US20140343069A1 - Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression - Google Patents

Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression Download PDF

Info

Publication number
US20140343069A1
US20140343069A1 US14/448,499 US201414448499A US2014343069A1 US 20140343069 A1 US20140343069 A1 US 20140343069A1 US 201414448499 A US201414448499 A US 201414448499A US 2014343069 A1 US2014343069 A1 US 2014343069A1
Authority
US
United States
Prior art keywords
pharmaceutically acceptable
solvate
polymorph
clathrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/448,499
Inventor
Karim Lalji
Timothy Barberich
Judy Caron
Thomas Wessel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunovion Pharmaceuticals Inc
Sunovion Inc
Original Assignee
Sunovion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunovion Inc filed Critical Sunovion Inc
Priority to US14/448,499 priority Critical patent/US20140343069A1/en
Assigned to SEPRACOR INC. reassignment SEPRACOR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARON, JUDY, BARBERICH, TIMOTHY J., LALJI, KARIM, WESSEL, THOMAS
Assigned to SUNOVION PHARMACEUTICALS INC. reassignment SUNOVION PHARMACEUTICALS INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SEPRACOR INC.
Publication of US20140343069A1 publication Critical patent/US20140343069A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/138Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/724Cyclodextrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • Sleep is controlled by two biological processes, the homeostatic drive and the circadian rhythm.
  • the homeostatic drive manifests itself as an increased drive for sleep. This drive for sleep accumulates across the period of wakefulness (typically daytime) and dissipates across the sleep period.
  • the circadian rhythm of sleep-wake shows a biphasic curve with the greatest drive for sleep occurring between midnight and 5 AM, and between 2 PM and 4 PM. It is believed that major circadian influences are an alerting pulse in the evening and in the morning. It is the interaction of these processes which give rise to the 24-hour sleep schedule. For individuals with a usual sleep period of 11 PM to 7 AM, sleep onset in the evening occurs primarily as a function of homeostatic drive.
  • insomnia refers to the perception of inadequate or non-restful sleep by a patient. Insomnia is a frequent complaint, reported by 32% of the adult population surveyed in the Los Angeles area (Bixler et al, Amer. Journal of Psychiatry 136:1257-1262, 1979), and 13% of the population surveyed in San Marino, Italy (Lugaresi et al., Psychiatric Annals 17:446-453, 1987). Fully 45% of the surveyed adult population of Alachua County, Florida, reported trouble getting to sleep or staying asleep (Karacan et al., Social Science and Medicine 10:239-244, 1976). The prevalence of insomnia has also been shown to be related to the age and sex of the individuals, being more prevalent in older individuals, especially adults aged 65 and over, and in females.
  • CNS central nervous system
  • insomnia shifted away from barbiturates and other CNS depressants toward the benzodiazepine class of sedative-hypnotic agents.
  • This class of compounds produces a calming effect that results in a sleep-like state in humans and animals, with a greater safety margin than prior hypnotics.
  • many benzodiazepines possess side effects that limit their usefulness in certain patient populations. These problems include synergy with other CNS depressants (especially alcohol), the development of tolerance upon repeat dosing, dependency, withdrawal, rebound insomnia following discontinuation of dosing, hangover effects the next day and impairment of psychomotor performance and memory.
  • Next day sleepiness and memory impairment which can include amnesia for events occurring prior to and after drug administration, is of particular concern in the elderly whose cognitive functions may already be impaired by the aging process.
  • insomnia More recent treatments for insomnia have used non-benzodiazepine compounds, which show an improved side effect profile over the benzodiazepine class of sedative-hypnotics.
  • zaleplon which is marketed by Jones Pharma as SONATA®, was been approved by the FDA; zaleplon is a pyrazolopyrimidine-based compound (see U.S. Pat. No. 4,626,538).
  • Other non-benzodiazepine compounds and/or methods for making or using the same have also been reported (see, e.g., U.S. Pat. Nos. 4,794,185, 4,808,594, 4,847,256, 5,714,607, 4,654,347; 5,538,977, 5,891,891).
  • Attempts have also been disclosed to provide controlled-release dosage forms, particularly in the context of zolpidem and salts thereof (see WO 00/33835 and EP 1 005 863 A1).
  • Norepinephrine and serotonin are mammalian neurotransmitters that play important roles in a wide variety of physiological processes.
  • Norepinephrine also called noradrenaline, is a neurotransmitter that doubles part-time as a hormone.
  • norepinephrine helps to regulate arousal, dreaming, and moods.
  • As a hormone it acts to increase blood pressure, constrict blood vessels and increase heart rate—responses that occur when we feel stress.
  • Serotonin (5-hydroxytryptamine, 5-HT) is widely distributed in animals and plants, occurring in vertebrates, fruits, nuts, and venoms. A number of congeners of serotonin are also found in nature and have been shown to possess a variety of peripheral and central nervous system activities. Serotonin may be obtained from a variety of dietary sources; however, endogenous 5-HT is synthesized from tryptophan through the actions of the enzymes tryptophan hydroxylase and aromatic L-amino acid decarboxylase. Both dietary and endogenous 5-HT are rapidly metabolized and inactivated by monoamine oxidase and aldehyde dehydrogenase to the major metabolite, 5-hydroxyindoleacetic acid (5-HIAA).
  • 5-HIAA 5-hydroxyindoleacetic acid
  • Serotonin is implicated in the etiology or treatment of various disorders, particularly those of the central nervous system, including anxiety, depression, obsessive-compulsive disorder, schizophrenia, stroke, obesity, pain, hypertension, vascular disorders, migraine, and nausea. Recently, understanding of the role of 5-HT in these and other disorders has advanced rapidly due to increasing understanding of the physiological role of various serotonin receptor subtypes.
  • Neurotransmitters produce their effects as a consequence of interactions with cellular receptors.
  • Neurotransmitters including serotonin, are synthesized in brain neurons and stored in vesicles. Upon a nerve impulse, they are released into the synaptic cleft, where they interact with various postsynaptic receptors.
  • the actions of 5-HT are terminated by three major mechanisms: diffusion; metabolism; and uptake back into the synaptic cleft through the actions of specific amine membrane transporter systems.
  • the major mechanism by which the action of serotonin is terminated is by uptake through presynaptic membranes.
  • 5-HT acts on its various postsynaptic receptors, it is removed from the synaptic cleft back into the nerve terminal through an uptake mechanism involving a specific membrane transporter in a manner similar to that of other biogenic amines.
  • the actions of 5-HT, or any neurotransmitter can be modulated by agents that: stimulate or inhibit its biosynthesis; agents that block its storage; agents that stimulate or inhibit its release; agents that mimic or inhibit its actions at its various postsynaptic receptors; agents that inhibit its reuptake into the nerve terminal; and agents that affect its metabolism.
  • the present invention generally relates to pharmaceutical compositions comprising a sedative agent; and serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dopamine reuptake inhibitors, CRS antagonists and 5-HT 2A receptor modulators.
  • the sedative agent is a GABA receptor modulating compound.
  • the sedative agent is eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the pharmaceutical compositions of the invention are useful in the treatment of various sleep disorders.
  • the present invention also relates to a method of treating a patient suffering from a sleep abnormality or insomnia, comprising administering a therapeutically effective amount of a pharmaceutical composition of the invention.
  • the present invention relates generally to pharmaceutical compositions containing two or more active agents that when taken together improve the quality of sleep for a patient.
  • the present invention relates to a pharmaceutical composition comprising a NRI and a sedative agent.
  • the present invention relates to a pharmaceutical composition comprising a dopamine reuptake inhibitor and a sedative agent.
  • the sedative agent is a GABA receptor modulating compound.
  • the sedative agent is eszopiclone, or a pharmaceutically acceptable salt, solvate, clatherate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep disorder comprising the step of administering to said patient a therapeutically effective dose of a pharmaceutical composition containing two or more active agents that when taken together improve the quality of sleep or sleep disorders for said patient.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression comprising the step of administering to said patient a therapeutically effective dose of a pharmaceutical composition of the invention.
  • said pharmaceutical composition comprises a norepinephrine reuptake inhibitor and a sedative agent. In certain embodiments, said pharmaceutical composition comprises a dopamine reuptake inhibitor and a sedative agent. In a preferred embodiment, the sedative is eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof. Sleep Difficulties and Insomnia
  • the National Sleep Foundation's 2002 Sleep in America survey assessed the occurrence of four symptoms of insomnia in adults in the United States: difficulty falling asleep; waking a lot during the night; waking up too early and not being able to get back to sleep; and waking up feeling unrefreshed. In the survey, 58% of the respondents reported experiencing at least one of these symptoms a few nights a week or more, and 35% reported difficulties every night or almost every night within the past year (National Sleep Foundation. 2002 Sleep in America Poll. Washington, D.C.: WB & A Market Research, 2002, 1-43).
  • insomnia The major types of insomnia are often described as primary and secondary insomnia (as in the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders , Text Revision. 4th ed. Washington, D.C.: American Psychiatric Publishing, Inc, 2000 [DSM]), chronic versus acute/transient insomnia, intrinsic versus extrinsic insomnia (as in the International Classification of Sleep Disorders [ICSD]), and sleep-onset versus sleep maintenance (Diagnostic Classification Steering Committee. International Classification of Sleep Disorders (ICSD): Diagnostic and Coding Manual. Rochester, Minn.: American Sleep Disorders Association, 1990).
  • DSM-IV The fourth edition of the DSM (DSM-IV) defines insomnia as difficulties in sleep onset (or initiation), difficulties in sleep maintenance, or sleep that is nonrestorative.
  • Chronic insomnia may result from several different sources (Rajput et al., Am. Fam. Physician, 1999, 60:1431-1438). Patients with chronic insomnia can often have several sleep complaints simultaneously and experience a range of sleep disturbances, including prolonged latency to sleep onset, increased time awake during the sleep period, and reduced total sleep time (Benca R M, J. Clin. Psychiatry, 2001, 62 Suppl 10:33-38).
  • WASO wake time after sleep onset
  • WASO sleep fragmentation
  • WASO is a particularly sensitive measure of sleep improvement.
  • WASO may include a number of microarousals, as well as all periods of full wakefulness, and thus increases in WASO of only a few minutes may be indicative of substantially improved sleep continuity.
  • insomnia can be directly correlated to severity of next-day functional impairment.
  • patients with chronic insomnia experience a subjective deterioration in waking behaviors and psychosocial functioning, including impaired memory, concentration, ability to accomplish tasks, and enjoyment of interpersonal relationships (Roth et al., Sleep, 1999, 22 Suppl 2:S354-S358).
  • Sertraline is a serotonin reuptake inhibitor which is marketed as an antidepressant. It is disclosed by U.S. Pat. No. 4,536,518. The therapeutic effect of sertraline is attributed to inhibition of CNS neuronal uptake of serotonin. Clinical studies in man indicate that sertraline blocks the uptake of serotonin in human platelets. In addition, in vitro studies indicate that it is a very poor inhibitor of norepinephrine and dopamine neuronal uptake. Sertraline is a naphthaleneamine that is generally marketed as the hydrochloride salt under the brand name ZOLOFT®.
  • Sertraline hydrochloride has the molecular formula C 17 H 17 NCl 2 .HCl and has the chemical name (1S-cis)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-N-methyl-1-naphthalenamine hydrochloride.
  • the preparation of sertraline may be carried using preparatory methods such as those described in Welch, et al. European Patent Application 30,081 and U.S. Pat. No. 4,536,518.
  • the chemical structure of Sertraline hydrochloride is presented below.
  • a prophylactic or therapeutic dose of sertraline in the acute or chronic management of disease will vary with the severity of the condition to be treated and the route of administration.
  • the dose, and perhaps the dose frequency will also vary according to the age, body weight, and response of the individual patient.
  • the total daily dose ranges, for the conditions described herein is from about 1 mg to about 500 mg.
  • a daily dose range should be between about 10 mg to about 200 mg.
  • a daily dose range should be between about 20 mg to about 100 mg.
  • a daily dosage of 30, 50, 70, or 80 mg may be preferred depending upon patient response.
  • the therapy may be initiated at a lower dose, perhaps about 10 mg to about 15 mg and increased up to about 20 mg or higher depending-on the patient's global response. It may be necessary to use dosages outside these ranges in some cases. Additional information for sertraline hydrochloride including product information, dosage amounts, and administration is given in Physicians' Desk Reference, 48th Edition, 1994, pp. 2000-2003.
  • norepinephrine reuptake inhibitors are norepinephrine reuptake inhibitors, and no doubt many more will be identified in the future. In the practice of the present invention, it is intended to include reuptake inhibitors which can be identified using the protocol described by Wong et al., Drug Development Research, 6, 397 (1985). In certain embodiments, the norepinephrine reuptake inhibitors used in the present invention are characterized in being selective for the inhibition of neurotransmitter reuptake relative to their ability to act as direct agonists or antagonists at other receptor.
  • the ability of compounds to inhibit the reuptake of norepinephrine may be measured by the general procedure of Wong, et al., Drug Development Research, 6, 397 (1985). Male Sprague-Dawley rats weighing 150-250 gm are decapitated and brains are immediately removed. Cerebral cortices are homogenized in 9 volumes of a medium containing 0.32 M sucrose and 10 mM glucose. Crude synaptosomal preparations are isolated after differential centrifugation at 1000 ⁇ g for 10 minutes and 17,000 ⁇ g for 28 minutes. The final pellets are suspended in the same medium and kept in ice until use within the same day.
  • Synaptosomal uptake of 3 H-norepinephrine is determined as follows. Cortical synaptosomes (equivalent to 1 mg of protein) are incubated at 37° C. for 5 minutes in 1 mL Krebs-bicarbonate medium containing also 10 mM glucose, 0.1 mM iproniazide, 1 mM ascorbic acid, 0.17 mM EDTA and 50 nM 3 H-norepinephrine. The reaction mixture is immediately diluted with 2 mL of ice-chilled Krebs-bicarbonate buffer and filtered under vacuum with a cell harvester (Brandel, Gaithersburg, Md.).
  • a suitable dose of a norepinephrine reuptake inhibitor or a pharmaceutically acceptable salt thereof for administration to a human will be in the range of 0.01 to 50 mg per kilogram body weight of the recipient per day, preferably in the range of 0.1 to 3 mg per kilogram body weight per day. Unless otherwise stated all weights of active ingredients are calculated in terms of drug per se.
  • the desired dose is preferably presented as two, three, four, five or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing 5 to 50 mg.
  • Reboxetine is active on the central nervous system and has been used to treat depression, oppositional defiant disorder, attention-deficit/hyperactivity disorder, and conduct disorder. See WO 99/15163, WO 95/15176, and WO 99/15177. Reboxetine does not act like most antidepressants. Reboxetine is ineffective in the 8-OH-DPAT hypothermia test, indicating that reboxetine is not a SSRI. Brian E. Leonard, “Noradrenaline in basic models of depression.” European - Neuropsychopharmacol., 7 Suppl. 1 pp. S 11-6 and S71-3 (April 1997).
  • Reboxetine is a norepinephrine reuptake inhibitor, with only marginal serotonin and no dopamine reuptake inhibitory activity. Reboxetine displays no anticholinergic binding activity in different animal models, and is substantially devoid of monoamine oxidase (MAO) inhibitory activity. Racemic reboxetine exhibits a pharmacological selectivity of serotonin (K i )/norepinephrine (K i ) of about 80.
  • Reboxetine is a safe drug, and its use in ADHD, in both adults and children, is a superior treatment for that disorder because of its improved safety.
  • the compound is particularly selective, having few if any physiological effects besides those on norepinephrine processing, and therefore is free of side effects and unwanted activities. Further, it is effective at relatively low doses, as discussed below, and may safely and effectively be administered once per day. Thus, difficulties created by the multiple dosing of patients, who are children and disorganized adults, are completely avoided.
  • the racemate form of reboxetine is well tolerated and has a wide safety range.
  • the effective dose of reboxetine for ADHD is in the range from about 1 mg/day to about 100 mg/day.
  • the preferred adult dose is in the range from about 5 to about 80 mg/day, and a more highly preferred adult dose is from about 10 to about 60 mg/day.
  • the children's dose of course is smaller, in the range from about 1 to about 70 mg/day, more preferably from about 5 to about 60 mg/day and still more preferably from about 4 to about 10 mg/day.
  • the optimum dose for each patient must be set by the physician in charge of the case, taking into account the patient's size, other medications which the patient requires, severity of the disorder and all of the other circumstances of the patient.
  • Reboxetine was first taught by U.S. Pat. No. 4,229,449 and has the chemical name 2-[ ⁇ -(2-ethoxy)phenoxy-benzyl]morpholine. Reboxetine is also described in U.S. Pat. Nos. 5,068,433; 5,391,735; 6,642,235; and in GB 2,167,407. Individual stereoisomers of reboxetine can be obtained by resolution of the racemic mixture of enantiomers using conventional methods generally known by those skilled in the art. Such methods include, but are not limited to, resolution by simple crystallization and chromatographic techniques, for example, as set forth in GB 2,167,407. The structure of reboxetine is presented below.
  • reboxetine is administered as the racemate.
  • compositions containing an optically pure (S,S) reboxetine are about 5 to about 8.5 times more effective at inhibiting the reuptake of norepinephrine than compositions containing the racemic mixture of the (R,R) and (S,S) stereoisomers.
  • the typical daily dosage of the racemic mixture i.e., commercially available reboxetine
  • the reduction in dosage does not lead to a reduction in efficacy, but the reduction or elimination of various adverse side effects was observed.
  • an optically pure (S,S) reboxetine selectively inhibits norepinephrine reuptake compared to serotonin reuptake
  • adverse side effects associated with serotonin reuptake are reduced or eliminated.
  • adverse side effects include, but are not limited to, gastrointestinal disturbances, anxiety, sexual dysfunction, and undesirable side effects associated with drug-drug interactions.
  • Tomoxetine is a notably safe drug for use in adults and children for treatment of attention deficit hyperactivity disorder. It is a superior treatment for that disorder because of its improved safety. Tomoxetine is effective at relatively low doses and may safely and effectively be administered once per day. In addition, the results from animal studies indicate that tomoxetine selectively inhibits norepinephrine uptake indicating that tomoxetine would be useful in treating depression. Tomoxetine has been administered in single oral doses up to 90 mg to humans. In addition, no serious drug-related adverse effects were observed when tomoxetine was administered to humans at a dosage of 20 or 40 mg b.i.d. for 7 days.
  • Tomoxetine has the chemical name (R)-( ⁇ )-N-methyl-3-(2-methylphenoxy)-3-phenylpropylamine.
  • the mechanism of tomoxetine's activity is attributed to its ability to inhibit norepinephrine reuptake. See Gehlert, et al. Neuroscience Letters 1993, 157, 203-06.
  • Tomoxetine is quite active in that function, and moreover is substantially free of other central nervous system activities at the concentrations or doses at which it effectively inhibits norepinephrine reuptake. Thus, it is quite free of side effects and is properly considered to be a selective drug.
  • Tomoxetine is usually administered as the hydrochloride salt.
  • the effective dose of tomoxetine for ADHD is in the range from about 5 mg/day to about 100 mg/day.
  • the preferred adult dose is in the range from about 10 to about 80 mg/day, and a more highly preferred adult dose is from about 20 to about 60 mg/day.
  • the children's dose of course is smaller, in the range from about 5 to about 70 mg/day, more preferably from about 10 to about 60 mg/day and still more preferably from about 10 to about 50 mg/day.
  • the optimum dose for each patient must be set by the physician in charge of the case, taking into account the patient's size, other medications which the patient requires, severity of the disorder and all of the other circumstances of the patient.
  • tomoxetine Since tomoxetine is readily orally absorbed and requires only once/day administration, there is little or no reason to administer it in any other way than orally. It may be produced in the form of a clean, stable crystal, and thus is easily formulated in the usual oral pharmaceutical forms, such as tablets, capsules, suspensions, and the like. The usual methods of pharmaceutical scientists are applicable. It may usefully be administered, if there is any reason to do so in a particular circumstance, in other pharmaceutical forms, such as injectable solutions, depot injections, suppositories and the like, which are well known to and understood by pharmaceutical scientists. It will substantially always be preferred, however, to administer tomoxetine as a tablet or capsule and such pharmaceutical forms are recommended. (S,S)-hydroxybupropion
  • the present invention contemplates the use of norepinephrine reuptake inhibitors in general, including nortriptyline, maprotiline, protriptyline, trimipramine, venlafaxine, amitriptyline, amoxapine, doxepin, nefazodone, and lamotrigine.
  • Dopamine reuptake inhibitors can be identified using the rat corpus striatum assay described in US Patent Application 20040180857, which is hereby incorporated by reference.
  • a dose of a dopamine reuptake inhibitor or a pharmaceutically acceptable salt thereof suitable for administration to a human will be in the range of 0.01 to 50 mg per kilogram body weight of the recipient per day, preferably in the range of 0.1 to 3 mg per kilogram body weight per day. Unless otherwise stated all weights of active ingredients are calculated in terms of drug per se.
  • the desired dose is presented as two, three, four, five or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing about 5 to 50 mg.
  • Sedative Agent GABA Receptor Modulating Agents
  • GABA ⁇ -Aminobutyric acid
  • Receptors for GABA have traditionally been divided into GABA A and GABA B receptor subtypes.
  • the GABA A receptor is the more prominent GABA receptor subtype, and is a ligand-gated chloride ion channel that is opened after release of GABA from presynaptic neurons.
  • the GABA B receptor is a member of the G protein-coupled receptor family coupled both to biochemical pathways and to regulation of ion channels. See Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, N.Y., 9 th Edition, (1996) and Kerr, D. I. B. and Ong, J. Pharmac. Ther. 1995, 67, 187-246.
  • a dose of the GABA-receptor modulating agent or a pharmaceutically acceptable salt thereof suitable for administration to a human will be in the range of 0.01 to 50 mg per kilogram body weight of the recipient per day, preferably in the range of 0.1 to 3 mg per kilogram body weight per day. Unless otherwise stated all weights of active ingredients are calculated in terms of drug per se.
  • the desired dose is presented as two, three, four, five or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing about 5 to 50 mg.
  • the affinity of a compound to bind to a GABA receptor can be measured using procedures known in the art.
  • assay kits for determining GABA-receptor binding affinity can be purchased from MDS Pharma Services.
  • procedures to determine GABA-receptor binding affinity see Enna, S. J.; Snyder, S. H. Mol. Pharmacol. 1976, 13, 442; C. Martini et al. J. Neurochem. 1983, 41, 1183; Lewin, A. H. et al. Mol. Pharmacol. 1989, 35, 189; Schwartz, R. D.; Mindlin, M. C. J Pharmacol. Exp. Ther. 1988, 244, 963; Facklam, M.; Bowery, N. G. Br. J.
  • the affinity of a compound at GABA A -receptor subtypes can be measured by competition for [ 3 H]flumazenil (85 Ci/mmol; Amersham) binding to SF9 cells expressing rat receptors of composition ⁇ 1 ⁇ 3 ⁇ 2, ⁇ 2 ⁇ 3 ⁇ 2, ⁇ 3 ⁇ 3 ⁇ 2 and ⁇ 5 ⁇ 3 ⁇ 2.
  • GABA analogs with pharmaceutical activity have been synthesized and described in U.S. Pat. Nos. 4,024,175; 5,563,175; 6,020,370; 6,028,214; 6,103,932; and 6,117,906; and International Patent Applications WO 92/09560, WO 93/23383, WO 97/29101, WO 97/33858, WO 97/33859, WO 98/17627, WO 99/08671, WO 99/21824, WO 99/31057, WO 99/31074, WO 99/31075, WO 99/61424, WO 00/15611, WO 00/31020, and WO 00/50027, each of which is hereby incorporated by reference.
  • GABA B receptor agonists are disclosed in EP 0356128; EP 0181833, EP 0399949, EP 0463969
  • Zopiclone is the first of a chemically distinct class of hypnotic and anxiolytic compounds that offers a psychotherapeutic profile of efficacy and side effects similar to the benzodiazepines. This class of compounds, the cyclopyrrolones, appears to cause less residual sedation and slowing of reaction times than the benzodiazepines, and it offers the promise of an improved therapeutic index over benzodiazepines.
  • zopiclone The pharmacology of zopiclone has been shown both preclinically and clinically to be characterized by five distinct elements. It is predominantly a hypnotic-sedative, offering significant activity on first treatment in the absence of respiratory or cardiac depression. Additionally, zopiclone is an anticonvulsant, and it further exhibits muscle relaxant, anti-aggressive, and anxiolytic activities.
  • the compound binds to the benzodiazepine receptor complex, or to a site linked closely to this receptor complex.
  • benzodiazepine receptor complex See Goa, K. L. and Heel, R. C. Drugs, 32:48-65, (1986); Brun, J. P., Pharmacology, Biochemistry and Behavior, 29:831-832, (1988); Julou, L. et al., Pharmacology, Biochemistry and Behavior, 23:653-659, (1985); Verma, A. and Snyder S. H., Annu. Rev. Pharmacol. Toxicol, 29:307-322, (1989).
  • the central benzodiazepine receptor is a macromolecular complex that includes a site for the binding of gamma-aminobutyric acid (GABA), the inhibitory neurotransmitter, suggesting that benzodiazepines and chemically unrelated agonists including zopiclone may exert their effects by facilitating the synaptic effects of GABA. While it interacts with the benzodiazepine receptor, zopiclone apparently has minimal effects on memory, no interaction with alcohol, and little or no abuse or dependence potential.
  • GABA gamma-aminobutyric acid
  • the pharmacologic activity of zopiclone is predominantly that of a sedative or hypnotic, particularly at low doses. Accordingly, the drug may improve sleep in adults and geriatric patients with several types of sleep disorders, and situational, transient, primary, and secondary insomnia. Following a bedtime dose of zopiclone, there is minimal impairment of psychomotor skills and mental acuity the following morning. The drug is well absorbed from the stomach, and it is not highly bound to plasma proteins.
  • racemic mixture of zopiclone is presently used outside the United States primarily as an hypnotic, improving sleep patterns in chronic insomniacs and providing sleep induction before surgical procedures in hospitalized patients.
  • Insomnia is characterized by difficulty in sleeping or disturbed sleep patterns. Insomnia may be of a primary nature with little apparent relationship to immediate somatic or psychic events, or secondary to some acquired pain, anxiety or depression. Where possible, treatment is directed to the underlying cause of the condition; hypnotic medication such as zopiclone is generally reserved for insomnia of emotional disturbances and for refractory cases due to more common causes. In these cases, zopiclone provides sedative-hypnotic effects from the first day of treatment, an activity that is maintained following subsequent doses over long treatment periods. There appears to be no diminution or potentiation of activity in adult or geriatric patients, and little or no effect on alertness and performance some ten hours following the bedtime dose. (Brun, J. P. Pharmacology, Biochemistry and Behavior 1988, 29, 831-832).
  • racemic mixture of zopiclone may be useful in treating other disorders such as convulsive states like epilepsy.
  • Seizure disorder or epilepsy represents a broad group of central nervous system disorders of function that are characterized by recurrent, sudden, often brief attacks, which may alter consciousness, motor activity, sensory phenomena, and autonomic responses, and which may prompt inappropriate behavior.
  • Recurrent seizure patterns of either an idiopathic or symptomatic etiology are termed epilepsy.
  • the most common form of these recurrent but transient episodes are convulsive seizures, which may include loss of consciousness, motor function and control, and which may produce tonic or clonic jerking of the extremities.
  • benzodiazepine receptors which can be located both within the central nervous system and peripherally (e.g., in the endocrine system), are comprised of macromolecular complexes characterized by sites for binding of the benzodiazepines, GABA, and zopiclone.
  • the benzodiazepine receptor complex is further associated with, and interacts with, a transmembrane channel for chloride ion transport.
  • zopiclone The effect of zopiclone's interaction with the benzodiazepine receptor/GABA receptor/chloride channel complex is to cause GABA to inhibit cerebral neuronal discharge, presumably by increasing membrane conductance of chloride ion, thus stabilizing membrane potentials and dampening excitatory input. (See Meldrum, B. S., Brit. J. Clin. Pharm., 27 (suppl. 1): 3S-11S, (1989)). It is believed that through mediation of this process zopiclone may be useful in treating epilepsy and a number of other conditions in which GABA is believed to exert a physiologic role.
  • racemic mixture of zopiclone may be useful in the treatment of the above-described disorders, it has a low therapeutic index and also causes adverse effects. These adverse effects include, but are not limited to, the development of a bitter taste due to the salivary secretion of the drug, dry mouth, drowsiness, morning tiredness, headache, dizziness, impairment of psychomotor skills and related effects.
  • Eszopiclone (or (+)-Zopiclone or (S)-zopiclone) is a potent drug useful for the treatment of sleep disorders, convulsive disorders, and disorders that are affected by the binding of agonists to central nervous system or peripheral benzodiazepine receptors.
  • Administration of isomerically pure or substantially isomerically pure (e.g., 90%, 95%, or 99% isomeric purity) (+)-zopiclone is generally preferred because this isomer possesses potent activity in treating sleep disorders while avoiding adverse effects including but not limited to drowsiness, next day effects, such as tiredness in the morning, inability to concentrate and headache.
  • Eszopiclone is a cyclopyrrolone that has the chemical name (+) 6-(5-chloro-pyri-2-dyl)-5-(4-methylpiperazin-1-yl) carbonyloxy-7-oxo-6,7-dihydro-5H-pyrrolo[3-4b]pyrazin or (+) 6-(5-chloro-2-pyridinyl)-6,7-dihydro-7-oxo-5H-pyrrolo[3,4b]pyrazin-5-yl 4-methylpiperazine-1-carboxylate.
  • the chemical structure of zopiclone is shown below:
  • Eszopiclone is an optical isomer, the (+)-isomer, of the compound zopiclone, which is described in U.S. Pat. Nos. 6,319,926 and 6,444,673, and in Goa and Heel, [Drugs, 32:48-65 (1986)] and in U.S. Pat. Nos. 3,862,149 and 4,220,646.
  • This isomer which will hereinafter be referred to as eszopiclone, includes optically pure and the substantially optically pure (e.g., 90%, 95% or 99% optical purity) (+)-zopiclone isomer.
  • Racemic zopiclone is commercially available and can be made using various methods, such as those disclosed in U.S. Pat. Nos. 3,862,149 and 4,220,646.
  • Eszopiclone may be prepared from racemic zopiclone using standard methods, such as chiral-phase chromatography, resolution of an optically active salt, stereoselective enzymatic catalysis by means of an appropriate microorganism, or asymmetric synthesis.
  • U.S. Pat. No. 6,319,926 discloses methods for making eszopiclone, including resolution from racemic zopiclone by means of an optically active acid, such as D(+)—O,O′-dibenzoyltartaric acid.
  • Another method for making eszopiclone is by synthesis from racemic zopiclone (or (RS)-zopiclone) by chemical resolution via the D-malate salt as shown in the following synthesis schematic.
  • (RS)-Zopiclone and D-malic acid are dissolved in a mixture of acetone and methanol to form (S)-zopiclone D-malate and (R)-zopiclone D-malate.
  • the two diastereomeric salts are resolved in-situ by selective crystallization, filtration and rinsing to produce highly (S)-enriched zopiclone D-malate salt.
  • the majority of (R)-zopiclone D-malate remains in the mother liquors.
  • this stage of the process may also include cooling the reaction mixture during the isolation step to a temperature in the inclusive range of about 10° C. to 15° C., and washing or rinsing the wet cake obtained after filtration with cold solvent, such as cold methanol.
  • the resulting (S)-zopiclone D-malate salt is converted to optically pure eszopiclone free base by treatment with aqueous potassium carbonate and ethyl acetate, followed by phase separation and crystallization.
  • additional enantiomeric enrichment typically 1 to 4%) can be achieved by crystallization from ethyl acetate of low water content.
  • the water content can be controlled, e.g., by azeotropic distillation, and incorporating an in-process control of water content into the crystallization process can further improve the robustness of enantiomeric purity.
  • the water level during this step is 2% or less, more preferably 1% or less, and most preferably 0.6% or less.
  • the resulting optically pure eszopiclone free base can then be milled to a desired size for use as an active ingredient in a pharmaceutical composition according to or for use in methods of the present invention
  • Eszopiclone possess potent activity in treating sleep disorders such as insomnia
  • Eszopiclone also possess potent activity in treating sleep disorders while avoiding the usual adverse effects including but not limited to drowsiness, next day effects tiredness in the morning, inability to concentrate and headache, which are associated with the administration of the racemic mixture of zopiclone.
  • Eszopiclone also possess potent activity in treating convulsive disorders such as epilepsy while avoiding the adverse effects which are associated with the administration of the racemic mixture of zopiclone.
  • compositions containing optically pure eszopiclone are useful in treating disorders that are affected by the binding of agonists to central nervous system and peripheral benzodiazepine receptors.
  • disorders include but are not limited to aggressive behavior, muscle tension, behavioral disorders, depression, schizophrenia, and disorders associated with abnormal plasma hormone levels such as endocrine disorders.
  • compositions are useful in treating disorders that are affected by the binding of agonists to central nervous system and peripheral benzodiazepine receptors.
  • the size of a prophylactic or therapeutic dose of eszopiclone in the acute or chronic management of disease will vary with the severity of the condition to be treated and the route of administration.
  • the dose, and perhaps the dose frequency, will also vary according to the age, body weight, and response of the individual patient.
  • the total daily dose ranges, for the conditions described herein is from about 0.25 mg to about 15 mg.
  • a daily dose range should be between about 0.5 mg to about 10 mg.
  • a daily dose range should be between about 1.0 mg to about 5.0 mg.
  • the therapy may be initiated at a lower dose, perhaps about 0.5 mg to about 3 mg and increased up to about 5 mg or higher depending-on the patient's global response. It is further recommended that children and patients over 65 years, and those with impaired renal or hepatic function, initially receive low doses, and that they be titrated based on global response and blood level. It may be necessary to use dosages outside these ranges in some cases.
  • a suitable dosage range for use is from about 0.25 mg to about 15.0 mg with, in the usual case, the lower doses serving more common insomnia, and the higher doses, presented in divided dosing, reserved for control of psychiatric disorders.
  • a dose range of between about 0.5 mg to about 10 mg is given as a once daily administration or in divided doses if required; most preferably, a dose range of from about 1.0 mg to about 5 mg is given, either as a once daily administration or in divided doses if required.
  • Patients may be upward titrated from below to within this dose range to a satisfactory control of symptoms as appropriate.
  • Zolpidem is a hypnotic agent that is known to induce or maintain sleep.
  • Zolpidem is an imidazopyridine having IUPAC chemical nomenclature N,N,6-trimethyl-2-(4-methylphenyl)-imidazo[1,2-s]pyridine-3-acetamide.
  • the structure of zolpidem is presented below.
  • zolpidem free base was disclosed generically in EP 50563 of Synthelabo.
  • Zolpidem tartrate was subsequently disclosed in EP 251859 (U.S. Pat. No. 4,794,185). More recently, zolpidem has been suggested as useful in treating Parkinson's disease, parkinsonian symptoms, obsessive-compulsive disorder and certain forms of dementia in U.S. Pat. No. 5,891,891.
  • Zolpidem has been marketed as an immediate release tablet for oral application under the trade marks AMBIEN® and STILNOX®.
  • zolpidem is present as a salt with L(+)tartaric acid wherein the molar ratio of zolpidem to tartaric acid is 2:1.
  • This salt is conventionally called zolpidem hemitartrate but a more correct denomination thereof, which will be used hereinafter, is zolpidem tartrate.
  • zolpidem tartrate is characterized as a white or almost white crystalline powder, hygroscopic, slightly soluble in water, sparingly soluble in methanol, and practically insoluble in methylene chloride.
  • Commercially available zolpidem tablets are conventional film coated tablets for immediate release of the active substance after ingestion and they contain 5 or 10 mg of zolpidem tartrate.
  • the inactive ingredients are: lactose, microcrystalline cellulose, sodium starch glycolate, hydroxypropylmethylcellulose and magnesium stearate.
  • the film coating layer consists of hydroxypropylmethylcellulose, polyethylene glycol and colorants.
  • Zolpidem is generally administrated orally by means of a tablet or other solid dosage form. Indeed pharmacokinetic and pharmacodynamic data show that zolpidem has both a rapid absorption and onset of hypnotic action. Its bioavailability is 70% following oral administration and demonstrates linear kinetics in the therapeutical dose range, which lies between 5 and 10 mg in conventional forms, peak plasma concentration is reached at between 0.5 and 3 hours, the elimination half-life is short, with a mean of 2.4 hours and a duration of action of up to 6 hours. Generally, the dosage of zolpidem is between 1 and 50 mg.
  • Zaleplon (Wyeth-Ayerst), also known as “Sonata”, is a nonbenzodiazipine recently approved by the FDA as sedative-hypnotic (see U.S. Pat. No. 4,626,538).
  • Zaleplon is a pyrazolopyrimidine that has the chemical name N-[3-(3-cyanopyrazolo[1,5-a]pyrimidin-7-yl)phenyl]-N-ethylacetamide.
  • Zaleplon is a white powder that has very low solubility in water and limited solubility in alcohol or propylene glycol. The structure of Zaleplon is given below.
  • Zaleplon binds to the gamma-aminobutyric acid benzodiazepine (GABA-BZ) receptor complex. Binding studies have revealed that Zaleplon binds selectively to the brain omega-1 receptor located on alpha subunit of the GABA A /chloride ion channel receptor complex. This interaction modulates the binding of t-butylbicyclophosphorothionate binding. Importantly, the pharmacological properties of benzodiazepines, e.g. sedative, anxiolytic, muscle relaxant, and anticonvulsive effects in animals, are linked to modulation of the GABA-BZ receptor chloride channel complex.
  • GABA-BZ gamma-aminobutyric acid benzodiazepine
  • the size of a prophylactic or therapeutic dose of Zaleplon in the acute or chronic management of disease will vary with the severity of the condition to be treated and the route of administration.
  • the dose, and perhaps the dose frequency, will also vary according to the age, body weight, and response of the individual patient.
  • the total daily dose ranges, for the conditions described herein is from about 1 mg to about 50 mg.
  • a daily dose range should be between about 1 mg to about 25 mg.
  • a daily dose range should be between about 5 mg to about 20 mg.
  • the daily dose range should be about 5, 10, 15, or 20 mg.
  • the therapy may be initiated at a lower dose, perhaps about 2 mg to about 5 mg and increased up to about 10 mg or higher depending-on the patient's global response.
  • Zaleplon should be taken just prior to bedtime or immediately if a patient the patient has already gone to bed is having difficulty falling asleep.
  • the dose of Zaleplon should be adjusted in accord with diet or special needs of the patient.
  • the dosage of Zaleplon should be approximately 5 mg for elderly or debilitated patients whom are likely to be particularly sensitive to hypnotic medications.
  • patients suffering from mild to moderate hepatic impairment should be administered only a 5 mg dose because systemic removal of drug is reduced in such patients.
  • One aspect of the present invention relates to combination therapy.
  • This type of therapy is advantageous because the co-administration of active ingredients achieves a therapeutic effect that is greater than the therapeutic effect achieved by administration of only a single therapeutic agent.
  • the co-administration of two or more therapeutic agents achieves a synergistic effect, i.e., a therapeutic affect that is greater than the sum of the therapeutic effects of the individual components of the combination.
  • the co-administration of two or more therapeutic agents achieves an augmentation effect.
  • the active ingredients that comprise a combination therapy may be administered together via a single dosage form or by separate administration of each active agent.
  • the first and second therapeutic agents are administered in a single dosage form.
  • the agents may be formulated into a single tablet, pill, capsule, or solution for parenteral administration and the like.
  • the first therapeutic agent and the second therapeutic agents may be administered as separate compositions, e.g., as separate tablets or solutions.
  • the first active agent may be administered at the same time as the second active agent or the first active agent may be administered intermittently with the second active agent.
  • the length of time between administration of the first and second therapeutic agent may be adjusted to achieve the desired therapeutic effect.
  • the second therapeutic agent may be administered only a few minutes (e.g., 1, 2, 5, 10, 30, or 60 min) after administration of the first therapeutic agent.
  • the second therapeutic agent may be administered several hours (e.g., 2, 4, 6, 10, 12, 24, or 36 hr) after administration of the first therapeutic agent.
  • the second therapeutic agent may be administered at 2 hours and then again at 10 hours following administration of the first therapeutic agent.
  • the therapeutic effects of each active ingredient overlap for at least a portion of the duration of each therapeutic agent so that the overall therapeutic effect of the combination therapy is attributable in part to the combined or synergistic effects of the combination therapy.
  • the dosage of the active agents will generally be dependent upon a number of factors including pharmacodynamic characteristics of each agent of the combination, mode and route of administration of active agent(s), the health of the patient being treated, the extent of treatment desired, the nature and kind of concurrent therapy, if any, and the frequency of treatment and the nature of the effect desired.
  • dosage ranges of the active agents often range from about 0.001 to about 250 mg/kg body weight per day. For example, for a normal adult having a body weight of about 70 kg, a dosage in the range of from about 0.1 to about 25 mg/kg body weight is typically preferred. However, some variability in this general dosage range may be required depending upon the age and weight of the subject being treated, the intended route of administration, the particular agent being administered and the like.
  • the pharmaceutical combination may be advantageous for the pharmaceutical combination to have a relatively large amount of the first component compared to the second component.
  • the ratio of the first active agent to second active agent is 30:1, 20:1, 15:1, 10:1, 9:1, 8:1, 7:1, 6:1, or 5:1.
  • the ratio of the first active agent to the second active agent is 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, or 1:4.
  • it may be advantageous for the pharmaceutical combination to have a relatively large amount of the second component compared to the first component.
  • the ratio of the second active agent to the first active agent is 30:1, 20:1, 15:1, 10:1, 9:1, 8:1, 7:1, 6:1, or 5:1.
  • a composition comprising any of the above-identified combinations of first therapeutic agent and second therapeutic agent may be administered in divided doses 1, 2, 3, 4, 5, 6, or more times per day or in a form that will provide a rate of release effective to attain the desired results.
  • the dosage form contains both the first and second active agents.
  • the dosage form only has to be administered one time per day and the dosage form contains both the first and second active agents.
  • a formulation intended for oral administration to humans may contain from 0.1 mg to 5 g of the first therapeutic agent and 0.1 mg to 5 g of the second therapeutic agent, both of which are compounded with an appropriate and convenient amount of carrier material varying from about 5 to about 95 percent of the total composition.
  • Unit dosages will generally contain between from about 0.5 mg to about 1500 mg of the first therapeutic agent and 0.5 mg to about 1500 mg of the second therapeutic agent.
  • the dosage comprises 0.5 mg, 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg, or 1000 mg, etc., up to 1500 mg of the first therapeutic agent.
  • the dosage comprises 0.5 mg, 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg, or 1000 mg, etc., up to 1500 mg of the second therapeutic agent.
  • the optimal ratios of the first and second therapeutic agent can be determined by standard assays known in the art.
  • the phenyl-p-benzoquinone test may be used to establish analgesic effectiveness.
  • the phenyl-p-benzoquinone induced writhing test in mice H. Blumberg et al., 1965, Proc. Soc. Exp. Med. 118:763-766) and known modifications thereof is a standard procedure which may be used for detecting and comparing the analgesic activity of different classes of analgesic drugs with a good correlation with human analgesic activity.
  • Data for the mouse can be translated to other species where the orally effective analgesic dose of the individual compounds are known or can be estimated.
  • the method consists of reading the percent ED 50 dose for each dose ratio on the best fit regression analysis curve from the mouse isobologram, multiplying each component by its effective species dose, and then forming the ratio of the amount of COX-2 inhibitor and opioid analgesic. This basic correlation for analgesic properties enables estimation of the range of human effectiveness (E. W. Pelikan, 1959, The Pharmacologist 1:73).
  • an equieffective dose substitution model and a curvilinear regression analysis utilizing all the data for the individual compounds and various dose ratios for the combinations can be used to establish the existence of unexpectedly enhanced analgesic activity of combinations of active agents, i.e., the resulting activity is greater than the activity expected from the sum of the activities of the individual components.
  • the toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD 50 /ED 50 .
  • Compounds which exhibit large therapeutic indices are preferred.
  • the data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
  • the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
  • the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
  • the therapeutically effective dose can be estimated initially from cell culture assays.
  • a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC 50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of RT production from infected cells compared to untreated control as determined in cell culture. Such information can be used to more accurately determine useful doses in humans.
  • Levels in plasma may be measured, for example, by high performance liquid chromatography (HPLC).
  • synergistic refers to a combination which is more effective than the additive effects of any two or more single agents.
  • a synergistic effect permits the effective treatment of a disease using lower amounts (doses) of either individual therapy. The lower doses result in lower toxicity without reduced efficacy.
  • a synergistic effect can result in improved efficacy, e.g., improved antiviral activity.
  • synergy may result in an improved avoidance or reduction of disease as compared to any single therapy.
  • Combination therapy can allow for the use of lower doses of the first therapeutic or the second therapeutic agent (referred to as “apparent one-way synergy” herein), or lower doses F both therapeutic agents (referred to as “two-way synergy” herein) than would normally be required when either drug is used alone.
  • the synergism exhibited between the second therapeutic agent and the first therapeutic agent is such that the dosage of the first therapeutic agent would be sub-therapeutic if administered without the dosage of the second therapeutic agent.
  • the synergism exhibited between the second therapeutic agent and the first therapeutic agent is such that the dosage of the second therapeutic agent would be sub-therapeutic if administered without the dosage of the first therapeutic agent.
  • augmentation refers to combination where one of the compounds increases or enhances therapeutic effects of another compound or compounds administered to a patient. In some instances, augmentation can result in improving the efficacy, tolerability, or safety, or any combination thereof, of a particular therapy.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective dose of a first therapeutic agent together with a dose of a second therapeutic agent effective to augment the therapeutic effect of the first therapeutic agent.
  • the present invention relates to methods of augmenting the therapeutic effect in a patient of a first therapeutic agent by administering the second therapeutic agent to the patient.
  • the present invention relates to a pharmaceutical composition comprising an therapeutically effective dose of a second therapeutic agent together with a dose of a first therapeutic agent effective to augment the therapeutic effect of the second therapeutic agent.
  • the present invention relates to methods of augmenting the therapeutic effect in a patient of a second therapeutic agent by administering the first therapeutic agent to the patient.
  • the invention is directed in part to synergistic combinations of the first therapeutic agent in an amount sufficient to render a therapeutic effect together with a second therapeutic agent.
  • a therapeutic effect is attained which is at least about 2 (or at least about 4, 6, 8, or 10) times greater than that obtained with the dose of the first therapeutic agent alone.
  • the synergistic combination provides a therapeutic effect which is up to about 20, 30 or 40 times greater than that obtained with the dose of first therapeutic agent alone.
  • the synergistic combinations display what is referred to herein as an “apparent one-way synergy”, meaning that the dose of second therapeutic agent synergistically potentiates the effect of the first therapeutic agent, but the dose of first therapeutic agent does not appear to significantly potentiate the effect of the second therapeutic agent.
  • the combination of active agents exhibit two-way synergism, meaning that the second therapeutic agent potentiates the effect of the first therapeutic agent, and the first therapeutic agent potentiates the effect of the second therapeutic agent.
  • other embodiments of the invention relate to combinations of a second therapeutic agent and a first therapeutic agent where the dose of each drug is reduced due to the synergism between the drugs, and the therapeutic effect derived from the combination of drugs in reduced doses is enhanced.
  • the two-way synergism is not always readily apparent in actual dosages due to the potency ratio of the first therapeutic agent to the second therapeutic agent. For instance, two-way synergism can be difficult to detect when one therapeutic agent displays much greater therapeutic potency relative to the other therapeutic agent.
  • the synergistic effects of combination therapy may be evaluated by biological activity assays.
  • the therapeutic agents are be mixed at molar ratios designed to give approximately equipotent therapeutic effects based on the EC 90 values. Then, three different molar ratios are used for each combination to allow for variability in the estimates of relative potency. These molar ratios are maintained throughout the dilution series.
  • the corresponding monotherapies are also evaluated in parallel to the combination treatments using the standard primary assay format. A comparison of the therapeutic effect of the combination treatment to the therapeutic effect of the monotherapy gives a measure of the synergistic effect. Further details on the design of combination analyses can be found in B E Korba (1996) Antiviral Res. 29:49.
  • Analysis of synergism, additivity, or antagonism can be determined by analysis of the aforementioned data using the CalcuSynTM program (Biosoft, Inc.). This program evaluates drug interactions by use of the widely accepted method of Chou and Talalay combined with a statistically evaluation using the Monte Carlo statistical package.
  • the data are displayed in several different formats including median-effect and dose-effects plots, isobolograms, and combination index [CI] plots with standard deviations. For the latter analysis, a CI greater than 1.0 indicates antagonism and a CI less than 1.0 indicates synergism.
  • compositions of the invention present the opportunity for obtaining relief from moderate to severe cases of disease. Due to the synergistic and/or additive effects provided by the inventive combination of the first and second therapeutic agent, it may be possible to use reduced dosages of each of therapeutic agent. By using lesser amounts of other or both drugs, the side effects associated with each may be reduced in number and degree. Moreover, the inventive combination avoids side effects to which some patients are particularly sensitive.
  • Another aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a norepinephrine reuptake inhibitor.
  • Another aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned method, wherein said sleep abnormality is difficulty falling asleep, difficulty staying asleep, or waking up too early.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said insomnia is transient insomnia
  • the present invention relates to the aforementioned method, wherein said insomnia is short-term insomnia.
  • the present invention relates to the aforementioned method, wherein said insomnia is chronic insomnia
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor.
  • Another aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a dopamine reuptake inhibitor.
  • Another aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a dopamine reuptake inhibitor
  • said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or ( ⁇ )-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a dopamine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a dopamine reuptake inhibitor, said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or ( ⁇ )-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or ( ⁇ )-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • a dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or ( ⁇ )-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said sleep abnormality is difficulty falling asleep, difficulty staying asleep, or waking up too early.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or ( ⁇ )-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • a dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propano
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or ( ⁇ )-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said insomnia is transient insomnia
  • the present invention relates to the aforementioned method, wherein said insomnia is short-term insomnia.
  • the present invention relates to the aforementioned method, wherein said insomnia is chronic insomnia
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • a dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propanoyl-3 ⁇ -(4-
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or ( ⁇ )-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • a dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2 ⁇ -propano
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or ( ⁇ )-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said depression is a major depressive disorder.
  • Another aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a 5-HT 2A modulator.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein the 5-HT 2A modulator is a 5-HT 2A antagonist.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein the 5-HT 2A modulator is a 5-HT 2A inverse agonist.
  • Another aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a 5-HT 2A modulator, wherein said 5 HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, or azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT 2A modulator, wherein said 5-HT 2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, or azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a 5-HT 2A modulator; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein the 5-HT 2A modulator is a 5-HT 2A antagonist.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein the 5-HT 2A modulator is a 5-HT 2A inverse agonist.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a 5-HT 2A modulator, wherein said 5 HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, or azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT 2A modulator, wherein said 5 HT2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, or azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT 2A modulator.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A antagonist.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT 2A modulator, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT 2A modulator; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A antagonist.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT 2A modulator, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said sleep abnormality is difficulty falling asleep, difficulty staying asleep, or waking up too early.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT 2A modulator.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A antagonist.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT 2A modulator, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT 2A modulator; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A antagonist.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT 2A modulator, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said insomnia is transient insomnia
  • the present invention relates to the aforementioned method, wherein said insomnia is short-term insomnia.
  • the present invention relates to the aforementioned method, wherein said insomnia is chronic insomnia
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT 2A modulator.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A antagonist.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT 2A modulator, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT 2A modulator; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A antagonist.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is a 5-HT 2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT 2A modulator, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the 5-HT 2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein said depression is a major depressive disorder.
  • Another aspect of the present invention relates to a method for augmentation of antidepressant therapy in a patient comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method for eliciting a dose sparing effect in a patient undergoing treatment with an antidepressant, comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method for reducing depression relapse in a patient who received antidepressant treatment, comprising administering to the patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned method, wherein the eszopiclone is administered chronically or long-term.
  • Another aspect of the present invention relates to a method for improving the tolerability of antidepressant therapy in a patient suffering from depression, comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned method, wherein the antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the antidepressant is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S) hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the antidepressant is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S) hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the antidepressant is bupropion, venlafaxine, or desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or ( ⁇ )-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned method, wherein the antidepressant is a dopamine reuptake inhibitor or an atypical antidepressant.
  • the present invention relates to a pharmaceutical composition, comprising a sedative agent and an antidepressant.
  • the antidepressant is a serotonin reuptake inhibitor, including without limitation selective serotonin reuptake inhibitors, a norepinephrine reuptake inhibitor, including without limitation a selective norepinephrine reuptake inhibitor, a dopamine reuptake inhibitor, or an atypical antidepressant.
  • the antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a serotonin reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 150 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 75 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is racemic zo
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said sedative agent is eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said serotonin reuptake inhibitor is fluoxetine, fluvoxamine, milnacipran, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said serotonin reuptake inhibitor is fluoxetine, fluvoxamine, milnacipran, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a serotonin reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof and fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a norepinephrine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 150 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 75 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a norepinephrine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is racemic zopiclone, eszopiclone, indiplon,
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a norepinephrine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof
  • said norepinephrine reuptake inhibitor is desipramine, maprotiline,
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a norepinephrine reuptake inhibitor; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a 5-HT 2 receptor modulator.
  • the 5-HT 2 receptor modulator is a 5-HT 2A receptor antagonist or a 5-HT 2A inverse agonist.
  • the pharmaceutical composition comprises a sedative agent and a 5-HT 2 receptor modulator, wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said 5-HT 2 receptor modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay
  • said 5-HT 2 receptor modulator is MDL 100907, SR 46349B, YM 992, fananserin
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 150 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 75 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a 5-HT 2A modulator; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolp
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a 5-HT 2A modulator; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising eszopiclone and a 5-HT 2A modulator; wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a 5-HT 2A inverse agonist.
  • the 5-HT 2A inverse agonist is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a dopamine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay
  • said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 150 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 75 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a dopamine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a dopamine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof
  • said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising eszopiclone and bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 150 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 75 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said serotonin reuptake inhibitor is fluoxetine, fluvoxamine, milnacipran, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said serotonin reuptake inhibitor is fluoxetine, fluvoxamine, milnacipran, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 150 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 75 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is racemic zopiclone, e
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 150 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 75 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is racemic zopiclone, eszo
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof
  • said 5-HT 2A modulator is MDL 100907,
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them, a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier; wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay
  • said dopamine reuptake inhibitor is amineptine, bupropion, GBR-
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 150 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 75 nM.
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said K i is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, za
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof
  • said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2
  • the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of eszopiclone and bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them, and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative and a therapeutically effective amount of an antidepressant; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said antidepressant is a serotonin reuptake inhibitor, norepinephrine reuptake inhibitor, 5HT 2A modulator, or dopamine reuptake inhibitor.
  • the present invention relates to the aforementioned method, wherein said sedative is racemic zopiclone, (S)-zopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, or hydrate of any one of them; and said antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, MDL 100907, SR 46349B, YM 992, fananserin, o
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutical
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate,
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal; and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT 2A modulator; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT 2A modulator; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-cry
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT 2A modulator; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clath
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone and a therapeutically effective amount of a 5-HT 2A modulator; wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is racemic
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay;
  • said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine,
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate,
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay
  • said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; a therapeutically effective amount of a 5-HT 2A modulator; and at least one pharmaceutically acceptable carrier; wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned methods, wherein said sleep disturbance is difficulty falling asleep, difficulty staying asleep, or waking up too early.
  • Another aspect of the present invention relates generally to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative and a therapeutically effective amount of an antidepressant; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said antidepressant is a serotonin reuptake inhibitor, norepinephrine reuptake inhibitor, 5HT 2A modulator, or dopamine reuptake inhibitor.
  • the present invention relates to the aforementioned method, wherein said sedative is racemic zopiclone, (S)-zopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, or hydrate of any one of them; and said antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, MDL 100907, SR 46349B, YM 992, fananserin, o
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt,
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal; and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT 2A modulator; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT 2A modulator; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT 2A modulator; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone and a therapeutically effective amount of a 5-HT 2A modulator; wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is racemic zopic
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay;
  • said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate,
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay;
  • said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph,
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solv
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; a therapeutically effective amount of a 5-HT 2A modulator; and at least one pharmaceutically acceptable carrier; wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and at least one pharmaceutically acceptable carrier.
  • the present invention relates to the aforementioned methods, wherein said insomnia is transient insomnia.
  • the present invention relates to the aforementioned methods, wherein said insomnia is short-term insomnia.
  • the present invention relates to the aforementioned methods, wherein said insomnia is chronic insomnia
  • Another aspect of the present invention relates generally to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative and a therapeutically effective amount of an antidepressant; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said antidepressant is a serotonin reuptake inhibitor, norepinephrine reuptake inhibitor, 5HT 2A modulator, or dopamine reuptake inhibitor.
  • the present invention relates to the aforementioned method, wherein said sedative is racemic zopiclone, (S)-zopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, or hydrate of any one of them; and said antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, MDL 100907, SR 46349B, YM 992, fananserin, o
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt,
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal; and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT 2A modulator; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT 2A modulator; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT 2A modulator; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone and a therapeutically effective amount of a 5-HT 2A modulator; wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is racemic zopic
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay;
  • said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate,
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay
  • said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph,
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT 2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solv
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; a therapeutically effective amount of a 5-HT 2A modulator; and at least one pharmaceutically acceptable carrier; wherein said 5-HT 2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier;
  • said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2 ⁇ -propanoyl-3 ⁇ -(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of augmentation of antidepressant therapy in a patient, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay.
  • Another aspect of the present invention relates to a method of augmentation of antidepressant therapy in a patient, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • a sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method for augmentation of antidepressant therapy in a patient comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method for eliciting a dose sparing effect in a patient undergoing treatment with an antidepressant, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay.
  • Another aspect of the present invention relates to a method for eliciting a dose sparing effect in a patient undergoing treatment with an antidepressant, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent;
  • said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method for eliciting a dose sparing effect in a patient undergoing treatment with an antidepressant, comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method for reducing depression relapse in a patient who received antidepressant treatment, comprising the step of administering to a patient in need thereof, receiving antidepressant treatment, a therapeutically effective amount of a sedative agent; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay.
  • Another aspect of the present invention relates to a method for reducing depression relapse in a patient who received antidepressant treatment, comprising the step of administering to a patient in need thereof, receiving antidepressant treatment, a therapeutically effective amount of a sedative agent; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method for reducing depression relapse in a patient who received antidepressant treatment, comprising administering to the patient in need thereof receiving antidepressant treatment, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned method, wherein the eszopiclone is administered chronically or long-term.
  • Another aspect of the present invention relates to a method for improving the efficacy of antidepressant therapy in a patient suffering from depression, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a K i less than about 300 nM in a GABA-receptor binding assay.
  • Another aspect of the present invention relates to a method for improving the efficacy of antidepressant therapy in a patient suffering from depression, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method for improving the tolerability of antidepressant therapy in a patient suffering from depression, comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method for improving the tolerability of antidepressant therapy in a patient suffering from depression, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method for improving the tolerability of antidepressant therapy in a patient suffering from depression, comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • the present invention relates to the aforementioned methods, wherein the antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned methods, wherein the antidepressant is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the antidepressant is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • the present invention relates to the aforementioned methods, wherein the antidepressant is a dopamine reuptake inhibitor or an atypical antidepressant.
  • the combination therapy may be formulated in an immediate release dosage form or a sustained release dosage form.
  • the present invention relates to immediate release dosage forms of the first and second therapeutic agents.
  • An immediate release dosage form may be formulated as a tablet or multiparticulate which may be encapsulated.
  • Other immediate release dosage forms known in the art can be employed.
  • the combination of therapeutic agents may be formulated to provide for an increased duration (sustained release) of therapeutic action.
  • the combination therapy can be formulated to delivery the therapeutic agents at the same time or at separate times.
  • the first and second therapeutic agents are administered via an oral solid dosage form that includes a sustained release carrier causing the sustained release of the first therapeutic agent, or both the first therapeutic agent and the second therapeutic agent when the dosage form contacts gastrointestinal fluid.
  • the sustained release dosage form may comprise a plurality of substrates which include the drugs.
  • the substrates may comprise matrix spheroids or may comprise inert pharmaceutically acceptable beads which are coated with the drugs. The coated beads are then preferably overcoated with a sustained release coating comprising the sustained release carrier.
  • the matrix spheroid may include the sustained release carrier in the matrix itself; or the matrix may comprise a normal release matrix containing the drugs, the matrix having a coating applied thereon which comprises the sustained release carrier.
  • the oral solid dosage form comprises a tablet core containing the drugs within a normal release matrix, with the tablet core being coated with a sustained release coating comprising the sustained release carrier.
  • the tablet contains the drugs within a sustained release matrix comprising the sustained release carrier.
  • the tablet contains the first therapeutic agent within a sustained release matrix and the second therapeutic agent coated into the tablet as an immediate release layer.
  • sustained release is defined for purposes of the present invention as the release of the therapeutic agent from the formulation at such a rate that blood (e.g., plasma) concentrations (levels) are maintained within the therapeutic range (above the minimum effective analgesic concentration or “MEAL”) but below toxic levels over a period of time of about 12 hours or longer.
  • blood e.g., plasma
  • concentrations levels
  • MEAL minimum effective analgesic concentration
  • the first and second therapeutic agents can be formulated as a controlled or sustained release oral formulation in any suitable tablet, coated tablet or multiparticulate formulation known to those skilled in the art.
  • the sustained release dosage form may optionally include a sustained released carrier which is incorporated into a matrix along with the active agents, or which is applied as a sustained release coating.
  • the sustained release dosage form may include the first therapeutic agent in sustained release form and second therapeutic agent in the sustained release form or in immediate release form.
  • the first therapeutic agent may be incorporated into the sustained release matrix along with the second therapeutic agent; incorporated into the sustained release coating; incorporated as a separated sustained release layer or immediate release layer; or may be incorporated as a powder, granulation, etc., in a gelatin capsule with the substrates of the present invention.
  • the sustained release dosage form may have the first therapeutic agent in the sustained release form and the second therapeutic agent in the sustained release form or immediate release form.
  • An oral dosage form according to the invention may be provided as, for example, granules, spheroids, beads, pellets (hereinafter collectively referred to as “multiparticulates”) and/or particles.
  • An amount of the multiparticulates which is effective to provide the desired dose of the therapeutic agents over time may be placed in a capsule or may be incorporated in any other suitable oral solid form.
  • the sustained release dosage form comprises such particles containing or comprising the active ingredient, wherein the particles have diameter from about 0.1 mm to about 2.5 mm, preferably from about 0.5 mm to about 2 mm.
  • the particles comprise normal release matrixes containing the first therapeutic agent with the second therapeutic agent. These particles are then coated with the sustained release carrier in embodiments where the first therapeutic agent is immediately released, the first therapeutic agent may be included in separate normal release matrix particles, or may be co-administered in a different immediate release composition which is either enveloped within a gelatin capsule or is administered separately.
  • the particles comprise inert beads which are coated with the second therapeutic agent with the first therapeutic agents. Thereafter, a coating comprising the sustained release carrier is applied onto the beads as an overcoat.
  • the particles are preferably film coated with a material that permits release of the active agents at a sustained rate in an aqueous medium.
  • the film coat is chosen so as to achieve, in combination with the other stated properties, a desired in vitro release rate.
  • the sustained release coating formulations of the present invention should be capable of producing a strong, continuous film that is smooth and elegant, capable of supporting pigments and other coating additives, non-toxic, inert, and tack-free.
  • the dosage forms of the present invention may optionally be coated with one or more materials suitable for the regulation of release or for the protection of the formulation.
  • coatings are provided to permit either pH-dependent or pH-independent release, e.g., when exposed to gastrointestinal fluid.
  • a pH-dependent coating serves to release the first active agent, second active agent, or both in the desired areas of the gastro-intestinal (GI) tract, e.g., the stomach or small intestine, such that an absorption profile is provided which is capable of providing at least about twelve hours and preferably up to twenty-four hours of therapeutic benefit to a patient.
  • GI gastro-intestinal
  • the coating is designed to achieve optimal release regardless of pH-changes in the environmental fluid, e.g., the GI tract.
  • compositions which release a portion of the dose in one desired area of the GI tract, e.g., the stomach, and release the remainder of the dose in another area of the GI tract, e.g., the small intestine.
  • the first therapeutic agent is released in one area of the GI tract and the second therapeutic agent is released in a second area of the GI tract.
  • the first and second therapeutic agents are released in nearly equal amounts at the same location in the GI tract.
  • Formulations according to the invention that utilize pH-dependent coatings to obtain formulations may also impart a repeat-action effect whereby unprotected drug is coated over the enteric coat and is released in the stomach, while the remainder, being protected by the enteric coating, is released further down the gastrointestinal tract.
  • Coatings which are pH-dependent may be used in accordance with the present invention include shellac, cellulose acetate phthalate (CAP), polyvinyl acetate phthalate (PVAP), hydroxypropylmethylcellulose phthalate, and methacrylic acid ester copolymers, zein, and the like.
  • one aspect of the present invention relates to a formulation wherein the first therapeutic agent is coated over the enteric coat and released into the stomach while the second therapeutic agent is protected by the enteric coating and is released further down the GI tract.
  • one aspect of the present invention relates to a formulation wherein the second therapeutic agent is coated over the enteric coat and released into the stomach while the first therapeutic agent is protected by the enteric coating and is released further down the GI tract.
  • the substrate e.g., tablet core bead, matrix particle
  • the substrate containing the first therapeutic agent (with or without the second therapeutic agent) is coated with a hydrophobic material selected from (i) an alkylcellulose; (ii) an acrylic polymer; or (iii) mixtures thereof.
  • the coating may be applied in the form of an organic or aqueous solution or dispersion. The coating may be applied to obtain a weight gain from about 2 to about 25% of the substrate in order to obtain a desired sustained release profile.
  • the invention relates to instances wherein the substrate (e.g., tablet core bead, matrix particle) containing the second therapeutic agent (with or without the first therapeutic agent) is coated with a hydrophobic material.
  • sustained release formulations and coatings which may be used in accordance with the present invention include U.S. Pat. Nos. 5,324,351; 5,356,467, and 5,472,712.
  • Cellulosic materials and polymers including alkylcelluloses, provide hydrophobic materials well suited for coating the formulations according to the invention.
  • one preferred alkylcellulosic polymer is ethylcellulose, although the artisan will appreciate that other cellulose and/or alkylcellulose polymers may be readily employed, singly or in any combination, as all or part of a hydrophobic coating.
  • Aquacoat® One commercially-available aqueous dispersion of ethylcellulose is Aquacoat® (FMC Corp., Philadelphia, Pa., U.S.A.). Aquacoat® is prepared by dissolving the ethylcellulose in a water-immiscible organic solvent and then emulsifying the same in water in the presence of a surfactant and a stabilizer. After homogenization to generate submicron droplets, the organic solvent is evaporated under vacuum to form a pseudolatex. The plasticizer is not incorporated in the pseudolatex during the manufacturing phase. Thus, prior to using the same as a coating, it is necessary to intimately mix the Aquacoat® with a suitable plasticizer prior to use.
  • aqueous dispersion of ethylcellulose is commercially available as Surelease® (Colorcon, Inc., West Point, Pa., U.S.A.). This product is prepared by incorporating plasticizer into the dispersion during the manufacturing process. A hot melt of a polymer, plasticizer (dibutyl sebacate), and stabilizer (oleic acid) is prepared as a homogeneous mixture, which is then diluted with an alkaline solution to obtain an aqueous dispersion which can be applied directly onto substrates.
  • Surelease® Colorcon, Inc., West Point, Pa., U.S.A.
  • the hydrophobic material comprising the controlled release coating is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
  • acrylic acid and methacrylic acid copolymers including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, poly(acrylic acid), poly(methacrylic
  • the acrylic polymer is comprised of one or more ammonio methacrylate copolymers
  • Ammonio methacrylate copolymers are well known in the art, and are copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups. In order to obtain a desirable dissolution profile, it may be necessary to incorporate in a coating two or more ammonio methacrylate copolymers having differing physical properties, such as different molar ratios of the quaternary ammonium groups to the neutral (meth)acrylic esters.
  • methacrylic acid ester-type polymers are useful for preparing pH-dependent coatings which may be used in accordance with the present invention.
  • methacrylic acid copolymer or polymeric methacrylates commercially available as Eudragit® from Rohm Tech, Inc.
  • Eudragit® E is an example of a methacrylic acid copolymer which swells and dissolves in acidic media.
  • Eudragit® L is a methacrylic acid copolymer which does not swell at about pH ⁇ 5.7 and is soluble at about pH>6.
  • Eudragit® S does not swell at about pH ⁇ 6.5 and is soluble at about pH>7.
  • Eudragit® RL and Eudragit® RS are water swellable, and the amount of water absorbed by these polymers is pH-dependent, however, dosage forms coated with Eudragit® RL and RS are pH-independent.
  • the acrylic coating comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames Eudragit® RL30D and Eudragit® RS30D, respectively.
  • Eudragit® RL30D and Eudragit® RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit®RL30D and 1:40 in Eudragit® RS30D.
  • the mean molecular weight is about 150,000.
  • the code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents.
  • Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, coatings formed from the same are swellable and permeable in aqueous solutions and digestive fluids.
  • the Eudragit® RL/RS dispersions of the present invention may be mixed together in any desired ratio in order to ultimately obtain a sustained release formulation having a desirable dissolution profile. Desirable sustained release formulations may be obtained, for instance, from a retardant coating derived from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL:Eudragit® 90% RS. Of course, one skilled in the art will recognize that other acrylic polymers may also be used, such as, for example, Eudragit® L.
  • the inclusion of an effective amount of a plasticizer in the aqueous dispersion of hydrophobic material will further improve the physical properties of the sustained release coating.
  • a plasticizer into an ethylcellulose coating containing sustained release coating before using the same as a coating material.
  • the amount of plasticizer included in a coating solution is based on the concentration of the film-former, e.g., most often from about 1 to about 50 percent by weight of the film-former. Concentration of the plasticizer, however, can only be properly determined after careful experimentation with the particular coating solution and method of application.
  • plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used.
  • Triethyl citrate is an especially preferred plasticizer for the aqueous dispersions of ethyl cellulose of the present invention.
  • plasticizers for the acrylic polymers of the present invention include, but are not limited to citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol.
  • Other plasticizers which have proved to be suitable for enhancing the elasticity of the films formed from acrylic films such as Eudragit® RL/RS lacquer solutions include polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin.
  • Triethyl citrate is an especially preferred plasticizer for the aqueous dispersions of ethyl cellulose of the present invention.
  • the present invention provides pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of one or more of the compounds described above, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents.
  • the pharmaceutical compositions of the present invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, e.g., those targeted for buccal, sublingual, and systemic absorption, boluses, powders, granules, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; (3) topical application, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin; (4) intravaginally or intrarectally, for example
  • terapéuticaally-effective amount means that amount of a compound, material, or composition comprising a compound of the present invention which is effective for producing some desired therapeutic effect in at least a sub-population of cells in an animal at a reasonable benefit/risk ratio applicable to any medical treatment.
  • phrases “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically-acceptable carrier means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body.
  • manufacturing aid e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid
  • solvent encapsulating material involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
  • materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydrox
  • certain embodiments of the present compounds may contain a basic functional group, such as amino or alkylamino, and are, thus, capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable acids.
  • pharmaceutically-acceptable salts refers to the relatively non-toxic, inorganic and organic acid addition salts of compounds of the present invention. These salts can be prepared in situ in the administration vehicle or the dosage form manufacturing process, or by separately reacting a purified compound of the invention in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed during subsequent purification.
  • Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like.
  • sulfate bisulfate
  • phosphate nitrate
  • acetate valerate
  • oleate palmitate
  • stearate laurate
  • benzoate lactate
  • phosphate tosylate
  • citrate maleate
  • fumarate succinate
  • tartrate napthylate
  • mesylate glucoheptonate
  • lactobionate lactobionate
  • laurylsulphonate salts and the like See, for example,
  • the pharmaceutically acceptable salts of the subject compounds include the conventional nontoxic salts or quaternary ammonium salts of the compounds, e.g., from non-toxic organic or inorganic acids.
  • such conventional nontoxic salts include those derived from inorganic acids such as hydrochloride, hydrobromic, sulfuric, sulfamic, phosphoric, nitric, and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, palmitic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicyclic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isothionic, and the like.
  • the compounds of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable bases.
  • pharmaceutically-acceptable salts in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of compounds of the present invention.
  • salts can likewise be prepared in situ in the administration vehicle or the dosage form manufacturing process, or by separately reacting the purified compound in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, with ammonia, or with a pharmaceutically-acceptable organic primary, secondary or tertiary amine
  • a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, with ammonia, or with a pharmaceutically-acceptable organic primary, secondary or tertiary amine
  • Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like.
  • Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like. (See, for example, Berge et al., supra)
  • wetting agents such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
  • antioxidants examples include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
  • water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
  • oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), le
  • Formulations of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal and/or parenteral administration.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 0.1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.
  • a formulation of the present invention comprises an excipient selected from the group consisting of cyclodextrins, celluloses, liposomes, micelle forming agents, e.g., bile acids, and polymeric carriers, e.g., polyesters and polyanhydrides; and a compound of the present invention.
  • an aforementioned formulation renders orally bioavailable a compound of the present invention.
  • Methods of preparing these formulations or compositions include the step of bringing into association a compound of the present invention with the carrier and, optionally, one or more accessory ingredients.
  • the formulations are prepared by uniformly and intimately bringing into association a compound of the present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
  • Formulations of the invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound of the present invention as an active ingredient.
  • a compound of the present invention may also be administered as a bolus, electuary or paste.
  • the active ingredient is mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds and surfactants, such as poloxa
  • pharmaceutically-acceptable carriers such as sodium citrate or dicalcium phosphate
  • compositions may also comprise buffering agents.
  • Solid compositions of a similar type may also be employed as fillers in soft and hard-shelled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
  • a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent.
  • Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
  • the tablets, and other solid dosage forms of the pharmaceutical compositions of the present invention may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be formulated for rapid release, e.g., freeze-dried.
  • compositions may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.
  • These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner.
  • embedding compositions which can be used include polymeric substances and waxes.
  • the active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.
  • Liquid dosage forms for oral administration of the compounds of the invention include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and
  • the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
  • Suspensions in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • Dosage forms for the topical or transdermal administration of a compound of this invention include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
  • the active compound may be mixed under sterile conditions with a pharmaceutically-acceptable carrier, and with any preservatives, buffers, or propellants which may be required.
  • the ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • Powders and sprays can contain, in addition to a compound of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
  • Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
  • Transdermal patches have the added advantage of providing controlled delivery of a compound of the present invention to the body.
  • dosage forms can be made by dissolving or dispersing the compound in the proper medium.
  • Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the compound in a polymer matrix or gel.
  • Ophthalmic formulations are also contemplated as being within the scope of this invention.
  • compositions of this invention suitable for parenteral administration comprise one or more compounds of the invention in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain sugars, alcohols, antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
  • aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
  • polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
  • vegetable oils such as olive oil
  • injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms upon the subject compounds may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
  • the therapeutic agent alone or on combination with other therapeutic agents can be employed in admixtures with conventional excipients, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for oral, parenteral, nasal, intravenous, subcutaneous, enteral, or any other suitable mode of administration, known to the art.
  • conventional excipients i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for oral, parenteral, nasal, intravenous, subcutaneous, enteral, or any other suitable mode of administration, known to the art.
  • Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions, alcohols, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelate, carbohydrates such as lactose, amylose or starch, magnesium stearate talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, hydroxymethylcellulose, polyvinylpyrrolidone, etc.
  • the pharmaceutical preparations can be sterilized and if desired mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure buffers, coloring, flavoring and/or aromatic substances and the like. They can also be combined where desired with other active agents, e.g., other analgesic agents.
  • auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure buffers, coloring, flavoring and/or aromatic substances and the like.
  • auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure buffers, coloring, flavoring and/or aromatic substances and the like.
  • other active agents e.g., other analgesic agents.
  • particularly suitable are oily or
  • compositions intended for oral use may be prepared according to any method known in the art and such compositions may contain one or more agents selected from the group consisting of inert, non-toxic pharmaceutically excipients which are suitable for the manufacture of tablets.
  • excipients include, for example an inert diluent such as lactose; granulating and disintegrating agents such as cornstarch; binding agents such as starch; and lubricating agents such as magnesium stearate.
  • the tablets may be uncoated or they may be coated by known techniques for elegance or to delay release of the active ingredients.
  • Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert diluent.
  • Aqueous suspensions contain the above-identified combination of drugs and that mixture has one or more excipients suitable as suspending agents, for example pharmaceutically acceptable synthetic gums such as hydroxypropylmethylcellulose or natural gums.
  • Oily suspensions may be formulated by suspending the above-identified combination of drugs in a vegetable oil or mineral oil.
  • the oily suspensions may contain a thickening agent such as beeswax or cetyl alcohol.
  • a syrup, elixir, or the like can be used wherein a sweetened vehicle is employed.
  • Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed. It is also possible to freeze-dry the active compounds and use the obtained lyophilized compounds, for example, for the preparation of products for injection.
  • One aspect of combination therapy pertains to a method for providing effective therapeutic treatment in humans, comprising administering an effective or sub-therapeutic amount of a first therapeutic agent; and administering an effective amount of a second therapeutic agent in an amount effective to augment the therapeutic effect provided by said first therapeutic agent.
  • the second therapeutic agent can be administered before, simultaneously with, or after administration of the first therapeutic agent, as long as the dosing interval of the second therapeutic agent overlaps with the dosing interval of the first therapeutic agent (or its therapeutic effect).
  • the second therapeutic agent need not be administered in the same dosage form or even by the same route of administration as the first therapeutic agent.
  • the method is directed to the surprising synergistic and/or additive benefits obtained in humans, when therapeutically effective levels of a first therapeutic agent have been administered to a human, and, prior to or during the dosage interval for the second therapeutic agent or while the human is experiencing the therapeutic effect, an effective amount of a second therapeutic agent to augment the therapeutic effect of the first therapeutic agent is administered.
  • the second therapeutic agent is administered prior to the administration of the first therapeutic agent, it is preferred that the dosage intervals for the two drugs overlap, i.e., such that the therapeutic effect over at least a portion of the dosage interval of the first therapeutic agent is at least partly attributable to the second therapeutic agent.
  • the surprising synergistic and/or additive benefits obtained in the patient are achieved when therapeutically effective levels of the second therapeutic agent have been administered to the patient, and, during the dosage interval for the second therapeutic agent or while the patient is experiencing the therapeutic effect by virtue of the administration of a second therapeutic agent, an effective amount of a first therapeutic agent to augment the therapeutic effect of the second therapeutic agent is administered.
  • combination therapy relates to an oral solid dosage form comprising an therapeutically effective amount of a first therapeutic agent together with an amount of a second therapeutic agent or pharmaceutically acceptable salt thereof which augments the effect of the first therapeutic agent.
  • the compounds of the present invention are administered as pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99% (more preferably, 10 to 30%) of active ingredient in combination with a pharmaceutically acceptable carrier.
  • the preparations of the present invention may be given orally, parenterally, topically, or rectally. They are of course given in forms suitable for each administration route. For example, they are administered in tablets or capsule form, by injection, inhalation, eye lotion, ointment, suppository, etc. administration by injection, infusion or inhalation; topical by lotion or ointment; and rectal by suppositories. Oral administrations are preferred.
  • parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticulare, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.
  • systemic administration means the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.
  • These compounds may be administered to humans and other animals for therapy by any suitable route of administration, including orally, nasally, as by, for example, a spray, rectally, intravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually.
  • the compounds of the present invention which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically-acceptable dosage forms by conventional methods known to those of skill in the art.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • the selected dosage level will depend upon a variety of factors including the activity of the particular compound of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion or metabolism of the particular compound being employed, the rate and extent of absorption, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compound employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
  • a physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required.
  • the physician or veterinarian could start doses of the compounds of the invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
  • a suitable daily dose of a compound of the invention will be that amount of the compound which is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above. Generally, oral, intravenous, intracerebroventricular and subcutaneous doses of the compounds of this invention for a patient, when used for the indicated analgesic effects, will range from about 0.0001 to about 100 mg per kilogram of body weight per day.
  • the effective daily dose of the active compound may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms. Preferred dosing is one administration per day.
  • composition While it is possible for a compound of the present invention to be administered alone, it is preferable to administer the compound as a pharmaceutical formulation (composition).
  • the compounds according to the invention may be formulated for administration in any convenient way for use in human or veterinary medicine, by analogy with other pharmaceuticals.
  • the present invention provides pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of one or more of the subject compounds, as described above, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents.
  • the pharmaceutical compositions of the present invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension; (3) topical application, for example, as a cream, ointment or spray applied to the skin, lungs, or mucous membranes; or (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; (5) sublingually or buccally; (6)
  • treatment is intended to encompass also prophylaxis, therapy, management and cure.
  • the patient receiving this treatment is any animal in need, including primates, in particular humans, and other mammals Processes for Preparing Matrix-Based Beads
  • any method of preparing a matrix formulation known to those skilled in the art may be used.
  • incorporation in the matrix may be effected, for example, by (a) forming granules comprising at least one water soluble hydroxyalkyl cellulose and the active agent; (b) mixing the hydroxyalkyl cellulose containing granules with at least one C.sub.12-C.sub.36 aliphatic alcohol; and (c) optionally, compressing and shaping the granules.
  • the granules are formed by wet granulating the hydroxyalkyl cellulose/active agent with water.
  • the amount of water added during tie wet granulation step is preferably between 1.5 and 5 times, especially between 1.75 and 3.5 times, the dry weight of the active agent.
  • a spheronizing agent together with the active ingredient can be spheronized to form spheroids.
  • Microcrystalline cellulose is preferred.
  • a suitable microcrystalline cellulose is, for example, the material sold as Avicel PH 101 (Trade Mark, FMC Corporation).
  • the spheroids may also contain a binder. Suitable binders, such as low viscosity, water soluble polymers, will be well known to those skilled in the pharmaceutical art. However, water soluble hydroxy lower alkyl cellulose, such as hydroxypropylcellulose, are preferred.
  • the spheroids may contain a water insoluble polymer, especially an acrylic polymer, an acrylic copolymer, such as a methacrylic acid-ethyl acrylate copolymer, or ethyl cellulose.
  • the sustained release coating will generally include a hydrophobic material such as (a) a wax, either alone or in admixture with a fatty alcohol; or (b) shellac or zein.
  • Sustained release matrices can also be prepared via melt-granulation or melt-extrusion techniques.
  • melt-granulation techniques involve melting a normally solid hydrophobic material, e.g. a wax, and incorporating a powdered drug therein.
  • an additional hydrophobic substance e.g. ethylcellulose or a water-insoluble acrylic polymer, into the molten wax hydrophobic material. Examples of sustained release formulations prepared via melt-granulation techniques are found in U.S. Pat. No. 4,861,598.
  • the additional hydrophobic material may comprise one or more water-insoluble wax-like thermoplastic substances possibly mixed with one or more wax-like thermoplastic substances being less hydrophobic than said one or more water-insoluble wax-like substances.
  • the individual wax-like substances in the formulation should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases.
  • Useful water-insoluble wax-like substances may be those with a water-solubility that is lower than about 1:5,000 (w/w).
  • a sustained release matrix may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art. The quantities of these additional materials will be sufficient to provide the desired effect to the desired formulation.
  • a sustained release matrix incorporating melt-extruded multiparticulates may also contain suitable quantities of other materials, e.g. diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
  • sedative agents including without limitation, serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, and 5-HT 2A modulators are chiral compounds that can exist as a racemic mixture, a non-equal mixture of enantiomers, or as a single enantiomer.
  • the recitation of a compound that can exist as a racemic mixture, a non-equal mixture of enantiomers, or a single enantiomer is meant to encompass all three aforementioned forms, unless stated otherwise.
  • the term “enantiomeric excess” is well known in the art and is defined for a resolution of ab 6a+b as:
  • enantiomeric excess is related to the older term “optical purity” in that both are measures of the same phenomenon.
  • the value of e.e. will be a number from 0 to 100, zero being racemic and 100 being pure, single enantiomer.
  • a compound which in the past might have been called 98% optically pure is now more precisely described as 96% e.e.; in other words, a 90% e.e. reflects the presence of 95% of one enantiomer and 5% of the other in the material in question.
  • compositions comprising a specified enantiomer contain the specified enantiomer in at least 90% e.e. More preferably, such compositions comprising a specified enantiomer contain the specified enantiomer in at least 95% e.e. Even more preferably, such compositions comprising a specified enantiomer contain the specified enantiomer in at least 98% e.e. Most preferably, such compositions comprising a specified enantiomer contain the specified enantiomer in at least 99% e.e.
  • compositions comprising eszopiclone contain the S-enantiomer of zopiclone in at least 90% e.e. More preferably, compositions comprising eszopiclone contain the S-enantiomer of zopiclone in at least 95% e.e. Even more preferably, such compositions comprising eszopiclone contain the S-enantiomer of zopiclone in at least 98% e.e. Most preferably, such compositions comprising eszopiclone contain the S-enantiomer of zopiclone in at least 99% e.e.
  • serotonin reuptake inhibitor refers to a compound that at least partially inhibits the reuptake of serotonin.
  • the serotonin reuptake inhibitor is a selective serotonin reuptake inhibitor.
  • selective serotonin reuptake inhibitor refers to a compound that preferentially inhibits serotonin reuptake relative to its ability to modulate the activity of other receptors.
  • norepinephrine reuptake inhibitor refers to a compound that at least partially inhibits the reuptake of norepinephrine.
  • the norepinephrine reuptake inhibitor is a selective norepinephrine reuptake inhibitor.
  • selective norepinephrine reuptake inhibitor refers to a compound that preferentially inhibits norepinephrine reuptake relative to its ability to modulate the activity of other receptors.
  • 5-HT 2A modulator refers to a compound that modulates the activity of 5-HT 2A receptor.
  • the term “5-HT 2A modulator” includes 5-HT 2A antagonists and 5-HT 2A inverse agonists and 5-HT 2A partial agonists.
  • antagonist refers to a compound that binds to a receptor site, but does not cause any physiological changes.
  • inverse agonist and “negative antagonist” and “neutral antagonist” refer to compounds that inhibit an unoccupied, but active receptor.
  • a patient refers to a mammal in need of a particular treatment.
  • a patient is a primate, canine, feline, or equine.
  • a patient is a human.
  • co-administration and “co-administering” refer to both concurrent administration (administration of two or more therapeutic agents at the same time) and time varied administration (administration of one or more therapeutic agents at a time different from that of the administration of an additional therapeutic agent or agents), as long as the therapeutic agents are present in the patient to some extent at the same time.
  • solvate refers to a pharmaceutically acceptable form of a specified compound, with one or more solvent molecules, that retains the biological effectiveness of such compound.
  • solvates include compounds of the invention in combination with solvents such, for example, water (to form the hydrate), isopropanol, ethanol, methanol, dimethyl sulfoxide, ethyl acetate, acetic acid, ethanolamine, or acetone.
  • solvents such as water (to form the hydrate), isopropanol, ethanol, methanol, dimethyl sulfoxide, ethyl acetate, acetic acid, ethanolamine, or acetone.
  • formulations of solvate mixtures such as a compound of the invention in combination with two or more solvents.
  • screened subject refers to any subject who signs the Informed Consent and completes at least one study related procedure.
  • screen failure subject refers to any subject who has signed the informed consent and completed at least one study related procedure and discontinues for any reason prior to receiving any study medication.
  • randomized subject refers to any subject who receives a randomization number.
  • completed subject refers to any subject who completes all study visits.
  • early termination subject refers to any subject who is assigned a randomization number but does not complete all study visits.
  • insomnia disorders or “sleep abnormality” refers to primary insomnia; secondary insomnia; situational insomnia; transient insomnia; short-term insomnia; chronic insomnia; acute insomnia; prolonged latency to sleep onset; difficulty falling asleep; difficulty staying asleep; sleep maintenance problems, including without limitation, frequent awakenings, an increase in time spent awake after initially falling asleep (wake time after sleep onset, or WASO), sleep fragmentation, transient microarousals, and unrefreshing sleep; increased time awake during the sleep period; waking up too early; and reduced total sleep time.
  • WASO wake time after sleep onset
  • depression refers to major depression, major depressive disorder, mild depression, moderate depression, severe depression without psychosis, severe depression with psychosis, dysthymia, bipolar disorder, or manic depression.
  • antidepressant refers to compounds used to treat depression, including without limitation: tricyclic antidepressents, such as clomipramine, amoxapine, nortriptyline, moprotilene, trimipramine, imipramine, or protriptyline; monoamine oxidase inhibitors; serotonin reuptake inhibitors, including selective serotonin reuptake inihibitors, such as citalopram, escitalopram, duloxetine, fluoxetine, sertraline, norsertraline, paroxetine, mirtrazepine, fluvoxamine, milnacipran, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, or ifoxetine; norepinephrine reuptake inhibitors, including selective norepinephrine reuptake inhibitors, such as desipramine, maprotiline, lofepramine, re
  • insomnia is the most disabling of the depressive symptom complex.
  • SSRIs selective serotonin re-uptake inhibitors
  • a primary objective of the present study was to evaluate subjective sleep efficacy during eight weeks of treatment with eszopiclone 3 mg nightly (at bed time) in subjects with insomnia related to major depressive disorder and treated concurrently with fluoxetine hydrochloride.
  • a secondary objective of the study was to evaluate the potential for eszopiclone 3 mg to augment the antidepressant effect of fluoxetine hydrochloride by investigating the differences in time to onset and amplitude of antidepressant responses over an 8-week treatment period.
  • This study was a double-blind randomized, placebo-controlled, parallel group study.
  • the study consisted of subjects with major depression disorder treated for ten weeks with a common antidepressant regimen, 20-40 mg of fluoxetine hydrochloride per day, and randomized to receive (in addition) either eszopiclone 3 mg or placebo for eight weeks. All subjects must satisfy DSM-IV criteria for insomnia related to major depression.
  • Subjects meeting inclusion and exclusion criteria begin a 3-7 day baseline period. At this visit safety assessments and evaluation of adverse events (AEs) were performed. In addition, subjects were trained on use of the interactive voice response system (IVRS) system for collection of sleep and depression endpoints and the frequency of assessments. Subjects completed 7 selected items of the HAM-D-17 via IVRS the morning after this visit. During this 3-7 day period, subjects made daily IVRS calls to evaluate sleep parameters, and depression symptoms [Daily Telephone Assessment (DTA) and Symptoms Questionnaire (SQ; 23-item Depression subscale)].
  • DTA Dynaily Telephone Assessment
  • SQL Symptoms Questionnaire
  • Visit 3 End of Week 0; Randomization:
  • Subjects with a minimum of three complete IVRS assessments during the baseline week were randomized to eszopiclone 3 mg or matching placebo nightly (at bedtime) for eight weeks in addition to taking open-label fluoxetine hydrochloride administered in the morning.
  • the HAM-D-17 was administered by a clinician; safety assessments and evaluation of adverse effects (AEs) were performed; and the study drug was dispensed.
  • Visits 4 (Week 1), 5 (Week 2), 6 (Week 3), 7 (Week 4), 8 (Week 6); and Visit 9 (Week 8; End of Double-Blind):
  • HAM-D-17 On the morning of each visit, subjects completed the 7 selected items of the HAM-D-17 and sleep diary via IVRS. In clinic, the subject completed sleep and quality of life questionnaires. In addition, the HAM-D-17 was administered by a clinician (at Visits 7 and 9 only); safety assessments and an evaluation of AEs were performed; and study drug and supplies were dispensed. On the morning following each office visit, subjects completed the sleep diary and depression symptoms questionnaires via IVRS. Beginning one week prior to Visit 9 until Visit 10, subjects resumed daily IVRS for completion of the sleep diary. Subjects completed randomized double-blind (DB) study drug the night prior to Visit 9 but remained on fluoxetine hydrochloride for the two-week wash-out period. At Visit 9, the end of treatment assessments were performed (ECG, clinical laboratory assessments, physical exam, vital sign).
  • the HAM-D-17 was administered by a clinician.
  • Final safety assessments [physical examination, ECG, clinical laboratory assessments] and an evaluation of AEs were performed and study drug and supplies are collected. At this time, subjects were referred for follow-up to their primary physicians.
  • Sample Population Approximately 600 subjects were randomized in order to complete 360. Subjects are males and females between the ages of 21 and 64, inclusive. All subjects were required to meet the DSM IV criteria for insomnia related to a major depressive disorder. Subjects must have reported all of the following: sleep onset time >30 minutes, wake time after sleep onset >45 minutes and total sleep time of ⁇ 6.5 hours. Subjects must also have had a minimum HAM-D-17 score of 14, not including scores for sleep items, at Visit 1.
  • the primary endpoint was the mean subjective wake time after sleep onset (WASO) during Week 1.
  • Secondary Endpoints were the following:
  • WASO Mean wake time after sleep onset
  • TST Mean subjective total sleep time
  • IVRS questionnaire Subjective sleep assessments, depression symptoms and quality of life were evaluated via an IVRS. At Visit 1, subjects were trained on the use of the system and received a unique user ID and password.
  • the subject To be eligible for randomization, the subject must have completed a minimum of 3 daily diary assessments via IVRS during the baseline period.
  • Drug Class Wash-out Periods Any antipsychotic medications 30 days prior to Visit 2 Fluoxetine 35 days prior to completion of screening assessments Any other SSRI 14 days prior to completion of screening assessments Any monoamine oxidase inhibitors 14 days prior to completion of screening assessments Any tricyclic antidepressant (TCA) 14 days prior to completion of screening assessments Any serotonin-norepinephrine 14 days prior to completion re-uptake inhibitors (NSRIs) of screening assessments Other antidepressants (trazadone, 14 days prior to completion nefazadone, bupropion, mirtazapine) of screening assessments Benzodiazepine sedative hypnotics 14 days prior to Visit 2 or anxiolytics Any drugs including over-the-counter 14 days prior to Visit 2 drugs and herbal supplements known to affect sleep wake function *The wash-out period begins after the subject has successfully tapered from prior therapy and is no longer taking any of the disallowed medication.
  • Chronic medications other than those listed above taken at a stable dose for at least 30 days prior to clinical assessment screening (Visit 2) were allowed. Standard over the counter medications other than those listed above (analgesics, topical ointments, etc) were also allowed. All females on oral contraceptives and hormonal therapy were encouraged to dose at the same time of day each day while on study.
  • Subjects were to be instructed not to consume alcohol during this study. Subjects were to eat dinner at least 2 hours prior to their scheduled double-blind study medication dosing time. Subjects were to refrain from driving or using heavy machinery within 7 hours after taking double-blind study medication.
  • Eszopiclone was supplied as 3 mg tablets. Subjects received a 3 mg dose as one tablet.
  • the active ingredient each tablet contained: microcrystalline cellulose, USP; calcium phosphate anhydrous, USP; croscarmellose sodium, USP; colloidal silicon dioxide, USP and magnesium stearate, USP.
  • the tablets were coated with opadry II.
  • the matching placebo contains all ingredients, except the active eszopiclone.
  • Fluoxetine hydrochloride is a white to off-white crystalline solid with a solubility of 14 mg/mL in water.
  • Each capsule contained fluoxetine hydrochloride equivalent to 20 mg or 40 mg of fluoxetine.
  • the capsules also contained starch, gelatin, silicone, titanium dioxide, iron oxide, and other inactive ingredients.
  • kits were dispensed in ascending order (lowest to highest) from the sites double-blind drug supply. Each kit contained the following:
  • Subjects who completed the 8-week double-blind treatment period were entered into a two-week single-blind wash-out period.
  • Visit 9 subjects were provided with a blister pack containing a 14 (+/ ⁇ 2) day supply of single blind placebo tablets and open-label fluoxetine hydrochloride capsules.
  • Subjects were instructed to take one double- or single-blind tablet each night (at bedtime) beginning the evening of each office visit. Subject were instructed to take one fluoxetine hydrochloride capsule each morning beginning at Visit 3. Subjects were to return each blister pack at the next office visit. The morning dose of fluoxetine hydrochloride on the day of Visits 4-10 was to be taken prior to coming into clinic (from the previous visit's blister pack).
  • vital signs consist of 5 minutes resting, seated blood pressure, respiration rate, heart rate, and oral or auricular body temperature.
  • Blood and urine samples for clinical laboratory assessments were obtained at Visits 1, 3, 7, 9, and 10 and analyzed accordingly.
  • the analysis included Hematology: 1) Total WBC Count; 2) Differential: neutrophils, lymphocytes, monocytes, eosinophils, basophils; 3) Hemoglobin; 4) Hematocrit; 5) Platelet Count; and 6) RBC Count.
  • Qualitative Urinalysis 1) glucose, 2) ketones, 3) protein, and 4) blood.
  • Other Urine Laboratory Tests urine drug and alcohol screen.
  • Blood chemistry tests included tests for electrolytes, certain enzymes, and certain other tests as described herein. Electrolytes: carbon dioxide, calcium, chloride, phosphorus (inorganic), potassium, sodium, and magnesium.
  • Enzymes alkaline phosphatase, SGOT (AST), and SGPT (ALT). Other: albumin, bilirubin (total), creatinine, glucose, protein (total), blood urea nitrogen, uric acid, and T4. Other tests: serum ⁇ -hCG pregnancy test (all females) and serum cortisol.
  • MEC Medical Event Calender
  • Subjects were queried in a non-leading manner, without specific prompting (e.g., “How are you feeling?”) to assess whether they are suffering from any adverse events.
  • Subject-self report was acceptable for listing all concomitant medication use, medical history and evaluation for inclusion/exclusion except where specific protocols procedures are mandated to ensure appropriate enrollment (e.g. certain baseline lab values).
  • the screening visit was completed on multiple dates.
  • subjects were seen for the signing of the informed consent, collection of medical history and concomitant medications.
  • the investigator performed a brief examination to assess the subject's status and to evaluate the potential for the subject to safely taper off of antidepressant or other disallowed psychotropic medication.
  • the investigator documented rationale for enrolling a subject currently on antidepressant or other psychotropic therapy and the plan for tapering this medication in the source documents. Subjects did not complete the sleep history questionnaire or the Ham-D-17 via IVRS until the end of the wash-out period. If all screening procedures were not completed within 30 days from the date of signed Informed Consent, the subject returned to the clinic to sign a new Informed Consent.
  • Visit 2 occurred 5-14 days after Visit 1. Subjects begin using the IVRS daily until Visit 4 following this visit. The following study-related procedures were performed:
  • Visit 3 occurred 3-7 days after Visit 2.
  • the first dose of fluoxetine hydrochloride 20 mg was administered in clinic at Visit 3. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10.
  • the first dose of double-blind study medication was administered at bedtime on the day of Visit 3. Double-blind dosing (at bedtime) continued nightly through Visit 9.
  • Visit 4 occurred 7 (+/ ⁇ 2) days after Visit 3.
  • Open-label fluoxetine hydrochloride dosing in the morning) continued daily through Visit 10.
  • Double-blind dosing at bedtime continued nightly through Visit 9.
  • Visit 5 occurred 7 (+/ ⁇ 2) days after Visit 4.
  • Open-label fluoxetine hydrochloride dosing in the morning
  • Double-blind dosing at bedtime continued nightly through Visit 9.
  • Visit 6 occurred 7 (+/ ⁇ 2) days after Visit 5.
  • Open-label fluoxetine hydrochloride dosing in the morning
  • Double-blind dosing at bedtime
  • Visit 7 Double-Blind Treatment Week 4.
  • Visit 7 occurred 7 (+/ ⁇ 2) days after Visit 6. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through Visit 9.
  • Visit 8 Double-Blind Treatment Week 6
  • Visit 8 occurred 14 (+/ ⁇ 2) days after Visit 7. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through Visit 9.
  • Visit 9 occurred 14 (+/ ⁇ 2) days after Visit 8. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through the night prior to Visit 9.
  • Visit 10 occurred 14 (+/ ⁇ 2) days after Visit 9. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through Visit 9. Subject completed the final IVRS assessment on the morning of Visit 10.
  • the Intent-To-Treat (ITT) population included all randomized subjects who received at least one dose of study medication. All analyses were conducted using this population.
  • Subject disposition was summarized and presented for the number and percentage of subjects, who were screened, randomized, received treatment, completed the study, and discontinued early (including reasons for discontinuations).
  • the number of doses taken was computed from the study drug dispensation and accountability CRF records obtained at each visit, assuming that subjects took their study drug medication evenly throughout the between-visits periods.
  • the extent of exposure to the double-blind medication as well as the number of doses taken during the double-blind treatment period was summarized with descriptive statistics and presented by treatment group.
  • IPDs Important protocol deviations which were reviewed include, but are not limited to, subjects who:
  • protocol deviations were identified shortly before database lock and treatment unblinding either programmatically (e.g., inclusion/exclusion criteria violations, compliance assessment) or through review of treatment-blinded data listings (e.g., investigator comments, concomitant medications).
  • Appropriate personnel including, at a minimum, an M.D. and a biostatistician) reviewed the list of potential IPDs to identify which protocol deviations will be considered IPDs. The final list of IPDs was documented and used to generate a data listing.
  • Demographic and baseline characteristics including age, gender, race, height, weight, as well as sleep history parameters, was summarized using descriptive statistics. Continuous variables were compared across treatment groups using an ANOVA model with fixed effects for treatment and site, while categorical variables were compared using Cochran-Mantel-Haenszel (CMH) test for general association controlling for site. Sleep history was summarized by treatment group.
  • CMH Cochran-Mantel-Haenszel
  • Efficacy analyses were conducted using ITT population. All subjective sleep parameters assessed via the IVRS were summarized descriptively (m, mean, SD, minimum, 25 th percentile, median, 75 th percentile and maximum) at each week and were presented by treatment group.
  • the primary analysis was conducted using the ITT population for the primary efficacy variable, mean WASO during the first week of double-blind medication. This endpoint was computed by averaging the daily WASO values obtained via IVRS from Visit 3 to Visit 4.
  • the analysis was conducted using an analysis of variance model (ANOVA) with treatment and site as fixed effects. The analysis was performed on rank-transformed data, using the SAS MIXED procedure. The cumulative distribution function by treatment was plotted.
  • Treatment comparisons were performed on the Mean Symptoms Questionnaire (SQ) Score during Week 1, defined as the average of the daily SQ scores obtained via IVRS from Visit 3 to Visit 4 using an analysis of variance model (ANOVA) with treatment and site as fixed effects.
  • the occurrence of rebound insomnia and withdrawal effects was assessed for WASO, TST, and SL.
  • the baseline value was computed by averaging the values obtained from IVRS for the SB period (i.e., Visit 2 to Visit 3).
  • Descriptive statistics mean, standard deviation, minimum, 25 th percentile, median, 75 th percentile and maximum
  • a Wilcoxon signed-rank test was performed for each treatment group to assess whether the distribution of changes from baseline are centered at zero. In addition, between-group comparisons were performed for these change-from-baseline variables using the same method as for the primary analysis.
  • Descriptive statistics (mean, standard deviation, minimum, 25 th percentile, median, 75 th percentile and maximum) was presented by treatment at each time point. A Wilcoxon signed-rank test was performed for each treatment group to assess whether the distribution of changes from baseline are centered at zero. In addition, between-group comparisons will be performed for these change-from-baseline variables using an analysis of variance model (ANOVA) with treatment and site as fixed effects.
  • ANOVA analysis of variance model
  • the full ANOVA model including treatment by site interaction was used for exploratory analysis of the homogeneity of response by investigative sites using the primary and the secondary subjective sleep variables for the intent-to-treat population. If the interaction is statistically significant at the 0.10 significance level, additional analyses will be completed to more thoroughly explore this interaction.
  • Treatment comparisons were also performed, using an ANOVA model with treatment, site, and baseline as fixed effects for Week 1 average of WASO, TST, and SL.
  • Baseline is defined as the average of daily IVRS values obtained between Visit 2 and Visit 3.
  • WASO and SL the values were log transformed prior to averaging.
  • Treatment emergent adverse experiences was defined as 1) AEs that occurred or worsened (increased in severity and/or frequency) on or after the first dose of study medication, 2) AEs with a missing start data and a stop date on or after the first dose of study medication, or 3) AEs with both a missing start and stop date.
  • Treatment emergent AEs was summarized by treatment and by COSTART body system and preferred term. AEs that occurred within 14 days after treatment discontinuation was considered treatment-emergent AEs.
  • the Epworth Sleepiness Scale test asks patients to how likely they are to doze off or fall asleep, in contrast to feeling just tired, in the following situations: a) sitting and reading, b) watching TV, c) sitting inactive in a public place, e.g, theatre or meeting, d) as a passenger in a car for 1 hour without a break, e) lying down to rest in the afternoon, f) sitting and talking to someone, g) sitting quietly after lunch (when you've had no alcohol), and h) in a car while stopped in traffic for a few minutes. Patients rate their likelihood of dozing off or fall asleep according to by selecting one of the following: 1) would never doze, 2) slight chance of dozing, 3) moderate chance of dozing, or 4) high chance of dozing.
  • the insomnia severity index test is a series of thirteen questions used to evaluate insomnia.
  • the work limitations questionnaire is a series of questions used to evaluate how the patient's health has affected his or her work.
  • patients are asked to indicate how satisfied they are with a) their local schools, and b) their local police department. Patients indicate that they are 1) not at all satisfied, 2) moderately satisfied, or 3) very satisfied.
  • patients are asked 25 questions related to work performance.
  • the Acute Health Survey is a series of eleven questions answered by the patient to evaluate how they perceive their health.
  • a medical professional evaluates the patient according to seventeen criteria by selecting the response that best characterizes the patient's behavior during the past week.
  • the criteria and responses are based on that described in Br. J. Soc. Clin. Psychol. 6: 278-296 (1967) and are reproduced below.
  • Question 1 Depressed mood (Sadness, hopeless, helpless, worthless); Response: 0—Absent, 1—These feeling states indicated only on questioning, 2—These feeling states spontaneously reported verbally, 3—Communicates feeling states non-verbally i.e., through facial expression, posture, voice, and tendency to weep, or 4—Patient report virtually only these feeling states in his spontaneous verbal and non-verbal communication.
  • Question 2 Feeling of guilt; Response: 0—Absent, 1—Self reproach, feels he has let people down, 2—Ideas of guilt or rumination over past errors or sinful deeds, 3—Present illness is a punishment and/or has delusions of guilt, or 4—Hears accusatory or denunciatory voices and/or experiences threatening visual hallucinations.
  • Question 3 Suicide; Response: 0—Absent, 1—Feels life is not worth living, 2—Wishes he were dead or any thoughts of possible death to self, 3—Suicide ideas or gesture, 4—Attempts at suicide (any serious attempt rates 4).
  • Question 4 Insomnia early; Response: 0—No difficulty falling asleep; 1—Complains of occasional difficulty falling asleep—i.e., more than 1 ⁇ 2 hour; or 2—complains of nightly difficulty falling asleep.
  • Question 5 Insomnia middle; Response: 0—No difficulty, 1—patient complains of being restless and disturbed during the night, or 2—Waking during the night—any getting out of bed rates 2 (except for purposes of voiding).
  • Question 6 Insomnia Late; Response: 0—No difficulty, 1—Waking in early hours of the morning but goes back to sleep, or 2—Unable to fall asleep again if he gets out of bed.
  • Question 7 Work and activities; Response: 0—No difficulty, 1—Thoughts and feelings of incapacity, fatigue or weakness related to activities, work or hobbies; 2—Loss of interest in activity, hobbies or work—either directly reported by patient, or indirect in listlessness, indecision and vacillation (feels he has to push self to work or activities); 3—Decrease in actual time spent in activities or decrease in productivity (In hospital, rate 3 if patient does not spend at least three hours a day in activities (hospital job or hobbies) exclusive of ward chores); or 4—Stopped working because of present illness (In hospital, rate 4 if patient engages in no activities except ward chores, or if patient fails to perform ward chores unassisted).
  • Question 8 Retardation (Slowness of thought and speech; impaired ability to concentrate; decreased motor activity); Response: 0—Normal speech and thought, 1—Slight retardation at interview, 2—Obvious retardation at interview, 3—Interview difficult, or 4—Complete stupor.
  • Question 9 Agitation; Response: 0—None; 1—Fidgetiness; 2—Playing with hands, hair, etc.; 3—Moving about, can't sit still; or 4—Hand wringing, nail biting, hair-pulling, biting of lips.
  • Question 10 Anxiety psychic: 0—No difficulty, 1—Subjective tension and irritability, 2—Worrying about minor matters, 3—Apprehensive attitude apparent in face or speech, or 4—Fears expressed without questioning.
  • Question 11 Anxiety somatic (Physiological concomitants of anxiety, such as: —Gastro-intestinal: dry mouth, wind, indigestion, diarrhea, cramps, belching. —Cardio-vascular: palpitations, headaches. —Respiratory: hyperventilation, sighing. —Urinary frequency —Sweating); Response: 0—Absent, 1—Mild, 2—Moderate, 3—Severe, or 4—Incapacitating.
  • Question 12 Somatic symptoms gastro-intestinal; Response: 0—None, 1—Loss of appetite but eating without staff encouragement and/or heavy feelings in abdomen; or 2—Difficulty eating without staff urging and/or requests or requires laxatives or medication for bowels or medication for gastro-intestinal symptoms.
  • Question 13 Somatic symptoms general; Response: 0—None; 1—Heaviness in limbs, back or head; backaches, headache, or muscle aches; or loss of energy and fatigability; or 2—Any clear-cut symptom rates 2.
  • Question 14 Genital symptoms (Symptoms such as loss of libido, menstrual disturbances); Response: 0—Absent, 1—Mild, or 2—Severe.
  • Question 15 Hypochondriasis; Response: 0—Not present, 1—Self-absorption (bodily); 2—Preoccupation with health; 3—Frequent complaints, requests for help, etc.; or 4—Hypochondriacal delusions.
  • Question 16 Loss of Weight; Response: A) When rating by history: 0—No weight loss, 1—Probable weight loss associated with present illness, or 2—Definite (according to patient) weight loss.
  • DTA Daily Telephone Assessment
  • the Symptom Questionnaire (23-Item Depression Subscale):
  • DSM-IV Criteria for Major Depressive Disorder
  • A) The predominant complaint is difficulty initiating or maintaining sleep, or nonrestorative sleep, for a least 1 month that is associated with daytime fatigue or impaired daytime functioning.
  • B) The sleep disturbance (or daytime sequelae) causes clinically significant distress or impairment in social, occupational, or other important areas of functioning.
  • C) The insomnia is judged to be related to Major Depressive Disorder, but is sufficiently severe to warrant independent clinical attention.
  • D) The disturbance is not better accounted for by another Sleep Disorder (e.g., Narcolepsy, Breathing-Related Sleep Disorder, a Parasomnia)
  • E) The disturbance is not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication) or a general medical condition.
  • Baseline Average of Daily IVRS values obtained prior to or on the first dose of double-blind treatment.
  • Baseline Average of Daily IVRS values obtained prior to or on the first dose of double-blind treatment.
  • the pairwise comparison of the placebo treatment mean to the eszopiclone treatment mean is performed using the analysis of covariance model (ANCOVA) with treatment and site as fixed effects and the baseline as a covariate. The analysis is performed using the SAS MIXED procedure.
  • ANCOVA covariance model
  • placebo [1] 0.0180 6 N 233 233 Mean (SD) 2.8 (0.9) 2.6 (0.9) 25th Percentile 2.0 2.0 Median 3.0 3.0 75th Percentile 3.0 3.0 Minimum, Maximum 1, 5 1, 6 p-value vs. placebo [1] 0.0166 [1]
  • the analysis is conducted using an analysis of variance model (ANOVA) with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • placebo [1] 0.0057 9 N 236 229 Mean (SD) 2.2 (1.1) 1.9 (1.0) 25th Percentile 1.0 1.0 Median 2.0 2.0 75th Percentile 3.0 2.0 Minimum, Maximum 1, 6 0, 6 p-value vs. placebo [1] 0.0009 [1]
  • the analysis is conducted using an analysis of variance model (ANOVA) with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • Patients met DSM-IV criteria for MDD and insomnia, including reported sleep latency (SL) ⁇ 30 min (median 73 min), wake time after sleep onset (WASO) ⁇ 45 min (median 90 min), and total sleep time (TST) 6.5 h (median 294 min). All patients received fluoxetine QAM, and were randomly assigned to double-blind treatment with eszopiclone 3 mg or placebo QHS for 8 weeks. Subjective sleep and daytime function were assessed weekly.
  • eszopiclone was associated with significantly lower SL and greater TST at each treatment week (p ⁇ 0.03); significantly lower WASO at Weeks 1, 3-5, and 7-8 (p ⁇ 0.04); higher ratings across the treatment period in sleep quality and depth (p ⁇ 0.005); and higher ratings of daytime alertness, ability to concentrate, and well-being (p0.02).
  • Combined treatment was well-tolerated. Unpleasant taste was more common with eszopiclone.
  • CGI-I Clinical Global Impression Improvement
  • CGI-S Severity
  • Week 8 significantly more eszopiclone patients were responders (74% vs 61%, p ⁇ 0.009) and remitters (54% vs 41%, p ⁇ 0.02). Even with removal of insomnia items, significant differences were found at Week 8 (p ⁇ 0.03).
  • HAMD17 differences were greater in patients with more severe depression (baseline HAMD17 ⁇ 22).
  • CGI-I and CGI-S scores were significantly greater with eszopiclone co-administration (p ⁇ 0.05). Fluoxetine dose increases were less frequent with in eszopiclone (44% vs 54%; p ⁇ 0.05). Treatment was well-tolerated; drop-outs due to AEs were comparable.

Abstract

One aspect of the present invention relates to pharmaceutical compositions containing two or more active agents that when taken together can be used to treat, e.g., insomnia. The first component of the pharmaceutical composition is a GABA receptor modulating compound. The second component of the pharmaceutical composition is a serotonin reuptake inhibitor, a norepinephrine reuptake inhibitor, a 5-HT2A modulator, or dopamine reuptake inhibitor. In certain embodiments, the pharmaceutical composition comprises eszopiclone. In a preferred embodiment, the pharmaceutical composition comprises eszopiclone and fluoxetine. The present invention also relates to a method of treating a sleep abnormality, treating insomnia, treating depression, augmenting antidepressant therapy, eliciting a dose-sparing effect, reducing depression relapse, improving the efficacy of antidepressant therapy or improving the tolerability of antidepressant therapy, comprising co-administering to a patient in need thereof a GABA-receptor-modulating compound; and a SRI, NRI, 5-HT2A modulator or DRI.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 13/305,007, filed Nov. 28, 2011. U.S. Ser. No. 13/305,007 was a continuation of U.S. application Ser. No. 11/761,235, filed Jun. 11, 2007. U.S. application Ser. No. 11/761,235 was a divisional of U.S. application Ser. No. 11/007,795, Dec. 8, 2004. U.S. Ser. No. 11/007,795 claimed the benefit of priority to U.S. Provisional Patent Application Ser. No. 60/529,156, filed Dec. 11, 2003; U.S. Provisional Patent Application Ser. No. 60/541,614, filed Feb. 4, 2004; and U.S. Provisional Patent Application Ser. No. 60/633,213, filed Dec. 3, 2004. These six earlier applications are hereby incorporated by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • Sleep is controlled by two biological processes, the homeostatic drive and the circadian rhythm. The homeostatic drive manifests itself as an increased drive for sleep. This drive for sleep accumulates across the period of wakefulness (typically daytime) and dissipates across the sleep period. The circadian rhythm of sleep-wake shows a biphasic curve with the greatest drive for sleep occurring between midnight and 5 AM, and between 2 PM and 4 PM. It is believed that major circadian influences are an alerting pulse in the evening and in the morning. It is the interaction of these processes which give rise to the 24-hour sleep schedule. For individuals with a usual sleep period of 11 PM to 7 AM, sleep onset in the evening occurs primarily as a function of homeostatic drive. After about four hours of sleep (at about 3 AM) homeostatic drive dissipates significantly and wakefulness begins to intrude into the sleep period. This propensity to increased wakefulness is further increased by the rise in the circadian alerting pulse at about 5 AM. In terms of the pharmacological management of insomnia, two vulnerabilities have been recognized. The first is difficulty initially falling asleep, with the second being reawakening in the middle of the night.
  • Many physiological functions are characterized by diurnal rhythms, in which levels of circulating hormones, catecholamines and other compounds fluctuate during the day and/or night. Certain medical disorders, such as insomnia, are associated with abnormalities in these rhythms. The time, within a 24 hour period, of administration of drugs for the prevention and treatment of such disorders can be a critical factor in determining efficacy of the therapy.
  • The term “insomnia” refers to the perception of inadequate or non-restful sleep by a patient. Insomnia is a frequent complaint, reported by 32% of the adult population surveyed in the Los Angeles area (Bixler et al, Amer. Journal of Psychiatry 136:1257-1262, 1979), and 13% of the population surveyed in San Marino, Italy (Lugaresi et al., Psychiatric Annals 17:446-453, 1987). Fully 45% of the surveyed adult population of Alachua County, Florida, reported trouble getting to sleep or staying asleep (Karacan et al., Social Science and Medicine 10:239-244, 1976). The prevalence of insomnia has also been shown to be related to the age and sex of the individuals, being more prevalent in older individuals, especially adults aged 65 and over, and in females.
  • Early treatments for insomnia commonly employed central nervous system (CNS) depressants such as barbiturates. These compounds are typically long acting (on the order of 8-50 hours) due to long terminal half-lives, and have a well-known spectrum of side effects, including lethargy, confusion, depression and next day hangover effects. In addition, chronic use has been associated with a high potential for addiction involving both physical and psychological dependence.
  • During the 1980s, the pharmaceutical treatment of insomnia shifted away from barbiturates and other CNS depressants toward the benzodiazepine class of sedative-hypnotic agents. This class of compounds produces a calming effect that results in a sleep-like state in humans and animals, with a greater safety margin than prior hypnotics. However, many benzodiazepines possess side effects that limit their usefulness in certain patient populations. These problems include synergy with other CNS depressants (especially alcohol), the development of tolerance upon repeat dosing, dependency, withdrawal, rebound insomnia following discontinuation of dosing, hangover effects the next day and impairment of psychomotor performance and memory. Next day sleepiness and memory impairment, which can include amnesia for events occurring prior to and after drug administration, is of particular concern in the elderly whose cognitive functions may already be impaired by the aging process.
  • More recent treatments for insomnia have used non-benzodiazepine compounds, which show an improved side effect profile over the benzodiazepine class of sedative-hypnotics. The first of these agents to be approved by the United States Food and Drug Administration (FDA) for marketing in the United States was zolpidem, marketed by Sanofi-Synthelabo as AMBIEN® (zolpidem tartrate), which is based on the imidazopyridine backbone (see U.S. Pat. Nos. 4,382,938 and 4,460,592). In addition to zolpidem, zaleplon, which is marketed by Jones Pharma as SONATA®, was been approved by the FDA; zaleplon is a pyrazolopyrimidine-based compound (see U.S. Pat. No. 4,626,538). Other non-benzodiazepine compounds and/or methods for making or using the same have also been reported (see, e.g., U.S. Pat. Nos. 4,794,185, 4,808,594, 4,847,256, 5,714,607, 4,654,347; 5,538,977, 5,891,891). Attempts have also been disclosed to provide controlled-release dosage forms, particularly in the context of zolpidem and salts thereof (see WO 00/33835 and EP 1 005 863 A1).
  • Norepinephrine and serotonin are mammalian neurotransmitters that play important roles in a wide variety of physiological processes. Norepinephrine, also called noradrenaline, is a neurotransmitter that doubles part-time as a hormone. As a neurotransmitter, norepinephrine helps to regulate arousal, dreaming, and moods. As a hormone, it acts to increase blood pressure, constrict blood vessels and increase heart rate—responses that occur when we feel stress.
  • Serotonin (5-hydroxytryptamine, 5-HT) is widely distributed in animals and plants, occurring in vertebrates, fruits, nuts, and venoms. A number of congeners of serotonin are also found in nature and have been shown to possess a variety of peripheral and central nervous system activities. Serotonin may be obtained from a variety of dietary sources; however, endogenous 5-HT is synthesized from tryptophan through the actions of the enzymes tryptophan hydroxylase and aromatic L-amino acid decarboxylase. Both dietary and endogenous 5-HT are rapidly metabolized and inactivated by monoamine oxidase and aldehyde dehydrogenase to the major metabolite, 5-hydroxyindoleacetic acid (5-HIAA).
  • Serotonin is implicated in the etiology or treatment of various disorders, particularly those of the central nervous system, including anxiety, depression, obsessive-compulsive disorder, schizophrenia, stroke, obesity, pain, hypertension, vascular disorders, migraine, and nausea. Recently, understanding of the role of 5-HT in these and other disorders has advanced rapidly due to increasing understanding of the physiological role of various serotonin receptor subtypes.
  • Neurotransmitters (NTs) produce their effects as a consequence of interactions with cellular receptors. Neurotransmitters, including serotonin, are synthesized in brain neurons and stored in vesicles. Upon a nerve impulse, they are released into the synaptic cleft, where they interact with various postsynaptic receptors. The actions of 5-HT are terminated by three major mechanisms: diffusion; metabolism; and uptake back into the synaptic cleft through the actions of specific amine membrane transporter systems. The major mechanism by which the action of serotonin is terminated is by uptake through presynaptic membranes. After 5-HT acts on its various postsynaptic receptors, it is removed from the synaptic cleft back into the nerve terminal through an uptake mechanism involving a specific membrane transporter in a manner similar to that of other biogenic amines. Thus, the actions of 5-HT, or any neurotransmitter, can be modulated by agents that: stimulate or inhibit its biosynthesis; agents that block its storage; agents that stimulate or inhibit its release; agents that mimic or inhibit its actions at its various postsynaptic receptors; agents that inhibit its reuptake into the nerve terminal; and agents that affect its metabolism.
  • Accordingly, there is a need in the art for serotonin reuptake inhibitor-sedative, norepinephrine reuptake inhibitor-sedative, 5-HT2A modulator-sedative, and dopamine reuptake inhibitor-sedative compositions that induce and maintain sleep as single dose nocturnal formulations, but without the side effects associated with the longer-acting hypnotics. The present invention fulfills this need and further provides other related advantages.
  • SUMMARY OF THE INVENTION
  • The present invention generally relates to pharmaceutical compositions comprising a sedative agent; and serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, dopamine reuptake inhibitors, CRS antagonists and 5-HT2A receptor modulators. The sedative agent is a GABA receptor modulating compound. In a preferred embodiment, the sedative agent is eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof. The pharmaceutical compositions of the invention are useful in the treatment of various sleep disorders. In addition, the present invention also relates to a method of treating a patient suffering from a sleep abnormality or insomnia, comprising administering a therapeutically effective amount of a pharmaceutical composition of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates generally to pharmaceutical compositions containing two or more active agents that when taken together improve the quality of sleep for a patient. In certain embodiments, the present invention relates to a pharmaceutical composition comprising a NRI and a sedative agent. In certain embodiments, the present invention relates to a pharmaceutical composition comprising a dopamine reuptake inhibitor and a sedative agent. The sedative agent is a GABA receptor modulating compound. In a preferred embodiment, the sedative agent is eszopiclone, or a pharmaceutically acceptable salt, solvate, clatherate, polymorph, or co-crystal thereof. Another aspect of the present invention relates to a method of treating a patient suffering from a sleep disorder comprising the step of administering to said patient a therapeutically effective dose of a pharmaceutical composition containing two or more active agents that when taken together improve the quality of sleep or sleep disorders for said patient. Another aspect of the present invention relates to a method of treating a patient suffering from depression comprising the step of administering to said patient a therapeutically effective dose of a pharmaceutical composition of the invention.
  • In certain embodiments, said pharmaceutical composition comprises a norepinephrine reuptake inhibitor and a sedative agent. In certain embodiments, said pharmaceutical composition comprises a dopamine reuptake inhibitor and a sedative agent. In a preferred embodiment, the sedative is eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof. Sleep Difficulties and Insomnia
  • Several epidemiologic studies suggest that 10% to 15% of adults suffer from chronic insomnia, and an additional 25% to 35% have transient or occasional insomnia (Roth T. Int. J. Clin. Pract. Suppl. 2001, 3-8).
  • The National Sleep Foundation's 2002 Sleep in America survey assessed the occurrence of four symptoms of insomnia in adults in the United States: difficulty falling asleep; waking a lot during the night; waking up too early and not being able to get back to sleep; and waking up feeling unrefreshed. In the survey, 58% of the respondents reported experiencing at least one of these symptoms a few nights a week or more, and 35% reported difficulties every night or almost every night within the past year (National Sleep Foundation. 2002 Sleep in America Poll. Washington, D.C.: WB & A Market Research, 2002, 1-43). In addition, of those reporting insomnia symptoms at least a few nights a week, 40% reported feeling unrefreshed upon awakening, 36% reported being awake a lot during the night, 25% reported difficulty falling asleep, and 24% reported waking up too early and being unable to fall back asleep.
  • The major types of insomnia are often described as primary and secondary insomnia (as in the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, Text Revision. 4th ed. Washington, D.C.: American Psychiatric Publishing, Inc, 2000 [DSM]), chronic versus acute/transient insomnia, intrinsic versus extrinsic insomnia (as in the International Classification of Sleep Disorders [ICSD]), and sleep-onset versus sleep maintenance (Diagnostic Classification Steering Committee. International Classification of Sleep Disorders (ICSD): Diagnostic and Coding Manual. Rochester, Minn.: American Sleep Disorders Association, 1990). Many patients with sleep disturbance will fall into more than one of these categories or will have unspecified dissatisfaction with the quality of their sleep (Roth T. Int. J. Clin. Pract. Suppl. 2001, 3-8). The fourth edition of the DSM (DSM-IV) defines insomnia as difficulties in sleep onset (or initiation), difficulties in sleep maintenance, or sleep that is nonrestorative.
  • Chronic insomnia may result from several different sources (Rajput et al., Am. Fam. Physician, 1999, 60:1431-1438). Patients with chronic insomnia can often have several sleep complaints simultaneously and experience a range of sleep disturbances, including prolonged latency to sleep onset, increased time awake during the sleep period, and reduced total sleep time (Benca R M, J. Clin. Psychiatry, 2001, 62 Suppl 10:33-38).
  • Sleep maintenance problems may take several forms, including frequent awakenings, an increase in time spent awake after initially falling asleep (wake time after sleep onset, or WASO, which is a robust measure of sleep maintenance), sleep fragmentation (transient microarousals appearing on an EEG but not necessarily involving full wakefulness), and unrefreshing sleep. Of these, WASO is a particularly sensitive measure of sleep improvement. WASO may include a number of microarousals, as well as all periods of full wakefulness, and thus increases in WASO of only a few minutes may be indicative of substantially improved sleep continuity.
  • The severity of insomnia can be directly correlated to severity of next-day functional impairment. There is also strong evidence that, compared with patients without insomnia, patients with chronic insomnia experience a subjective deterioration in waking behaviors and psychosocial functioning, including impaired memory, concentration, ability to accomplish tasks, and enjoyment of interpersonal relationships (Roth et al., Sleep, 1999, 22 Suppl 2:S354-S358).
  • Sleep maintenance problems may cause decreases in next-day functioning. Bonnet studied healthy volunteers with normal sleep habits and found that, with increasing periods of induced arousal or insomnia during the night, residual effects of next-day performance on evaluations of vigilance, reaction time, sleepiness, and other measures experienced corresponding decreases (Bonnet M H, Physiol. Behav., 1989, 45:1049-1055).
  • Sertraline
  • Sertraline is a serotonin reuptake inhibitor which is marketed as an antidepressant. It is disclosed by U.S. Pat. No. 4,536,518. The therapeutic effect of sertraline is attributed to inhibition of CNS neuronal uptake of serotonin. Clinical studies in man indicate that sertraline blocks the uptake of serotonin in human platelets. In addition, in vitro studies indicate that it is a very poor inhibitor of norepinephrine and dopamine neuronal uptake. Sertraline is a naphthaleneamine that is generally marketed as the hydrochloride salt under the brand name ZOLOFT®.
  • Sertraline hydrochloride has the molecular formula C17H17NCl2.HCl and has the chemical name (1S-cis)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-N-methyl-1-naphthalenamine hydrochloride. The preparation of sertraline may be carried using preparatory methods such as those described in Welch, et al. European Patent Application 30,081 and U.S. Pat. No. 4,536,518. The chemical structure of Sertraline hydrochloride is presented below.
  • Figure US20140343069A1-20141120-C00001
  • The size of a prophylactic or therapeutic dose of sertraline in the acute or chronic management of disease will vary with the severity of the condition to be treated and the route of administration. The dose, and perhaps the dose frequency, will also vary according to the age, body weight, and response of the individual patient. In general, the total daily dose ranges, for the conditions described herein, is from about 1 mg to about 500 mg. Preferably, a daily dose range should be between about 10 mg to about 200 mg. Most preferably, a daily dose range should be between about 20 mg to about 100 mg. In certain embodiments, a daily dosage of 30, 50, 70, or 80 mg may be preferred depending upon patient response. In managing the patient, the therapy may be initiated at a lower dose, perhaps about 10 mg to about 15 mg and increased up to about 20 mg or higher depending-on the patient's global response. It may be necessary to use dosages outside these ranges in some cases. Additional information for sertraline hydrochloride including product information, dosage amounts, and administration is given in Physicians' Desk Reference, 48th Edition, 1994, pp. 2000-2003.
  • Norepinephrine Reuptake Inhibitors (NRI)
  • Many compounds, including those discussed at length below, are norepinephrine reuptake inhibitors, and no doubt many more will be identified in the future. In the practice of the present invention, it is intended to include reuptake inhibitors which can be identified using the protocol described by Wong et al., Drug Development Research, 6, 397 (1985). In certain embodiments, the norepinephrine reuptake inhibitors used in the present invention are characterized in being selective for the inhibition of neurotransmitter reuptake relative to their ability to act as direct agonists or antagonists at other receptor.
  • The ability of compounds to inhibit the reuptake of norepinephrine may be measured by the general procedure of Wong, et al., Drug Development Research, 6, 397 (1985). Male Sprague-Dawley rats weighing 150-250 gm are decapitated and brains are immediately removed. Cerebral cortices are homogenized in 9 volumes of a medium containing 0.32 M sucrose and 10 mM glucose. Crude synaptosomal preparations are isolated after differential centrifugation at 1000×g for 10 minutes and 17,000×g for 28 minutes. The final pellets are suspended in the same medium and kept in ice until use within the same day.
  • Synaptosomal uptake of 3H-norepinephrine is determined as follows. Cortical synaptosomes (equivalent to 1 mg of protein) are incubated at 37° C. for 5 minutes in 1 mL Krebs-bicarbonate medium containing also 10 mM glucose, 0.1 mM iproniazide, 1 mM ascorbic acid, 0.17 mM EDTA and 50 nM 3H-norepinephrine. The reaction mixture is immediately diluted with 2 mL of ice-chilled Krebs-bicarbonate buffer and filtered under vacuum with a cell harvester (Brandel, Gaithersburg, Md.). Filters are rinsed twice with approximately 5 mL of ice-chilled 0.9% saline and the uptake of 3H-norepinephrine assessed by liquid scintillation counting. Accumulation of 3H-norepinephrine at 4° C. is considered to be background and is subtracted from all measurements. The concentration of the test compound required to inhibit 50% of the 3H-norepinephrine accumulation (IC50 values) are determined by linear regression analysis.
  • In general, a suitable dose of a norepinephrine reuptake inhibitor or a pharmaceutically acceptable salt thereof for administration to a human will be in the range of 0.01 to 50 mg per kilogram body weight of the recipient per day, preferably in the range of 0.1 to 3 mg per kilogram body weight per day. Unless otherwise stated all weights of active ingredients are calculated in terms of drug per se. The desired dose is preferably presented as two, three, four, five or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing 5 to 50 mg.
  • Reboxetine
  • Reboxetine is active on the central nervous system and has been used to treat depression, oppositional defiant disorder, attention-deficit/hyperactivity disorder, and conduct disorder. See WO 99/15163, WO 95/15176, and WO 99/15177. Reboxetine does not act like most antidepressants. Reboxetine is ineffective in the 8-OH-DPAT hypothermia test, indicating that reboxetine is not a SSRI. Brian E. Leonard, “Noradrenaline in basic models of depression.” European-Neuropsychopharmacol., 7 Suppl. 1 pp. S 11-6 and S71-3 (April 1997). Reboxetine is a norepinephrine reuptake inhibitor, with only marginal serotonin and no dopamine reuptake inhibitory activity. Reboxetine displays no anticholinergic binding activity in different animal models, and is substantially devoid of monoamine oxidase (MAO) inhibitory activity. Racemic reboxetine exhibits a pharmacological selectivity of serotonin (Ki)/norepinephrine (Ki) of about 80.
  • Reboxetine is a safe drug, and its use in ADHD, in both adults and children, is a superior treatment for that disorder because of its improved safety. The compound is particularly selective, having few if any physiological effects besides those on norepinephrine processing, and therefore is free of side effects and unwanted activities. Further, it is effective at relatively low doses, as discussed below, and may safely and effectively be administered once per day. Thus, difficulties created by the multiple dosing of patients, who are children and disorganized adults, are completely avoided.
  • The racemate form of reboxetine is well tolerated and has a wide safety range. The effective dose of reboxetine for ADHD is in the range from about 1 mg/day to about 100 mg/day. The preferred adult dose is in the range from about 5 to about 80 mg/day, and a more highly preferred adult dose is from about 10 to about 60 mg/day. The children's dose of course is smaller, in the range from about 1 to about 70 mg/day, more preferably from about 5 to about 60 mg/day and still more preferably from about 4 to about 10 mg/day. The optimum dose for each patient, as always, must be set by the physician in charge of the case, taking into account the patient's size, other medications which the patient requires, severity of the disorder and all of the other circumstances of the patient.
  • Reboxetine was first taught by U.S. Pat. No. 4,229,449 and has the chemical name 2-[α-(2-ethoxy)phenoxy-benzyl]morpholine. Reboxetine is also described in U.S. Pat. Nos. 5,068,433; 5,391,735; 6,642,235; and in GB 2,167,407. Individual stereoisomers of reboxetine can be obtained by resolution of the racemic mixture of enantiomers using conventional methods generally known by those skilled in the art. Such methods include, but are not limited to, resolution by simple crystallization and chromatographic techniques, for example, as set forth in GB 2,167,407. The structure of reboxetine is presented below.
  • Figure US20140343069A1-20141120-C00002
  • Generally, reboxetine is administered as the racemate. However, in certain instances, it may be advantageous to administer reboxetine in the form of a single enantiomer. Specifically, it has been found that compositions containing an optically pure (S,S) reboxetine are about 5 to about 8.5 times more effective at inhibiting the reuptake of norepinephrine than compositions containing the racemic mixture of the (R,R) and (S,S) stereoisomers. Accordingly, the typical daily dosage of the racemic mixture (i.e., commercially available reboxetine) can be reduced by about 50% to about 80% when using an optically pure (S,S) reboxetine. The reduction in dosage does not lead to a reduction in efficacy, but the reduction or elimination of various adverse side effects was observed.
  • In particular, because an optically pure (S,S) reboxetine selectively inhibits norepinephrine reuptake compared to serotonin reuptake, adverse side effects associated with serotonin reuptake are reduced or eliminated. Such adverse side effects include, but are not limited to, gastrointestinal disturbances, anxiety, sexual dysfunction, and undesirable side effects associated with drug-drug interactions.
  • Tomoxetine
  • Tomoxetine is a notably safe drug for use in adults and children for treatment of attention deficit hyperactivity disorder. It is a superior treatment for that disorder because of its improved safety. Tomoxetine is effective at relatively low doses and may safely and effectively be administered once per day. In addition, the results from animal studies indicate that tomoxetine selectively inhibits norepinephrine uptake indicating that tomoxetine would be useful in treating depression. Tomoxetine has been administered in single oral doses up to 90 mg to humans. In addition, no serious drug-related adverse effects were observed when tomoxetine was administered to humans at a dosage of 20 or 40 mg b.i.d. for 7 days.
  • Tomoxetine has the chemical name (R)-(−)-N-methyl-3-(2-methylphenoxy)-3-phenylpropylamine. The mechanism of tomoxetine's activity is attributed to its ability to inhibit norepinephrine reuptake. See Gehlert, et al. Neuroscience Letters 1993, 157, 203-06. Tomoxetine is quite active in that function, and moreover is substantially free of other central nervous system activities at the concentrations or doses at which it effectively inhibits norepinephrine reuptake. Thus, it is quite free of side effects and is properly considered to be a selective drug. Tomoxetine is usually administered as the hydrochloride salt.
  • The effective dose of tomoxetine for ADHD is in the range from about 5 mg/day to about 100 mg/day. The preferred adult dose is in the range from about 10 to about 80 mg/day, and a more highly preferred adult dose is from about 20 to about 60 mg/day. The children's dose of course is smaller, in the range from about 5 to about 70 mg/day, more preferably from about 10 to about 60 mg/day and still more preferably from about 10 to about 50 mg/day. The optimum dose for each patient, as always, must be set by the physician in charge of the case, taking into account the patient's size, other medications which the patient requires, severity of the disorder and all of the other circumstances of the patient.
  • Since tomoxetine is readily orally absorbed and requires only once/day administration, there is little or no reason to administer it in any other way than orally. It may be produced in the form of a clean, stable crystal, and thus is easily formulated in the usual oral pharmaceutical forms, such as tablets, capsules, suspensions, and the like. The usual methods of pharmaceutical scientists are applicable. It may usefully be administered, if there is any reason to do so in a particular circumstance, in other pharmaceutical forms, such as injectable solutions, depot injections, suppositories and the like, which are well known to and understood by pharmaceutical scientists. It will substantially always be preferred, however, to administer tomoxetine as a tablet or capsule and such pharmaceutical forms are recommended. (S,S)-hydroxybupropion
  • The present invention contemplates the use of norepinephrine reuptake inhibitors in general, including nortriptyline, maprotiline, protriptyline, trimipramine, venlafaxine, amitriptyline, amoxapine, doxepin, nefazodone, and lamotrigine.
  • Dopamine Reuptake Inhibitors
  • A large number of dopamine reuptake inhibitors are known in the art and are amenable to the present invention. Dopamine reuptake inhibitors can be identified using the rat corpus striatum assay described in US Patent Application 20040180857, which is hereby incorporated by reference. In general, a dose of a dopamine reuptake inhibitor or a pharmaceutically acceptable salt thereof suitable for administration to a human will be in the range of 0.01 to 50 mg per kilogram body weight of the recipient per day, preferably in the range of 0.1 to 3 mg per kilogram body weight per day. Unless otherwise stated all weights of active ingredients are calculated in terms of drug per se. In certain embodiments, the desired dose is presented as two, three, four, five or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing about 5 to 50 mg.
  • Amineptine Sedative Agent: GABA Receptor Modulating Agents
  • γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system. Receptors for GABA have traditionally been divided into GABAA and GABAB receptor subtypes. The GABAA receptor is the more prominent GABA receptor subtype, and is a ligand-gated chloride ion channel that is opened after release of GABA from presynaptic neurons. The GABAB receptor is a member of the G protein-coupled receptor family coupled both to biochemical pathways and to regulation of ion channels. See Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, N.Y., 9th Edition, (1996) and Kerr, D. I. B. and Ong, J. Pharmac. Ther. 1995, 67, 187-246.
  • In general, a dose of the GABA-receptor modulating agent or a pharmaceutically acceptable salt thereof suitable for administration to a human will be in the range of 0.01 to 50 mg per kilogram body weight of the recipient per day, preferably in the range of 0.1 to 3 mg per kilogram body weight per day. Unless otherwise stated all weights of active ingredients are calculated in terms of drug per se. In certain embodiments, the desired dose is presented as two, three, four, five or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing about 5 to 50 mg.
  • GABA Binding Assay
  • The affinity of a compound to bind to a GABA receptor can be measured using procedures known in the art. In addition, assay kits for determining GABA-receptor binding affinity can be purchased from MDS Pharma Services. For representative examples of procedures to determine GABA-receptor binding affinity see Enna, S. J.; Snyder, S. H. Mol. Pharmacol. 1976, 13, 442; C. Martini et al. J. Neurochem. 1983, 41, 1183; Lewin, A. H. et al. Mol. Pharmacol. 1989, 35, 189; Schwartz, R. D.; Mindlin, M. C. J Pharmacol. Exp. Ther. 1988, 244, 963; Facklam, M.; Bowery, N. G. Br. J. Pharmacol. 1993, 110, 1291; P. Mathivet et al. Eur. J. Pharmacol. 1992, 321, 67; A. Green et al. Br. J. Pharmacol. 2000, 131(8), 1766; K. Kaupmann et al. Nature 1997, 386, 239; H. W. Damm et al. Res. Comm. Chem. Pathol. Pharmacol. 1978, 22, 597; and R. C. Speth et al. Life Sci. 1979, 24, 351. Furthermore, a representative procedure for determining the binding affinity of a compound to a GABA receptor is described below. For additional details pertaining to the following procedure see U.S. Pat. No. 6,743,789.
  • The affinity of a compound at GABAA-receptor subtypes can be measured by competition for [3H]flumazenil (85 Ci/mmol; Amersham) binding to SF9 cells expressing rat receptors of composition α1β3γ2, α2β3γ2, α3β3γ2 and α5β3γ2.
  • Importantly, compounds known in the art that modulate the activity of the GABA receptor are amenable to the present invention. Accordingly, GABA analogs with pharmaceutical activity have been synthesized and described in U.S. Pat. Nos. 4,024,175; 5,563,175; 6,020,370; 6,028,214; 6,103,932; and 6,117,906; and International Patent Applications WO 92/09560, WO 93/23383, WO 97/29101, WO 97/33858, WO 97/33859, WO 98/17627, WO 99/08671, WO 99/21824, WO 99/31057, WO 99/31074, WO 99/31075, WO 99/61424, WO 00/15611, WO 00/31020, and WO 00/50027, each of which is hereby incorporated by reference. In addition, GABAB receptor agonists are disclosed in EP 0356128; EP 0181833, EP 0399949, EP 0463969, and FR 2,722,192, each of which is hereby incorporated by reference.
  • Racemic Zopiclone
  • Zopiclone is the first of a chemically distinct class of hypnotic and anxiolytic compounds that offers a psychotherapeutic profile of efficacy and side effects similar to the benzodiazepines. This class of compounds, the cyclopyrrolones, appears to cause less residual sedation and slowing of reaction times than the benzodiazepines, and it offers the promise of an improved therapeutic index over benzodiazepines.
  • The pharmacology of zopiclone has been shown both preclinically and clinically to be characterized by five distinct elements. It is predominantly a hypnotic-sedative, offering significant activity on first treatment in the absence of respiratory or cardiac depression. Additionally, zopiclone is an anticonvulsant, and it further exhibits muscle relaxant, anti-aggressive, and anxiolytic activities.
  • The compound binds to the benzodiazepine receptor complex, or to a site linked closely to this receptor complex. (See Goa, K. L. and Heel, R. C. Drugs, 32:48-65, (1986); Brun, J. P., Pharmacology, Biochemistry and Behavior, 29:831-832, (1988); Julou, L. et al., Pharmacology, Biochemistry and Behavior, 23:653-659, (1985); Verma, A. and Snyder S. H., Annu. Rev. Pharmacol. Toxicol, 29:307-322, (1989). The central benzodiazepine receptor is a macromolecular complex that includes a site for the binding of gamma-aminobutyric acid (GABA), the inhibitory neurotransmitter, suggesting that benzodiazepines and chemically unrelated agonists including zopiclone may exert their effects by facilitating the synaptic effects of GABA. While it interacts with the benzodiazepine receptor, zopiclone apparently has minimal effects on memory, no interaction with alcohol, and little or no abuse or dependence potential.
  • The pharmacologic activity of zopiclone is predominantly that of a sedative or hypnotic, particularly at low doses. Accordingly, the drug may improve sleep in adults and geriatric patients with several types of sleep disorders, and situational, transient, primary, and secondary insomnia. Following a bedtime dose of zopiclone, there is minimal impairment of psychomotor skills and mental acuity the following morning. The drug is well absorbed from the stomach, and it is not highly bound to plasma proteins.
  • The racemic mixture of zopiclone is presently used outside the United States primarily as an hypnotic, improving sleep patterns in chronic insomniacs and providing sleep induction before surgical procedures in hospitalized patients.
  • Insomnia is characterized by difficulty in sleeping or disturbed sleep patterns. Insomnia may be of a primary nature with little apparent relationship to immediate somatic or psychic events, or secondary to some acquired pain, anxiety or depression. Where possible, treatment is directed to the underlying cause of the condition; hypnotic medication such as zopiclone is generally reserved for insomnia of emotional disturbances and for refractory cases due to more common causes. In these cases, zopiclone provides sedative-hypnotic effects from the first day of treatment, an activity that is maintained following subsequent doses over long treatment periods. There appears to be no diminution or potentiation of activity in adult or geriatric patients, and little or no effect on alertness and performance some ten hours following the bedtime dose. (Brun, J. P. Pharmacology, Biochemistry and Behavior 1988, 29, 831-832).
  • In addition, the racemic mixture of zopiclone may be useful in treating other disorders such as convulsive states like epilepsy. Seizure disorder or epilepsy represents a broad group of central nervous system disorders of function that are characterized by recurrent, sudden, often brief attacks, which may alter consciousness, motor activity, sensory phenomena, and autonomic responses, and which may prompt inappropriate behavior. Recurrent seizure patterns of either an idiopathic or symptomatic etiology are termed epilepsy. The most common form of these recurrent but transient episodes are convulsive seizures, which may include loss of consciousness, motor function and control, and which may produce tonic or clonic jerking of the extremities. Pharmacological treatment of epilepsy has been directed to control based on seizure type, rather than etiology. Accordingly, the convulsions have been grouped in broad but rather distinct types including Tonic-clonic (Grand Mal), Partial (Focal) seizures, psychomotor (Complex partial) seizures, pyknoepileptic or Absence (Petit Mal) and the less frequent Myoclonic seizures.
  • The binding of zopiclone at or near the benzodiazepine receptor complex suggests that the compound may facilitate the inhibitory action of the neurotransmitter GABA and therefore its synaptic effects. As stated above, benzodiazepine receptors, which can be located both within the central nervous system and peripherally (e.g., in the endocrine system), are comprised of macromolecular complexes characterized by sites for binding of the benzodiazepines, GABA, and zopiclone. The benzodiazepine receptor complex is further associated with, and interacts with, a transmembrane channel for chloride ion transport. The effect of zopiclone's interaction with the benzodiazepine receptor/GABA receptor/chloride channel complex is to cause GABA to inhibit cerebral neuronal discharge, presumably by increasing membrane conductance of chloride ion, thus stabilizing membrane potentials and dampening excitatory input. (See Meldrum, B. S., Brit. J. Clin. Pharm., 27 (suppl. 1): 3S-11S, (1989)). It is believed that through mediation of this process zopiclone may be useful in treating epilepsy and a number of other conditions in which GABA is believed to exert a physiologic role.
  • While the racemic mixture of zopiclone may be useful in the treatment of the above-described disorders, it has a low therapeutic index and also causes adverse effects. These adverse effects include, but are not limited to, the development of a bitter taste due to the salivary secretion of the drug, dry mouth, drowsiness, morning tiredness, headache, dizziness, impairment of psychomotor skills and related effects.
  • It has recently been discovered that by using optically pure or substantially optically pure (+) zopiclone yields an increase in the potency of therapeutic effect as compared to that found in the racemic mixture. In addition, utilizing the optically pure isomer of (+) zopiclone results in clearer dose-related definitions of efficacy, diminished adverse effects, and accordingly, an improved therapeutic index. Hence, it is generally more desirable to use the (+) isomer of zopiclone.
  • Eszopiclone
  • Eszopiclone (or (+)-Zopiclone or (S)-zopiclone) is a potent drug useful for the treatment of sleep disorders, convulsive disorders, and disorders that are affected by the binding of agonists to central nervous system or peripheral benzodiazepine receptors. Administration of isomerically pure or substantially isomerically pure (e.g., 90%, 95%, or 99% isomeric purity) (+)-zopiclone is generally preferred because this isomer possesses potent activity in treating sleep disorders while avoiding adverse effects including but not limited to drowsiness, next day effects, such as tiredness in the morning, inability to concentrate and headache.
  • Eszopiclone is a cyclopyrrolone that has the chemical name (+) 6-(5-chloro-pyri-2-dyl)-5-(4-methylpiperazin-1-yl) carbonyloxy-7-oxo-6,7-dihydro-5H-pyrrolo[3-4b]pyrazin or (+) 6-(5-chloro-2-pyridinyl)-6,7-dihydro-7-oxo-5H-pyrrolo[3,4b]pyrazin-5-yl 4-methylpiperazine-1-carboxylate. The chemical structure of zopiclone is shown below:
  • Figure US20140343069A1-20141120-C00003
  • Eszopiclone is an optical isomer, the (+)-isomer, of the compound zopiclone, which is described in U.S. Pat. Nos. 6,319,926 and 6,444,673, and in Goa and Heel, [Drugs, 32:48-65 (1986)] and in U.S. Pat. Nos. 3,862,149 and 4,220,646. This isomer, which will hereinafter be referred to as eszopiclone, includes optically pure and the substantially optically pure (e.g., 90%, 95% or 99% optical purity) (+)-zopiclone isomer.
  • Racemic zopiclone is commercially available and can be made using various methods, such as those disclosed in U.S. Pat. Nos. 3,862,149 and 4,220,646. Eszopiclone may be prepared from racemic zopiclone using standard methods, such as chiral-phase chromatography, resolution of an optically active salt, stereoselective enzymatic catalysis by means of an appropriate microorganism, or asymmetric synthesis. U.S. Pat. No. 6,319,926 discloses methods for making eszopiclone, including resolution from racemic zopiclone by means of an optically active acid, such as D(+)—O,O′-dibenzoyltartaric acid.
  • Another method for making eszopiclone (or (S)-zopiclone) is by synthesis from racemic zopiclone (or (RS)-zopiclone) by chemical resolution via the D-malate salt as shown in the following synthesis schematic.
  • Figure US20140343069A1-20141120-C00004
  • In the synthetic route shown above, (RS)-Zopiclone and D-malic acid are dissolved in a mixture of acetone and methanol to form (S)-zopiclone D-malate and (R)-zopiclone D-malate. The two diastereomeric salts are resolved in-situ by selective crystallization, filtration and rinsing to produce highly (S)-enriched zopiclone D-malate salt. In this process, the majority of (R)-zopiclone D-malate remains in the mother liquors. In this method, the use of an acetone/methanol co-solvent system results in a highly diastereoselective salt crystallization, and preferably, the co-solvent ratio used should be in the range of approximately 1.9/1 to 2.3/1 w/w acetone in methanol. Preferably, this stage of the process may also include cooling the reaction mixture during the isolation step to a temperature in the inclusive range of about 10° C. to 15° C., and washing or rinsing the wet cake obtained after filtration with cold solvent, such as cold methanol.
  • The resulting (S)-zopiclone D-malate salt is converted to optically pure eszopiclone free base by treatment with aqueous potassium carbonate and ethyl acetate, followed by phase separation and crystallization. In this process, once a solution of eszopiclone free-base is obtained, additional enantiomeric enrichment (typically 1 to 4%) can be achieved by crystallization from ethyl acetate of low water content. The water content can be controlled, e.g., by azeotropic distillation, and incorporating an in-process control of water content into the crystallization process can further improve the robustness of enantiomeric purity. Preferably, the water level during this step is 2% or less, more preferably 1% or less, and most preferably 0.6% or less.
  • The resulting optically pure eszopiclone free base can then be milled to a desired size for use as an active ingredient in a pharmaceutical composition according to or for use in methods of the present invention Eszopiclone possess potent activity in treating sleep disorders such as insomnia Eszopiclone also possess potent activity in treating sleep disorders while avoiding the usual adverse effects including but not limited to drowsiness, next day effects tiredness in the morning, inability to concentrate and headache, which are associated with the administration of the racemic mixture of zopiclone. Eszopiclone also possess potent activity in treating convulsive disorders such as epilepsy while avoiding the adverse effects which are associated with the administration of the racemic mixture of zopiclone.
  • Additionally, compositions containing optically pure eszopiclone are useful in treating disorders that are affected by the binding of agonists to central nervous system and peripheral benzodiazepine receptors. Such disorders include but are not limited to aggressive behavior, muscle tension, behavioral disorders, depression, schizophrenia, and disorders associated with abnormal plasma hormone levels such as endocrine disorders. These compositions are useful in treating disorders that are affected by the binding of agonists to central nervous system and peripheral benzodiazepine receptors.
  • The size of a prophylactic or therapeutic dose of eszopiclone in the acute or chronic management of disease will vary with the severity of the condition to be treated and the route of administration. The dose, and perhaps the dose frequency, will also vary according to the age, body weight, and response of the individual patient. In general, the total daily dose ranges, for the conditions described herein, is from about 0.25 mg to about 15 mg. Preferably, a daily dose range should be between about 0.5 mg to about 10 mg. Most preferably, a daily dose range should be between about 1.0 mg to about 5.0 mg. In managing the patient, the therapy may be initiated at a lower dose, perhaps about 0.5 mg to about 3 mg and increased up to about 5 mg or higher depending-on the patient's global response. It is further recommended that children and patients over 65 years, and those with impaired renal or hepatic function, initially receive low doses, and that they be titrated based on global response and blood level. It may be necessary to use dosages outside these ranges in some cases.
  • In the case where an oral composition is employed, a suitable dosage range for use is from about 0.25 mg to about 15.0 mg with, in the usual case, the lower doses serving more common insomnia, and the higher doses, presented in divided dosing, reserved for control of psychiatric disorders. Preferably, a dose range of between about 0.5 mg to about 10 mg is given as a once daily administration or in divided doses if required; most preferably, a dose range of from about 1.0 mg to about 5 mg is given, either as a once daily administration or in divided doses if required. Patients may be upward titrated from below to within this dose range to a satisfactory control of symptoms as appropriate.
  • Zolpidem
  • Zolpidem is a hypnotic agent that is known to induce or maintain sleep.
  • Zolpidem is an imidazopyridine having IUPAC chemical nomenclature N,N,6-trimethyl-2-(4-methylphenyl)-imidazo[1,2-s]pyridine-3-acetamide. The structure of zolpidem is presented below.
  • Figure US20140343069A1-20141120-C00005
  • The zolpidem free base was disclosed generically in EP 50563 of Synthelabo. Zolpidem tartrate was subsequently disclosed in EP 251859 (U.S. Pat. No. 4,794,185). More recently, zolpidem has been suggested as useful in treating Parkinson's disease, parkinsonian symptoms, obsessive-compulsive disorder and certain forms of dementia in U.S. Pat. No. 5,891,891.
  • Zolpidem has been marketed as an immediate release tablet for oral application under the trade marks AMBIEN® and STILNOX®. In these commercial pharmaceutical dosage forms, zolpidem is present as a salt with L(+)tartaric acid wherein the molar ratio of zolpidem to tartaric acid is 2:1. This salt is conventionally called zolpidem hemitartrate but a more correct denomination thereof, which will be used hereinafter, is zolpidem tartrate. The European Pharmacopoeia, Monograph No. 1999:1280, states that zolpidem tartrate is characterized as a white or almost white crystalline powder, hygroscopic, slightly soluble in water, sparingly soluble in methanol, and practically insoluble in methylene chloride. Commercially available zolpidem tablets are conventional film coated tablets for immediate release of the active substance after ingestion and they contain 5 or 10 mg of zolpidem tartrate. The inactive ingredients are: lactose, microcrystalline cellulose, sodium starch glycolate, hydroxypropylmethylcellulose and magnesium stearate. The film coating layer consists of hydroxypropylmethylcellulose, polyethylene glycol and colorants.
  • Zolpidem is generally administrated orally by means of a tablet or other solid dosage form. Indeed pharmacokinetic and pharmacodynamic data show that zolpidem has both a rapid absorption and onset of hypnotic action. Its bioavailability is 70% following oral administration and demonstrates linear kinetics in the therapeutical dose range, which lies between 5 and 10 mg in conventional forms, peak plasma concentration is reached at between 0.5 and 3 hours, the elimination half-life is short, with a mean of 2.4 hours and a duration of action of up to 6 hours. Generally, the dosage of zolpidem is between 1 and 50 mg.
  • Traditionally, only immediate release dosage forms were developed which disintegrated rapidly in the gastrointestinal tract, dissolved in the fluid of the gastrointestinal tract and underwent systemic absorption, where zolpidem, can exert its pharmacological effect and induce sleep of the patient. More recently, new dosage forms have been developed which sustain release of zolpidem over a period compatible with the desired time of sleep and the time needed for elimination of the drug from the human body to a sufficiently low level. See U.S. Pat. Nos. 6,638,535 and 6,514,531.
  • Zaleplon
  • Zaleplon (Wyeth-Ayerst), also known as “Sonata”, is a nonbenzodiazipine recently approved by the FDA as sedative-hypnotic (see U.S. Pat. No. 4,626,538). Zaleplon is a pyrazolopyrimidine that has the chemical name N-[3-(3-cyanopyrazolo[1,5-a]pyrimidin-7-yl)phenyl]-N-ethylacetamide. Zaleplon is a white powder that has very low solubility in water and limited solubility in alcohol or propylene glycol. The structure of Zaleplon is given below.
  • Figure US20140343069A1-20141120-C00006
  • Zaleplon binds to the gamma-aminobutyric acid benzodiazepine (GABA-BZ) receptor complex. Binding studies have revealed that Zaleplon binds selectively to the brain omega-1 receptor located on alpha subunit of the GABAA/chloride ion channel receptor complex. This interaction modulates the binding of t-butylbicyclophosphorothionate binding. Importantly, the pharmacological properties of benzodiazepines, e.g. sedative, anxiolytic, muscle relaxant, and anticonvulsive effects in animals, are linked to modulation of the GABA-BZ receptor chloride channel complex.
  • The size of a prophylactic or therapeutic dose of Zaleplon in the acute or chronic management of disease will vary with the severity of the condition to be treated and the route of administration. The dose, and perhaps the dose frequency, will also vary according to the age, body weight, and response of the individual patient. In general, the total daily dose ranges, for the conditions described herein, is from about 1 mg to about 50 mg. Preferably, a daily dose range should be between about 1 mg to about 25 mg. Most preferably, a daily dose range should be between about 5 mg to about 20 mg. In certain embodiments, the daily dose range should be about 5, 10, 15, or 20 mg. In managing the patient, the therapy may be initiated at a lower dose, perhaps about 2 mg to about 5 mg and increased up to about 10 mg or higher depending-on the patient's global response.
  • Generally, Zaleplon should be taken just prior to bedtime or immediately if a patient the patient has already gone to bed is having difficulty falling asleep. In certain instances the dose of Zaleplon should be adjusted in accord with diet or special needs of the patient. For example, the dosage of Zaleplon should be approximately 5 mg for elderly or debilitated patients whom are likely to be particularly sensitive to hypnotic medications. In addition, patients suffering from mild to moderate hepatic impairment should be administered only a 5 mg dose because systemic removal of drug is reduced in such patients.
  • Combination Therapy
  • One aspect of the present invention relates to combination therapy. This type of therapy is advantageous because the co-administration of active ingredients achieves a therapeutic effect that is greater than the therapeutic effect achieved by administration of only a single therapeutic agent. In one embodiment, the co-administration of two or more therapeutic agents achieves a synergistic effect, i.e., a therapeutic affect that is greater than the sum of the therapeutic effects of the individual components of the combination. In another embodiment, the co-administration of two or more therapeutic agents achieves an augmentation effect.
  • The active ingredients that comprise a combination therapy may be administered together via a single dosage form or by separate administration of each active agent. In certain embodiments, the first and second therapeutic agents are administered in a single dosage form. The agents may be formulated into a single tablet, pill, capsule, or solution for parenteral administration and the like.
  • Alternatively, the first therapeutic agent and the second therapeutic agents may be administered as separate compositions, e.g., as separate tablets or solutions. The first active agent may be administered at the same time as the second active agent or the first active agent may be administered intermittently with the second active agent. The length of time between administration of the first and second therapeutic agent may be adjusted to achieve the desired therapeutic effect. In certain instances, the second therapeutic agent may be administered only a few minutes (e.g., 1, 2, 5, 10, 30, or 60 min) after administration of the first therapeutic agent. Alternatively, the second therapeutic agent may be administered several hours (e.g., 2, 4, 6, 10, 12, 24, or 36 hr) after administration of the first therapeutic agent. In certain embodiments, it may be advantageous to administer more than one dosage of the second therapeutic agent between administrations of the first therapeutic agent. For example, the second therapeutic agent may be administered at 2 hours and then again at 10 hours following administration of the first therapeutic agent. Alternatively, it may be advantageous to administer more than one dosage of the first therapeutic agent between administrations of the second therapeutic agent. Importantly, it is preferred that the therapeutic effects of each active ingredient overlap for at least a portion of the duration of each therapeutic agent so that the overall therapeutic effect of the combination therapy is attributable in part to the combined or synergistic effects of the combination therapy.
  • The dosage of the active agents will generally be dependent upon a number of factors including pharmacodynamic characteristics of each agent of the combination, mode and route of administration of active agent(s), the health of the patient being treated, the extent of treatment desired, the nature and kind of concurrent therapy, if any, and the frequency of treatment and the nature of the effect desired. In general, dosage ranges of the active agents often range from about 0.001 to about 250 mg/kg body weight per day. For example, for a normal adult having a body weight of about 70 kg, a dosage in the range of from about 0.1 to about 25 mg/kg body weight is typically preferred. However, some variability in this general dosage range may be required depending upon the age and weight of the subject being treated, the intended route of administration, the particular agent being administered and the like. Since two or more different active agents are being used together in a combination therapy, the potency of each agent and the interactive effects achieved using them together must be considered. Importantly, the determination of dosage ranges and optimal dosages for a particular mammal is also well within the ability of one of ordinary skill in the art having the benefit of the instant disclosure.
  • In certain embodiments, it may be advantageous for the pharmaceutical combination to have a relatively large amount of the first component compared to the second component. In certain instances, the ratio of the first active agent to second active agent is 30:1, 20:1, 15:1, 10:1, 9:1, 8:1, 7:1, 6:1, or 5:1. In certain embodiments, it may be preferable to have a more equal distribution of pharmaceutical agents. In certain instances, the ratio of the first active agent to the second active agent is 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, or 1:4. In certain embodiments, it may be advantageous for the pharmaceutical combination to have a relatively large amount of the second component compared to the first component. In certain instances, the ratio of the second active agent to the first active agent is 30:1, 20:1, 15:1, 10:1, 9:1, 8:1, 7:1, 6:1, or 5:1. Importantly, a composition comprising any of the above-identified combinations of first therapeutic agent and second therapeutic agent may be administered in divided doses 1, 2, 3, 4, 5, 6, or more times per day or in a form that will provide a rate of release effective to attain the desired results. In a preferred embodiment, the dosage form contains both the first and second active agents. In a more preferred embodiment, the dosage form only has to be administered one time per day and the dosage form contains both the first and second active agents.
  • For example, a formulation intended for oral administration to humans may contain from 0.1 mg to 5 g of the first therapeutic agent and 0.1 mg to 5 g of the second therapeutic agent, both of which are compounded with an appropriate and convenient amount of carrier material varying from about 5 to about 95 percent of the total composition. Unit dosages will generally contain between from about 0.5 mg to about 1500 mg of the first therapeutic agent and 0.5 mg to about 1500 mg of the second therapeutic agent. In a preferred embodiment, the dosage comprises 0.5 mg, 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg, or 1000 mg, etc., up to 1500 mg of the first therapeutic agent. In a preferred embodiment, the dosage comprises 0.5 mg, 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg, or 1000 mg, etc., up to 1500 mg of the second therapeutic agent.
  • The optimal ratios of the first and second therapeutic agent can be determined by standard assays known in the art. For example, the phenyl-p-benzoquinone test may be used to establish analgesic effectiveness. The phenyl-p-benzoquinone induced writhing test in mice (H. Blumberg et al., 1965, Proc. Soc. Exp. Med. 118:763-766) and known modifications thereof is a standard procedure which may be used for detecting and comparing the analgesic activity of different classes of analgesic drugs with a good correlation with human analgesic activity. Data for the mouse, as presented in an isobologram, can be translated to other species where the orally effective analgesic dose of the individual compounds are known or can be estimated. The method consists of reading the percent ED50 dose for each dose ratio on the best fit regression analysis curve from the mouse isobologram, multiplying each component by its effective species dose, and then forming the ratio of the amount of COX-2 inhibitor and opioid analgesic. This basic correlation for analgesic properties enables estimation of the range of human effectiveness (E. W. Pelikan, 1959, The Pharmacologist 1:73). Thus, application of an equieffective dose substitution model and a curvilinear regression analysis utilizing all the data for the individual compounds and various dose ratios for the combinations can be used to establish the existence of unexpectedly enhanced analgesic activity of combinations of active agents, i.e., the resulting activity is greater than the activity expected from the sum of the activities of the individual components.
  • The toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit large therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of RT production from infected cells compared to untreated control as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography (HPLC).
  • Synergism and Augmentation
  • The term “synergistic” refers to a combination which is more effective than the additive effects of any two or more single agents. A synergistic effect permits the effective treatment of a disease using lower amounts (doses) of either individual therapy. The lower doses result in lower toxicity without reduced efficacy. In addition, a synergistic effect can result in improved efficacy, e.g., improved antiviral activity. Finally, synergy may result in an improved avoidance or reduction of disease as compared to any single therapy.
  • Combination therapy can allow for the use of lower doses of the first therapeutic or the second therapeutic agent (referred to as “apparent one-way synergy” herein), or lower doses F both therapeutic agents (referred to as “two-way synergy” herein) than would normally be required when either drug is used alone.
  • In certain embodiments, the synergism exhibited between the second therapeutic agent and the first therapeutic agent is such that the dosage of the first therapeutic agent would be sub-therapeutic if administered without the dosage of the second therapeutic agent. Alternatively, the synergism exhibited between the second therapeutic agent and the first therapeutic agent is such that the dosage of the second therapeutic agent would be sub-therapeutic if administered without the dosage of the first therapeutic agent.
  • The terms “augmentation” or “augment” refer to combination where one of the compounds increases or enhances therapeutic effects of another compound or compounds administered to a patient. In some instances, augmentation can result in improving the efficacy, tolerability, or safety, or any combination thereof, of a particular therapy.
  • In certain embodiments, the present invention relates to a pharmaceutical composition comprising a therapeutically effective dose of a first therapeutic agent together with a dose of a second therapeutic agent effective to augment the therapeutic effect of the first therapeutic agent. In other embodiments, the present invention relates to methods of augmenting the therapeutic effect in a patient of a first therapeutic agent by administering the second therapeutic agent to the patient. In other embodiments, the present invention relates to a pharmaceutical composition comprising an therapeutically effective dose of a second therapeutic agent together with a dose of a first therapeutic agent effective to augment the therapeutic effect of the second therapeutic agent. In other embodiments, the present invention relates to methods of augmenting the therapeutic effect in a patient of a second therapeutic agent by administering the first therapeutic agent to the patient.
  • In certain preferred embodiments, the invention is directed in part to synergistic combinations of the first therapeutic agent in an amount sufficient to render a therapeutic effect together with a second therapeutic agent. For example, in certain embodiments a therapeutic effect is attained which is at least about 2 (or at least about 4, 6, 8, or 10) times greater than that obtained with the dose of the first therapeutic agent alone. In certain embodiments, the synergistic combination provides a therapeutic effect which is up to about 20, 30 or 40 times greater than that obtained with the dose of first therapeutic agent alone. In such embodiments, the synergistic combinations display what is referred to herein as an “apparent one-way synergy”, meaning that the dose of second therapeutic agent synergistically potentiates the effect of the first therapeutic agent, but the dose of first therapeutic agent does not appear to significantly potentiate the effect of the second therapeutic agent.
  • In certain embodiments, the combination of active agents exhibit two-way synergism, meaning that the second therapeutic agent potentiates the effect of the first therapeutic agent, and the first therapeutic agent potentiates the effect of the second therapeutic agent. Thus, other embodiments of the invention relate to combinations of a second therapeutic agent and a first therapeutic agent where the dose of each drug is reduced due to the synergism between the drugs, and the therapeutic effect derived from the combination of drugs in reduced doses is enhanced. The two-way synergism is not always readily apparent in actual dosages due to the potency ratio of the first therapeutic agent to the second therapeutic agent. For instance, two-way synergism can be difficult to detect when one therapeutic agent displays much greater therapeutic potency relative to the other therapeutic agent.
  • The synergistic effects of combination therapy may be evaluated by biological activity assays. For example, the therapeutic agents are be mixed at molar ratios designed to give approximately equipotent therapeutic effects based on the EC90 values. Then, three different molar ratios are used for each combination to allow for variability in the estimates of relative potency. These molar ratios are maintained throughout the dilution series. The corresponding monotherapies are also evaluated in parallel to the combination treatments using the standard primary assay format. A comparison of the therapeutic effect of the combination treatment to the therapeutic effect of the monotherapy gives a measure of the synergistic effect. Further details on the design of combination analyses can be found in B E Korba (1996) Antiviral Res. 29:49. Analysis of synergism, additivity, or antagonism can be determined by analysis of the aforementioned data using the CalcuSyn™ program (Biosoft, Inc.). This program evaluates drug interactions by use of the widely accepted method of Chou and Talalay combined with a statistically evaluation using the Monte Carlo statistical package. The data are displayed in several different formats including median-effect and dose-effects plots, isobolograms, and combination index [CI] plots with standard deviations. For the latter analysis, a CI greater than 1.0 indicates antagonism and a CI less than 1.0 indicates synergism.
  • Compositions of the invention present the opportunity for obtaining relief from moderate to severe cases of disease. Due to the synergistic and/or additive effects provided by the inventive combination of the first and second therapeutic agent, it may be possible to use reduced dosages of each of therapeutic agent. By using lesser amounts of other or both drugs, the side effects associated with each may be reduced in number and degree. Moreover, the inventive combination avoids side effects to which some patients are particularly sensitive.
  • Compositions & Methods of the Invention
  • .
  • .
  • Another aspect of the present invention relates to a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a norepinephrine reuptake inhibitor.
  • Another aspect of the present invention relates to a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said sleep abnormality is difficulty falling asleep, difficulty staying asleep, or waking up too early.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said norepinephrine reuptake inhibitor is (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said insomnia is transient insomnia
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said insomnia is short-term insomnia.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said insomnia is chronic insomnia
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor.
  • Another aspect of the present invention relates to a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a dopamine reuptake inhibitor.
  • Another aspect of the present invention relates to a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a dopamine reuptake inhibitor, said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or (−)-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a dopamine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a dopamine reuptake inhibitor, said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or (−)-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or (−)-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or (−)-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said sleep abnormality is difficulty falling asleep, difficulty staying asleep, or waking up too early.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or (−)-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or (−)-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said insomnia is transient insomnia
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said insomnia is short-term insomnia.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said insomnia is chronic insomnia
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or (−)-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a dopamine reuptake inhibitor, wherein said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said dopamine reuptake inhibitor is venlafaxine, desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or (−)-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said depression is a major depressive disorder.
  • Another aspect of the present invention relates to a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a 5-HT2A modulator.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein the 5-HT2A modulator is a 5-HT2A antagonist.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein the 5-HT2A modulator is a 5-HT2A inverse agonist.
  • Another aspect of the present invention relates to a pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a 5-HT2A modulator, wherein said 5 HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, or azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT2A modulator, wherein said 5-HT2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, or azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a 5-HT2A modulator; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein the 5-HT2A modulator is a 5-HT2A antagonist.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein the 5-HT2A modulator is a 5-HT2A inverse agonist.
  • Another aspect of the present invention relates to a pharmaceutical composition consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a 5-HT2A modulator, wherein said 5 HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, or azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT2A modulator, wherein said 5 HT2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, or azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT2A modulator.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A antagonist.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT2A modulator, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT2A modulator; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A antagonist.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT2A modulator, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said sleep abnormality is difficulty falling asleep, difficulty staying asleep, or waking up too early.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT2A modulator.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A antagonist.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT2A modulator, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT2A modulator; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A antagonist.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT2A modulator, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said insomnia is transient insomnia
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said insomnia is short-term insomnia.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said insomnia is chronic insomnia
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT2A modulator.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A antagonist.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a 5-HT2A modulator, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT2A modulator; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A antagonist.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is a 5-HT2A inverse agonist.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a 5-HT2A modulator, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, or phenylindole compounds A, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, or fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the 5-HT2A modulator is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said depression is a major depressive disorder.
  • Another aspect of the present invention relates to a method for augmentation of antidepressant therapy in a patient comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method for eliciting a dose sparing effect in a patient undergoing treatment with an antidepressant, comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method for reducing depression relapse in a patient who received antidepressant treatment, comprising administering to the patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the eszopiclone is administered chronically or long-term.
  • Another aspect of the present invention relates to a method for improving the tolerability of antidepressant therapy in a patient suffering from depression, comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the antidepressant is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S) hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the antidepressant is bupropion, venlafaxine, or desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the desmethylvenlafaxine is racemic desmethylvenlafaxine, (+)-desmethylvenlafaxine, or (−)-desmethylvenlafaxine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the antidepressant is a dopamine reuptake inhibitor or an atypical antidepressant.
  • One aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and an antidepressant. In certain embodiments, the antidepressant is a serotonin reuptake inhibitor, including without limitation selective serotonin reuptake inhibitors, a norepinephrine reuptake inhibitor, including without limitation a selective norepinephrine reuptake inhibitor, a dopamine reuptake inhibitor, or an atypical antidepressant. In other embodiments, the antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a serotonin reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 150 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 75 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said sedative agent is eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said serotonin reuptake inhibitor is fluoxetine, fluvoxamine, milnacipran, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a serotonin reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof and fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a norepinephrine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 150 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 75 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a norepinephrine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a norepinephrine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a norepinephrine reuptake inhibitor; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a 5-HT2 receptor modulator. In certain embodiments, the 5-HT2 receptor modulator is a 5-HT2A receptor antagonist or a 5-HT2A inverse agonist.
  • In one embodiment, the pharmaceutical composition comprises a sedative agent and a 5-HT2 receptor modulator, wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said 5-HT2 receptor modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 150 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 75 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a 5-HT2A modulator; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a 5-HT2A modulator; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising eszopiclone and a 5-HT2A modulator; wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a 5-HT2A inverse agonist. In certain embodiments, the 5-HT2A inverse agonist is piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a dopamine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 150 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 75 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a dopamine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising a sedative agent and a dopamine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, comprising eszopiclone and bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 150 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 75 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said serotonin reuptake inhibitor is fluoxetine, fluvoxamine, milnacipran, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 150 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 75 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 150 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 75 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them, a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 150 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 75 nM.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said Ki is less than about 30 nM.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of a sedative agent, a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned pharmaceutical composition, wherein said dopamine reuptake inhibitor is bupropion, GBR-12935, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a pharmaceutical composition, consisting essentially of eszopiclone and bupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them, and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative and a therapeutically effective amount of an antidepressant; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said antidepressant is a serotonin reuptake inhibitor, norepinephrine reuptake inhibitor, 5HT2A modulator, or dopamine reuptake inhibitor.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said sedative is racemic zopiclone, (S)-zopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, or hydrate of any one of them; and said antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, amineptine, bupropion, GBR-12935, venlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, or hydrate of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal; and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT2A modulator; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT2A modulator; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT2A modulator; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone and a therapeutically effective amount of a 5-HT2A modulator; wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; a therapeutically effective amount of a 5-HT2A modulator; and at least one pharmaceutically acceptable carrier; wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned methods, wherein said sleep disturbance is difficulty falling asleep, difficulty staying asleep, or waking up too early.
  • Another aspect of the present invention relates generally to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative and a therapeutically effective amount of an antidepressant; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said antidepressant is a serotonin reuptake inhibitor, norepinephrine reuptake inhibitor, 5HT2A modulator, or dopamine reuptake inhibitor.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said sedative is racemic zopiclone, (S)-zopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, or hydrate of any one of them; and said antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, amineptine, bupropion, GBR-12935, venlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, or hydrate of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal; and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT2A modulator; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT2A modulator; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT2A modulator; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone and a therapeutically effective amount of a 5-HT2A modulator; wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; a therapeutically effective amount of a 5-HT2A modulator; and at least one pharmaceutically acceptable carrier; wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and at least one pharmaceutically acceptable carrier.
  • In certain embodiments, the present invention relates to the aforementioned methods, wherein said insomnia is transient insomnia.
  • In certain embodiments, the present invention relates to the aforementioned methods, wherein said insomnia is short-term insomnia.
  • In certain embodiments, the present invention relates to the aforementioned methods, wherein said insomnia is chronic insomnia
  • Another aspect of the present invention relates generally to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative and a therapeutically effective amount of an antidepressant; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said antidepressant is a serotonin reuptake inhibitor, norepinephrine reuptake inhibitor, 5HT2A modulator, or dopamine reuptake inhibitor.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein said sedative is racemic zopiclone, (S)-zopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, or hydrate of any one of them; and said antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, amineptine, bupropion, GBR-12935, venlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, or hydrate of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a serotonin reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal; and a therapeutically effective amount of a norepinephrine reuptake inhibitor; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT2A modulator; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT2A modulator; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a 5-HT2A modulator; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone and a therapeutically effective amount of a 5-HT2A modulator; wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent and a therapeutically effective amount of a dopamine reuptake inhibitor; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said serotonin reuptake inhibitor is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them; and said serotonin reuptake inhibitor is fluoxetine, paroxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of either of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a serotonin reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said serotonin reuptake inhibitor is fluoxetine or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of fluoxetine hydrochloride or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a norepinephrine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; a therapeutically effective amount of a norepinephrine reuptake inhibitor; and at least one pharmaceutically acceptable carrier; wherein said norepinephrine reuptake inhibitor is desipramine, reboxetine, oxaprotiline, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a 5-HT2A modulator, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, oxazolidine compounds A, phenylindole compounds A, piperidinyl compounds B, spiroazacyclic compounds C, azacyclic compounds D, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; a therapeutically effective amount of a 5-HT2A modulator; and at least one pharmaceutically acceptable carrier; wherein said 5-HT2A modulator is MDL 100907, SR 46349B, YM 992, fananserin, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of a sedative agent, a therapeutically effective amount of a dopamine reuptake inhibitor, and at least one pharmaceutically acceptable carrier; wherein said sedative agent is eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method of treating a patient suffering from depression, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof; and a therapeutically effective amount of bupropion or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and at least one pharmaceutically acceptable carrier.
  • Another aspect of the present invention relates to a method of augmentation of antidepressant therapy in a patient, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay.
  • Another aspect of the present invention relates to a method of augmentation of antidepressant therapy in a patient, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method for augmentation of antidepressant therapy in a patient comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method for eliciting a dose sparing effect in a patient undergoing treatment with an antidepressant, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay.
  • Another aspect of the present invention relates to a method for eliciting a dose sparing effect in a patient undergoing treatment with an antidepressant, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent;
  • wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method for eliciting a dose sparing effect in a patient undergoing treatment with an antidepressant, comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method for reducing depression relapse in a patient who received antidepressant treatment, comprising the step of administering to a patient in need thereof, receiving antidepressant treatment, a therapeutically effective amount of a sedative agent; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay.
  • Another aspect of the present invention relates to a method for reducing depression relapse in a patient who received antidepressant treatment, comprising the step of administering to a patient in need thereof, receiving antidepressant treatment, a therapeutically effective amount of a sedative agent; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method for reducing depression relapse in a patient who received antidepressant treatment, comprising administering to the patient in need thereof receiving antidepressant treatment, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned method, wherein the eszopiclone is administered chronically or long-term.
  • Another aspect of the present invention relates to a method for improving the efficacy of antidepressant therapy in a patient suffering from depression, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is a compound that modulates the activity of a GABA receptor and has a Ki less than about 300 nM in a GABA-receptor binding assay.
  • Another aspect of the present invention relates to a method for improving the efficacy of antidepressant therapy in a patient suffering from depression, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method for improving the tolerability of antidepressant therapy in a patient suffering from depression, comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • Another aspect of the present invention relates to a method for improving the tolerability of antidepressant therapy in a patient suffering from depression, comprising the step of administering to a patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of a sedative agent; wherein said sedative agent is racemic zopiclone, eszopiclone, indiplon, zolpidem, zaleplon, gaboxadol, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • Another aspect of the present invention relates to a method for improving the tolerability of antidepressant therapy in a patient suffering from depression, comprising administering to the patient in need thereof, undergoing antidepressant therapy, a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof.
  • In certain embodiments, the present invention relates to the aforementioned methods, wherein the antidepressant is citalopram, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, ifoxetine, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned methods, wherein the antidepressant is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
  • In certain embodiments, the present invention relates to the aforementioned methods, wherein the antidepressant is a dopamine reuptake inhibitor or an atypical antidepressant.
  • Immediate/Sustained Release Combination Therapy Dosage Forms
  • The combination therapy may be formulated in an immediate release dosage form or a sustained release dosage form. In certain embodiments, the present invention relates to immediate release dosage forms of the first and second therapeutic agents. An immediate release dosage form may be formulated as a tablet or multiparticulate which may be encapsulated. Other immediate release dosage forms known in the art can be employed. In certain embodiments, the combination of therapeutic agents may be formulated to provide for an increased duration (sustained release) of therapeutic action. These formulations, at comparable daily dosages of conventional immediate release drug, are often associated with a lower incidence or severity of adverse drug reactions; and they can also be administered at a lower daily dose than conventional oral medication while maintaining therapeutic activity.
  • In certain embodiments, the combination therapy can be formulated to delivery the therapeutic agents at the same time or at separate times. In certain embodiments, the first and second therapeutic agents are administered via an oral solid dosage form that includes a sustained release carrier causing the sustained release of the first therapeutic agent, or both the first therapeutic agent and the second therapeutic agent when the dosage form contacts gastrointestinal fluid. The sustained release dosage form may comprise a plurality of substrates which include the drugs. The substrates may comprise matrix spheroids or may comprise inert pharmaceutically acceptable beads which are coated with the drugs. The coated beads are then preferably overcoated with a sustained release coating comprising the sustained release carrier. The matrix spheroid may include the sustained release carrier in the matrix itself; or the matrix may comprise a normal release matrix containing the drugs, the matrix having a coating applied thereon which comprises the sustained release carrier. In other embodiments, the oral solid dosage form comprises a tablet core containing the drugs within a normal release matrix, with the tablet core being coated with a sustained release coating comprising the sustained release carrier. In further embodiments, the tablet contains the drugs within a sustained release matrix comprising the sustained release carrier. In additional embodiments, the tablet contains the first therapeutic agent within a sustained release matrix and the second therapeutic agent coated into the tablet as an immediate release layer.
  • The term “sustained release” is defined for purposes of the present invention as the release of the therapeutic agent from the formulation at such a rate that blood (e.g., plasma) concentrations (levels) are maintained within the therapeutic range (above the minimum effective analgesic concentration or “MEAL”) but below toxic levels over a period of time of about 12 hours or longer.
  • The first and second therapeutic agents can be formulated as a controlled or sustained release oral formulation in any suitable tablet, coated tablet or multiparticulate formulation known to those skilled in the art. The sustained release dosage form may optionally include a sustained released carrier which is incorporated into a matrix along with the active agents, or which is applied as a sustained release coating.
  • The sustained release dosage form may include the first therapeutic agent in sustained release form and second therapeutic agent in the sustained release form or in immediate release form. The first therapeutic agent may be incorporated into the sustained release matrix along with the second therapeutic agent; incorporated into the sustained release coating; incorporated as a separated sustained release layer or immediate release layer; or may be incorporated as a powder, granulation, etc., in a gelatin capsule with the substrates of the present invention. Alternatively, the sustained release dosage form may have the first therapeutic agent in the sustained release form and the second therapeutic agent in the sustained release form or immediate release form.
  • An oral dosage form according to the invention may be provided as, for example, granules, spheroids, beads, pellets (hereinafter collectively referred to as “multiparticulates”) and/or particles. An amount of the multiparticulates which is effective to provide the desired dose of the therapeutic agents over time may be placed in a capsule or may be incorporated in any other suitable oral solid form. In one certain embodiments of the present invention, the sustained release dosage form comprises such particles containing or comprising the active ingredient, wherein the particles have diameter from about 0.1 mm to about 2.5 mm, preferably from about 0.5 mm to about 2 mm.
  • In certain embodiments, the particles comprise normal release matrixes containing the first therapeutic agent with the second therapeutic agent. These particles are then coated with the sustained release carrier in embodiments where the first therapeutic agent is immediately released, the first therapeutic agent may be included in separate normal release matrix particles, or may be co-administered in a different immediate release composition which is either enveloped within a gelatin capsule or is administered separately. In other embodiments, the particles comprise inert beads which are coated with the second therapeutic agent with the first therapeutic agents. Thereafter, a coating comprising the sustained release carrier is applied onto the beads as an overcoat.
  • The particles are preferably film coated with a material that permits release of the active agents at a sustained rate in an aqueous medium. The film coat is chosen so as to achieve, in combination with the other stated properties, a desired in vitro release rate. The sustained release coating formulations of the present invention should be capable of producing a strong, continuous film that is smooth and elegant, capable of supporting pigments and other coating additives, non-toxic, inert, and tack-free.
  • Coatings
  • The dosage forms of the present invention may optionally be coated with one or more materials suitable for the regulation of release or for the protection of the formulation. In one embodiment, coatings are provided to permit either pH-dependent or pH-independent release, e.g., when exposed to gastrointestinal fluid. A pH-dependent coating serves to release the first active agent, second active agent, or both in the desired areas of the gastro-intestinal (GI) tract, e.g., the stomach or small intestine, such that an absorption profile is provided which is capable of providing at least about twelve hours and preferably up to twenty-four hours of therapeutic benefit to a patient. When a pH-independent coating is desired, the coating is designed to achieve optimal release regardless of pH-changes in the environmental fluid, e.g., the GI tract. It is also possible to formulate compositions which release a portion of the dose in one desired area of the GI tract, e.g., the stomach, and release the remainder of the dose in another area of the GI tract, e.g., the small intestine. In certain embodiments, the first therapeutic agent is released in one area of the GI tract and the second therapeutic agent is released in a second area of the GI tract. In certain embodiments, the first and second therapeutic agents are released in nearly equal amounts at the same location in the GI tract.
  • Formulations according to the invention that utilize pH-dependent coatings to obtain formulations may also impart a repeat-action effect whereby unprotected drug is coated over the enteric coat and is released in the stomach, while the remainder, being protected by the enteric coating, is released further down the gastrointestinal tract. Coatings which are pH-dependent may be used in accordance with the present invention include shellac, cellulose acetate phthalate (CAP), polyvinyl acetate phthalate (PVAP), hydroxypropylmethylcellulose phthalate, and methacrylic acid ester copolymers, zein, and the like. Thus, one aspect of the present invention relates to a formulation wherein the first therapeutic agent is coated over the enteric coat and released into the stomach while the second therapeutic agent is protected by the enteric coating and is released further down the GI tract. Alternatively, one aspect of the present invention relates to a formulation wherein the second therapeutic agent is coated over the enteric coat and released into the stomach while the first therapeutic agent is protected by the enteric coating and is released further down the GI tract.
  • In certain preferred embodiments, the substrate (e.g., tablet core bead, matrix particle) containing the first therapeutic agent (with or without the second therapeutic agent) is coated with a hydrophobic material selected from (i) an alkylcellulose; (ii) an acrylic polymer; or (iii) mixtures thereof. The coating may be applied in the form of an organic or aqueous solution or dispersion. The coating may be applied to obtain a weight gain from about 2 to about 25% of the substrate in order to obtain a desired sustained release profile. Alternatively, the invention relates to instances wherein the substrate (e.g., tablet core bead, matrix particle) containing the second therapeutic agent (with or without the first therapeutic agent) is coated with a hydrophobic material. Such formulations are described, e.g., in detail in U.S. Pat. Nos. 5,273,760 and 5,286,493. Other examples of sustained release formulations and coatings which may be used in accordance with the present invention include U.S. Pat. Nos. 5,324,351; 5,356,467, and 5,472,712.
  • Alkylcellulose Polymers
  • Cellulosic materials and polymers, including alkylcelluloses, provide hydrophobic materials well suited for coating the formulations according to the invention. Simply by way of example, one preferred alkylcellulosic polymer is ethylcellulose, although the artisan will appreciate that other cellulose and/or alkylcellulose polymers may be readily employed, singly or in any combination, as all or part of a hydrophobic coating.
  • One commercially-available aqueous dispersion of ethylcellulose is Aquacoat® (FMC Corp., Philadelphia, Pa., U.S.A.). Aquacoat® is prepared by dissolving the ethylcellulose in a water-immiscible organic solvent and then emulsifying the same in water in the presence of a surfactant and a stabilizer. After homogenization to generate submicron droplets, the organic solvent is evaporated under vacuum to form a pseudolatex. The plasticizer is not incorporated in the pseudolatex during the manufacturing phase. Thus, prior to using the same as a coating, it is necessary to intimately mix the Aquacoat® with a suitable plasticizer prior to use.
  • Another aqueous dispersion of ethylcellulose is commercially available as Surelease® (Colorcon, Inc., West Point, Pa., U.S.A.). This product is prepared by incorporating plasticizer into the dispersion during the manufacturing process. A hot melt of a polymer, plasticizer (dibutyl sebacate), and stabilizer (oleic acid) is prepared as a homogeneous mixture, which is then diluted with an alkaline solution to obtain an aqueous dispersion which can be applied directly onto substrates.
  • Acrylic Polymers
  • In other preferred embodiments of the present invention, the hydrophobic material comprising the controlled release coating is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
  • In certain preferred embodiments, the acrylic polymer is comprised of one or more ammonio methacrylate copolymers Ammonio methacrylate copolymers are well known in the art, and are copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups. In order to obtain a desirable dissolution profile, it may be necessary to incorporate in a coating two or more ammonio methacrylate copolymers having differing physical properties, such as different molar ratios of the quaternary ammonium groups to the neutral (meth)acrylic esters.
  • Certain methacrylic acid ester-type polymers are useful for preparing pH-dependent coatings which may be used in accordance with the present invention. For example, there are a family of copolymers synthesized from diethylaminoethyl methacrylate and other neutral methacrylic esters, also known as methacrylic acid copolymer or polymeric methacrylates, commercially available as Eudragit® from Rohm Tech, Inc. There are several different types of Eudragit®. For example, Eudragit® E is an example of a methacrylic acid copolymer which swells and dissolves in acidic media. Eudragit® L is a methacrylic acid copolymer which does not swell at about pH<5.7 and is soluble at about pH>6. Eudragit® S does not swell at about pH<6.5 and is soluble at about pH>7. Eudragit® RL and Eudragit® RS are water swellable, and the amount of water absorbed by these polymers is pH-dependent, however, dosage forms coated with Eudragit® RL and RS are pH-independent.
  • In certain preferred embodiments, the acrylic coating comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames Eudragit® RL30D and Eudragit® RS30D, respectively. Eudragit® RL30D and Eudragit® RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit®RL30D and 1:40 in Eudragit® RS30D. The mean molecular weight is about 150,000. The code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents. Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, coatings formed from the same are swellable and permeable in aqueous solutions and digestive fluids.
  • The Eudragit® RL/RS dispersions of the present invention may be mixed together in any desired ratio in order to ultimately obtain a sustained release formulation having a desirable dissolution profile. Desirable sustained release formulations may be obtained, for instance, from a retardant coating derived from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL:Eudragit® 90% RS. Of course, one skilled in the art will recognize that other acrylic polymers may also be used, such as, for example, Eudragit® L.
  • Plasticizers
  • In embodiments of the present invention where the coating comprises an aqueous dispersion of a hydrophobic material, the inclusion of an effective amount of a plasticizer in the aqueous dispersion of hydrophobic material will further improve the physical properties of the sustained release coating. For example, because ethylcellulose has a relatively high glass transition temperature and does not form flexible films under normal coating conditions, it is preferable to incorporate a plasticizer into an ethylcellulose coating containing sustained release coating before using the same as a coating material. Generally, the amount of plasticizer included in a coating solution is based on the concentration of the film-former, e.g., most often from about 1 to about 50 percent by weight of the film-former. Concentration of the plasticizer, however, can only be properly determined after careful experimentation with the particular coating solution and method of application.
  • Examples of suitable plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is an especially preferred plasticizer for the aqueous dispersions of ethyl cellulose of the present invention.
  • Examples of suitable plasticizers for the acrylic polymers of the present invention include, but are not limited to citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol. Other plasticizers which have proved to be suitable for enhancing the elasticity of the films formed from acrylic films such as Eudragit® RL/RS lacquer solutions include polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin. Triethyl citrate is an especially preferred plasticizer for the aqueous dispersions of ethyl cellulose of the present invention.
  • It has further been found that the addition of a small amount of talc reduces the tendency of the aqueous dispersion to stick during processing, and acts as a polishing agent.
  • Pharmaceutical Compositions
  • In another aspect, the present invention provides pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of one or more of the compounds described above, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents. As described in detail below, the pharmaceutical compositions of the present invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, e.g., those targeted for buccal, sublingual, and systemic absorption, boluses, powders, granules, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; (3) topical application, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin; (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; (5) sublingually; (6) ocularly; (7) transdermally; or (8) nasally.
  • The phrase “therapeutically-effective amount” as used herein means that amount of a compound, material, or composition comprising a compound of the present invention which is effective for producing some desired therapeutic effect in at least a sub-population of cells in an animal at a reasonable benefit/risk ratio applicable to any medical treatment.
  • The phrase “pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • The phrase “pharmaceutically-acceptable carrier” as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; and (22) other non-toxic compatible substances employed in pharmaceutical formulations.
  • As set out above, certain embodiments of the present compounds may contain a basic functional group, such as amino or alkylamino, and are, thus, capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable acids. The term “pharmaceutically-acceptable salts” in this respect, refers to the relatively non-toxic, inorganic and organic acid addition salts of compounds of the present invention. These salts can be prepared in situ in the administration vehicle or the dosage form manufacturing process, or by separately reacting a purified compound of the invention in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed during subsequent purification. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like. (See, for example, Berge et al. (1977) “Pharmaceutical Salts”, J. Pharm. Sci. 66:1-19)
  • The pharmaceutically acceptable salts of the subject compounds include the conventional nontoxic salts or quaternary ammonium salts of the compounds, e.g., from non-toxic organic or inorganic acids. For example, such conventional nontoxic salts include those derived from inorganic acids such as hydrochloride, hydrobromic, sulfuric, sulfamic, phosphoric, nitric, and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, palmitic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicyclic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isothionic, and the like.
  • In other cases, the compounds of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable bases. The term “pharmaceutically-acceptable salts” in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of compounds of the present invention. These salts can likewise be prepared in situ in the administration vehicle or the dosage form manufacturing process, or by separately reacting the purified compound in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, with ammonia, or with a pharmaceutically-acceptable organic primary, secondary or tertiary amine Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like. (See, for example, Berge et al., supra)
  • Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
  • Examples of pharmaceutically-acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
  • Formulations of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 0.1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.
  • In certain embodiments, a formulation of the present invention comprises an excipient selected from the group consisting of cyclodextrins, celluloses, liposomes, micelle forming agents, e.g., bile acids, and polymeric carriers, e.g., polyesters and polyanhydrides; and a compound of the present invention. In certain embodiments, an aforementioned formulation renders orally bioavailable a compound of the present invention.
  • Methods of preparing these formulations or compositions include the step of bringing into association a compound of the present invention with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a compound of the present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
  • Formulations of the invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound of the present invention as an active ingredient. A compound of the present invention may also be administered as a bolus, electuary or paste.
  • In solid dosage forms of the invention for oral administration (capsules, tablets, pills, dragees, powders, granules, trouches and the like), the active ingredient is mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds and surfactants, such as poloxamer and sodium lauryl sulfate; (7) wetting agents, such as, for example, cetyl alcohol, glycerol monostearate, and non-ionic surfactants; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, zinc stearate, sodium stearate, stearic acid, and mixtures thereof; (10) coloring agents; and (11) controlled release agents such as crospovidone or ethyl cellulose. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-shelled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
  • A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
  • The tablets, and other solid dosage forms of the pharmaceutical compositions of the present invention, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be formulated for rapid release, e.g., freeze-dried. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.
  • Liquid dosage forms for oral administration of the compounds of the invention include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
  • Suspensions, in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • Dosage forms for the topical or transdermal administration of a compound of this invention include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active compound may be mixed under sterile conditions with a pharmaceutically-acceptable carrier, and with any preservatives, buffers, or propellants which may be required.
  • The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • Powders and sprays can contain, in addition to a compound of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
  • Transdermal patches have the added advantage of providing controlled delivery of a compound of the present invention to the body. Such dosage forms can be made by dissolving or dispersing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the compound in a polymer matrix or gel.
  • Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.
  • Pharmaceutical compositions of this invention suitable for parenteral administration comprise one or more compounds of the invention in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain sugars, alcohols, antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
  • Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms upon the subject compounds may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
  • The therapeutic agent alone or on combination with other therapeutic agents can be employed in admixtures with conventional excipients, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for oral, parenteral, nasal, intravenous, subcutaneous, enteral, or any other suitable mode of administration, known to the art. Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions, alcohols, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelate, carbohydrates such as lactose, amylose or starch, magnesium stearate talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, hydroxymethylcellulose, polyvinylpyrrolidone, etc. The pharmaceutical preparations can be sterilized and if desired mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure buffers, coloring, flavoring and/or aromatic substances and the like. They can also be combined where desired with other active agents, e.g., other analgesic agents. For parenteral application, particularly suitable are oily or aqueous solutions, as well as suspensions, emulsions, or implants, including suppositories. Ampoules are convenient unit dosages. For oral application, particularly suitable are tablets, dragees, liquids, drops, suppositories, or capsules, caplets and gelcaps. The compositions intended for oral use may be prepared according to any method known in the art and such compositions may contain one or more agents selected from the group consisting of inert, non-toxic pharmaceutically excipients which are suitable for the manufacture of tablets. Such excipients include, for example an inert diluent such as lactose; granulating and disintegrating agents such as cornstarch; binding agents such as starch; and lubricating agents such as magnesium stearate. The tablets may be uncoated or they may be coated by known techniques for elegance or to delay release of the active ingredients. Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert diluent.
  • Aqueous suspensions contain the above-identified combination of drugs and that mixture has one or more excipients suitable as suspending agents, for example pharmaceutically acceptable synthetic gums such as hydroxypropylmethylcellulose or natural gums. Oily suspensions may be formulated by suspending the above-identified combination of drugs in a vegetable oil or mineral oil. The oily suspensions may contain a thickening agent such as beeswax or cetyl alcohol. A syrup, elixir, or the like can be used wherein a sweetened vehicle is employed. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed. It is also possible to freeze-dry the active compounds and use the obtained lyophilized compounds, for example, for the preparation of products for injection.
  • One aspect of combination therapy pertains to a method for providing effective therapeutic treatment in humans, comprising administering an effective or sub-therapeutic amount of a first therapeutic agent; and administering an effective amount of a second therapeutic agent in an amount effective to augment the therapeutic effect provided by said first therapeutic agent. The second therapeutic agent can be administered before, simultaneously with, or after administration of the first therapeutic agent, as long as the dosing interval of the second therapeutic agent overlaps with the dosing interval of the first therapeutic agent (or its therapeutic effect). In other words, according to the method of the present invention, in certain preferred embodiments the second therapeutic agent need not be administered in the same dosage form or even by the same route of administration as the first therapeutic agent. Rather, the method is directed to the surprising synergistic and/or additive benefits obtained in humans, when therapeutically effective levels of a first therapeutic agent have been administered to a human, and, prior to or during the dosage interval for the second therapeutic agent or while the human is experiencing the therapeutic effect, an effective amount of a second therapeutic agent to augment the therapeutic effect of the first therapeutic agent is administered. If the second therapeutic agent is administered prior to the administration of the first therapeutic agent, it is preferred that the dosage intervals for the two drugs overlap, i.e., such that the therapeutic effect over at least a portion of the dosage interval of the first therapeutic agent is at least partly attributable to the second therapeutic agent.
  • In an additional method of the invention, the surprising synergistic and/or additive benefits obtained in the patient are achieved when therapeutically effective levels of the second therapeutic agent have been administered to the patient, and, during the dosage interval for the second therapeutic agent or while the patient is experiencing the therapeutic effect by virtue of the administration of a second therapeutic agent, an effective amount of a first therapeutic agent to augment the therapeutic effect of the second therapeutic agent is administered.
  • Another aspect of combination therapy relates to an oral solid dosage form comprising an therapeutically effective amount of a first therapeutic agent together with an amount of a second therapeutic agent or pharmaceutically acceptable salt thereof which augments the effect of the first therapeutic agent.
  • When the compounds of the present invention are administered as pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99% (more preferably, 10 to 30%) of active ingredient in combination with a pharmaceutically acceptable carrier.
  • The preparations of the present invention may be given orally, parenterally, topically, or rectally. They are of course given in forms suitable for each administration route. For example, they are administered in tablets or capsule form, by injection, inhalation, eye lotion, ointment, suppository, etc. administration by injection, infusion or inhalation; topical by lotion or ointment; and rectal by suppositories. Oral administrations are preferred.
  • The phrases “parenteral administration” and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticulare, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.
  • The phrases “systemic administration,” “administered systemically,” “peripheral administration” and “administered peripherally” as used herein mean the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.
  • These compounds may be administered to humans and other animals for therapy by any suitable route of administration, including orally, nasally, as by, for example, a spray, rectally, intravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually.
  • Regardless of the route of administration selected, the compounds of the present invention, which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present invention, are formulated into pharmaceutically-acceptable dosage forms by conventional methods known to those of skill in the art.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • The selected dosage level will depend upon a variety of factors including the activity of the particular compound of the present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion or metabolism of the particular compound being employed, the rate and extent of absorption, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compound employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
  • A physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the compounds of the invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
  • In general, a suitable daily dose of a compound of the invention will be that amount of the compound which is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above. Generally, oral, intravenous, intracerebroventricular and subcutaneous doses of the compounds of this invention for a patient, when used for the indicated analgesic effects, will range from about 0.0001 to about 100 mg per kilogram of body weight per day.
  • If desired, the effective daily dose of the active compound may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms. Preferred dosing is one administration per day.
  • While it is possible for a compound of the present invention to be administered alone, it is preferable to administer the compound as a pharmaceutical formulation (composition).
  • The compounds according to the invention may be formulated for administration in any convenient way for use in human or veterinary medicine, by analogy with other pharmaceuticals.
  • In another aspect, the present invention provides pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of one or more of the subject compounds, as described above, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents. As described in detail below, the pharmaceutical compositions of the present invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension; (3) topical application, for example, as a cream, ointment or spray applied to the skin, lungs, or mucous membranes; or (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; (5) sublingually or buccally; (6) ocularly; (7) transdermally; or (8) nasally.
  • The term “treatment” is intended to encompass also prophylaxis, therapy, management and cure.
  • The patient receiving this treatment is any animal in need, including primates, in particular humans, and other mammals Processes for Preparing Matrix-Based Beads
  • In order to facilitate the preparation of a solid, controlled release, oral dosage form according to this invention, any method of preparing a matrix formulation known to those skilled in the art may be used. For example incorporation in the matrix may be effected, for example, by (a) forming granules comprising at least one water soluble hydroxyalkyl cellulose and the active agent; (b) mixing the hydroxyalkyl cellulose containing granules with at least one C.sub.12-C.sub.36 aliphatic alcohol; and (c) optionally, compressing and shaping the granules. Preferably, the granules are formed by wet granulating the hydroxyalkyl cellulose/active agent with water. In a particularly preferred embodiment of this process, the amount of water added during tie wet granulation step is preferably between 1.5 and 5 times, especially between 1.75 and 3.5 times, the dry weight of the active agent.
  • In yet other alternative embodiments, a spheronizing agent, together with the active ingredient can be spheronized to form spheroids. Microcrystalline cellulose is preferred. A suitable microcrystalline cellulose is, for example, the material sold as Avicel PH 101 (Trade Mark, FMC Corporation). In such embodiments, in addition to the active ingredient and spheronizing agent, the spheroids may also contain a binder. Suitable binders, such as low viscosity, water soluble polymers, will be well known to those skilled in the pharmaceutical art. However, water soluble hydroxy lower alkyl cellulose, such as hydroxypropylcellulose, are preferred. Additionally (or alternatively) the spheroids may contain a water insoluble polymer, especially an acrylic polymer, an acrylic copolymer, such as a methacrylic acid-ethyl acrylate copolymer, or ethyl cellulose. In such embodiments, the sustained release coating will generally include a hydrophobic material such as (a) a wax, either alone or in admixture with a fatty alcohol; or (b) shellac or zein.
  • Melt Extrusion Matrix
  • Sustained release matrices can also be prepared via melt-granulation or melt-extrusion techniques. Generally, melt-granulation techniques involve melting a normally solid hydrophobic material, e.g. a wax, and incorporating a powdered drug therein. To obtain a sustained release dosage form, it may be necessary to incorporate an additional hydrophobic substance, e.g. ethylcellulose or a water-insoluble acrylic polymer, into the molten wax hydrophobic material. Examples of sustained release formulations prepared via melt-granulation techniques are found in U.S. Pat. No. 4,861,598.
  • The additional hydrophobic material may comprise one or more water-insoluble wax-like thermoplastic substances possibly mixed with one or more wax-like thermoplastic substances being less hydrophobic than said one or more water-insoluble wax-like substances. In order to achieve constant release, the individual wax-like substances in the formulation should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases. Useful water-insoluble wax-like substances may be those with a water-solubility that is lower than about 1:5,000 (w/w).
  • In addition to the above ingredients, a sustained release matrix may also contain suitable quantities of other materials, e.g., diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art. The quantities of these additional materials will be sufficient to provide the desired effect to the desired formulation. In addition to the above ingredients, a sustained release matrix incorporating melt-extruded multiparticulates may also contain suitable quantities of other materials, e.g. diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
  • Specific examples of pharmaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms are described in the Handbook of Pharmaceutical Excipients, American Pharmaceutical Association (1986).
  • Many of the sedative agents, antidepressants, including without limitation, serotonin reuptake inhibitors, norepinephrine reuptake inhibitors, and 5-HT2A modulators are chiral compounds that can exist as a racemic mixture, a non-equal mixture of enantiomers, or as a single enantiomer. Importantly, the recitation of a compound that can exist as a racemic mixture, a non-equal mixture of enantiomers, or a single enantiomer is meant to encompass all three aforementioned forms, unless stated otherwise. The term “enantiomeric excess” is well known in the art and is defined for a resolution of ab 6a+b as:
  • ee a = ( conc . of a - conc . of b conc . of a + conc . of b ) × 100
  • The term “enantiomeric excess” is related to the older term “optical purity” in that both are measures of the same phenomenon. The value of e.e. will be a number from 0 to 100, zero being racemic and 100 being pure, single enantiomer. A compound which in the past might have been called 98% optically pure is now more precisely described as 96% e.e.; in other words, a 90% e.e. reflects the presence of 95% of one enantiomer and 5% of the other in the material in question. In instances when a specific enantiomer is recited (e.g., eszopiclone) for use in the compositions or methods of the present invention, this indicates that the composition contains a significantly greater proportion of the specified enantiomer in relation to the non-specified enantiomer. In a preferred embodiment, compositions comprising a specified enantiomer contain the specified enantiomer in at least 90% e.e. More preferably, such compositions comprising a specified enantiomer contain the specified enantiomer in at least 95% e.e. Even more preferably, such compositions comprising a specified enantiomer contain the specified enantiomer in at least 98% e.e. Most preferably, such compositions comprising a specified enantiomer contain the specified enantiomer in at least 99% e.e.
  • For example, compositions comprising eszopiclone contain the S-enantiomer of zopiclone in at least 90% e.e. More preferably, compositions comprising eszopiclone contain the S-enantiomer of zopiclone in at least 95% e.e. Even more preferably, such compositions comprising eszopiclone contain the S-enantiomer of zopiclone in at least 98% e.e. Most preferably, such compositions comprising eszopiclone contain the S-enantiomer of zopiclone in at least 99% e.e.
  • The term “serotonin reuptake inhibitor” refers to a compound that at least partially inhibits the reuptake of serotonin. In a preferred embodiment, the serotonin reuptake inhibitor is a selective serotonin reuptake inhibitor.
  • The term “selective serotonin reuptake inhibitor” refers to a compound that preferentially inhibits serotonin reuptake relative to its ability to modulate the activity of other receptors.
  • The term “norepinephrine reuptake inhibitor” refers to a compound that at least partially inhibits the reuptake of norepinephrine. In a preferred embodiment, the norepinephrine reuptake inhibitor is a selective norepinephrine reuptake inhibitor.
  • The term “selective norepinephrine reuptake inhibitor” refers to a compound that preferentially inhibits norepinephrine reuptake relative to its ability to modulate the activity of other receptors.
  • The term “5-HT2A modulator” refers to a compound that modulates the activity of 5-HT2A receptor. The term “5-HT2A modulator” includes 5-HT2A antagonists and 5-HT2A inverse agonists and 5-HT2A partial agonists.
  • The term “antagonist” refers to a compound that binds to a receptor site, but does not cause any physiological changes.
  • The terms “inverse agonist” and “negative antagonist” and “neutral antagonist” refer to compounds that inhibit an unoccupied, but active receptor.
  • The term “patient” refers to a mammal in need of a particular treatment. In a preferred embodiment, a patient is a primate, canine, feline, or equine. In another preferred embodiment, a patient is a human.
  • The terms “co-administration” and “co-administering” refer to both concurrent administration (administration of two or more therapeutic agents at the same time) and time varied administration (administration of one or more therapeutic agents at a time different from that of the administration of an additional therapeutic agent or agents), as long as the therapeutic agents are present in the patient to some extent at the same time.
  • The term “solvate” refers to a pharmaceutically acceptable form of a specified compound, with one or more solvent molecules, that retains the biological effectiveness of such compound. Examples of solvates include compounds of the invention in combination with solvents such, for example, water (to form the hydrate), isopropanol, ethanol, methanol, dimethyl sulfoxide, ethyl acetate, acetic acid, ethanolamine, or acetone. Also included are formulations of solvate mixtures such as a compound of the invention in combination with two or more solvents.
  • The term “screened subject” refers to any subject who signs the Informed Consent and completes at least one study related procedure.
  • The term “screen failure subject” refers to any subject who has signed the informed consent and completed at least one study related procedure and discontinues for any reason prior to receiving any study medication.
  • The term “randomized subject” refers to any subject who receives a randomization number.
  • The term “completed subject” refers to any subject who completes all study visits.
  • The term “early termination subject” refers to any subject who is assigned a randomization number but does not complete all study visits.
  • The phrases “sleep disorders” or “sleep abnormality” refers to primary insomnia; secondary insomnia; situational insomnia; transient insomnia; short-term insomnia; chronic insomnia; acute insomnia; prolonged latency to sleep onset; difficulty falling asleep; difficulty staying asleep; sleep maintenance problems, including without limitation, frequent awakenings, an increase in time spent awake after initially falling asleep (wake time after sleep onset, or WASO), sleep fragmentation, transient microarousals, and unrefreshing sleep; increased time awake during the sleep period; waking up too early; and reduced total sleep time.
  • The term “depression” refers to major depression, major depressive disorder, mild depression, moderate depression, severe depression without psychosis, severe depression with psychosis, dysthymia, bipolar disorder, or manic depression.
  • The term “antidepressant” refers to compounds used to treat depression, including without limitation: tricyclic antidepressents, such as clomipramine, amoxapine, nortriptyline, moprotilene, trimipramine, imipramine, or protriptyline; monoamine oxidase inhibitors; serotonin reuptake inhibitors, including selective serotonin reuptake inihibitors, such as citalopram, escitalopram, duloxetine, fluoxetine, sertraline, norsertraline, paroxetine, mirtrazepine, fluvoxamine, milnacipran, clominpramine, femoxetine, indapline, alaprolclate, cericlamine, or ifoxetine; norepinephrine reuptake inhibitors, including selective norepinephrine reuptake inhibitors, such as desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion; and atypical antidepressants, such as venlafaxine, desmethylvenlafaxine, nefazadone, or trazodone; therapeutically active isomers or metabolites of any of the foregoing; and pharmaceutically acceptable salts, solvates, clathrates, polymorphs, or co-crystals of any one of the foregoing.
  • For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 67th Ed., 1986-87, inside cover.
  • EXEMPLIFICATION
  • The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.
  • Example 1
  • Depression Response to Eszopiclone in Adults With Major Depressive Disorder (DREAMDD): A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, 8-Week, Safety and Efficacy Study of Eszopiclone 3 mg Compared to Placebo in Subjects with Insomnia Related to Major Depressive Disorder Rationale & Objectives
  • Insomnia often occurs simultaneously with the onset of major depression, and may negatively impact the depressed subject's quality of life (QoL) and functional abilities. In fact, in some patients, insomnia is the most disabling of the depressive symptom complex. In addition, many subjects are treated with selective serotonin re-uptake inhibitors (SSRIs) that may accentuate insomnia initially following treatment with these agents. This study aims to establish that the early addition of continuous eszopiclone 3 mg at bedtime to a standard antidepressant treatment with fluoxetine hydrochloride (20 or 40 mg) daily in the morning for 8 weeks is safe and provides improved sleep to depressed subjects. Beyond direct impact on sleep efficacy measures, differences in time to onset and amplitude of antidepressant effects, and improvements in quality of life and functional restoration are investigated
  • A primary objective of the present study was to evaluate subjective sleep efficacy during eight weeks of treatment with eszopiclone 3 mg nightly (at bed time) in subjects with insomnia related to major depressive disorder and treated concurrently with fluoxetine hydrochloride. A secondary objective of the study was to evaluate the potential for eszopiclone 3 mg to augment the antidepressant effect of fluoxetine hydrochloride by investigating the differences in time to onset and amplitude of antidepressant responses over an 8-week treatment period.
  • Study Design
  • This study was a double-blind randomized, placebo-controlled, parallel group study. The study consisted of subjects with major depression disorder treated for ten weeks with a common antidepressant regimen, 20-40 mg of fluoxetine hydrochloride per day, and randomized to receive (in addition) either eszopiclone 3 mg or placebo for eight weeks. All subjects must satisfy DSM-IV criteria for insomnia related to major depression.
  • Visit 1 (Screening):
  • After signing the Informed Consent, subjects were screened with the following assessments: administration of the Hamilton Depression Rating Scale (17 item; HAM-D-17) via interactive voice response system, medical and sleep history, physical examination including vital signs, clinical laboratory assessments, and standard 12-lead electrocardiogram (ECG). Subjects returned for Visit 2 within 5 to 14 days.
  • Visit 2 (Week 0; Baseline):
  • Subjects meeting inclusion and exclusion criteria begin a 3-7 day baseline period. At this visit safety assessments and evaluation of adverse events (AEs) were performed. In addition, subjects were trained on use of the interactive voice response system (IVRS) system for collection of sleep and depression endpoints and the frequency of assessments. Subjects completed 7 selected items of the HAM-D-17 via IVRS the morning after this visit. During this 3-7 day period, subjects made daily IVRS calls to evaluate sleep parameters, and depression symptoms [Daily Telephone Assessment (DTA) and Symptoms Questionnaire (SQ; 23-item Depression subscale)].
  • Visit 3 (End of Week 0; Randomization):
  • Subjects with a minimum of three complete IVRS assessments during the baseline week were randomized to eszopiclone 3 mg or matching placebo nightly (at bedtime) for eight weeks in addition to taking open-label fluoxetine hydrochloride administered in the morning. On the morning of this visit (prior to the visit), subjects completed the Hamilton Depression Rating Scale (7 selected items of the HAM-D-17) via IVRS in addition to the daily sleep diary. At this visit, the HAM-D-17 was administered by a clinician; safety assessments and evaluation of adverse effects (AEs) were performed; and the study drug was dispensed. Following this visit, subjects continued to make daily IVRS calls to evaluate sleep and depression symptoms until the morning of Visit 4.
  • Visits 4 (Week 1), 5 (Week 2), 6 (Week 3), 7 (Week 4), 8 (Week 6); and Visit 9 (Week 8; End of Double-Blind):
  • On the morning of each visit, subjects completed the 7 selected items of the HAM-D-17 and sleep diary via IVRS. In clinic, the subject completed sleep and quality of life questionnaires. In addition, the HAM-D-17 was administered by a clinician (at Visits 7 and 9 only); safety assessments and an evaluation of AEs were performed; and study drug and supplies were dispensed. On the morning following each office visit, subjects completed the sleep diary and depression symptoms questionnaires via IVRS. Beginning one week prior to Visit 9 until Visit 10, subjects resumed daily IVRS for completion of the sleep diary. Subjects completed randomized double-blind (DB) study drug the night prior to Visit 9 but remained on fluoxetine hydrochloride for the two-week wash-out period. At Visit 9, the end of treatment assessments were performed (ECG, clinical laboratory assessments, physical exam, vital sign).
  • Visit 10 (Week 10; End of Study):
  • Subjects completed their last dose of fluoxetine hydrochloride for this study on the day of this visit. On the morning of the day prior to Visit 10, subjects completed the IVRS sleep diary and HAM-D-7. On the morning of Visit 10, prior to the visit, subjects completed their final IVRS call during which the sleep diary and depression symptoms (DTA/SQ) questionnaires were administered. At the clinic visit, the HAM-D-17 was administered by a clinician. Final safety assessments [physical examination, ECG, clinical laboratory assessments] and an evaluation of AEs were performed and study drug and supplies are collected. At this time, subjects were referred for follow-up to their primary physicians.
  • Sample Population: Approximately 600 subjects were randomized in order to complete 360. Subjects are males and females between the ages of 21 and 64, inclusive. All subjects were required to meet the DSM IV criteria for insomnia related to a major depressive disorder. Subjects must have reported all of the following: sleep onset time >30 minutes, wake time after sleep onset >45 minutes and total sleep time of <6.5 hours. Subjects must also have had a minimum HAM-D-17 score of 14, not including scores for sleep items, at Visit 1.
  • Dose Description: All subjects received fluoxetine hydrochloride 20 mg daily until Week 4 (Visit 7). At Week 4 (Visit 7), the dose of fluoxetine hydrochloride was permitted to 40 mg if the investigator's clinical global impression of the subject's depression symptoms was rated at >3 compared symptoms at baseline (Visit 3). In addition, subjects were randomized at Visit 3 (end of baseline) to treatment with one of the following nightly (at bedtime): eszopiclone (3 mg) or matching placebo.
  • Study Methods
  • Primary Efficacy Endpoint: The primary endpoint was the mean subjective wake time after sleep onset (WASO) during Week 1.
  • Key Secondary Endpoints: Time to onset of 30% antidepressant response, defined as the time from Visit 3 to the first of two successive clinic assessment time points at which the subject achieved a ≧30% reduction from baseline, on the HAM-D-6 (Bech) was a key secondary endpoint. 30% antidepressant response, defined as a ≧30% reduction from baseline for at least two successive clinic assessment time points, on the HAM-D-6 (Bech) score was also a key secondary endpoint.
  • Secondary Endpoints: Secondary sleep endpoints were the following:
  • Mean wake time after sleep onset (WASO) at weeks 2, 3, 4, 6 and 8 post randomization.
  • Mean subjective total sleep time (TST) at weeks 1, 2, 3, 4, 6 and 8 post randomization.
  • Mean subjective sleep latency (SL) at weeks 1, 2, 3, 4, 6 and 8 post randomization.
  • Mean number of awakenings at weeks 1, 2, 3, 4, 6 and 8 post randomization.
  • Quality and depth of sleep at weeks 1, 2, 3, 4, 6 and 8 post randomization.
  • Daytime alertness at weeks 1, 2, 3, 4, 6 and 8 post randomization.
  • Ability to concentrate at weeks 1, 2, 3, 4, 6 and 8 post randomization.
  • Physical well-being at weeks 1, 2, 3, 4, 6 and 8 post randomization.
  • Ability to function at weeks 1, 2, 3, 4, 6, and 8 post randomization.
  • In addition, the double-blind average (average of weeks 1, 2, 3, 4, 6, and 8) and the rebound and withdrawal effects were analyzed for each of the subjective sleep endpoints. Other secondary efficacy endpoints were the following:
      • Time to onset of 50% antidepressant response, defined as the time from Visit 3 to the first of two successive clinic assessment time points at which the subject achieved a ≧50% reduction from baseline, on the HAM-D-6 (Bech).
      • 50% antidepressant response, defined as a ≧50% reduction from baseline for at least two successive clinic assessment time points, on the HAM-D-6 (Bech) score.
      • Time to onset of 30% antidepressant response on HAM-D-6 (Maier) for at least two successive clinic assessment time points.
      • 30% antidepressant response on HAM-D-6 (Maier) score for at least two successive clinic assessment time points.
      • Time to onset of 50% antidepressant response on HAM-D-6 (Maier) for at least two successive clinic assessment time points.
      • 50% antidepressant response on HAM-D-6 (Maier) score for at least two successive clinic assessment time points.
      • The change in the HAM-D-6 (Bech) and HAM-D-6 (Maier) from baseline to each visit.
      • The change in the HAM-D-17 from baseline to weeks 4 and 8.
      • SQ score (Depression Subscale) during weeks 1, 2, 3, 4, 6, and 8.
      • DTA score during weeks 1, 2, 3, 4, 6, and 8.
      • The change in HAM-D-6 (Bech), HAM-D-6 (Maier), HAM-D-17, SQ, and DTA during the wash-out phase until end of study (Week 8 minus Week 10).
      • SF-36 score at weeks 4, 8, and 10.
      • WLQ score at weeks 2, 4, 8, and 10.
      • ESS at weeks 1, 2, 3, 4, 6, 8, and 10.
      • ISI score at weeks 2, 4, 8, and 10.
      • Clinical Global Impression (CGI) at weeks 1, 2, 3, 4, 6, 8, and 10.
    Safety Assessments
  • Safety was assessed by physical examinations, a standard 12-lead ECG, vital signs, clinical laboratory assessments and AE reporting.
  • Subjective Assessments
  • IVRS questionnaire: Subjective sleep assessments, depression symptoms and quality of life were evaluated via an IVRS. At Visit 1, subjects were trained on the use of the system and received a unique user ID and password.
      • Sleep Diary: This questionnaire asked the subjects to report information about the previous night's sleep.
      • Daily Telephone Assessment: This questionnaire rated the subjects depressive symptoms over the past day on a scale of 0 to 9.
      • The Symptoms Questionnaire (Depression Subscale): This questionnaire asked if subjects have experienced a number of depressive symptoms over the previous day.
      • The Hamilton-Depression-7: Depression symptoms and general well being over the previous 2 weeks were assessed by 7 selected items of the Hamilton-Depression Rating Scale-17. The items included in the 7 item scale are mood (Item 1), feelings of guilt (Item 2); work activities (Item 7); retardation (Item 8), agitation (Item 9); anxiety psychic (Item 10); and somatic symptoms (Item 13). For data analysis, two 6 item sub scales were evaluated: the Bech HAM-D-6 (9) which includes Items 1, 2, 7, 8, 10 and 13; and the Maier HAM-D-7 (10) which includes Items 1, 2, 7, 8, 9, and 10.
  • Subject compliance with the use of the IVRS was tracked. Sites were notified of non-compliance and were required to follow-up with the subject.
  • Sleep, Depression, and Productivity Questionnaires and Clinical Global Impression: The following questionnaires were administered as listed below.
      • Epworth Sleepiness Scale (ESS): ESS was completed by the subject at Visits 2-10. The ESS is a subjective assessment of the likelihood of falling asleep in various situations.
      • Insomnia Severity Index (ISI): ISI was completed by the subject at Visits 3, 5, 7, 9 and 10. The ISI is a subjective assessment of sleep quality, restedness/refreshness upon arising, daytime fatigue, attention/concentration and relationship and mood disturbances.
      • Work Limitations Questionnaire (WLQ): WLQ was completed by the subject at Visits 3, 5, 7, 9, and 10. The WLQ is a validated self-report instrument for measuring the degree to which chronic health problems interfere with ability to perform job roles, addressing the content of the job through a demand-level methodology.
      • Hamilton Depression-17: HAM-D-17 was administered via IVRS at screening and rated by a trained clinician at Visits 3, 7, 9, and 10.
      • SF-36: SF-36 was completed by the subject at Visits 3, 7, 9 and 10. The SF-36 represents multiple operational definitions of health, including function and dysfunction, distress and well-being, objective reports and subjective ratings, and both favorable and unfavorable self-evaluations of general health status.
      • Clinical Global Impression (CGI): CGI was completed by the investigator at Visits 3-10 The CGI is the investigator's subjective assessment of improvement in the subject's depressive symptoms. The response on the CGI at Visit 7 (Week 4 of double-blind treatment) was used by the investigator to assess the need for increasing the dose of fluoxetine to 40 mg daily (in the morning). If in the opinion of the investigator the subject's condition has not improved on the Global Improvement question of the CGI to a score of 1 (very much improved) or 2 (much improved), the investigator was permitted to increase the dose of fluoxetine hydrochloride to 40 mg.
    Study Conduct
  • Inclusion Criteria:
    • 1. Subject must give appropriate written informed consent and privacy authorization prior to participation in the study. A female subject must also sign the Women of Childbearing Potential Informed Consent Addendum.
    • 2. Subject must understand the purpose of the study and be willing to adhere to the study schedule and procedures described in this protocol.
    • 3. Subject must be 21 to 64 years of age (inclusive) on the day of signing consent.
    • 4. Subject must meet DSM IV criteria for a primary and principal diagnosis of Major Depressive Disorder (MDD; 296.XX), moderate (296.X2) or severe depression without psychotic features (296.X3) with the presences of either a single episode (296.2×) or recurrent episode (296.3×) based on a clinical interview with the primary investigator or sub-investigator (see below for definitions).
    • 5. Subject's current depressive episode is at least 2 weeks but not longer than 6 months in duration.
    • 6. Subject must score a minimum of 14 on the Hamilton-D-17 (not including sleep items).
    • 7. Subject must meet DSM IV criteria for insomnia related to MDD and the symptoms of insomnia must not pre-date the symptoms of MDD by more than 10 weeks (see below for definitions).
    • 8. Subject must report a sleep onset time of ≧30 minutes, and wake time after sleep onset of ≧45 minutes, and ≦6.5 hours of total sleep time at least three times a week over the previous month.
    • 9. Subject physical examination must show no clinically significant abnormal findings (other than MDD) at screening.
    • 10. Subject must have no known clinically significant abnormal laboratory findings at screening.
    • 11. Subject must have no clinically significant ECG abnormalities at screening.
    • 12. Subject must meet one of the following conditions:
      • Subject is not taking antidepressant medications at the time of Visit 1.
      • Subject is taking a sub-therapeutic dose of antidepressant or other disallowed psychotropic medication and with the approval of the investigator agrees to taper off of this medication, prior to completion of screening assessments at Visit 1.
  • Exclusion Criteria
    • 1. Female subject is pregnant, lactating or within 6 months post partum.
    • 2. Subject has known sensitivity to any selective SSRI, zopiclone, or eszopiclone.
    • 3. Subject is, in the opinion of the investigator, at significant suicide risk as determined by a clinical interview by the investigator or sub-investigator.
    • 4. Subject has history of major depressive disorder that was refractory to treatment with SSRIs as determined by the Antidepressant Treatment History Questionnaire.
    • 5. Subject has a current primary DSM-IV Axis I psychiatric diagnosis of any of the following disorders: dementia, delirium, schizophrenia, psychosis, other psychotic disorders, dysthymic disorder; bipolar disorders; cyclothymic disorder, other mood disorders, nocturnal panic disorder, primary anxiety disorders, primary panic disorders or any other psychiatric disorder that would compromise the investigator's ability to evaluate the safety and efficacy of the study medication.
      Note: Subjects with Sexual and Gender Identity Disorders or other non-psychotic Axis I disorders were considered on a case-by-case basis (see below for DSM-IV criteria for disallowed psychiatric diagnoses). Subjects with MDD and a secondary diagnosis of generalized anxiety disorder, panic disorders other than nocturnal panic disorder or seasonal affective disorder were allowed.
    • 6. Subject has any of the following DSM IV Axis II Personality Disorders diagnoses: schizotypal, schizoid, borderline personality disorder; mental retardation or any other personality disorder that would compromise the investigator's ability to evaluate the safety and efficacy of the study medication.
    • 7. Subject has difficulties in sleep initiation or maintenance associated with known medical diagnosis [e.g. sleep apnea, restless leg syndrome (RLS), or periodic leg movement syndrome (PLMS)], or has any condition that has or may affect sleep [(e.g., chronic pain, benign prostatic hypertrophy (BPH)].
    • 8. Subject has any clinically significant unstable medical or neurologic abnormality, unstable chronic disease, or a history of a clinically significant abnormality of the cardiovascular, respiratory, hepatic, or renal systems.
    • 9. Subject has a disorder or history of a condition (e.g., malabsorption, gastrointestinal surgery) that may interfere with drug absorption, distribution, metabolism, or excretion.
    • 10. Subject has a history of malignancy within 5 years, or current malignancy, except for non-melanoma skin cancer.
    • 11. Subject is using any of the disallowed medications, or has not met the required wash-out period for disallowed medications listed below.
    • 12. Subject has a history of drug or alcohol abuse or dependence in the past 6 months or positive urine drug and alcohol test at screening.
    • 13. Subject is participating in, has participated in, or plans to participate in any investigational drug study within 30 days prior to screening until the end of this study.
    • 14. Subject has history of circadian rhythm disorder, or travels across ≧3 time zones on a regular basis.
    • 15. Subject is known to be seropositive for Human Immunodeficiency Virus (HIV).
    • 16. Subject has used any drugs known or suspected to affect hepatic or renal clearance capacity within a period of 30 days prior to screening.
    • 17. Subject is unwilling to refrain from drinking alcoholic beverages during study participation.
    • 18. Subject is a rotating or third/night shift worker.
    • 19. Subject is a staff member or relative of a staff member.
    Randomization Criteria
  • To be eligible for randomization, the subject must have completed a minimum of 3 daily diary assessments via IVRS during the baseline period.
  • Concurrent Medications and Restrictions Disallowed Medications
  • The following medications were disallowed during study participation and must have been discontinued for minimum periods as listed below:
  • Drug Class Wash-out Periods*
    Any antipsychotic medications 30 days prior to Visit 2
    Fluoxetine 35 days prior to completion
    of screening assessments
    Any other SSRI 14 days prior to completion
    of screening assessments
    Any monoamine oxidase inhibitors 14 days prior to completion
    of screening assessments
    Any tricyclic antidepressant (TCA) 14 days prior to completion
    of screening assessments
    Any serotonin-norepinephrine 14 days prior to completion
    re-uptake inhibitors (NSRIs) of screening assessments
    Other antidepressants (trazadone, 14 days prior to completion
    nefazadone, bupropion, mirtazapine) of screening assessments
    Benzodiazepine sedative hypnotics 14 days prior to Visit 2
    or anxiolytics
    Any drugs including over-the-counter 14 days prior to Visit 2
    drugs and herbal supplements known
    to affect sleep wake function
    *The wash-out period begins after the subject has successfully tapered from prior therapy and is no longer taking any of the disallowed medication.
  • Concurrent Medications for the Duration of the Study:
  • Chronic medications other than those listed above taken at a stable dose for at least 30 days prior to clinical assessment screening (Visit 2) were allowed. Standard over the counter medications other than those listed above (analgesics, topical ointments, etc) were also allowed. All females on oral contraceptives and hormonal therapy were encouraged to dose at the same time of day each day while on study.
  • Additional Instructions:
  • Subjects were to be instructed not to consume alcohol during this study. Subjects were to eat dinner at least 2 hours prior to their scheduled double-blind study medication dosing time. Subjects were to refrain from driving or using heavy machinery within 7 hours after taking double-blind study medication.
  • Drugs and Dosage Study Medication Description
  • Eszopiclone was supplied as 3 mg tablets. Subjects received a 3 mg dose as one tablet. In addition to eszopiclone, the active ingredient, each tablet contained: microcrystalline cellulose, USP; calcium phosphate anhydrous, USP; croscarmellose sodium, USP; colloidal silicon dioxide, USP and magnesium stearate, USP. The tablets were coated with opadry II. The matching placebo contains all ingredients, except the active eszopiclone.
  • Fluoxetine hydrochloride is a white to off-white crystalline solid with a solubility of 14 mg/mL in water. Each capsule contained fluoxetine hydrochloride equivalent to 20 mg or 40 mg of fluoxetine. The capsules also contained starch, gelatin, silicone, titanium dioxide, iron oxide, and other inactive ingredients.
  • Administration of Study Medication
  • Randomized Double-Blind Kits:
  • Eligible subjects were randomized and assigned a numbered double-blind kit containing 6 blister packs. Kits were dispensed in ascending order (lowest to highest) from the sites double-blind drug supply. Each kit contained the following:
      • Four blister packs clearly labeled with the visit number (Visits 3, 4, 5, and 6). Each Visit 3, 4, 5, and 6 blister pack will contain a 7 (+/−2) day supply of double-blind study medication and fluoxetine hydrochloride capsules.
      • Four blister packs clearly labeled with the visit number (Visits 7-20 mg fluoxetine hydrochloride; Visit 7-40 mg fluoxetine hydrochloride; Visit 8-20 mg fluoxetine hydrochloride and Visit 8-40 mg fluoxetine hydrochloride). Each Visit 7 and Visit 8 blister pack will contain a 14 (+/−2) day supply of double-blind study drug and fluoxetine hydrochloride capsules. At the investigator's discretion based on lack of improvement or minimal improvement on the Clinical Global Impression (rating of ≧3), the dose of fluoxetine may be increased to 40 mg at Visit 7. If the subject requires the 40 mg dose of fluoxetine hydrochloride, the Visit 7—a 40 mg fluoxetine hydrochloride blister pack will be dispensed. Choose only one Visit 7 and one Visit 8 card. The Visit 7 and Visit 8 card that is not used will remain in the kit and will be returned.
  • Single-Blind Wash-Out:
  • Subjects who completed the 8-week double-blind treatment period were entered into a two-week single-blind wash-out period. At Visit 9, subjects were provided with a blister pack containing a 14 (+/−2) day supply of single blind placebo tablets and open-label fluoxetine hydrochloride capsules.
  • Dosing Instructions
  • Subjects were instructed to take one double- or single-blind tablet each night (at bedtime) beginning the evening of each office visit. Subject were instructed to take one fluoxetine hydrochloride capsule each morning beginning at Visit 3. Subjects were to return each blister pack at the next office visit. The morning dose of fluoxetine hydrochloride on the day of Visits 4-10 was to be taken prior to coming into clinic (from the previous visit's blister pack).
  • Treatment Plan Standardization of Data Capture
  • Vital Signs:
  • For each visit, vital signs consist of 5 minutes resting, seated blood pressure, respiration rate, heart rate, and oral or auricular body temperature.
  • ECG:
  • An ECG was performed at Visits 1, 9 and Visit 10. Collection was started after 5 minutes of supine rest. When possible, this ECG was obtained prior to drawing blood samples for clinical laboratory evaluations.
  • Clinical Laboratory:
  • Blood and urine samples for clinical laboratory assessments were obtained at Visits 1, 3, 7, 9, and 10 and analyzed accordingly. The analysis included Hematology: 1) Total WBC Count; 2) Differential: neutrophils, lymphocytes, monocytes, eosinophils, basophils; 3) Hemoglobin; 4) Hematocrit; 5) Platelet Count; and 6) RBC Count. Qualitative Urinalysis: 1) glucose, 2) ketones, 3) protein, and 4) blood. Other Urine Laboratory Tests: urine drug and alcohol screen. Blood chemistry tests included tests for electrolytes, certain enzymes, and certain other tests as described herein. Electrolytes: carbon dioxide, calcium, chloride, phosphorus (inorganic), potassium, sodium, and magnesium. Enzymes: alkaline phosphatase, SGOT (AST), and SGPT (ALT). Other: albumin, bilirubin (total), creatinine, glucose, protein (total), blood urea nitrogen, uric acid, and T4. Other tests: serum β-hCG pregnancy test (all females) and serum cortisol.
  • IVRS:
  • All subjects were instructed on the use of the IVRS for the collection of sleep and depressive symptom endpoints at Visit 2. A brief review was conducted at subsequent visits, as needed. The following assessments were completed via IVRS:
      • Sleep Diary: Daily in the morning beginning the morning after Visit 2 until the morning after Visit 4; Morning of and morning after Visits 5, 6, 7, 8; Beginning on the first morning of the last week on DB (start of week 8) until the morning of Visit 10.
      • 7 selected items of the HAM-D-17: Once on the morning after Visit 2; once on the morning of clinic visits 3 through 9; and once in between Visit 9 and 10 at approximately 7 days post visit 9 (on the first day of the daily diary at Week 9 on DB) and on the morning to prior to Visit 10.
      • Daily Telephone Assessment (DTA) and Symptoms Questionnaire (SQ): Daily in the morning beginning the morning after Visit 2 until the morning after Visit 4; Morning after Visits 5, 6, 7, 8, 9; Eight days post Visit 9; Morning of Visit 10.
  • QoL Measurements:
  • All subjects completed the sleep and quality of life questionnaires in the clinic as described above. The questionnaires were reviewed by study staff with the subjects for completeness only. Patients were not questioned about any of their responses or given suggestions on how to answer any of the questions.
  • Medical Events Calendar (MEC):
  • All subjects were given a Medical Event Calender (MEC) to be completed throughout their time on study. The MED simply provided a place for patients to record the medications taken each day and any illnesses, symptoms or medical conditions they experience each day. At each return visit, the MEC was reviewed, collected, and a new MEC was dispensed.
  • Adverse Events (AEs):
  • Subjects were queried in a non-leading manner, without specific prompting (e.g., “How are you feeling?”) to assess whether they are suffering from any adverse events.
  • Concomitant Medications and Medical History:
  • Subject-self report was acceptable for listing all concomitant medication use, medical history and evaluation for inclusion/exclusion except where specific protocols procedures are mandated to ensure appropriate enrollment (e.g. certain baseline lab values).
  • Screening (Visit 1)
  • No protocol-related procedures were performed prior to obtaining written informed consent. Subjects were evaluated at screening to determine their eligibility for study participation. All clinical assessments (clinical laboratory, physical examination, ECG, etc.) was completed and reviewed by the Investigator prior to Visit 2.
  • Subject informed consent was obtained prior to initiation of study specific tapering of any disallowed medications. Investigators discussed the process of tapering antidepressant medications with subjects prior to signing consent and should note the discussion in progress notes in the source documentation. Tapering of antidepressant or other disallowed psychotropic medications was approached cautiously taking into consideration the subjects current depression symptoms and medical history and the manufacturer's package insert instructions for withdrawing therapy. Under no circumstances did the Investigators withdraw antidepressant or other disallowed psychotropic therapy:
  • 1) prior to obtaining informed consent;
  • 2) improperly/abruptly to adhere to the protocol specified wash-out periods.
  • If a tapering period was required, the screening visit was completed on multiple dates. At the first office visit, subjects were seen for the signing of the informed consent, collection of medical history and concomitant medications. The investigator performed a brief examination to assess the subject's status and to evaluate the potential for the subject to safely taper off of antidepressant or other disallowed psychotropic medication. The investigator documented rationale for enrolling a subject currently on antidepressant or other psychotropic therapy and the plan for tapering this medication in the source documents. Subjects did not complete the sleep history questionnaire or the Ham-D-17 via IVRS until the end of the wash-out period. If all screening procedures were not completed within 30 days from the date of signed Informed Consent, the subject returned to the clinic to sign a new Informed Consent.
  • The following study-related procedures were performed at screening:
    • 1. Signed informed consent (including women of child-bearing potential addendum, if applicable) and privacy authorization from the subject before conducting any other visit procedures were obtained
    • 2. A medical history (including psychiatric history), sleep history, demographic information, and alcohol use and any prior treatments for insomnia was obtained. NOTE: If tapering from antidepressant or other disallowed psychotropic medication was required, the sleep history questionnaire was not completed until the subject had completed the wash-out period.
    • 3. The subject was registered on the IVRS and trained in its use. The subject completed the Hamilton-D-17 via IVRS to assess depression symptoms. NOTE: If tapering from antidepressant or other disallowed psychotropic medication was required, the Ham-D-17 should was not completed until the subject had completed the wash-out period.
    • 4. All concurrent medications were recorded, including OTC and health and dietary supplements, taken within the previous 30 days; the Antidepressant Treatment History Questionnaire to evaluate prior response to antidepressants was completed.
    • 5. A physical examination was performed, including a brief neurological examination (excluding genitourinary, breast and rectal).
    • 6. Vital signs (seated), height and weight were obtained.
    • 7. A 12-lead ECG was obtained
    • 8. A blood sample for clinical laboratory tests (including hematology, chemistry and a serum pregnancy test for all women), and urine samples for urinalysis and urine alcohol and drug screen was obtained.
    • 9. All inclusion and exclusion criteria were reviewed.
    • 10. Issued MEC to all subjects and instructed subject on their use.
    • 11. Scheduled Visit 2 in 5-14 days.
    Visit 2 (Start of Baseline Period)
  • Visit 2 occurred 5-14 days after Visit 1. Subjects begin using the IVRS daily until Visit 4 following this visit. The following study-related procedures were performed:
    • 1. Reviewed all inclusion and exclusion criteria including clinical laboratory assessments, and the IVRS HAM-D-17 score.
    • 2. Subjects meeting all inclusion and exclusion criteria completed the ESS questionnaire prior to performing any other study related procedures. The questionnaire was reviewed for completeness by study staff. Any items left blank were returned to the subject for completion.
    • 3. Collected and reviewed the MEC. Recorded all changes in concurrent medications, including OTC and health and dietary supplements, and AEs that may have occurred between Visit 1 and Visit 2.
    • 4. Obtained vital signs (seated) and weight.
    • 5. Instructed subjects on the use of the IVRS. Subjects will begin IVRS calls in the morning following Visit 2 and will continue daily calls for two-weeks until Visit 4.
    • 6. Issued MEC and instruct the subject on its use.
    • 7. Scheduled Visit 3 in 3-7 days.
    Visit 3 (Randomization; Beginning of Double-Blind Treatment Period)
  • Visit 3 occurred 3-7 days after Visit 2. The first dose of fluoxetine hydrochloride 20 mg was administered in clinic at Visit 3. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. The first dose of double-blind study medication was administered at bedtime on the day of Visit 3. Double-blind dosing (at bedtime) continued nightly through Visit 9.
    • 1. Collected and reviewed the MEC. Recorded all changes in concurrent medications, including OTC and health and dietary supplements, and AEs that may have occurred between Visit 2 and Visit 3.
    • 2. Reviewed randomization criteria.
    • 3. Subjects meeting all randomization criteria completed the ESS, ISI, WLQ, and SF-36 questionnaires prior to performing any other study related procedures. Questionnaires were reviewed for completeness by study staff. Any items left blank were returned to the subject for completion.
    • 4. A trained clinician administered the Hamilton-D-17 to assess depression symptoms.
    • 5. The investigator completed the Clinical Global Impression of the subject's depression symptoms.
    • 6. Obtained vital signs (seated) and weight.
    • 7. Obtained blood and urine samples for clinical laboratory assessments including urinalysis, urine drug and alcohol screen, and serum pregnancy tests for all women.
    • 8. Assigned a randomization number and dispensed the Visit 3 double-blind blister pack from the randomization kit. Instructed the subject to begin taking one double-blind tablet nightly at bedtime and one fluoxetine hydrochloride 20 mg capsule daily (in the morning). The first dose of fluoxetine hydrochloride was taken in clinic. The first dose of double-blind study medication was administered at bedtime on the day of Visit 3.
    • 9. Reviewed use of IVRS and the schedule for calling. Subjects continued daily IVRS calls in the morning until Visit 4.
    • 10. Issued MEC and instruct the subject on its use.
    • 11. Scheduled Visit 4 in 7 (+/−2) days.
    Visit 4 (Double-blind Treatment Week 1)
  • Visit 4 occurred 7 (+/−2) days after Visit 3. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through Visit 9.
    • 1. Collected and reviewed the MEC. Recorded all changes in concurrent medications, including OTC and health and dietary supplements, and AEs that may have occurred between Visit 3 and Visit 4.
    • 2. Collected the Visit 3 study-drug blister pack (fluoxetine hydrochloride and double-blind) and reviewed subject compliance.
    • 3. Subjects completed the ESS questionnaire prior to performing any other study related procedures. The questionnaire was reviewed for completeness by study staff. Any items left blank were returned to the subject for completion.
    • 4. The investigator completed the Clinical Global Impression of the subject's depression symptoms.
    • 5. Obtained vital signs (seated) and weight.
    • 6. Dispensed the Visit 4 double-blind blister pack. Instructed the subject to take one double-blind tablet nightly (at bedtime) and one open-label fluoxetine hydrochloride 20 mg capsule daily (in the morning).
    • 7. Reviewed use of IVRS and the schedule for calling. Subjects called the IVRS on morning of Visit 5 (prior to coming to the visit).
    • 8. Issued MEC and instructed the subject on its use.
    • 9. Scheduled Visit 5 in 7 (+/−2) days.
    Visit 5 (Double-Blind Treatment Week 2)
  • Visit 5 occurred 7 (+/−2) days after Visit 4. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through Visit 9.
    • 1. Collected and reviewed the MEC. Recorded all changes in concurrent medications, including OTC and health and dietary supplements, and AEs that may have occurred between Visit 4 and Visit 5.
    • 2. Collected the Visit 4 study-drug blister pack (fluoxetine hydrochloride and double-blind) and reviewed subject compliance.
    • 3. Subjects completed the ESS, ISI, and WLQ questionnaires prior to performing any other study related procedures. The questionnaires were reviewed for completeness by study staff. Any items left blank were returned to the subject for completion.
    • 4. The investigator completed the Clinical Global Impression of the subject's depression symptoms.
    • 5. Obtained vital signs (seated) and weight.
    • 6. Dispensed the Visit 5 double-blind blister pack. Instructed the subject to take one tablet nightly (at bedtime) and one open-label fluoxetine hydrochloride 20 mg capsule daily (in the morning).
    • 7. Reviewed use of IVRS and the schedule for calling. Subjects called the IVRS the morning following this visit and on the morning of Visit 6 (prior to the visit).
    • 8. Issued MEC and instructed the subject on its use.
    • 9. Scheduled Visit 6 in 7 (+/−2) days.
    Visit 6 (Double-Blind Treatment Week 3)
  • Visit 6 occurred 7 (+/−2) days after Visit 5. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through Visit 9.
    • 1. Collected and reviewed the MEC. Recorded all changes in concurrent medications, including OTC and health and dietary supplements, and AEs that may have occurred between Visit 5 and Visit 6.
    • 2. Collected the Visit 5 study-drug blister pack (fluoxetine hydrochloride and double-blind) and reviewed subject compliance.
    • 3. Subjects completed the ESS questionnaire prior to performing any other study related procedures. The questionnaire was reviewed for completeness by study staff. Any items left blank were returned to the subject for completion.
    • 4. The investigator completed the Clinical Global Impression of the subject's depression symptoms.
    • 5. Obtained vital signs (seated) and weight.
    • 6. Dispensed the Visit 6 double-blind blister pack. Instructed the subject to take one double-blind tablet nightly (at bedtime) and one open-label fluoxetine hydrochloride 20 mg capsule daily (in the morning).
    • 7. Reviewed use of IVRS and the schedule for calling. Subjects called the IVRS the morning following this visit and on the morning of Visit 7 (prior to the visit).
    • 8. Issued MEC and instruct the subject on its use.
    • 9. Scheduled Visit 7 in 7 (+/−2) days.
    Visit 7 (Double-Blind Treatment Week 4)
  • Visit 7 occurred 7 (+/−2) days after Visit 6. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through Visit 9.
    • 1. Collected and reviewed the MEC. Recorded all changes in concurrent medications, including OTC and health and dietary supplements, and AEs that may have occurred between Visit 6 and Visit 7.
    • 2. Collected Visit 6 study-drug blister pack (fluoxetine hydrochloride and double-blind) and review subject compliance.
    • 3. Subjects completed the ESS, ISI, WLQ, and SF-36 questionnaires prior to performing any other study related procedures. The questionnaires were reviewed for completeness by study staff. Any items left blank were returned to the subject for completion.
    • 4. A trained clinician administered the Hamilton-D-17 to assess depression symptoms.
    • 5. The investigator completed the Clinical Global Impression. If in the investigators opinion the subject's depressive symptoms had not improved beyond minimal improvement (rating of ≧3), the investigator could increase the dose of fluoxetine hydrochloride to 40 mg daily (in the morning). If an increased dose of fluoxetine was required, the investigator dispensed the double-blind blister pack containing the 40 mg dose of fluoxetine.
    • 6. Dispensed the appropriate Visit 7 double-blind blister pack. Instructed the subject to take one double-blind tablet nightly (at bedtime) and one open-label fluoxetine hydrochloride 20 mg or 40 mg capsule daily (in the morning). Note: only one Visit 7 blister card was dispensed.
    • 7. Obtained vital signs (seated) and weight.
    • 8. Obtained blood and urine samples for clinical laboratory assessments including urinalysis, urine drug and alcohol screen, and a serum pregnancy tests on all women.
    • 9. Reviewed use of IVRS and the schedule for calling. Subjects call the IVRS the morning following this visit and on the morning of Visit 8 (prior to the visit).
    • 10. Issued MEC and instruct the subject on its use.
    • 11. Scheduled Visit 8 in 14 (+/−2) days.
    Visit 8 (Double-Blind Treatment Week 6)
  • Visit 8 occurred 14 (+/−2) days after Visit 7. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through Visit 9.
    • 1. Collected and reviewed the MEC. Recorded all changes in concurrent medications, including OTC and health and dietary supplements, and AEs that may have occurred between Visit 7 and Visit 8.
    • 2. Collected Visit 7 study-drug blister pack (fluoxetine hydrochloride and double-blind) and reviewed subject compliance.
    • 3. Subjects completed the ESS questionnaire prior to performing any other study related procedures. The questionnaire was reviewed for completeness by study staff. Any items left blank were returned to the subject for completion.
    • 4. The investigator completed the Clinical Global Impression of the subject's depression symptoms.
    • 5. Obtained vital signs (seated) and weight.
    • 6. Dispensed one Visit 8 double-blind blister pack (20 mg or 40 mg fluoxetine hydrochloride). Instructed the subject to take one double-blind tablet nightly (at bedtime) and one open-label fluoxetine hydrochloride 20 or 40 mg capsule daily (in the morning).
    • 7. Reviewed use of IVRS and the schedule for calling. Subjects called the IVRS the morning following this visit and resumed daily calls one week following Visit 8 until the morning of Visit 10 (prior to the visit).
    • 8. Issued MEC and instruct the subject on its use.
    • 9. Scheduled Visit 9 in 14 (+/−2) days.
    Visit 9 (End of Double-Blind Treatment Week 8)
  • Visit 9 occurred 14 (+/−2) days after Visit 8. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through the night prior to Visit 9.
    • 1. Collected and reviewed the MEC. Recorded all changes in concurrent medications, including OTC and health and dietary supplements, and AEs that may have occurred between Visit 7 and Visit 8.
    • 2. Collected Visit 8 the study-drug blister pack (fluoxetine hydrochloride and double-blind) and review subject compliance.
    • 3. Subjects completed the ESS, ISI, WLQ, and SF-36 questionnaires prior to performing any other study related procedures. The questionnaire were reviewed for completeness by study staff. Any items left blank were returned to the subject for completion
    • 4. A trained clinician administered the Hamilton-D-17 to assess depression symptoms.
    • 5. The investigator completed the Clinical Global Impression of the subject's depression symptoms
    • 6. Obtained vital signs (seated) and weight
    • 7. Obtained standard 12-lead ECG
    • 8. Obtained blood and urine samples for clinical laboratory assessments including urinalysis, urine drug and alcohol screen, serum pregnancy test on all women.
    • 9. Performed the end of treatment physical exam to assess changes that have occurred since Visit 1.
    • 10. Dispensed one Visit 9 single-blind placebo blister pack (Blister pack contains 20 mg or 40 mg fluoxetine hydrochloride) and instructed the subject to continue taking one single-blind tablet nightly (at bedtime) and one open-label fluoxetine hydrochloride 20 mg or 40 mg capsule daily (in the morning).
    • 11. Reviewed use of IVRS and the schedule for calling. Subjects called the IVRS daily until the morning of Visit 10.
    • 12. Issued MEC and instruct the subject on its use.
    • 13. Scheduled Visit 10 in 14 (+/−2) days.
    Visit 10 (End of Study)
  • Visit 10 occurred 14 (+/−2) days after Visit 9. Open-label fluoxetine hydrochloride dosing (in the morning) continued daily through Visit 10. Double-blind dosing (at bedtime) continued nightly through Visit 9. Subject completed the final IVRS assessment on the morning of Visit 10.
    • 1. Collected and reviewed the MEC. Recorded all changes in concurrent medications, including OTC and health and dietary supplements, and AEs that may have occurred between Visit 9 and Visit 10.
    • 2. Collected the Visit 9 blister pack and review subject compliance.
    • 3. Subjects completed the ESS, ISI, WLQ, and SF-36 questionnaires prior to performing any other study related procedures. The questionnaires were reviewed for completeness by study staff. Any items left blank were returned to the subject for completion.
    • 4. A trained clinician administered the Hamilton-D-17 to assess depression symptoms.
    • 5. The investigator completed the Clinical Global Impression of the subject's depression symptoms
    • 6. Obtained vital signs (seated) and weight.
    • 7. Obtained a standard 12-lead ECG.
    • 8. Obtained blood and urine samples for clinical laboratory assessments including urinalysis, urine drug and alcohol screen, serum pregnancy tests on all women.
    Discontinuation and Replacement of Subjects
  • Subjects in this study were discontinued for any of the following reasons: 1) adverse reactions; 2) protocol violations; 3) withdrawal of consent; 4) lost to follow-up; 5) treatment failure; 6) does not meet inclusion/exclusion/randomization criteria; 7) other. All subjects prematurely discontinuing from the trial during the double-blind period, regardless of cause, were seen for an End of Study evaluation, at which time Visit 9 procedures 1-9 were performed. Subjects who discontinued early for any reason were replaced.
  • Statistics General Design
  • This is a randomized, double-blind, multi-center, placebo-controlled, parallel group study of the efficacy and safety of Eszopiclone in the treatment of subjects diagnosed with major depressive disorder associated with insomnia. Approximately 600 subjects were randomized in a 1:1 ratio to receive one of the two treatments, eszopiclone 3 mg or placebo, for eight weeks in a double-blind fashion.
  • Analysis Variables
  • Primary and Secondary Efficacy Endpoints are described above.
  • Analysis Populations
  • The Intent-To-Treat (ITT) population included all randomized subjects who received at least one dose of study medication. All analyses were conducted using this population.
  • Data Analysis
  • Continuous variables were summarized using descriptive statistics, including number of subjects, mean, standard deviation, minimum, 25th percentile, median, 75th percentile, and maximum. For categorical variables, summaries included counts of subjects and percentages. Baseline was defined as the last non-missing value prior to the first dose of study medication. All statistical tests were two-sided and were conducted at the 5% significance level, unless otherwise specified.
  • To facilitate assessment of site effects and treatment by site interactions for analysis of efficacy data, all sites with fewer than 3 subjects per treatment group were ranked according to the number of subjects randomized. These sites were sequentially pooled together, starting with the site that has the fewest number of subjects (lowest rank), until a pseudo-site was formed that meets the 3 subjects per treatment group criterion. Then a second pseudo-site was formed by combining the next lowest ranking sites until the 3 subjects per treatment group criteria is met, and so on. If the final pseudo-site created did not meet the 3 subjects per treatment group criterion, then it was combined with the previous pseudo-site created.
  • All statistical procedures were performed using SAS Version 8.2 or higher. All p-values were reported to four decimal points with p-values less than 0.0001 reported at <0.0001.
  • Subject Disposition and Drug Exposure:
  • Subject disposition was summarized and presented for the number and percentage of subjects, who were screened, randomized, received treatment, completed the study, and discontinued early (including reasons for discontinuations). For each subject, the number of doses taken was computed from the study drug dispensation and accountability CRF records obtained at each visit, assuming that subjects took their study drug medication evenly throughout the between-visits periods. The extent of exposure to the double-blind medication as well as the number of doses taken during the double-blind treatment period was summarized with descriptive statistics and presented by treatment group.
  • Important Protocol Deviations:
  • Important protocol deviations (IPDs) which were reviewed include, but are not limited to, subjects who:
      • Did not meet inclusion/exclusion criteria or eligibility was not adequately verified
      • Did not meet baseline eligibility criteria
      • Received any disallowed concomitant medication post-baseline
      • Developed withdrawal criteria but were not withdrawn
      • Received less than 80% or more than 120% of the prescribed dose or had another dosing error that would be likely to impact efficacy outcome measures
  • The potentially important protocol deviations were identified shortly before database lock and treatment unblinding either programmatically (e.g., inclusion/exclusion criteria violations, compliance assessment) or through review of treatment-blinded data listings (e.g., investigator comments, concomitant medications). Appropriate personnel (including, at a minimum, an M.D. and a biostatistician) reviewed the list of potential IPDs to identify which protocol deviations will be considered IPDs. The final list of IPDs was documented and used to generate a data listing.
  • Demographic and Baseline Characteristics:
  • Demographic and baseline characteristics, including age, gender, race, height, weight, as well as sleep history parameters, was summarized using descriptive statistics. Continuous variables were compared across treatment groups using an ANOVA model with fixed effects for treatment and site, while categorical variables were compared using Cochran-Mantel-Haenszel (CMH) test for general association controlling for site. Sleep history was summarized by treatment group.
  • Efficacy Analysis:
  • Efficacy analyses were conducted using ITT population. All subjective sleep parameters assessed via the IVRS were summarized descriptively (m, mean, SD, minimum, 25th percentile, median, 75th percentile and maximum) at each week and were presented by treatment group.
  • Primary Analysis:
  • The primary analysis was conducted using the ITT population for the primary efficacy variable, mean WASO during the first week of double-blind medication. This endpoint was computed by averaging the daily WASO values obtained via IVRS from Visit 3 to Visit 4. The analysis was conducted using an analysis of variance model (ANOVA) with treatment and site as fixed effects. The analysis was performed on rank-transformed data, using the SAS MIXED procedure. The cumulative distribution function by treatment was plotted.
  • Key Secondary Analyses:
  • An analysis of the time to onset of 30% antidepressant response, defined as the time from Visit 3 to the first of two successive clinic assessment time points at which the subject achieved a ≧30% reduction from baseline on the HAM-D-6 (Bech) score was analyzed using PROC LIFETEST within SAS. The number of subjects with antidepressant response, and the number of subjects censored were presented for each treatment along with one minus the Kaplan-Meier estimates. Subjects without an antidepressant response of ≧30% reduction in HAM-D-6 (Bech) score for at least two successive assessment time points were censored at the minimum of the end of study or the end of double-blind treatment+14 days. Additionally, the p-value from the log-rank test for equality of survival curves across treatments was reported and a time-to-onset plot (one minus Kaplan-Meier estimate) was produced. The percentage of subjects achieving antidepressant response, defined as a ≧30% reduction from baseline in HAM-D-6 (Bech) score for at least two successive clinic assessments was also analyzed using a logistic regression model with treatment and site as fixed effects.
  • Other Secondary Analyses:
  • Analysis of the secondary subjective sleep parameters, the 1, 2, 3, 4, 6, and 8 week post-randomization and double-blind averages of WASO (except week 1 average, which is the primary efficacy endpoint), TST, SL, mean number of awakenings, depth and quality of sleep, daytime alertness, ability to concentrate, physical well-being and ability to function was conducted on rank-transformed data using the same method as for the primary analysis.
  • Analysis of the time to onset of 50% antidepressant response, defined as the time from Visit 3 to the first of two successive clinic assessment time points at which the subject achieved a ≧50% reduction from baseline on the HAM-D-6 (Bech) score was analyzed using the same method as for the key secondary analysis based on 30% antidepressant response. A 50% antidepressant response, defined as ≧50% reduction from baseline in on the HAM-D-6 (Bech) score for at least two successive clinic assessments was also analyzed using a logistic regression model with treatment and site as fixed effects. These analyses were repeated using both ≧30% reduction from baseline on the HAM-D-6 (Maier) and ≧50% reduction from baseline on the HAM-D-6 (Maier) as the criteria used to define antidepressant response.
  • The change from baseline to each double-blind, post-treatment visit in the HAM-D-17 score as well as the change from baseline to each double-blind, weekly, post-treatment assessments in the HAM-D-6 (Bech) scores and HAM-D-6 (Maier) scores was presented descriptively (m, mean, median, standard deviation, minimum, 25th percentile, median, 75th percentile, and maximum) by treatment. Treatment comparisons were performed at each assessed time point. The analysis compared the eszopiclone 3 mg group to placebo using an analysis of variance model (ANOVA) with treatment and site as fixed effects. The analysis was performed using the SAS MIXED procedure.
  • Treatment comparisons were performed on the Mean Symptoms Questionnaire (SQ) Score during Week 1, defined as the average of the daily SQ scores obtained via IVRS from Visit 3 to Visit 4 using an analysis of variance model (ANOVA) with treatment and site as fixed effects. Mean Daily Telephone Assessment (DTA) Scores during Week 1, defined as the average of the daily DTA scores obtained via IVRS from Visit 3 to Visit 4 were analyzed using the same method as for the Week 1 SQ score. SQ and DTA scores were also summarized descriptively at each assessed time point, with treatment comparisons performed at Weeks 2, 3, 4, 6 and 8, using the same method as for the Week 1 SQ score.
  • All quality of life and productivity parameters were summarized descriptively at each assessed time point for the double-blind treatment period and were presented by treatment. Treatment comparisons were performed at each assessed time point using an analysis of variance model (ANOVA) with treatment and site as fixed effects.
  • Analyses of Rebound and Withdrawal Effects:
  • The occurrence of rebound insomnia and withdrawal effects was assessed for WASO, TST, and SL. For each sleep parameter, the baseline value was computed by averaging the values obtained from IVRS for the SB period (i.e., Visit 2 to Visit 3). The change from baseline to each post-treatment IVRS assessment obtained during the single-blind washout period (Visit 9 to Visit 10), as well as to the average of the washout period assessments, was computed. Descriptive statistics (mean, standard deviation, minimum, 25th percentile, median, 75th percentile and maximum) were presented by treatment at each time point. A Wilcoxon signed-rank test was performed for each treatment group to assess whether the distribution of changes from baseline are centered at zero. In addition, between-group comparisons were performed for these change-from-baseline variables using the same method as for the primary analysis.
  • The same analyses were performed for the change from the end of treatment (i.e., mean value during the last week of double-blind treatment) to each night of the washout period, as well as for the change from the end of treatment to the average over the washout period.
  • Assessment of rebound and withdrawal was also performed for the depression measures, HAM-D-17, HAM-D-6 (Bech), HAM-D-6 (Maier), SQ and DTA. Baseline will be defined as the Visit 3 value for the HAM-D-17, the single-blind average scores from Visit 2 and Visit 3 for HAM-D-6 (Bech) and HAM-D-6 (Maier) and the average of daily values obtained via IVRS during the single-blind period (from Visit 2 to Visit 3) for SQ and DTA. The change from baseline to Visit 10 in HAM-D-17 score, and the change from baseline to each post-treatment assessment obtained during the single-blind washout period (Visit 9 to Visit 10) was computed for all the other depression measures. Descriptive statistics (mean, standard deviation, minimum, 25th percentile, median, 75th percentile and maximum) was presented by treatment at each time point. A Wilcoxon signed-rank test was performed for each treatment group to assess whether the distribution of changes from baseline are centered at zero. In addition, between-group comparisons will be performed for these change-from-baseline variables using an analysis of variance model (ANOVA) with treatment and site as fixed effects.
  • The same analyses were performed for the change from the end of treatment (i.e., value obtained during the last week of double-blind treatment) to the washout period (Visit 10).
  • Exploratory Analyses:
  • The full ANOVA model including treatment by site interaction was used for exploratory analysis of the homogeneity of response by investigative sites using the primary and the secondary subjective sleep variables for the intent-to-treat population. If the interaction is statistically significant at the 0.10 significance level, additional analyses will be completed to more thoroughly explore this interaction.
  • Treatment comparisons (eszopiclone 3 mg versus placebo) were also performed, using an ANOVA model with treatment, site, and baseline as fixed effects for Week 1 average of WASO, TST, and SL. Baseline is defined as the average of daily IVRS values obtained between Visit 2 and Visit 3. WASO and SL, the values were log transformed prior to averaging.
  • An analysis exploring the time to onset of antidepressant response was performed on a subset of those subjects who had a ≧30% n antidepressant response, defined as the time from Visit 3 to the first of two successive clinic assessment time points at which the subject achieved a ≧30% reduction from baseline on the HAM-D-6 (Bech) score. The number of subjects with antidepressant response was presented along with one minus the Kaplan-Meier estimate (which in this case, would be the sample proportions of subjects with response times greater than t). Additionally, the p-value from the log rank test for equality of survival curves across treatments was reported and a time to onset plot (one minus Kaplan-Meier estimate) was produced. This analysis was repeated for a 50% antidepressant response on the using a ≧50% reduction in the HAM-D-6 (Bech), and a 30% and 50% antidepressant response on the HAM-D-6 (Maier) as the criteria used to define antidepressant response.
  • Adverse Events:
  • All adverse experiences were coded using the COSTART dictionary (Coding Symbols for a thesaurus of Adverse Event Terms; version 5.0, 1995). Treatment emergent adverse experiences was defined as 1) AEs that occurred or worsened (increased in severity and/or frequency) on or after the first dose of study medication, 2) AEs with a missing start data and a stop date on or after the first dose of study medication, or 3) AEs with both a missing start and stop date. Treatment emergent AEs was summarized by treatment and by COSTART body system and preferred term. AEs that occurred within 14 days after treatment discontinuation was considered treatment-emergent AEs.
  • The following treatment emergent adverse experience summaries were summarized and presented by treatment group and by COSTART body system and preferred term:
      • All AEs (including number of events and subject incidence)
      • AEs by Severity (mild, moderate, severe)
      • AEs by Relationship to Treatment (not related, unknown, possible, probable, or definite)
  • The following conventions were followed in summarizing AEs:
      • For subject incidence summaries, each subject will be counted only once within each body system and within each preferred term.
      • If a subject reports more than one adverse event within a preferred term and/or a body system, the adverse event with the highest known severity within each body system and within each preferred term will be included in the summaries by severity.
      • For summaries by relationship to study medication, adverse event will be reported by the strongest relationship within each body system and within each preferred term (AEs with unknown relationship will be considered “more related” than events not related to study drug).
  • Appearance of all new adverse events following discontinuation of treatment or occurring the day after the last dose of study drug through the end of the study were summarized and presented by treatment group. For each subject, an adverse event is considered a new event if the subject does not experience that event during treatment or the event worsens in severity after the end of the treatment.
  • Subjective Assessments and Questionnaires
  • Epworth Sleepiness Scale:
  • The Epworth Sleepiness Scale test asks patients to how likely they are to doze off or fall asleep, in contrast to feeling just tired, in the following situations: a) sitting and reading, b) watching TV, c) sitting inactive in a public place, e.g, theatre or meeting, d) as a passenger in a car for 1 hour without a break, e) lying down to rest in the afternoon, f) sitting and talking to someone, g) sitting quietly after lunch (when you've had no alcohol), and h) in a car while stopped in traffic for a few minutes. Patients rate their likelihood of dozing off or fall asleep according to by selecting one of the following: 1) would never doze, 2) slight chance of dozing, 3) moderate chance of dozing, or 4) high chance of dozing.
  • Insomnia Severity Index:
  • The insomnia severity index test is a series of thirteen questions used to evaluate insomnia.
  • Work Limitations Questionnaire:
  • The work limitations questionnaire is a series of questions used to evaluate how the patient's health has affected his or her work. In part I of the questionnaire, patients are asked to indicate how satisfied they are with a) their local schools, and b) their local police department. Patients indicate that they are 1) not at all satisfied, 2) moderately satisfied, or 3) very satisfied. In Part II of the questionnaire, patients are asked 25 questions related to work performance. First, patients are asked how much of the time in the last two weeks did their physical health or emotional problems make it difficult for them to do the following: a) work the required number of hours, b) get going easily at the beginning of the workday, c) start on your job as soon as you arrived at work, d) do your work without stopping to take breaks or rests, or e) stick to a routine or schedule. Second, patients are asked how much of the time in the past two weeks were they able to do the following without difficulty caused by physical health or emotional problems: a) walk or move around different work locations (for example, go to meetings) b) lift, carry, or move objects at work weighing more than 10 lbs., c) sit, stand, or stay in one position for longer than 15 minutes while working, d) repeat the same motions over and over again while working, e) bend, twist, or reach while working, or f) use hand-held tools or equipment (for example, a phone, pen, keyboard, computer mouse, drill, hairdryer, or sander). Third, patients were asked how much of the time in the past two weeks did their physical health or emotional problems make it difficult to do the following: a) keep your mind on your work, b) think clearly when working, c) do work carefully, d) concentrate on your work, e) work without losing your train of thought, or f) easily read or use your eyes when working. Fourth, patients were asked how much of the time in the past two weeks did their physical health or emotional problems make it difficult to do the following: a) speak with people in-person, in meetings or on the phone, b) control your temper around people when working, or c) help other people to get work done. Fifth, patients were asked how much of the time in the past two weeks did their physical health or emotional problems make it difficult to do the following: a) handle the workload, b) work fast enough, c) finish work on time, d) do your work without making mistakes, or e) feel you've done what you are capable of doing. Patients respond to the aforementioned questions by indicating one of the following responses: 1) All of the time (100%), 2) most of the time, 3) some of the time (about 50%), 4) a slight bit of the time, 5) none of the time (0%), or 6) does not apply to my job.
  • Acute Health Survey:
  • The Acute Health Survey is a series of eleven questions answered by the patient to evaluate how they perceive their health.
  • Hamilton Depression Rating Scale (HAM-D17):
  • During this analysis, a medical professional evaluates the patient according to seventeen criteria by selecting the response that best characterizes the patient's behavior during the past week. The criteria and responses are based on that described in Br. J. Soc. Clin. Psychol. 6: 278-296 (1967) and are reproduced below. Question 1: Depressed mood (Sadness, hopeless, helpless, worthless); Response: 0—Absent, 1—These feeling states indicated only on questioning, 2—These feeling states spontaneously reported verbally, 3—Communicates feeling states non-verbally i.e., through facial expression, posture, voice, and tendency to weep, or 4—Patient report virtually only these feeling states in his spontaneous verbal and non-verbal communication. Question 2: Feeling of guilt; Response: 0—Absent, 1—Self reproach, feels he has let people down, 2—Ideas of guilt or rumination over past errors or sinful deeds, 3—Present illness is a punishment and/or has delusions of guilt, or 4—Hears accusatory or denunciatory voices and/or experiences threatening visual hallucinations. Question 3: Suicide; Response: 0—Absent, 1—Feels life is not worth living, 2—Wishes he were dead or any thoughts of possible death to self, 3—Suicide ideas or gesture, 4—Attempts at suicide (any serious attempt rates 4). Question 4: Insomnia early; Response: 0—No difficulty falling asleep; 1—Complains of occasional difficulty falling asleep—i.e., more than ½ hour; or 2—complains of nightly difficulty falling asleep. Question 5: Insomnia middle; Response: 0—No difficulty, 1—patient complains of being restless and disturbed during the night, or 2—Waking during the night—any getting out of bed rates 2 (except for purposes of voiding). Question 6: Insomnia Late; Response: 0—No difficulty, 1—Waking in early hours of the morning but goes back to sleep, or 2—Unable to fall asleep again if he gets out of bed. Question 7: Work and activities; Response: 0—No difficulty, 1—Thoughts and feelings of incapacity, fatigue or weakness related to activities, work or hobbies; 2—Loss of interest in activity, hobbies or work—either directly reported by patient, or indirect in listlessness, indecision and vacillation (feels he has to push self to work or activities); 3—Decrease in actual time spent in activities or decrease in productivity (In hospital, rate 3 if patient does not spend at least three hours a day in activities (hospital job or hobbies) exclusive of ward chores); or 4—Stopped working because of present illness (In hospital, rate 4 if patient engages in no activities except ward chores, or if patient fails to perform ward chores unassisted). Question 8: Retardation (Slowness of thought and speech; impaired ability to concentrate; decreased motor activity); Response: 0—Normal speech and thought, 1—Slight retardation at interview, 2—Obvious retardation at interview, 3—Interview difficult, or 4—Complete stupor. Question 9: Agitation; Response: 0—None; 1—Fidgetiness; 2—Playing with hands, hair, etc.; 3—Moving about, can't sit still; or 4—Hand wringing, nail biting, hair-pulling, biting of lips. Question 10: Anxiety psychic: 0—No difficulty, 1—Subjective tension and irritability, 2—Worrying about minor matters, 3—Apprehensive attitude apparent in face or speech, or 4—Fears expressed without questioning. Question 11: Anxiety somatic (Physiological concomitants of anxiety, such as: —Gastro-intestinal: dry mouth, wind, indigestion, diarrhea, cramps, belching. —Cardio-vascular: palpitations, headaches. —Respiratory: hyperventilation, sighing. —Urinary frequency —Sweating); Response: 0—Absent, 1—Mild, 2—Moderate, 3—Severe, or 4—Incapacitating. Question 12: Somatic symptoms gastro-intestinal; Response: 0—None, 1—Loss of appetite but eating without staff encouragement and/or heavy feelings in abdomen; or 2—Difficulty eating without staff urging and/or requests or requires laxatives or medication for bowels or medication for gastro-intestinal symptoms. Question 13: Somatic symptoms general; Response: 0—None; 1—Heaviness in limbs, back or head; backaches, headache, or muscle aches; or loss of energy and fatigability; or 2—Any clear-cut symptom rates 2. Question 14: Genital symptoms (Symptoms such as loss of libido, menstrual disturbances); Response: 0—Absent, 1—Mild, or 2—Severe. Question 15: Hypochondriasis; Response: 0—Not present, 1—Self-absorption (bodily); 2—Preoccupation with health; 3—Frequent complaints, requests for help, etc.; or 4—Hypochondriacal delusions. Question 16: Loss of Weight; Response: A) When rating by history: 0—No weight loss, 1—Probable weight loss associated with present illness, or 2—Definite (according to patient) weight loss. B) On weekly rating by ward psychiatrist, when actual weight changes are measured: 0—Less than 1 lb (500 g), weight loss in week; 1—Greater than 1 lb (500 g), weight loss in week; or 2—Greater than 2 lb (1000 g), weight loss in week. Question 17: Insight: 0—Acknowledges being depressed and ill; 1—Acknowledges illness but attributes cause to bad food, climate, overwork, virus, need for rest, etc.; or 2—Denies being ill at all.
  • Clinical Global Impression:
  • In this test, a medical professional rates the patient's depression and whether the improvement in depression is due to the drug treatment. Question 1) Severity: Considering your total clinical experience with this particular population, how depressed is the patient at this time? Respond by indicating 1=normal, not at all depressed, 2=borderline depressed, 3=mildly depressed, 4=moderately depressed, 5=markedly depressed, 6=severely depressed, or 7=among the most extremely depressed patients. Question 2) Global Improvement: Rate total improvement whether or not, in your judgment, it is due entirely to drug treatment. Compared to his/her condition at Visit 3, how much has he/she changed? Respond by indicating 1=very much improved, 2=much improved, 3=minimally improved, 4=no change, 5=minimally worse, 6=much worse, or 7=very much worse.
  • Sleep Diary Test:
  • Patients are to call between 6 a.m. and 10 a.m. and answer the following questions. 1) Did you take study medication last night? 2) What time did you go to bed to go to sleep last night? 3) Did you fall asleep last night? (If No, go to question 10) 4) How long did it take you to fall asleep last night? Hours+Minutes? 5) Last night, did you wake up during the night, after falling asleep? 5a) How many times, did you wake up after falling asleep? 5b) After falling asleep for the first time, how much total time did you spend awake during the night? Hours+Minutes? 6) How long did you sleep last night? Hours+Minutes? 7) What time did you get out of bed to rise for the day? 8) What number best describes the quality of your sleep last night? (0=poor and 10=excellent) 9) How would you describe the depth of your sleep last night? (0=very light and 10=very deep) 10) What number best describes how you generally felt yesterday during the day? (0=very sleepy and 10=wide awake and alert) 11) What number best describes your ability to concentrate or think clearly during the day yesterday (0=poor, 10=excellent) 12) What number best describes your sense of physical well being yesterday? (0=poor, 10=excellent) 13) How would you describe your ability to function during the day yesterday? (0=poor and 10=excellent)
  • Daily Telephone Assessment (DTA):
  • In this test, patients call in to and indicate their condition relating to the following: Question 1) Sadness: On a scale from 0 to 9, how sad or depressed have you felt in the last 24-hours? 0 means you have not felt sad or depressed at all in the last 24 hours and 9 means you've been extremely depressed or sad. Press a number from 0 to 9 that best describes your feelings of sadness. Question 2) Nervousness: On a scale from 0 to 9, how nervous or anxious have you felt in the last 24-hours? 0 means you've not felt nervous or anxious at all in the last 24-hours and 9 means you've been extremely nervous or anxious. Press a number from 0 to 9 that best describes your feelings of nervousness or anxiety. Question 3) Irritability: On a scale from 0 to 9, how easily annoyed, irritated or upset have you been in the last 24-hours? 0 means you've not become annoyed, irritated or upset at all in the last 24-hours and 9 means you've been extremely easily annoyed, irritated or upset. Press a number from 0 to 9 that best describes your irritability. Question 4) Lack of energy: On a scale from 0 to 9, how much has your energy level been a problem for you in the last 24-hours? 0 means you've had plenty of energy and have not felt tired at all in the last 24-hours and 9 means you've been extremely tired, sluggish, or lacking in energy. Press a number from 0 to 9 that best describes your lack of energy. Question 5) Difficulty thinking: On a scale from 0 to 9, how difficult has it been for you to think about or concentrate on things in the last 24-hours? 0 means you've had no trouble thinking or concentrating at all in the last 24-hours and 9 means it's been extremely difficult for you to think or concentrate. Press a number from 0 to 9 that best describes your difficulty in thinking or concentrating. Question 6) Aches, pains or other discomforts: On a scale from 0 to 9, rate how much aches, pains, or other physical discomforts in your head, back, chest, belly, arms, or legs have bothered you in the last 24-hours. 0 means you've had no problems with aches, pains, or other discomforts at all in the last 24-hours and 9 means your aches, pains, or other discomforts have been extremely bothersome. Press a number from 0 to 9 that best describes how much your aches, pains, or other discomforts have been bothering you. Question 7) Problems with sleep: On a scale from 0 to 9, rate how much of a problem you had getting the sleep you wanted last night. 0 means you had no sleep problems at all. That is, you were able to go to sleep easily, you slept well, and you woke up feeling refreshed. 9 means you had great difficulty in getting to sleep, slept extremely poorly, or woke up feeling exhausted as if you had not slept. Press a number from 0 to 9 that best describes your problems with sleep. Question 8) Difficulty enjoying things: On a scale of 0 to 9, rate how hard it has been for you to enjoy things in the last 24-hours. Press 0 if you have had no trouble enjoying things. Press 9 if you have not been able to enjoy anything. Or press the number from 0 and 9 that best describes how much difficulty you have enjoying things in the last 24-hours. Question 9) Overall change since your last call, if you've not changed, press 1; if you're feeling better, press 2; if you're feeling worse, press 3. 9a) <<If better>> If you're a little better, press 1; if you're much better, press 2; if you're very much better, press 3. 9b) <<If worse>> If you're a little worse, press 1; if you're much worse, press 2; if you're very much worse, press 3.
  • The Symptom Questionnaire (23-Item Depression Subscale):
  • This test asks patients to describe how they have felt in the last 24-hours regarding twenty-three criteria. Patients are asked to answer yes or no to the criteria. Criteria: weary, cheerful, sad or blue, happy, feeling unworthy, cannot enjoy yourself, feeling guilty, feeling well, contented, feeling desperate or terrible, thinking death or dying, enjoying yourself, depressed, feeling a failure, not interested in things, blaming yourself, thoughts of ending your life, looking forward toward the future, feeling that life is bad, feeling inferior to others, feeling useless, feel like crying, and feeling hopelessness.
  • DSM-IV: Criteria for Major Depressive Disorder
  • Diagnostic Criteria for 296.2x Major Depressive Disorder, Single Episode:
  • A) Presence of a single Major Depressive Episode. B) The Major Depressive Episode is not better accounted for by Schizoaffective Disorder and is not superimposed on Schizophrenia, Schizophreniform Disorder, Delusional Disorder, or Psychotic Disorder Not Otherwise Specified. C) There has never been a Manic Episode, a Mixed Episode, or a Hypomanic Episode. Note: This exclusion does not apply if all of the manic-like, mixed-like, or hypomanic-like episodes are substance or treatment-induced or are due to the direct physiological effects of a general medical condition.
  • Diagnostic Criteria for 296.3x Major Depressive Disorder, Recurrent:
  • A) Presence of two or more Major Depressive Episodes. Note: To be considered separate episodes, there must be an interval of at least 2 consecutive months in which criteria are not met for a Major Depressive Episode. B) The Major Depressive Episodes are not better accounted for by Schizoaffective Disorder and are not superimposed on Schizophrenia, Schizophreniform Disorder, Delusional Disorder, or Psychotic Disorder Not Otherwise Specified. C) There has never been a Manic Episode, a Mixed Episode, or a Hypomanic Episode. Note: This exclusion does not apply if all of the manic-like, mixed-like, or hypomanic-like episodes are substance or treatment-induced or are due to the direct physiological effects of a general medical condition.
  • DSM-IV Diagnostic Criteria for Insomnia Related to Major Depressive Disorder:
  • A) The predominant complaint is difficulty initiating or maintaining sleep, or nonrestorative sleep, for a least 1 month that is associated with daytime fatigue or impaired daytime functioning. B) The sleep disturbance (or daytime sequelae) causes clinically significant distress or impairment in social, occupational, or other important areas of functioning. C) The insomnia is judged to be related to Major Depressive Disorder, but is sufficiently severe to warrant independent clinical attention. D) The disturbance is not better accounted for by another Sleep Disorder (e.g., Narcolepsy, Breathing-Related Sleep Disorder, a Parasomnia) E) The disturbance is not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication) or a general medical condition.
  • Results of Study:
  • TABLE 1
    Summary of Fluoxetine Titration During Double-Blind Treatment Period
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    (N = 274) (N = 269)
    Total Total
    Subjects Fluoxetine Fluoxetine Subjects Fluoxetine Fluoxetine
    on Hydrochloride Hydrochloride on Hydrochloride Hydrochloride
    Study 20 mg 40 mg Study 20 mg 40 mg
    Assessment n n (%) n (%) n n (%) n (%)
    Visit 3 274 274 (100.0%) 0 (0.0%) 269 269 (100.0%) 0 (0.0%)
    Visit 4 274 274 (100.0%) 0 (0.0%) 268 268 (100.0%) 0 (0.0%)
    Visit 5 274 274 (100.0%) 0 (0.0%) 268 268 (100.0%) 0 (0.0%)
    Visit 6 274 274 (100.0%) 0 (0.0%) 268 268 (100.0%) 0 (0.0%)
    Visit 7 [1] 225 104 (46.2%)  121 (53.8%)  224 125 (55.8%)  99 (44.2%)
    Visit 8 204 91 (44.6%) 113 (55.4%)  213 115 (54.0%)  98 (46.0%)
    Visit 9 195 88 (45.1%) 107 (54.9%)  195 103 (52.8%)  92 (47.2%)
    [1] If the subject's depressive symptoms had not improved in the investigator's opinion, then fluoxetine dose was increased to 40 mg at Visit 7.
    Note(s):
    Percentages are computed based on the total number of subjects on study within each double-blind treatment group at each visit. All subjects were administered single-blind placebo and fluoxetine during the single-blind wash-out period.
  • TABLE 2
    Subjective Wake Time After Sleep Onset (WASO) (Minutes)
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Week [1] Statistic (N = 274) (N = 269)
    4 N 129 138
    Mean (SD) 73.5 (69.5) 71.4 (80.3)
    25th Percentile 30.0 20.0
    Median 55.8 42.5
    75th Percentile 90.0 90.0
    Minimum, Maximum 0, 420 0, 420
    p-value vs. placebo [2] 0.0345
    6 N 117 116
    Mean (SD) 73.5 (83.4) 76.5 (88.1)
    25th Percentile 30.0 15.0
    Median 60.0 46.3
    75th Percentile 90.0 111.5
    Minimum, Maximum 0, 600 0, 605
    p-value vs. placebo [2] 0.3789
    8 N 164 160
    Mean (SD) 82.0 (73.2) 63.8 (74.1)
    25th Percentile 36.3 21.9
    Median 60.8 43.1
    75th Percentile 105.0 80.1
    Minimum, Maximum 0, 480 0, 600
    p-value vs. placebo [2] 0.0003
    [1] For each subject, Week 1 = average of all post randomization assessments obtained between Visit 3 and Visit 4, Week 2 = average of all post randomization assessments obtained between Visit 4 and Visit 5. Double-Blind Average includes all assessments obtained from Visits 3, 4, 5, 6, 7, and 8.
    [2] The analysis is conducted using an analysis of variance model (ANOVA) on the rank-transformed data with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 3
    Subjective Wake Time After Sleep Onset (WASO) (Minutes)
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Week [1] Statistic (N = 274) (N = 269)
    Double-Blind N 242 242
    Average Mean (SD) 84.1 (63.2) 72.6 (58.7)
    25th Percentile 42.9 28.4
    Median 73.4 57.4
    75th Percentile 110.8 100.0
    Minimum, Maximum 0, 490 2, 350
    p-value vs. placebo [2] 0.0051
    [1] For each subject, Week 1 = average of all post randomization assessments obtained between Visit 3 and Visit 4, Week 2 = average of all post randomization assessments obtained between Visit 4 and Visit 5. Double-Blind Average includes all assessments obtained from Visits 3, 4, 5, 6, 7, and 8.
    [2] The analysis is conducted using an analysis of variance model (ANOVA) on the rank-transformed data with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 4
    Subjective Sleep Latency (Minutes)
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Week [1] Statistic (N = 274) (N = 269)
    1 N 236   238
    Mean (SD) 79.2 (82.8) 62.6 (61.0)
    25th Percentile 33.3 23.6
    Median 57.9 43.3
    75th Percentile 94.0 75.0
    Minimum, Maximum 6, 668 0, 435
    p-value vs. placebo [2] 0.0002
    2 N 217   224
    Mean (SD) 64.4 (78.3) 45.0 (52.2)
    25th Percentile 30.0 15.0
    Median 45.0 30.0
    75th Percentile 75.0 58.8
    Minimum, Maximum 1, 720 0, 458
    p-value vs. placebo [2] <.0001
    3 N 205   217
    Mean (SD) 62.9 (74.3)  54.1 (100.9)
    25th Percentile 25.0 15.0
    Median 37.5 25.0
    75th Percentile 75.0 60.0
    Minimum, Maximum 0, 611  0, 1058
    p-value vs. placebo [2] <.0001
    [1] For each subject, Week 1 = average of all post randomization assessments obtained between Visit 3 and Visit 4, Week 2 = average of all post randomization assessments obtained between Visit 4 and Visit 5. Double-Blind Average includes all assessments obtained from Visits 3, 4, 5, 6, 7, and 8.
    [2] The analysis is conducted using an analysis of variance model (ANOVA) on the rank-transformed data with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 5
    Subjective Sleep Latency (Minutes)
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Week [1] Statistic (N = 274) (N = 269)
    4 N 191   207
    Mean (SD) 60.0 (68.8) 40.5 (50.5)
    25th Percentile 22.5 15.0
    Median 42.5 24.2
    75th Percentile 75.0 45.0
    Minimum, Maximum 0, 665 0, 330
    p-value vs. placebo [2] <.0001
    6 N 176   189
    Mean (SD)  71.4 (122.1) 43.8 (77.3)
    25th Percentile 20.0 12.5
    Median 36.3 20.0
    75th Percentile 69.6 45.0
    Minimum, Maximum  0, 1200 0, 630
    p-value vs. placebo [2] <.0001
    8 N 205   209
    Mean (SD) 61.4 (56.1) 42.4 (42.3)
    25th Percentile 25.0 15.5
    Median 45.0 30.0
    75th Percentile 78.0 54.0
    Minimum, Maximum 0, 326 1, 254
    p-value vs. placebo [2] <.0001
    [1] For each subject, Week 1 = average of all post randomization assessments obtained between Visit 3 and Visit 4, Week 2 = average of all post randomization assessments obtained between Visit 4 and Visit 5. Double-Blind Average includes all assessments obtained from Visits 3, 4, 5, 6, 7, and 8.
    [2] The analysis is conducted using an analysis of variance model (ANOVA) on the rank-transformed data with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 6
    Subjective Sleep Latency (Minutes)
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Week [1] Statistic (N = 274) (N = 269)
    Double-Blind N 257 257
    Average Mean (SD) 73.8 (65.4) 53.0 (52.6)
    25th Percentile 33.1 22.5
    Median 56.1 39.3
    75th Percentile 92.6 65.0
    Minimum, Maximum 6, 668 4, 465
    p-value vs. placebo [2] <.0001
    [1] For each subject, Week 1 = average of all post randomization assessments obtained between Visit 3 and Visit 4, Week 2 = average of all post randomization assessments obtained between Visit 4 and Visit 5. Double-Blind Average includes all assessments obtained from Visits 3, 4, 5, 6, 7, and 8.
    [2] The analysis is conducted using an analysis of variance model (ANOVA) on the rank-transformed data with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 7
    Subjective Total Sleep Time (Minutes)
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Week [1] Statistic (N = 274) (N = 269)
    1 N 236   238
    Mean (SD) 340.3 (86.3) 375.9 (76.5)
    25th Percentile 281.7 330.0
    Median 335.0 380.0
    75th Percentile 391.8 423.8
    Minimum, Maximum 120, 780 80, 565
    p-value vs. placebo [2] <.0001
    2 N 217   224
    Mean (SD) 360.1 (91.6)  393.6 (103.0)
    25th Percentile 300.0 333.1
    Median 356.3 397.5
    75th Percentile 420.0 450.0
    Minimum, Maximum 150, 720 140, 1200
    p-value vs. placebo [2] 0.0001
    3 N 205   217
    Mean (SD) 373.8 (88.4) 397.3 (88.1)
    25th Percentile 315.0 345.0
    Median 375.0 405.0
    75th Percentile 425.0 450.0
    Minimum, Maximum 135, 793  0, 660
    p-value vs. placebo [2] 0.0035
    [1] For each subject, Week 1 = average of all post randomization assessments obtained between Visit 3 and Visit 4, Week 2 = average of all post randomization assessments obtained between Visit 4 and Visit 5. Double-Blind Average includes all assessments obtained from Visits 3, 4, 5, 6, 7, and 8.
    [2] The analysis is conducted using an analysis of variance model (ANOVA) on the rank-transformed data with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 8
    Subjective Total Sleep Time (Minutes)
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Week [1] Statistic (N = 274) (N = 269)
    4 N 191   207
    Mean (SD) 370.4 (95.5) 395.6 (87.3)
    25th Percentile 300.0 337.5
    Median 371.7 390.0
    75th Percentile 450.0 450.0
    Minimum, Maximum 60, 600  165, 653
    p-value vs. placebo [2] 0.0253
    6 N 176   189
    Mean (SD) 369.9 (95.9) 408.5 (84.3)
    25th Percentile 315.0 360.0
    Median 375.0 420.0
    75th Percentile 428.8 472.5
    Minimum, Maximum 0, 720 150, 600
    p-value vs. placebo [2] <.0001
    8 N 205   209
    Mean (SD) 375.9 (87.2) 405.9 (80.6)
    25th Percentile 321.4 365.0
    Median 387.5 411.4
    75th Percentile 439.3 462.1
    Minimum, Maximum 0, 554 60, 630
    p-value vs. placebo [2] 0.0009
    [1] For each subject, Week 1 = average of all post randomization assessments obtained between Visit 3 and Visit 4, Week 2 = average of all post randomization assessments obtained between Visit 4 and Visit 5. Double-Blind Average includes all assessments obtained from Visits 3, 4, 5, 6, 7, and 8.
    [2] The analysis is conducted using an analysis of variance model (ANOVA) on the rank-transformed data with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 9
    Subjective Total Sleep Time (Minutes)
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Week [1] Statistic (N = 274) (N = 269)
    Double-Blind N 257 257
    Average Mean (SD) 358.8 (75.4) 395.5 (66.9)
    25th Percentile 310.4 353.7
    Median 362.8 400.0
    75th Percentile 405.0 441.2
    Minimum, Maximum 23, 556 210, 630
    p-value vs. placebo [2] <.0001
    [1] For each subject, Week 1 = average of all post randomization assessments obtained between Visit 3 and Visit 4, Week 2 = average of all post randomization assessments obtained between Visit 4 and Visit 5. Double-Blind Average includes all assessments obtained from Visits 3, 4, 5, 6, 7, and 8.
    [2] The analysis is conducted using an analysis of variance model (ANOVA) on the rank-transformed data with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 10
    Summary of Change from Baseline in Clinical
    Global Impression (CGI) - Severity
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Change Change
    Visit Observed from Observed from
    [1] Statistic Value Baseline Value Baseline
    3 N 274    269   
    (Base- Mean (SD) 4.3 (0.6) 4.3 (0.6)
    line) 25th Percentile 4.0 4.0
    Median 4.0 4.0
    75th Percentile 5.0 5.0
    Minimum, 2, 6 3, 6
    Maximum
    4 N 251    251    245    245
    Mean (SD) 4.0 (0.7) −0.3 (0.6) 4.0 (0.7) −0.3 (0.7)
    25th Percentile 4.0 0.0 4.0 −1.0
    Median 4.0 0.0 4.0 0.0
    75th Percentile 4.0 0.0 4.0 0.0
    Minimum, 1, 6 −3, 1 1, 6 −4, 1
    Maximum
    Least Squares −0.3 (0.0) −0.3 (0.0)
    Mean (SE)
    p-value vs. 0.2069
    placebo
    [2]
    [1] For each subject, Baseline = Average of Daily IVRS values obtained prior to or on the first dose of double-blind treatment.
    [2] The pairwise comparison of the placebo treatment mean to the eszopiclone treatment mean is performed using the analysis of covariance model (ANCOVA) with treatment and site as fixed effects and the baseline as a covariate. The analysis is performed using the SAS MIXED procedure.
  • TABLE 11
    Summary of Change from Baseline in Clinical
    Global Impression (CGI) - Severity
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Change Change
    Visit Observed from Observed from
    [1] Statistic Value Baseline Value Baseline
    5 N 243    243 241    241
    Mean (SD) 3.7 (0.8) −0.6 (0.8) 3.6 (0.9) −0.8 (0.9)
    25th Percentile 3.0 −1.0 3.0 −1.0
    Median 4.0 0.0 4.0 −1.0
    75th Percentile 4.0 0.0 4.0 0.0
    Minimum, 1, 6 −3, 2 1, 6 −4, 0
    Maximum
    Least Squares −0.6 (0.1) −0.8 (0.1)
    Mean (SE)
    p-value vs. 0.0364
    placebo
    [2]
    6 N 233    233 233    233
    Mean (SD) 3.4 (1.0) −0.9 (0.9) 3.2 (1.0) −1.1 (1.0)
    25th Percentile 3.0 −1.0 3.0 −2.0
    Median 4.0 −1.0 3.0 −1.0
    75th Percentile 4.0 0.0 4.0 0.0
    Minimum, 1, 6 −4, 2 1, 6 −5, 1
    Maximum
    Least Squares −0.9 (0.1) −1.1 (0.1)
    Mean (SE)
    p-value vs. 0.0367
    placebo
    [2]
    [1] For each subject, Baseline = Average of Daily IVRS values obtained prior to or on the first dose of double-blind treatment.
    [2] The pairwise comparison of the placebo treatment mean to the eszopiclone treatment mean is performed using the analysis of covariance model (ANCOVA) with treatment and site as fixed effects and the baseline as a covariate. The analysis is performed using the SAS MIXED procedure.
  • TABLE 12
    Summary of Change from Baseline in Clinical
    Global Impression (CGI) - Severity
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Change Change
    Visit Observed from Observed from
    [1] Statistic Value Baseline Value Baseline
    7 N 223    223   222    222
    Mean (SD) 3.2 (1.1) −1.1 (1.2) 3.0 (1.1) −1.4 (1.1)
    25th Percentile 3.0 −2.0 2.0 −2.0
    Median 3.0 −1.0 3.0 −1.0
    75th Percentile 4.0  0.0 4.0 0.0
    Minimum, 1, 5 −4, 1 1, 5 −5, 1
    Maximum
    Least Squares −1.1 (0.1) −1.3 (0.1)
    Mean (SE)
    p-value vs. 0.0380
    placebo
    [2]
    8 N 200    200   212    212
    Mean (SD) 2.7 (1.0) −1.5 (1.1) 2.5 (1.0) −1.8 (1.2)
    25th Percentile 2.0 −2.0 2.0 −3.0
    Median 3.0 −1.0 2.5 −2.0
    75th Percentile 3.0 −1.0 3.0 −1.0
    Minimum, 1, 5 −4, 1 1, 5 −5, 1
    Maximum
    Least Squares −1.5 (0.1) −1.8 (0.1)
    Mean (SE)
    p-value vs. 0.0124
    placebo
    [2]
    [1] For each subject, Baseline = Average of Daily IVRS values obtained prior to or on the first dose of double-blind treatment.
    [2] The pairwise comparison of the placebo treatment mean to the eszopiclone treatment mean is performed using the analysis of covariance model (ANCOVA) with treatment and site as fixed effects and the baseline as a covariate. The analysis is performed using the SAS MIXED procedure.
  • TABLE 13
    Summary of Change from Baseline in Clinical
    Global Impression (CGI) - Severity
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Change Change
    Visit Observed from Observed from
    [1] Statistic Value Baseline Value Baseline
    9 N 236    236   229    229
    Mean (SD) 2.7 (1.2) −1.6 (1.2) 2.4 (1.2) −1.9 (1.3)
    25th Percentile 2.0 −3.0 1.0 −3.0
    Median 3.0 −2.0 2.0 −2.0
    75th Percentile 4.0 −1.0 3.0 −1.0
    Minimum, 1, 6 −5, 2 1, 6 −5, 1
    Maximum
    Least Squares −1.6 (0.1) −1.8 (0.1)
    Mean (SE)
    p-value vs. 0.0186
    placebo
    [2]
    10 N 191    191   188    188
    (EOT) Mean (SD) 2.4 (1.1) −1.9 (1.2) 2.0 (1.0) −2.3 (1.2)
    25th Percentile 1.0 −3.0 1.0 −3.0
    Median 2.0 −2.0 2.0 −2.0
    75th Percentile 3.0 −1.0 3.0 −1.0
    Minimum, 1, 5 −5, 0 1, 5 −5, 1
    Maximum
    Least Squares −1.8 (0.1) −2.2 (0.1)
    Mean (SE)
    p-value vs. 0.0004
    placebo
    [2]
    [1] For each subject, Baseline = Average of Daily IVRS values obtained prior to or on the first dose of double-blind treatment.
    [2] The pairwise comparison of the placebo treatment mean to the eszopiclone treatment mean is performed using the analysis of covariance model (ANCOVA) with treatment and site as fixed effects and the baseline as a covariate. The analysis is performed using the SAS MIXED procedure.
  • TABLE 14
    Clinical Global Impression (CGI) - Global Improvement
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Visit Statistic (N = 274) (N = 269)
    4 N 250    242
    Mean (SD) 3.5 (0.7) 3.3 (0.8)
    25th Percentile 3.0 3.0
    Median 4.0 3.0
    75th Percentile 4.0 4.0
    Minimum, Maximum 1, 5 0, 5
    p-value vs. placebo [1] <.0001
    5 N 242    241
    Mean (SD) 3.0 (0.8) 2.9 (0.8)
    25th Percentile 3.0 2.0
    Median 3.0 3.0
    75th Percentile 4.0 3.0
    Minimum, Maximum 0, 5 1, 4
    p-value vs. placebo [1] 0.0180
    6 N 233    233
    Mean (SD) 2.8 (0.9) 2.6 (0.9)
    25th Percentile 2.0 2.0
    Median 3.0 3.0
    75th Percentile 3.0 3.0
    Minimum, Maximum 1, 5 1, 6
    p-value vs. placebo [1] 0.0166
    [1] The analysis is conducted using an analysis of variance model (ANOVA) with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 15
    Clinical Global Impression (CGI) - Global Improvement
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Visit Statistic (N = 274) (N = 269)
    7 N 222    222
    Mean (SD) 2.7 (1.1) 2.4 (1.0)
    25th Percentile 2.0 2.0
    Median 3.0 2.0
    75th Percentile 3.0 3.0
    Minimum, Maximum 1, 5 1, 5
    p-value vs. placebo [1] 0.0011
    8 N 200    211
    Mean (SD) 2.2 (0.9) 1.9 (0.9)
    25th Percentile 2.0 1.0
    Median 2.0 2.0
    75th Percentile 3.0 3.0
    Minimum, Maximum 1, 4 1, 5
    p-value vs. placebo [1] 0.0057
    9 N 236    229
    Mean (SD) 2.2 (1.1) 1.9 (1.0)
    25th Percentile 1.0 1.0
    Median 2.0 2.0
    75th Percentile 3.0 2.0
    Minimum, Maximum 1, 6 0, 6
    p-value vs. placebo [1] 0.0009
    [1] The analysis is conducted using an analysis of variance model (ANOVA) with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 16
    Clinical Global Impression (CGI) - Global Improvement
    (Intent-to-Treat Population)
    Placebo Eszopiclone 3 mg
    Visit Statistic (N = 274) (N = 269)
    10 (EOT) N 190 188
    Mean (SD) 2.0 (1.0) 1.6 (0.9)
    25th Percentile 1.0 1.0
    Median 2.0 1.0
    75th Percentile 3.0 2.0
    Minimum, Maximum 1, 5 0, 5
    p-value vs. placebo [1] 0.0003
    [1] The analysis is conducted using an analysis of variance model (ANOVA) with treatment and site as fixed effects. The analysis is performed using the SAS MIXED procedure.
  • TABLE 17
    Subject Disposition
    Placebo Eszopiclone 3 mg
    Subject Disposition n (%) n (%)
    Randomized 275 (100.0) 270 (100.0)
    Completed 185 (67.3) 187 (69.3)
    Discontinued 89 (32.4) 83 (30.7)
    AE 21 (7.6) 17 (6.3)
    Protocol violation 14 (5.1) 10 (3.7)
    Voluntary withdrawal 21 (7.6) 19 (7.0)
    Lost to follow-up 24 (8.7) 26 (9.6)
    Did not meet entry criteria 3 (1.1) 4 (1.5)
    Treatment for Insomnia Failure 2 (0.7) 2 (0.7)
    Other 4 (1.5) 5 (1.9)
  • The results of this study clearly demonstrate a number of unique and distinct responses, both for sleep and depression, when eszopiclone 3 mg nightly was co-administered with flouxetine HCk 20 mg or 40 mg daily, as discuss below:
      • 1. Co-administration of eszopiclone and fluoxetine was well-tolerated and provided rapid and sustained improvement in sleep in patients with depression-related secondary insomnia. The rapid onset of sleep improvement is an important consideration for adjunctive therapy or co-administration with an antidepressant, such as an SSRI, as the antidepressant effect demonstrated a relatively slower onset.
      • 2. These results indicate that patients co-administered a sedative (e.g., SSRI plus eszopiclone) may be more likely to be resistant to a recurring sleep disturbance which can be a prodromal relapse signal.
      • 3. A pronounced and immediate sleep response was recorded for all three sleep parameters in this trial (sleep onset, WASO, and TST). This response differed in its time course from the observed augmentation effect on antidepressant therapy, which took hold gradually over the course of several weeks, hand in hand with the usually occurring antidepressant effect that is typically seen in this kind of cohort of patients with major depression. These different time courses indicate that separate, but potentially interlinked, biological processes are being affected by eszopiclone, leading to the distinct and temporally divergent improvement responses in sleep and depression.
      • 4. Eszopiclone co-administration significantly improved sleep and augmented the anti-depression response in patients with MDD and insomnia, as shown by the HAMD changes, response rates, and CGI.
      • 5. The augmentation effect observed with eszopiclone was larger than that observed with agents currently used for augmentation therapy, such as lithium.
      • 6. Eszopiclone produced this augmentation effect with little risk to patients, whereas currently commonly used augmentation agents can produce considerable toxicity. In addition co-administration of eszopiclone may specially reduce undesirable CNS adverse events, such as agitation, confusion, and other symptoms related to the underlying depression.
      • 7. In terms of potential and clinically meaningful benefits to depression patients during treatment initiation, it is important to point out that these results indicate that eszopiclone can help alleviate worsening of sleep during introduction of antidepressants. Insomnia is a common complaint during treatment initiation, and these symptoms may be related to the antidepressant therapy chosen by the clinician, not the underlying depression.
      • 8. The augmentation effect observed at the end of the 8 week treatment period in this study was most pronounced in the most severely depressed patients.
      • 9. These results suggest that the augmentation effect may apply to de novo depressed patients, patients with relapsing depression, as well as patient with refractory depression.
      • 10. The observed augmentation effect size grew gradually over time.
      • 11. Quite unexpectedly, less patients in this study required antidepressant dose escalation to higher dose of fluoxetine, and indicating that co-administration of eszopiclone provided a dose-sparing effect. A dose-sparing effect can lead to significant improvements in efficacy, tolerability, and greater adherence to antidepressant therapy, as well as cost savings for health care payors. In addition, another impact of a dose-sparing effect arising from co-administration of a sedative, such as eszopiclone is that lower likelihood that a second antidepression agent will be needed to treat the depression.
      • 12. These results indicate that co-administration of eszopiclone may have the affect of reducing depression relapse. In this study, the augmentation effect size grows gradually over time, hand in hand with the antidepressant effect, leading to greater improvement in depression in the combination therapy group. These results suggest that these patients receiving co-administration, especially if they receive chronic or long-term treatment with eszopiclone, may be less prone to depression relapse.
      • 13. These results also suggest that co-administration or administration of eszopiclone may delay depression relapse: Depression relapse may be sudden onset for some patients, while for others it might be considered a gradual decline in mood and function which diminishes over time as the patient approaches the state of relapse. The augmentation effect size seen in this study, in and of itself, may delay the onset of depression relapse due to the magnitude of the effect seen in depression measures for those patients who experience a gradual decline. The patients who experience sudden onset of depression relapse may also potentially benefit from the augmentation therapy as the magnitude of the effect of administering eszopiclone may maintain symptoms above a “depression relapse” threshold.
      • 14. These results also suggest the eszopiclone can protect against relapsing depression on its own, after withdrawal of the antidepressant treatment, by suppressing recurrent insomnia or by affecting a separate unknown process in the central nervous system that could either trigger or sustain the emergence of symptoms of depression.
    Example 2 Adjunctive Eszopiclone with Fluoxetine for MDD and Insomnia Sleep Effects
  • Insomnia and depression often co-exist. This study evaluated the efficacy of eszopiclone for insomnia associated with MDD during concurrent fluoxetine treatment.
  • Methods:
  • Patients (n=545) met DSM-IV criteria for MDD and insomnia, including reported sleep latency (SL) ≧30 min (median 73 min), wake time after sleep onset (WASO) ≧45 min (median 90 min), and total sleep time (TST) 6.5 h (median 294 min). All patients received fluoxetine QAM, and were randomly assigned to double-blind treatment with eszopiclone 3 mg or placebo QHS for 8 weeks. Subjective sleep and daytime function were assessed weekly.
  • Results:
  • Compared to placebo, eszopiclone was associated with significantly lower SL and greater TST at each treatment week (p<0.03); significantly lower WASO at Weeks 1, 3-5, and 7-8 (p<0.04); higher ratings across the treatment period in sleep quality and depth (p<0.005); and higher ratings of daytime alertness, ability to concentrate, and well-being (p0.02). Combined treatment was well-tolerated. Unpleasant taste was more common with eszopiclone.
  • Conclusions:
  • Co-administration of eszopiclone with fluoxetine was well-tolerated and associated with rapid, sustained improvement in sleep and daytime symptoms in patients with MDD and insomnia. The rapid sleep improvement with adjunctive eszopiclone may be important, given the relatively slower onset of antidepressant effects with SSRIs.
  • Example 3 Adjunctive Eszopiclone and Fluoxetine in MDD & Insomnia Depression Effects
  • Insomnia frequently co-exists with depression. This study evaluated eszopiclone and fluoxetine co-administration in depressed patients with co-morbid insomnia
  • Methods:
  • Patients who met DSM-IV criteria for new MDD and insomnia received fluoxetine 20 mg QAM plus either eszopiclone 3 mg (n=275) or placebo (n=270) nightly for 8 weeks. Efficacy was assessed using HAMD17 and Clinical Global Impression Improvement (CGI-I) and Severity (CGI-S). Response=50% decrease from baseline HAMD17; remission=HAMD17≦7.
  • Results:
  • Eszopiclone co-administration resulted in significantly greater changes in HAMD17 scores at Week 4 (−9.9 vs −8.5 for placebo, p=0.02) with progressive improvement at Week 8 (−13.8 vs −11.8, p<0.001). At Week 8, significantly more eszopiclone patients were responders (74% vs 61%, p<0.009) and remitters (54% vs 41%, p<0.02). Even with removal of insomnia items, significant differences were found at Week 8 (p<0.03). HAMD17 differences were greater in patients with more severe depression (baseline HAMD17≧22). CGI-I and CGI-S scores were significantly greater with eszopiclone co-administration (p<0.05). Fluoxetine dose increases were less frequent with in eszopiclone (44% vs 54%; p<0.05). Treatment was well-tolerated; drop-outs due to AEs were comparable.
  • Conclusions:
  • Eszopiclone/fluoxetine co-administration significantly augmented the antidepressant response in patients with MDD and insomnia. The sleep response occurred immediately, followed by augmentation of the antidepressant response.
  • INCORPORATION BY REFERENCE
  • All of the patents and publications cited herein are hereby incorporated by reference.
  • EQUIVALENTS
  • Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims (8)

We claim:
1. A pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a norepinephrine reuptake inhibitor.
2. A pharmaceutical composition according to claim 1 comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a norepinephrine reuptake inhibitor, wherein said norepinephrine reuptake inhibitor is desipramine, maprotiline, lofepramine, reboxetine, oxaprotiline, fezolamine, tomoxetine, or (S,S)-hydroxybupropion, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
3. A method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of norepinephrine reuptake inhibitor.
4. A method according to claim 3 of treating a patient suffering from a sleep abnormality wherein said sleep abnormality is transient, short-term or chronic insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a norepinephrine reuptake inhibitor.
5. A pharmaceutical composition comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a dopamine reuptake inhibitor.
6. A pharmaceutical composition according to claim 5 comprising eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a dopamine reuptake inhibitor, said dopamine reuptake inhibitor is amineptine, bupropion, GBR-12935, venlafaxine, desmethylvenlafaxine, or 2β-propanoyl-3β-(4-tolyl)-tropane, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal of any one of them.
7. A method of treating a patient suffering from a sleep abnormality, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor.
8. A method according to claim 7 of treating a patient suffering from a sleep abnormality wherein said sleep abnormality is transient, short-term or chronic insomnia, comprising the step of co-administering to a patient in need thereof a therapeutically effective amount of eszopiclone, or a pharmaceutically acceptable salt, solvate, clathrate, polymorph, or co-crystal thereof, and a therapeutically effective amount of a dopamine reuptake inhibitor.
US14/448,499 2003-12-11 2014-07-31 Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression Abandoned US20140343069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/448,499 US20140343069A1 (en) 2003-12-11 2014-07-31 Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US52915603P 2003-12-11 2003-12-11
US54161404P 2004-02-04 2004-02-04
US63321304P 2004-12-03 2004-12-03
US11/007,795 US20050176680A1 (en) 2003-12-11 2004-12-08 Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
US11/761,235 US8097625B2 (en) 2003-12-11 2007-06-11 Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
US13/305,007 US20120122874A1 (en) 2003-12-11 2011-11-28 Combination of a sedative and a neurotransmitter modulator, and methods for treating depression
US14/448,499 US20140343069A1 (en) 2003-12-11 2014-07-31 Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/305,007 Continuation US20120122874A1 (en) 2003-12-11 2011-11-28 Combination of a sedative and a neurotransmitter modulator, and methods for treating depression

Publications (1)

Publication Number Publication Date
US20140343069A1 true US20140343069A1 (en) 2014-11-20

Family

ID=34714379

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/007,795 Abandoned US20050176680A1 (en) 2003-12-11 2004-12-08 Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
US11/761,235 Expired - Fee Related US8097625B2 (en) 2003-12-11 2007-06-11 Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
US13/305,007 Abandoned US20120122874A1 (en) 2003-12-11 2011-11-28 Combination of a sedative and a neurotransmitter modulator, and methods for treating depression
US14/448,499 Abandoned US20140343069A1 (en) 2003-12-11 2014-07-31 Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/007,795 Abandoned US20050176680A1 (en) 2003-12-11 2004-12-08 Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
US11/761,235 Expired - Fee Related US8097625B2 (en) 2003-12-11 2007-06-11 Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
US13/305,007 Abandoned US20120122874A1 (en) 2003-12-11 2011-11-28 Combination of a sedative and a neurotransmitter modulator, and methods for treating depression

Country Status (11)

Country Link
US (4) US20050176680A1 (en)
EP (2) EP1691811B1 (en)
JP (2) JP5646126B2 (en)
AU (2) AU2004305563C1 (en)
CA (1) CA2548917C (en)
DK (1) DK1691811T3 (en)
ES (1) ES2515092T3 (en)
HK (1) HK1095279A1 (en)
PL (1) PL1691811T3 (en)
PT (1) PT1691811E (en)
WO (1) WO2005060968A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016123241A1 (en) * 2015-01-27 2016-08-04 Cerêve, Inc. Method and apparatuses for modulating sleep by chemical activation of temperature receptors
US9492313B2 (en) 2006-04-20 2016-11-15 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Method and apparatus of noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US9669185B2 (en) 2006-04-20 2017-06-06 University of Pittsburgh—of the Commonwealth System of Higher Education Methods, devices and systems for treating insomnia by inducing frontal cerebral hypothermia
US10058674B2 (en) 2013-01-02 2018-08-28 Ebb Therapeutics, Inc. Systems for enhancing sleep
US10213334B2 (en) 2006-04-20 2019-02-26 Ebb Therapeutics, Inc. Apparatus and method for modulating sleep
US11684510B2 (en) 2006-04-20 2023-06-27 University of Pittsburgh—of the Commonwealth System of Higher Education Noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
WO2023215338A1 (en) * 2022-05-03 2023-11-09 Wesana Health Inc. Compositions and methods for treating cluster headache

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927613B2 (en) 2002-02-15 2011-04-19 University Of South Florida Pharmaceutical co-crystal compositions
US7790905B2 (en) 2002-02-15 2010-09-07 Mcneil-Ppc, Inc. Pharmaceutical propylene glycol solvate compositions
AU2003213719A1 (en) 2002-03-01 2003-09-16 Regents Of The University Of Michigan Multiple-component solid phases containing at least one active pharmaceutical ingredient
AU2003243699B2 (en) 2002-06-21 2009-01-15 Transform Pharmaceuticals, Inc. Pharmaceutical compositions with improved dissolution
US8183290B2 (en) 2002-12-30 2012-05-22 Mcneil-Ppc, Inc. Pharmaceutically acceptable propylene glycol solvate of naproxen
US20050234093A1 (en) * 2003-06-25 2005-10-20 H. Lundbeck A/S Treatment of depression and other affective disorders
CA2548917C (en) * 2003-12-11 2014-09-23 Sepracor Inc. Combination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
EP1742624B1 (en) * 2004-02-18 2010-01-06 Sepracor, Inc. Dopamine-agonist combination therapy with sedatives for improving sleep quality
WO2005097132A2 (en) 2004-04-05 2005-10-20 Sepracor Inc. Methods of treatment using eszopiclone
JP2008538748A (en) * 2005-04-07 2008-11-06 ハイシアム, インコーポレイテッド Improved methods and compositions for the prevention of anxiety, substance abuse and dependence
JP5095615B2 (en) * 2005-06-27 2012-12-12 バリアント・インターナショナル・(バルバドス)・ソサイアティーズ・ウィズ・リストリクティッド・ライアビリティ Modified release of bupropion salt
CN101553217A (en) * 2005-07-06 2009-10-07 塞普拉科公司 Combinations of eszopiclone and trans 4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-n-methyl-1-napthalenamine or trans 4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-napthalenamine, and methods of treatment
MX2008000249A (en) * 2005-07-06 2008-03-18 Sepracor Inc Combinations of eszopiclone and o-desmethylvenlafaxine, and methods of treatment of menopause and mood, anxiety, and cognitive disorders.
CA2614244A1 (en) * 2005-07-06 2007-01-11 Sepracor Inc. Combinations of eszopiclone and an antidepressant
FR2889811B1 (en) * 2005-08-19 2009-10-09 Sanofi Aventis Sa ASSOCIATION OF A HYPNOTIC AGENT HAS LONG LASTING ACTION AND A SHORT-ACTING HYPNOTIC AGENT, A PHARMACEUTICAL COMPOSITION CONTAINING THE SAME AND ITS THERAPEUTIC USE.
GT200600397A (en) * 2005-09-07 2007-08-28 TOPIC FORMULAS CONTAINING O-DESMETIL VENLAFAXINA (ODV) OR ITS SALTS
US20070250375A1 (en) * 2006-02-24 2007-10-25 Mcclellan William Dynamic Capture Rate Performance Metric
US20080044462A1 (en) * 2006-04-06 2008-02-21 Collegium Pharmaceutical, Inc. Delaware Stabilized transdermal bupropion preparations
US20080051429A1 (en) * 2006-04-19 2008-02-28 Van Kammen Daniel Use of 4-amino-piperidines for treating sleep disorders
WO2007142810A2 (en) 2006-05-19 2007-12-13 Somaxon Pharmaceuticals, Inc. Methods of using low-dose doxepin for the improvement of sleep
US20100227916A1 (en) * 2006-05-19 2010-09-09 Somaxon Pharmaceuticals, Inc N-desmethyl-doxepin and methods of using the same to treat sleep disorders
US20100179214A1 (en) 2006-05-19 2010-07-15 Somaxon Pharmaceuticals, Inc. Doxepin trans isomers and isomeric mixtures and methods of using the same to treat sleep disorders
US20080058408A1 (en) 2006-05-19 2008-03-06 Rogowski Roberta L Low-dose doxepin for treatment of sleep disorders in elderly patients
US20100179215A1 (en) 2006-05-19 2010-07-15 Somaxon Pharmaceuticals, Inc. Doxepin isomers and isomeric mixtures and methods of using the same to treat sleep disorders
US7915307B2 (en) 2006-07-20 2011-03-29 Somaxon Pharmaceuticals, Inc. Methods of improving the pharmacokinetics of doxepin
US20100105614A1 (en) 2006-10-25 2010-04-29 Somaxon Pharmaceuticals, Inc. Ultra low dose doxepin and methods of using the same to treat sleep disorders
US20110077200A1 (en) * 2006-12-06 2011-03-31 Somaxon Pharmaceuticals, Inc. Combination therapy using low-dose doxepin for the improvement of sleep
US8691853B2 (en) 2007-03-14 2014-04-08 Caliper Life Sciences, Inc. Method of using dopamine reuptake inhibitors and their analogs for treating autoimmune conditions and delaying or preventing autoimmune related pathologic progressions
WO2008112968A1 (en) 2007-03-14 2008-09-18 Caliper Life Sciences, Inc. Sydnonimines - specific dopamine reuptake inhibitors and their use in treating dopamine related disorders
US20090074862A1 (en) 2007-04-13 2009-03-19 Luigi Schioppi Low-dose doxepin formulations and methods of making and using the same
EP2020403A1 (en) 2007-08-02 2009-02-04 Esteve Quimica, S.A. Process for the resolution of zopiclone and intermediate compounds
US20110053945A1 (en) * 2007-12-19 2011-03-03 Sepracor Inc. Salts of 6-(5-chloro-2-pyridyl)-5-[(4-methyl-1-piperazinyl)carbonyloxy]-7-oxo-6,7-dihy-dro-5h-pyrrolo[3,4-b]pyrazine
US8268832B2 (en) 2007-12-19 2012-09-18 Sunovion Pharmaceuticals Inc. Maleate salts of 6-(5-chloro-2-Pyridyl)-5-[(4-methyl-1-piperazinyl)carbonyloxy]-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine
CA2812705C (en) * 2007-12-19 2015-08-18 Sunovion Pharmaceuticals Inc. Maleate, besylate and l-malate salts of 6-(5-chloro-2-pyridyl)-5-[(4-methyl-1-piperazinyl)carbonyloxy]-7-oxo-6,7-dihydro-5h-pyrrolo[3,4-b]pyrazine
US8198278B2 (en) 2007-12-19 2012-06-12 Sunovion Pharmaceuticals Inc. Besylate salts of 6-(5-chloro-2-pyridyl)-5-[(4-methyl-1-piperazinyl)carbonyloxy]-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine
US8198277B2 (en) 2007-12-19 2012-06-12 Sunovion Pharmaceuticals Inc. L-malate salts of 6-(5-chloro-2-pyridyl)-5-[(4-methyl-1-piperazinyl)carbonyloxy]-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine
US8212036B2 (en) 2007-12-19 2012-07-03 Sunovion Pharmaceuticals Inc. Maleate salts of 6-(5-chloro-2-pyridyl)-5-[(4-methyl-1-piperazinyl)carbonyloxy]-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine
US8269005B2 (en) 2007-12-19 2012-09-18 Sunovion Pharmaceuticals Inc. L-malate salts of 6-(5-chloro-2-Pyridyl)-5-[(4-methyl-1-piperazinyl)carbonyloxy]-7-Oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine
EP2123626A1 (en) * 2008-05-21 2009-11-25 Laboratorios del Dr. Esteve S.A. Co-crystals of duloxetine and co-crystal formers for the treatment of pain
CN101607961B (en) * 2008-06-18 2011-08-10 天津天士力集团有限公司 Eszopiclone crystal and composition thereof
US8583563B1 (en) * 2008-12-23 2013-11-12 Match.Com, L.L.C. System and method for providing enhanced matching based on personality analysis
WO2010116385A2 (en) * 2009-04-08 2010-10-14 Rubicon Research Private Limited Pharmaceutical compositions for alleviating unpleasant taste
AU2010255354A1 (en) * 2009-06-04 2012-02-02 Koninklijke Philips Electronics, N.V. Method and system for providing behavioural therapy for insomnia
CN102781942B (en) 2009-10-23 2015-09-23 詹森药业有限公司 Octahydro pyrrolo-[3,4-c] pyrroles is replaced as two of orexin receptor modulators
US9119843B2 (en) 2009-12-04 2015-09-01 Caliper Life Sciences, Inc. Method of using dopamine reuptake inhibitors and their analogs for treating diabetes symptoms and delaying or preventing diabetes-associated pathologic conditions
EP2340818A1 (en) * 2009-12-23 2011-07-06 Laboratorios Del. Dr. Esteve, S.A. Co-crystals of venlafaxine and celecoxib
JP2013516488A (en) * 2010-01-07 2013-05-13 バイバス・インコーポレイテッド Treatment of obstructive sleep apnea syndrome with a combination of carbonic anhydrase inhibitors and additional active agents
US9616123B1 (en) * 2012-03-05 2017-04-11 Robert L. Knobler Method and compound for treatment of menopausal symptoms
WO2014052394A1 (en) 2012-09-26 2014-04-03 Feuerstein Seth D Combination methods and compositions including sleep therapeutics for treating mood
WO2017027249A1 (en) * 2015-08-11 2017-02-16 Ovid Therapeutics Inc. Methods of sedation and parenteral formulation for use during critical care treatment
CN108883110B (en) * 2016-03-10 2022-05-27 詹森药业有限公司 Methods of treating depression using orexin-2 receptor antagonists
KR20230028244A (en) 2020-05-20 2023-02-28 썰테고 테라퓨틱스 아이엔씨. Cyclic deuterated gaboxadol and its use for the treatment of mental disorders
US11080484B1 (en) * 2020-10-08 2021-08-03 Omniscient Neurotechnology Pty Limited Natural language processing of electronic records

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116852A (en) * 1990-12-03 1992-05-26 Bristol-Myers Squibb Co. Treatment of sleep disorders

Family Cites Families (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121076A (en) 1964-02-11 Benzodiazepinones and processes
US3109843A (en) 1963-11-05 Process for preparing
US2409754A (en) 1946-10-22 Method for obtaining hydantoins
NL110232C (en) 1958-12-06
US3371085A (en) 1959-12-10 1968-02-27 Hoffmann La Roche 5-aryl-3h-1,4-benzodiazepin-2(1h)-ones
US3136815A (en) 1959-12-10 1964-06-09 Hoffmann La Roche Amino substituted benzophenone oximes and derivatives thereof
US3454554A (en) 1960-10-14 1969-07-08 Colgate Palmolive Co Aminoalkyliminodibenzyl compounds
NL127069C (en) 1961-10-10
US3116203A (en) 1962-03-14 1963-12-31 Hoffmann La Roche Oleaginous systems
NL298071A (en) 1963-06-04
CH449645A (en) 1963-07-09 1968-01-15 Ciba Geigy Process for the production of new amino acids
CH427803A (en) 1963-12-06 1967-01-15 Geigy Ag J R Process for the production of a new isoxazole derivative
CH445129A (en) 1964-04-29 1967-10-15 Nestle Sa Process for the preparation of high molecular weight inclusion compounds
US3397209A (en) 1966-11-25 1968-08-13 Geigy Chem Corp 3-hydroxy-5-isoxazole-carboxamide
US3459731A (en) 1966-12-16 1969-08-05 Corn Products Co Cyclodextrin polyethers and their production
US3426011A (en) 1967-02-13 1969-02-04 Corn Products Co Cyclodextrins with anionic properties
US3453257A (en) 1967-02-13 1969-07-01 Corn Products Co Cyclodextrin with cationic properties
US3453259A (en) 1967-03-22 1969-07-01 Corn Products Co Cyclodextrin polyol ethers and their oxidation products
GB1177525A (en) 1967-04-13 1970-01-14 Leo Ab New Heterocyclic Aminoketones of Therapeutic Interest
US3885046A (en) 1969-12-04 1975-05-20 Burroughs Wellcome Co Meta chloro or fluoro substituted alpha-T-butylaminopropionphenones in the treatment of depression
BE759838A (en) 1969-12-04 1971-06-03 Wellcome Found KETONES WITH BIOLOGICAL ACTIVITY
US3821249A (en) 1970-03-13 1974-06-28 En Nom Collectif Science Union Dibenzothiazefin derivatives
US3758528A (en) 1970-03-13 1973-09-11 Science Union & Cie Tricyclic compounds
OA04285A (en) 1972-01-07 1979-12-31 Rhone Poulenc Sa New derivatives of pyrrolo (3,4-b) pyrazine and their preparation.
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
GB1422263A (en) 1973-01-30 1976-01-21 Ferrosan As 4-phenyl-piperidine compounds
US3916889A (en) 1973-09-28 1975-11-04 Sandoz Ag Patient ventilator apparatus
US4314081A (en) 1974-01-10 1982-02-02 Eli Lilly And Company Arloxyphenylpropylamines
US4280957A (en) 1974-09-11 1981-07-28 Hoffmann-La Roche Inc. Imidazodiazepines and processes therefor
AR208414A1 (en) 1974-11-07 1976-12-27 Rhone Poulenc Ind PROCEDURE TO OBTAIN NEW DERIVATIVES OF ((ACIL-4PIPERAZINIL-1) CARBONYLOXI-5 PYRROLINONE-2)
GB1478759A (en) 1974-11-18 1977-07-06 Alza Corp Process for forming outlet passageways in pills using a laser
DE2460891C2 (en) 1974-12-21 1982-09-23 Gödecke AG, 1000 Berlin 1-aminomethyl-1-cycloalkaneacetic acids and their esters, processes for their preparation and medicaments containing these compounds
US3960927A (en) 1975-03-18 1976-06-01 Richardson-Merrell Inc. Olefinic derivatives of amino acids
NL7503310A (en) 1975-03-20 1976-09-22 Philips Nv CONNECTIONS WITH ANTIDEPRESSIVE ACTION.
GB1497306A (en) 1975-07-03 1978-01-05 Leo Ab Preparation of lofepramine and its hydrochloride
FR2319338A1 (en) 1975-08-01 1977-02-25 Synthelabo NEW A-PHENYL BENZYLIDENIC DERIVATIVES OF AMINO ACIDS, THEIR PREPARATION AND THE MEDICINAL PRODUCTS CONTAINING THEM
FR2334358A1 (en) 1975-12-12 1977-07-08 Sogeras NEW DRUGS DERIVED FROM INDOLE
GB1526331A (en) 1976-01-14 1978-09-27 Kefalas As Phthalanes
US4063064A (en) 1976-02-23 1977-12-13 Coherent Radiation Apparatus for tracking moving workpiece by a laser beam
DE2657271C2 (en) 1976-12-17 1978-10-26 Werner & Pfleiderer, 7000 Stuttgart Method of manufacturing a tubular body from wear-resistant metal
DK270378A (en) * 1977-06-20 1978-12-21 Krogsgaard Larsen P isoxazole
IL56369A (en) 1978-01-20 1984-05-31 Erba Farmitalia Alpha-phenoxybenzyl propanolamine derivatives,their preparation and pharmaceutical compositions comprising them
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
CS234018B2 (en) 1979-06-01 1985-03-14 Wellcome Found Method of 3,5-diammino-6-1,2,4-triazine derivatives making
CA1143728A (en) 1979-10-04 1983-03-29 Max Gerecke Imidazodiazepine derivatives
US4536518A (en) 1979-11-01 1985-08-20 Pfizer Inc. Antidepressant derivatives of cis-4-phenyl-1,2,3,4-tetrahydro-1-naphthalenamine
US4361583A (en) 1980-08-19 1982-11-30 Synthelabo Analgesic agent
FR2492258A1 (en) 1980-10-17 1982-04-23 Pharmindustrie NEW AMINO-2 TRIFLUOROMETHOXY-6 BENZOTHIAZOLE-BASED MEDICINAL PRODUCT
FR2492382A1 (en) 1980-10-22 1982-04-23 Synthelabo IMIDAZO (1,2-A) PYRIDINE DERIVATIVES, THEIR PREPARATION AND THERAPEUTIC USE THEREOF
FR2508035A1 (en) 1981-06-23 1982-12-24 Fabre Sa Pierre ARYL-1-AMINOMETHYL-2 CYCLOPROPANES CARBOXAMIDE (Z) DERIVATIVES, THEIR PREPARATION AND THEIR USE AS MEDICAMENTS USEFUL IN THE TREATMENT OF CENTRAL NERVOUS SYSTEM DISORDERS
US4419345A (en) * 1981-07-20 1983-12-06 Kinetic Systems, Inc. Sleep-inducing pharmaceutical composition and method
DE3228351C2 (en) * 1982-07-29 1985-07-25 Merckle GmbH, 7902 Blaubeuren Medicines used to treat sleep disorders
US4535186A (en) 1983-04-19 1985-08-13 American Home Products Corporation 2-Phenyl-2-(1-hydroxycycloalkyl or 1-hydroxycycloalk-2-enyl)ethylamine derivatives
US4900836A (en) 1983-06-23 1990-02-13 American Cyanamid Company (3-amino-1H-pyrazol-4-yl) (aryl)methanones
US4521422A (en) 1983-06-23 1985-06-04 American Cyanamid Company Aryl and heteroaryl[7-(aryl and heteroaryl)pyrazolo[1,5-a]pyrimidin-3-yl]methanones
US4654347A (en) 1983-06-23 1987-03-31 American Cyanamid Company Aryl and heteroaryl[[7-(3-disubstituted amino)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]methanones
US4626538A (en) 1983-06-23 1986-12-02 American Cyanamid Company [7-(3-disubstituted amino)phenyl]pyrazolo[1,5-a]pyrimidines
US4513006A (en) 1983-09-26 1985-04-23 Mcneil Lab., Inc. Anticonvulsant sulfamate derivatives
GB8425872D0 (en) 1984-10-12 1984-11-21 Ciba Geigy Ag Chemical compounds
GB2167407B (en) 1984-11-22 1988-05-11 Erba Farmitalia Enantiomers of phenoxy derivatives of benzyl morpholine and salts thereof
US4594358A (en) 1985-02-25 1986-06-10 Eli Lilly And Company Analgesic method
US4683235A (en) 1985-02-25 1987-07-28 Eli Lilly And Company Analgesic method
DK288385D0 (en) 1985-06-26 1985-06-26 Novo Industri As AMINO ACID DERIVATIVES
CA1280421C (en) 1985-07-02 1991-02-19 Albert A. Carr 1,4-disubstituted piperidinyl derivatives
US4647591A (en) 1985-10-07 1987-03-03 Eli Lilly And Company Method for improving memory
ES2058061T3 (en) 1985-10-25 1994-11-01 Beecham Group Plc DERIVED FROM PIPERIDINE, ITS PREPARATION AND ITS USE AS A MEDICINAL PRODUCT.
FR2593499B1 (en) 1986-01-30 1988-08-12 Jouveinal Sa AMINOALCOOLS, THEIR PREPARATION PROCESS AND THEIR APPLICATIONS, ESPECIALLY IN THERAPEUTICS
US4737323A (en) 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
FR2600650B1 (en) 1986-06-27 1988-09-09 Synthelabo PROCESS FOR THE PREPARATION OF IMIDAZOPYRIDINES AND INTERMEDIATE COMPOUNDS
US4861598A (en) 1986-07-18 1989-08-29 Euroceltique, S.A. Controlled release bases for pharmaceuticals
US4847256A (en) 1986-10-16 1989-07-11 American Cyanamid Company 4,5-dihydro and 4,5,6,7-tetrahydropyrazolo(1,5-A)-pyrimidines
FR2606410B1 (en) 1986-11-07 1989-02-24 Synthelabo IMIDAZOPYRIDINES, THEIR PREPARATION AND THEIR APPLICATION IN THERAPEUTICS
US4956388A (en) 1986-12-22 1990-09-11 Eli Lilly And Company 3-aryloxy-3-substituted propanamines
US5446070A (en) 1991-02-27 1995-08-29 Nover Pharmaceuticals, Inc. Compositions and methods for topical administration of pharmaceutically active agents
DE3812567A1 (en) 1988-04-15 1989-10-26 Basf Ag METHOD FOR PRODUCING PHARMACEUTICAL MIXTURES
GB8820266D0 (en) 1988-08-26 1988-09-28 Smith Kline French Lab Compounds
US4999382A (en) 1988-10-26 1991-03-12 Massachusetts Institute Of Technology Compositions for treating tobacco withdrawal symptoms and methods for their use
FR2639942B1 (en) 1988-12-02 1991-03-29 Sanofi Sa OXIMATED PROPENONE ETHERS, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
US4940585A (en) 1989-02-17 1990-07-10 Hapworth William E Method for the treatment of nicotine withdrawal syndrome
GB8911017D0 (en) 1989-05-13 1989-06-28 Ciba Geigy Ag Substituted aminoalkylphosphinic acids
KR0166088B1 (en) 1990-01-23 1999-01-15 . Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof
US5356934A (en) 1990-03-29 1994-10-18 Eli Lilly And Company Selected serotonin subtype receptor agonist to treat sleep apnea
WO1991018602A1 (en) 1990-06-01 1991-12-12 Merrell Dow Pharmaceuticals Inc. (+)-α-(2,3-DIMETHOXYPHENYL)-1-[2-(4-FLUOROPHENYL)ETHYL]-4-PIPERIDINEMETHANOL
FR2663934B1 (en) 1990-06-27 1994-06-03 Adir NOVEL DERIVATIVES OF ACID 4 - BUTYRIC AMINO, THEIR PREPARATION PROCESS AND THE PHARMACEUTICAL PREPARATIONS CONTAINING THEM.
US5104899A (en) 1990-08-13 1992-04-14 Sepracor, Inc. Methods and compositions for treating depression using optically pure fluoxetine
US5589511A (en) 1990-08-13 1996-12-31 Sepracor Inc. Method for treating migraine headaches using optically pure S(+) fluoxetine
DK213290D0 (en) 1990-09-06 1990-09-06 Lundbeck & Co As H TREATMENT OF CEREBROVASCULAR DISORDERS
US6197819B1 (en) 1990-11-27 2001-03-06 Northwestern University Gamma amino butyric acid analogs and optical isomers
WO1992009560A1 (en) 1990-11-27 1992-06-11 Northwestern University Gaba and l-glutamic acid analogs for antiseizure treatment
FR2671800B1 (en) * 1991-01-17 1993-03-12 Rhone Poulenc Rorer Sa OPTICALLY ACTIVE 5H-PYRROLO [3,4-B] PYRAZINE DERIVATIVE, ITS PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING IT.
AU1919592A (en) 1991-04-16 1992-11-17 National Institutes Of Health Method of treating trichotillomania and onychophagia
IT1251544B (en) * 1991-05-13 1995-05-17 Gabriele Biella PHARMACEUTICAL COMPOSITIONS ACTIVE IN THE THERAPY OF SLEEP DISORDERS INCLUDING MELATONIN OR A DERIVATIVE IN ASSOCIATION WITH A BENZODIAZEPINE DERIVATIVE
US5151448A (en) 1991-07-12 1992-09-29 Crenshaw Roger T Method for treating premature ejaculation
IL99316A (en) 1991-08-27 1995-03-15 Teva Pharma Production of fluoxetine and new intermediates
US5786357A (en) 1991-12-02 1998-07-28 Sepracor Inc. Methods and compositions for treating sleep disorders, convulsive seizures and other disorders using optically pure (+) zopiclone
US5273760A (en) 1991-12-24 1993-12-28 Euroceltigue, S.A. Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer
US5286493A (en) 1992-01-27 1994-02-15 Euroceltique, S.A. Stabilized controlled release formulations having acrylic polymer coating
US5472712A (en) 1991-12-24 1995-12-05 Euroceltique, S.A. Controlled-release formulations coated with aqueous dispersions of ethylcellulose
US5760055A (en) 1992-03-13 1998-06-02 Wake Forest University Biologically active tropane derivatives
DK0641330T3 (en) 1992-05-20 2001-12-03 Univ Northwestern Gaba and L-glutamic acid analogues for anticonvulsant therapy
US5324351A (en) 1992-08-13 1994-06-28 Euroceltique Aqueous dispersions of zein and preparation thereof
IL111786A0 (en) 1993-12-01 1995-01-24 Max Planck Gesellschaft Methods of promoting the survival and differentiation of subclasses of cholinergic and serotonergic neurons using fibroblast growth factor-5
FR2722192A1 (en) 1994-07-06 1996-01-12 Adir New optically active 3-substd. 4-amino:butyric acid derivs.
IL115849A0 (en) 1994-11-03 1996-01-31 Merz & Co Gmbh & Co Tangential filtration preparation of liposomal drugs and liposome product thereof
US5538977A (en) 1995-03-17 1996-07-23 American Cyanamid Company 3-Substituted-7-[3-(imidazol-1-yl)phenyl]-pyrazolo[1,5-a]pyrimidines
IT1276522B1 (en) 1995-04-07 1997-10-31 Elena Benincasa USE OF ZOLPIDEM FOR THE THERAPEUDIC TREATMENT OF NEUROPSYCHIATRIC SYNDROMES ASSOCIATED WITH DYSFUNSION AND NEURAL CIRCUITS OF
DE19525598C2 (en) * 1995-07-13 1997-09-25 Max Planck Gesellschaft sleeping pills
US5714607A (en) 1995-12-01 1998-02-03 American Cyanamid Company Process improvement in the synthesis of N- 3-(3-cyano-pyrazolo 1,5-a!pyrimidin-7-yl)phenyl!-N-ethylacetamide
ES2176668T3 (en) 1996-02-07 2002-12-01 Warner Lambert Co NEW CYCLING AMINO ACIDS AS PHARMACEUTICAL AGENTS.
KR100512506B1 (en) 1996-03-14 2005-12-21 워너-램버트 캄파니 엘엘씨 Novel Substituted Cyclic Amino Acids as Pharmaceutical Agents
CZ287598A3 (en) 1996-03-14 1999-02-17 Warner-Lambert Company Bridged cyclic amino acids
AU733896B2 (en) 1996-10-23 2001-05-31 Warner-Lambert Company Substituted gamma aminobutyric acids as pharmaceutical agents
DE19707628A1 (en) 1997-02-26 1998-08-27 Merck Patent Gmbh Oxazolidinones
CA2283083C (en) * 1997-03-12 2007-09-04 Novo Nordisk A/S Use of 2,3,4,5-tetrahydro-1h-3-benzazepines for the manufacture of a pharmaceutical composition for the treatment of sleep disorders
FR2761686B1 (en) 1997-04-07 1999-05-14 Sipsy Sa NEW PROCESS FOR THE PREPARATION OF (+/-) 3- (3,4- DICHLOROPHENYL) -2-DIMETHYLAMINO-2-METHYL-PROPAN-1-OL OR CERICLAMINE (INN)
WO1998056787A1 (en) 1997-06-10 1998-12-17 Synthon B.V. 4-Phenylpiperidine compounds
US6028083A (en) 1997-07-25 2000-02-22 Hoechst Marion Roussel, Inc. Esters of (+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl) ethyl]-4-piperidinemethanol
AU8668598A (en) 1997-08-20 1999-03-08 University Of Oklahoma, The Gaba analogs to prevent and treat gastrointestinal damage
GB9718833D0 (en) 1997-09-04 1997-11-12 Merck Sharp & Dohme Therapeutic agents
US6989435B2 (en) * 1997-09-11 2006-01-24 Cambridge University Technical Services Ltd. Compounds and methods to inhibit or augment an inflammatory response
UA57107C2 (en) 1997-09-23 2003-06-16 Елі Ліллі Енд Компані Treatment of conduct disorders
WO1999015177A1 (en) 1997-09-23 1999-04-01 Eli Lilly And Company Treatment of attention-deficit/hyperactivity disorder
US6635673B1 (en) 1997-10-27 2003-10-21 Warner-Lambert Company Cyclic amino acids and derivatives thereof useful as pharmaceutical agents
KR20010033154A (en) 1997-12-16 2001-04-25 로즈 암스트롱, 크리스틴 에이. 트러트웨인 Novel Amines as Pharmaceutical Agents
TR200001800T2 (en) 1997-12-16 2001-03-21 Warner-Lambert Company -4 (3) -Substituted -4 (3) - aminomethyl- (thio) pyran or- piperidine derivatives (= Gabapentin analogs), their preparation and use in the treatment of neurological diseases
EP1047678B1 (en) 1997-12-16 2004-09-08 Warner-Lambert Company LLC 1-substituted-1-aminomethyl-cycloalkane derivatives (=gabapentin analogues), their preparation and their use in the treatment of neurological disorders
GB9801538D0 (en) 1998-01-23 1998-03-25 Merck Sharp & Dohme Pharmaceutical product
SE9801516D0 (en) 1998-04-30 1998-04-30 Maria Carlsson M100907 / 4-Piperidine methanol derivatives for autism
NZ506793A (en) 1998-05-26 2003-03-28 Warner Lambert Co Conformationally constrained amino acid compounds and their use for treating epilepsy, faintness attacks, hypokinesia, cranial disorders, neurodegenerative disorders, depression, anxiety, panic, pain and neuropathological disorders
AU4060599A (en) * 1998-06-09 1999-12-30 Takeda Chemical Industries Ltd. Pharmaceutical composition for treating or preventing sleep disorders
US6974838B2 (en) 1998-08-24 2005-12-13 Sepracor Inc. Methods of treating or preventing pain using sibutramine metabolites
US6277864B1 (en) 1998-08-28 2001-08-21 Aventis Pharmaceuticals Inc. Use of R- +)-α-(2,3-dimethoxyphenyl-1-[2-(4-fluorophenyl) ethyl]-4-piperidinemethanol for the treatment of sleep disorders
AU5478799A (en) 1998-09-14 2000-04-03 Warner-Lambert Company Branched alkyl pyrrolidine-3-carboxylic acids
AU1602100A (en) 1998-11-25 2000-06-13 Warner-Lambert Company Improved gamma amino butyric acid analogs
US6342533B1 (en) * 1998-12-01 2002-01-29 Sepracor, Inc. Derivatives of (−)-venlafaxine and methods of preparing and using the same
EP1005863A1 (en) 1998-12-04 2000-06-07 Synthelabo Controlled-release dosage forms comprising a short acting hypnotic or a salt thereof
EP1031350A1 (en) 1999-02-23 2000-08-30 Warner-Lambert Company Use of a gabapentin-analog for the manufacture of a medicament for preventing and treating visceral pain
US6342496B1 (en) 1999-03-01 2002-01-29 Sepracor Inc. Bupropion metabolites and methods of use
US6339086B1 (en) * 1999-05-14 2002-01-15 Swpracor, Inc. Methods of making and using N-desmethylzopiclone
KR100317261B1 (en) * 1999-07-02 2001-12-22 서평원 Dynamic Radio Access Bearer Control method
US6781970B1 (en) * 1999-08-27 2004-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Transport format combination indicator mapping for telecommunications
KR100407942B1 (en) * 1999-11-19 2003-12-01 엘지전자 주식회사 method for improving transmission performance of Transport Format Combination Indicato in a mobile communication system
JP4664564B2 (en) 2000-03-06 2011-04-06 アカディア ファーマシューティカルズ,インコーポレーテッド Nitrogen-containing cyclic compounds for the treatment of serotonin-related diseases
EP1272181A2 (en) 2000-04-13 2003-01-08 Synthon B.V. Modified release formulations containing a hypnotic agent
WO2002006786A1 (en) 2000-07-13 2002-01-24 Mitsubishi Denki Kabushiki Kaisha Pressure sensor
US6258814B1 (en) * 2000-10-13 2001-07-10 Schering Corporation Method of using cetirizine and pharmaceutical compositions containing the same for inducing sleep
TWI239333B (en) 2000-11-16 2005-09-11 Hoffmann La Roche Benzodiazepine derivatives as GABA A receptor modulators
CA2445843A1 (en) * 2001-05-01 2002-11-07 H. Lundbeck A/S The use of enantiomeric pure escitalopram
US20030162754A1 (en) 2001-12-17 2003-08-28 Tufts University Use of GABA and GABAB agonists
NZ571695A (en) 2001-12-28 2010-02-26 Acadia Pharm Inc Spiroazacyclic compounds as monoamine receptor for modulating 5-HT2A receptor-mediated events
AU2002307243B2 (en) * 2002-04-12 2008-01-03 Medical College Of Georgia Research Institute, Inc. Antigen-presenting cell populations and their use as reagents for enhancing or reducing immune tolerance
CN100430063C (en) * 2002-06-20 2008-11-05 H.隆德贝克有限公司 Combination therapy wherein a serotonin reuptake inhibitor is used
US7253186B2 (en) 2002-06-24 2007-08-07 Carl-Magnus Andersson N-substituted piperidine derivatives as serotonin receptor agents
EP1542961B1 (en) * 2002-09-16 2013-09-11 Sepracor, Inc. Trans 4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-napthalenamine for use in treatment of cns disorders
WO2004037212A2 (en) * 2002-10-24 2004-05-06 Sepracor, Inc. Compositions comprising zopiclone derivatives and methods of making and using the same
US20040132826A1 (en) * 2002-10-25 2004-07-08 Collegium Pharmaceutical, Inc. Modified release compositions of milnacipran
US20050038042A1 (en) * 2002-11-15 2005-02-17 Jenet Codd Modified release composition comprising a short-acting hypnotic for treatment of sleep disorders
DK1641456T3 (en) 2003-06-25 2010-06-21 Lundbeck & Co As H Gaboxadol for the treatment of depression and other affective disorders
US20050031688A1 (en) * 2003-08-04 2005-02-10 Ayala William J. Positive wakeup pharmaceutical sleep system with compatible pre-bedtime administration
CA2548917C (en) * 2003-12-11 2014-09-23 Sepracor Inc. Combination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
WO2005063248A1 (en) * 2003-12-22 2005-07-14 Sepracor Inc. Modafinil combination therapy for improving sleep quality
AU2004308962A1 (en) 2003-12-24 2005-07-14 Sepracor Inc. Melatonin combination therapy for improving sleep quality
EP1742624B1 (en) * 2004-02-18 2010-01-06 Sepracor, Inc. Dopamine-agonist combination therapy with sedatives for improving sleep quality
US7465729B2 (en) * 2004-04-05 2008-12-16 Sepracor Inc. Methods of treatment of menopause and perimenopause using eszopiclone
WO2005097132A2 (en) 2004-04-05 2005-10-20 Sepracor Inc. Methods of treatment using eszopiclone
MX2008000249A (en) * 2005-07-06 2008-03-18 Sepracor Inc Combinations of eszopiclone and o-desmethylvenlafaxine, and methods of treatment of menopause and mood, anxiety, and cognitive disorders.
WO2007005940A2 (en) * 2005-07-06 2007-01-11 Sepracor Inc. Combinations of eszopiclone and didesmethylsibutramine, and methods of treatment of menopause and mood, anxiety, and cognitive disorders
CA2614244A1 (en) * 2005-07-06 2007-01-11 Sepracor Inc. Combinations of eszopiclone and an antidepressant
CN101553217A (en) * 2005-07-06 2009-10-07 塞普拉科公司 Combinations of eszopiclone and trans 4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-n-methyl-1-napthalenamine or trans 4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-napthalenamine, and methods of treatment
CA2670593A1 (en) * 2006-12-01 2008-06-12 Sepracor Inc. Treatment of anxiety with eszopiclone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116852A (en) * 1990-12-03 1992-05-26 Bristol-Myers Squibb Co. Treatment of sleep disorders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Thase (“Antidepressant Treatment of the Depressed Patient with Insomnia” J. Clin. Psychology, 1999, 60, 17, 28-31 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492313B2 (en) 2006-04-20 2016-11-15 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Method and apparatus of noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US9669185B2 (en) 2006-04-20 2017-06-06 University of Pittsburgh—of the Commonwealth System of Higher Education Methods, devices and systems for treating insomnia by inducing frontal cerebral hypothermia
US10213334B2 (en) 2006-04-20 2019-02-26 Ebb Therapeutics, Inc. Apparatus and method for modulating sleep
US10610661B2 (en) 2006-04-20 2020-04-07 University of Pittsburgh—of the Commonwealth System of Higher Education Noninvasive, regional brain thermal stimuli for the treatment of migraine
US11684510B2 (en) 2006-04-20 2023-06-27 University of Pittsburgh—of the Commonwealth System of Higher Education Noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US10058674B2 (en) 2013-01-02 2018-08-28 Ebb Therapeutics, Inc. Systems for enhancing sleep
US10864348B2 (en) 2013-01-02 2020-12-15 Ebb Therapeutics, Inc. Systems for enhancing sleep
WO2016123241A1 (en) * 2015-01-27 2016-08-04 Cerêve, Inc. Method and apparatuses for modulating sleep by chemical activation of temperature receptors
US20170319815A1 (en) * 2015-01-27 2017-11-09 Ebb Therapeutics, Inc. Method and apparatuses for modulating sleep by chemical activation of temperature receptors
WO2023215338A1 (en) * 2022-05-03 2023-11-09 Wesana Health Inc. Compositions and methods for treating cluster headache

Also Published As

Publication number Publication date
US20120122874A1 (en) 2012-05-17
EP1691811A1 (en) 2006-08-23
CA2548917C (en) 2014-09-23
AU2004305563C1 (en) 2011-07-07
US20070299055A1 (en) 2007-12-27
EP2343073A2 (en) 2011-07-13
EP1691811B1 (en) 2014-07-23
CA2548917A1 (en) 2005-07-07
ES2515092T3 (en) 2014-10-29
AU2004305563A1 (en) 2005-07-07
PT1691811E (en) 2014-10-30
US8097625B2 (en) 2012-01-17
DK1691811T3 (en) 2014-10-20
AU2004305563B2 (en) 2010-12-16
US20050176680A1 (en) 2005-08-11
JP5646126B2 (en) 2014-12-24
JP2007513956A (en) 2007-05-31
HK1095279A1 (en) 2007-05-04
PL1691811T3 (en) 2014-12-31
AU2011201056A1 (en) 2011-03-31
EP2343073A3 (en) 2011-10-12
WO2005060968A1 (en) 2005-07-07
JP2011162557A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
US20140343069A1 (en) Combination of sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
US20050267176A1 (en) Dopamine-agonist combination therapy for improving sleep quality
Smith et al. Fibromyalgia syndrome: a discussion of the syndrome and pharmacotherapy
WO2000024399A1 (en) Compositions and methods employing r(-) fluoxetine and other active ingredients
Carpenter et al. Augmentation with open-label atomoxetine for partial or nonresponse to antidepressants
EP2236138A1 (en) Low dose pipamperone in treating mood and anxiety disorders
US20100081719A1 (en) Milnacipran for the treatment of fatigue associated with fibromyalgia syndrome
EP2236157A1 (en) Pipamperone and a second agent in treating mood and anxiety disorders
JP2010500377A (en) Milnacipran for treating cognitive impairment associated with fibromyalgia
Pessin et al. Diagnosis, assessment, and treatment of depression in palliative care
TW202102221A (en) Use of vibegron to treat overactive bladder
CN113825510A (en) Method of treating negative symptoms of schizophrenia using deuterated dextromethorphan and quinidine
AU2018205121A1 (en) Treatment regimens
Roller et al. Disease state management: Depression and antidepressants
Roller et al. Depression and antidepressants: Pharmacists have a crucial role in supporting patients living with depression by providing advice and counselling about pharmacological treatments and recommending various strategies to assist these people to improve their quality of life
WO2023023038A1 (en) Treatment compositions and methods
JP2024517937A (en) Reducing the side effects of NMDA receptor antagonists
Roller et al. Disease state management: Mood disorders: Part one: Depression and antidepressants
Buffum et al. The psychopharmacologic treatment of depression in elders: Medical conditions, life circumstances, and the type and number of medications currently taken are considerations in selecting an anti-depressant medication
US20230381307A1 (en) Treatment of autism spectrum disorder and associated symptoms
Popp et al. Side effects of and reactions to psychotropic medications
Bruty et al. Novel (Atypical) Antidepressants
Zornig the beauty of~ relief.
Baldinger et al. Atomoxetine: a nonstimulant therapeutic option for children and adults with attention-deficit hyperactivity disorder.(Focus on...)
Shirley Focus on Serotonin Uptake Inhibitor Research

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEPRACOR INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LALJI, KARIM;BARBERICH, TIMOTHY J.;CARON, JUDY;AND OTHERS;SIGNING DATES FROM 20050315 TO 20050317;REEL/FRAME:033437/0865

AS Assignment

Owner name: SUNOVION PHARMACEUTICALS INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:SEPRACOR INC.;REEL/FRAME:033553/0649

Effective date: 20101012

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION