US20150129536A1 - Lightweight, vacuum-resistant containers having offset horizontal ribs - Google Patents

Lightweight, vacuum-resistant containers having offset horizontal ribs Download PDF

Info

Publication number
US20150129536A1
US20150129536A1 US14/397,782 US201314397782A US2015129536A1 US 20150129536 A1 US20150129536 A1 US 20150129536A1 US 201314397782 A US201314397782 A US 201314397782A US 2015129536 A1 US2015129536 A1 US 2015129536A1
Authority
US
United States
Prior art keywords
interrupted
horizontal
container
ribs
indentations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/397,782
Inventor
Cedric Moulin
Lise Zeboudj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nestec SA
Original Assignee
Nestec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nestec SA filed Critical Nestec SA
Priority to US14/397,782 priority Critical patent/US20150129536A1/en
Publication of US20150129536A1 publication Critical patent/US20150129536A1/en
Assigned to NESTEC S.A. reassignment NESTEC S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOULIN, Cedric, ZEBOUDJ, Lise
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2501/00Containers having bodies formed in one piece
    • B65D2501/0009Bottles or similar containers with necks or like restricted apertures designed for pouring contents
    • B65D2501/0018Ribs
    • B65D2501/0036Hollow circonferential ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2501/00Containers having bodies formed in one piece
    • B65D2501/0009Bottles or similar containers with necks or like restricted apertures designed for pouring contents
    • B65D2501/0081Bottles of non-circular cross-section

Definitions

  • the present disclosure generally relates to containers. More specifically, the present disclosure relates to lightweight containers having improved vacuum resistance capacities and improved aesthetics.
  • the shape and size of fluid containers can depend, among other things, on the amount of fluid to be housed, the type of fluid to be housed, consumer demands and desired aesthetics.
  • toxic fluids may be required to be housed in containers that have thicker walls and a more rigid structure.
  • the market for these types of fluids is determined by safety of the containers more so than that container's aesthetics.
  • consumable fluids such as water may be housed in containers that generally have thinner walls and a less rigid structure. Indeed, the market for consumable fluids may be determined by the aesthetics desired by the consumer instead of safety requirements.
  • the container should be able to withstand different environmental factors encountered during, for example, manufacturing, shipping and retail shelf stocking or storage.
  • One example of such an environmental factor includes oxygen absorption into the product housed in the container.
  • certain liquid consumer products are susceptible to absorption of oxygen that is present in the headspace of the container and/or oxygen that ingresses from the outside environment. This oxygen absorption can create a vacuum inside the container that can attribute to deformation of the bottle, resulting in poor overall aesthetics. Accordingly, a need exists for a lightweight fluid container having improved structural features as well as desirable aesthetic characteristics.
  • the present disclosure relates to lightweight, vacuum-resistant containers for housing liquid products.
  • the present disclosure provides a container including a body having at least first and second interrupted, horizontal ribs.
  • the first interrupted, horizontal rib may be located in a horizontal plane that is different from the horizontal plane occupied by the second, interrupted, horizontal rib.
  • the first and second interrupted, horizontal ribs may also be offset from each other.
  • the body has a shape selected from the group consisting of cylindrical, square, rectangular, ovoid, round, or combinations thereof.
  • the body is substantially rectangular.
  • the first interrupted, horizontal rib may be located on a side of the container and the second, interrupted, horizontal rib may be located on a corner of the container.
  • the body includes a plurality of first and second interrupted, horizontal ribs, wherein each of the plurality of first interrupted, horizontal ribs occupies the same vertical portion of the container in a different horizontal plane, and wherein each of the plurality of second interrupted, horizontal ribs occupies the same vertical portion of the container in a different horizontal plane.
  • each of the plurality of first interrupted, horizontal ribs alternates with each of the plurality of second interrupted, horizontal ribs.
  • the body is substantially round.
  • the first interrupted, horizontal rib may be located on an opposing side of the container as the second interrupted, horizontal rib.
  • the body further includes a plurality of first and second interrupted, horizontal ribs.
  • Each of the plurality of first interrupted, horizontal ribs may occupy the same vertical portion of the container in a different horizontal plane, and each of the plurality of second interrupted, horizontal ribs may occupy the same vertical portion of the container in a different horizontal plane.
  • each of the plurality of first interrupted, horizontal ribs alternates with each of the plurality of second interrupted, horizontal ribs.
  • each of the plurality of first and second interrupted, horizontal ribs has a height ranging from about 1.5 mm to about 2.5 mm.
  • a container in another embodiment, includes a substantially round body having a first set of interrupted, horizontal indentations extending along a circumference of the body, and a second set of interrupted, horizontal indentations extending along the circumference of the body.
  • the first and second sets of interrupted, horizontal indentations may be located on radially opposing sides of the body, and each of the first and second interrupted, horizontal indentations in the first and second sets of interrupted, horizontal indentations may be located on different horizontal planes.
  • each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations alternates with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations.
  • each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations at least partially overlaps with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations along a vertical portion of the container.
  • each of the first and second interrupted, horizontal indentations has an amplitude from about 180° to about 210°.
  • each of the first and second interrupted, horizontal indentations has a height of about 2.5 mm.
  • a container in yet another embodiment, includes a substantially square body having four sides and four corners, at least one of the four sides including a plurality of interrupted, horizontal indentations having a first length, and at least one of the four corners including a plurality of interrupted, horizontal indentations having a second length that is shorter than the first length.
  • Each of the plurality of interrupted, horizontal indentations on the side may be located on horizontal planes that are different from the horizontal planes occupied by each of the plurality of interrupted, horizontal indentations on the corner.
  • each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations alternates with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations.
  • each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations at least partially overlaps with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations along a vertical portion of the container.
  • each of the first and second interrupted, horizontal indentations has a height of about 2.5 mm.
  • An advantage of the present disclosure is to provide an improved container.
  • Another advantage of the present disclosure is to provide a lightweight container that resists vacuum deformation.
  • Still another advantage of the present disclosure is to provide a container having improved vacuum-resistance features.
  • Yet another advantage of the present disclosure is to provide a container having improved aesthetics.
  • Another advantage of the present disclosure is to provide a container that is constructed and arranged for easy handling by a consumer.
  • FIG. 1 shows a perspective view of a container in an embodiment of the present disclosure.
  • FIG. 2 shows a side view of a container in an embodiment of the present disclosure.
  • the present disclosure relates to lightweight, vacuum-resistant bottles and/or containers for providing consumable products and other fluids.
  • the bottles are constructed and arranged to be vacuum resistant to provide a lightweight bottle having not only improved structural features, but also improved aesthetics.
  • liquid consumable products are oxygen sensitive. This becomes increasing relevant, for example, when the liquid consumable products are shelf-stable and may spend an amount of time sitting on a retail shelf.
  • oxygen may be absorbed by the product from the headspace in the container or from the outside environment that permeates through the container walls. Such oxygen absorption can induce a vacuum inside the bottle that causes the bottle to deform.
  • bottles can be exposed to widely varying temperature and pressure changes (e.g., bottle contraction in the refrigerator), liquid losses, and external forces that jostle and shake the bottle.
  • the bottles contain carbonated fluids
  • these types of environmental factors can contribute to internal pressures or vacuums that affect the overall quality of the product purchased by the consumer.
  • existing types of vacuum panels, or thin plastic labels can occupy large areas of the exterior of the bottle to which they are added and tend to have great visual impacts.
  • the shrink sleeve labels do not always follow the slightly inverted shape of the bottle created by the vacuum, thereby accounting for poor aesthetics of the bottle.
  • a lightweight plastic container e.g., polyethylene terepthalate
  • a lightweight plastic container e.g., polyethylene terepthalate
  • containers with fully circumferential, horizontal ribs must increase the rib dimensions to create a lightweight container.
  • the ribs are more visible to the consumer, which provides for less than optimal aesthetic properties.
  • providing panels on the containers provides a more visually appealing container, but require more plastic material, which creates a heavier container.
  • containers of the present disclosure include features that help to avoid bottle deformation that would cause loss of stability of the container and the potential perception of the consumer that the container has a defect and is not suitable for purchase.
  • containers of the present disclosure may include horizontal ribs, or indentations, having increased dimensions that are more visible and have a greater impact on the visual appearance of any thin films (e.g., container sleeves) applied to the container. Increasing the horizontal rib dimensions almost doubles the straight surface of a container, thereby providing a greater surface area for contacting any sleeves applied to the container, and improving vacuum resistance within the container.
  • the ribs of the present disclosure may also be interrupted, located in different horizontal planes, and offset with respect to each other along a vertical line extending along a body of the containers.
  • containers of the present disclosure may be used to house carbonated liquids, or may be exposed to temperature and/or pressure changes during packaging, shipping, storage and/or retail display.
  • Any of the above-described factors e.g., carbonation, temperature changes, pressure changes, etc.
  • carbonation, temperature changes, pressure changes, etc. can contribute to the presence of an internal vacuum within a sealed container when the container houses a liquid. This is problematic for aesthetic reasons because internal vacuums created within the sealed container can cause deformation of the container that can pull the walls of the container away from any exterior label (e.g., sleeve), creating an undesirable aesthetic.
  • Applicants have surprisingly found, however, that certain structural features can help to improve a container's vacuum resistance to avoid undesired container deformation.
  • a container “sleeve” is a thin, plastic film that may include indicia thereon and is typically used in the marketplace for product identification and for displaying product information.
  • the present disclosure provides a container, or bottle, 10 having a mouth 12 , a neck 14 , a shoulder 16 , a body 18 , and a base 20 .
  • Container 10 may be sized to hold any suitable volume of a liquid such as, for example, from about 50 to 5000 mL including 100 mL, 200 mL, 300 mL, 400 mL, 500 mL, 600 mL, 700 mL, 800 mL, 900 mL, 1000 mL, 1500 mL, 2000 mL, 2500 mL, 3000 mL, 3500 mL, 4000 mL, 4500 mL and the like.
  • containers of the present disclosure are lightweight containers.
  • the containers of the present disclosure may require from about 10% to about 25% less material to manufacture than similar containers not having the features described herein.
  • the containers of the present disclosure may have a weight ranging from about 10 g to about 40 g, or from about 15 g to about 35 g, or from about 20 g to about 30 g, or about 25 g or 27 g.
  • Containers of the present disclosure may be configured to house any type of liquid therein.
  • the containers are configured to house a consumable liquid such as, for example, water, an energy drink, a carbonated drink, tea, coffee, etc.
  • the containers are sized and configured to house a carbonated beverage.
  • Suitable materials for manufacturing containers of the present disclosure can include, for example, polymeric materials.
  • materials for manufacturing bottles of the present disclosure can include, but are not limited to, polyethylene (“PE”), low density polyethylene (“LDPE”), high density polyethylene (“HDPE”), polypropylene (“PP”) or polyethylene terephthalate (“PET”).
  • PE polyethylene
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • the containers of the present disclosure can be manufactured using any suitable manufacturing process such as, for example, conventional extrusion blow molding, stretch blow molding, injection stretch blow molding, and the like.
  • Mouth 12 may be any size and shape known in the art so long as liquid may be introduced into container 10 and may be poured or otherwise removed from container 10 .
  • mouth 12 may be substantially circular in shape and have a diameter ranging from about 10 mm to about 50 mm, or about 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, or the like. In an embodiment, mouth 12 has a diameter that is about 33 mm.
  • Neck 14 may also have any size and shape known in the art so long as liquid may be introduced into container 10 and may be poured or otherwise removed from container 10 .
  • neck 14 is substantially cylindrical in shape having a diameter that corresponds to a diameter of mouth 12 .
  • neck 14 may have a tapered geometry such that neck 14 is substantially conical in shape and tapers up to mouth 12 .
  • the skilled artisan will appreciate that the shape and size of neck 14 are not limited to the shape and size of mouth 12 .
  • Neck 14 may have a height (from mouth 12 to shoulder 16 ) from about 5 mm to about 45 mm, or about 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, or the like. In an embodiment, neck 14 has a height of about 25 mm.
  • Container 10 can further include an air tight cap 22 attached to neck 14 , as shown in FIG. 2 .
  • Cap 22 can be any type of cap known in the art for use with containers similar to those described herein.
  • Cap 22 may be manufactured from the same or a different type of polymeric material as container 10 , and may be attached to container 10 by re-closeable threads, or may be snap-fit, friction-fit, etc. Accordingly, in an embodiment, cap 22 includes internal threads (not shown) that are constructed and arranged to mate with external threads 24 of neck 14 .
  • Shoulder 16 of container 10 in FIG. 1 extends from a bottom portion of neck 14 downward to a top portion of body 18 .
  • Shoulder 16 comprises a shape that is substantially a square pyramid frustum.
  • a “square pyramid frustum” means that shoulder 16 has a shape that very closely resembles a square pyramid having four triangular faces and one imaginary square face (not shown) at a base of the square pyramid, and having a top portion (e.g., the apex) of the square pyramid lopped-off. Shoulder 16 has a lopped-off apex since shoulder 16 tapers into neck 14 for functionality of container 10 .
  • the “square pyramid frustum” shape also includes rounded edges 28 between triangular faces 26 , and rounded edges 30 between each triangular face 26 and the imaginary square base, as will be discussed further below.
  • Shoulder 16 may have a height (from a bottom of neck 14 to a top of body 18 ) ranging from about 15 mm to about 50 mm, or about 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, or the like. In an embodiment, shoulder 16 has a height that is about 35 mm.
  • shoulder 16 may have a width and a length ranging from about 40 mm to about 80 mm, or about 45 mm, 50 mm, 55 mm, 60 mm, 65 mm, 70 mm, 75 mm, or the like. In an embodiment, the width and the length of a bottom portion of shoulder 16 are the same and are about 60 mm. Alternatively, the width and the length of a bottom portion of shoulder 16 may be different.
  • Body 18 may have any size and shape known in the art and is not limited to a substantially square or substantially rectangular shape, despite the square pyramid frustum shape of shoulder 16 .
  • body 18 may have a shape selected from the group consisting of round, cylindrical, square, rectangular, ovoid, etc. In an embodiment, however, body 18 has a shape that is substantially square or substantially rectangular. In another embodiment, body 18 has a shape that is substantially round, as is illustrated in FIG. 2 and as will be described further herein below.
  • body 18 of FIG. 1 may have rounded edges 32 if body 18 is substantially square or substantially rectangular in shape, as best shown in FIG. 1 . These rounded edges 32 will help to improve the performance of the present containers when exposed to top-loading, or compressive forces.
  • Body 18 may have any length, width or height known in the art.
  • body 18 may have a height ranging from about 50 mm to about 110 mm, or about 55 mm, 60 mm, 65 mm, 70 mm, 75 mm, 80 mm, 85 mm, 90 mm, 95 mm, 100 mm, 105 mm, or the like.
  • body 18 has a height of about 80 mm. If body 18 is substantially square-shaped or substantially rectangular-shaped with a specific length and width, the length and width may be the same. Alternatively, the width of body 18 may be different from the length of body 18 . Even further, the length and width of body 18 may change with respect to the height of body 18 . For example, and as shown in FIG.
  • body 18 may include at least a first portion 34 and a second portion 36 having mirror-image, inward-directed slopes as measured with respect to a vertical, central axis of container 10 .
  • Inward-directed slopes may have an angle ranging from about 5° to about 45°, or about 10°, 15°, 20°, 25°, 30°, 35°, or the like. In an embodiment, inward-directed slopes have an angle of about 15°. Accordingly, as the height of container 10 increase or decreases, either or both of the length and width of body 18 may change as well. Such a configuration provides the added benefit of ease of handling for the consumer.
  • the two mirror-image, inward-directed sloped portions 34 , 36 of body 18 meet at a tapered portion of body 18 that helps consumer to grip container 10 for ease of handling.
  • Containers of the present disclosure are not limited to such first and second portions 34 , 36 , however, and body 18 may have substantially straight walls and/or other appropriate configurations.
  • the tapered portion of body 18 where the two mirror-image, inward-directed sloped portions 36 , 38 of body 18 meet may include a fully circumferential, horizontal rib 38 that also helps a consumer to grip container 10 for ease of handling.
  • circumferential rib it is meant that a rib (e.g., an indented or protruding elongated shape) extends all the way around container 10 in a substantially horizontal plane.
  • Container 10 may have any number of circumferential ribs 38 and is not limited to just one. Circumferential rib 38 may also be located at any place along the height of body 18 .
  • Circumferential rib 38 may have a height that ranges from about 0.5 to about 5 mm, or 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, or the like.
  • Circumferential rib 40 may also extend a certain amount into interior of container 10 .
  • rib 38 may have a height in the vertical direction along body 18 of container 10 of about 0.5 to about 5 mm, or 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, or the like.
  • rib 38 has a height of about 1.5 mm. Applicants have found that rib 38 can help to maintain an intended shape of container 10 .
  • rib 38 can help to limit container 10 from forming an oval shape during use. Rib 38 also enables even contraction of container 10 vertically, thereby allowing internal pressure to build within and enabling greater top-loading.
  • body 18 may also include any number of interrupted side ribs 40 located on a side 42 of container 10 .
  • Side ribs 40 are described as “interrupted” because they do not extend all the way around container 10 but are, instead, interrupted around container 10 .
  • Body 18 may have any number of interrupted side ribs 40 ranging, for example, from about 1 to about 10, or 2, 3, 4, 5, 6, 7, 8, 9, or the like.
  • Each side rib 40 is supported on its ends by the corners 32 of body 18 , forming a bridge across body 18 .
  • Container 10 may also include any number of interrupted corner ribs 44 located on a corner 32 of container 10 .
  • Corner ribs 44 are similarly described as “interrupted” because they do not extend all the way around container 10 but are, instead, interrupted around container 10 .
  • Body 18 may have any number of interrupted corner ribs 44 ranging, for example, from about 1 to about 10, or 2, 3, 4, 5, 6, 7, 8, 9, or the like.
  • Each corner rib 44 is supported on its ends by the sides 42 of body 18 , forming a bridge across body 18 .
  • interrupted side ribs 40 and interrupted corner ribs 44 have an increased height when compared to, for example, known ribs, or circumferential rib 38 .
  • Interrupted side ribs 40 and interrupted corner ribs 44 may have a height in the vertical direction along body 18 from about 0.5 to about 5 mm, or 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, or the like. In an embodiment, interrupted side ribs 40 and interrupted corner ribs 44 have a height of about 2.5 mm.
  • interrupted side ribs 40 and interrupted corner ribs 44 may have an increased rib height that is about 0.25 mm to about 2 mm greater than known ribs or circumferential rib 38 .
  • interrupted side ribs 40 and interrupted corner ribs 44 may have an increased rib height from about 0.5 to about 1.75 mm, or 0.75 to about 1.5 mm, or 1.0 to about 1.25 mm greater than known ribs or circumferential rib 38 .
  • the increased length and/or radius of the ribs can aid in preventing vacuum deformation.
  • full ribs i.e., circumferential ribs
  • interrupted side ribs 40 are each located in a different horizontal plane with respect to one side 42 of container 10 .
  • a first side 42 of container 10 may have any number of interrupted side ribs 40 in different horizontal planes.
  • a second side 42 of container 10 may also have any number of interrupted side ribs 40 in different horizontal planes; these planes, however, may or may not correspond to the same planes occupied by interrupted side ribs 40 of the first side 42 of container 10 .
  • interrupted corner ribs 44 are each located in a different horizontal plane with respect to one corner 32 of container 10 .
  • a first corner 32 of container 10 may have any number of interrupted corner ribs 44 in different horizontal planes.
  • a second corner 32 of container 10 may also have any number of interrupted corner ribs 44 in different horizontal planes; these planes, however, may or may not correspond to the same planes occupied by interrupted corner ribs 44 of the first corner 32 of container 10 .
  • offset ribs are interrupted ribs that are in different horizontal planes and do not substantially overlap along a vertical portion of body 18 .
  • interrupted side ribs 40 are in different horizontal planes than interrupted corner ribs 44 and only slightly overlap along a vertical line 46 extending along body 18 . Accordingly, since interrupted side ribs 40 and interrupted corner ribs 44 are in different horizontal planes and do not substantially overlap along a vertical portion of body 18 , interrupted side ribs 40 and interrupted corner ribs 44 are offset from each other.
  • interrupted side ribs 40 are in different horizontal planes but substantially overlap along a vertical portion of body 18 (e.g., 100% overlap in the vertical direction such that each interrupted side rib 40 lines up with every other interrupted side rib 40 on the same side of the container). Accordingly, interrupted side ribs 40 are not offset from each other. Offset ribs should not overlap in a vertical direction by more than about 50%, or more than about 40%, or more than about 30%, or more than about 20%, or more than about 10%, or more than about 5% of a perimeter (e.g, circumference, outer surface measurement, etc.) of container 10 . In an embodiment, offset ribs do not overlap at all along a vertical portion of body 18 .
  • a plurality of interrupted side ribs 40 alternate horizontally with a plurality of interrupted corner ribs 44 .
  • any number of interrupted side ribs 40 may be provided in successive horizontal planes before an interrupted corner rib 44 is provided, or vice versa.
  • two interrupted side ribs 40 may be provided in adjacent horizontal planes and an interrupted corner rib 44 may be provided above or below the two interrupted side ribs 40 .
  • containers 10 of the present disclosure may have any regular or arbitrary pattern of interrupted side ribs 40 and interrupted corner ribs 44 , so long as at least one pair of offset ribs is present.
  • One pair of offset ribs includes two ribs in different horizontal planes that do not substantially overlap along a vertical portion of body 18 .
  • a first interrupted side rib 40 and an adjacent interrupted corner rib 44 could comprise a pair of offset ribs.
  • Container 10 can have a broad base 20 so as to be able to stand up when the container is completely filled, partially filled or empty.
  • Base 20 can have any size or shape known in the art. However, in an embodiment, base 20 includes a size and shape corresponding to the size and shape of body 18 . In this regard, if body 18 is substantially square-shaped with a specific length and width, base 20 may also be substantially square-shaped with the same length and width. Alternatively, the skilled artisan will appreciate that base 20 is not limited to the size and shape of body 18 and may have a different size and shape than body 18 .
  • Base 20 may have a height ranging from about 5 mm to about 45 mm, or about 10 mm, or 15 mm, or 20 mm, or 25 mm, or 30 mm, or 35 mm, or 40 mm, or the like.
  • Base 20 may be substantially vertical in arrangement, or may be shaped (e.g., semi-circular), or may taper inward in an upward direction from a bottom surface 48 of container 10 .
  • Base 20 is shaped and configured to contract under vertical load, absorbing and distributing loads over a greater area.
  • base 20 may also include one or more interrupted side ribs 40 , or one or more interrupted corner ribs 44 that may or may not have the same size and shape as the side and corner ribs provided on body 18 .
  • bottom surface 48 of container 10 may also include a punt 50 formed therein. Punt 50 may provide additional structural integrity to container 10 and may aid in stacking containers 10 one on top of another.
  • a round container 10 is provided and includes a mouth 12 , a neck 14 , a shoulder 16 , a body 18 , a base 20 , a first portion 34 that tapers to a second portion 36 .
  • container 10 of FIG. 2 also includes a plurality of offset ribs. For example, a first set of interrupted, horizontal ribs 52 are illustrated in FIG.
  • first set of ribs 52 are offset from second set of ribs 54 and located on opposing (radial) sides of container 10 .
  • ribs 52 , 54 may extend different amounts around the circumference of container 10 .
  • ribs 52 , 54 may cover from about 30% to about 75%, or from about 35% to about 70%, or from about 40% to about 65%, or from about 45% to about 60%, or from about 50% to about 55% of the circumference of container 10 .
  • ribs 52 , 54 may have an amplitude ranging from about 90° to about 270°, or from about 135° to about 225°, or from about 180° to about 210°.
  • ribs 52 , 54 may be located on opposite radial sides from each other (e.g., about 180° apart).
  • the structural features (e.g., increased dimensions of ribs; offset, horizontal ribs; etc.) of the present containers described herein advantageously allow for a preform of less mass to be used.
  • the reduced use of resin in the containers provides the advantage of a lower cost per unit and increased sustainability when compared to a bottle without such structural features.
  • the containers of the present disclosure are able to be manufactured using a raw material reduction from about 10% to about 25%, if not greater. Further, by manufacturing the containers of the present disclosure using lower amounts of raw materials, the bottles can provide lower environmental and waste impact. Along the same lines, the bottles can be constructed to use less disposal volume than other plastic bottles designed for similar uses.
  • the containers of the present disclosure can also improve vacuum resistance and the ease of use and handling by manufacturers, retails and consumers.
  • the structural features described herein provide for reduced vacuum deformation to help achieve a pre-set shape of the containers that is desirable by consumers.
  • a square reference bottle was prepared having a weight of 27.5 g, a volume of 900 ml, and four fully circumferential, horizontal ribs on a top portion of the bottle.
  • the vacuum resistance of the reference bottle was measured to be 65 mbar.
  • a square bottle in accordance with the present disclosure was also tested.
  • the square bottle was prepared having a weight of 27.5 g, a volume of 900 ml, and four interrupted, offset, horizontal ribs on a top portion of the bottle.
  • the vacuum resistance of the reference bottle was measured to be 60 mbar.
  • a round reference bottle was prepared having a weight of 15 g, a volume of 330 ml, and five fully circumferential, horizontal ribs along the body of the bottle.
  • the vacuum resistance of the reference bottle was measured to be 90 mbar.
  • a round bottle in accordance with the present disclosure was also tested.
  • the round bottle was prepared having a weight of 15 g, a volume of 330 ml, and six interrupted, offset, horizontal ribs along the body of the bottle.
  • the vacuum resistance of the reference bottle was measured to be 100 mbar.
  • the containers of the present disclosure may have improved visual appearance when a thin, plastic film or sleeve is included on an exterior of the container.

Abstract

Containers having improved vacuum-resistance and aesthetic features are provided. In a general embodiment, the present disclosure provides a container having a body with at least first (40) and second (44) interrupted horizontal ribs. The first interrupted, horizontal rib is located in a horizontal plane that is different from the horizontal plane occupied by the second, interrupted, horizontal rib, and the first and second interrupted, horizontal ribs are offset from each other. The ribs, or indentations, provided on the containers have an increased height when compared to similar, known containers. The structural features of the present containers advantageously provide for improved vacuum-resistance when compared to similar containers currently on the market.

Description

    BACKGROUND
  • The present disclosure generally relates to containers. More specifically, the present disclosure relates to lightweight containers having improved vacuum resistance capacities and improved aesthetics.
  • Currently, the market comprises many different shapes and sizes of containers capable of housing fluids. The shape and size of fluid containers can depend, among other things, on the amount of fluid to be housed, the type of fluid to be housed, consumer demands and desired aesthetics. For example, toxic fluids may be required to be housed in containers that have thicker walls and a more rigid structure. More often than not, the market for these types of fluids is determined by safety of the containers more so than that container's aesthetics. On the contrary, consumable fluids such as water may be housed in containers that generally have thinner walls and a less rigid structure. Indeed, the market for consumable fluids may be determined by the aesthetics desired by the consumer instead of safety requirements.
  • Regardless of the specific size and shape of a container, the container should be able to withstand different environmental factors encountered during, for example, manufacturing, shipping and retail shelf stocking or storage. One example of such an environmental factor includes oxygen absorption into the product housed in the container. In this regard, certain liquid consumer products are susceptible to absorption of oxygen that is present in the headspace of the container and/or oxygen that ingresses from the outside environment. This oxygen absorption can create a vacuum inside the container that can attribute to deformation of the bottle, resulting in poor overall aesthetics. Accordingly, a need exists for a lightweight fluid container having improved structural features as well as desirable aesthetic characteristics.
  • SUMMARY
  • The present disclosure relates to lightweight, vacuum-resistant containers for housing liquid products. In a general embodiment, the present disclosure provides a container including a body having at least first and second interrupted, horizontal ribs. The first interrupted, horizontal rib may be located in a horizontal plane that is different from the horizontal plane occupied by the second, interrupted, horizontal rib. The first and second interrupted, horizontal ribs may also be offset from each other.
  • In an embodiment, the body has a shape selected from the group consisting of cylindrical, square, rectangular, ovoid, round, or combinations thereof.
  • In an embodiment, the body is substantially rectangular. The first interrupted, horizontal rib may be located on a side of the container and the second, interrupted, horizontal rib may be located on a corner of the container.
  • In an embodiment, the body includes a plurality of first and second interrupted, horizontal ribs, wherein each of the plurality of first interrupted, horizontal ribs occupies the same vertical portion of the container in a different horizontal plane, and wherein each of the plurality of second interrupted, horizontal ribs occupies the same vertical portion of the container in a different horizontal plane.
  • In an embodiment, the each of the plurality of first interrupted, horizontal ribs alternates with each of the plurality of second interrupted, horizontal ribs.
  • In an embodiment, the body is substantially round. The first interrupted, horizontal rib may be located on an opposing side of the container as the second interrupted, horizontal rib.
  • In an embodiment, the body further includes a plurality of first and second interrupted, horizontal ribs. Each of the plurality of first interrupted, horizontal ribs may occupy the same vertical portion of the container in a different horizontal plane, and each of the plurality of second interrupted, horizontal ribs may occupy the same vertical portion of the container in a different horizontal plane.
  • In an embodiment, each of the plurality of first interrupted, horizontal ribs alternates with each of the plurality of second interrupted, horizontal ribs.
  • In an embodiment, each of the plurality of first and second interrupted, horizontal ribs has a height ranging from about 1.5 mm to about 2.5 mm.
  • In another embodiment, a container is provided and includes a substantially round body having a first set of interrupted, horizontal indentations extending along a circumference of the body, and a second set of interrupted, horizontal indentations extending along the circumference of the body. The first and second sets of interrupted, horizontal indentations may be located on radially opposing sides of the body, and each of the first and second interrupted, horizontal indentations in the first and second sets of interrupted, horizontal indentations may be located on different horizontal planes.
  • In an embodiment, each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations alternates with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations.
  • In an embodiment, each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations at least partially overlaps with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations along a vertical portion of the container.
  • In an embodiment, each of the first and second interrupted, horizontal indentations has an amplitude from about 180° to about 210°.
  • In an embodiment, each of the first and second interrupted, horizontal indentations has a height of about 2.5 mm.
  • In yet another embodiment, a container is provided and includes a substantially square body having four sides and four corners, at least one of the four sides including a plurality of interrupted, horizontal indentations having a first length, and at least one of the four corners including a plurality of interrupted, horizontal indentations having a second length that is shorter than the first length. Each of the plurality of interrupted, horizontal indentations on the side may be located on horizontal planes that are different from the horizontal planes occupied by each of the plurality of interrupted, horizontal indentations on the corner.
  • In an embodiment, each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations alternates with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations.
  • In an embodiment, each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations at least partially overlaps with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations along a vertical portion of the container.
  • In an embodiment, each of the first and second interrupted, horizontal indentations has a height of about 2.5 mm.
  • An advantage of the present disclosure is to provide an improved container.
  • Another advantage of the present disclosure is to provide a lightweight container that resists vacuum deformation.
  • Still another advantage of the present disclosure is to provide a container having improved vacuum-resistance features.
  • Yet another advantage of the present disclosure is to provide a container having improved aesthetics.
  • Another advantage of the present disclosure is to provide a container that is constructed and arranged for easy handling by a consumer.
  • Additional features and advantages are described herein, and will be apparent from the following Detailed Description and the figures.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a perspective view of a container in an embodiment of the present disclosure.
  • FIG. 2 shows a side view of a container in an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • The present disclosure relates to lightweight, vacuum-resistant bottles and/or containers for providing consumable products and other fluids. The bottles are constructed and arranged to be vacuum resistant to provide a lightweight bottle having not only improved structural features, but also improved aesthetics.
  • It is known that many liquid consumable products are oxygen sensitive. This becomes increasing relevant, for example, when the liquid consumable products are shelf-stable and may spend an amount of time sitting on a retail shelf. During the shelf-life of a product, oxygen may be absorbed by the product from the headspace in the container or from the outside environment that permeates through the container walls. Such oxygen absorption can induce a vacuum inside the bottle that causes the bottle to deform. Similarly, during packaging, distribution and retail stocking, bottles can be exposed to widely varying temperature and pressure changes (e.g., bottle contraction in the refrigerator), liquid losses, and external forces that jostle and shake the bottle. If, for example, the bottles contain carbonated fluids, these types of environmental factors can contribute to internal pressures or vacuums that affect the overall quality of the product purchased by the consumer. For example, existing types of vacuum panels, or thin plastic labels, can occupy large areas of the exterior of the bottle to which they are added and tend to have great visual impacts. When an internal vacuum is created within the bottle, the shrink sleeve labels do not always follow the slightly inverted shape of the bottle created by the vacuum, thereby accounting for poor aesthetics of the bottle.
  • Applicants do not believe that any product currently exists on the market that provides a lightweight plastic container (e.g., polyethylene terepthalate) having an improved product sleeve appearance as a result of increased vacuum resistance from modified ribs or indentations in the container. Indeed, containers with fully circumferential, horizontal ribs must increase the rib dimensions to create a lightweight container. As such, the ribs are more visible to the consumer, which provides for less than optimal aesthetic properties. Further, providing panels on the containers provides a more visually appealing container, but require more plastic material, which creates a heavier container.
  • In contrast, Applicants have surprisingly discovered how to provide a lightweight container that resists internal vacuums. In this regard, containers of the present disclosure include features that help to avoid bottle deformation that would cause loss of stability of the container and the potential perception of the consumer that the container has a defect and is not suitable for purchase. For example, containers of the present disclosure may include horizontal ribs, or indentations, having increased dimensions that are more visible and have a greater impact on the visual appearance of any thin films (e.g., container sleeves) applied to the container. Increasing the horizontal rib dimensions almost doubles the straight surface of a container, thereby providing a greater surface area for contacting any sleeves applied to the container, and improving vacuum resistance within the container. Additionally, the ribs of the present disclosure may also be interrupted, located in different horizontal planes, and offset with respect to each other along a vertical line extending along a body of the containers.
  • As mentioned previously, containers of the present disclosure may be used to house carbonated liquids, or may be exposed to temperature and/or pressure changes during packaging, shipping, storage and/or retail display. Any of the above-described factors (e.g., carbonation, temperature changes, pressure changes, etc.) can contribute to the presence of an internal vacuum within a sealed container when the container houses a liquid. This is problematic for aesthetic reasons because internal vacuums created within the sealed container can cause deformation of the container that can pull the walls of the container away from any exterior label (e.g., sleeve), creating an undesirable aesthetic. Applicants have surprisingly found, however, that certain structural features can help to improve a container's vacuum resistance to avoid undesired container deformation.
  • As used herein, and as would be immediately appreciated by the skilled artisan, a container “sleeve” is a thin, plastic film that may include indicia thereon and is typically used in the marketplace for product identification and for displaying product information.
  • As illustrated in FIG. 1, in an embodiment, the present disclosure provides a container, or bottle, 10 having a mouth 12, a neck 14, a shoulder 16, a body 18, and a base 20. Container 10 may be sized to hold any suitable volume of a liquid such as, for example, from about 50 to 5000 mL including 100 mL, 200 mL, 300 mL, 400 mL, 500 mL, 600 mL, 700 mL, 800 mL, 900 mL, 1000 mL, 1500 mL, 2000 mL, 2500 mL, 3000 mL, 3500 mL, 4000 mL, 4500 mL and the like.
  • As disclosed above, containers of the present disclosure are lightweight containers. In this regard, the containers of the present disclosure may require from about 10% to about 25% less material to manufacture than similar containers not having the features described herein. The containers of the present disclosure may have a weight ranging from about 10 g to about 40 g, or from about 15 g to about 35 g, or from about 20 g to about 30 g, or about 25 g or 27 g.
  • Containers of the present disclosure may be configured to house any type of liquid therein. In an embodiment, the containers are configured to house a consumable liquid such as, for example, water, an energy drink, a carbonated drink, tea, coffee, etc. In an embodiment, the containers are sized and configured to house a carbonated beverage.
  • Suitable materials for manufacturing containers of the present disclosure can include, for example, polymeric materials. Specifically, materials for manufacturing bottles of the present disclosure can include, but are not limited to, polyethylene (“PE”), low density polyethylene (“LDPE”), high density polyethylene (“HDPE”), polypropylene (“PP”) or polyethylene terephthalate (“PET”). Further, the containers of the present disclosure can be manufactured using any suitable manufacturing process such as, for example, conventional extrusion blow molding, stretch blow molding, injection stretch blow molding, and the like.
  • Mouth 12 may be any size and shape known in the art so long as liquid may be introduced into container 10 and may be poured or otherwise removed from container 10. In an embodiment, mouth 12 may be substantially circular in shape and have a diameter ranging from about 10 mm to about 50 mm, or about 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, or the like. In an embodiment, mouth 12 has a diameter that is about 33 mm.
  • Neck 14 may also have any size and shape known in the art so long as liquid may be introduced into container 10 and may be poured or otherwise removed from container 10. In an embodiment, neck 14 is substantially cylindrical in shape having a diameter that corresponds to a diameter of mouth 12. Alternatively, neck 14 may have a tapered geometry such that neck 14 is substantially conical in shape and tapers up to mouth 12. The skilled artisan will appreciate that the shape and size of neck 14 are not limited to the shape and size of mouth 12. Neck 14 may have a height (from mouth 12 to shoulder 16) from about 5 mm to about 45 mm, or about 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, or the like. In an embodiment, neck 14 has a height of about 25 mm.
  • Container 10 can further include an air tight cap 22 attached to neck 14, as shown in FIG. 2. Cap 22 can be any type of cap known in the art for use with containers similar to those described herein. Cap 22 may be manufactured from the same or a different type of polymeric material as container 10, and may be attached to container 10 by re-closeable threads, or may be snap-fit, friction-fit, etc. Accordingly, in an embodiment, cap 22 includes internal threads (not shown) that are constructed and arranged to mate with external threads 24 of neck 14.
  • Shoulder 16 of container 10 in FIG. 1 extends from a bottom portion of neck 14 downward to a top portion of body 18. Shoulder 16 comprises a shape that is substantially a square pyramid frustum. As used herein, a “square pyramid frustum” means that shoulder 16 has a shape that very closely resembles a square pyramid having four triangular faces and one imaginary square face (not shown) at a base of the square pyramid, and having a top portion (e.g., the apex) of the square pyramid lopped-off. Shoulder 16 has a lopped-off apex since shoulder 16 tapers into neck 14 for functionality of container 10. Further, the “square pyramid frustum” shape also includes rounded edges 28 between triangular faces 26, and rounded edges 30 between each triangular face 26 and the imaginary square base, as will be discussed further below.
  • Shoulder 16 may have a height (from a bottom of neck 14 to a top of body 18) ranging from about 15 mm to about 50 mm, or about 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, or the like. In an embodiment, shoulder 16 has a height that is about 35 mm. At a bottom portion (e.g., before body 18), shoulder 16 may have a width and a length ranging from about 40 mm to about 80 mm, or about 45 mm, 50 mm, 55 mm, 60 mm, 65 mm, 70 mm, 75 mm, or the like. In an embodiment, the width and the length of a bottom portion of shoulder 16 are the same and are about 60 mm. Alternatively, the width and the length of a bottom portion of shoulder 16 may be different.
  • Immediately below shoulder 16 is body 18 of container 10. Body 18 may have any size and shape known in the art and is not limited to a substantially square or substantially rectangular shape, despite the square pyramid frustum shape of shoulder 16. For example, body 18 may have a shape selected from the group consisting of round, cylindrical, square, rectangular, ovoid, etc. In an embodiment, however, body 18 has a shape that is substantially square or substantially rectangular. In another embodiment, body 18 has a shape that is substantially round, as is illustrated in FIG. 2 and as will be described further herein below.
  • Similar to shoulder 16, body 18 of FIG. 1 may have rounded edges 32 if body 18 is substantially square or substantially rectangular in shape, as best shown in FIG. 1. These rounded edges 32 will help to improve the performance of the present containers when exposed to top-loading, or compressive forces.
  • Body 18 may have any length, width or height known in the art. In this regard, body 18 may have a height ranging from about 50 mm to about 110 mm, or about 55 mm, 60 mm, 65 mm, 70 mm, 75 mm, 80 mm, 85 mm, 90 mm, 95 mm, 100 mm, 105 mm, or the like. In an embodiment, body 18 has a height of about 80 mm. If body 18 is substantially square-shaped or substantially rectangular-shaped with a specific length and width, the length and width may be the same. Alternatively, the width of body 18 may be different from the length of body 18. Even further, the length and width of body 18 may change with respect to the height of body 18. For example, and as shown in FIG. 1, body 18 may include at least a first portion 34 and a second portion 36 having mirror-image, inward-directed slopes as measured with respect to a vertical, central axis of container 10. Inward-directed slopes may have an angle ranging from about 5° to about 45°, or about 10°, 15°, 20°, 25°, 30°, 35°, or the like. In an embodiment, inward-directed slopes have an angle of about 15°. Accordingly, as the height of container 10 increase or decreases, either or both of the length and width of body 18 may change as well. Such a configuration provides the added benefit of ease of handling for the consumer. In this regard, the two mirror-image, inward-directed sloped portions 34, 36 of body 18 meet at a tapered portion of body 18 that helps consumer to grip container 10 for ease of handling. Containers of the present disclosure are not limited to such first and second portions 34, 36, however, and body 18 may have substantially straight walls and/or other appropriate configurations.
  • As shown in FIG. 1, the tapered portion of body 18 where the two mirror-image, inward-directed sloped portions 36, 38 of body 18 meet may include a fully circumferential, horizontal rib 38 that also helps a consumer to grip container 10 for ease of handling. By “circumferential rib,” it is meant that a rib (e.g., an indented or protruding elongated shape) extends all the way around container 10 in a substantially horizontal plane. Container 10 may have any number of circumferential ribs 38 and is not limited to just one. Circumferential rib 38 may also be located at any place along the height of body 18.
  • Circumferential rib 38 may have a height that ranges from about 0.5 to about 5 mm, or 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, or the like. Circumferential rib 40 may also extend a certain amount into interior of container 10. For example, rib 38 may have a height in the vertical direction along body 18 of container 10 of about 0.5 to about 5 mm, or 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, or the like. In an embodiment, rib 38 has a height of about 1.5 mm. Applicants have found that rib 38 can help to maintain an intended shape of container 10. For example, if container 10 has a substantially square-shape or a substantially-rectangular shape, rib 38 can help to limit container 10 from forming an oval shape during use. Rib 38 also enables even contraction of container 10 vertically, thereby allowing internal pressure to build within and enabling greater top-loading.
  • In addition to circumferential rib 38, body 18 may also include any number of interrupted side ribs 40 located on a side 42 of container 10. Side ribs 40 are described as “interrupted” because they do not extend all the way around container 10 but are, instead, interrupted around container 10. Body 18 may have any number of interrupted side ribs 40 ranging, for example, from about 1 to about 10, or 2, 3, 4, 5, 6, 7, 8, 9, or the like. Each side rib 40 is supported on its ends by the corners 32 of body 18, forming a bridge across body 18. By interrupting side ribs 40 at the corners 32 of body 18, limited visual impact can be attained for any applied labels or shrink sleeves.
  • Container 10 may also include any number of interrupted corner ribs 44 located on a corner 32 of container 10. Corner ribs 44 are similarly described as “interrupted” because they do not extend all the way around container 10 but are, instead, interrupted around container 10. Body 18 may have any number of interrupted corner ribs 44 ranging, for example, from about 1 to about 10, or 2, 3, 4, 5, 6, 7, 8, 9, or the like. Each corner rib 44 is supported on its ends by the sides 42 of body 18, forming a bridge across body 18. By interrupting corner ribs 44 at the sides 42 of body 18, limited visual impact can be attained for any applied labels or shrink sleeves.
  • In an embodiment, interrupted side ribs 40 and interrupted corner ribs 44 have an increased height when compared to, for example, known ribs, or circumferential rib 38. Interrupted side ribs 40 and interrupted corner ribs 44 may have a height in the vertical direction along body 18 from about 0.5 to about 5 mm, or 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, or the like. In an embodiment, interrupted side ribs 40 and interrupted corner ribs 44 have a height of about 2.5 mm. In this regard, interrupted side ribs 40 and interrupted corner ribs 44 may have an increased rib height that is about 0.25 mm to about 2 mm greater than known ribs or circumferential rib 38. Alternatively, interrupted side ribs 40 and interrupted corner ribs 44 may have an increased rib height from about 0.5 to about 1.75 mm, or 0.75 to about 1.5 mm, or 1.0 to about 1.25 mm greater than known ribs or circumferential rib 38. The increased length and/or radius of the ribs can aid in preventing vacuum deformation. In fact, Applicants surprisingly found that full ribs (i.e., circumferential ribs) were not necessary to help prevent vacuum deformation and may even contribute to poor aesthetics with respect to a label or shrink-wrap applied to container 10.
  • Additionally, and as is clearly illustrated in FIG. 1, Applicants have surprisingly found that by increasing the dimensions (e.g., height) of ribs 40, 44, Applicants are able to provide interrupted, offset, horizontal ribs that do not extend around the entire circumference of container 10, as discussed above. Instead, interrupted side ribs 40 are each located in a different horizontal plane with respect to one side 42 of container 10. In this regard, a first side 42 of container 10 may have any number of interrupted side ribs 40 in different horizontal planes. However, a second side 42 of container 10 may also have any number of interrupted side ribs 40 in different horizontal planes; these planes, however, may or may not correspond to the same planes occupied by interrupted side ribs 40 of the first side 42 of container 10.
  • Similarly, interrupted corner ribs 44 are each located in a different horizontal plane with respect to one corner 32 of container 10. In this regard, a first corner 32 of container 10 may have any number of interrupted corner ribs 44 in different horizontal planes. However, a second corner 32 of container 10 may also have any number of interrupted corner ribs 44 in different horizontal planes; these planes, however, may or may not correspond to the same planes occupied by interrupted corner ribs 44 of the first corner 32 of container 10.
  • As used herein, “offset” ribs are interrupted ribs that are in different horizontal planes and do not substantially overlap along a vertical portion of body 18. For example, and as illustrated in FIG. 1, interrupted side ribs 40 are in different horizontal planes than interrupted corner ribs 44 and only slightly overlap along a vertical line 46 extending along body 18. Accordingly, since interrupted side ribs 40 and interrupted corner ribs 44 are in different horizontal planes and do not substantially overlap along a vertical portion of body 18, interrupted side ribs 40 and interrupted corner ribs 44 are offset from each other. Alternatively, interrupted side ribs 40 are in different horizontal planes but substantially overlap along a vertical portion of body 18 (e.g., 100% overlap in the vertical direction such that each interrupted side rib 40 lines up with every other interrupted side rib 40 on the same side of the container). Accordingly, interrupted side ribs 40 are not offset from each other. Offset ribs should not overlap in a vertical direction by more than about 50%, or more than about 40%, or more than about 30%, or more than about 20%, or more than about 10%, or more than about 5% of a perimeter (e.g, circumference, outer surface measurement, etc.) of container 10. In an embodiment, offset ribs do not overlap at all along a vertical portion of body 18.
  • In an embodiment, and as shown in FIG. 1, a plurality of interrupted side ribs 40 alternate horizontally with a plurality of interrupted corner ribs 44. Alternatively, any number of interrupted side ribs 40 may be provided in successive horizontal planes before an interrupted corner rib 44 is provided, or vice versa. For example, two interrupted side ribs 40 may be provided in adjacent horizontal planes and an interrupted corner rib 44 may be provided above or below the two interrupted side ribs 40. Accordingly, the skilled artisan will appreciate that containers 10 of the present disclosure may have any regular or arbitrary pattern of interrupted side ribs 40 and interrupted corner ribs 44, so long as at least one pair of offset ribs is present. One pair of offset ribs includes two ribs in different horizontal planes that do not substantially overlap along a vertical portion of body 18. For example, in FIG. 1, a first interrupted side rib 40 and an adjacent interrupted corner rib 44 could comprise a pair of offset ribs.
  • Container 10 can have a broad base 20 so as to be able to stand up when the container is completely filled, partially filled or empty. Base 20 can have any size or shape known in the art. However, in an embodiment, base 20 includes a size and shape corresponding to the size and shape of body 18. In this regard, if body 18 is substantially square-shaped with a specific length and width, base 20 may also be substantially square-shaped with the same length and width. Alternatively, the skilled artisan will appreciate that base 20 is not limited to the size and shape of body 18 and may have a different size and shape than body 18. Base 20 may have a height ranging from about 5 mm to about 45 mm, or about 10 mm, or 15 mm, or 20 mm, or 25 mm, or 30 mm, or 35 mm, or 40 mm, or the like. Base 20 may be substantially vertical in arrangement, or may be shaped (e.g., semi-circular), or may taper inward in an upward direction from a bottom surface 48 of container 10. Base 20 is shaped and configured to contract under vertical load, absorbing and distributing loads over a greater area.
  • Similar to body 18, base 20 may also include one or more interrupted side ribs 40, or one or more interrupted corner ribs 44 that may or may not have the same size and shape as the side and corner ribs provided on body 18. Further, bottom surface 48 of container 10 may also include a punt 50 formed therein. Punt 50 may provide additional structural integrity to container 10 and may aid in stacking containers 10 one on top of another.
  • The skilled artisan will appreciate that the features (e.g., volume, material, amount of material, vacuum resistance, height of ribs, etc.) described herein with respect to the square-shaped container of FIG. 1 may also apply to any other shaped container. For example, as illustrated in FIG. 2, a round container 10 is provided and includes a mouth 12, a neck 14, a shoulder 16, a body 18, a base 20, a first portion 34 that tapers to a second portion 36. Similar to container 10 of FIG. 1, container 10 of FIG. 2 also includes a plurality of offset ribs. For example, a first set of interrupted, horizontal ribs 52 are illustrated in FIG. 2 as extending around about 50% to about 60% of a circumference of container 10 around a right side of container 10. Further, a second set of interrupted, horizontal ribs 54 are illustrated in FIG. 2 as extending around about 50% to about 60% of a circumference of container 10 around a left side of container 10. In this regard, first set of ribs 52 are offset from second set of ribs 54 and located on opposing (radial) sides of container 10.
  • The skilled artisan will appreciate that ribs 52, 54 may extend different amounts around the circumference of container 10. For example, ribs 52, 54 may cover from about 30% to about 75%, or from about 35% to about 70%, or from about 40% to about 65%, or from about 45% to about 60%, or from about 50% to about 55% of the circumference of container 10. In another embodiment, ribs 52, 54 may have an amplitude ranging from about 90° to about 270°, or from about 135° to about 225°, or from about 180° to about 210°. Again, ribs 52, 54 may be located on opposite radial sides from each other (e.g., about 180° apart).
  • The structural features (e.g., increased dimensions of ribs; offset, horizontal ribs; etc.) of the present containers described herein advantageously allow for a preform of less mass to be used. The reduced use of resin in the containers provides the advantage of a lower cost per unit and increased sustainability when compared to a bottle without such structural features. In this regard, the containers of the present disclosure are able to be manufactured using a raw material reduction from about 10% to about 25%, if not greater. Further, by manufacturing the containers of the present disclosure using lower amounts of raw materials, the bottles can provide lower environmental and waste impact. Along the same lines, the bottles can be constructed to use less disposal volume than other plastic bottles designed for similar uses.
  • Additionally, the containers of the present disclosure can also improve vacuum resistance and the ease of use and handling by manufacturers, retails and consumers. In this regard, the structural features described herein provide for reduced vacuum deformation to help achieve a pre-set shape of the containers that is desirable by consumers.
  • It should also be mentioned that such ribs configuration has double the straight surface (with no rib) compared with a bottle having full horizontal ribs.
  • The foregoing may be better understood by reference to the following examples, which are presented for purposes of illustration and are not intended to limit the scope of the present disclosure.
  • EXAMPLES
  • Applicants manufactured several different bottles at different weights for both square and round shapes and measured the vacuum resistance compared to a reference bottle with the same shape and weight to demonstrate that offset, horizontal ribs having increased heights are able to provide the same resistance as fully circumferential ribs.
  • Example 1 Square Bottle Shape
  • A square reference bottle was prepared having a weight of 27.5 g, a volume of 900 ml, and four fully circumferential, horizontal ribs on a top portion of the bottle. The vacuum resistance of the reference bottle was measured to be 65 mbar.
  • A square bottle in accordance with the present disclosure was also tested. The square bottle was prepared having a weight of 27.5 g, a volume of 900 ml, and four interrupted, offset, horizontal ribs on a top portion of the bottle. The vacuum resistance of the reference bottle was measured to be 60 mbar.
  • Since the vacuum resistance measurements were so close, and since an increase in rib dimension has been shown to increase vacuum resistance, Applicants have clearly demonstrated that the same or similar vacuum resistance measurements can be obtained with bottles having interrupted, offset, horizontal ribs when compared to reference bottles having fully circumferential ribs.
  • Example 2 Round Bottle Shape
  • A round reference bottle was prepared having a weight of 15 g, a volume of 330 ml, and five fully circumferential, horizontal ribs along the body of the bottle. The vacuum resistance of the reference bottle was measured to be 90 mbar.
  • A round bottle in accordance with the present disclosure was also tested. The round bottle was prepared having a weight of 15 g, a volume of 330 ml, and six interrupted, offset, horizontal ribs along the body of the bottle. The vacuum resistance of the reference bottle was measured to be 100 mbar.
  • Since the vacuum resistance measurements were so close, and since an increase in rib dimension has been shown to increase vacuum resistance, Applicants have clearly demonstrated that the same or similar vacuum resistance measurements can be obtained with bottles having interrupted, offset, horizontal ribs when compared to reference bottles having fully circumferential ribs.
  • Accordingly, Applicants have surprisingly shown that providing interrupted, offset, horizontal ribs and/or increasing the rib dimensions can improve the vacuum resistance and aesthetics of a bottle. In this regard, the containers of the present disclosure may have improved visual appearance when a thin, plastic film or sleeve is included on an exterior of the container.
  • It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims (20)

1. A container comprising:
a body comprising at least first and second interrupted, horizontal ribs, the first interrupted, horizontal rib being located in a horizontal plane that is different from a horizontal plane occupied by the second, interrupted, horizontal rib, and the first and second interrupted, horizontal ribs are offset from each other.
2. The container of claim 1, wherein the body comprises a shape selected from the group consisting of cylindrical, square, rectangular, ovoid, round, and combinations thereof.
3. The container of claim 2, wherein the body comprises a shape that is substantially rectangular.
4. The container of claim 3, wherein the first interrupted, horizontal rib is located on a side of the container and the second, interrupted, horizontal rib is located on a corner of the container.
5. The container of claim 3 comprising a plurality of first and second interrupted, horizontal ribs, each of the plurality of first interrupted, horizontal ribs occupies the same vertical portion of the container in a different horizontal plane, and each of the plurality of second interrupted, horizontal ribs occupies the same vertical portion of the container in a different horizontal plane.
6. The container of claim 5, wherein each of the plurality of first interrupted, horizontal ribs alternates with each of the plurality of second interrupted, horizontal ribs.
7. The container of claim 2, wherein the body comprises a shape that is substantially round.
8. The container of claim 7, wherein the first interrupted, horizontal rib is located on an opposing side of the container from that of the second interrupted, horizontal rib.
9. The container of claim 7 comprising a plurality of first and second interrupted, horizontal ribs, each of the plurality of first interrupted, horizontal ribs occupies the same vertical portion of the container in a different horizontal plane, and each of the plurality of second interrupted, horizontal ribs occupies the same vertical portion of the container in a different horizontal plane.
10. The container of claim 9, wherein each of the plurality of first interrupted, horizontal ribs alternates with each of the plurality of second interrupted, horizontal ribs.
11. The container of claim 1, wherein the each of the plurality of first and second interrupted, horizontal ribs comprise a height ranging from about 1.5 mm to about 2.5 mm.
12. A container comprising:
a substantially round body comprising a first set of interrupted, horizontal indentations extending along a circumference of the body, and a second set of interrupted, horizontal indentations extending along the circumference of the body,
the first and second sets of interrupted, horizontal indentations being located on radially opposing sides of the body, and each of the first and second interrupted, horizontal indentations in the first and second sets of interrupted, horizontal indentations being located on different horizontal planes.
13. The container of claim 12, wherein each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations alternates with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations.
14. The container of claim 12, wherein each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations at least partially overlaps with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations along a vertical portion of the container.
15. The container of claim 12, wherein each of the first and second interrupted, horizontal indentations has an amplitude from about 180° to about 210°.
16. The container of claim 12, wherein each of the first and second interrupted, horizontal indentations has a height of about 2.5 mm.
17. A container comprising:
a substantially square body comprising four sides and four corners, at least one of the four sides comprising a plurality of interrupted, horizontal indentations having a first length, and at least one of the four corners comprising a plurality of interrupted, horizontal indentations having a second length that is shorter than the first length,
wherein each of the plurality of interrupted, horizontal indentations on the side are located on horizontal planes that are different from the horizontal planes occupied by each of the plurality of interrupted, horizontal indentations on the corner.
18. The container of claim 17, wherein each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations alternates with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations.
19. The container of claim 17, wherein each of the first interrupted, horizontal indentations in the first set of interrupted, horizontal indentations at least partially overlaps with each of the second interrupted, horizontal indentations in the second set of interrupted, horizontal indentations along a vertical portion of the container.
20. The container of claim 17, wherein each of the first and second interrupted, horizontal indentations has a height of about 2.5 mm.
US14/397,782 2012-04-30 2013-04-11 Lightweight, vacuum-resistant containers having offset horizontal ribs Abandoned US20150129536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/397,782 US20150129536A1 (en) 2012-04-30 2013-04-11 Lightweight, vacuum-resistant containers having offset horizontal ribs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261640072P 2012-04-30 2012-04-30
PCT/EP2013/057550 WO2013164171A1 (en) 2012-04-30 2013-04-11 Lightweight, vacuum-resistant containers having offset horizontal ribs
US14/397,782 US20150129536A1 (en) 2012-04-30 2013-04-11 Lightweight, vacuum-resistant containers having offset horizontal ribs

Publications (1)

Publication Number Publication Date
US20150129536A1 true US20150129536A1 (en) 2015-05-14

Family

ID=48142757

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/397,782 Abandoned US20150129536A1 (en) 2012-04-30 2013-04-11 Lightweight, vacuum-resistant containers having offset horizontal ribs

Country Status (5)

Country Link
US (1) US20150129536A1 (en)
EP (1) EP2844569A1 (en)
JP (1) JP6276755B2 (en)
CN (1) CN104284839B (en)
WO (1) WO2013164171A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150360923A1 (en) * 2013-02-05 2015-12-17 F.R.I.D.A. S.R.L. Liquid container for beverage dispensers and beverage dispenser comprising said container
USD748987S1 (en) * 2013-10-15 2016-02-09 Chill Brands Llc Beverage bottle
US20170283125A1 (en) * 2016-04-05 2017-10-05 Plastipak Packaging, Inc. Beverage container
WO2018149661A1 (en) * 2017-02-14 2018-08-23 Basf Se Container with corrugations
US10221001B2 (en) * 2014-07-30 2019-03-05 S.I.P.A. Societa' Industrializzazione Progettazione E Automazione S.P.A. Container with pressure variation compensation
JP2019077486A (en) * 2017-10-26 2019-05-23 キリン株式会社 Bottle made of resin
USD907508S1 (en) 2019-06-17 2021-01-12 S. C. Johnson & Son, Inc. Bottle
USD918043S1 (en) 2019-06-17 2021-05-04 S. C. Johnson & Son, Inc. Bottle
USD924064S1 (en) 2019-06-17 2021-07-06 S. C. Johnson & Son, Inc. Bottle
US11247805B2 (en) * 2017-03-31 2022-02-15 Nissei Asb Machine Co., Ltd. Resin container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6602528B2 (en) * 2014-04-11 2019-11-06 ザ コカ・コーラ カンパニー Plastic bottle
JP2015231871A (en) * 2014-06-03 2015-12-24 ザ プロクター アンド ギャンブルカンパニー Dishwashing detergent bottle
JP7224717B2 (en) * 2018-03-26 2023-02-20 株式会社吉野工業所 Synthetic resin container

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054632A (en) * 1990-07-23 1991-10-08 Sewell Plastics, Inc. Hot fill container with enhanced label support
US20040144748A1 (en) * 2003-01-30 2004-07-29 Slat William A. Plastic container
US7021479B2 (en) * 2004-06-04 2006-04-04 Plastipak Packaging, Inc. Plastic container with sidewall vacuum panels
US7032770B2 (en) * 2000-06-30 2006-04-25 Pepsico, Inc. Container with structural ribs
US20060157438A1 (en) * 2005-01-14 2006-07-20 Livingston John J Plastic container with horizontally oriented panels
USD527648S1 (en) * 2003-10-09 2006-09-05 Plastipak Packaging, Inc. Container
US20070210028A1 (en) * 2006-03-10 2007-09-13 Graham Packaging Company, Lp Plastic container
US20080000867A1 (en) * 2006-06-28 2008-01-03 Lane Michael T Interlocking rectangular container
USD605952S1 (en) * 2008-02-21 2009-12-15 Otsuka Pharmaceutical Co., Ltd. Packaging container
USD635460S1 (en) * 2010-05-03 2011-04-05 Plastipak Packaging, Inc. Container body portion

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3225950A (en) * 1965-03-22 1965-12-28 Grace W R & Co Plastic bottle
GB8417137D0 (en) * 1984-07-05 1984-08-08 Beecham Group Plc Container
CN1022820C (en) * 1989-09-29 1993-11-24 株式会社吉野工业所 Jar formed with biaxial stretching blow moulding
JP3227011B2 (en) * 1993-03-31 2001-11-12 株式会社吉野工業所 Container
JP2607799Y2 (en) * 1993-06-30 2002-07-08 株式会社吉野工業所 Plastic bottle
JPH11115940A (en) * 1997-10-14 1999-04-27 Toppan Printing Co Ltd Oriented plastic container
JP3980141B2 (en) * 1997-12-22 2007-09-26 北海製罐株式会社 Plastic container
US6497333B1 (en) * 2000-05-09 2002-12-24 Paradigm Packaging, Inc. Panel stiffeners for blow-molded plastic containers
JP4491816B2 (en) * 2004-04-23 2010-06-30 株式会社吉野工業所 Resin container
US7799264B2 (en) * 2006-03-15 2010-09-21 Graham Packaging Company, L.P. Container and method for blowmolding a base in a partial vacuum pressure reduction setup
US8181805B2 (en) * 2007-08-31 2012-05-22 Amcor Limited Hot fill container
US20090101660A1 (en) * 2007-10-17 2009-04-23 The Coca Cola Company Plastic beverage container

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054632A (en) * 1990-07-23 1991-10-08 Sewell Plastics, Inc. Hot fill container with enhanced label support
US7032770B2 (en) * 2000-06-30 2006-04-25 Pepsico, Inc. Container with structural ribs
US20040144748A1 (en) * 2003-01-30 2004-07-29 Slat William A. Plastic container
USD527648S1 (en) * 2003-10-09 2006-09-05 Plastipak Packaging, Inc. Container
US7021479B2 (en) * 2004-06-04 2006-04-04 Plastipak Packaging, Inc. Plastic container with sidewall vacuum panels
US20060157438A1 (en) * 2005-01-14 2006-07-20 Livingston John J Plastic container with horizontally oriented panels
US20070210028A1 (en) * 2006-03-10 2007-09-13 Graham Packaging Company, Lp Plastic container
US20080000867A1 (en) * 2006-06-28 2008-01-03 Lane Michael T Interlocking rectangular container
USD605952S1 (en) * 2008-02-21 2009-12-15 Otsuka Pharmaceutical Co., Ltd. Packaging container
USD635460S1 (en) * 2010-05-03 2011-04-05 Plastipak Packaging, Inc. Container body portion

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9840405B2 (en) * 2013-02-05 2017-12-12 F.R.I.D.A. S.R.L. Liquid container for beverage dispensers and beverage dispenser comprising said container
US20150360923A1 (en) * 2013-02-05 2015-12-17 F.R.I.D.A. S.R.L. Liquid container for beverage dispensers and beverage dispenser comprising said container
USD748987S1 (en) * 2013-10-15 2016-02-09 Chill Brands Llc Beverage bottle
US10221001B2 (en) * 2014-07-30 2019-03-05 S.I.P.A. Societa' Industrializzazione Progettazione E Automazione S.P.A. Container with pressure variation compensation
US20170283125A1 (en) * 2016-04-05 2017-10-05 Plastipak Packaging, Inc. Beverage container
WO2018149661A1 (en) * 2017-02-14 2018-08-23 Basf Se Container with corrugations
US11623781B2 (en) 2017-02-14 2023-04-11 Basf Se Container with corrugations
US11247805B2 (en) * 2017-03-31 2022-02-15 Nissei Asb Machine Co., Ltd. Resin container
JP2019077486A (en) * 2017-10-26 2019-05-23 キリン株式会社 Bottle made of resin
JP7037328B2 (en) 2017-10-26 2022-03-16 キリンホールディングス株式会社 Resin bottle
USD924064S1 (en) 2019-06-17 2021-07-06 S. C. Johnson & Son, Inc. Bottle
USD918043S1 (en) 2019-06-17 2021-05-04 S. C. Johnson & Son, Inc. Bottle
USD907508S1 (en) 2019-06-17 2021-01-12 S. C. Johnson & Son, Inc. Bottle

Also Published As

Publication number Publication date
JP2015515424A (en) 2015-05-28
CN104284839A (en) 2015-01-14
CN104284839B (en) 2016-08-24
WO2013164171A1 (en) 2013-11-07
JP6276755B2 (en) 2018-02-07
WO2013164171A8 (en) 2014-05-30
EP2844569A1 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
US20150129536A1 (en) Lightweight, vacuum-resistant containers having offset horizontal ribs
US9434499B2 (en) Containers having improved vacuum resistance
US20150001172A1 (en) Load-bearing and vacuum-resistant containers
CA2807497C (en) Plastic container configured for case-less shipping
AU2011342160B2 (en) Resin container
US20060157438A1 (en) Plastic container with horizontally oriented panels
JP5221502B2 (en) Plastic container for beverage and beverage product using the same
JP6532644B2 (en) Plastic bottle
US20160311570A1 (en) Lightweight containers with improved load resistance
US20160297557A1 (en) Vacuum-resistant containers having offset horizontal ribs and panels
JP6866641B2 (en) Plastic bottles and fillers
JP2016132501A (en) Plastic bottle
JP2016108017A (en) container
AU2016346181A1 (en) Container and preform with neck finish
JP6922218B2 (en) Plastic bottles and fillers
US20210214114A1 (en) Bottle with grip portion
WO2022152702A1 (en) Container for liquids

Legal Events

Date Code Title Description
AS Assignment

Owner name: NESTEC S.A., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOULIN, CEDRIC;ZEBOUDJ, LISE;REEL/FRAME:038592/0073

Effective date: 20120627

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION