system further includes a first plug connector coupled to one end of the first ECG lead set and a second plug connector coupled to one end of the second ECG lead set.
  • the system also includes an adapter adapted for coupling the first and second plug connectors to an input of an ECG monitor.
  • the adapter includes an adapter body having a first end and a second end and a monitor connector positioned at the first end of the adapter body, the monitor connector adapted for coupling to an input of the ECG monitor.
  • the adapter further includes a first lead receptacle positioned at the second end of the adapter body, the first lead receptacle being configured to receive the first plug connector having a first pin configuration.
  • the adapter also includes a second lead receptacle positioned at the second end of the adapter body, the second lead receptacle located adjacent the first lead receptacle and configured to receive the second plug connector having a second pin configuration different than the first pin configuration.
  • FIG. 1 is a perspective, front view of an adapter at a first angle, according to the present disclosure
  • FIG. 2 is a perspective, rear view of the adapter, according to the present disclosure
  • FIG. 3 is a perspective, front view of an adapter at a second angle, according to the present disclosure
  • FIG. 4 is a perspective view of a portion of the adapter having a first and a second receptacle for receiving first and second plug connectors, respectively, according to the present disclosure
  • FIGS. 5A-5E are top, bottom and side views of the adapter of FIG. I, according to the present disclosure.
  • FIG. 6A is a perspective view of a 2-pin configuration lead connector, according to the present disclosure.
  • FIG. 6B is an end view of the connector of FIG. 6A ;
  • FIG. 7 is a schematic diagram of an ECG lead set system, according to the present disclosure.
  • FIG. 8 is a perspective view of a plug protector, according to another aspect of the present disclosure.
  • distal refers to the portion which is furthest from the user/clinician and the term “proximal” refers to the portion that is closest to the user/clinician.
  • proximal refers to the portion that is closest to the user/clinician.
  • terms such as “above,” “below,” “forward,” “rearward,” etc. refer to the orientation of the figures or the direction of components and are simply used for convenience of description.
  • Electrodes after placement on the patient, connect to an ECG device by an ECG lead set.
  • the other end of the ECG lead set connects to the ECG input connector and supplies the biopotential signals received from the body to the ECG device.
  • Conventional lead sets are prearranged in a particular configuration to obtain the desired information. For example, lead sets are typically available for standard electrode configurations, such as a 3 lead, 5 lead, 6 lead, 10 lead or 12 lead.
  • ECG devices and ECG lead sets are also typically manufactured and sold by various companies. Although protocols have been established for the placement ECG electrodes, the various manufacturers typically use product specific connectors and wiring configurations. A patient may also be initially monitored with one lead configuration, but require a different lead configuration upon extended monitoring.
  • one or more lead sets may be used for a single patient as monitoring requirements change during patient evaluation and treatment.
  • a patient may require one type of ECG lead system while in, for example, the emergency room (ER), the operating room (OR), the post-anesthesia care unit (PACU), the intensive care unit (ICU) and/or the critical care unit (CCU); and may require a second or different type ECG lead system while on, for example, a telemetry floor.
  • ER emergency room
  • OR operating room
  • PACU post-anesthesia care unit
  • ICU intensive care unit
  • CCU critical care unit
  • a patient may require a relatively longer ECG lead set in order to connect to an ECG monitor while the patient is in the ER, the OR, the PACU, the ICU and/or the CCU; and a relatively shorter ECG lead set in order to connect to ECG telemetry while the patient is on a telemetry floor.
  • a patient may be initially monitored with a 5 lead configuration and subsequently switched to a 6 lead configuration.
  • the 5-lead configuration requires the placement of the five electrodes RA, LA, LL, Va, and RL, while the 6-lead configuration includes a Vb electrode in addition to the previous five electrodes.
  • a system that enables an end user to use a single ECG lead set across various ECG device platforms and to accommodate the use of the ECG lead set with either an ECG monitor and/or ECG telemetry as desired is provided.
  • Adapter 10 in accordance with the principles of the present disclosure, is illustrated.
  • Adapter 10 includes an adapter body 40 having a first end 20 and a second end 30 .
  • First end 20 may be a front end of adapter body 40
  • second end 30 may be a rear end of adapter body 40 .
  • Adapter 10 also includes a plurality of plugs 50 at second end 30 of adapter body 40 and at least two pin configurations 60 , 70 at first end 20 of adapter body 40 .
  • Plugs 50 at second end 30 may have any conventional configuration, such as cylindrical, rectangular or any regular or irregular cross sectional area suitable for a particular purpose.
  • a first pin configuration 60 includes 2-pins
  • second pin configuration 70 includes 6-pins.
  • pin configurations 60 , 70 may vary depending on the desired application and the specific lead set or lead sets to be used.
  • pin configuration 60 may include only a single pin used in an unshielded configuration of a single electrode lead set.
  • Pin configurations 60 , 70 are depicted as female connectors. However, one skilled in the art may contemplate using male connectors at first end 20 of adapter body 40 . One skilled in the art may also contemplate using a plurality of different pin configurations.
  • the plurality of plugs 50 may be a five (5) plug pin male socket connector (each plug having a pair of sockets, wherein one plug corresponds to one ECG lead and the corresponding plug carries the shield) similar to those specified by ANSI/AAMI EC53 for shielded leadwire to trunk cable interconnections.
  • the plurality of plugs 50 may be referred to as monitor plugs.
  • Monitor plugs 50 are configured for coupling to the lead set input connector of ECG floor monitor 710 (see FIG. 7 ).
  • Monitor plugs 50 may include a plurality of male contact pins for establishing an electrical connection between ECG floor monitor 710 and device connectors 110 , 120 (see FIG. 4 ).
  • adapter 10 generally includes adapter body 40 , at least two input receptacles 60 , 70 disposed on first end 20 of adapter body 40 , and monitor plugs 50 disposed on second end 30 of adapter body 40 .
  • First input receptacle 60 is configured to be located adjacent to or in proximity to second input receptacle 70 .
  • Each of the input receptacles 60 , 70 is configured to electrically couple with a device connector 110 , 120 (see FIG. 4 ).
  • Each of the input receptacles 60 , 70 includes a plurality of electrical contact receptacles for connection with, for example, male pin contacts of the device connectors 110 , 120 (see FIG. 4 ).
  • FIG. 4 a perspective view 100 of a portion of adapter 10 having first and second receptacles 60 , 70 for receiving first and second plug connectors 110 , 120 is shown.
  • First plug connector 110 is connected to the 2-pin input receptacle 60
  • second plug connector 120 is connected to the 6-pin input receptacle 70 (see FIGS. 1-3 ).
  • device connectors 110 , 120 are configured and dimensioned to mate and electrically connect with input receptacles 60 , 70 of adapter 10 .
  • first input receptacle 60 is configured to receive first device connector 110 having a first pin configuration and second input receptacle 70 is configured to receive second device connector 120 having a second pin configuration, the first and second pin configurations being different with respect to each other.
  • first input receptacle 60 is constructed and arranged to receive a single electrode assembly
  • second input receptacle 70 is constructed and arranged to receive a 5-lead electrode assembly.
  • the lead set assembly may be instantly transformed/modified/altered from a 5-lead set to a 6-lead set, and from a 6-lead set to a 5-lead set, without replacing an entire 5-lead set with an entire 6-lead set and without replacing an entire 6-lead set with a 5-lead set.
  • switching between a 5-lead and a 6-lead set may be accomplished without interrupting patient monitoring of biopotential signals.
  • FIGS. 5A-5E top, bottom and side views 500 of adapter 10 are depicted.
  • FIG. 5A depicts a front view of the 2-pin and 6-pin input receptacles 60 , 70 (as described above).
  • FIG. 5C depicts a front view of plurality of plugs 50 (as described above).
  • first input receptacle 60 is disconnected from adapter 10
  • second input receptacle 70 continues to function.
  • first input receptacle 60 continues to function.
  • the functionality of first input receptacle 60 is independent of the functionality of second input receptacle 70 .
  • the 5-lead disposable lead wire set may be used as a 6-lead telemetry lead set, so that the clinician may require only one lead set for a patient that experiences 3/5 lead monitoring followed by a 6-lead telemetry monitoring.
  • a clinician may perform his/her job more efficiently and use less lead sets.
  • the lead set may be conveniently and instantly transformed or altered from a 5-lead set to a 6-lead set.
  • the lead set may be conveniently and instantly transformed or altered from a 6-lead set to a 5 lead set.
  • ECG lead system 700 in accordance with the present disclosure, is used in connection with an ECG device or monitor, in the form or ECG floor monitor 710 or ECG telemetry monitor/adapter 740 .
  • ECG floor monitor 710 includes at least one lead set input connector 720 configured to connect with at least one ECG lead set assembly 730 .
  • ECG lead system 700 includes adapter 750 .
  • ECG monitor 710 is configured to receive biopotential signals containing information indicative of the electrical activity associated with the heart and pulmonary system and to display the information of a user display (not shown).
  • any type of adapter may be utilized based on the desired medical application.
  • the example embodiments of the present disclosure refer to a 5-lead electrode set and a 1-lead electrode set connected to a 6-pin input receptacle 70 and a 2-pin input receptacle 60 , respectively.
  • ECG lead set assembly 600 for the 2-pin input receptacle 60 includes lead set cable 602 , device connector 604 at one end of lead set cable 602 and at least one electrode connector 606 .
  • Lead set cable 602 includes a plurality of encased and insulated lead wires (not shown) disposed in side-by-side relation. Insulated lead wires may be EMI/RF shielded.
  • Lead set cable 602 may be in the form of a ribbon cable configured for transmitting electrical signals. Each lead wire may be independently separable from an adjacent lead wire to facilitate placement of a respective electrode connector 606 at a predetermined body location, to thereby permit customization of ECG lead set assembly 600 for each subject.
  • Lead wires may be attached via their insulated covers and, may be separable along respective lines of juncture of the insulated covers of adjacent lead wires.
  • Individual lead wires of lead set cable 602 may be varied in length to permit placement of an individual electrode connector 606 at a target site, e.g., across the chest or abdomen, to permit collection or delivery of biomedical signals at these locations.
  • each electrode assembly of 6-pin input receptacle 70 is the same or equivalent to the electrode assembly of 2-pin input receptacle 60 .
  • ECG lead system 700 includes ECG telemetry adapter 740 configured and adapted to interconnect at least one ECG lead set assembly 600 (see FIG. 6 ) to ECG telemetry monitor 740 .
  • ECG telemetry adapter 740 includes an adapter body, at least one input receptacle 742 disposed on one side of adapter body, and a telemetry plug (not shown) disposed on another side of adapter body. Each input receptacle 742 is configured to electrically mate with adapter 750 .
  • input receptacle 742 is in the form of an AAMI type plug
  • telemetry plug is in the form of a GE 5 prong, 10-pin telemetry plug that is configured and adapted to mate with and electrically connect to ECG telemetry monitor 740 .
  • ECG adapter system 700 includes adapter 750 and one or more ECG lead sets 760 , 770 .
  • Each ECG lead set 760 , 770 includes a plurality of lead wires 761 , 771 at least partially surrounded by sheath 780 .
  • Sheath 780 may protect lead wires 761 , 771 from physical damage or may shield lead wires 761 , 771 from electrical interference.
  • Sheath 780 may vary in length between about 2 feet to about 10 feet. At least a portion of lead wires 761 , 771 extends distally from sheath 780 a distance “d,” between about 2 to about 40 inches.
  • Sheath 780 may be integrated into ECG lead sets 760 , 770 or may be formed from a suitable tubular material and coupled to ECG lead sets 760 , 770 .
  • the distal end of lead wires 761 , 771 may connect to one or more electrodes 764 , 774 .
  • lead wires 761 , 771 may be integrated into electrodes 764 , 774 .
  • One or more electrodes 764 , 774 may be coupled to the distal end of each individual lead wire 761 , 771 or electrodes 764 , 774 may be formed from individual lead wires 761 , 771 .
  • electrode connectors may be positioned between the electrodes 764 , 774 and the distal end of lead wires 761 , 771 .
  • Such electrode connectors may be attached to, or formed on, the distal end of lead wires 761 , 771 .
  • the electrode connectors may be snap connectors, locking slot connectors and/or keyhole connectors.
  • One skilled in the art may contemplate using a plurality of different connection mechanism and/or configurations.
  • patient 790 is typically connected to ECG floor monitor 710 .
  • patient 790 may be connected to a 5-lead ECG lead set 760 via electrodes 764 .
  • ECG lead set 760 is mated with and electrically connected to ECG lead wires 761 and ECG lead wires 761 are mated with and electrically connected to adapter 720 .
  • a lead extension 730 may be disposed between lead set 760 and adapter 720 .
  • the need for one of the ECG lead extensions may no longer be necessary if patient 790 is to be connected to ECG telemetry monitor 740 .
  • Patient 790 may also now require another ECG lead in addition to the 5-lead system already connected to the patient. Accordingly, in one embodiment, the 5-lead set 760 is disconnected from adapter 770 or lead extension 730 .
  • the 5-lead ECG set currently attached to the patient may then also be connected to adapter 750 .
  • a single ECG lead 770 may also be connected to adapter 750 and to the patient.
  • Adapter 750 is mated with and electrically connected to ECG telemetry box 740 .
  • Adapter 750 includes first input receptacle 752 and second input receptacle 754 at a first end.
  • First input receptacle 752 is configured to receive first connector 762 of ECG lead set 760
  • second input receptacle 754 is configured to receive second connector 772 of ECG lead set 770 .
  • Adapter 750 also includes plurality of plugs 756 at a second end.
  • the 5-lead ECG set which was first used with a patient may remain with the patient as the patient is switched from a 5-lead configuration to a 6 lead configuration, and vice versa.
  • at least one ECG lead extension e.g., lead set 770
  • the other ECG lead set e.g., lead set 760
  • the need for at least one of the ECG lead extensions/lead sets is no longer necessary since patient 790 transferred from lead wire monitoring to telemetry wiring, or vice versa.
  • ECG lead sets 760 , 770 may be used for the emergency room (ER), the operating room (OR), the post-anesthesia care unit (PACU), the intensive care unit (ICU) and/or the critical care unit (CCU), and for the telemetry floor.
  • ER emergency room
  • OR operating room
  • PACU post-anesthesia care unit
  • ICU intensive care unit
  • CCU critical care unit
  • first lead set 760 is disconnected from adapter 750
  • second lead set 770 continues to function.
  • first lead set 760 continues to function.
  • the functionality of the first lead set 760 is independent of the functionality of the second lead set 770 .
  • the 5-lead disposable lead wire set may be used as a 6-lead telemetry lead set, so that the clinician may require only one lead set for a patient that experiences 3/5 lead monitoring followed by a 6-lead telemetry monitoring.
  • a clinician may perform his/her job more efficiently and use less lead sets.
  • the lead set may be instantly transformed/modified from a 5-lead set to a 6-lead set, and vice versa.
  • adapter 750 is constructed and arranged to operate when either first input receptacle 752 or second input receptacle 754 or both input receptacles 752 and 754 are connected to first connector 762 and second connector 772 , respectively.
  • adapter 750 may also include a plug cover to protect either input receptacles 752 , 754 when not in use.
  • adapter 750 may also comprise plug cover 800 which connects to second input receptacle when the single lead set 770 is not in use.
  • Plug protector 800 may comprise a first end connected to adapter 750 and a second end constructed and arranged to mate with second input receptacle 754 , thereby preventing contamination of the receptacle which could interfere with the electrical connection with the single ECG lead 770 if later connected to adapter 750 .

Abstract

An electrocardiograph (ECG) adapter including an adapter body having a first end and a second end is presented. A monitor connector is positioned at the first end of the adapter body, the monitor connector adapted for coupling to an input of an ECG monitor. A first lead receptacle is positioned at the second end of the adapter body, the first lead receptacle configured to receive a first connector having a first pin configuration. A second lead receptacle is positioned at the second end of the adapter body, the second lead receptacle located adjacent the first lead receptacle and configured to receive a second connector having a second pin configuration different from the first pin configuration.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority from U.S. Provisional Patent Application No. 61/368,730 filed Jul. 29, 2010, the contents of which are incorporated herein by reference in its entirety.
  • BACKGROUND
  • 1. Technical Field
  • The present disclosure relates to medical equipment. In particular, the present disclosure relates to an ECG lead system including one or more ECG lead sets, an adapter system, an extension cable and methods for coupling the one or more ECG lead sets with the adapter.
  • 2. Background
  • The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions. Therefore, unless otherwise indicated herein, what is described in this section is not prior art to the description and claims in this application and is not admitted to be prior art by inclusion in this section.
  • Electrocardiograph (ECG) lead systems are used to obtain biopotential signals containing information indicative of the electrical activity associated with the heart and pulmonary system. To obtain biopotential signals, ECG electrodes are applied to the skin of a patient in various locations and coupled to an ECG device, e.g., an “ECG monitor” or “ECG telemetry.” Placement of the electrodes is dependant on the information sought by the clinician.
  • The placement of the ECG electrodes on the patient has been established by medical protocols. The most common protocols require the placement of the electrodes in a 3-lead, a 5-lead or a 12-lead configuration. A 3-lead configuration requires the placement of three electrodes; one electrode adjacent each clavicle bone (RA, LA) on the upper chest and a third electrode adjacent the patient's lower left abdomen (LL). A 5-lead configuration requires the placement of the three electrodes in the 3-lead configuration with the addition of a fourth electrode adjacent the sternum (Va) and a fifth electrode on the patient's lower right abdomen (RL). A 12-lead configuration requires the placement of 10 electrodes on the patient's body. Four electrodes, which represent the patient's limbs, include the left arm electrode (LA lead), the right arm electrode (RA lead), the left leg electrode (LL lead), and the right leg electrode (RL lead). Six chest electrodes (V1-V6 leads) are placed on the patient's chest at various locations near the heart. Three standard limb leads are constructed from measurements between the right arm and left arm (Lead I), the right arm and the left leg (Lead H) and the left arm to left leg (Lead III).
  • SUMMARY
  • The following presents a simplified summary of the claimed subject matter in order to provide a basic understanding of some aspects of the claimed subject matter. This summary is not an extensive overview of the claimed subject matter. It is intended to neither identify key or critical elements of the claimed subject matter nor delineate the scope of the claimed subject matter. Its sole purpose is to present some concepts of the claimed subject matter in a simplified form as a prelude to the more detailed description that is presented later.
  • The present disclosure relates to medical equipment. In particular, the present disclosure relates to an electrocardiograph (ECG) adapter including an adapter body having a first end and a second end. A monitor connector is positioned at the first end of the adapter body, the monitor connector adapted for coupling to an input of an ECG monitor. A first lead receptacle is positioned at the second end of the adapter body, the first lead receptacle configured to receive a first connector having a first pin configuration. A second lead receptacle is positioned at the second end of the adapter body, the second lead receptacle located adjacent the first lead receptacle and configured to receive a second connector having a second pin configuration different from the first pin configuration.
  • In accordance with one embodiment, the first lead receptacle includes a 2-pin configuration for receiving the first connector and the second lead receptacle includes a 6-pin configuration for receiving the second connector. In accordance with another embodiment, the first lead receptacle includes a single pin configuration.
  • In accordance with another embodiment, the second lead receptacle is adapted to connect to a second connector having a plurality of electrodes. The plurality of electrodes may include 5 electrodes. Additionally, a single electrode may be disposed at the proximal end of the first connector.
  • Moreover, the first connector is adapted to function when the second connector is disconnected. Alternatively, the second connector is adapted to function when the first connector is disconnected. Thus, the functionality of the first connector is independent of the functionality of the second connector. In another embodiment, the first connector and second connector are adapted to function when both the first connector and the second connector are connected.
  • In accordance with another embodiment, the first and second connectors are disposable connectors.
  • The present disclosure further relates to a method of coupling an electrocardiograph (ECG) monitor to one or more lead sets via an adapter. The method includes the steps of positioning a monitor connector at a first end of the adapter, the monitor connector adapted for coupling to an input of the ECG monitor; positioning a first lead receptacle at a second end of the adapter, the first lead receptacle configured to receive a first connector having a first pin configuration and positioning a second lead receptacle at the second end of the adapter, the second lead receptacle located adjacent the first lead receptacle and configured to receive a second connector having a second pin configuration different from the first pin configuration.
  • The present disclosure further relates to an electrocardiograph (ECG) lead set system including a first ECG lead set including a plurality of lead wires for coupling to a plurality of first electrodes and a second ECG lead set including a single wire for coupling to a second electrode. The system further includes a first plug connector coupled to one end of the first ECG lead set and a second plug connector coupled to one end of the second ECG lead set. The system also includes an adapter adapted for coupling the first and second plug connectors to an input of an ECG monitor. The adapter includes an adapter body having a first end and a second end and a monitor connector positioned at the first end of the adapter body, the monitor connector adapted for coupling to an input of the ECG monitor. The adapter further includes a first lead receptacle positioned at the second end of the adapter body, the first lead receptacle being configured to receive the first plug connector having a first pin configuration. The adapter also includes a second lead receptacle positioned at the second end of the adapter body, the second lead receptacle located adjacent the first lead receptacle and configured to receive the second plug connector having a second pin configuration different than the first pin configuration.
  • Other advantages, novel features and objects of the present disclosure will become apparent from the following detailed description of the present disclosure when considered in conjunction with the accompanying drawings, which are schematic and are not intended to be drawn to scale. In the figures, each identical, or substantially similar component is represented by a single numeral or notation. For purposed of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the present disclosure shown where illustration is not necessary to allow those of ordinary skill in the art to understand the present disclosure.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Various non-limiting embodiments of the present disclosure are described herein with reference to the drawings wherein:
  • FIG. 1 is a perspective, front view of an adapter at a first angle, according to the present disclosure;
  • FIG. 2 is a perspective, rear view of the adapter, according to the present disclosure;
  • FIG. 3 is a perspective, front view of an adapter at a second angle, according to the present disclosure;
  • FIG. 4 is a perspective view of a portion of the adapter having a first and a second receptacle for receiving first and second plug connectors, respectively, according to the present disclosure;
  • FIGS. 5A-5E are top, bottom and side views of the adapter of FIG. I, according to the present disclosure;
  • FIG. 6A is a perspective view of a 2-pin configuration lead connector, according to the present disclosure;
  • FIG. 6B is an end view of the connector of FIG. 6A;
  • FIG. 7 is a schematic diagram of an ECG lead set system, according to the present disclosure; and
  • FIG. 8 is a perspective view of a plug protector, according to another aspect of the present disclosure.
  • The figures depict preferred embodiments of the present disclosure for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the present disclosure described herein.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. As used herein and as is traditional, the term “distal” refers to the portion which is furthest from the user/clinician and the term “proximal” refers to the portion that is closest to the user/clinician. In addition, terms such as “above,” “below,” “forward,” “rearward,” etc. refer to the orientation of the figures or the direction of components and are simply used for convenience of description.
  • In the following detailed description, example embodiments disclosing specific details are set forth in order to provide an understanding of the present disclosure. The example embodiments are set forth for purposes of explanation and not limitation. Those of ordinary skill in the art will understand that various changes in form and details may be made to the example embodiments without departing from the scope of the present disclosure. Moreover, descriptions of well-known devices, methods, systems, and protocols may be omitted so as to not obscure the description of the example embodiments. Nonetheless, such devices, methods, systems and protocols that are within the purview of those of ordinary skill in the art are contemplated by the example embodiments.
  • Embodiments will be described below while referencing the accompanying figures. The accompanying figures are merely examples and are not intended to limit the scope of the present disclosure.
  • One aspect of the present disclosure provides an ECG electrode system which allows a patient to be monitored by a first electrode lead set having a first configuration which may remain with the patient as monitoring requirements change, and in particular, as additional information is sought. The configuration of the electrodes is determined by the information sought. Electrodes, after placement on the patient, connect to an ECG device by an ECG lead set. One end of the ECG lead set, closest to the patient, connects to each electrode (alternatively, the electrodes may be integrated into the distal end of the ECG lead set) and receives biopotential signals from the body. The other end of the ECG lead set connects to the ECG input connector and supplies the biopotential signals received from the body to the ECG device. Conventional lead sets are prearranged in a particular configuration to obtain the desired information. For example, lead sets are typically available for standard electrode configurations, such as a 3 lead, 5 lead, 6 lead, 10 lead or 12 lead.
  • ECG devices and ECG lead sets are also typically manufactured and sold by various companies. Although protocols have been established for the placement ECG electrodes, the various manufacturers typically use product specific connectors and wiring configurations. A patient may also be initially monitored with one lead configuration, but require a different lead configuration upon extended monitoring.
  • Often, one or more lead sets may be used for a single patient as monitoring requirements change during patient evaluation and treatment. In many instances, a patient may require one type of ECG lead system while in, for example, the emergency room (ER), the operating room (OR), the post-anesthesia care unit (PACU), the intensive care unit (ICU) and/or the critical care unit (CCU); and may require a second or different type ECG lead system while on, for example, a telemetry floor. For example, a patient may require a relatively longer ECG lead set in order to connect to an ECG monitor while the patient is in the ER, the OR, the PACU, the ICU and/or the CCU; and a relatively shorter ECG lead set in order to connect to ECG telemetry while the patient is on a telemetry floor. In particular, a patient may be initially monitored with a 5 lead configuration and subsequently switched to a 6 lead configuration. Specifically, the 5-lead configuration requires the placement of the five electrodes RA, LA, LL, Va, and RL, while the 6-lead configuration includes a Vb electrode in addition to the previous five electrodes.
  • According to one embodiment of the present disclosure, a system that enables an end user to use a single ECG lead set across various ECG device platforms and to accommodate the use of the ECG lead set with either an ECG monitor and/or ECG telemetry as desired is provided.
  • Referring to FIGS. 1-3, an adapter 10, in accordance with the principles of the present disclosure, is illustrated. Adapter 10 includes an adapter body 40 having a first end 20 and a second end 30. First end 20 may be a front end of adapter body 40, whereas second end 30 may be a rear end of adapter body 40. Adapter 10 also includes a plurality of plugs 50 at second end 30 of adapter body 40 and at least two pin configurations 60, 70 at first end 20 of adapter body 40. Plugs 50 at second end 30 may have any conventional configuration, such as cylindrical, rectangular or any regular or irregular cross sectional area suitable for a particular purpose.
  • In the embodiment shown in FIGS. 1-3, a first pin configuration 60 includes 2-pins, whereas second pin configuration 70 includes 6-pins. It is understood that pin configurations 60, 70 may vary depending on the desired application and the specific lead set or lead sets to be used. For example, pin configuration 60 may include only a single pin used in an unshielded configuration of a single electrode lead set. Pin configurations 60, 70 are depicted as female connectors. However, one skilled in the art may contemplate using male connectors at first end 20 of adapter body 40. One skilled in the art may also contemplate using a plurality of different pin configurations.
  • The plurality of plugs 50 may be a five (5) plug pin male socket connector (each plug having a pair of sockets, wherein one plug corresponds to one ECG lead and the corresponding plug carries the shield) similar to those specified by ANSI/AAMI EC53 for shielded leadwire to trunk cable interconnections. The plurality of plugs 50 may be referred to as monitor plugs. Monitor plugs 50 are configured for coupling to the lead set input connector of ECG floor monitor 710 (see FIG. 7). Monitor plugs 50 may include a plurality of male contact pins for establishing an electrical connection between ECG floor monitor 710 and device connectors 110, 120 (see FIG. 4).
  • Thus, as seen in FIGS. 1-3, adapter 10 generally includes adapter body 40, at least two input receptacles 60, 70 disposed on first end 20 of adapter body 40, and monitor plugs 50 disposed on second end 30 of adapter body 40. First input receptacle 60 is configured to be located adjacent to or in proximity to second input receptacle 70. Each of the input receptacles 60, 70 is configured to electrically couple with a device connector 110, 120 (see FIG. 4). Each of the input receptacles 60, 70 includes a plurality of electrical contact receptacles for connection with, for example, male pin contacts of the device connectors 110, 120 (see FIG. 4).
  • Referring to FIG. 4, a perspective view 100 of a portion of adapter 10 having first and second receptacles 60, 70 for receiving first and second plug connectors 110, 120 is shown. First plug connector 110 is connected to the 2-pin input receptacle 60, whereas second plug connector 120 is connected to the 6-pin input receptacle 70 (see FIGS. 1-3). Thus, in accordance with the present disclosure, device connectors 110, 120 (or plug connectors) are configured and dimensioned to mate and electrically connect with input receptacles 60, 70 of adapter 10.
  • In particular, first input receptacle 60 is configured to receive first device connector 110 having a first pin configuration and second input receptacle 70 is configured to receive second device connector 120 having a second pin configuration, the first and second pin configurations being different with respect to each other. Additionally, first input receptacle 60 is constructed and arranged to receive a single electrode assembly, whereas second input receptacle 70 is constructed and arranged to receive a 5-lead electrode assembly. As a result, by adding or removing a specific lead set, the lead set assembly may be instantly transformed/modified/altered from a 5-lead set to a 6-lead set, and from a 6-lead set to a 5-lead set, without replacing an entire 5-lead set with an entire 6-lead set and without replacing an entire 6-lead set with a 5-lead set. Moreover, switching between a 5-lead and a 6-lead set may be accomplished without interrupting patient monitoring of biopotential signals.
  • Referring to FIGS. 5A-5E, top, bottom and side views 500 of adapter 10 are depicted. For example, FIG. 5A depicts a front view of the 2-pin and 6-pin input receptacles 60, 70 (as described above). For example, FIG. 5C depicts a front view of plurality of plugs 50 (as described above). With reference to FIGS. 1-5E, when first input receptacle 60 is disconnected from adapter 10, second input receptacle 70 continues to function. Alternatively, when second input receptacle 70 is disconnected from adapter 10, first input receptacle 60 continues to function. Thus, the functionality of first input receptacle 60 is independent of the functionality of second input receptacle 70. Therefore, the 5-lead disposable lead wire set may be used as a 6-lead telemetry lead set, so that the clinician may require only one lead set for a patient that experiences 3/5 lead monitoring followed by a 6-lead telemetry monitoring. By requiring only one lead set instead of two lead sets, a clinician may perform his/her job more efficiently and use less lead sets. As a result, the lead set may be conveniently and instantly transformed or altered from a 5-lead set to a 6-lead set. Alternatively, the lead set may be conveniently and instantly transformed or altered from a 6-lead set to a 5 lead set.
  • Referring to FIG. 7, ECG lead system 700, in accordance with the present disclosure, is used in connection with an ECG device or monitor, in the form or ECG floor monitor 710 or ECG telemetry monitor/adapter 740. ECG floor monitor 710 includes at least one lead set input connector 720 configured to connect with at least one ECG lead set assembly 730. ECG lead system 700 includes adapter 750. ECG monitor 710 is configured to receive biopotential signals containing information indicative of the electrical activity associated with the heart and pulmonary system and to display the information of a user display (not shown).
  • Of course, as contemplated by one skilled in the art, depending on the type of ECG floor monitor 710 or ECG telemetry monitor 740, and depending on whether a 3-lead, a 5-lead or a 12-lead electrode set assembly 760, 770 is used, and depending on whether one or more ECG lead set assemblies are used, any type of adapter may be utilized based on the desired medical application. For simplicity purposes, the example embodiments of the present disclosure refer to a 5-lead electrode set and a 1-lead electrode set connected to a 6-pin input receptacle 70 and a 2-pin input receptacle 60, respectively.
  • As seen in FIGS. 6A-6B, ECG lead set assembly 600 for the 2-pin input receptacle 60 includes lead set cable 602, device connector 604 at one end of lead set cable 602 and at least one electrode connector 606. Lead set cable 602 includes a plurality of encased and insulated lead wires (not shown) disposed in side-by-side relation. Insulated lead wires may be EMI/RF shielded. Lead set cable 602 may be in the form of a ribbon cable configured for transmitting electrical signals. Each lead wire may be independently separable from an adjacent lead wire to facilitate placement of a respective electrode connector 606 at a predetermined body location, to thereby permit customization of ECG lead set assembly 600 for each subject. Lead wires may be attached via their insulated covers and, may be separable along respective lines of juncture of the insulated covers of adjacent lead wires. Individual lead wires of lead set cable 602 may be varied in length to permit placement of an individual electrode connector 606 at a target site, e.g., across the chest or abdomen, to permit collection or delivery of biomedical signals at these locations. Similarly, it is contemplated that each electrode assembly of 6-pin input receptacle 70 is the same or equivalent to the electrode assembly of 2-pin input receptacle 60.
  • With continued reference to FIG. 7, ECG lead system 700 includes ECG telemetry adapter 740 configured and adapted to interconnect at least one ECG lead set assembly 600 (see FIG. 6) to ECG telemetry monitor 740. ECG telemetry adapter 740 includes an adapter body, at least one input receptacle 742 disposed on one side of adapter body, and a telemetry plug (not shown) disposed on another side of adapter body. Each input receptacle 742 is configured to electrically mate with adapter 750. In particular, input receptacle 742 is in the form of an AAMI type plug, and telemetry plug is in the form of a GE 5 prong, 10-pin telemetry plug that is configured and adapted to mate with and electrically connect to ECG telemetry monitor 740.
  • Thus, ECG adapter system 700 includes adapter 750 and one or more ECG lead sets 760, 770. Each ECG lead set 760, 770 includes a plurality of lead wires 761, 771 at least partially surrounded by sheath 780. Sheath 780 may protect lead wires 761, 771 from physical damage or may shield lead wires 761, 771 from electrical interference. Sheath 780 may vary in length between about 2 feet to about 10 feet. At least a portion of lead wires 761, 771 extends distally from sheath 780 a distance “d,” between about 2 to about 40 inches. Sheath 780 may be integrated into ECG lead sets 760, 770 or may be formed from a suitable tubular material and coupled to ECG lead sets 760, 770. The distal end of lead wires 761, 771 may connect to one or more electrodes 764, 774. Alternatively, lead wires 761, 771 may be integrated into electrodes 764, 774. One or more electrodes 764, 774 may be coupled to the distal end of each individual lead wire 761, 771 or electrodes 764, 774 may be formed from individual lead wires 761, 771.
  • Alternatively, electrode connectors (not shown) may be positioned between the electrodes 764, 774 and the distal end of lead wires 761, 771. Such electrode connectors may be attached to, or formed on, the distal end of lead wires 761, 771. The electrode connectors may be snap connectors, locking slot connectors and/or keyhole connectors. One skilled in the art may contemplate using a plurality of different connection mechanism and/or configurations.
  • In operation, when patient 790 is in, for example, the emergency room (ER), the operating room (OR), the post-anesthesia care unit (PACU), the intensive care unit (ICU) and/or the critical care unit (CCU), patient 790 is typically connected to ECG floor monitor 710. In particular, patient 790 may be connected to a 5-lead ECG lead set 760 via electrodes 764. ECG lead set 760 is mated with and electrically connected to ECG lead wires 761 and ECG lead wires 761 are mated with and electrically connected to adapter 720. A lead extension 730 may be disposed between lead set 760 and adapter 720.
  • In continued operation, following patient's 790 stay in the emergency room (ER), the operating room (OR), the post-anesthesia care unit (PACU), the intensive care unit (ICU) and/or the critical care unit (CCU), if and/or when patient 790 is transferred to a telemetry floor for monitoring, the need for one of the ECG lead extensions may no longer be necessary if patient 790 is to be connected to ECG telemetry monitor 740. Patient 790 may also now require another ECG lead in addition to the 5-lead system already connected to the patient. Accordingly, in one embodiment, the 5-lead set 760 is disconnected from adapter 770 or lead extension 730.
  • The 5-lead ECG set currently attached to the patient may then also be connected to adapter 750. In addition, a single ECG lead 770 may also be connected to adapter 750 and to the patient. Adapter 750 is mated with and electrically connected to ECG telemetry box 740. Adapter 750 includes first input receptacle 752 and second input receptacle 754 at a first end. First input receptacle 752 is configured to receive first connector 762 of ECG lead set 760, whereas second input receptacle 754 is configured to receive second connector 772 of ECG lead set 770. Adapter 750 also includes plurality of plugs 756 at a second end. As such, the 5-lead ECG set which was first used with a patient may remain with the patient as the patient is switched from a 5-lead configuration to a 6 lead configuration, and vice versa. Similarly, at least one ECG lead extension (e.g., lead set 770) may be removed and the other ECG lead set (e.g., lead set 760) mated with and electrically connected to ECG telemetry adapter 740 via input receptacle 742. Thus, the need for at least one of the ECG lead extensions/lead sets is no longer necessary since patient 790 transferred from lead wire monitoring to telemetry wiring, or vice versa.
  • In this manner, the same ECG lead sets 760, 770 may be used for the emergency room (ER), the operating room (OR), the post-anesthesia care unit (PACU), the intensive care unit (ICU) and/or the critical care unit (CCU), and for the telemetry floor. Thus, when first lead set 760 is disconnected from adapter 750, second lead set 770 continues to function. Alternatively, when second lead set 770 is disconnected from adapter 750, first lead set 760 continues to function. Thus, the functionality of the first lead set 760 is independent of the functionality of the second lead set 770. Therefore, the 5-lead disposable lead wire set may be used as a 6-lead telemetry lead set, so that the clinician may require only one lead set for a patient that experiences 3/5 lead monitoring followed by a 6-lead telemetry monitoring. By requiring only one lead set instead of two lead sets, a clinician may perform his/her job more efficiently and use less lead sets. As a result, the lead set may be instantly transformed/modified from a 5-lead set to a 6-lead set, and vice versa.
  • In one embodiment of the present disclosure, adapter 750 is constructed and arranged to operate when either first input receptacle 752 or second input receptacle 754 or both input receptacles 752 and 754 are connected to first connector 762 and second connector 772, respectively. In one embodiment, adapter 750 may also include a plug cover to protect either input receptacles 752, 754 when not in use. For example and as shown in FIG. 8, adapter 750 may also comprise plug cover 800 which connects to second input receptacle when the single lead set 770 is not in use. Plug protector 800 may comprise a first end connected to adapter 750 and a second end constructed and arranged to mate with second input receptacle 754, thereby preventing contamination of the receptacle which could interfere with the electrical connection with the single ECG lead 770 if later connected to adapter 750.
  • Further, although aspects of the present disclosure have been described herein in the context of several particular implementations in particular environments for particular purposes, those of ordinary skill in the art will recognize that its usefulness may not be limited thereto and that the present disclosure may be beneficially implemented in any number of environments for any number of purposes.
  • While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims (34)

What is claimed is:
1. An electrocardiograph (ECG) adapter comprising:
an adapter body having a first end and a second end;
a monitor connector positioned at the first end of the adapter body, the monitor connector adapted for coupling to an input of an ECG monitor;
a first lead receptacle positioned at the second end of the adapter body, the first lead receptacle configured to receive a first connector having a first pin configuration; and
a second lead receptacle positioned at the second end of the adapter body, the second lead receptacle located adjacent the first lead receptacle and configured to receive a second connector having a second pin configuration different from the first pin configuration.
2. The adapter according to claim 1, wherein the first lead receptacle includes a 2-pin configuration for receiving the first connector.
3. The adapter according to claim 1, wherein the first lead receptacle includes a single pin configuration for receiving the first connector.
4. The adapter according to claim 1, wherein the second lead receptacle includes a 6-pin configuration for receiving the second connector.
5. The adapter according to claim 1, wherein the second lead receptacle is constructed and arranged to connect to a second connector having a plurality of electrodes.
6. The adapter according to claim 5, wherein the second lead receptacle is adapted to couple with a second connector having 5 electrodes.
7. The adapter according to claim 1, wherein a single electrode is disposed at the proximal end of the second connector.
8. The adapter according to claim 1, wherein the first receptacle is constructed and arranged to function simultaneously with the second receptacle.
9. The adapter according to claim 8, wherein the first connector is constructed and arranged to function when the second connector is disconnected from the adapter.
10. The adapter according to claim 8, wherein the second connector is constructed and arranged to function when the first connector is disconnected from the adapter.
11. The adapter according to claim 1, wherein the functionality of the first connector is independent of the functionality of the second connector.
12. The adapter according to claim 1, wherein the first and second connectors are disposable connectors.
13. A method of coupling an electrocardiograph (ECG) monitor to one or more lead sets via an adapter, the method comprising:
positioning a monitor connector at a first end of the adapter, the monitor connector adapted for coupling to an input of the ECG monitor;
positioning a first lead receptacle at a second end of the adapter, the first lead receptacle configured to receive a first connector having a first pin configuration; and
positioning a second lead receptacle at the second end of the adapter, the second lead receptacle located adjacent the first lead receptacle and configured to receive a second connector having a second pin configuration different from the first pin configuration.
14. The method according to claim 13, wherein the first lead receptacle includes a 2-pin configuration for receiving the first connector.
15. The method according to claim 13, wherein the second lead receptacle includes a 6-pin configuration for receiving the second connector.
16. The method according to claim 13, further comprising connecting the second lead receptacle to a second connector having a plurality of electrodes.
17. The method according to claim 16, further comprising coupling the second lead receptacle to a second connector having 5 electrodes.
18. The method according to claim 13, further comprising disposing a single electrode at the proximal end of the second connector.
19. The method according to claim 13, wherein the first connector is adapted to function when the second connector is disconnected from the adapter.
20. The method according to claim 13, wherein the second connector is adapted to function when the first connector is disconnected from the adapter.
21. The method according to claim 13, wherein the functionality of the first connector is independent of the functionality of the second connector.
22. The method according to claim 13, wherein the first and second connectors are disposable connectors.
23. An electrocardiograph (ECG) lead set system comprising:
a first ECG lead set including a single wire for coupling to a first electrode;
a second ECG lead set including a plurality of lead wires for coupling to a plurality of second electrodes;
a first plug connector coupled to one end of the first ECG lead set;
a second plug connector coupled to one end of the second ECG lead set; and
an adapter adapted for coupling the first and second plug connectors to an input of an ECG monitor, the adapter including:
an adapter body having a first end and a second end;
a monitor connector positioned at the first end of the adapter body, the monitor connector adapted for coupling to an input of the ECG monitor;
a first lead receptacle positioned at the second end of the adapter body, the first lead receptacle configured to receive the first plug connector having a first pin configuration; and
a second lead receptacle positioned at the second end of the adapter body, the second lead receptacle located adjacent the first lead receptacle and configured to receive the second plug connector having a second pin configuration different from the first pin configuration.
24. The system according to claim 23, wherein the first lead receptacle includes a 2-pin configuration for receiving the first plug connector.
25. The system according to claim 23, wherein the second lead receptacle includes a 6-pin configuration for receiving the second plug connector.
26. The system according to claim 23, wherein the second lead receptacle is adapted to connect to a second connector having a plurality of electrodes.
27. The system according to claim 26, wherein the second connector is adapted to couple with a second connector having 5 electrodes.
28. The system according to claim 23, wherein the single electrode is disposed at the proximal end of the first plug connector.
29. The system according to claim 23, wherein the first connector is adapted to function when the second connector is disconnected from the adapter.
30. The system according to claim 23, wherein the second connector is adapted to function when the first connector is disconnected from the adapter.
31. The system according to claim 23, wherein the first connector and the second connector are adapted to function when the first connector and the second connector are connected to the adapter.
32. The system according to claim 23, wherein the functionality of the first plug connector is independent of the functionality of the second plug connector.
33. The system according to claim 23, wherein the first and second plug connectors are disposable connectors.
34. The system according to claim 23, further comprising a plug protector connected to the adapter.
US14/044,932 2010-07-29 2013-10-03 ECG Adapter System and Method Abandoned US20140180148A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/044,932 US20140180148A1 (en) 2010-07-29 2013-10-03 ECG Adapter System and Method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36873010P 2010-07-29 2010-07-29
US13/192,022 US8568160B2 (en) 2010-07-29 2011-07-27 ECG adapter system and method
US14/044,932 US20140180148A1 (en) 2010-07-29 2013-10-03 ECG Adapter System and Method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/192,022 Continuation US8568160B2 (en) 2010-07-29 2011-07-27 ECG adapter system and method

Publications (1)

Publication Number Publication Date
US20140180148A1 true US20140180148A1 (en) 2014-06-26

Family

ID=44675898

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/192,022 Active 2031-11-02 US8568160B2 (en) 2010-07-29 2011-07-27 ECG adapter system and method
US14/044,932 Abandoned US20140180148A1 (en) 2010-07-29 2013-10-03 ECG Adapter System and Method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/192,022 Active 2031-11-02 US8568160B2 (en) 2010-07-29 2011-07-27 ECG adapter system and method

Country Status (5)

Country Link
US (2) US8568160B2 (en)
EP (1) EP2412307A1 (en)
CN (1) CN102440772B (en)
AU (1) AU2011204993B2 (en)
CA (1) CA2746944C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107594B2 (en) 2007-12-11 2015-08-18 Covidien Lp ECG electrode connector
USD737979S1 (en) * 2008-12-09 2015-09-01 Covidien Lp ECG electrode connector
US9408546B2 (en) 2013-03-15 2016-08-09 Covidien Lp Radiolucent ECG electrode system
US9408547B2 (en) 2011-07-22 2016-08-09 Covidien Lp ECG electrode connector
USD771818S1 (en) 2013-03-15 2016-11-15 Covidien Lp ECG electrode connector
US9693701B2 (en) 2013-03-15 2017-07-04 Covidien Lp Electrode connector design to aid in correct placement
US11844605B2 (en) 2016-11-10 2023-12-19 The Research Foundation For Suny System, method and biomarkers for airway obstruction

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109883B2 (en) 2006-09-28 2012-02-07 Tyco Healthcare Group Lp Cable monitoring apparatus
US8668651B2 (en) * 2006-12-05 2014-03-11 Covidien Lp ECG lead set and ECG adapter system
US9285831B2 (en) 2009-09-17 2016-03-15 Henge Docks Llc Docking station for portable electronics
EP2335565A1 (en) * 2009-12-18 2011-06-22 Roche Diagnostics GmbH Protective container for holding reusable diagnostic components
US8805312B2 (en) 2011-04-06 2014-08-12 Texas Instruments Incorporated Methods, circuits, systems and apparatus providing audio sensitivity enhancement in a wireless receiver, power management and other performances
US20140066741A1 (en) * 2012-08-29 2014-03-06 General Electric Company Disposable ECG Leadwire Connector
US8951067B2 (en) * 2012-10-01 2015-02-10 Henge Docks Llc Docking station for an electronic device having improved connector interface
US9356400B2 (en) * 2013-07-19 2016-05-31 Foxconn Interconnect Technology Limited Flippable electrical connector
US9927838B2 (en) 2013-12-31 2018-03-27 Henge Docks Llc Sensor system for docking station
US9650814B2 (en) 2013-12-31 2017-05-16 Henge Docks Llc Alignment and drive system for motorized horizontal docking station
EP2937037B1 (en) 2014-04-25 2023-12-13 Kpr U.S., Llc Physical shielding for ecg electrical connections
US9575510B1 (en) 2015-10-23 2017-02-21 Matthew Leigh Vroom Precision docking station for an electronic device having integrated retention mechanism
US9727084B2 (en) 2015-10-23 2017-08-08 Henge Docks Llc Drivetrain for a motorized docking station
US9811118B2 (en) 2015-10-23 2017-11-07 Henge Docks Llc Secure assembly for a docking station
US11224373B2 (en) * 2016-08-17 2022-01-18 Koninklijke Philips N.V. Adapter and connection unit for coupling with medical coupling unit and sensor
DE102016117762B4 (en) 2016-09-21 2018-09-27 miha bodytec GmbH System for muscle stimulation
US10365688B1 (en) 2018-04-19 2019-07-30 Henge Docks Llc Alignment sleeve for docking station
CN109830837B (en) * 2019-01-13 2023-11-17 常州瑞神安医疗器械有限公司 Brain electrode cable interface device
CN109893117A (en) * 2019-02-28 2019-06-18 中国人民解放军陆军军医大学 Conducting wire and its electrocardiograph and monitor system of application
USD1008966S1 (en) 2019-10-03 2023-12-26 Physio-Control, Inc. Medical device connector
US11502464B2 (en) * 2020-04-29 2022-11-15 National Products, Inc. Multi-port USB cable with cable retention and methods of making and using
CN114361894B (en) * 2021-12-30 2022-10-21 深圳市安普康科技有限公司 Electrocardio adapter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353372A (en) * 1980-02-11 1982-10-12 Bunker Ramo Corporation Medical cable set and electrode therefor
US4477801A (en) * 1982-03-15 1984-10-16 International Harvester Co. Seed monitor apparatus harness adapter for a convertible planter
US5813404A (en) * 1995-10-20 1998-09-29 Aspect Medical Systems, Inc. Electrode connector system
US6558201B1 (en) * 1999-10-20 2003-05-06 Hewlett Packard Development Company, L.P. Adapter and method for converting data interface hardware on a computer peripheral device
US6716165B1 (en) * 2001-03-02 2004-04-06 Ge Medical Systems Information Technologies, Inc. Patient telemetry device and leadset designs for providing antenna diversity
US6805579B2 (en) * 2002-05-07 2004-10-19 Briggs & Stratton Power Products Group, Llc Electrical power cord with multiple low-voltage terminal
US6873514B2 (en) * 2001-06-05 2005-03-29 Trombetta, Llc Integrated solenoid system
US7465187B1 (en) * 2007-08-06 2008-12-16 June-On Co., Ltd. Switchable cable device
US8668651B2 (en) * 2006-12-05 2014-03-11 Covidien Lp ECG lead set and ECG adapter system

Family Cites Families (380)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3606881A (en) 1970-02-20 1971-09-21 Riley D Woodson Conductive rubber electrode
US3805769A (en) 1971-08-27 1974-04-23 R Sessions Disposable electrode
US3752151A (en) 1971-08-30 1973-08-14 Texas Instruments Inc Disposable medical electrode with laminate contact member
US3828766A (en) 1972-08-14 1974-08-13 Jet Medical Prod Inc Disposable medical electrode
US3895635A (en) 1973-06-20 1975-07-22 Ndm Corp Electrosurgical grounding cable assembly
US3868946A (en) 1973-07-13 1975-03-04 James S Hurley Medical electrode
US3901218A (en) 1973-10-26 1975-08-26 Martin Buchalter Disposable electrode
US3888240A (en) 1974-02-08 1975-06-10 Survival Technology Electrode assembly and methods of using the same in the respiratory and/or cardiac monitoring of an infant
US4077397A (en) 1974-10-07 1978-03-07 Baxter Travenol Laboratories, Inc. Diagnostic electrode assembly
US3998213A (en) 1975-04-08 1976-12-21 Bio-Volt Corporation Self-adjustable holder for automatically positioning electroencephalographic electrodes
US4027664A (en) 1975-11-17 1977-06-07 Baxter Travenol Laboratories, Inc. Diagnostic electrode assembly with a skin preparation surface
US4034854A (en) 1976-07-16 1977-07-12 M I Systems, Inc. Electrode package
US4112941A (en) 1977-01-06 1978-09-12 Minnesota Mining And Manufacturing Company Electrode and magnetic connector assembly
US4166465A (en) 1977-10-17 1979-09-04 Neomed Incorporated Electrosurgical dispersive electrode
US4365634A (en) 1979-12-06 1982-12-28 C. R. Bard, Inc. Medical electrode construction
US4729377A (en) 1983-06-01 1988-03-08 Bio-Stimu Trend Corporation Garment apparatus for delivering or receiving electric impulses
US4498480A (en) 1983-07-01 1985-02-12 Mortensen John L Adjustable probe belt assembly
US4781200A (en) 1985-10-04 1988-11-01 Baker Donald A Ambulatory non-invasive automatic fetal monitoring system
US4763660A (en) 1985-12-10 1988-08-16 Cherne Industries, Inc. Flexible and disposable electrode belt device
US4785822A (en) 1987-04-01 1988-11-22 Utah Medical Products, Inc. Disposable intracompartmental pressure transducer
US4947846A (en) 1987-06-13 1990-08-14 Tdk Corporation Waterproof electrode device for a living body
US4815964A (en) 1987-07-27 1989-03-28 Joel Cohen Electrode having lead wire attachment
US4909260A (en) 1987-12-03 1990-03-20 American Health Products, Inc. Portable belt monitor of physiological functions and sensors therefor
US4957109A (en) 1988-08-22 1990-09-18 Cardiac Spectrum Technologies, Inc. Electrocardiograph system
US5511553A (en) 1989-02-15 1996-04-30 Segalowitz; Jacob Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously
US5326272A (en) 1990-01-30 1994-07-05 Medtronic, Inc. Low profile electrode connector
DE9002539U1 (en) 1990-03-03 1990-05-03 Braatz, Pia, 6301 Heuchelheim, De
US5199897A (en) 1990-03-15 1993-04-06 Japan Aviation Electronics Industry, Ltd. Electrical connectors
JP2531414Y2 (en) 1990-04-18 1997-04-02 第一電子工業株式会社 Lock piece mounting structure to connector hood
US5104253A (en) 1990-06-06 1992-04-14 Chrysler Corporation Cable assembly, lock therefor
US5507290A (en) 1990-06-21 1996-04-16 Cardiotronics Int Inc Electrodeless EKG sensor sheet
US5865740A (en) 1990-06-21 1999-02-02 Unilead International, Inc. Electrodeless EKG sensor sheet
US5234357A (en) 1990-07-04 1993-08-10 Hirose Electric Co., Ltd. Lock mechanism for electrical connector
JPH0435370U (en) 1990-07-20 1992-03-24
US5083933A (en) 1990-09-28 1992-01-28 Molex Incorporated Electrical connector with fully shrouded lock
JPH0810611B2 (en) 1990-10-02 1996-01-31 山一電機工業株式会社 connector
JP2836705B2 (en) 1990-10-29 1998-12-14 矢崎総業株式会社 Connector housing lock for electrical connection
US5199432A (en) 1990-10-30 1993-04-06 American Home Products Corporation Fetal electrode product for use in monitoring fetal heart rate
US5197901A (en) 1990-10-30 1993-03-30 Japan Aviation Electronics Industry, Limited Lock-spring and lock-equipped connector
US5080604A (en) 1990-11-13 1992-01-14 Amp Incorporated Self-aligning electrical connector assembly for flat power cable terminations
JPH084705Y2 (en) 1990-11-27 1996-02-07 矢崎総業株式会社 connector
JP2571310B2 (en) 1990-12-14 1997-01-16 矢崎総業株式会社 Connector lock security mechanism
US5176343A (en) 1990-12-27 1993-01-05 Pacesetter Infusion, Ltd. Electrical adapter plug clip
US5243510A (en) 1990-12-27 1993-09-07 Siemens Infusion Systems Plug-in power supply adapter with components in the strain relief member
US5158469A (en) 1991-01-23 1992-10-27 Dsc Communications Corporation Press fit pinless latching shroud
US5180312A (en) 1991-01-23 1993-01-19 Dsc Communications Corporation Press fit pinless latching shroud
US5083238A (en) 1991-02-04 1992-01-21 Motorola, Inc. High frequency electronic assembly
JP2522319Y2 (en) 1991-03-13 1997-01-16 矢崎総業株式会社 connector
US5276443A (en) 1991-03-27 1994-01-04 Xircom, Inc. Parallel port multiplexor for PC parallel port
US5788527A (en) 1991-04-04 1998-08-04 Magnetek, Inc. Electrical connector with improved safety latching for a fluorescent-lighting ballast
US5341806A (en) 1991-04-18 1994-08-30 Physio-Control Corporation Multiple electrode strip
US5278759A (en) 1991-05-07 1994-01-11 Chrysler Corporation System and method for reprogramming vehicle computers
US5197895A (en) 1991-05-10 1993-03-30 Bicore Monitoring Systems Disposable electro-fluidic connector with data storage
US5131854A (en) 1991-05-30 1992-07-21 Rick Jose Electrical connector for attaching an electrode to a patient in a medical procedure
US5160276A (en) 1991-07-09 1992-11-03 Group Dekko International Modular communication interconnection system
US5201669A (en) 1991-09-16 1993-04-13 Advanced-Connectek Inc. Connection device of a computer connection
US5178556A (en) 1991-10-24 1993-01-12 Advanced-Connectek Inc. Computer plug connector fastening mechanism
US5415164A (en) 1991-11-04 1995-05-16 Biofield Corp. Apparatus and method for screening and diagnosing trauma or disease in body tissues
US5154646A (en) 1991-11-12 1992-10-13 Shoup Kenneth E Battery clamp
US5353793A (en) 1991-11-25 1994-10-11 Oishi-Kogyo Company Sensor apparatus
JPH069010U (en) 1992-02-06 1994-02-04 スピタル産業株式会社 Switchable cable
US6748797B2 (en) 2000-09-08 2004-06-15 Automotive Technologies International Inc. Method and apparatus for monitoring tires
US5192226A (en) 1992-05-06 1993-03-09 Wang Tsan Chi Double-output port cable assembly for notebook computers
US5263481A (en) 1992-05-21 1993-11-23 Jens Axelgaard Electrode system with disposable gel
JP2596169Y2 (en) 1992-06-22 1999-06-07 矢崎総業株式会社 Waterproof connector
JP2613998B2 (en) 1992-07-10 1997-05-28 矢崎総業株式会社 Mating structure of low insertion force connector
JPH0615276U (en) 1992-07-23 1994-02-25 モレックス インコーポレーテッド Electrical connector
JP2593281Y2 (en) 1992-10-06 1999-04-05 住友電装株式会社 connector
US5232383A (en) 1992-10-21 1993-08-03 Barnick Robert C Medical snap connector
US5622168A (en) 1992-11-18 1997-04-22 John L. Essmyer Conductive hydrogels and physiological electrodes and electrode assemblies therefrom
JP3078147B2 (en) 1992-11-19 2000-08-21 富士通株式会社 connector
US5557210A (en) 1992-11-20 1996-09-17 Pacesetter, Inc. Universal cable connector for temporarily connecting implantable stimulation leads and implantable stimulation devices with a non-implantable system analyzer
JPH06208866A (en) 1992-12-07 1994-07-26 Fujitsu Ltd Connector
US5454739A (en) 1992-12-15 1995-10-03 Minnesota Mining And Manufacturing Company Electrode connector
US5382176A (en) 1992-12-28 1995-01-17 Cooper Industries Inc. Electrical connectors
US5370116A (en) 1993-02-12 1994-12-06 Bruce L. Rollman Apparatus and method for measuring electrical activity of heart
US5725525A (en) 1993-03-16 1998-03-10 Ep Technologies, Inc. Multiple electrode support structures with integral hub and spline elements
DE69413585T2 (en) 1993-03-31 1999-04-29 Siemens Medical Systems Inc Apparatus and method for providing dual output signals in a telemetry transmitter
KR960001068B1 (en) 1993-04-28 1996-01-18 안영숙 Wire connector
US5341812A (en) * 1993-05-03 1994-08-30 Ndm Acquisition Corp. Electrocardiograph monitor system and adaptor
US5362249A (en) 1993-05-04 1994-11-08 Apple Computer, Inc. Shielded electrical connectors
US5320621A (en) 1993-05-05 1994-06-14 Birtcher Medial Systems, Inc. Technique for incorporating an electrode within a nozzle
JP3006398B2 (en) 1993-05-05 2000-02-07 インターナショナル・ビジネス・マシーンズ・コーポレイション Cable assembly
JP2591513Y2 (en) 1993-06-25 1999-03-03 住友電装株式会社 Locking structure
US5387116A (en) 1993-07-02 1995-02-07 Wang; Tsan-Chi Auto termination BNC T adaptor
US5383794A (en) 1993-07-16 1995-01-24 The Whitaker Corporation Latch actuator for a connector
US5387127A (en) 1993-08-26 1995-02-07 Wang; Tsan-Chi Shielding device for T-type BNC connectors
US5573425A (en) 1993-10-18 1996-11-12 Asahi Kogaku Kogyo Kabushiki Kaisha Communication cable used in a computer system
US5724025A (en) 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US5507665A (en) 1993-10-22 1996-04-16 The Whitaker Corporation Electrical connector having a mating indicator
US5913834A (en) 1993-11-04 1999-06-22 Francais; Caramia System for imparting sensory effects across a mother's abdomen to a fetus and monitoring effects on the fetus
US5380223A (en) 1993-11-24 1995-01-10 The Whitaker Corporation High density electrical connector
US5370550A (en) 1993-12-13 1994-12-06 Osram Sylvania Inc. Locking connector exhibiting audio-tactile didacticism
JP2755490B2 (en) 1993-12-14 1998-05-20 ピーエルシー メディカル システムズ インク Integrated ECG monitor lead / needle electrode system
JP3064176B2 (en) 1994-03-08 2000-07-12 矢崎総業株式会社 Connector unlock structure
JPH07272797A (en) 1994-03-31 1995-10-20 Dai Ichi Denshi Kogyo Kk Lock piece for connector
DE4417200C1 (en) 1994-05-17 1995-06-22 Hewlett Packard Gmbh Medical clamp contact connector for obstetrics
US5546950A (en) 1994-07-06 1996-08-20 Mortara Instrument, Inc. Electrocardiograpic patient lead cable apparatus
US5486117A (en) 1994-08-09 1996-01-23 Molex Incorporated Locking system for an electrical connector assembly
US5462448A (en) 1994-09-08 1995-10-31 Morton International, Inc. Electrical connector locking system
US5624271A (en) 1994-10-26 1997-04-29 United Technologies Automotive, Inc. Connector latch interlock plate
US5582180A (en) * 1994-11-04 1996-12-10 Physio-Control Corporation Combination three-twelve lead electrocardiogram cable
US6055448A (en) 1994-11-07 2000-04-25 Anderson; John Mccune Sensor device
GB9423346D0 (en) 1994-11-18 1995-01-11 Amp Great Britain Electrical interconnection system having retention and shorting features
DE19500102C2 (en) 1995-01-04 1999-09-30 Itt Cannon Gmbh Locking device for a connector
US6220878B1 (en) 1995-10-04 2001-04-24 Methode Electronics, Inc. Optoelectronic module with grounding means
US5724984A (en) 1995-01-26 1998-03-10 Cambridge Heart, Inc. Multi-segment ECG electrode and system
US5603632A (en) 1995-02-09 1997-02-18 Thomas & Betts Corporation Electrical connector and connector assembly
JP2910609B2 (en) 1995-02-24 1999-06-23 住友電装株式会社 Connector housing locking mechanism
US5704351A (en) 1995-02-28 1998-01-06 Mortara Instrument, Inc. Multiple channel biomedical digital telemetry transmitter
ES2112148B1 (en) 1995-03-07 1998-11-16 Mecanismos Aux Ind IMPROVED SECURITY PROVISION APPLICABLE TO CONNECTORS.
US5626135A (en) 1995-04-12 1997-05-06 R.S. Supplies, Inc. Medical electrode
US5938597A (en) 1995-05-04 1999-08-17 Stratbucker; Robert A. Electrocardiograph bioelectric interface system and method of use
US5599199A (en) 1995-05-10 1997-02-04 Osram Sylvania Inc. Positive latch connector
US5651689A (en) 1995-05-15 1997-07-29 United Technologies Automotive, Inc. Electrical connector assembly employing a connector position assurance device
JP3145271B2 (en) 1995-05-16 2001-03-12 矢崎総業株式会社 Low insertion force connector
US5772591A (en) 1995-06-06 1998-06-30 Patient Comfort, Inc. Electrode assembly for signaling a monitor
US5769650A (en) 1995-06-19 1998-06-23 Sumitomo Wiring Systems, Ltd. Connector and cover therefor
US5995860A (en) 1995-07-06 1999-11-30 Thomas Jefferson University Implantable sensor and system for measurement and control of blood constituent levels
KR100461856B1 (en) 1995-07-28 2005-04-14 유니리드 인터내셔널, 인코포레이티드 Disposable electro-dermal device
US5797854A (en) 1995-08-01 1998-08-25 Hedgecock; James L. Method and apparatus for testing and measuring current perception threshold and motor nerve junction performance
US5566680A (en) 1995-09-22 1996-10-22 Graphic Controls Corporation Transducer-tipped intrauterine pressure catheter system
US5749746A (en) 1995-09-26 1998-05-12 Hon Hai Precision Ind. Co., Ltd. Cable connector structure
DE69606881T2 (en) 1995-11-06 2000-10-12 Whitaker Corp COUPLERS FOR ELECTRICAL CONNECTORS
JP3047159B2 (en) 1995-11-09 2000-05-29 矢崎総業株式会社 Connector mating structure
JPH09139251A (en) 1995-11-14 1997-05-27 Sumitomo Wiring Syst Ltd Connector
JPH09147979A (en) 1995-11-20 1997-06-06 Sumitomo Wiring Syst Ltd Connector with lock arm
US5613870A (en) 1995-11-28 1997-03-25 W. L. Gore & Associates, Inc. Positive latching connector with delatching mechanism
US5741155A (en) 1995-12-20 1998-04-21 Ncr Corporation Cable connector gender changer
JPH09180817A (en) 1995-12-27 1997-07-11 Yazaki Corp Connector structure
JP3180016B2 (en) 1996-02-08 2001-06-25 矢崎総業株式会社 Half mating prevention connector
US5766224A (en) 1996-04-02 1998-06-16 Incontrol, Inc. Temporary, post-heart surgery cardioverting and pacing system and lead systems for use therein
SE509658C2 (en) 1996-04-04 1999-02-22 Ericsson Telefon Ab L M Locking means of a connector and connector
JP3301522B2 (en) 1996-04-26 2002-07-15 住友電装株式会社 connector
US6139350A (en) 1996-05-20 2000-10-31 Siemens Aktiengesellschaft Latching system for a pin-and-socket connector
US5679029A (en) 1996-05-30 1997-10-21 Minnesota Mining And Manufacturing Company Clamp for electrosurgical dispersive electrode
WO1997047058A1 (en) 1996-06-05 1997-12-11 Berg Technology, Inc. Shielded cable connector
US5676694A (en) 1996-06-07 1997-10-14 Medtronic, Inc. Medical electrical lead
US5895284A (en) 1996-07-31 1999-04-20 The Whitaker Corporation Latching system
JPH10112355A (en) 1996-10-07 1998-04-28 Yazaki Corp Play preventing structure of electric connector
JPH10112356A (en) 1996-10-07 1998-04-28 Yazaki Corp Semi-fitting preventing connector
US6032064A (en) 1996-10-11 2000-02-29 Aspect Medical Systems, Inc. Electrode array system for measuring electrophysiological signals
US6394953B1 (en) 2000-02-25 2002-05-28 Aspect Medical Systems, Inc. Electrode array system for measuring electrophysiological signals
US5806152A (en) 1996-11-15 1998-09-15 Massachusetts Institute Of Technology Compliant latching fastener
US5937950A (en) 1996-12-02 1999-08-17 Medex, Inc. Cable system for medical equipment
JP3285125B2 (en) 1996-12-05 2002-05-27 矢崎総業株式会社 Electrical connector with detection means
US5968087A (en) 1996-12-19 1999-10-19 Medtronic, Inc. Multi-component lead body for medical electrical leads
FR2759205B1 (en) 1997-02-06 1999-04-30 Air Lb International Sa ELECTRICAL CONNECTION DEVICE WITH IMPROVED CONTACT SECURITY
US5984717A (en) 1997-02-20 1999-11-16 Monster Cable Products, Inc. Electrical cable including stackable couplers
EP1013221A4 (en) 1997-02-24 2001-05-02 Tanita Seisakusho Kk Living body impedance measuring instrument and body composition measuring instrument
US6129666A (en) 1997-04-04 2000-10-10 Altec, Inc. Biomedical electrode
US5782892A (en) 1997-04-25 1998-07-21 Medtronic, Inc. Medical lead adaptor for external medical device
US5843141A (en) 1997-04-25 1998-12-01 Medronic, Inc. Medical lead connector system
US5931861A (en) 1997-04-25 1999-08-03 Medtronic, Inc. Medical lead adaptor having rotatable locking clip mechanism
US5971799A (en) 1997-04-26 1999-10-26 Swade; George Y-shaped harness for the interconnection between a vehicle radio, a vehicle harness and add-on electronic device
US5813979A (en) 1997-05-09 1998-09-29 Wolfer; Donna A. EKG device having individually storable eletrode leads
US5830000A (en) 1997-05-14 1998-11-03 Trw Inc. Locking lever connector mechanism
US5997334A (en) 1997-07-18 1999-12-07 The Whitaker Corporation Latching system for an electrical connector
US5941725A (en) 1997-08-01 1999-08-24 Molex Incorporated Shielded electrical connector with latching mechanism
US5931689A (en) 1997-08-06 1999-08-03 Molex Incorporated Electric connector assembly with improved locking characteristics
US6115623A (en) 1997-08-14 2000-09-05 Mcfee; Robin Beverly Apparatus and method for consistent patient-specific EKG electrode positioning
JPH1197124A (en) 1997-09-22 1999-04-09 Japan Aviation Electron Ind Ltd High-speed transmitting system and connector
US5904579A (en) 1997-10-29 1999-05-18 Lucent Technologies Inc. Right-angle adaptor for coaxial jacks
US5971790A (en) 1997-10-31 1999-10-26 The Whitaker Corporation Unitary spring latch for an electrical connector assembly
US6032063A (en) 1997-12-09 2000-02-29 Vital Connections, Inc. Distributed resistance leadwire harness assembly for physiological monitoring during magnetic resonance imaging
FI105598B (en) * 1997-12-10 2000-09-15 Vaisala Oyj Optically black surface and method for its manufacture
JPH11185874A (en) 1997-12-19 1999-07-09 Yazaki Corp Protection structure of lock arm of connector
US5934926A (en) 1998-02-06 1999-08-10 Packard Hughes Interconnect Company Electrical connector system with pre-staged feature
US6553246B1 (en) 1998-02-12 2003-04-22 Unilead International, Inc. Universal electrocardiogram sensor positioning device and method for four sizes including extra large
US6006125A (en) 1998-02-12 1999-12-21 Unilead International Inc. Universal electrocardiogram sensor positioning device and method
US6973343B2 (en) 1998-02-12 2005-12-06 Unilead International Inc. Right side universal electrocardiogram sensor positioning mask and method
JP3343719B2 (en) 1998-02-19 2002-11-11 日本航空電子工業株式会社 Right angle connector for cable
US6152778A (en) 1998-02-26 2000-11-28 Hewlett-Packard Company Electronic connector adapter with power input
US7542878B2 (en) 1998-03-03 2009-06-02 Card Guard Scientific Survival Ltd. Personal health monitor and a method for health monitoring
JP3449912B2 (en) 1998-03-10 2003-09-22 矢崎総業株式会社 connector
JP3467185B2 (en) 1998-04-08 2003-11-17 矢崎総業株式会社 Connector locking mechanism
JP3367417B2 (en) 1998-04-13 2003-01-14 住友電装株式会社 connector
US6122544A (en) 1998-05-01 2000-09-19 Organ; Leslie William Electrical impedance method and apparatus for detecting and diagnosing diseases
DE19822020C2 (en) 1998-05-15 2001-05-17 Siemens Ag Connection unit and use of the connection unit for a medical work station
JP3269029B2 (en) 1998-06-16 2002-03-25 エスエムケイ株式会社 Connector lock structure
US6434410B1 (en) 1998-06-19 2002-08-13 Aspect Medical Systems, Inc. Electrode for measuring electrophysiological signals using liquid electrolytic gel with a high salt concentration
US6098127A (en) 1998-06-26 2000-08-01 Kwang; Yun-Ming Interface socket for transmitting both signal transmission and power supply from motherboard to external peripheral
JP2000040547A (en) 1998-07-22 2000-02-08 Sumitomo Wiring Syst Ltd Connector for electrical connection
US6240323B1 (en) 1998-08-11 2001-05-29 Conmed Corporation Perforated size adjustable biomedical electrode
JP3596729B2 (en) 1998-08-31 2004-12-02 矢崎総業株式会社 Connector mating structure
US6970731B1 (en) 1998-09-21 2005-11-29 Georgia Tech Research Corp. Fabric-based sensor for monitoring vital signs
US6062902A (en) 1998-09-28 2000-05-16 Ge Marquette Medical Systems Connector for catheter electrode
US6168458B1 (en) 1998-09-30 2001-01-02 Steelcase Inc. Communications cabling system
US6419636B1 (en) 1998-10-02 2002-07-16 David Ernest Young System for thermometry-based breast assessment including cancer risk
US6745062B1 (en) 1998-10-05 2004-06-01 Advanced Imaging Systems, Inc. Emg electrode apparatus and positioning system
TW389397U (en) 1998-11-03 2000-05-01 Hon Hai Prec Ind Co Ltd Latch device of electrical connector
US6223088B1 (en) 1998-11-09 2001-04-24 Katecho, Incorporated Electrode and connector assembly and method for using same
US6190385B1 (en) 1998-12-11 2001-02-20 Ethicon, Inc. Cable for bipolar electro-surgical instrument
US6036533A (en) * 1998-12-16 2000-03-14 Grand General Accessories Manufacturing Inc. Set of harnesses for interconnecting a plurality of ornamental light fixtures in a vehicle
US6340306B1 (en) 1998-12-21 2002-01-22 Avaya Technology Corp. Bridge clip for a connector
TW540867U (en) 1998-12-31 2003-07-01 Hon Hai Prec Ind Co Ltd Cable connector
CN1204659C (en) 1999-01-26 2005-06-01 莫列斯公司 Electrical connector with locking mechanism and meatl spring
JP2000223218A (en) 1999-01-27 2000-08-11 Mitsumi Electric Co Ltd Small-sized connector
US6487430B1 (en) 1999-02-11 2002-11-26 Ge Medical Systems Information Technologies, Inc. Electrode connector
DK1154719T3 (en) 1999-02-25 2012-07-23 Medtronic Minimed Inc Sample connector and cable for a glucose monitor
JP3518799B2 (en) 1999-02-25 2004-04-12 矢崎総業株式会社 Wire module
DE29904381U1 (en) 1999-03-10 2000-08-10 Bosch Gmbh Robert Electrical plug device with a fixing device
TW415682U (en) 1999-03-30 2000-12-11 Hon Hai Prec Ind Co Ltd Electrical connector assembly with ball-shaped sticking curb structure
US6317615B1 (en) 1999-04-19 2001-11-13 Cardiac Pacemakers, Inc. Method and system for reducing arterial restenosis in the presence of an intravascular stent
FR2792211B1 (en) 1999-04-19 2001-06-22 Ela Medical Sa QUICK-LOCKING CONNECTOR HEAD, IN PARTICULAR FOR AN ACTIVE IMPLANTABLE MEDICAL DEVICE, SUCH AS A HEART STIMULATOR, DEFIBRILLATOR AND / OR CARDIOVERTER
JP2000311741A (en) 1999-04-28 2000-11-07 Sumitomo Wiring Syst Ltd Split connector
EP1050269A1 (en) 1999-05-07 2000-11-08 Nessler Medizintechnik GmbH & Co KG Multiple-contact electrode
US6356779B1 (en) 1999-06-04 2002-03-12 3M Innovative Properties Company Universally functional biomedical electrode
US6298255B1 (en) 1999-06-09 2001-10-02 Aspect Medical Systems, Inc. Smart electrophysiological sensor system with automatic authentication and validation and an interface for a smart electrophysiological sensor system
US6232366B1 (en) 1999-06-09 2001-05-15 3M Innovative Properties Company Pressure sensitive conductive adhesive having hot-melt properties and biomedical electrodes using same
FR2795300B1 (en) 1999-06-23 2002-01-04 Ela Medical Sa HOLTER APPARATUS FOR RECORDING PHYSIOLOGICAL SIGNALS OF CARDIAC ACTIVITY
JP3362014B2 (en) 1999-06-29 2003-01-07 エヌイーシートーキン株式会社 Lock and unlock structure of cable connector and method of locking and unlocking
FR2796210B1 (en) 1999-07-06 2001-10-26 Entrelec Sa LOCKING DEVICE FOR AN ELECTRICAL CONNECTOR
FI111216B (en) 1999-07-08 2003-06-30 Instrumentarium Oy Arrangement for ECG observation
JP3654063B2 (en) 1999-07-12 2005-06-02 ソニー株式会社 Optical connector
US6454605B1 (en) 1999-07-16 2002-09-24 Molex Incorporated Impedance-tuned termination assembly and connectors incorporating same
TW536005U (en) 1999-07-16 2003-06-01 Molex Inc Impedance-tuned connector
US6280209B1 (en) 1999-07-16 2001-08-28 Molex Incorporated Connector with improved performance characteristics
US6411834B1 (en) 1999-09-03 2002-06-25 Nihon Kohden Corporation Biological sensor
US6339720B1 (en) 1999-09-20 2002-01-15 Fernando Anzellini Early warning apparatus for acute Myocardial Infarction in the first six hours of pain
US6304783B1 (en) 1999-10-14 2001-10-16 Heartstream, Inc. Defibrillator system including a removable monitoring electrodes adapter and method of detecting the monitoring adapter
US6324432B1 (en) 1999-11-01 2001-11-27 Compex Sa Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses
US6254425B1 (en) 1999-11-30 2001-07-03 Ethicon, Inc. Electrical connector for cardiac devices
US6250955B1 (en) 1999-12-17 2001-06-26 David Archuleta Pigtailed scotchcast assembly
US6594515B2 (en) 2000-01-10 2003-07-15 Richard L. Watson Noninvasive, intrauterine fetal ECG strip electrode
TW463437B (en) 2000-02-02 2001-11-11 Hon Hai Prec Ind Co Ltd Cable connector assembly and its manufacturing method
TW440076U (en) 2000-03-03 2001-06-07 Hon Hai Prec Ind Co Ltd Electrical connector
FR2806218B1 (en) 2000-03-10 2004-09-10 Framatome Connectors Int PLUG TYPE INPUT / OUTPUT CONNECTOR
JP3405954B2 (en) 2000-03-13 2003-05-12 日本圧着端子製造株式会社 Connector lock structure
US6283789B1 (en) 2000-03-16 2001-09-04 Shui Chuan Tsai Data and power transmitting cable system
US6257914B1 (en) 2000-03-24 2001-07-10 Molex Incorporated Electrical connector with integral latch and strain relief device
US6517377B2 (en) 2000-05-25 2003-02-11 Sterling Vaden Reduced crosstalk modular plug and patch cord incorporating the same
US6415169B1 (en) 2000-05-31 2002-07-02 General Electric Company Multiple electrode assembly with extendible electrodes and methods of fabrication and application
JP3724703B2 (en) 2000-06-05 2005-12-07 矢崎総業株式会社 Half-mating prevention connector
FI20001482A (en) 2000-06-21 2001-12-22 Instrumentarium Oyj Conductor
US6257925B1 (en) 2000-07-05 2001-07-10 Hon Hai Precision Ind. Co., Ltd. Pair of connectors clamping a printed circuit board
US6636754B1 (en) 2000-07-10 2003-10-21 Cardiodynamics International Corporation Apparatus and method for determining cardiac output in a living subject
AU7596501A (en) 2000-07-18 2002-01-30 Motorola Inc Wireless electrocardiograph system and method
US6564079B1 (en) 2000-07-27 2003-05-13 Ckm Diagnostics, Inc. Electrode array and skin attachment system for noninvasive nerve location and imaging device
NL1015918C2 (en) 2000-08-11 2002-02-12 Fci Mechelen N V Cable connector and kit for making a cable connector.
US6398577B1 (en) 2000-10-04 2002-06-04 Molex Incorporated Latching/unlatching system for electrical connectors
US6364685B1 (en) 2000-11-03 2002-04-02 Randy Marshall Manning Connector with articulated latch
JP3596759B2 (en) 2000-11-22 2004-12-02 日本圧着端子製造株式会社 Printed wiring board connector
US20020133069A1 (en) 2000-12-18 2002-09-19 Roberts Lauri E. Electrode placement device for taking electrocardiograms and method of use
US6360119B1 (en) 2000-12-18 2002-03-19 Lauri E. Roberts Electrode placement device for taking electrocardiograms and method of use
US6768921B2 (en) 2000-12-28 2004-07-27 Z-Tech (Canada) Inc. Electrical impedance method and apparatus for detecting and diagnosing diseases
US6567680B2 (en) 2001-02-02 2003-05-20 Medical Data Electronics Disposable electro-cardiogram transmitter device and electrode node placement facilitator
JP2002252063A (en) 2001-02-26 2002-09-06 Jst Mfg Co Ltd Connector assembly with lock mechanism
US6647286B1 (en) 2001-03-02 2003-11-11 Ge Medical Systems Information Technologies, Inc. Lead and leadset designs for providing medical telemetry antenna
US6558189B2 (en) 2001-03-14 2003-05-06 Palm, Inc. Connector system for use with handheld computers and accessory devices
US6454590B1 (en) 2001-03-23 2002-09-24 Avaya Technology Corp. Positive connection system for high frequency communication connectors
US6705880B2 (en) * 2001-03-30 2004-03-16 Douglas R. Rhude Male plug protector for trailer wiring harness
US6453186B1 (en) 2001-04-13 2002-09-17 Ge Medical Systems Information Technologies, Inc. Electrocardiogram electrode patch
US6619976B2 (en) 2001-04-13 2003-09-16 Hewlett-Packard Development Company, Lp. Apparatus and method for cable connection retention
US6383010B1 (en) 2001-04-23 2002-05-07 Molex Incorporated Latching system for electrical connectors
US20020188216A1 (en) 2001-05-03 2002-12-12 Kayyali Hani Akram Head mounted medical device
JP3813836B2 (en) 2001-05-18 2006-08-23 矢崎総業株式会社 Half-mating prevention connector
CN1287729C (en) 2001-05-29 2006-12-06 生殖健康技术公司 System for detection and analysis of material uterine, material and fetal cardiac and fetal brain activity
US6494744B1 (en) 2001-06-11 2002-12-17 Wieson Electronic Co., Ltd. Connector assembly
US6540549B2 (en) 2001-06-14 2003-04-01 Dekko Engineering, Inc. Keyed power cord
US7933642B2 (en) 2001-07-17 2011-04-26 Rud Istvan Wireless ECG system
US7197357B2 (en) 2001-07-17 2007-03-27 Life Sync Corporation Wireless ECG system
US20040127802A1 (en) 2001-07-17 2004-07-01 Gmp Companies, Inc. Wireless ECG system
JP3717814B2 (en) 2001-07-31 2005-11-16 矢崎総業株式会社 Two article locking structure
TW521930U (en) 2001-08-13 2003-02-21 Delta Electronics Inc Power supply device
US6461179B1 (en) 2001-09-04 2002-10-08 Woodhead Industries, Inc. Vibration resistant electrical connector
US6623312B2 (en) 2001-10-04 2003-09-23 Unilead International Precordial electrocardiogram electrode connector
US6454577B1 (en) 2001-10-19 2002-09-24 Hon Hai Precision Ind. Co., Ltd. Electrical connector having device for latching and grounding
US7128600B2 (en) 2001-10-22 2006-10-31 Oscor Inc. Adapter for electrical stimulation leads
US7270568B2 (en) 2001-10-22 2007-09-18 Oscor Inc. Adapter for electrical stimulation leads
WO2003058788A1 (en) 2001-12-21 2003-07-17 Caltek Corporation Miniaturized motor overload protector
US6517372B1 (en) 2001-12-26 2003-02-11 Hon Hai Precision Ind. Co., Ltd. Quick release shock/vibration connector assembly
US6751493B2 (en) 2002-01-09 2004-06-15 Unilead International, Inc. Universal electrocardiogram sensor positioning mask with repositionable sensors and method for employing same
JP4009111B2 (en) 2002-01-21 2007-11-14 日本圧着端子製造株式会社 Connector locking device
US7169107B2 (en) 2002-01-25 2007-01-30 Karen Jersey-Willuhn Conductivity reconstruction based on inverse finite element measurements in a tissue monitoring system
US6531657B1 (en) 2002-01-31 2003-03-11 Metra Electronics Corporation Adapter wire harness for installing different autosound components into different vehicles
US6847836B1 (en) 2002-02-08 2005-01-25 Lenny Sujdak Emergency ECG electrode chest pad
US6582252B1 (en) 2002-02-11 2003-06-24 Hon Hai Precision Ind. Co., Ltd. Termination connector assembly with tight angle for shielded cable
US6663570B2 (en) 2002-02-27 2003-12-16 Volcano Therapeutics, Inc. Connector for interfacing intravascular sensors to a physiology monitor
JP3806926B2 (en) 2002-03-01 2006-08-09 住友電装株式会社 connector
AU2003228380A1 (en) 2002-03-27 2003-10-13 Molex Incorporated Differential signal connector assembly with improved retention capabilities
US6709284B1 (en) 2002-03-28 2004-03-23 Aurora Networks Connector mounting with pass-through slot and diverging angle facet
US6619989B1 (en) 2002-05-30 2003-09-16 Hon Hai Precision Ind. Co., Ltd. Cable connector having integrally formed metal latch and cable strain relief
TW551718U (en) 2002-05-30 2003-09-01 Hon Hai Prec Ind Co Ltd Electrical connector
US7004787B2 (en) 2002-06-11 2006-02-28 Henry Milan Universal computer cable with quick connectors and interchangeable ends, and system and method utilizing the same
DE10225621B3 (en) 2002-06-07 2004-01-22 Nicolay Verwaltungs-Gmbh Device for electrically connecting a connecting line to an electrode, in particular a medical skin electrode
TW549740U (en) 2002-07-26 2003-08-21 Hon Hai Prec Ind Co Ltd Electrical connector
US6589066B1 (en) 2002-07-30 2003-07-08 Hon Hai Precision Ind. Co., Ltd. Electrical connector having a latch mechanism
US6722912B2 (en) 2002-07-31 2004-04-20 Hon Hai Precision Ind. Co. Ltd. Electrical connector having a latch mechanism
FR2843492B1 (en) 2002-08-06 2004-11-26 Framatome Connectors Int CONNECTOR WITH LATERAL LOCKING MEANS
US6743053B2 (en) 2002-08-09 2004-06-01 Hon Hai Precision Ind. Co., Ltd. Electrical connector with improved spacer
US7085598B2 (en) 2002-08-23 2006-08-01 Nihon Kohden Corporation Biological electrode and connector for the same
JP2004095346A (en) 2002-08-30 2004-03-25 Tyco Electronics Amp Kk Connector assembly and connector for use with the same
US6891379B2 (en) 2002-09-04 2005-05-10 Draeger Medical System, Inc. EKG wiring system
US6655979B1 (en) 2002-10-15 2003-12-02 Hon Hai Precision Ind. Co., Ltd. Cable end connector with locking member
US7081008B2 (en) 2002-10-30 2006-07-25 William Tan Apparatus for producing an output voltage to power an electronic device
US6663420B1 (en) 2002-11-15 2003-12-16 Hon Hai Precision Ind. Co., Ltd. Adapter for exchanging data and transmitting power between PC and portable device
US6939158B2 (en) 2002-12-20 2005-09-06 Atl Technology Lc Electronic interconnect for PDA/cell phone
TW547858U (en) 2002-12-20 2003-08-11 Hon Hai Prec Ind Co Ltd Retention mechanism for electrical connector
US7056141B2 (en) 2002-12-20 2006-06-06 Atl Technology Lc Electronic latch interconnect for PDA/cell phone
US6786764B2 (en) 2003-01-31 2004-09-07 American Megatrends, Inc. Adapters, computer systems, and methods that utilize a signal pass-through
FR2851084A1 (en) 2003-02-06 2004-08-13 Radiall Sa Connector for aeronautical domain, has casing units with elastically deformable flap holding with corresponding connection, where flap is applied over other units of connector to connect casing units
US7029286B2 (en) 2003-02-07 2006-04-18 Tyco Electronics Corporation Plastic housings for jack assemblies
JP4102680B2 (en) 2003-02-25 2008-06-18 日本圧着端子製造株式会社 Plug locking mechanism
US7444177B2 (en) 2003-03-04 2008-10-28 Alireza Nazeri EKG recording accessory system (EKG RAS)
TW582424U (en) 2003-03-11 2004-04-01 Sinox Co Ltd Securing device having bypass interface
US6773293B1 (en) 2003-03-20 2004-08-10 Hon Hai Precision Ind. Co., Ltd. Cable end connector with locking member
US6881098B2 (en) 2003-04-14 2005-04-19 Hewlett-Packard Development Company, L.P. System and method for selectively communicatively coupling and transmitting power between an electronic device and a peripheral component
US7110804B2 (en) 2003-04-24 2006-09-19 Inovise Medical, Inc. Combined electrical and audio anatomical signal sensor
US6851969B2 (en) 2003-05-28 2005-02-08 David Archuletta Pigtailed scotchcast assembly
US6702616B1 (en) 2003-06-17 2004-03-09 North Star Systems Corp. Retaining terminal structure of connector
US7252556B2 (en) 2003-06-18 2007-08-07 Fci Electrical connector having locking claw
US7025628B2 (en) 2003-08-13 2006-04-11 Agilent Technologies, Inc. Electronic probe extender
FR2858758B1 (en) 2003-08-14 2006-04-07 Tam Telesante Sarl MEDICAL MONITORING SYSTEM USING A CLOTHING
US7144268B2 (en) 2003-08-19 2006-12-05 Spacelabs Medical, Inc. Latching medical patient parameter safety connector and method
US7347826B1 (en) 2003-10-16 2008-03-25 Pacesetter, Inc. Packaging sensors for long term implant
JP4089602B2 (en) 2003-11-25 2008-05-28 住友電装株式会社 connector
DE10356566B3 (en) 2003-12-04 2005-07-21 Airbus Deutschland Gmbh Lockable plug connection
US6860750B1 (en) 2003-12-05 2005-03-01 Hon Hai Precision Ind. Co., Ltd. Cable end connector assembly having locking member
US7137839B2 (en) 2003-12-22 2006-11-21 Caterpillar Inc. Electrical connector
US7104847B2 (en) 2004-02-26 2006-09-12 Briggs & Stratton Power Products Group, Llc Electric power system and method of operating the same
US7201599B2 (en) 2004-03-23 2007-04-10 Fci Americas Technology, Inc. Electrical connector latch
TWM256006U (en) 2004-04-09 2005-01-21 Advanced Connectek Inc Hooking mechanism of a connector
US6948973B1 (en) 2004-04-16 2005-09-27 Chen Yin Hsu Flexible flat cable connector
US7236825B2 (en) 2004-04-30 2007-06-26 Medtronic, Inc. Cardiac activity sensing during pacing in implantable devices
US7359751B1 (en) 2004-05-05 2008-04-15 Advanced Neuromodulation Systems, Inc. Clinician programmer for use with trial stimulator
US7056134B2 (en) 2004-05-27 2006-06-06 Tektronix, Inc. Attachable/detachable probing tip system for a measurement probing system
US7333850B2 (en) 2004-05-28 2008-02-19 University Of Florida Research Foundation, Inc. Maternal-fetal monitoring system
TWM261868U (en) 2004-06-18 2005-04-11 Advanced Connectek Inc An electrical connector with a latch device
KR100615431B1 (en) 2004-06-22 2006-08-25 한국전자통신연구원 Physiological signal detection module, a multi-channel connector module and physiological signal detection apparatus with the same
DE102004032410A1 (en) 2004-07-02 2006-01-19 Hochschule Niederrhein Shirt has sensors in form of threads built into its structure these act as, for instance, ECG electrodes
US7401946B2 (en) 2004-07-07 2008-07-22 Pent Technologies, Inc. Modular wiring for linear lighting
JP2006031965A (en) 2004-07-12 2006-02-02 Yazaki Corp Locking structure of connector
US7134908B2 (en) 2004-07-23 2006-11-14 Hon Hai Precision Ind. Co., Ltd. Single-port to multi-port cable assembly
US6913482B1 (en) 2004-07-29 2005-07-05 Hon Hai Precision Ind. Co., Ltd. Electrical connecting device
US7581992B1 (en) 2004-08-11 2009-09-01 Cisco Technology, Inc. Power adapter
US8491503B2 (en) 2004-09-29 2013-07-23 Covidien Lp Intrauterine pressure catheter interface cable system
US6945807B1 (en) 2004-11-15 2005-09-20 Hon Hai Precision Ind. Co., Ltd. Cable end connector having integral latch means
TWM268770U (en) 2004-11-19 2005-06-21 Advanced Connectek Inc Connecter adapter
US7040931B1 (en) 2004-12-06 2006-05-09 Illinois Tool Works Inc. Power plug adapter
US7413461B2 (en) 2004-12-17 2008-08-19 Molex Incorporated Connector guide with latch and connectors therefor
US7189097B2 (en) 2005-02-11 2007-03-13 Winchester Electronics Corporation Snap lock connector
US7303430B2 (en) 2005-02-16 2007-12-04 Scosche Industries, Inc. Adapter for car audio equipment
US7281937B2 (en) 2005-02-18 2007-10-16 Molex Incorporated Low profile latching connector
US7104801B1 (en) 2005-03-02 2006-09-12 The General Electric Company Arrangement for management of lead wires
US7322849B2 (en) 2005-03-31 2008-01-29 United Parcel Service Of America, Inc. Relay retrofit apparatus including an electrically-activated relay switch for retrofitting an electrical system
CN2800575Y (en) 2005-04-01 2006-07-26 富士康(昆山)电脑接插件有限公司 Electric connector
US7252542B2 (en) 2005-04-18 2007-08-07 Topower Computer Industrial Co., Ltd. Power transmission cable
JP4630725B2 (en) 2005-05-09 2011-02-09 京セラミタ株式会社 Connection device, and image forming apparatus and optional device provided with the same
US7041918B1 (en) 2005-05-10 2006-05-09 Chia-Chen Wu Electrical power outlet
US7008255B1 (en) 2005-06-06 2006-03-07 Cheng Uei Precision Industry Co., Ltd. Electrical connector with latch mechanism
US7503807B2 (en) 2005-08-09 2009-03-17 Tyco Electronics Corporation Electrical connector adapter and method for making
US7182630B1 (en) 2005-08-26 2007-02-27 Enermax Technology Corporation Common lead device for SATA and periphery power connectors
JP4606283B2 (en) 2005-09-12 2011-01-05 矢崎総業株式会社 connector
US7585182B2 (en) 2005-09-15 2009-09-08 Dell Products L.P. Method and apparatus for connecting a cable
US7618377B2 (en) 2005-09-29 2009-11-17 Welch Allyn, Inc. Galvanic isolation of a medical apparatus
CN2840406Y (en) 2005-09-30 2006-11-22 富士康(昆山)电脑接插件有限公司 Electronic adapter
JP4500245B2 (en) 2005-10-27 2010-07-14 矢崎総業株式会社 connector
KR100759948B1 (en) 2005-12-08 2007-09-19 한국전자통신연구원 Garment apparatus for measuring physiological signal
JP2007265785A (en) 2006-03-28 2007-10-11 Tyco Electronics Amp Kk Electrical connector
US7322857B2 (en) * 2006-04-03 2008-01-29 Topower Computer Industrial Co., Ltd. Electric power connector adapting structure
US7616980B2 (en) 2006-05-08 2009-11-10 Tyco Healthcare Group Lp Radial electrode array
JP4977404B2 (en) 2006-05-26 2012-07-18 矢崎総業株式会社 connector
US7604511B1 (en) 2006-06-26 2009-10-20 Johnson Steve O Electrical adaptor
DE102006030784B4 (en) 2006-06-30 2008-05-15 Erni Electronics Gmbh Connector with a secondary lock
US7416440B2 (en) 2006-07-12 2008-08-26 Consolidated Edison Company Of New York, Inc. Modular electrical adapter
US7318740B1 (en) 2006-08-08 2008-01-15 Tyco Electronics Corporation Electrical connector having a pull tab
TW200812166A (en) 2006-08-25 2008-03-01 sheng-xing Liao Transfer plug
US7381082B2 (en) 2006-10-13 2008-06-03 Cheng Uei Precision Industry Co., Ltd. Connector assembly with the cable positioned inside
US7374448B2 (en) 2006-11-03 2008-05-20 Cadwell Lab Inc Electrical connector locking system
US7399195B2 (en) 2006-12-06 2008-07-15 J.S.T. Corporation Connector position assurance device and connector assembly incorporating the same
US7361058B1 (en) 2006-12-27 2008-04-22 Hallmark Cards, Incorporated Electrical interconnecting adapter
US7591673B2 (en) 2007-01-18 2009-09-22 Hewlett-Packard Development Company, L.P. Combined power and control signal cable
TW200838183A (en) 2007-03-15 2008-09-16 Powertech Ind Ltd Power supply unit for travel
US7666028B2 (en) 2007-03-21 2010-02-23 Phillips & Temro Industries Inc. Cab power connectors
US7488187B2 (en) 2007-05-03 2009-02-10 Daniel Wolf Dual channel XLR cable converter
US7494383B2 (en) 2007-07-23 2009-02-24 Amphenol Corporation Adapter for interconnecting electrical assemblies
JP4767923B2 (en) 2007-07-27 2011-09-07 タイコエレクトロニクスジャパン合同会社 Electrical connector and connector assembly
US7556535B2 (en) 2007-11-05 2009-07-07 Sheng-Hsin Liao Adapter having connecting arms
US7462074B1 (en) 2008-02-06 2008-12-09 Southwire Company Rotating plug adapter with integral two blade and grounding post receptacle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353372A (en) * 1980-02-11 1982-10-12 Bunker Ramo Corporation Medical cable set and electrode therefor
US4477801A (en) * 1982-03-15 1984-10-16 International Harvester Co. Seed monitor apparatus harness adapter for a convertible planter
US5813404A (en) * 1995-10-20 1998-09-29 Aspect Medical Systems, Inc. Electrode connector system
US6558201B1 (en) * 1999-10-20 2003-05-06 Hewlett Packard Development Company, L.P. Adapter and method for converting data interface hardware on a computer peripheral device
US6716165B1 (en) * 2001-03-02 2004-04-06 Ge Medical Systems Information Technologies, Inc. Patient telemetry device and leadset designs for providing antenna diversity
US6873514B2 (en) * 2001-06-05 2005-03-29 Trombetta, Llc Integrated solenoid system
US6805579B2 (en) * 2002-05-07 2004-10-19 Briggs & Stratton Power Products Group, Llc Electrical power cord with multiple low-voltage terminal
US8668651B2 (en) * 2006-12-05 2014-03-11 Covidien Lp ECG lead set and ECG adapter system
US7465187B1 (en) * 2007-08-06 2008-12-16 June-On Co., Ltd. Switchable cable device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107594B2 (en) 2007-12-11 2015-08-18 Covidien Lp ECG electrode connector
USD737979S1 (en) * 2008-12-09 2015-09-01 Covidien Lp ECG electrode connector
US9408547B2 (en) 2011-07-22 2016-08-09 Covidien Lp ECG electrode connector
US9737226B2 (en) 2011-07-22 2017-08-22 Covidien Lp ECG electrode connector
US9408546B2 (en) 2013-03-15 2016-08-09 Covidien Lp Radiolucent ECG electrode system
USD771818S1 (en) 2013-03-15 2016-11-15 Covidien Lp ECG electrode connector
US9693701B2 (en) 2013-03-15 2017-07-04 Covidien Lp Electrode connector design to aid in correct placement
US9814404B2 (en) 2013-03-15 2017-11-14 Covidien Lp Radiolucent ECG electrode system
US11844605B2 (en) 2016-11-10 2023-12-19 The Research Foundation For Suny System, method and biomarkers for airway obstruction

Also Published As

Publication number Publication date
AU2011204993A1 (en) 2012-02-16
AU2011204993B2 (en) 2014-03-06
CN102440772B (en) 2016-01-27
CA2746944C (en) 2018-09-25
EP2412307A1 (en) 2012-02-01
US20120028504A1 (en) 2012-02-02
US8568160B2 (en) 2013-10-29
CA2746944A1 (en) 2012-01-29
CN102440772A (en) 2012-05-09

Similar Documents

Publication Publication Date Title
US8568160B2 (en) ECG adapter system and method
US8897865B2 (en) ECG lead system
US9072444B2 (en) ECG lead set and ECG adapter system
US7996056B2 (en) Method and apparatus for acquiring physiological data
US5666958A (en) Interface module for electrically connecting medical equipment
AU2018250371A1 (en) Electrode padset
US20150297433A1 (en) Medical procedure table with integral ports and wires for electrocardiography
EP3500165B1 (en) Adapter for coupling with medical coupling unit and sensor
CN210576937U (en) Adapter for ECG cable
AU2013237641B2 (en) ECG lead set and ECG adapter system
AU2015246072A1 (en) ECG lead set and ECG adapter system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION