US20150068919A1 - Cathodic protection system - Google Patents

Cathodic protection system Download PDF

Info

Publication number
US20150068919A1
US20150068919A1 US14/394,406 US201314394406A US2015068919A1 US 20150068919 A1 US20150068919 A1 US 20150068919A1 US 201314394406 A US201314394406 A US 201314394406A US 2015068919 A1 US2015068919 A1 US 2015068919A1
Authority
US
United States
Prior art keywords
cathodic protection
protection system
impressed current
current cathodic
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/394,406
Inventor
Wayne Alan Robert Burns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANODE ENGINEERING Pty Ltd
Original Assignee
ANODE ENGINEERING Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012901419A external-priority patent/AU2012901419A0/en
Application filed by ANODE ENGINEERING Pty Ltd filed Critical ANODE ENGINEERING Pty Ltd
Publication of US20150068919A1 publication Critical patent/US20150068919A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/16Electrodes characterised by the combination of the structure and the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/22Monitoring arrangements therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/20Constructional parts or assemblies of the anodic or cathodic protection apparatus
    • C23F2213/22Constructional parts or assemblies of the anodic or cathodic protection apparatus characterized by the ionic conductor, e.g. humectant, hydratant or backfill
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/32Pipes

Definitions

  • This invention relates to a cathodic protection system for steel structures (or cast iron) structures.
  • This invention has particular application for cathodic protection of buried and submerged structures (on land and in marine off-shore applications). However, it is also be relevant for other types of structures in which steel (or iron) is a significant structural component.
  • Magnesium anodes are very inefficient. In order to generate 100 mA of current, one kilogram of magnesium alloy is consumed per year. 55% of consumption produces the DC current. The remaining 45% of the corrosion is consumed by self corrosion of the magnesium metal. Accordingly, the electrical efficiency of the anode is only around 55%. If the anode were disconnected from the steel structure, it would still naturally waste away due to self corrosion.
  • anode beds are typically installed at two to four kilometre intervals at a distance of not more than two metres from the pipeline easement.
  • a typical anode bed is comprised of 5 or more anodes in order to generate the requisite current at the installation location.
  • the primary cost for five sacrificial anodes will be in the order of AUD$2,000.00.
  • the installation and commissioning costs of the anode bed including civil works and commissioning will typically be in the order of AUD$5,000.00.
  • a typical magnesium sacrificial anode system has a life expectancy of ten years. Because many sacrificial anode systems are installed on pipelines often in congested city streets and have to be installed close to the pipelines. With urban development, the cost to excavate and install new anode beds on a ten year cycle is significantly higher. Replacement costs plus extensive excavation costs in congested urban areas can be in the order of at least AUD$10,000 per site. For installations along a pipeline route, being installed every two to four kilometers, the accumulated replacement costs over a fifty year lifecycle of a pipeline can be in the hundreds of thousands of dollars.
  • the cost to the environment in producing 1 kg of magnesium is approximately 40 kJ of power. So, apart from being a very inefficient anode material, the carbon footprint to the environment is grossly unacceptable. The environmental efficiency of a material is largely determined by the CO 2 footprint.
  • an impressed current cathodic protection system for a target structure susceptible to corrosion which comprises an inert mixed metal oxide (hereinafter referred to as “MMO”) anode surrounded by a tightly packed conductive zone connected to a power supply source and having an input/output regulator to control the flow of current to the target structure.
  • MMO inert mixed metal oxide
  • the tightly packed conductive zone is in the form of a powder.
  • the tightly packed conductive zone is comprised of calcined petroleum coke (semi graphitized carbon particles).
  • the system is driven by a DC power supply stored in a sealed battery cell.
  • An MMO electrode is one in which the surface contains two or more kinds of metal oxides.
  • One of the metals usually one or more earth derivatives (such as RuO 2 , IrO 2 , or PtO 0.12 conducts electricity and catalyzes the reaction.
  • the amount of this (more expensive) metal is up to 10-12 g per square metre.
  • the other metal is typically in the form of TiO 2 which does not conduct or catalyze the reaction, but prevents corrosion of the interior (and is cheaper).
  • the interior of the MMO electrode is typically made of titanium. The MMO coating is applied to the surface of the titanium substrate to activate the surface.
  • the anode is surrounded by a zone of calcined petroleum coke, being a highly conductive material.
  • This is in the form of a tightly packed powder with a low moisture content. This provides a tightly packed conductive zone around the anode and effectively increases the active zone of the anode.
  • the specification for the calcined petroleum coke is as follows:
  • Particle Sizing Dust free with a maximum particle size of 1 mm.
  • This material was selected as it exhibited the best electrical properties and reliability under the conditions tested.
  • the anode and surrounding zone of calcined petroleum coke is contained within a tubular sleeve which is sealed at both ends.
  • the sleeve may be of a permeable synthetic or linen cloth, or other suitable material, which is non-degradable in the environment in which the anode is to be used.
  • the MMO wire is located along the centre of the sleeve which is sealed at one end.
  • the calcined petroleum coke backfill is air blown into the sleeve through the other end and then sealed.
  • the sleeve which by way of example may be typically (approx 50 mm Diameter ⁇ 2000 mm and approximately 2 kg in weight) is of a compact design and allows for ease of installation. This is particularly important in congested urban areas where a more compact system is required.
  • the system is designed to be able to produce 50 to 150 mA of current subject to suitable conditions (such as soil resistivity).
  • suitable conditions such as soil resistivity.
  • the number of anodes required to achieve the desired life expectancy will vary from one to a number of anodes depending upon the soil resistivity.
  • a number of anodes are placed into a bed. The placement of the anode bed will be determined by a range of factors such as safe burial offset or below pipe distances and soil resistivity.
  • the system is provided with solar input power generation and battery storage.
  • the batteries are charged by solar powered cells or panels. These may be mounted by various means. These may be mounted on the structure itself or in the case of a pipeline on a column designed for this purpose which may also conveniently house the hardware and service access.
  • the output power to the structure is controlled by a DC input/output regulator.
  • the system will be capable of operating at a number of output capacity ranges. Typically, these would be 50, 150, 500 and 1000 mA. However, these figures are by way of example only. The range may vary depending upon the application. Preferably, this would also be provided with lightning and surge protection.
  • the output regulator is approximately 30 mm ⁇ 80 mm.
  • the output regulator and control circuitry are designed to fit within a small control box which may be fitted on the structure or support column or, where applicable, on a structure within close proximity such as a suburban lamppost.
  • the system design can also accommodate a range of optional monitoring systems.
  • the system can accommodate the inclusion of a permanently installed reference cell to allow monitoring of the protection system by conventional manual methods or via an electronic interface or SCADA system.
  • the system can accommodate remote electronic surveillance and monitoring systems to provide continuous electronic monitoring and reporting via satellite or a GSM communications system. Accordingly, the system is capable of reducing the need to travel to sites for inspection and testing.
  • the system can also accommodate an automatically controlled output regulated system that incorporates the above reference cells. This may be set during commissioning to allow for a set protection level and also regulates output in automatic control mode.
  • the above system utilizes inert anodes that do not galvanically corrode and increases the active zone of the anode, thus greatly increasing the life expectancy of the system over those systems currently known and in use. It is anticipated that the system of the present invention will have a life of at least 50 years. To accord with the anticipated life expectancy, the anode bed, electronics and related electrical components are also all designed to a specification of at least a 50 year life expectancy.
  • the advantage of the above invention over current systems is that it provides a compact system with a 50 year life expectancy which is easy to install even in difficult conditions. It is also able to be modified so as to provide a level of flexibility.
  • FIG. 1 is a cross-sectional view of a preferred embodiment of the impressed current cathodic protection system.
  • FIG. 2 is a cross-sectional elevational view of a further preferred embodiment of the system of the present invention showing a solar powered impressed current cathodic protection system and reference cell installation.
  • FIG. 3 is a cross-sectional side view of the embodiment in FIG. 2 .
  • FIG. 4 is a detailed front elevational view of the solar panel and supporting column, foundation for the solar powered installation in FIGS. 2 and 3 and of the housing for the regulator and control circuitry.
  • FIG. 5 is a further detailed front elevational view of the solar panel, supporting column, foundation and baseplate for the solar powered installation in FIGS. 2 and 3 .
  • an impressed current cathodic protection system for steel (& cast iron?) structures ( 1 ) which comprises an inert mixed metal oxide (MMO) anode wire ( 2 ) surrounded by a zone of calcined petroleum coke ( 3 ) contained within a tubular sleeve ( 4 ) sealed at both ends ( 5 ) and connected via a cable tail ( 6 ) to a power supply.
  • MMO mixed metal oxide
  • the system is driven by a DC power supply, which in this embodiment is a sealed battery cell (not shown).
  • the system also has an output regulator (not shown) to control the flow of current to the target structure.
  • Particle Sizing Dust free with a maximum particle size of 1 mm.
  • This material was selected as it exhibited the best electrical properties and reliability under the conditions tested.
  • FIGS. 2 & 3 there is shown an elevational and side view respectively of a further preferred embodiment of the cathodic protection system (which may be comprised of one or a bed of anodes) of the present invention.
  • FIGS. 2 and 3 show the placement of the cathodic protection system ( 1 ) and a reference cell ( 7 ) relative to pipeline ( 8 ), being the target structure in this case.
  • the cathodic protection system ( 1 ) and reference cell ( 7 ) are embedded in sand ( 9 ) at a safe burial distance from the pipeline ( 8 ). This is covered by a layer of rock/free backfill ( 10 ) and generally topped with a finished grade ( 11 ).
  • the system is provided with solar input power generation.
  • the cathodic protection system is connected by cables ( 12 ) to one or more batteries.
  • the batteries are charged by solar cells on one or more solar panels ( 13 ).
  • These are mounted on a supporting column ( 14 ) with baseplate ( 15 ) in concrete foundation ( 15 ).
  • the output regulator, control circuitry and service access are located in housing ( 17 ) at the base of the column ( 14 ) with access door ( 18 ) for ease of access.
  • a detailed view of the column ( 14 ), foundation ( 16 ), housing ( 17 ) and baseplate ( 15 ) are provided in FIG. 4 . Structural components and related equipment are manufactured to applicable local building and safety standards.

Abstract

An impressed current cathodic protection system for a target structure susceptible to corrosion (such as of steel or cast iron) which comprises an inert mixed metal oxide anode surrounded by a tightly packed conductive zone connected to a power supply source and having an input/output regulator to control the flow of current to the target structure. The present invention relates to device and method to provide personal and/or medical details of one or more individuals in the event of an emergency.

Description

    FIELD OF THE INVENTION
  • This invention relates to a cathodic protection system for steel structures (or cast iron) structures. This invention has particular application for cathodic protection of buried and submerged structures (on land and in marine off-shore applications). However, it is also be relevant for other types of structures in which steel (or iron) is a significant structural component.
  • BACKGROUND OF THE INVENTION
  • Steel structures are used widely in industrial structures and infrastructure due to its strength and tensile properties. However, corrosion is a major problem over time. The use of cathodic protection (CP) using sacrificial anode systems in order to inhibit corrosion of these structures is well known. Conventional sacrificial anode systems are fitted to industrial structures such as pipelines, above ground storage tanks, underground tanks, and many other structures sited on or buried in the ground. Typically, this is done by attaching a number of metal blocks (anodes) of a more active metal such as magnesium to the steel structure. The more active metal acts as a sacrificial anode preferentially corroding away. This generates a small amount of DC current. The current output capacity of a magnesium sacrificial anode system attached to a pipeline or similar structure is normally 50 mA or less. However, for poorly coated pipelines or structures, anode systems as high as 1500 mA or greater can be required.
  • Magnesium anodes are very inefficient. In order to generate 100 mA of current, one kilogram of magnesium alloy is consumed per year. 55% of consumption produces the DC current. The remaining 45% of the corrosion is consumed by self corrosion of the magnesium metal. Accordingly, the electrical efficiency of the anode is only around 55%. If the anode were disconnected from the steel structure, it would still naturally waste away due to self corrosion.
  • In order to achieve the DC current output required for corrosion protection, it is often necessary to fit a number of anodes at any one location. For a buried pipeline, anode beds are typically installed at two to four kilometre intervals at a distance of not more than two metres from the pipeline easement. A typical anode bed is comprised of 5 or more anodes in order to generate the requisite current at the installation location. Typically, the primary cost for five sacrificial anodes will be in the order of AUD$2,000.00. The installation and commissioning costs of the anode bed including civil works and commissioning will typically be in the order of AUD$5,000.00.
  • A typical magnesium sacrificial anode system has a life expectancy of ten years. Because many sacrificial anode systems are installed on pipelines often in congested city streets and have to be installed close to the pipelines. With urban development, the cost to excavate and install new anode beds on a ten year cycle is significantly higher. Replacement costs plus extensive excavation costs in congested urban areas can be in the order of at least AUD$10,000 per site. For installations along a pipeline route, being installed every two to four kilometers, the accumulated replacement costs over a fifty year lifecycle of a pipeline can be in the hundreds of thousands of dollars.
  • The cost to the environment in producing 1 kg of magnesium is approximately 40 kJ of power. So, apart from being a very inefficient anode material, the carbon footprint to the environment is grossly unacceptable. The environmental efficiency of a material is largely determined by the CO2 footprint.
  • CO2 Footprint:
  • The production of 1 kg of magnesium generates a CO2 footprint of 42 kg of CO2. The annual average magnesium tonnage consumed by the cathodic protection industry per annum in Australia and New Zealand alone is in excess of 400 tonnes. This equates to an annual CO2 footprint of 16,800 tonnes of CO2. Assuming a cost of AUD$23.00 per tonne for CO2, this equates to an annual cost to industry before materials of $386,400. Over a fifty year design life, this equates to a CO2 cost of AUD$19,320,000.00 (being close to AUD$20,000,000. The environmental efficiency of a material substitution is largely determined by the CO2 footprint.
  • SUMMARY OF THE INVENTION
  • There is disclosed herein an impressed current cathodic protection system for a target structure susceptible to corrosion (such as of steel or cast iron) which comprises an inert mixed metal oxide (hereinafter referred to as “MMO”) anode surrounded by a tightly packed conductive zone connected to a power supply source and having an input/output regulator to control the flow of current to the target structure. Preferably, the tightly packed conductive zone is in the form of a powder. In the preferred embodiment the tightly packed conductive zone is comprised of calcined petroleum coke (semi graphitized carbon particles). Further, in the preferred embodiment, the system is driven by a DC power supply stored in a sealed battery cell.
  • A number of conventional anode materials were considered for this application and rejected. Silicon, iron (chromium), graphite and scrap steel were all potential materials but considered unlikely to have the desired life expectancy for the application. Platinised titanium has/had historical technical limitations on voltage. Platinised niobium was not cost competitive. As the life of the anode is critical for cathodic protection, it was decided that MMO was currently the best available material for this application. An MMO electrode is one in which the surface contains two or more kinds of metal oxides. One of the metals, usually one or more earth derivatives (such as RuO2, IrO2, or PtO0.12 conducts electricity and catalyzes the reaction. The amount of this (more expensive) metal is up to 10-12 g per square metre. The other metal is typically in the form of TiO2 which does not conduct or catalyze the reaction, but prevents corrosion of the interior (and is cheaper). The interior of the MMO electrode is typically made of titanium. The MMO coating is applied to the surface of the titanium substrate to activate the surface.
  • According to the system of the present invention, the anode is surrounded by a zone of calcined petroleum coke, being a highly conductive material. This is in the form of a tightly packed powder with a low moisture content. This provides a tightly packed conductive zone around the anode and effectively increases the active zone of the anode.
  • According to one form of the invention, the specification for the calcined petroleum coke is as follows:
  • Fixed carbon: 99.35%
  • Ash: 0.6%
  • Moisture: 0.05%
  • Volatiles: Nil at 950° C.
  • Bulk Density: 74 lbs. per cubic foot.
  • Predominantly round particles.
  • All particles surface modified for maximum electrical conductivity.
  • Particle Sizing: Dust free with a maximum particle size of 1 mm.
  • Minimum calcination temperature of base materials in excess of 1200° C.
  • Base materials calcined under ISO 9002 quality control.
  • Surfactants added to assist pumping and settling.
  • No de-dusting oils used during the manufacture of base particles.
  • This material was selected as it exhibited the best electrical properties and reliability under the conditions tested.
  • In a preferred form of the invention, the anode and surrounding zone of calcined petroleum coke is contained within a tubular sleeve which is sealed at both ends. The sleeve may be of a permeable synthetic or linen cloth, or other suitable material, which is non-degradable in the environment in which the anode is to be used. The MMO wire is located along the centre of the sleeve which is sealed at one end. The calcined petroleum coke backfill is air blown into the sleeve through the other end and then sealed. The sleeve which by way of example may be typically (approx 50 mm Diameter×2000 mm and approximately 2 kg in weight) is of a compact design and allows for ease of installation. This is particularly important in congested urban areas where a more compact system is required.
  • The system is designed to be able to produce 50 to 150 mA of current subject to suitable conditions (such as soil resistivity). The number of anodes required to achieve the desired life expectancy will vary from one to a number of anodes depending upon the soil resistivity. Typically, a number of anodes are placed into a bed. The placement of the anode bed will be determined by a range of factors such as safe burial offset or below pipe distances and soil resistivity.
  • In certain circumstances, where a greater level of currentlife expectancy is required, it is possible to effectively increase the capacity of the system by adding more calcined petroleum coke. This may be achieved by using a larger sleeve or by adding calcined petroleum coke to the anode bed excavation (provided that the coke is sufficiently tightly compacted so that the entire bed becomes a working anode bed).
  • According to a preferred form of the invention, the system is provided with solar input power generation and battery storage. The batteries are charged by solar powered cells or panels. These may be mounted by various means. These may be mounted on the structure itself or in the case of a pipeline on a column designed for this purpose which may also conveniently house the hardware and service access.
  • It is anticipated that other alternative forms of environmentally friendly or cost effective forms of power supply may be utilized. These may include wind, thermo electric generators (TEGs) or turbine generation.
  • The use of solar or other environmentally friendly forms of power generation and storage provides a long-life system with environmentally favourable power generation thereby minimizing the environmental impact. It is anticipated that the total CO2 footprint for the 1.5 mm diameter MMO/TlO2 anode will be around 0.473 kgsm.
  • The output power to the structure is controlled by a DC input/output regulator. Preferably, the system will be capable of operating at a number of output capacity ranges. Typically, these would be 50, 150, 500 and 1000 mA. However, these figures are by way of example only. The range may vary depending upon the application. Preferably, this would also be provided with lightning and surge protection. Typically, the output regulator is approximately 30 mm×80 mm. The output regulator and control circuitry are designed to fit within a small control box which may be fitted on the structure or support column or, where applicable, on a structure within close proximity such as a suburban lamppost.
  • The system design can also accommodate a range of optional monitoring systems.
  • The system can accommodate the inclusion of a permanently installed reference cell to allow monitoring of the protection system by conventional manual methods or via an electronic interface or SCADA system.
  • Alternatively, the system can accommodate remote electronic surveillance and monitoring systems to provide continuous electronic monitoring and reporting via satellite or a GSM communications system. Accordingly, the system is capable of reducing the need to travel to sites for inspection and testing.
  • Alternatively, the system can also accommodate an automatically controlled output regulated system that incorporates the above reference cells. This may be set during commissioning to allow for a set protection level and also regulates output in automatic control mode.
  • The above system utilizes inert anodes that do not galvanically corrode and increases the active zone of the anode, thus greatly increasing the life expectancy of the system over those systems currently known and in use. It is anticipated that the system of the present invention will have a life of at least 50 years. To accord with the anticipated life expectancy, the anode bed, electronics and related electrical components are also all designed to a specification of at least a 50 year life expectancy. The advantage of the above invention over current systems is that it provides a compact system with a 50 year life expectancy which is easy to install even in difficult conditions. It is also able to be modified so as to provide a level of flexibility.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order that this invention may be more readily understood and put into practical effect, a preferred form of the present invention will now be described by way of example with reference to the accompanying drawings wherein:
  • FIG. 1 is a cross-sectional view of a preferred embodiment of the impressed current cathodic protection system.
  • FIG. 2 is a cross-sectional elevational view of a further preferred embodiment of the system of the present invention showing a solar powered impressed current cathodic protection system and reference cell installation.
  • FIG. 3 is a cross-sectional side view of the embodiment in FIG. 2.
  • FIG. 4 is a detailed front elevational view of the solar panel and supporting column, foundation for the solar powered installation in FIGS. 2 and 3 and of the housing for the regulator and control circuitry.
  • FIG. 5 is a further detailed front elevational view of the solar panel, supporting column, foundation and baseplate for the solar powered installation in FIGS. 2 and 3.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIG. 1, there is shown an impressed current cathodic protection system for steel (& cast iron?) structures (1) which comprises an inert mixed metal oxide (MMO) anode wire (2) surrounded by a zone of calcined petroleum coke (3) contained within a tubular sleeve (4) sealed at both ends (5) and connected via a cable tail (6) to a power supply. Preferably, the system is driven by a DC power supply, which in this embodiment is a sealed battery cell (not shown).
  • The system also has an output regulator (not shown) to control the flow of current to the target structure.
  • In this preferred form of the invention, the specification for the calcined petroleum coke is as follows:
  • Fixed carbon: 99.35%
  • Ash: 0.6%
  • Moisture: 0.05%
  • Volatiles: Nil at 950° C.
  • Bulk Density: 74 lbs. per cubic foot.
  • Predominantly round particles.
  • All particles surface modified for maximum electrical conductivity.
  • Particle Sizing: Dust free with a maximum particle size of 1 mm.
  • Minimum calcination temperature of base materials in excess of 1200° C.
  • Base materials calcined under ISO 9002 quality control.
  • Surfactants added to assist pumping and settling.
  • No de-dusting oils used during the manufacture of base particles.
  • This material was selected as it exhibited the best electrical properties and reliability under the conditions tested.
  • Referring to FIGS. 2 & 3, there is shown an elevational and side view respectively of a further preferred embodiment of the cathodic protection system (which may be comprised of one or a bed of anodes) of the present invention. FIGS. 2 and 3 show the placement of the cathodic protection system (1) and a reference cell (7) relative to pipeline (8), being the target structure in this case. The cathodic protection system (1) and reference cell (7) are embedded in sand (9) at a safe burial distance from the pipeline (8). This is covered by a layer of rock/free backfill (10) and generally topped with a finished grade (11). In this embodiment, the system is provided with solar input power generation. The cathodic protection system is connected by cables (12) to one or more batteries. The batteries are charged by solar cells on one or more solar panels (13). These are mounted on a supporting column (14) with baseplate (15) in concrete foundation (15). The output regulator, control circuitry and service access are located in housing (17) at the base of the column (14) with access door (18) for ease of access. A detailed view of the column (14), foundation (16), housing (17) and baseplate (15) are provided in FIG. 4. Structural components and related equipment are manufactured to applicable local building and safety standards.
  • In other forms of the invention, it is envisaged that other alternative forms of environmentally friendly or cost effective forms of power supply may be utilized. These may include wind, TEGs or turbine generation.
  • It will of course be realized that while the foregoing has been given by way of illustrative example of this invention, all such and other modifications and variations thereto as would be apparent to persons skilled in the art are deemed to fall within the broad scope and ambit of this invention as is herein set forth.

Claims (38)

1. An impressed current cathodic protection system for a target structure (susceptible to corrosion) comprising:
An inert mixed metal oxide anode surrounded by a tightly packed conductive zone;
Connected to a power supply source; and
Having an input/output regulator to control the flow of current to the target structure.
2. An impressed current cathodic protection system for a target structure according to claim 1 in which the target structure is of steel;
3. An impressed current cathodic protection system for a target structure according to claim 1 in which the target structure is of cast iron.
4. An impressed current cathodic protection system according to claim 1 wherein the anode is comprised of a mixed metal oxide (“MMO”).
5. An impressed current cathodic protection system according to claim 1, wherein at least one of the surface metals in the MMO anode is selected from the earth derivatives.
6. An impressed current cathodic protection system according to claim 5 wherein at least one of the surface metals in the MMO anode is RuO2.
7. An impressed current cathodic protection system according to claim 5 wherein at least one of the surface metals in the MMO anode is IrO2.
8. An impressed current cathodic protection system according to claim 5 wherein at least one of the surface metals in the MMO anode is PtO0.12.
9. An impressed current cathodic protection system according to claim 5 wherein the amount of the said metal is up to 10-12 g per square metre.
10. An impressed current cathodic protection system claim 4, wherein the other surface metal in the MMO anode is typically in the form of TiO2
11. An impressed current cathodic protection system according to claim 4, in which the interior of the MMO anode is made of a metal which prevents corrosion of the interior
12. An impressed current cathodic protection system according to claim 4 in which the interior of the MMO anode is made of titanium.
13. An impressed current cathodic protection system according to claim 1 in which the tightly packed conductive zone effectively increases the active zone of the anode.
14. An impressed current cathodic protection system according to claim 1 in which the tightly packed conductive zone is in the form of a powder with a low moisture content.
15. An impressed current cathodic protection system according to claim 1 in which the tightly packed conductive zone is comprised of calcined petroleum coke.
16. An impressed current cathodic protection system according to claim 15 in which the calcined petroleum coke is comprised of:
Fixed carbon: 99.35%
Ash: 0.6%
Moisture: 0.05%
Volatiles: Nil at 950° C.
Bulk Density: 74 lbs. per cubic foot.
Predominantly round particles.
All particles surface modified for maximum electrical conductivity.
Particle Sizing: Dust free with a maximum particle size of 1 mm.
Minimum calcination temperature of base materials in excess of 1200° C.
Base materials calcined under specified quality control.
Surfactants added to assist pumping and settling.
No de-dusting oils used during the manufacture of base particles.
17. An impressed current cathodic protection system according to claim 1 in which the anode and surrounding tightly packed conductive zone is contained within a tubular sleeve sealed at both ends.
18. An impressed current cathodic protection system according to claim 17 in which the tubular sleeve is comprised of a non degradable permeable synthetic or linen cloth or other suitable material.
19. An impressed current cathodic protection system according to claim 1 in which a number of anodes are placed into an anode bed
20. An impressed current cathodic protection system according to claim 1 wherein the system is driven by a DC power supply stored in a sealed battery cell.
21. An impressed current cathodic protection system according to claim 1 in which the system power supply is provided by means of solar input power generation and battery storage.
22. An impressed current cathodic protection system according to claim 21 in which the solar input power generation is in the form of solar powered cells or panels.
23. An impressed current cathodic protection system according to claim 1 in which the system power supply is generated by means of wind power.
24. An impressed current cathodic protection system according to claim 1 in which the system power supply is generated by means of thermo electric generators.
25. An impressed current cathodic protection system according to claim 1 in which the system power supply is generated by means of turbines.
26. An impressed current cathodic protection system according to claim 1 in which the total CO2 footprint for the 1.5 mm diameter MMO/TiO2 anode will be about 0.473 kgs/m.
27. An impressed current cathodic protection system according to claim 1 wherein the power to the structure is controlled by a DC input/output regulator.
28. An impressed current cathodic protection system according to claim 27 wherein the system is capable of operating at a number of output capacity ranges.
29. An impressed current cathodic protection system according to according to claim 28 wherein the system is capable of operating at about 50, 150, 500 and 1000 mA.
30. An impressed current cathodic protection system according to claim 27 wherein the input/output regulator and control circuitry are designed to fit within a small control box which may be fitted on the structure or support column or, where applicable, on a structure within close proximity.
31. An impressed current cathodic protection system according to claim 1 wherein the system is optionally provided with lightning and surge protection.
32. An impressed current cathodic protection system according to claim 1 wherein the system is optionally provided with monitoring systems.
33. An impressed current cathodic protection system according to claim 1 wherein the system is optionally provided with one or more permanently installed reference cells to allow monitoring of the protection system by conventional manual methods or via an electronic interface or SCADA system.
34. An impressed current cathodic protection system according to claim 1 wherein the system is optionally provided with a remote electronic surveillance and monitoring system to provide continuous electronic monitoring and reporting via satellite or a GSM communications system.
35. An impressed current cathodic protection system according to claim 1 wherein the system is optionally provided with a remote automatically controlled input/output regulated system.
36. A method of operating an impressed current cathodic protection system by means of the apparatus disclosed herein with reference to the description and drawings.
37. A method of operating an impressed current cathodic protection system by means of the apparatus disclosed herein in which the total CO2 footprint for the 1.5 mm diameter MMO/TiO2 anode will be about 0.473 kgs/m
38. A method of operating an impressed current cathodic protection system by means of the apparatus disclosed herein with reference to the description and drawings.
US14/394,406 2012-04-11 2013-04-11 Cathodic protection system Abandoned US20150068919A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2012901419 2012-04-11
AU2012901419A AU2012901419A0 (en) 2012-04-11 Cathodic protection system
PCT/AU2013/000376 WO2013152398A1 (en) 2012-04-11 2013-04-11 Cathodic protection system

Publications (1)

Publication Number Publication Date
US20150068919A1 true US20150068919A1 (en) 2015-03-12

Family

ID=49326953

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/394,406 Abandoned US20150068919A1 (en) 2012-04-11 2013-04-11 Cathodic protection system

Country Status (4)

Country Link
US (1) US20150068919A1 (en)
EP (1) EP2836624A4 (en)
AU (1) AU2013247398A1 (en)
WO (1) WO2013152398A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170121828A1 (en) * 2015-11-03 2017-05-04 Vector Corrosion Technologies Ltd. Cathodic Corrosion Protection
US20190062927A1 (en) * 2017-08-25 2019-02-28 David William Whitmore Manufacture of Sacrificial Anodes
US20190093237A1 (en) * 2017-08-25 2019-03-28 David William Whitmore Manufacture of Sacrificial Anodes
CN110158096A (en) * 2019-06-10 2019-08-23 上海电力学院 The etch-proof device of seawater equipment is realized using solar power generation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154888A (en) * 2015-08-06 2015-12-16 北京市燃气集团有限责任公司 Alternating current relieving method suitable for town gas pipe network

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018715A (en) * 1976-06-29 1977-04-19 Tatum Joe F Ground electrode backfill composition
US5139634A (en) * 1989-05-22 1992-08-18 Colorado Interstate Gas Company Method of use of dual bed cathodic protection system with automatic controls
US5225058A (en) * 1990-02-26 1993-07-06 Nuova Polmet Cathodic Protection S.R.L. Control and automatic regulation device for cathodic protection systems in reinforced concrete structures
US5411646A (en) * 1993-05-03 1995-05-02 Corrpro Companies, Inc. Cathodic protection anode and systems
US5948218A (en) * 1994-04-21 1999-09-07 N.V. Raychem S.A. Corrosion protection system
US20040112737A1 (en) * 2002-12-16 2004-06-17 Benham Roger A. Cathodic protection system for metallic structures
US20080156660A1 (en) * 2005-09-20 2008-07-03 Industrie De Nora S.P.A. Discrete anode for cathodic protection of reinforced concrete
US20110049894A1 (en) * 2006-10-06 2011-03-03 Green William M Electricity Generating Assembly
US20110238347A1 (en) * 2010-03-24 2011-09-29 Elecsys Corporation Apparatus and system for automated pipeline testing
US20120031751A1 (en) * 2010-08-04 2012-02-09 Omidreza Moghbeli Multipurpose Segmented Titanium Mixed Metal Oxide (MMO) Coated Anode with Integrated Vent

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0085582A1 (en) * 1982-02-05 1983-08-10 Harco Corporation Cathodic protection using conductive polymer concrete
IT1170053B (en) * 1983-12-23 1987-06-03 Oronzio De Nora Sa PRE-PACKED DISPERSER ANODE WITH BACKFILL IN FLEXIBLE STRUCTURE FOR CATHODIC PROTECTION WITH IMPRESSED CURRENTS
US5104502A (en) * 1989-12-18 1992-04-14 Oronzio De Nora S.A. Cathodic protection system and its preparation
US5292411A (en) * 1990-09-07 1994-03-08 Eltech Systems Corporation Method and apparatus for cathodically protecting reinforced concrete structures
US5476576A (en) * 1991-08-15 1995-12-19 Winn And Coales International Limited Impressed current cathodic protection system
AU2009251723B2 (en) * 2008-03-31 2013-04-18 Aep & T, Inc. Polymeric, non-corrosive cathodic protection anode
US7879204B2 (en) * 2008-08-19 2011-02-01 Miki Funahashi Rejuvenateable cathodic protection anodes for reinforcing steel in concrete and soil
US8133381B2 (en) * 2010-06-01 2012-03-13 Gas Technology Institute Cased pipe internal cathodic protection apparatus and method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018715A (en) * 1976-06-29 1977-04-19 Tatum Joe F Ground electrode backfill composition
US5139634A (en) * 1989-05-22 1992-08-18 Colorado Interstate Gas Company Method of use of dual bed cathodic protection system with automatic controls
US5225058A (en) * 1990-02-26 1993-07-06 Nuova Polmet Cathodic Protection S.R.L. Control and automatic regulation device for cathodic protection systems in reinforced concrete structures
US5411646A (en) * 1993-05-03 1995-05-02 Corrpro Companies, Inc. Cathodic protection anode and systems
US5948218A (en) * 1994-04-21 1999-09-07 N.V. Raychem S.A. Corrosion protection system
US20040112737A1 (en) * 2002-12-16 2004-06-17 Benham Roger A. Cathodic protection system for metallic structures
US20080156660A1 (en) * 2005-09-20 2008-07-03 Industrie De Nora S.P.A. Discrete anode for cathodic protection of reinforced concrete
US20110049894A1 (en) * 2006-10-06 2011-03-03 Green William M Electricity Generating Assembly
US20110238347A1 (en) * 2010-03-24 2011-09-29 Elecsys Corporation Apparatus and system for automated pipeline testing
US20120031751A1 (en) * 2010-08-04 2012-02-09 Omidreza Moghbeli Multipurpose Segmented Titanium Mixed Metal Oxide (MMO) Coated Anode with Integrated Vent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Asbury (2005, http://www.e-mac.ca/pdfs/Catalog/4_Anode_Backfill/1_Coke_Breeze/2_Asbury_251P.pdf) *
Farwest (2013, https://www.farwestcorrosion.com/fw/downloads/Section_C_Cathodic_Protection_Backfill.pdf) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170121828A1 (en) * 2015-11-03 2017-05-04 Vector Corrosion Technologies Ltd. Cathodic Corrosion Protection
JP2019501277A (en) * 2015-11-03 2019-01-17 ベクター コロージョン テクノロジーズ エルティーディー. Cathodic protection
JP2020002468A (en) * 2015-11-03 2020-01-09 ベクター コロージョン テクノロジーズ エルティーディー. Cathodic corrosion protection
US10640877B2 (en) * 2015-11-03 2020-05-05 Vector Remediation Ltd. Cathodic corrosion protection
US20190062927A1 (en) * 2017-08-25 2019-02-28 David William Whitmore Manufacture of Sacrificial Anodes
JP2019039066A (en) * 2017-08-25 2019-03-14 ウィリアム ウィットモア—,デイビッド Production of sacrificial anode
US20190093237A1 (en) * 2017-08-25 2019-03-28 David William Whitmore Manufacture of Sacrificial Anodes
US10570523B2 (en) * 2017-08-25 2020-02-25 David William Whitmore Manufacture of sacrificial anodes
US11346009B2 (en) * 2017-08-25 2022-05-31 David William Whitmore Manufacture of sacrificial anodes
JP7093966B2 (en) 2017-08-25 2022-07-01 ウィリアム ウィットモア―,デイビッド Manufacture of sacrificial anodes
CN110158096A (en) * 2019-06-10 2019-08-23 上海电力学院 The etch-proof device of seawater equipment is realized using solar power generation

Also Published As

Publication number Publication date
WO2013152398A1 (en) 2013-10-17
EP2836624A4 (en) 2015-12-30
AU2013247398A1 (en) 2014-11-27
EP2836624A1 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
US20150068919A1 (en) Cathodic protection system
CN202030825U (en) Deep well anode/cathode protection device for protecting embedded steel pipeline
CN103726057B (en) The anti-corrosion method of the corrosion protection system on a kind of offshore wind farm unit basis
CN101184869A (en) Control apparatus, system, and method for reduction and/or prevention of space weather induced corrosion
CN201148467Y (en) Combined anode and cathode protection apparatus
CN209443087U (en) Cathode protection device
CN101761729A (en) Trenchless construction large-diameter pipeline corrosion control joint construction method
CN104767042A (en) Anti-corrosion resistance reduction grounding electrode
CN110819994A (en) Forced current cathodic protection method for tank bottom outer wall under impermeable membrane condition
KR101518182B1 (en) A electrode unit for measuring anticorrosion potential of underground metal structure
CN204608161U (en) Galvanic protection earthing pole
CN207852955U (en) A kind of anticorrosion grounding apparatus
CN204481142U (en) Corrosion-preventing and resistance-reducing grounding pole
CN211109148U (en) Oil storage tank device
Taheri et al. Inspection and mitigation of underground corrosion at anchor shafts of telecommunication towers
CN103014722B (en) Device for installing impressed current cathodic protection system on offshore platform
CN101696503A (en) Cathodic protection system for trenchless construction large diameter pipeline
Alzetouni Impressed current cathodic protection for oil well casing and associated flow lines
CN105239079B (en) A kind of down conductor cathodic protection anti-corrosion method
CN209227063U (en) Vertical permanent cathodic protection anode device
KR102312001B1 (en) Small-scale dedicated rectifier system of district gas governor
CN201144286Y (en) Flexible anti-corrosive anode
US20100270145A1 (en) Anti-vandalism bunker for cathodic protection rectifiers
JP4968129B2 (en) Intercavity filling method for buried double pipes, anticorrosion management method for buried double pipes
Hakim et al. Optimization of application Impressed Current Cathodic Protection design on the jetty steel structure to corrosion control

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION