US20150085417A1 - Electrical energy saving system - Google Patents

Electrical energy saving system Download PDF

Info

Publication number
US20150085417A1
US20150085417A1 US14/559,328 US201414559328A US2015085417A1 US 20150085417 A1 US20150085417 A1 US 20150085417A1 US 201414559328 A US201414559328 A US 201414559328A US 2015085417 A1 US2015085417 A1 US 2015085417A1
Authority
US
United States
Prior art keywords
line
phase
surge
voltage
rated value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/559,328
Inventor
Jerry B. Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Black Hawk Energy Products LLC
Original Assignee
Black Hawk Energy Products LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Black Hawk Energy Products LLC filed Critical Black Hawk Energy Products LLC
Priority to US14/559,328 priority Critical patent/US20150085417A1/en
Publication of US20150085417A1 publication Critical patent/US20150085417A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/08Limitation or suppression of earth fault currents, e.g. Petersen coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • Embodiments of the present invention solve the above-mentioned problems and provide a distinct advance in the art of supplying alternating current (AC) electric power to a load. More particularly, embodiments of the invention provide methods and systems that condition the power supplied to a load from an AC electric power supply in order to save electrical energy.
  • AC alternating current
  • the first set surge arresters 24 may include two surge arresters 24 a, 24 b, as depicted in FIG. 1 .
  • the surge arresters 24 a, 24 b may include surge suppressors or lightning arresters or other devices that operate on the general principle of presenting an open circuit or high impedance between two ports when the voltage between the two ports is less than or equal to a given value and presenting a short circuit or low impedance between the two ports when the voltage therebetween exceeds the given value.
  • one of the ports may be coupled to one of the phases 16 , 18 , 20 and the other port may be coupled to the neutral line.
  • the surge arresters 24 a, 24 b may be generally passive elements and may include such components as metal-oxide varistors or the like.
  • surge arresters 24 a, 24 b of different current ratings may be included in some embodiments, it may be possible to include surge arresters 24 a, 24 b of different current ratings as long as the sum of the current ratings for all the surge arresters 24 a, 24 b, etc. is equal to or greater than the total current drawn by the load 12 .
  • the surge arrester 24 a may be oriented in the system 10 such that the first port 36 a is coupled to the first phase 16 , the second port 36 b is coupled to the second phase 18 , and the ground port 36 c is coupled to the neutral line 22 .
  • the surge arrester 24 b may be oriented in the system 10 such that the first port 36 d is coupled to the first phase 16 , the second port 36 e is coupled to the second phase 18 , and the ground port 36 f is coupled to the neutral line 22 .
  • the third set of surge arresters 28 may also include two surge arresters 28 a, 28 b, which may function substantially the same way as the surge arresters 24 a , 24 b described above.
  • the surge arrester 28 a may include a first port 40 a, a second port 40 b, and a ground port 40 c.
  • the surge arrester 28 b may include a first port 40 d, a second port 40 e, and a ground port 40 f.
  • the surge arrester 28 a may be oriented in the system 10 such that the first port 40 a is coupled to the second phase 18 , the second port 40 b is coupled to the third phase 20 , and the ground port 40 c is coupled to the neutral line 22 .
  • the surge arrester 28 b may be oriented in the system 10 such that the first port 40 d is coupled to the second phase 18 , the second port 40 e is coupled to the third phase 20 , and the ground port 40 f is coupled to the neutral line 22 .
  • the three-phase surge suppressor 30 may present a low impedance between the second port 44 and the ground port 48 if the voltage therebetween exceeds a rated value, and may present a low impedance between the third port 46 and the ground port 48 if the voltage therebetween exceeds a rated value.
  • the three-phase surge suppressor 30 may be oriented in the system 10 such that the first port 42 is coupled to the first phase 16 , the second port 44 is coupled to the second phase 18 , the third port 46 is coupled to the third phase 20 , and the ground port 48 is coupled to the neutral line 22 .
  • the plurality of capacitors 32 generally maintains the voltage level of any of the first phase 16 , the second phase 18 , or the third phase 20 with respect to one another whenever the load 12 changes, such as whenever a load is added as may occur during the starting of an electric motor.
  • the plurality of capacitors 32 may also serve to correct the power factor by reducing the reactive power consumed by highly inductive loads such as electric motors.
  • the plurality of capacitors 32 may include many types of capacitors such as electrolytic or polypropylene dielectric capacitors.
  • the plurality of capacitors 32 may include at least a first capacitor 50 , a second capacitor 52 , and a third capacitor 54 .
  • the three capacitors may be substantially similar.
  • the first capacitor 50 , the second capacitor 52 , and the third capacitor 54 may include one or more physical capacitors coupled in parallel. Examples of the first capacitor 50 , the second capacitor 52 , and the third capacitor 54 may include the HID 4446-P 280 VAC, 28 microfarad capacitor from Aerovox Corporation of New Bedford, Mass.
  • the surge arresters 112 a, 112 b may have an electric current rating which may be used to determine the number of surge arresters 112 a, 112 b, etc. included in the first set of surge arresters 112 . For example, if the surge arresters 112 a, 112 b has a current rating of 10 A and the total amount of current drawn by the load 104 is 50 A, then the first set of surge arresters 112 may include five surge arresters 112 a, 112 b, etc.
  • the system 100 may further include a second set of surge arresters 118 , including surge arresters 118 a, 118 b, that are substantially similar to the surge arresters 112 .
  • the surge arrester 116 a includes a first port 136 a coupled to the second phase 108 , a second port 136 b coupled to the first phase 106 , and a ground port 136 c coupled to the neutral line 110 .
  • the surge arrester 118 b includes a first port 136 d coupled to the second phase 108 , a second port 136 e coupled to the first phase 106 , and a ground port 136 f coupled to the neutral line 110 .
  • the single-phase surge suppressor 114 may include surge suppressors, surge protectors, surge arresters, combinations thereof, and the like.
  • the single-phase surge suppressor 114 may be a generally passive element and may include such components as metal-oxide varistors or the like.
  • the single-phase surge suppressor 114 may include a first port 120 , a second port 122 , and a ground port 124 .
  • the single-phase surge suppressor 114 may provide a low impedance to the ground port 124 if the voltage between the first port 120 and the second port 122 exceeds a rated value, or if the voltage between either port 120 , 122 and the ground port 124 exceeds a rated value.
  • the single-phase surge suppressor 114 may be oriented in the system 100 such that the first port 120 is coupled to the first phase 106 , the second port 122 is coupled to the second phase 108 , and the ground port 124 is coupled to the neutral line 110 .
  • FIG. 3 To illustrate the performance of the system 100 , applicant implemented the system 100 at a residence and measured various power parameters both with the system 100 operating and with the system 100 not operating. The results of the measurement are shown in FIG. 3 .
  • the real power, the apparent power, the reactive power, and the power factor were measured in the vicinity of the system 100 at regular intervals on a particular day.
  • a first plot 300 shows the real power measured in kiloWatts (kW) vs. the time of day (in military time).
  • a second plot 302 shows the apparent power measured in kiloVoltAmps (kVA) vs. time of day.
  • a third plot 304 shows the reactive power measured in kiloVoltAmps Reactive (kVAR) vs. time of day.
  • a fourth plot 306 shows the power factor (in a range from approximately zero to approximately one) vs. time of day.
  • the system 100 was in operation.
  • the magnitudes of the real power and the apparent power reflected the activity of various loads 104 .
  • the reactive power averaged approximately 0 kVAR and the power factor averaged approximately 1.
  • the system 100 was decoupled from the electric power supply 102 and the load 104 .
  • the magnitudes of the real power and the apparent power increased.
  • the magnitude of the reactive power increased in the negative direction, and the power factor averaged at a value less than 1.
  • the load 104 consumed greater real power, apparent power, and reactive power.
  • the power factor reduced to less than 1.

Abstract

A system for conditioning the three-phase alternating current electric power, including a first phase, a second phase, a third phase, and a neutral line, supplied to a load includes a plurality of first surge arresters, a plurality of second surge arresters, a plurality of third surge arresters, a three-phase surge suppressor, and a plurality of capacitors. The surge arresters minimize the amount by which the voltage between two phases and the neutral line exceeds a rated value. The three-phase surge suppressor minimizes the amount by which the voltage between the three phases and the neutral line exceeds a rated value. The capacitors minimize the amount by which the voltage between two phases falls below a rated value.

Description

    RELATED APPLICATION
  • The current patent application is a continuation patent application which claims priority benefit, with regard to all common subject matter, of earlier-filed U.S. patent application titled “ELECTRICAL ENERGY SAVING SYSTEM”, Ser. No. 12/579,030, filed Oct. 14, 2009. The identified earlier-filed application is hereby incorporated by reference in its entirety into the present application.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • Embodiments of the present invention relate to methods and systems for supplying alternating current (AC) electric power to a load. More particularly, embodiments of the present invention relate to methods and systems that condition the power supplied to a load from an AC electric power supply in order to save electrical energy.
  • 2. Description of the Related Art
  • AC electric power supplied from a utility company may include transient spikes or surges in the line voltage, wherein the voltage level is greater than it should be, as a result of lightning or electrical storm activity or various other phenomena. In addition, the line voltage may experience droops or sags, wherein the voltage level is less than it should be, as a result of increased loading of the power supply. These variations in the level of the voltage supplied to a load may lead to additional wear on devices connected to the power supply and increased electrical energy consumed in the form of additional heat produced in the electrical system wiring and additional start-up current load.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention solve the above-mentioned problems and provide a distinct advance in the art of supplying alternating current (AC) electric power to a load. More particularly, embodiments of the invention provide methods and systems that condition the power supplied to a load from an AC electric power supply in order to save electrical energy.
  • One embodiment of the invention is a system for conditioning the three phase alternating current electric power, including a first phase, a second phase, a third phase, and a neutral line, supplied to a load. The system broadly comprises a plurality of first surge arresters, a plurality of second surge arresters, a plurality of third surge arresters, a three-phase surge suppressor, and a plurality of capacitors. The first surge arresters may be coupled to the first phase, the second phase, and the neutral line and may minimize the amount by which the voltage between two phases and the neutral line exceeds a rated value. The second surge arresters may be coupled to the second phase, the third phase, and the neutral line and may minimize the amount by which the voltage between two phases and the neutral line exceeds the rated value. The third surge arresters may be coupled to the first phase, the third phase, and the neutral line and may minimize the amount by which the voltage between two phases and the neutral line exceeds the rated value. The three phase surge suppressor may be coupled to the first phase, the second phase, the third phase, and the neutral line and may minimize the amount by which the voltage between the three phases and the neutral line exceeds the rated value. The capacitors may include a first capacitor coupled to the first phase and the second phase, a second capacitor coupled to the second phase and the third phase, and a third capacitor coupled to the first phase and the third phase, and may minimize the amount by which the voltage between two phases falls below the rated value.
  • Another embodiment of the invention is a system for conditioning a single phase alternating current electric power, including a first phase, a second phase, and a neutral line, supplied to a load. The system broadly comprises a plurality of first surge arresters, a single phase surge suppressor, and a capacitor. The first surge arresters may be coupled to the first phase, the second phase, and the neutral line and configured to minimize the amount by which the voltage between the first phase and the second phase exceeds a rated value by presenting a low impedance to the neutral line when the voltage between the first phase and the second phase exceeds the rated value. The single phase surge suppressor may be coupled to the first phase, the second phase, and the neutral line and configured to minimize the amount by which the voltage between the two phases and the neutral line exceeds a rated value by presenting the low impedance to the neutral line when either the first phase or the second phase exceeds the rated value. The capacitor may be coupled to the first phase and the second phase and configured to minimize the amount by which the voltage between the first phase and the second phase falls below the rated value.
  • This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
  • Other aspects and advantages of the present invention will be apparent from the following detailed description of the embodiments and the accompanying drawing figures.
  • BRIEF DESCRIPTION OF THE DRAWING FIGURES
  • Embodiments of the present invention are described in detail below with reference to the attached drawing figures, wherein:
  • FIG. 1 is a block diagram of a system constructed in accordance with at least one embodiment of the present invention for conditioning a three phase alternating current electric power supplied to a load;
  • FIG. 2 is a block diagram of a system constructed in accordance with another embodiment of the invention for conditioning a single phase alternating current electric power supplied to a load; and
  • FIG. 3 is a graph of four plots of measured parameters of the FIG. 2 embodiment of the system implemented at a residence.
  • The drawing figures do not limit the present invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The following detailed description of the invention references the accompanying drawings that illustrate specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
  • A system 10 constructed in accordance with various embodiments of the present invention for conditioning the power supplied to a load 12 from an alternating current (AC) electric power supply 14 is shown in FIG. 1. The electric power supply 14, in various embodiments, may be a three-phase electric power source and may represent the electric power supplied from a utility company, a generator, or similar source. The electric power supply 14 may present a first phase 16, a second phase 18, a third phase 20, and a neutral line 22, wherein the angular difference of the voltage between any two phases is 120 degrees, as known to those skilled in the art. The load 12 may be any commonly implemented load that draws electric power such as motors, compressors, turbines, lighting, heating, combinations thereof, or other industrial, commercial, or residential loads. The load 12 may be balanced between the first phase 16, the second phase 18, and the third phase 20, or the load 12 may be unbalanced.
  • The system 10 may broadly comprise a first set of surge arresters 24, a second set of surge arresters 26, a third set of surge arresters 28, a three-phase surge suppressor 30, and a plurality of capacitors 32. The system 10 is generally positioned between the electric power supply 14 and the load 12, and may be utilized with existing electric power supply 14 structures in an industrial, commercial, or residential setting. Or, the system 10 may be integrated into a new residence or other building. In embodiments for usage with a new electric power supply 14 structure, the components of the system 10 may be incorporated in an electric power distribution control panel. In other embodiments for usage with an existing residence or building, the system 10 may be enclosed in a housing or insulated box, typically in close proximity to the electric power delivery point, such as a wiring panel, for a facility, building, or residence. The housing may be designed to output four wires that couple with each of the phases 16, 18, 20 and the neutral line 22 of the existing electric power wiring.
  • In one embodiment, the first set surge arresters 24 may include two surge arresters 24 a, 24 b, as depicted in FIG. 1. The surge arresters 24 a, 24 b may include surge suppressors or lightning arresters or other devices that operate on the general principle of presenting an open circuit or high impedance between two ports when the voltage between the two ports is less than or equal to a given value and presenting a short circuit or low impedance between the two ports when the voltage therebetween exceeds the given value. In various embodiments, one of the ports may be coupled to one of the phases 16, 18, 20 and the other port may be coupled to the neutral line. The surge arresters 24 a, 24 b may be generally passive elements and may include such components as metal-oxide varistors or the like.
  • In various embodiments, the surge arrester 24 a may present a single phase, two-pole, three-wire configuration, and may include a first port 36 a, a second port 36 b, and a ground port 36 c. An example of the surge arrester 24 a may include the AG2401C from Intermatic of Spring Grove, Ill. The two-pole surge arrester 24 a may monitor the voltage between two set of ports independently—between the first port 36 a and the ground port 36 c, and between the second port 36 b and the ground port 36 c. Thus, the surge arrester 24 a may present a low impedance between the first port 36 a and the ground port 36 c if the voltage therebetween exceeds a rated value. Likewise, the surge arrester 24 a may present a low impedance between the second port 36 b and the ground port 36 c if the voltage therebetween exceeds a rated value. The surge arrester 24 a may have an additional mode of operation, wherein the surge arrester 24 a presents a low impedance from either or both of the first port 36 a and the second port 36 b to the ground port 36 c when the voltage between the first port 36 a and the second port 36 b exceeds a rated value. The surge arrester 24 b may be substantially similar to the surge arrester 24 a and may include a first port 36 d, a second port 36 e, and a ground port 36 f.
  • The surge arrester 24 a may further include an electric current rating which corresponds to the rated amount of current that can be handled by the surge arrester 24 a. Thus, the number of surge arresters 24 a, 24 b, etc. included in the plurality of first surge arresters 24 is related to the total amount of current the load 12 is expected to draw divided by the current rating of each surge arrester 24 a, 24 b. For example, if the total current drawn by the load 12 is 200 amperes (A) and each surge arrester 24 a, 24 b is rated for 40 A, then there may be 200A/40A=5 surge arresters 24 a, 24 b, etc. included in the plurality of first surge arresters 24. In some embodiments, it may be possible to include surge arresters 24 a, 24 b of different current ratings as long as the sum of the current ratings for all the surge arresters 24 a, 24 b, etc. is equal to or greater than the total current drawn by the load 12.
  • The surge arrester 24 a may be oriented in the system 10 such that the first port 36 a is coupled to the first phase 16, the second port 36 b is coupled to the second phase 18, and the ground port 36 c is coupled to the neutral line 22. The surge arrester 24 b may be oriented in the system 10 such that the first port 36 d is coupled to the first phase 16, the second port 36 e is coupled to the second phase 18, and the ground port 36 f is coupled to the neutral line 22.
  • The second set of surge arresters 26 may also include two surge arresters 26 a, 26 b, which may function substantially the same way as the surge arresters 24 a, 24 b described above. The surge arrester 26 a may include a first port 38 a, a second port 38 b, and a ground port 38 c. The surge arrester 26 b may include a first port 38 d, a second port 38 e, and a ground port 38 f. The surge arrester 26 a may be oriented in the system 10 such that the first port 38 a is coupled to the second phase 18, the second port 38 b is coupled to the third phase 20, and the ground port 38 c is coupled to the neutral line 22. The surge arrester 26 b may be oriented in the system 10 such that the first port 38 d is coupled to the second phase 18, the second port 38 e is coupled to the third phase 20, and the ground port 38 f is coupled to the neutral line 22.
  • The third set of surge arresters 28 may also include two surge arresters 28 a, 28 b, which may function substantially the same way as the surge arresters 24 a, 24 b described above. The surge arrester 28 a may include a first port 40 a, a second port 40 b, and a ground port 40 c. The surge arrester 28 b may include a first port 40 d, a second port 40 e, and a ground port 40 f. The surge arrester 28 a may be oriented in the system 10 such that the first port 40 a is coupled to the second phase 18, the second port 40 b is coupled to the third phase 20, and the ground port 40 c is coupled to the neutral line 22. The surge arrester 28 b may be oriented in the system 10 such that the first port 40 d is coupled to the second phase 18, the second port 40 e is coupled to the third phase 20, and the ground port 40 f is coupled to the neutral line 22.
  • The three-phase surge suppressor 30 may include surge suppressors, surge protectors, surge arresters, combinations thereof, and the like. The three-phase surge suppressor 30 may be a generally passive element and may include such components as metal-oxide varistors or the like. The three-phase surge suppressor 30 may include a first port 42, a second port 44, a third port 46, and a ground port 48. An example of the three-phase surge suppressor 30 includes the 120 Volt AC (VAC) transient voltage surge suppressor from Innovative Technology of Moon Township, Pa. In a similar fashion to the surge arrester 34 discussed above, the three-phase surge suppressor 30 may present a low impedance between the first port 42 and the ground port 48 if the voltage therebetween exceeds a rated value. Likewise, the three-phase surge suppressor 30 may present a low impedance between the second port 44 and the ground port 48 if the voltage therebetween exceeds a rated value, and may present a low impedance between the third port 46 and the ground port 48 if the voltage therebetween exceeds a rated value. The three-phase surge suppressor 30 may be oriented in the system 10 such that the first port 42 is coupled to the first phase 16, the second port 44 is coupled to the second phase 18, the third port 46 is coupled to the third phase 20, and the ground port 48 is coupled to the neutral line 22.
  • The plurality of capacitors 32 generally maintains the voltage level of any of the first phase 16, the second phase 18, or the third phase 20 with respect to one another whenever the load 12 changes, such as whenever a load is added as may occur during the starting of an electric motor. The plurality of capacitors 32 may also serve to correct the power factor by reducing the reactive power consumed by highly inductive loads such as electric motors. The plurality of capacitors 32 may include many types of capacitors such as electrolytic or polypropylene dielectric capacitors.
  • The plurality of capacitors 32 may include at least a first capacitor 50, a second capacitor 52, and a third capacitor 54. In various embodiments, the three capacitors may be substantially similar. Further, the first capacitor 50, the second capacitor 52, and the third capacitor 54 may include one or more physical capacitors coupled in parallel. Examples of the first capacitor 50, the second capacitor 52, and the third capacitor 54 may include the HID 4446-P 280 VAC, 28 microfarad capacitor from Aerovox Corporation of New Bedford, Mass.
  • First capacitor 50 may include a first terminal 56 a coupled to the first phase 16 and a second terminal 56 b coupled to the second phase 18. Second capacitor 52 may include a first terminal 58 a coupled to the second phase 18 and a second terminal 58 b coupled to the third phase 20. Third capacitor 54 may include a first terminal 60 a coupled to the third phase 20 and a second terminal 60 b coupled to the first phase 16.
  • A second embodiment of the system 100 that may be utilized with a single phase electric power supply 102 is shown in FIG. 2. The electric power supply 102 may be similar to that which is delivered to a residence or small business wherein 120 VAC is supplied to the load 104. The electric power supply may include a first phase 106, a second phase 108, and a neutral line 110. Typical loads 104 may include common household or business items such as small appliances, lighting, entertainment devices, computing devices, combinations thereof, and the like. Similar to system 10 described above, system 100 may be enclosed in a housing or insulated box, typically in close proximity to the electric power delivery point for the house or business. Alternatively, the components of the system 100 may be incorporated in an electric power distribution control panel. The system 100 may broadly comprise a first set of surge arresters 112, a single-phase surge suppressor 114, and a plurality of capacitors 116.
  • The first set of surge arresters 112 may perform a substantially similar function as the first surge arresters 24 described above, wherein the voltage between the first phase 106 and the second phase 108 is monitored, or the voltage between either phase 106, 108 and the neutral line 110 is monitored. The first set of surge arresters 112 may include two surge arresters 112 a, 112 b. The surge arresters 112 a, 112 b may provide a low impedance path to the neutral line 110 if the voltage between the first phase 106 and the second phase 108 exceeds a rated value, or if the voltage between either phase 106, 108 and the neutral line 110 exceeds a rated value.
  • Like the surge arresters 24 a, 24 b discussed above, the surge arresters 112 a, 112 b may have an electric current rating which may be used to determine the number of surge arresters 112 a, 112 b, etc. included in the first set of surge arresters 112. For example, if the surge arresters 112 a, 112 b has a current rating of 10 A and the total amount of current drawn by the load 104 is 50 A, then the first set of surge arresters 112 may include five surge arresters 112 a, 112 b, etc.
  • The surge arrester 112 a includes a first port 134 a coupled to the first phase 106, a second port 134 b coupled to the second phase 108, and a ground port 134 c coupled to the neutral line 110. The surge arrester 112 b includes a first port 134 d coupled to the first phase 106, a second port 134 e coupled to the second phase 108, and a ground port 134 f coupled to the neutral line 110.
  • In various embodiments, the system 100 may further include a second set of surge arresters 118, including surge arresters 118 a, 118 b, that are substantially similar to the surge arresters 112. The surge arrester 116 a includes a first port 136 a coupled to the second phase 108, a second port 136 b coupled to the first phase 106, and a ground port 136 c coupled to the neutral line 110. The surge arrester 118 b includes a first port 136 d coupled to the second phase 108, a second port 136 e coupled to the first phase 106, and a ground port 136 f coupled to the neutral line 110.
  • The single-phase surge suppressor 114 may include surge suppressors, surge protectors, surge arresters, combinations thereof, and the like. The single-phase surge suppressor 114 may be a generally passive element and may include such components as metal-oxide varistors or the like. The single-phase surge suppressor 114 may include a first port 120, a second port 122, and a ground port 124. The single-phase surge suppressor 114 may provide a low impedance to the ground port 124 if the voltage between the first port 120 and the second port 122 exceeds a rated value, or if the voltage between either port 120, 122 and the ground port 124 exceeds a rated value. The single-phase surge suppressor 114 may be oriented in the system 100 such that the first port 120 is coupled to the first phase 106, the second port 122 is coupled to the second phase 108, and the ground port 124 is coupled to the neutral line 110.
  • The plurality of capacitors 116 generally provides a substantially similar function to the plurality of capacitors 32 above, wherein the capacitors 126, 132 maintain the voltage level between the first phase 106 and the second phase 108 and may provide power factor correction of the electric power supply 102. The plurality of capacitors 116 may include at least a first capacitor 126, which, like the first capacitor 50, includes a first terminal 128 a and a second terminal 128 b. The first terminal 128 a may be coupled to the first phase 106, and the second terminal 128 b may be coupled to the second phase 108. In various embodiments, the plurality of capacitors 116 may also include a second capacitor 132, with a first terminal 130 a coupled to the second phase 108 and a second terminal 130 b coupled to the first phase 106.
  • The applicant believes that the systems 10, 100: elevate and stabilize voltage from the electric power supply 14, 102; reduce electric power supply 14, 102 line voltage drops when the demand from the load 12, 104 increases; balance the voltage between the phases 16, 18, 20, 106, 108; reduce reactive energy loss; reduce demand loads and spikes on an electric power grid to which the systems 10, 100 may be connected; reduce the total demand on the electric power grid to which the systems 10, 100 may be connected; balance line harmonics between the phases 16, 18, 20, 106, 108; reduce low voltage problems; reduce vibration, heating, and noise of components included in the load 12, 104; allow a greater number of users for a single trunk line; and reduce voltage spikes up to 50,000 Volts.
  • To illustrate the performance of the system 100, applicant implemented the system 100 at a residence and measured various power parameters both with the system 100 operating and with the system 100 not operating. The results of the measurement are shown in FIG. 3. With the system 100 implemented between the electric power supply 102 and the load 104, the real power, the apparent power, the reactive power, and the power factor were measured in the vicinity of the system 100 at regular intervals on a particular day. A first plot 300 shows the real power measured in kiloWatts (kW) vs. the time of day (in military time). A second plot 302 shows the apparent power measured in kiloVoltAmps (kVA) vs. time of day. A third plot 304 shows the reactive power measured in kiloVoltAmps Reactive (kVAR) vs. time of day. A fourth plot 306 shows the power factor (in a range from approximately zero to approximately one) vs. time of day.
  • As seen in FIG. 3, from the time of approximately 13:00 until approximately 14:30, the system 100 was in operation. The magnitudes of the real power and the apparent power reflected the activity of various loads 104. The reactive power averaged approximately 0 kVAR and the power factor averaged approximately 1. At around 14:30, the system 100 was decoupled from the electric power supply 102 and the load 104. The magnitudes of the real power and the apparent power increased. The magnitude of the reactive power increased in the negative direction, and the power factor averaged at a value less than 1. Thus, with the system 100 not implemented between the electric power supply 102 and the load 104, the load 104 consumed greater real power, apparent power, and reactive power. Furthermore, the power factor reduced to less than 1.
  • Although the invention has been described with reference to the embodiments illustrated in the attached drawing figures, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims.

Claims (8)

Having thus described various embodiments of the invention, what is claimed as new and desired to be protected by Letters Patent includes the following:
1. A system for conditioning a single phase alternating current electric power, including a first line, a second line, and a neutral line, supplied to a load, the system comprising:
a plurality of first surge arresters including a first terminal connected to the first line, a second terminal connected to the second line, and a third terminal connected to the neutral line and configured to minimize an amount by which the voltage between the first line and the second line exceeds a rated value by presenting a low impedance to the neutral line when the voltage between the first line and the second line exceeds the rated value; and
a capacitor including a first terminal connected to the first line and a second terminal connected to the second line and configured to minimize an amount by which the voltage between the first line and the second line falls below the rated value.
2. The system of claim 1, wherein each of the first surge arresters includes an electric current rating, such that the number of first surge arresters is related to the electric current requirement of the load divided by the electric current rating.
3. The system of claim 1, further comprising a single phase surge suppressor coupled to the first line, the second line, and the neutral line and configured to minimize an amount by which the voltage between the two lines and the neutral line exceeds a rated value by presenting the low impedance to the neutral line when either the first line or the second line exceeds the rated value.
4. The system of claim 3, wherein the first surge arresters and the single phase surge suppressor are passive.
5. A system for conditioning a single phase alternating current electric power, including a first line, a second line, and a neutral line, supplied to a load, the system comprising:
a single phase surge suppressor coupled to the first line, the second line, and the neutral line and configured to minimize an amount by which the voltage between the two lines and the neutral line exceeds a rated value by presenting the low impedance to the neutral line when either the first line or the second line exceeds the rated value;
a plurality of first surge arresters including a first terminal connected to the first line, a second terminal connected to the second line, and a third terminal connected to the neutral line and configured to minimize an amount by which the voltage between the first line and the second line exceeds a rated value by presenting a low impedance to the neutral line when the voltage between the first line and the second line exceeds the rated value; and
a capacitor including a first terminal connected to the first line and a second terminal connected to the second line and configured to minimize an amount by which the voltage between the first line and the second line falls below the rated value.
6. The system of claim 5, wherein each of the first surge arresters includes an electric current rating, such that the number of first surge arresters is related to the electric current requirement of the load divided by the electric current rating.
7. The system of claim 5, wherein the first surge arresters and the single phase surge suppressor are passive.
8. A system for conditioning a single phase alternating current electric power, including a first line, a second line, and a neutral line, supplied to a load, the system comprising:
a single phase surge suppressor coupled to the first line, the second line, and the neutral line and configured to minimize an amount by which the voltage between the two lines and the neutral line exceeds a rated value by presenting the low impedance to the neutral line when either the first line or the second line exceeds the rated value;
a plurality of first surge arresters including a first terminal connected to the first line, a second terminal connected to the second line, and a third terminal connected to the neutral line and configured to minimize an amount by which the voltage between the first line and the second line exceeds a rated value by presenting a low impedance to the neutral line when the voltage between the first line and the second line exceeds the rated value, each first surge arrester including an electric current rating, such that the number of first surge arresters is related to the electric current requirement of the load divided by the electric current rating; and
a capacitor including a first terminal connected to the first line and a second terminal connected to the second line and configured to minimize an amount by which the voltage between the first line and the second line falls below the rated value.
US14/559,328 2008-10-14 2014-12-03 Electrical energy saving system Abandoned US20150085417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/559,328 US20150085417A1 (en) 2008-10-14 2014-12-03 Electrical energy saving system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US19603608P 2008-10-14 2008-10-14
US12/579,030 US8971007B2 (en) 2008-10-14 2009-10-14 Electrical energy saving system
US14/559,328 US20150085417A1 (en) 2008-10-14 2014-12-03 Electrical energy saving system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/579,030 Division US8971007B2 (en) 2008-10-14 2009-10-14 Electrical energy saving system

Publications (1)

Publication Number Publication Date
US20150085417A1 true US20150085417A1 (en) 2015-03-26

Family

ID=42098639

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/579,030 Active 2031-05-28 US8971007B2 (en) 2008-10-14 2009-10-14 Electrical energy saving system
US14/559,328 Abandoned US20150085417A1 (en) 2008-10-14 2014-12-03 Electrical energy saving system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/579,030 Active 2031-05-28 US8971007B2 (en) 2008-10-14 2009-10-14 Electrical energy saving system

Country Status (8)

Country Link
US (2) US8971007B2 (en)
EP (1) EP2342792A4 (en)
JP (1) JP2012506229A (en)
KR (1) KR20110071003A (en)
CN (1) CN102187541A (en)
CA (1) CA2739450C (en)
MX (1) MX2011003794A (en)
WO (1) WO2010045349A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160072290A1 (en) * 2013-06-28 2016-03-10 Korea Electric Power Corporation Apparatus and method for operating distributed generator in connection with power system
CN105633937A (en) * 2016-02-29 2016-06-01 长沙群瑞电子科技有限公司 Single-phase power supply series-wound type overvoltage protector

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK200801782A (en) * 2008-12-15 2010-06-16 Danfoss Ventures As Power saving system and method
US8400025B2 (en) * 2009-02-18 2013-03-19 Erik Keith Walker Apparatus and method for motor driven appliance energy conservation
JP5371634B2 (en) * 2009-08-27 2013-12-18 ヤンマー株式会社 Surge protection circuit in three-phase four-wire circuit
TWI403679B (en) * 2010-04-15 2013-08-01 Delta Electronics Inc Heating apparatus having plurality of induction coils
WO2013036855A2 (en) * 2011-09-07 2013-03-14 Quanta Associates, L.P. Real-time monitoring of electric power system voltage stability margins
US9014868B2 (en) * 2012-03-29 2015-04-21 International Business Machines Corporation Power factor
JP6108316B2 (en) * 2014-01-07 2017-04-05 アイ トゥー ユー Power efficiency improvement device
IT201700036805A1 (en) * 2017-04-04 2018-10-04 Eteco S R L "SYSTEM FOR THE REDUCTION OF MAGNETIC AND MECHANICAL THERMAL LOSSES IN ELECTRIC NETWORKS"
US10530151B2 (en) * 2018-01-09 2020-01-07 Timothy A Carty System and method for suppressing electromagnetic pulse-induced electrical system surges
RU2699019C1 (en) * 2018-11-26 2019-09-03 Илья Николаевич Джус Three-phase shunt reactor group
US11165250B2 (en) * 2019-06-07 2021-11-02 Innovative Energy Solutions & Services, Inc. Electrical energy saving system

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546572A (en) * 1968-12-10 1970-12-08 Westinghouse Electric Corp Three-phase transformer power supply employing capacitors and clamping devices to suppress voltage surges
US4152743A (en) * 1977-06-27 1979-05-01 Comstock Wilford K Transient voltage suppression system
US4410807A (en) * 1982-03-26 1983-10-18 Kay Industries, Inc. Regulating device for polyphase electrical circuits
US4616286A (en) * 1982-08-02 1986-10-07 Puroflow Corporation Power line filter
US4698721A (en) * 1983-11-07 1987-10-06 Puroflow Corp. Power line filter for transient and continuous noise suppression
US5157572A (en) * 1988-09-07 1992-10-20 W. J. Furse & Co. Ltd. Apparatus suitable for use in protecting electrical installations from transients
US5257157A (en) * 1990-05-04 1993-10-26 Epstein Barry M Protector network for A-C equipment
US5321575A (en) * 1991-06-17 1994-06-14 Digital Equipment Corporation Power line transient suppression circuit
US5646810A (en) * 1995-10-03 1997-07-08 Funke; James Transient voltage surge suppression and electrical noise attenuation circuit
US5654857A (en) * 1995-07-19 1997-08-05 Leviton Manufacturing Co., Inc. Ground fault circuit interrupt system including auxiliary surge suppression ability
US6034611A (en) * 1997-02-04 2000-03-07 Square D Company Electrical isolation device
US6055147A (en) * 1998-06-24 2000-04-25 Current Technology, Inc. Apparatus for providing independent over-current protection to a plurality of electrical devices and transient-voltage suppression system employing the apparatus
US6560086B2 (en) * 1999-05-13 2003-05-06 Smart Power Systems, Inc. Transient voltage surge suppressor
US20030227733A1 (en) * 2000-11-14 2003-12-11 Marsh Richard N. Tri-mode over-voltage protection and disconnect circuit apparatus and method
US20050083628A1 (en) * 2003-10-17 2005-04-21 Holzenthal Leo L.Jr. Close tolerance surge suppression circuit
US20080122573A1 (en) * 2006-11-08 2008-05-29 Tyco Electronics Power Systems, Inc., A Corporation Of The State Of Nevada Apparatus and method for clamping a voltage on a line
US20080151461A1 (en) * 2001-06-15 2008-06-26 Kauffman George M Protective device
US20080304200A1 (en) * 2004-12-03 2008-12-11 Surge Suppression, Incorporated Insulated surge suppression circuit
US7623019B2 (en) * 2005-11-08 2009-11-24 Energetic Technology Co. Varistor with three parallel ceramic layer
US20100014205A1 (en) * 2008-07-17 2010-01-21 Gerlach Michael J Multiple operating voltage electrical surge protection apparatus
US20100061028A1 (en) * 2005-07-29 2010-03-11 Guy J. Lestician System for managing electrical consumption with coaxial communication line protection

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271446A (en) * 1977-06-27 1981-06-02 Comstock Wilford K Transient voltage suppression system
DE3268807D1 (en) * 1981-08-04 1986-03-13 Yelland Engineering Electric switching surge protection
US4922366A (en) * 1988-05-12 1990-05-01 Transnational Energy Systems, Inc., Dba Tesco Meltable conductor to be used in series with voltage suppressors
JP2997782B1 (en) * 1999-02-04 2000-01-11 大阪大学長 Power supply equipment by quality
CA2329894C (en) * 1999-12-30 2011-11-01 Square D Company Zero threshold surge suppressor
EP2114000B1 (en) * 2001-09-25 2019-07-31 Daikin Industries, Ltd. Phase current detection apparatus
US7068487B2 (en) * 2004-07-12 2006-06-27 Harford Jack R Surge protector
JP4760001B2 (en) * 2004-12-09 2011-08-31 ダイキン工業株式会社 Multiphase current supply circuit, driving device, compressor, and air conditioner
JP2007209138A (en) * 2006-02-02 2007-08-16 Daikin Ind Ltd Surge absorption circuit
JP4901522B2 (en) * 2007-02-19 2012-03-21 株式会社サンコーシヤ Surge protection device and surge protection device using the same
WO2009090889A1 (en) * 2008-01-17 2009-07-23 Sadatsugu Toribami Three-phase four-cable power distribution system and method for installing balancer in the system

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546572A (en) * 1968-12-10 1970-12-08 Westinghouse Electric Corp Three-phase transformer power supply employing capacitors and clamping devices to suppress voltage surges
US4152743A (en) * 1977-06-27 1979-05-01 Comstock Wilford K Transient voltage suppression system
US4410807A (en) * 1982-03-26 1983-10-18 Kay Industries, Inc. Regulating device for polyphase electrical circuits
US4616286A (en) * 1982-08-02 1986-10-07 Puroflow Corporation Power line filter
US4698721A (en) * 1983-11-07 1987-10-06 Puroflow Corp. Power line filter for transient and continuous noise suppression
US5157572A (en) * 1988-09-07 1992-10-20 W. J. Furse & Co. Ltd. Apparatus suitable for use in protecting electrical installations from transients
US5257157A (en) * 1990-05-04 1993-10-26 Epstein Barry M Protector network for A-C equipment
US5321575A (en) * 1991-06-17 1994-06-14 Digital Equipment Corporation Power line transient suppression circuit
US5654857A (en) * 1995-07-19 1997-08-05 Leviton Manufacturing Co., Inc. Ground fault circuit interrupt system including auxiliary surge suppression ability
US5646810A (en) * 1995-10-03 1997-07-08 Funke; James Transient voltage surge suppression and electrical noise attenuation circuit
US6034611A (en) * 1997-02-04 2000-03-07 Square D Company Electrical isolation device
US6055147A (en) * 1998-06-24 2000-04-25 Current Technology, Inc. Apparatus for providing independent over-current protection to a plurality of electrical devices and transient-voltage suppression system employing the apparatus
US6560086B2 (en) * 1999-05-13 2003-05-06 Smart Power Systems, Inc. Transient voltage surge suppressor
US20030227733A1 (en) * 2000-11-14 2003-12-11 Marsh Richard N. Tri-mode over-voltage protection and disconnect circuit apparatus and method
US20080151461A1 (en) * 2001-06-15 2008-06-26 Kauffman George M Protective device
US20050083628A1 (en) * 2003-10-17 2005-04-21 Holzenthal Leo L.Jr. Close tolerance surge suppression circuit
US20080304200A1 (en) * 2004-12-03 2008-12-11 Surge Suppression, Incorporated Insulated surge suppression circuit
US20100061028A1 (en) * 2005-07-29 2010-03-11 Guy J. Lestician System for managing electrical consumption with coaxial communication line protection
US7623019B2 (en) * 2005-11-08 2009-11-24 Energetic Technology Co. Varistor with three parallel ceramic layer
US20080122573A1 (en) * 2006-11-08 2008-05-29 Tyco Electronics Power Systems, Inc., A Corporation Of The State Of Nevada Apparatus and method for clamping a voltage on a line
US20100014205A1 (en) * 2008-07-17 2010-01-21 Gerlach Michael J Multiple operating voltage electrical surge protection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160072290A1 (en) * 2013-06-28 2016-03-10 Korea Electric Power Corporation Apparatus and method for operating distributed generator in connection with power system
US9997919B2 (en) * 2013-06-28 2018-06-12 Korea Electric Power Corporation Apparatus and method for operating distributed generator in connection with power system
CN105633937A (en) * 2016-02-29 2016-06-01 长沙群瑞电子科技有限公司 Single-phase power supply series-wound type overvoltage protector

Also Published As

Publication number Publication date
WO2010045349A2 (en) 2010-04-22
JP2012506229A (en) 2012-03-08
WO2010045349A3 (en) 2010-07-29
US20100091423A1 (en) 2010-04-15
EP2342792A2 (en) 2011-07-13
CA2739450A1 (en) 2010-04-22
MX2011003794A (en) 2011-07-29
KR20110071003A (en) 2011-06-27
CN102187541A (en) 2011-09-14
EP2342792A4 (en) 2012-09-26
US8971007B2 (en) 2015-03-03
CA2739450C (en) 2017-07-04

Similar Documents

Publication Publication Date Title
US8971007B2 (en) Electrical energy saving system
Chapman Harmonics causes and effects
Singh et al. Magnetics for neutral current compensation in three-phase four-wire distribution system
Kumar et al. Impact of power quality issues in residential systems
Mandi et al. Power quality issues in electrical distribution system and industries
US11165250B2 (en) Electrical energy saving system
Srivastava et al. A review on power quality problems, causes and mitigation techniques
Ojo et al. Power Quality Monitoring and Assessment of a Typical Commercial Building
Fuchs et al. Power quality of electric machines and power systems
US20030103303A1 (en) Apparatus and installation method to optimize residential power factor
US20130009615A1 (en) Arrangement and method for reactive power compensation
Chen et al. Case studies of the impact of voltage imbalance on power distribution systems and equipment
Kihara et al. Harmonics compensation in three-phase four-wire distribution feeders with a four-leg structured active power-line conditioner
Pawawoi et al. Analysis of energy losses reduction potential on the distribution line of campus building through electric power quality improvement
Al-Ali et al. Optimize the performance of electrical equipment in gas separation stations (degassing station ds) and electrical submersible pumps of oil equipment for oil rumaila field
Watson et al. Power quality indices
Kandil et al. Multiple-arm passive filters design based on different reactive power sharing approaches
Diwy et al. Lockdown Impact due to Corona Pandemic on Electric Power Quality and Its Alternative Solutions for a University Office Building
Kaur A Review on Power Quality Issues and Corrective Measures
Yani Improvement of Load Power Factor by Using Capacitor
Das et al. Anomalies in harmonic distortion and Concordia pattern analyses in induction motors due to capacitor bank malfunctions
CN206865153U (en) A kind of electric reactive compensating system and reactive-load compensation controller switching equipment
de Almeida et al. Application of reactive compensation equipment in industrial systems under aspects of harmonics and switching transients: A study of real case
Radu et al. The neutral conductor load in the low voltage intelligent microgrids
Hedaoo et al. Reactive Power Compensation Through Unified Power Quality Conditioner: A Review.

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION