US20150005751A1 - Cosmetic Laser Treatment Device and Method for Loacalized Lipodystrophies and Flaccidity - Google Patents

Cosmetic Laser Treatment Device and Method for Loacalized Lipodystrophies and Flaccidity Download PDF

Info

Publication number
US20150005751A1
US20150005751A1 US14/282,117 US201414282117A US2015005751A1 US 20150005751 A1 US20150005751 A1 US 20150005751A1 US 201414282117 A US201414282117 A US 201414282117A US 2015005751 A1 US2015005751 A1 US 2015005751A1
Authority
US
United States
Prior art keywords
flaccidity
treatment
area
laser
reducing localized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/282,117
Inventor
Wolfgang Neuberger
Danilo Castro Saurez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biolitec AG
Original Assignee
Biolitec Pharma Marketing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biolitec Pharma Marketing Ltd filed Critical Biolitec Pharma Marketing Ltd
Priority to US14/282,117 priority Critical patent/US20150005751A1/en
Publication of US20150005751A1 publication Critical patent/US20150005751A1/en
Assigned to BIOLITEC UNTERNEHMENSBETEILIGUNGS II AG reassignment BIOLITEC UNTERNEHMENSBETEILIGUNGS II AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIOLITEC PHARMA MARKETING LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00792Plastic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00458Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
    • A61B2018/00464Subcutaneous fat, e.g. liposuction, lipolysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/0047Upper parts of the skin, e.g. skin peeling or treatment of wrinkles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2272Optical elements at the distal end of probe tips with reflective or refractive surfaces for deflecting the beam

Definitions

  • Lipodystrophies are produced because the adiposities have a hereditary genetic code which makes them evolve in a specific way.
  • Each adipocite cell has Beta 1 (lipogenetic) and Alfa 2 (lipolitic) receptors in its membrane. When there are more Beta 1 receptors on a particular area, then a localized obesity or lipodystrophy is produced. Because of the excessive Beta receptors in certain families, these families have a tendency for enlarged legs, breasts, waists, etc. On these patients treatment with low caloric diets exclusively is normally not successful which leads to abandonment of the treatment and recovering whatever localized fat was removed and returning to the same unhealthful practices.
  • U.S. Pat. No. 5,807,385 by Keller, titled Method of Laser Cosmetic Surgery discloses cosmetic laser surgery for eliminating wrinkles, frowns, and folds, for example.
  • a quartz fiber is inserted into the skin and laser radiation in the range from 532 to 1060 nm is noted with a preferred wavelength of 532 nm.
  • the use of various medical devices for removing wrinkles and other unwanted features such as hooks, retractors, bivalve speculum, etc., is noted.
  • U.S. Pat. No. 6,106,516 by Massengill, titled, “Laser-Assisted Liposuction Method and Apparatus,” discloses a liposuction cannula having a lumen from a source of water, a means for suction for removing the water, and a laser source within the cannula for heating the water in an active area of the tip of the cannula.
  • the heated water leaves the tip and heats the surrounding fatty tissue to a point of liquefaction.
  • the laser radiation does not directly affect any tissue.
  • U.S. Pat. No. 6,206,873 by Paolini, et al., titled, “Device and Method for Eliminating Adipose Layers by Means of Laser Energy,” discloses a hollow needle with an optical fiber in the center.
  • the fat tissues, adipose cells are liquidized when the cell walls are broken. The fluid is removed by suction through the needle.
  • Laser wavelength range is noted as from 0.75 to 2.5 microns but a preferred wavelength of 1.06 is called out.
  • a rounded optical fiber end is shown in FIG. 3 beyond the needle end.
  • Paolini et al. use a Nd:YAG type of laser and note a wavelength range above.
  • the liquid produced may be removed from the body by normal absorption, etc. Col. 4, lines 32 to 39.
  • the laser light is applied externally and suction by cannula or hypodermic needle may be used to remove the lipid tissue that has been destroyed and formed into liquid.
  • Col. 12 lines 30 to 55.
  • cooling to the skin tissue is noted .
  • the danger of using internal laser energy to remove fat tissue is noted on Col. 6, lines 50 to 64, because of the high power required.
  • It is at least one aim of the present invention is to provide a method of cosmetic surgery using laser radiation from a high power source to quickly heat targeted tissue for destruction.
  • the present invention provides a method and device for cosmetic surgery, especially fat reduction and collagen reformation, by means of a high power laser operating at about 980 nm.
  • the cosmetic surgery method substantially reduces or removes localized lipodystrophies, and essentially reduces flaccidity by localized laser heating of adipose tissue using an optical fiber inserted into a treatment area.
  • the method and device are particularly well suited for treating Lipodystrophies with flaccidity
  • High power laser energy is applied to “fat” cells to breakdown the cell walls releasing the cell fluid.
  • the laser radiation is applied through an optical fiber which is held within a catheter-like device having a single lumen. Traditionally difficult fat cells are treated well. Delicate areas are treated safely.
  • the optical fiber may have a diffuser mounted on the tip to further treat tissues surrounding the whole tip.
  • a saline solution may also be inserted into the treatment site to aid in the heating of the fat cells and their eventual destruction as well as their removal.
  • the pool of cell fluid in the area of treatment is removed by a combination of techniques including allowing the body to remove it by absorption and drainage from the entry sites thus minimizing trauma to the area of treatment and hastening recovery. Additional techniques to remove the cell fluid include direct force application by means of elastic bandages and external suction applied to the entry sites. Quick and lasting cosmetic changes, even in areas having prior untreatable fat tissues, are achieved while minimizing trauma to the treatment areas.
  • FIGS. 1A and 1B illustrate by photographs the before and after appearance of lower eyelids treated by the method and device of the present invention as an example of the effective treatment provided by the present invention.
  • FIG. 2 illustrates by schematic, devices of the present invention.
  • FIGS. 3A and 3B illustrate by a cross sectional elevational view, two different embodiments of the needle like device of the present invention.
  • FIG. 4 illustrates by a cross sectional elevational view, an optical fiber in a cannula for the present invention.
  • FIGS. 5A and 5B illustrate by photographs the before and after appearance of the dorsal area treated by the method and device of the present invention as an example of the effective treatment provided by the present invention.
  • FIGS. 6A and 6B illustrate by photographs the before and after appearance of the external side of the thigh treated by the method and device of the present invention as an example of the effective treatment provided by the present invention.
  • FIGS. 7A to 7F illustrate different devices for the application of laser radiation and the removal of liquid from the area of treatment.
  • the present invention describes a method and device for cosmetic surgery by means of a high power laser operating at about 980 nm.
  • the cosmetic surgery method substantially reduces or removes localized lipodystrophies and/or flaccidity by localized heating of adipose tissue by means of an optical fiber inserted into an area of treatment.
  • the high power laser energy is applied to heat the “fat” cells to a temperature wherein the cell walls break releasing the cell fluid.
  • the laser radiation is applied by an optical fiber and the optical fiber may be held within a catheter-like device having a single lumen therein.
  • the optical fiber may have a diffuser mounted on the tip to facilitate heating tissues surrounding the whole tip.
  • a saline solution is infused into the treatment site.
  • the pool of cell fluid in the area of treatment may be removed by a combination of techniques including allowing the body to eliminate it by absorption and/or removal, drainage from the entry sites thus minimizing trauma to the area of treatment, direct force application by means of elastic bandages and external suction applied to the entry sites.
  • the method and devices of the present invention provide for quick and lasting cosmetic changes in areas having prior untreatable fat tissues while at the same time minimizing trauma to the areas of treatment.
  • the technique uses a 15 w-980 nm diode laser to rid the patient of aesthetically unpleasing fat and reduce flaccidity on different parts of the body, especially in areas that are resistant to change by dieting and exercising.
  • Each adiposite has a fat content which is emulsified by the laser action and then absorbed and eliminated via lymphatic system.
  • Lipids are formed by a Glycerol chain and 3 units of 3-fatty acids. Heat dissociates the lipids and glycerol is expelled by urine. 3-fatty acids as energy units are easily used by the body and as other poly-unsaturated oils are eliminated via lymphatic (which can take a few weeks) and hepatic systems. In contrast with liposuction and its modifications, this method preserves the structural tissues, acting only on the fat cells.
  • the procedures followed in the present invention are as follows: The area of treatment is marked to differentiate by depth and approximate volume (cm 3 ) of excess adipose tissues.
  • the area of treatment is (sterilized) disinfected.
  • the insertion sites are marked.
  • the patient is placed on sterile surrounding and local anesthesia is applied to the skin where there are going to be insertion sites.
  • a small entry is made and the site is widened and pre-tunneled into the subcutaneous tissue by using a small, curved hemostat.
  • a blunt infusion catheter is then inserted via this tunnel into the site, and tumescent anesthetic is delivered first to the deepest layer in a radial fashion and then successively more superficially. Infiltration of the anesthetic is then achieved by pump.
  • a needle is selected according to the fiber diameter and inserted (e.g., 18 G French for 600 um fibers on large areas and 25 G French with a 220 um fiber for face treatments) and a sterile optical fiber is then inserted.
  • the appropriate treatment mode and the parameters of the laser are selected, e.g., as in Table 1.
  • the position of the fiber tip is controlled by the laser aiming beam.
  • the pre-selected energy is applied and the fiber is moved to treat the desired area.
  • Ultrasound guidance can be used to position the tip of the fiber. After all of the entry sites are treated, ultrasound and lymphatic drainage post-procedures are followed. Elastic bandage is placed on the treated area for 3 to 5 days.
  • This treatment preserves the structural tissues and elasticity of the skin with the addition of localized retraction and firming of the area. This reduces flaccidity by up to 50%
  • Low power 980 nm laser is used to treat areas with cellulites. Results are permanent because the adiposite cells are destroyed. Only in very rare exceptions, these cells are reproduced as a side effect: after the laser application, a softening of the treated area appeared to the tact and harder limiting section on the limits of the treated area. This generates a lymphatic edema produced by the body to eliminate the emulsified fat after the procedure.
  • FIGS. 1A to 1B disclose pictures before and after of the interior eyelids;
  • FIGS. 5A and 5B disclose pictures before and after of a thorax area; and
  • FIGS. 6A and 6B disclose before and after pictures of the thigh and buttock area.
  • FIG. 2 shows laser radiation device 100 having optical fiber cable 102 connected into needle-like device 104 that is for insertion into treatment area 106 .
  • Fluid pump 108 is used for inputting any fluids including the tumescent anesthetic fluid and the saline solution through line 114 into and through the needle like device 104 .
  • a fluid suction pump 116 having one or more hoses 110 with one or more suction heads 112 is placed on the entry sites to assist in the removal of liquid from the area of treatment.
  • needle like device 104 As to needle like device 104 , several embodiments are shown in FIGS. 3A and 3B as needles 300 and 302 .
  • the entry ends are appropriately finished.
  • needle 300 being in cross section has a plurality of optical fibers 304 circumferentially located about central lumen 306 which may be used for inputting fluids and for suction removal of fluids.
  • Wall 308 surrounding fibers 304 may act as a cladding and whole needle 300 may be manufactured from a single preform of material appropriately formed.
  • FIG. 3B illustrates by cross section another needle like device 302 wherein a lumen 310 is centrally located in optical fiber 312 being a core fiber without any cladding shown.
  • Appropriate cladding layer(s), buffer layer(s), and protective layer(s), although not shown, are understood to be present as needed.
  • FIG. 4 further illustrates another embodiment of a needle like device 400 wherein cannula wall 402 has central lumen 404 therein.
  • Tip area 406 is appropriately formed as a slanted wedge. Inside of lumen 404 is attached either separately or integrally formed optical fiber 408 .
  • Tip area 410 of optical fiber 406 is formed to have slanted output end 420 with mirror 412 formed thereon to cause optical radiation 414 to be output in a sidewise manner as shown between rays 416 and 418 .
  • Mirror 412 formed on tip 420 need not have a surface congruent with the surface of tip 406 of cannula wall 402 .
  • end is angled at the critical angle for reflection and the light exits fiber 406 perpendicularly to the fiber axis. Due to the closeness of the adipose tissue to the skin surface, a catheter or similar device may not be needed to guide the needle to area of treatment 106 , shown in FIG. 2 . That is only the entering needle is needed to introduce the optical fiber to the fatty area to be treated.
  • FIGS. 7A to 7F illustrate various devices for applying radiation, inputting fluids and removing fluids from an area of treatment within the body.
  • the device 700 A comprises a cannula 702 with an end 704 fitted with an applicator tip 706 A.
  • Cannula 700 has one or more lumens for holding one or more laser optical fibers 708 with a side-fire tip 710 .
  • An elongated aperture 712 is located along the traverse axis of application tip 706 A.
  • Side-fire tip 710 is positioned within lumen 714 so as to allow the radiation output from side-fire tip 710 to exist through aperture 712 .
  • the length of aperture 712 is several times the width of aperture 712 so as to allow a sufficient space for outputting and inputting fluid therethrough.
  • applicator tip 706 has a first aperture 716 for radiation output from side-fire tip 710 and a second aperture 718 for inputting and removing fluids. Further, there may be multiple apertures 718 on applicator tip 706 B and further there may be separate apertures for inputting fluid and removing fluid appropriately located about tip 706 .
  • applicator tip 706 C has one aperture 720 for the control of fluids. Located about aperture 702 are a plurality of optical fiber outputs 722 .
  • applicator tip 706 D is attached to cannula end 704 .
  • An optical fiber 724 is placed within one lumen of cannula 702 and has an output tip 726 that directly communicates with applicator tip 706 D.
  • Applicator tip 706 D is made from high quality optical silica, for example, and has a reflective coating 728 positioned on a portion of the front end 730 so as to intercept output radiation from optical fiber 724 and reflect such in a radial direction as shown.
  • Further application tip 706 D may include at least one lumen 732 therein that communicates with one lumen 734 in cannula 702 .
  • FIG. 7E discloses another embodiment where applicator tip 700 E has two laser output apertures 738 and 740 and two fluid control apertures 742 and 744 . Although this shows these located on the same side of the tip 700 E, other locations are equally feasible, for example, having the output apertures located on the opposite of the tip 700 E. Further, additional apertures may be included about the tip so as to reduce or eliminate the need for rotating the cannula 702 when outputting radiation and/or controlling fluid.
  • FIG. 7F discloses another embodiment of applicator tip 700 F where optical fiber 724 has a wedge shaped termination 746 to spread the radiation from a front end 748 .
  • One or more fluid control apertures 750 are included in applicator tip 700 E.
  • Table 1 illustrates the various parameters used in operating the diode laser of the present invention to remove excess adipose tissues in the areas noted:
  • this treatment is an out-patient alternative, minimally invasive, more elegant and with less risks and complications than current treatments. Although there is no need for hospitalization, it must be followed by a diet and physical ultrasound and lymphatic drainage. Results can be appreciated from about week 3 and final results achieved between weeks 6 and 10.
  • FIGS. 1A and 1B illustrate by photographs the before and after appearance of lower eyelids treated by the method and device of the present invention as example of effective treatment of the present invention.
  • the laser energy is delivered through a disposable fiber optic directly into the sub-dermal tissue.
  • This tissue is composed of adiposities and structural tissues irrigated by small arteries, veins and lymphatic.
  • the laser is pulsed 20 to 30 times at a power of 4 W delivering 8 Joules at 2 seconds per pulse.
  • the radiation of the Biolitec 980 nm laser is selectively absorbed by the sub-dermal tissue which is surrounded by saline solution.
  • thermal effect (980 nm radiation is highly absorbed by water) the adipose membranes are destroyed.
  • the temperature reached on the tip of the fiber is around 100° C. which is transmitted by the tumescent anesthesia diffusing and reducing the temperature to 70° C. ⁇ 10° C. It is thus considered that a minimum temperature of 50° C. must be present to denature the cells' proteins and preferably the temperature of the cells being treated is in the range of 70° C. ⁇ 10° C. Moving the laser fiber back and forth, a 2 cm penetration with fat tissues dissociation is achieved.
  • FIGS. 5A and 5B illustrate by photographs the before and after appearance of the dorsal area treated by the method and device of the present invention as an example of effective treatment of the present invention.
  • the laser energy is delivered through a disposable fiber optic directly into the sub-dermal tissue.
  • This tissue is composed by adiposities and structural tissues irrigated by small arteries, veins and lymphatic.
  • the laser is pulsed more than 70 times at a power of 12 watts, 36 Joules at 3 seconds per pulse.
  • the radiation of the Biolitec 980 nm laser is selectively absorbed by the sub-dermal tissue which is surrounded by saline solution.
  • thermal effect (980 nm radiation is highly absorbed by water) the adiposities membranes are destroyed.
  • the temperature reached on the tip of the fiber is around 100° C. which is transmitted by the tumescent anesthesia diffusing and reducing to 70° C. ⁇ 10° C. the temperature. It is thus considered that a minimum temperature of 50° C. should be present to denature the cells' proteins and preferably the temperature of the cells being treated is in the range of 70° C. ⁇ 10° C. Moving the laser fiber back and forth, a 2 cm penetration with fat tissues dissociation is achieved.

Abstract

A method and device for cosmetic surgery, especially fat reduction and collagen reformation, by means of a high power laser operating at about 980 nm is presented. The cosmetic surgery method substantially reduces or removes localized lipodystrophies, and essentially reduces flaccidity by localized laser heating of adipose tissue using an optical fiber inserted into a treatment area. The method and device are particularly well suited for treating Lipodystrophies with flaccidity High power laser energy is applied to “fat” cells to breakdown the cell walls releasing the cell fluid. The laser radiation is applied through an optical fiber which is held within a catheter-like device having a single lumen. Traditionally difficult fat cells are treated well. Delicate areas are treated safely. A saline solution may also be inserted into the treatment site to aid in the heating of the fat cells and their eventual destruction as well as their removal. The pool of cell fluid in the area of treatment is removed by a combination of techniques including allowing the body to remove it by absorption and drainage from the entry sites thus minimizing trauma to the area of treatment and hastening recovery. Additional techniques to remove the cell fluid include direct force application by means of elastic bandages and external suction applied to the entry sites. Quick and lasting cosmetic changes, even in areas having prior untreatable fat tissues, are achieved while minimizing trauma to the treatment areas.

Description

    DOMESTIC PRIORITY UNDER 35 USC 119(e)
  • This application is a divisional and a continuation of U.S. Ser. No. 11/415,782 filed May 2, 2006 by D. C. Suarez and W. Neuberger, which in turn claimed benefit of U.S. Provisional Application Ser. No. 60/678,096, filed May 5, 2005 by D. C. Suarez and W. Neuberger, each of which is incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to the field of cosmetic surgery and, in particular, relates to laser surgery to remove excess adipose cells in areas of the body prone to buildup of such tissues and further these areas are not amenable to long term removal of these tissues by exercise and/or diets.
  • 2. Invention Disclosure Statement
  • It is a well known fact that modern society has created an abundance of readily available foods, i.e., “fast food,” and also created an environment where entertainment has fostered a sedentary life style of, for example, watching television, playing video games and talking on the phone while eating high caloric snack foods. This has allowed people to gain excessive weight by an increase in adipose tissue, fat cells. Certain heredity conditions further have also created areas of excessive fat cells that are difficult to remove in that they are in areas that are not affected or minimally affected by diet and exercise.
  • Excessive fat depositions or “lipodystrophies” are produced by a disproportionate increase in the deeper section of the subcutaneous cellular tissues.
  • Lipodystrophies are produced because the adiposities have a hereditary genetic code which makes them evolve in a specific way. Each adipocite cell has Beta 1 (lipogenetic) and Alfa 2 (lipolitic) receptors in its membrane. When there are more Beta 1 receptors on a particular area, then a localized obesity or lipodystrophy is produced. Because of the excessive Beta receptors in certain families, these families have a tendency for enlarged legs, breasts, waists, etc. On these patients treatment with low caloric diets exclusively is normally not successful which leads to abandonment of the treatment and recovering whatever localized fat was removed and returning to the same unhealthful practices.
  • The only effective way to treat lipodystrophies is to directly act on the genetically altered fat tissues and similar tissues in the area of treatment.
  • Historically, different methods have been developed to treat this problem and billions of dollars are being spent annually by people to remove or reduce fat tissue. By the late 70's liposuction started to be used followed by liposculpture in the late 80's being an improved liposuction performed under local anesthesia using traumatic trocars to remove fluids. Later ultrasonic liposculpture was developed by mid 90's and there are some reports on “laser liposuction” (using an external laser source) which is not clearly proved to be effective so far.
  • Some patents of interest are:
  • U.S. Pat. No. 5,807,385 by Keller, titled Method of Laser Cosmetic Surgery, discloses cosmetic laser surgery for eliminating wrinkles, frowns, and folds, for example. A quartz fiber is inserted into the skin and laser radiation in the range from 532 to 1060 nm is noted with a preferred wavelength of 532 nm. The use of various medical devices for removing wrinkles and other unwanted features such as hooks, retractors, bivalve speculum, etc., is noted.
  • U.S. Pat. No. 6,106,516 by Massengill, titled, “Laser-Assisted Liposuction Method and Apparatus,” discloses a liposuction cannula having a lumen from a source of water, a means for suction for removing the water, and a laser source within the cannula for heating the water in an active area of the tip of the cannula. The heated water leaves the tip and heats the surrounding fatty tissue to a point of liquefaction. The laser radiation does not directly affect any tissue.
  • U.S. Pat. No. 6,206,873 by Paolini, et al., titled, “Device and Method for Eliminating Adipose Layers by Means of Laser Energy,” discloses a hollow needle with an optical fiber in the center. The fat tissues, adipose cells, are liquidized when the cell walls are broken. The fluid is removed by suction through the needle. Laser wavelength range is noted as from 0.75 to 2.5 microns but a preferred wavelength of 1.06 is called out. A rounded optical fiber end is shown in FIG. 3 beyond the needle end. Paolini et al. use a Nd:YAG type of laser and note a wavelength range above. Paolini et al. further note that the liquid produced may be removed from the body by normal absorption, etc. Col. 4, lines 32 to 39.
  • U.S. Pat. No. 6,605,080 by Altshuler et al., titled, “Method and Apparatus for the Selective Targeting of Lipid-Rich Tissues,” discloses the removal of lipid rich tissue. The external laser, a YAG source as well as other lasers, output energy with a wavelength range of 880 to 935 nm, 1150 to 1230 nm or 2280 to 2360. It notes that the radiation in the lower band, for example, 900 to 930, and 1150 to 1230, may be preferred in the treatment of fat tissue. Col. 11, line 55 to Col. 12, line 9. The laser light is applied externally and suction by cannula or hypodermic needle may be used to remove the lipid tissue that has been destroyed and formed into liquid. Col. 12, lines 30 to 55. Also, cooling to the skin tissue is noted . Col. 11, lines 1 to 22. The danger of using internal laser energy to remove fat tissue is noted on Col. 6, lines 50 to 64, because of the high power required.
  • There is thus a need for a treatment technique that minimizes surface distortion, post operative complications, and removes adipose cells in selected areas. The present invention satisfies that need.
  • OBJECTIVES AND BRIEF SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a method of cosmetic surgery using laser radiation applied by an optical fiber to an area of treatment.
  • It is another object of the present invention to provide a method of cosmetic surgery using laser radiation for the destruction of fat tissue in the area of treatment.
  • It is a further object of the present invention to provide a method of cosmetic surgery using laser radiation of a wavelength of about 980 nm.
  • It is a still further object of the present invention to provide a method of cosmetic surgery using laser radiation that directly affects the fat tissues to destroy the targeted adiposities.
  • It is at least one aim of the present invention is to provide a method of cosmetic surgery using laser radiation from a high power source to quickly heat targeted tissue for destruction.
  • It is another aim of the present invention to provide a method of cosmetic surgery using laser radiation that directly affects the fat tissues especially in areas of the body resistant to diet and exercise.
  • It is also another aim of the present invention to provide a method of cosmetic surgery using laser radiation that directly affects the sub-dermal fatty tissues.
  • It is at least one goal of the present invention to provide a method of cosmetic surgery using laser radiation that directly affects adiposite causing emulsification of the fatty tissue and then elimination by absorption, removal by the lymphatic system and by drainage.
  • It is another goal of the present invention to provide a method of cosmetic surgery using laser radiation that directly affects the fat tissues without destruction of the structural tissues.
  • It is a further goal of the present invention to provide a method of cosmetic surgery using laser radiation that reduces skin flaccidity by up to 50% or more.
  • It is also a further goal of the present invention to provide a method of cosmetic surgery using laser radiation that directly affects cellulites resulting in strengthening and flatness to the skin affected by the laser treatment.
  • Briefly stated, the present invention provides a method and device for cosmetic surgery, especially fat reduction and collagen reformation, by means of a high power laser operating at about 980 nm. The cosmetic surgery method substantially reduces or removes localized lipodystrophies, and essentially reduces flaccidity by localized laser heating of adipose tissue using an optical fiber inserted into a treatment area. The method and device are particularly well suited for treating Lipodystrophies with flaccidity High power laser energy is applied to “fat” cells to breakdown the cell walls releasing the cell fluid. The laser radiation is applied through an optical fiber which is held within a catheter-like device having a single lumen. Traditionally difficult fat cells are treated well. Delicate areas are treated safely. The optical fiber may have a diffuser mounted on the tip to further treat tissues surrounding the whole tip. A saline solution may also be inserted into the treatment site to aid in the heating of the fat cells and their eventual destruction as well as their removal. The pool of cell fluid in the area of treatment is removed by a combination of techniques including allowing the body to remove it by absorption and drainage from the entry sites thus minimizing trauma to the area of treatment and hastening recovery. Additional techniques to remove the cell fluid include direct force application by means of elastic bandages and external suction applied to the entry sites. Quick and lasting cosmetic changes, even in areas having prior untreatable fat tissues, are achieved while minimizing trauma to the treatment areas.
  • The above, and other objects, features and advantages of the present invention will become apparent from the following description read in conjunction with the accompanying drawings, (in which like reference numbers in different drawings designate the same elements).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B illustrate by photographs the before and after appearance of lower eyelids treated by the method and device of the present invention as an example of the effective treatment provided by the present invention.
  • FIG. 2 illustrates by schematic, devices of the present invention.
  • FIGS. 3A and 3B illustrate by a cross sectional elevational view, two different embodiments of the needle like device of the present invention.
  • FIG. 4 illustrates by a cross sectional elevational view, an optical fiber in a cannula for the present invention.
  • FIGS. 5A and 5B illustrate by photographs the before and after appearance of the dorsal area treated by the method and device of the present invention as an example of the effective treatment provided by the present invention.
  • FIGS. 6A and 6B illustrate by photographs the before and after appearance of the external side of the thigh treated by the method and device of the present invention as an example of the effective treatment provided by the present invention.
  • FIGS. 7A to 7F illustrate different devices for the application of laser radiation and the removal of liquid from the area of treatment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention describes a method and device for cosmetic surgery by means of a high power laser operating at about 980 nm. The cosmetic surgery method substantially reduces or removes localized lipodystrophies and/or flaccidity by localized heating of adipose tissue by means of an optical fiber inserted into an area of treatment. The high power laser energy is applied to heat the “fat” cells to a temperature wherein the cell walls break releasing the cell fluid. The laser radiation is applied by an optical fiber and the optical fiber may be held within a catheter-like device having a single lumen therein. The optical fiber may have a diffuser mounted on the tip to facilitate heating tissues surrounding the whole tip. To further aid in heating of the fat cells, a saline solution is infused into the treatment site. The pool of cell fluid in the area of treatment may be removed by a combination of techniques including allowing the body to eliminate it by absorption and/or removal, drainage from the entry sites thus minimizing trauma to the area of treatment, direct force application by means of elastic bandages and external suction applied to the entry sites. The method and devices of the present invention provide for quick and lasting cosmetic changes in areas having prior untreatable fat tissues while at the same time minimizing trauma to the areas of treatment.
  • In one embodiment the technique uses a 15 w-980 nm diode laser to rid the patient of aesthetically unpleasing fat and reduce flaccidity on different parts of the body, especially in areas that are resistant to change by dieting and exercising.
  • The treatment with the 980 nm laser proved to be efficient and more suitable rather than traditional liposuction on up to 80% of the patients. Each adiposite has a fat content which is emulsified by the laser action and then absorbed and eliminated via lymphatic system. Lipids are formed by a Glycerol chain and 3 units of 3-fatty acids. Heat dissociates the lipids and glycerol is expelled by urine. 3-fatty acids as energy units are easily used by the body and as other poly-unsaturated oils are eliminated via lymphatic (which can take a few weeks) and hepatic systems. In contrast with liposuction and its modifications, this method preserves the structural tissues, acting only on the fat cells. Furthermore, it generates a fibro-elastic retraction which can reduce skin flaccidity by up to 50%. This later effect is produced by a partial denaturisation of the extra cellular matrix. The treatment also acts on the fibrotic tracts typical of cellulites returning the strength and flatness to the skin.
  • The procedures followed in the present invention are as follows: The area of treatment is marked to differentiate by depth and approximate volume (cm3) of excess adipose tissues. The area of treatment is (sterilized) disinfected. The insertion sites are marked. The patient is placed on sterile surrounding and local anesthesia is applied to the skin where there are going to be insertion sites. A small entry is made and the site is widened and pre-tunneled into the subcutaneous tissue by using a small, curved hemostat. A blunt infusion catheter is then inserted via this tunnel into the site, and tumescent anesthetic is delivered first to the deepest layer in a radial fashion and then successively more superficially. Infiltration of the anesthetic is then achieved by pump. A needle is selected according to the fiber diameter and inserted (e.g., 18 G French for 600 um fibers on large areas and 25 G French with a 220 um fiber for face treatments) and a sterile optical fiber is then inserted. The appropriate treatment mode and the parameters of the laser are selected, e.g., as in Table 1. The position of the fiber tip is controlled by the laser aiming beam. The pre-selected energy is applied and the fiber is moved to treat the desired area. Ultrasound guidance can be used to position the tip of the fiber. After all of the entry sites are treated, ultrasound and lymphatic drainage post-procedures are followed. Elastic bandage is placed on the treated area for 3 to 5 days.
  • This treatment (in contrast with liposuction) preserves the structural tissues and elasticity of the skin with the addition of localized retraction and firming of the area. This reduces flaccidity by up to 50%
  • In general after the first 72 hours of treatment, there is a considerable edema requiring ultrasound detection and lymphatic drainage. During the first 2 weeks, edema is reduced by around 80% and skin retraction appears. From 2 to 5 weeks, lymphatic edema disappears as well as the delimitation of the treated area. As a general observation, tissues on the treated area appeared more compacted with less irregularity on the surface and better elasticity, and the body shape improves continually and no additional changes are noted after about 40 to 60 days following the procedure.
  • Low power 980 nm laser is used to treat areas with cellulites. Results are permanent because the adiposite cells are destroyed. Only in very rare exceptions, these cells are reproduced as a side effect: after the laser application, a softening of the treated area appeared to the tact and harder limiting section on the limits of the treated area. This generates a lymphatic edema produced by the body to eliminate the emulsified fat after the procedure.
  • As to the success of the present invention, FIGS. 1A to 1B disclose pictures before and after of the interior eyelids; FIGS. 5A and 5B disclose pictures before and after of a thorax area; and FIGS. 6A and 6B disclose before and after pictures of the thigh and buttock area.
  • FIG. 2 shows laser radiation device 100 having optical fiber cable 102 connected into needle-like device 104 that is for insertion into treatment area 106. Fluid pump 108 is used for inputting any fluids including the tumescent anesthetic fluid and the saline solution through line 114 into and through the needle like device 104. After treatment, a fluid suction pump 116 having one or more hoses 110 with one or more suction heads 112 is placed on the entry sites to assist in the removal of liquid from the area of treatment.
  • As to needle like device 104, several embodiments are shown in FIGS. 3A and 3B as needles 300 and 302. The entry ends are appropriately finished. As seen in FIG. 3A, needle 300 being in cross section has a plurality of optical fibers 304 circumferentially located about central lumen 306 which may be used for inputting fluids and for suction removal of fluids. Wall 308 surrounding fibers 304 may act as a cladding and whole needle 300 may be manufactured from a single preform of material appropriately formed. FIG. 3B illustrates by cross section another needle like device 302 wherein a lumen 310 is centrally located in optical fiber 312 being a core fiber without any cladding shown. Appropriate cladding layer(s), buffer layer(s), and protective layer(s), although not shown, are understood to be present as needed.
  • FIG. 4 further illustrates another embodiment of a needle like device 400 wherein cannula wall 402 has central lumen 404 therein. Tip area 406 is appropriately formed as a slanted wedge. Inside of lumen 404 is attached either separately or integrally formed optical fiber 408. Tip area 410 of optical fiber 406 is formed to have slanted output end 420 with mirror 412 formed thereon to cause optical radiation 414 to be output in a sidewise manner as shown between rays 416 and 418. Mirror 412 formed on tip 420 need not have a surface congruent with the surface of tip 406 of cannula wall 402. Alternatively, instead of adding mirror 412, end is angled at the critical angle for reflection and the light exits fiber 406 perpendicularly to the fiber axis. Due to the closeness of the adipose tissue to the skin surface, a catheter or similar device may not be needed to guide the needle to area of treatment 106, shown in FIG. 2. That is only the entering needle is needed to introduce the optical fiber to the fatty area to be treated.
  • FIGS. 7A to 7F illustrate various devices for applying radiation, inputting fluids and removing fluids from an area of treatment within the body. The device 700A comprises a cannula 702 with an end 704 fitted with an applicator tip 706A. Cannula 700 has one or more lumens for holding one or more laser optical fibers 708 with a side-fire tip 710. An elongated aperture 712 is located along the traverse axis of application tip 706A. Side-fire tip 710 is positioned within lumen 714 so as to allow the radiation output from side-fire tip 710 to exist through aperture 712. The length of aperture 712 is several times the width of aperture 712 so as to allow a sufficient space for outputting and inputting fluid therethrough.
  • In FIG. 7B, applicator tip 706 has a first aperture 716 for radiation output from side-fire tip 710 and a second aperture 718 for inputting and removing fluids. Further, there may be multiple apertures 718 on applicator tip 706B and further there may be separate apertures for inputting fluid and removing fluid appropriately located about tip 706.
  • In FIG. 7C, applicator tip 706C has one aperture 720 for the control of fluids. Located about aperture 702 are a plurality of optical fiber outputs 722.
  • In FIG. 7D, applicator tip 706D is attached to cannula end 704. An optical fiber 724 is placed within one lumen of cannula 702 and has an output tip 726 that directly communicates with applicator tip 706D. Applicator tip 706D is made from high quality optical silica, for example, and has a reflective coating 728 positioned on a portion of the front end 730 so as to intercept output radiation from optical fiber 724 and reflect such in a radial direction as shown. Further application tip 706D may include at least one lumen 732 therein that communicates with one lumen 734 in cannula 702.
  • FIG. 7E discloses another embodiment where applicator tip 700E has two laser output apertures 738 and 740 and two fluid control apertures 742 and 744. Although this shows these located on the same side of the tip 700E, other locations are equally feasible, for example, having the output apertures located on the opposite of the tip 700E. Further, additional apertures may be included about the tip so as to reduce or eliminate the need for rotating the cannula 702 when outputting radiation and/or controlling fluid.
  • FIG. 7F discloses another embodiment of applicator tip 700F where optical fiber 724 has a wedge shaped termination 746 to spread the radiation from a front end 748. One or more fluid control apertures 750 are included in applicator tip 700E.
  • The present invention is further illustrated by the following examples, but is not limited thereby. Table 1 illustrates the various parameters used in operating the diode laser of the present invention to remove excess adipose tissues in the areas noted:
  • TABLE 1
    Power Time Energy Nr. of
    [W] [sec] [Joules] pulses
    Lower eyelids 4 watts 2 sec  8 J 20-30
    Facial 6 watts 3 sec 18 J 40-70
    Collar 7 watts 3 sec 21 J 40-70
    Thorax 12 watts 3 sec 36 J 70+
    Abdomen 15 watts 2 sec 30 J 70+
    Thigh & buttock 12 watts 3 sec 16 J 70+
  • Furthermore, this treatment is an out-patient alternative, minimally invasive, more elegant and with less risks and complications than current treatments. Although there is no need for hospitalization, it must be followed by a diet and physical ultrasound and lymphatic drainage. Results can be appreciated from about week 3 and final results achieved between weeks 6 and 10.
  • EXAMPLE 1
  • FIGS. 1A and 1B illustrate by photographs the before and after appearance of lower eyelids treated by the method and device of the present invention as example of effective treatment of the present invention.
  • The laser energy is delivered through a disposable fiber optic directly into the sub-dermal tissue. This tissue is composed of adiposities and structural tissues irrigated by small arteries, veins and lymphatic. In the lower eyelids, the laser is pulsed 20 to 30 times at a power of 4 W delivering 8 Joules at 2 seconds per pulse.
  • The radiation of the Biolitec 980 nm laser is selectively absorbed by the sub-dermal tissue which is surrounded by saline solution. By thermal effect (980 nm radiation is highly absorbed by water) the adipose membranes are destroyed. For example, using 15 watts for 3 seconds (45 Joules) the temperature reached on the tip of the fiber is around 100° C. which is transmitted by the tumescent anesthesia diffusing and reducing the temperature to 70° C.±10° C. It is thus considered that a minimum temperature of 50° C. must be present to denature the cells' proteins and preferably the temperature of the cells being treated is in the range of 70° C.±10° C. Moving the laser fiber back and forth, a 2 cm penetration with fat tissues dissociation is achieved.
  • EXAMPLE 2
  • FIGS. 5A and 5B illustrate by photographs the before and after appearance of the dorsal area treated by the method and device of the present invention as an example of effective treatment of the present invention.
  • The laser energy is delivered through a disposable fiber optic directly into the sub-dermal tissue. This tissue is composed by adiposities and structural tissues irrigated by small arteries, veins and lymphatic. In the thorax area, the laser is pulsed more than 70 times at a power of 12 watts, 36 Joules at 3 seconds per pulse.
  • The radiation of the Biolitec 980 nm laser is selectively absorbed by the sub-dermal tissue which is surrounded by saline solution. By thermal effect (980 nm radiation is highly absorbed by water) the adiposities membranes are destroyed. For example, using 15 watts for 3 seconds (45 Joules) the temperature reached on the tip of the fiber is around 100° C. which is transmitted by the tumescent anesthesia diffusing and reducing to 70° C.±10° C. the temperature. It is thus considered that a minimum temperature of 50° C. should be present to denature the cells' proteins and preferably the temperature of the cells being treated is in the range of 70° C.±10° C. Moving the laser fiber back and forth, a 2 cm penetration with fat tissues dissociation is achieved.
  • EXAMPLE 3
  • FIGS. 6A and 6B illustrate by photographs the before and after appearance of the external side of the thigh treated by the method and device of the present invention as an example of effective treatment of the present invention.
  • The laser energy is delivered through a disposable fiber optic directly into the sub-dermal tissue. This tissue is composed by adiposities and structural tissues irrigated by small arteries, veins and lymphatic. In the thigh and buttock area, the laser is pulsed at least 70 times at a power of 15 watts, 30 Joules at 2 seconds per pulse
  • The radiation of the Biolitec 980 nm laser is selectively absorbed by the sub-dermal tissue which is surrounded by saline solution. By thermal effect (980 nm radiation is highly absorbed by water) the adiposities membranes are destroyed. For example, using 15 watts for 3 seconds (45 Joules) the temperature reached on the tip of the fiber is around 100° C. which is transmitted by the tumescent anesthesia diffusing and reducing the temperature to 70° C.±10° C. It is thus considered that a minimum temperature of 50° C. should be present to denature the cells' proteins and preferably the temperature of the cells being treated is in the range of 75° C.±25° C. Moving the laser fiber back and forth, a 2 cm penetration with fat tissues dissociation is achieved.
  • Having described preferred embodiments of the invention with reference to the accompanying drawings, it is to be understood that the invention is not limited to the precise embodiments, and that various changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention as defined in the appended claims.

Claims (17)

What is claimed is:
1. A method of reducing localized lipodystrophies and flaccidity and of simultaneous collagen reformation for improving cosmetic appearance of a subject comprising the steps of:
a. defining an area of treatment on said subject;
b. preparing at least one insertion site in said area for minimally invasive entry;
c. selecting operating parameters for an diode laser, based upon said area of treatment;
d. inserting and positioning a needle-like device comprising a wall defining a central lumen and at least one optical fiber located within the wall defining the central lumen through said area of minimally invasive entry into said area of treatment;
e. applying laser radiation to adipose tissue in said area of treatment to break the cell membranes; and
f. applying post treatment procedures to said area of treatment.
2. The method of reducing localized lipodystrophies and flaccidity according to claim 1 wherein said operating parameters of said diode laser are dependent upon said area of treatment, said operating parameters including: power, length of treatment, energy and number of pulses.
3. The method for reducing localized lipodystrophies and flaccidity according to claim 1 wherein said liquid is a saline solution.
4. The method of reducing localized lipodystrophies and flaccidity according to claim 3 wherein the adipose tissue under treatment reaches a temperature in the range of 75° C.±25° C.
5. The method of reducing localized lipodystrophies and flaccidity according to claim 1 wherein said post treatment includes lymphatic drainage, ultrasound, site drainage from the needle entry and constrictive applications.
6. The method of reducing localized lipodystrophies and flaccidity according to claim 8 further including the application of external suction.
7. The method of reducing localized lipodystrophies and flaccidity according to claim 1 further including removing liquefied cellulites tissues.
8. The method for reducing localized lipodystrophies and flaccidity according to claim 1 wherein said diode laser delivers energy from about 5 joules to about 30 joules as predetermined by the area of treatment.
9. The method of reducing localized lipodystrophies and flaccidity according to claim 1, wherein said area of treatment is selected from the areas consisting of interior eyelid, facial, collar, thorax, abdomen, thigh and buttock.
10. The method of reducing localized lipodystrophies and flaccidity according to claim 1 wherein positioning of said optical fiber is selected from the group consisting of an emitted marker light, ultrasound, and x-ray.
11. A device for reducing localized lipodystrophies and flaccidity according to claim 12 wherein said marker light is red.
12. A device for reducing localized lipodystrophies and flaccidity according to claim 1 comprising:
a. a diode laser having a wavelength of 980 nm for substantial heating of the adipose tissue;
b. an optical fiber with a distal tip, said tip having a shape to maximize heating; and
c. a catheter for said optical fiber, said catheter including at least one lumen for inputting and outputting fluids therethrough.
13. The device for reducing localized lipodystrophies and flaccidity according to claim 14 wherein said diode laser is a high power laser having an output of about 15 W.
14. The device for reducing localized lipodystrophies and flaccidity according to claim 14 wherein said diode laser is operated in a mode selected from the group consisting of CW and pulsed.
15. The device for reducing localized lipodystrophies and flaccidity according to claim 14 wherein an optical fiber of said diode laser has a diameter from about 200 μm to about 1000 μm.
16. The device for reducing localized lipodystrophies and flaccidity according to claim 14 further including a means for applying external suction to one or more of the invasive entry points.
17. The device for reducing localized lipodystrophies and flaccidity according to claim 14 wherein said laser tip is attached to a catheter-like device having one lumen therein, said laser tip having a plurality of opening therein to allow the inputting and/or outputting of fluid from said area of treatment, an optical fiber mounted within said lumen and having a termination thereon which is secured to the fiber tip.
US14/282,117 2005-05-05 2014-05-20 Cosmetic Laser Treatment Device and Method for Loacalized Lipodystrophies and Flaccidity Abandoned US20150005751A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/282,117 US20150005751A1 (en) 2005-05-05 2014-05-20 Cosmetic Laser Treatment Device and Method for Loacalized Lipodystrophies and Flaccidity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67809605P 2005-05-05 2005-05-05
US11/415,782 US8801764B2 (en) 2005-05-05 2006-05-02 Cosmetic laser treatment device and method for localized lipodystrophies and flaccidity
US14/282,117 US20150005751A1 (en) 2005-05-05 2014-05-20 Cosmetic Laser Treatment Device and Method for Loacalized Lipodystrophies and Flaccidity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/415,782 Division US8801764B2 (en) 2005-05-05 2006-05-02 Cosmetic laser treatment device and method for localized lipodystrophies and flaccidity

Publications (1)

Publication Number Publication Date
US20150005751A1 true US20150005751A1 (en) 2015-01-01

Family

ID=37394994

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/415,782 Active 2031-07-22 US8801764B2 (en) 2005-05-05 2006-05-02 Cosmetic laser treatment device and method for localized lipodystrophies and flaccidity
US14/282,117 Abandoned US20150005751A1 (en) 2005-05-05 2014-05-20 Cosmetic Laser Treatment Device and Method for Loacalized Lipodystrophies and Flaccidity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/415,782 Active 2031-07-22 US8801764B2 (en) 2005-05-05 2006-05-02 Cosmetic laser treatment device and method for localized lipodystrophies and flaccidity

Country Status (10)

Country Link
US (2) US8801764B2 (en)
EP (1) EP1912583B1 (en)
JP (1) JP2009502212A (en)
KR (1) KR20080006623A (en)
CN (1) CN101170959B (en)
BR (1) BRPI0610986B8 (en)
CA (1) CA2606772C (en)
ES (1) ES2533205T3 (en)
MX (1) MX2007013851A (en)
WO (1) WO2006121734A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130079598A1 (en) * 2011-09-23 2013-03-28 Jack R. Auld Ophthalmic endoilluminators with directed light
US20170071494A1 (en) * 2015-09-14 2017-03-16 Biosense Webster (Israel) Ltd. Dual multiray electrode catheter

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005231443B2 (en) 2004-04-01 2012-02-23 The General Hospital Corporation Method and apparatus for dermatological treatment and tissue reshaping
US20060047281A1 (en) 2004-09-01 2006-03-02 Syneron Medical Ltd. Method and system for invasive skin treatment
US8277495B2 (en) 2005-01-13 2012-10-02 Candela Corporation Method and apparatus for treating a diseased nail
US8256429B2 (en) * 2005-05-18 2012-09-04 Cooltouch Incorporated Treatment of cellulite and adipose tissue with mid-infrared radiation
US8127771B2 (en) * 2005-05-18 2012-03-06 Cooltouch Incorporated Treatment of cellulite and adipose tissue with mid-infrared radiation
EP1928549B1 (en) 2005-09-28 2014-06-11 Candela Corporation Apparatus for treating cellulite
US7891362B2 (en) 2005-12-23 2011-02-22 Candela Corporation Methods for treating pigmentary and vascular abnormalities in a dermal region
US20070244529A1 (en) * 2006-04-18 2007-10-18 Zoom Therapeutics, Inc. Apparatus and methods for treatment of nasal tissue
US20080027423A1 (en) * 2006-07-25 2008-01-31 Zoom Therapeutics, Inc. Systems for treatment of nasal tissue
US20080027520A1 (en) * 2006-07-25 2008-01-31 Zoom Therapeutics, Inc. Laser treatment of tissue
US20080269735A1 (en) * 2007-04-26 2008-10-30 Agustina Vila Echague Optical array for treating biological tissue
US8430920B2 (en) * 2007-09-28 2013-04-30 Kasey K. LI Device and methods for treatment of tissue
US20090182315A1 (en) * 2007-12-07 2009-07-16 Ceramoptec Industries Inc. Laser liposuction system and method
WO2009090632A2 (en) 2008-01-17 2009-07-23 Syneron Medical Ltd. A hair removal apparatus for personal use and the method of using same
CN101951851B (en) 2008-01-24 2013-02-06 赛诺龙医疗公司 A device and apparatus of adipose tissue treatment
US20120022512A1 (en) * 2008-01-24 2012-01-26 Boris Vaynberg Device, apparatus, and method of adipose tissue treatment
US20090326525A1 (en) * 2008-06-26 2009-12-31 Jessica Hixon Laser fiber capillary apparatus and method
US20120022504A1 (en) * 2008-09-11 2012-01-26 Syneron Medical Ltd. Device, apparatus, and method of adipose tissue treatment
EP2334249B1 (en) 2008-09-21 2013-03-13 Syneron Medical Ltd. A method and apparatus for personal skin treatment
EP2730313A1 (en) 2009-02-25 2014-05-14 Syneron Medical Ltd. Electrical skin rejuvenation
US9788897B2 (en) * 2010-01-08 2017-10-17 Biolitec Unternehmensbeteiligungs Ii Ag Method and device for underskin radiation treatment of adipose tissue
US20120289947A1 (en) * 2010-01-18 2012-11-15 Wolfgang Neuberger Device and method for removing veins
US20110282334A1 (en) * 2010-05-11 2011-11-17 Ceramoptec Industries Inc. Device and method for fistula treatment
BR112013016337A2 (en) * 2010-12-29 2018-02-14 Biolitec Pharma Marketing Ltd fiber optic medical treatment system
WO2012114334A1 (en) 2011-02-24 2012-08-30 Ilan Ben Oren Hybrid catheter for endoluminal intervention
US20140200503A1 (en) * 2013-01-17 2014-07-17 Patricio CENTURION Systems, devices, and methods for isolation of stem cells
WO2015120131A1 (en) 2014-02-05 2015-08-13 The Regents Of The University Of Michigan Self-oscillating switched-capacitor dc-dc converter
WO2017083753A1 (en) 2015-11-12 2017-05-18 Herr John C Compositions and methods for vas-occlusive contraception and reversal thereof
US11684420B2 (en) 2016-05-05 2023-06-27 Eximo Medical Ltd. Apparatus and methods for resecting and/or ablating an undesired tissue
KR101940284B1 (en) * 2016-06-29 2019-01-18 주식회사 엘림텍 High power raser treatment apparatus
CN106109010B (en) * 2016-08-26 2019-02-05 柳州市工人医院 Electro-medical ionic points mole pen
CN110381854A (en) 2017-01-05 2019-10-25 考恩特兰有限公司 Method for being implanted into and reversing stimulating responsive implantation material
CA3078365A1 (en) * 2017-10-02 2019-04-11 Contraline, Inc. Methods and apparatus for delivering a stimulus to an occlusive implant
EP3880273A4 (en) 2018-11-13 2022-08-24 Contraline, Inc. Systems and methods for delivering biomaterials
JP7326021B2 (en) 2019-05-16 2023-08-15 朝日インテック株式会社 Light irradiation device and light irradiation system
JP7326020B2 (en) 2019-05-16 2023-08-15 朝日インテック株式会社 Light irradiation system, catheter, and light irradiation device
JP7340174B2 (en) 2019-05-16 2023-09-07 朝日インテック株式会社 light irradiation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102410A (en) * 1990-02-26 1992-04-07 Dressel Thomas D Soft tissue cutting aspiration device and method
US5984915A (en) * 1997-10-08 1999-11-16 Trimedyne, Inc. Percutaneous laser treatment
US6206873B1 (en) * 1996-02-13 2001-03-27 El. En. S.P.A. Device and method for eliminating adipose layers by means of laser energy
US20040206365A1 (en) * 2003-03-31 2004-10-21 Knowlton Edward Wells Method for treatment of tissue
US7331951B2 (en) * 2002-06-25 2008-02-19 Ultrashape Inc. Devices and methodologies useful in body aesthetics

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3538919A (en) 1967-04-07 1970-11-10 Gregory System Inc Depilation by means of laser energy
US4537193A (en) 1982-10-28 1985-08-27 Hgm, Inc. Laser endocoagulator apparatus
US4773413A (en) 1983-06-13 1988-09-27 Trimedyne Laser Systems, Inc. Localized heat applying medical device
US4686979A (en) 1984-01-09 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Excimer laser phototherapy for the dissolution of abnormal growth
US5188632A (en) * 1984-12-07 1993-02-23 Advanced Interventional Systems, Inc. Guidance and delivery system for high-energy pulsed laser light
US5470330A (en) 1984-12-07 1995-11-28 Advanced Interventional Systems, Inc. Guidance and delivery system for high-energy pulsed laser light
US5242437A (en) 1988-06-10 1993-09-07 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
US5123845A (en) 1988-08-25 1992-06-23 American Dental Laser, Inc. Dental laser assembly
ATE159647T1 (en) * 1989-07-31 1997-11-15 Israel Barken ULTRASONIC LASER SURGICAL DEVICE
US5129896A (en) 1989-11-13 1992-07-14 Hasson Harrith M Holder to facilitate use of a laser in surgical procedures
US5084043A (en) 1990-01-12 1992-01-28 Laserscope Method for performing a percutaneous diskectomy using a laser
US4985027A (en) 1990-02-26 1991-01-15 Dressel Thomas D Soft tissue aspiration device and method
AU647533B2 (en) 1990-10-16 1994-03-24 Summit Technology, Inc. Laser thermokeratoplasty methods and apparatus
US5370642A (en) 1991-09-25 1994-12-06 Keller; Gregory S. Method of laser cosmetic surgery
US5807385A (en) 1993-08-02 1998-09-15 Keller; Gregory S. Method of laser cosmetic surgery
US5395361A (en) * 1994-06-16 1995-03-07 Pillco Limited Partnership Expandable fiberoptic catheter and method of intraluminal laser transmission
US6572609B1 (en) * 1999-07-14 2003-06-03 Cardiofocus, Inc. Phototherapeutic waveguide apparatus
US5531739A (en) 1994-09-23 1996-07-02 Coherent, Inc. Method of treating veins
US6254597B1 (en) * 1995-08-31 2001-07-03 Biolase Technology, Inc. Tissue remover and method
US6231567B1 (en) * 1995-08-31 2001-05-15 Biolase Technology Inc. Material remover and method
US5738680A (en) 1996-04-05 1998-04-14 Eclipse Surgical Technologies, Inc. Laser device with piercing tip for transmyocardial revascularization procedures
US5785704A (en) * 1996-07-29 1998-07-28 Mrc Systems Gmbh Method for performing stereotactic laser surgery
US6176854B1 (en) 1997-10-08 2001-01-23 Robert Roy Cone Percutaneous laser treatment
US6106516A (en) 1997-10-30 2000-08-22 Sonique Surgical Systems, Inc. Laser-assisted liposuction method and apparatus
WO1999049937A1 (en) 1998-03-27 1999-10-07 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
US6126655A (en) * 1998-08-11 2000-10-03 The General Hospital Corporation Apparatus and method for selective laser-induced heating of biological tissue
US6375651B2 (en) * 1999-02-19 2002-04-23 Scimed Life Systems, Inc. Laser lithotripsy device with suction
US6283124B1 (en) * 2000-05-11 2001-09-04 Jeff Schleuning Versatile compression garment
US6605079B2 (en) * 2001-03-02 2003-08-12 Erchonia Patent Holdings, Llc Method for performing lipoplasty using external laser radiation
AU2002324775A1 (en) * 2001-08-23 2003-03-10 Sciperio, Inc. Architecture tool and methods of use
US20040199151A1 (en) * 2003-04-03 2004-10-07 Ceramoptec Industries, Inc. Power regulated medical underskin irradiation treament system
US7975702B2 (en) * 2005-04-05 2011-07-12 El.En. S.P.A. System and method for laser lipolysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102410A (en) * 1990-02-26 1992-04-07 Dressel Thomas D Soft tissue cutting aspiration device and method
US6206873B1 (en) * 1996-02-13 2001-03-27 El. En. S.P.A. Device and method for eliminating adipose layers by means of laser energy
US5984915A (en) * 1997-10-08 1999-11-16 Trimedyne, Inc. Percutaneous laser treatment
US7331951B2 (en) * 2002-06-25 2008-02-19 Ultrashape Inc. Devices and methodologies useful in body aesthetics
US20040206365A1 (en) * 2003-03-31 2004-10-21 Knowlton Edward Wells Method for treatment of tissue

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130079598A1 (en) * 2011-09-23 2013-03-28 Jack R. Auld Ophthalmic endoilluminators with directed light
US9066678B2 (en) * 2011-09-23 2015-06-30 Alcon Research, Ltd. Ophthalmic endoilluminators with directed light
US20170071494A1 (en) * 2015-09-14 2017-03-16 Biosense Webster (Israel) Ltd. Dual multiray electrode catheter

Also Published As

Publication number Publication date
CA2606772C (en) 2017-03-14
MX2007013851A (en) 2008-02-05
BRPI0610986A2 (en) 2010-12-21
CN101170959B (en) 2010-04-21
JP2009502212A (en) 2009-01-29
US8801764B2 (en) 2014-08-12
EP1912583B1 (en) 2015-01-07
US20060253112A1 (en) 2006-11-09
BRPI0610986A8 (en) 2016-10-18
EP1912583A4 (en) 2009-11-11
ES2533205T3 (en) 2015-04-08
KR20080006623A (en) 2008-01-16
WO2006121734A1 (en) 2006-11-16
CA2606772A1 (en) 2006-11-16
BRPI0610986B8 (en) 2021-06-22
BRPI0610986B1 (en) 2018-11-27
CN101170959A (en) 2008-04-30
EP1912583A1 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US8801764B2 (en) Cosmetic laser treatment device and method for localized lipodystrophies and flaccidity
JP6505814B2 (en) Intraluminal treatment device
US20080269735A1 (en) Optical array for treating biological tissue
US5897549A (en) Transformation of unwanted tissue by deep laser heating of water
US6203540B1 (en) Ultrasound and laser face-lift and bulbous lysing device
US8357146B2 (en) Treatment of cellulite and adipose tissue with mid-infrared radiation
US7217265B2 (en) Treatment of cellulite with mid-infrared radiation
US6355054B1 (en) Laser system for improved transbarrier therapeutic radiation delivery
US6176854B1 (en) Percutaneous laser treatment
US20050015123A1 (en) Endovascular treatment of a blood vessel using a light source
US8906079B2 (en) Method/device for transdermal vascular treatment
US20110178513A1 (en) Method and device for internal tissue removal
US8709004B2 (en) Method and device for vascular treatment
US20210322099A1 (en) Vein ablation
Minaev Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers
WO2023230615A2 (en) Negative pressure laser handpiece
Boord et al. Fun with lasers
Finder 28 Fat melting devices
KR20140140726A (en) Laser fiber for medical device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIOLITEC UNTERNEHMENSBETEILIGUNGS II AG, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOLITEC PHARMA MARKETING LTD.;REEL/FRAME:041182/0578

Effective date: 20160308

STCB Information on status: application discontinuation

Free format text: ABANDONMENT FOR FAILURE TO CORRECT DRAWINGS/OATH/NONPUB REQUEST