Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20140379031 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 14/315,684
Fecha de publicación25 Dic 2014
Fecha de presentación26 Jun 2014
Fecha de prioridad8 Oct 2008
También publicado comoCN101716096A, CN101716096B, EP2174608A1, EP2174608B1, US8795336, US20100087865
Número de publicación14315684, 315684, US 2014/0379031 A1, US 2014/379031 A1, US 20140379031 A1, US 20140379031A1, US 2014379031 A1, US 2014379031A1, US-A1-20140379031, US-A1-2014379031, US2014/0379031A1, US2014/379031A1, US20140379031 A1, US20140379031A1, US2014379031 A1, US2014379031A1
InventoresLutz Biedermann, Jürgen Harms, Wilfried Matthis
Cesionario originalBiedermann Technologies Gmbh & Co. Kg
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Bone anchoring device and stabilization device for bone parts or vertebrae comprising such a bone anchoring device
US 20140379031 A1
Resumen
A stabilization device for bone parts or vertebrae includes two bone anchoring devices for anchoring in the bone parts or vertebrae. At least one of the bone anchoring devices includes an anchoring element with an anchoring section for anchoring in a bone part or a vertebra and a head, and a receiving part for receiving a stabilization rod. The receiving part has a seat for receiving the head so that the head can pivot with respect to the receiving part. The stabilization device includes a first pressure element which is movable in the receiving part so that it can be pressed onto the head to lock the angular position of the head. The stabilization device includes at least two stabilization rod sections, and at least two guiding channels within the receiving part which have a distance from each other for guiding through the at least two stabilization rod sections so that the rod sections do not touch each other.
Imágenes(6)
Previous page
Next page
Reclamaciones(13)
1-28. (canceled)
29. A polyaxial bone anchoring device comprising:
an anchoring element comprising a shank for anchoring a bone part or a vertebra and a head;
a receiving part configured to pivotably receive the head, the receiving part having a first end, a second end opposite to the first end, a coaxial bore, a first recess and a second recess each adjacent to the first end for receiving a rod, and a central axis extending through the first end and the second end, the receiving part comprising two legs separated by the coaxial bore and the first and second recesses, a longitudinal axis of the recesses being substantially perpendicular to the central axis;
a first clamping part having a rod supporting surface that extends from the coaxial bore into the first recess when assembled in the receiving part;
a second clamping part configured to exert pressure on the rod when the rod is in the coaxial bore; and
a locking device configured to exert pressure on the second clamping part to secure the rod in the coaxial bore;
wherein, when the bone anchoring device is assembled, the first clamping part is located between the head of the anchoring element and the second clamping part.
30. The polyaxial bone anchoring device of claim 29, wherein the rod supporting surface has a longitudinal axis perpendicular to the central axis.
31. The polyaxial bone anchoring device of claim 29, wherein the first clamping part further comprises a coaxial bore that is coaxial to the central axis.
32. The polyaxial bone anchoring device of claim 29, wherein rod supporting surface of the first clamping part extends from the coaxial bore of the receiving part into the second recess.
33. The polyaxial bone anchoring device of claim 32, wherein the second clamping part extends from the coaxial bore of the receiving part into the first recess and into the second recess.
34. The polyaxial bone anchoring device of claim 29, wherein the second clamping part has a rod facing surface having a longitudinal axis perpendicular to the central axis.
35. The polyaxial bone anchoring device of claim 29, wherein respective free ends of the first clamping part and the second clamping part extend into the first recess such that the free ends are flush with an outer surface of the receiving part.
36. The polyaxial bone anchoring device of claim 29, wherein the second clamping part is configured to be rotatably coupled to the locking device.
37. The polyaxial bone anchoring device of claim 29, wherein the first clamping part further comprises a first portion that is configured to exert pressure on the head.
38. The polyaxial bone anchoring device of claim 37, wherein the first portion has a recess at a side opposite to the rod supporting surface and the recess is configured to accommodate a portion of the head.
39. A spinal stabilization system comprising at least two polyaxial bone anchoring devices according to claim 29 and a rod,
wherein the rod comprises a nickel-titanium alloy.
40. The polyaxial bone anchoring device of claim 37, wherein the first portion has a cylindrical outer surface configured to be received in the coaxial bore and a spherical inner surface configured to engage the head.
Descripción
    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • [0001]
    The present application is a continuation of U.S. patent application Ser. No. 12/571,299, filed Sep. 30, 2009, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/103,858, filed Oct. 8, 2008, the contents of which are hereby incorporated by reference in their entirety, and claims priority from European Patent Application No. 08 017 644.9, filed Oct. 8, 2008, the contents of which are hereby incorporated by reference in their entirety.
  • BACKGROUND
  • [0002]
    The invention relates to a bone anchoring device, in particular to a polyaxial bone screw which is connected to two stabilization rods and to a stabilization device having such a bone anchoring device, in particular for the stabilization of the spinal column.
  • [0003]
    A dynamic stabilization device for bones, in particular for vertebrae, is described in US 2004/0049190 A1. The stabilization device includes two bone anchoring elements, at least one of which is a polyaxial bone screw and a rigid rod with a longitudinal axis connecting them. An elastic element is inserted between the two bone anchoring elements. The elastic element acts on the bone anchoring elements to exert a force in a direction of the longitudinal axis. One of the bone anchoring elements is fixedly connected to the rod to prevent translational movement of the rod and the other bone anchoring element is slidably connected to the rod.
  • [0004]
    EP 1 800 614 A 1 describes a dynamic stabilization device for bones or for vertebrae having at least two bone anchoring elements and at least one connection element in the form of an elastic loop connecting the bone anchoring elements. In one embodiment, the bone anchoring element is in the form of a polyaxial bone screw having a receiving part which accommodates to two elastic loops each of which can be connected to a second bone anchoring element.
  • [0005]
    Based on the foregoing, there is a need to provide a bone anchoring device and a stabilization device comprising such a bone anchoring device which allows the dynamic stabilization of bone parts or vertebrae and which allows a variable design of elastic properties of the dynamic stabilization device.
  • SUMMARY
  • [0006]
    The provision of a modular double-rod, i.e. two rods, allows to design the bone anchoring device more compact in terms of the height of the bone anchoring device, since each rod can be designed smaller than a single rod. The low profile cross-section of two rods compared to one single rod has also the advantage that the stiffness of the rods is enhanced. The stability in view of bending or torsional loads of the double-rod system is also enhanced.
  • [0007]
    The dynamic properties of the stabilization device can be adjusted by selecting appropriate rods and/or adjusting the sliding motion of the rods by stops and/or dampening elements. The dynamic properties of the rods can vary. For example the rods can have the same or different elastic properties. They can be made of the same or different material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0008]
    FIG. 1 shows a perspective side view of the stabilization device.
  • [0009]
    FIG. 2 shows a perspective exploded view of the stabilization device.
  • [0010]
    FIG. 3 shows an exploded view of the bone anchoring device according to a first embodiment.
  • [0011]
    FIG. 4 shows a perspective view of the bone anchoring device of FIG. 3 in an assembled state.
  • [0012]
    FIG. 5 shows a perspective view from the side of the first pressure element in a first embodiment.
  • [0013]
    FIG. 6 shows a perspective view of the second pressure element in a first embodiment.
  • [0014]
    FIG. 7 shows a partially sectional view of the bone anchoring device with the first and second pressure element according to the first embodiment.
  • [0015]
    FIG. 8 shows a partially sectional view of the bone anchoring device with the first and second pressure element according to a second embodiment.
  • [0016]
    FIG. 9 shows an exploded perspective view of the bone anchoring device with a first and second pressure element according to a third embodiment.
  • [0017]
    FIG. 10 shows a perspective view of the bone anchoring device of FIG. 9 in an assembled state.
  • [0018]
    FIG. 11 shows a perspective view of a rod according to another embodiment.
  • DETAILED DESCRIPTION
  • [0019]
    The invention is now described in detail with reference to the embodiment of the stabilization device shown in FIGS. 1 to 8. The stabilization device includes a first polyaxial pedicle screw 1, a second pedicle screw 2 and two rods 3 a, 3 b connecting them for stabilizing two adjacent vertebrae. The two rods 3 a, 3 b may be separate rods as shown in FIG. 2. Alternatively, as shown in FIG. 11, the rods 3 a, 3 b may be connected or formed in one-piece to define a single rod 3.
  • [0020]
    On each rod a spring element 4 a, 4 b is provided and the rods 3 a, 3 b are connected by rod connectors 5, 6. The rods 3 a, 3 b are fixedly clamped in the second pedicle screw 2 and can slide through the first pedicle screw 1 as shown by the arrows. The sliding motion is limited by means of the rod connector 6 which connects the free ends of the rods 3 a, 3 b and acts as a stop. The springs 4 a, 4 b and the rod connector 5 limit the sliding motion of the rods 3 a, 3 b relative to the first pedicle screw 1 in the direction of the second pedicle screw 2. The springs provide elastic dampening. The rod connectors 5, 6 are sleeve shaped with two channels 5 a, 5 b, 6 a, 6 b, respectively, for guiding through the rods 3 a, 3 b. The distance of the channels corresponds to the distance of the rods in which they are guided through the pedicle screws. The rod connectors 5, 6 connect the rod 3 a, 3 b by means of a press-fit connection i.e the diameter of the channels is selected such that the rods are firmly connected. The rod connectors 5, 6 can be made of an elastomer material or any other body compatible material.
  • [0021]
    The springs 4 a, 4 b in this embodiment are shown as helical springs encompassing the rods 3 a, 3 b like sleeves. They can be made of any body compatible material, in particular of titanium, nickel titanium alloys, for example nitinol, or other materials.
  • [0022]
    The rods 3 a, 3 b exhibit a flexibility under forces having a component perpendicular to the rod axis, such as bending forces. For this purpose the rods are made of non-compressible materials, such as stainless steel, titanium, nickel titanium alloys, such as nitinol, PEEK or carbon reinforced PEEK or other body compatible materials.
  • [0023]
    It should be noted that the rod connectors and the springs are only examples for the function of connecting the two rods, providing a stop and providing a dampening to the sliding motion.
  • [0024]
    Next, the first pedicle screw 1 will be described in detail with reference to FIGS. 3 to 7. The pedicle screw 1 comprises a screw element 10 with a threaded shank 11 and a spherically segment-shaped head 12. At the free end of the head 12 a recess 13 is provided for engagement with a tool. The pedicle screw 1 further comprises a receiving part 20 with a first end 21 and a second 22 and a coaxial bore 23 extending from the first end in the direction of the second end. At the second end 22 the bore 23 tapers to provide an opening and a seat 24 for the screw head 12 as shown in particular in FIG. 7.
  • [0025]
    The receiving part 20 further comprises a recess 25 extending from the first end 21 in the direction of the second end 22 which provides a channel through the receiving part in a direction perpendicular to the bore axis of bore 23 for guiding through the rods 3 a, 3 b. The recess provides two free legs 26 a, 26 b. Near the first end 21 the free legs 26 a, 26 b have an internal thread 27 for cooperation with a fixation screw 30. The screw element 10 and the receiving part 20 as well as the fixation screw 30 are made of a rigid body compatible material, such as a body compatible metal like stainless steel or titanium or a titanium alloy, such as nitinol.
  • [0026]
    For locking the head 12 and in consequence the angular position of the screw element 10 within the seat 24 of the receiving 20 a first pressure element 40 and a second pressure element 50 are provided. The first pressure element 40 and the second pressure element 50 also form guiding elements for guiding the rods 3 a, 3 b through the receiving part 20. The first pressure element 40 has a substantially cylindrical body part 41 which is sized such that the first pressure element 40 can be inserted in the receiving part and moved in an axial direction within the bore 23. At its side facing the head 12 of the screw element the first pressure element 40 comprises a cylindrical recess 42 shown in FIG. 7 in which a cylindrical insert 43 is provided. The insert 43 has on its side facing the head 12 of the screw element a spherical recess 44 the radius of which fits to the radius of spherical head 12 of the screw element.
  • [0027]
    The first pressure element 40 further comprises a cuboid body part 45 which is shaped so as to fit in the recess 25 of the receiving part 20 as shown in particular in FIGS. 3 and 4. The width of the body part 45 corresponds to the width of the recess 25 and the length is selected such that the first pressure element is flush with the outer surface 28 of the receiving part 20 as shown in FIG. 4. On its side opposite to the recess 42 the cuboid body part includes two cylinder segment-shaped recesses 46 a, 46 b the cylinder radius of which is slightly larger than the radius of the rods 3 a, 3 b. The recesses 46 a, 46 b extend perpendicular to the axis of the coaxial bore 23 of the receiving part 20. The recesses 46 a,46 b form channels for receiving the rods 3 a, 3 b. Since the recesses 46 a, 46 b are spaced apart from each other a rib 47 is formed between them. The depth of the recesses 46 a, 46 b is preferably slightly larger than the radius of the rods 3 a, 3 b. The first pressure element 40 also has a coaxial bore 48 for providing access to the head 12 of the screw element with a tool. Similarly, the cylindrical insert 43 has a coaxial bore 49. The cylindrical body part 41 and the cuboid body part 25 are shown to be made in one piece so that cylindrical segment-shaped flanges 41 a, 41 b are provided on each side of the channel 46 a, 46 b. The flanges facilitate the guidance of the first pressure element 40 within the receiving part 20. The cuboid body part 45 prevents rotation of the first pressure element within the receiving part once the first pressure element is inserted into the recess 25.
  • [0028]
    The second pressure element 50 is substantially cuboid shaped with a width and length corresponding to that of the cuboid body part 45 of the first pressure element 40. Therefore, it also fits into the recess 25 of the receiving part. On its long sides it comprises two cylindrical segment-shaped flanges 51 a, 51 b corresponding to the flanges 41 a, 41 b of the first pressure element. On its side opposite to the first pressure element 40, the second pressure element 50 comprises a cylindrical recess 52 and a coaxial cylindrical projection 53 in which a corresponding ring-shaped projection 31 and a cylindrical recess 32 of the fixation screw 30 engage, as shown in FIG. 7. Thereby, the fixation screw 30 can be rotatably connected to the pressure element 50.
  • [0029]
    On its side facing the first pressure element, the second pressure element 50 comprises two longitudinal cylinder segment-shaped recesses 56 a, 56 b which are complementary in their size and distance to the channels 46 a, 46 b of the first pressure element. The channels 56 a, 56 b are spaced apart by a rib 57.
  • [0030]
    In the assembled state shown in FIG. 7 the first pressure element presses via the insert 43 onto the head 12. The second pressure element 50 presses onto the first pressure element 40 thereby providing closed channels for the rods 3 a, 3 b which are accommodated therein with a gap 60 to the wall of the channel. Since the fixation screw 30 is rotatably connected to the second pressure element, the fixation screw 30 can be tightened when the second pressure element 50 is inserted.
  • [0031]
    The first pressure element and the second pressure element can be made of a material which facilitates sliding of the rods 3 a, 3 b. For example, the pressure elements can be made of titanium or a nickel titanium alloy which is coated or of PEEK or carbon reinforced PEEK. The insert 43 is preferably made of the same material as the head 12 of the screw, for example of a body compatible metal. Instead of providing the insert 43 the first pressure element itself can have a spherical recess to press onto the head. Instead of providing the first and second pressure element of a material which facilitates sliding or which is coated or treated to facilitate sliding, the rods 3 a, 3 b themselves can have a surface which facilitates sliding, for example a coated or otherwise treated surface.
  • [0032]
    The second pedicle screw 2 shown in FIGS. 1, 2 and 8 differs from the first pedicle screw 1 in the design of the first and second pressure elements. All other parts are identical and have the same reference numerals. Therefore, the description thereof is not repeated. The shape of the first pressure element 40′ and of the second pressure element 50′ of the second pedicle screw 2 is the same as that of the first pressure element 40 and the second pressure element 50 of the first pedicle screw 1. However, the size of the channels 46 a′, 46 b′, 56 a′, 56 b′ is smaller than that of the channels of the first and second pressure element of the first pedicle screw. The radius of the channels is adapted to the radius of the rods 3 a, 3 b and depth of the channels is smaller than the radius of the rods 3 a, 3 b such that, as shown in FIG. 8, in the assembled state the rods 3 a, 3 b are clamped between the first pressure element 40′ and the second pressure element 50′.
  • [0033]
    A second embodiment of the stabilization device is shown in FIGS. 9 and 10 without the rods. The second embodiment differs from the first embodiment described with reference to FIGS. 1 to 8 only in the shape of the first and second pressure elements 400, 500. The length of the channels 460 a, 460 b is smaller than the diameter of the cylindrical body part 410. Therefore, the first pressure element 400 and the second pressure element 500 are arranged completely within the cylindrical bore 23 of the receiving part.
  • [0034]
    Modifications of the above described embodiments are conceivable. For example, the pedicle screws and the design of the pressure elements can be such that more than two rods can be accommodated. It is possible to use rods with different elastic properties. It is sufficient, if one of the pressure elements has the channels for guiding the rods, however, it is advantageous if the rods are guided from below and from the top by the channels. The shape of the lower part of the first pressure element can be flat, however, a shape adapted to the shape of the head of the screw 12 is advantageous for distributing the pressure onto the head.
  • [0035]
    The fixation element can be a two-part fixation screw wherein the first screw element of a bushing type presses onto the first pressure element for locking of the head 12 and a second screw element of a set screw type arranged within the first screw element presses onto the second pressure element for fixation of the rods in the embodiment shown in FIG. 8.
  • [0036]
    The receiving part can be shaped as a top loader as shown in the figures or a bottom loader in which the screw element 10 is introduced from the bottom, i.e. the second end of the receiving part.
  • [0037]
    The shank of the screw element does not have to have a thread. It can be in the form of a hook, a nail or can have barb elements for anchoring in the bone.
  • [0038]
    The springs can be also provided adjacent the outer stop 6. It is also conceivable that the rods themselves have an axial elastic spring portion.
  • [0039]
    In use, first the screw elements of the pedicle screws 1, 2 which have been inserted into the receiving parts 20 are screwed into adjacent vertebrae. The first pressure elements can be preassembled so that after alignment of the receiving parts the rods 3 a, 3 b can be inserted into the receiving parts and the channels of the first pressure element, respectively. The rods 3 a, 3 b with the stops and the springs can be preassembled as well and can be inserted as a double-rod system. For specific clinical applications the first pedicle screw and the stop 6 points in the direction the patient's head. However, the arrangement of the pedicle screws depends on the specific clinical situation.
  • [0040]
    Next, after the receiving parts and the rods are aligned the angular position of the screw elements relative to the receiving parts is fixed by inserting the fixation screw together with the second pressure element and tightening the fixation screw. In the case of the second pedicle screw 2 as shown in FIGS. 1, 2 and 8 the rods 3 a, 3 b are fixed simultaneously with the screw head 12. In the case of the first pedicle screw only the head 12 of the screw element is fixed while the rods can still slide within the channels.
  • [0041]
    As shown in FIG. 1 the rods can slide through the receiving part of the first pedicle screw during flexion or extension of the spinal motion segment, whereby the sliding movement is limited by the rod connectors 6 and 5 acting as stops and dampened by the springs 4 a, 4 b. Simultaneously, the rods may experience bending forces and can bend to some extend provided by the flexibility of the material of the rods.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US5630817 *17 Nov 199320 May 1997EurosurgicalRod attachment device for rachidian orthopaedy
US6302888 *19 Mar 199916 Oct 2001Interpore Cross InternationalLocking dovetail and self-limiting set screw assembly for a spinal stabilization member
US6793657 *10 Sep 200121 Sep 2004Solco Biomedical Co., Ltd.Spine fixing apparatus
US7776067 *27 May 200517 Ago 2010Jackson Roger PPolyaxial bone screw with shank articulation pressure insert and method
US8066744 *10 Nov 200629 Nov 2011Warsaw Orthopedic, Inc.Keyed crown orientation for multi-axial screws
US8366746 *18 Abr 20085 Feb 2013Kiester P DouglasSpine reconstruction rod extender
US8419773 *21 Feb 200816 Abr 2013Bierdermann Technologies GmbH & Co. KGStabilization device for stabilizing bones of a vertebra and rod connector used therefor
US8425564 *3 Ene 200823 Abr 2013P. Douglas KiesterSpine reconstruction rod extender
US8852239 *17 Feb 20147 Oct 2014Roger P JacksonSagittal angle screw with integral shank and receiver
US8979904 *7 Sep 201217 Mar 2015Roger P JacksonConnecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control
US20020035366 *18 Sep 200121 Mar 2002Reto WalderPedicle screw for intervertebral support elements
US20020143332 *31 May 20023 Oct 2002Chih-I LinClamping connector for spinal fixation systems
US20030187433 *28 Mar 20022 Oct 2003A-Spine Inc.Rotary device for fixing vertebrae under treatment
US20040122425 *11 Sep 200324 Jun 2004Showa Ika Kohgyo Co., Ltd.Rod fixing apparatus for vertebra connecting member
US20040172025 *4 Mar 20042 Sep 2004Drewry Troy D.Flexible spinal stabilization system and method
US20050038432 *15 Ago 200317 Feb 2005Shaolian Samuel M.Articulating spinal fixation rod and system
US20050240180 *3 Sep 200227 Oct 2005Cecile VienneySpinal osteosynthesis system comprising a support pad
US20050273099 *2 Oct 20038 Dic 2005Christian BaccelliPlate fixing system
US20060036242 *10 Ago 200416 Feb 2006Nilsson C MScrew and rod fixation system
US20060084989 *29 Abr 200520 Abr 2006Sdgi Holdings, Inc.Multi-axial anchor assemblies for spinal implants and methods
US20060149233 *16 Dic 20046 Jul 2006Richelsoph Marc ELocking mechanism
US20060217716 *22 Mar 200528 Sep 2006Baker Daniel RSpinal fixation locking mechanism
US20060229615 *21 Feb 200612 Oct 2006Abdou M SDevices and methods for dynamic fixation of skeletal structure
US20070191842 *30 Ene 200616 Ago 2007Sdgi Holdings, Inc.Spinal fixation devices and methods of use
US20070213720 *8 Mar 200613 Sep 2007Southwest Research InstituteDynamic interbody device
US20080086131 *5 Oct 200710 Abr 2008Depuy Spine, Inc.Bone screw fixation
US20080221621 *28 Feb 200811 Sep 2008Snyder Brian DTension fixation system
US20080234737 *16 Mar 200725 Sep 2008Zimmer Spine, Inc.Dynamic spinal stabilization system and method of using the same
US20080287998 *16 May 200720 Nov 2008Doubler Robert LPolyaxial bone screw
US20080312701 *12 Jun 200818 Dic 2008Robert Reid, Inc.System and Method for Polyaxially Adjustable Bone Anchorage
US20090062866 *29 Oct 20085 Mar 2009Jackson Roger PPolyaxial bone anchor with helical capture connection, insert and dual locking assembly
US20090088799 *1 Oct 20072 Abr 2009Chung-Chun YehSpinal fixation device having a flexible cable and jointed components received thereon
US20090177231 *18 Abr 20089 Jul 2009Kiester P DouglasSpine reconstruction rod extender
US20090177232 *3 Ene 20089 Jul 2009Kiester P DouglasSpine reconstruction rod extender
US20090198280 *24 Oct 20086 Ago 2009Frank SprattAssembly for Orthopaedic Surgery
US20090275985 *1 Jul 20095 Nov 2009Jackson Roger PDynamic stabilization assembly having pre-compressed spacers with differential displacements
US20090312804 *17 Jun 200817 Dic 2009Thomas GamacheAdjustable implant assembly
US20100042155 *12 Ago 200918 Feb 2010Lutz BiedermannModular system for the stabilization of the spinal column
US20100106189 *29 Oct 200829 Abr 2010Warsaw Orthopedic, Inc.Anchor with two member securing mechanism for attaching an elongated member to a bone
US20100331887 *15 Jun 201030 Dic 2010Jackson Roger PLongitudinal connecting member with sleeved tensioned cords
US20110093015 *20 Oct 200921 Abr 2011Ramsay Christopher LSpinal implant with a flexible extension element
US20110196430 *10 Feb 201011 Ago 2011Walsh David ASpinal fixation assembly with intermediate element
US20110251644 *7 Abr 201013 Oct 2011Zimmer Spine, Inc.Dynamic stabilization system using polyaxial screws
US20120029568 *28 Jul 20112 Feb 2012Jackson Roger PSpinal connecting members with radiused rigid sleeves and tensioned cords
US20130184770 *9 Jun 201118 Jul 2013Glenn R. ButtermannLow-profile, uniplanar bone screw
US20150025579 *18 Jul 201422 Ene 2015Lutz BiedermannPolyaxial bone anchoring device
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US20150025579 *18 Jul 201422 Ene 2015Lutz BiedermannPolyaxial bone anchoring device
Clasificaciones
Clasificación de EE.UU.606/266
Clasificación internacionalA61B17/70
Clasificación cooperativaA61B17/7035, A61B2017/00845, A61B17/7032, A61B17/7037, A61B17/702, A61B17/7046, A61B17/7049
Eventos legales
FechaCódigoEventoDescripción
22 Jun 2016ASAssignment
Owner name: BIEDERMANN TECHNOLOGIES GMBH & CO. KG, GERMANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIEDERMANN MOTECH GMBH & CO. KG;REEL/FRAME:038989/0337
Effective date: 20120308
Owner name: BIEDERMANN MOTECH GMBH & CO. KG, GERMANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BIEDERMANN, LUTZ;HARMS, JURGEN;MATTHIS, WILFRIED;SIGNINGDATES FROM 20091130 TO 20091201;REEL/FRAME:038989/0288