US20150167272A1 - Beam Structure - Google Patents

Beam Structure Download PDF

Info

Publication number
US20150167272A1
US20150167272A1 US14/627,165 US201514627165A US2015167272A1 US 20150167272 A1 US20150167272 A1 US 20150167272A1 US 201514627165 A US201514627165 A US 201514627165A US 2015167272 A1 US2015167272 A1 US 2015167272A1
Authority
US
United States
Prior art keywords
baffle plate
lap
strips
sidewalls
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/627,165
Inventor
Alexei P. Yelistratov
James A. Forck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Priority to US14/627,165 priority Critical patent/US20150167272A1/en
Assigned to CATERPILLAR INC. reassignment CATERPILLAR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YELISTRATOV, ALEXEI P., FORCK, JAMES A.
Publication of US20150167272A1 publication Critical patent/US20150167272A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/38Cantilever beams, i.e. booms;, e.g. manufacturing processes, forms, geometry or materials used for booms; Dipper-arms, e.g. manufacturing processes, forms, geometry or materials used for dipper-arms; Bucket-arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0413Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0465Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section square- or rectangular-shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49892Joining plate edge perpendicularly to frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49893Peripheral joining of opposed mirror image parts to form a hollow body

Definitions

  • the present disclosure relates generally to a beam structure for a machine, such as an excavator. Specifically, the present disclosure relates to an easily manufactured beam that improves fatigue strength of the beam by reducing stress concentrators related to welding of baffles (cross members) inside the beam.
  • a construction machine such as an excavator, may have a movable beam (boom) configured to dig or otherwise move earthen materials.
  • the beam of the machine is generally formed as an elongated hollow tube using a number of rigid sidewall parts or plates assembled together.
  • Reinforcing cross members known as baffles may be present inside the hollow tube beam. These reinforcing cross members are traditionally attached inside the beam by welding prior to the final assembly of the beam. Generally, the welding is performed manually. Because the reinforcing members may be located at hard to reach positions within the beam, the welding operation is difficult, time consuming, and costly. In addition, the location of the reinforcing members, may make it difficult to ensure the quality of the weld joint.
  • An embodiment of the present disclosure provides a beam which can include a baffle plate, a first set of lap strips attached around outer edges of the baffle plate, an adhesive layer applied to outer surfaces of the lap strips, and a plurality of sidewalls assembled together around the adhesive layer, the first set of lap strips, and the baffle plate.
  • baffle plate which can include lap strips having a first surface and a second surface, the first surface attached around end surfaces of the baffle plate, and the second surface is attached to an inner surface of a sidewall of a beam, and an adhesive layer applied to the first and second surfaces of the lap strips.
  • Yet another embodiment of the present disclosure provides a method of forming a baffle plate for use in a beam, which can include the steps of coupling a first surface of a lap strip with end surfaces of the baffle plate, applying a layer of adhesive to a second surface of the lap strip, coupling the second surface of the lap strip with an inner surface of a sidewall of the beam with the adhesive layer, and welding the first surface of the lap strip to the inner surface of the sidewall of the beam.
  • FIG. 1 illustrates a side view of a machine having a beam according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a perspective view of a portion of the beam for the machine of FIG. 1 having a baffle according to the present disclosure.
  • FIG. 3 illustrates a cross-sectional view of an embodiment of the beam of FIG. 2 along line 3 - 3 showing an embodiment of the baffle according to the present disclosure.
  • FIG. 4 a illustrates a cross-sectional view of an embodiment of the baffle of FIG. 3 along line 4 - 4 .
  • FIG. 4 b illustrates a cross-sectional view of another embodiment of the baffle of FIG. 3 along line 4 - 4 .
  • FIG. 5 illustrates a flow chart of an embodiment of a method for forming a beam according to the present disclosure.
  • the present disclosure relates generally to a beam structure for a machine, such as an excavator. Specifically, the present disclosure relates to an easily manufactured beam that improves fatigue strength of the beam by reducing stress concentrators related to welding of baffles (e.g., cross members) inside the beam and a method of making such beam. While the present disclosure is described herein with respect to an excavator machine, those having ordinary skill in the art should readily understand that the beam of the present disclosure may have wide ranging uses, both on and off of mobile machines.
  • FIG. 1 illustrates a side view of a machine 100 having a beam 102 according to an embodiment of the present disclosure.
  • the machine 100 includes a beam 102 , a stick 104 , a work tool, such as a bucket 106 , an operator station 108 , and an undercarriage 110 .
  • the beam 102 is pivotally coupled to the machine 100 at one end. Further, the beam 102 is configured to pivot in an upward and a downward direction with respect to the operator station 108 . Furthermore, the beam 102 is pivotally coupled with the stick 104 at its other end.
  • the stick 104 is configured to pivot back and fourth with respect to the beam 102 .
  • the stick 104 pivots with respect to the beam 102 , by an actuating hydraulic cylinder 112 .
  • the bucket 106 is pivotally coupled to an opposite end of the stick 104 .
  • the bucket 106 pivots back and fourth with respect to the stick 104 when hydraulic cylinder 114 , coupled between the bucket 106 and the stick 104 , is extended or retracted.
  • the beam 102 , stick 104 , bucket 106 , and hydraulic cylinders 112 and 114 make-up a boom assembly 116 .
  • the operator station 108 is configured to allow an operator access to controls for operating the machine 100 . Further, the operator station 108 is located on a machine frame 111 , which is rotatably coupled with the undercarriage 110 such that the operator station 108 can rotate in a clockwise or a counter-clockwise direction with respect to the undercarriage 110 .
  • a power system 109 such as an engine, a cooling system, and/or a hydraulic system is also located on the frame 111 and provides operating power for the propulsion and operation of the machine 100 as should be readily understood by those having ordinary skill in the art.
  • FIG. 2 illustrates a perspective view of an embodiment of a portion of the beam 102 for the machine 100 .
  • the beam 102 includes one or more baffles 120 according to the present disclosure.
  • the beam 102 comprises a number of sidewalls 122 and is formed by assembling the sidewalls 122 together in the desired shape and then welding at the intersections of the sidewalls 122 to form a rigid beam 102 .
  • the beam 102 has four sidewalls 122 and forms a rectangular or square cross-section.
  • sidewalls 122 form a cuboid or hollow square beam with four outer walls 122 , each having an inner surface 124 and an outer surface 126 .
  • other numbers of sidewalls 122 may form the beam 102 .
  • an embodiment of the beam 102 may have a trapezoidal cross section or any suitable geometric shape.
  • the beam 102 has one or more baffles 120 located inside the sidewalls 122 .
  • the baffle(s) 120 provide(s) reinforcement to increase the rigidity and strengthen the beam 102 .
  • FIG. 3 illustrates a cross-sectional view of an embodiment of the beam 102 along line 3 - 3 in FIG. 2 showing an embodiment of a baffle 120 according to the present disclosure.
  • FIG. 4 a illustrates a cross-sectional view of an embodiment of the baffle 120 along line 4 - 4 of FIG. 3 .
  • the baffle 120 is attached inside sidewalls 122 of the beam 102 to provide rigidity to the beam 102 .
  • End surfaces 132 of the baffle 120 are attached to the inner surface 124 of the sidewalls 122 using a plurality of lap strips 134 .
  • the lap strips 134 may be formed of steel and are layered between the end/edge surfaces 132 of the baffle 120 and the inner surface 124 of the sidewalls 122 of the beam 102 .
  • the baffle 120 is a baffle plate having four end surfaces 132 .
  • the baffle 120 is a one-piece member casted from suitable rigid material such as iron, steel, or other material.
  • the baffle plate 120 is formed by stamping, machining, or other forming process. Other materials and methods of forming may be used for the lap strips 134 , the baffle 120 , and/or the sidewalls 122 .
  • the lap strips 134 have a first surface 136 and a second surface 138 .
  • the first surface 136 is coupled with the end surfaces 132 of the baffle 120 by welding.
  • the first surface 136 may be adhesively bonded with the end surfaces 132 .
  • the second surface 138 of the lap strip 134 is adhesively bonded with the inner surface 124 of a sidewall 122 of the beam 102 by an adhesive layer 140 .
  • the lap strip 134 may also be welded (shown at 142 ) with the inner surface 124 of the sidewall 122 of the beam 102 . It is to be noted that the lap strip 134 is welded to prevent relative motion between the lap strip 134 and the inner surface 124 , until the adhesive 140 is cured.
  • the welds 142 are located in low stress/non fatigue critical areas determined by expected service loading conditions of the beam 102 , such as along a neutral axis 130 of the beam 102 . In an alternate embodiment, advanced adhesives are used, which may not require long curing times and thus, the welds 142 may be omitted.
  • FIG. 4 a also shows other locations where welds may be used.
  • FIG. 4 b illustrates a cross-sectional view of another embodiment of the baffle 120 along line 4 - 4 of FIG. 3 .
  • the baffle 120 is coupled inside the sidewalls 122 by coupling the end surfaces 132 of the baffle 120 with the sidewall 122 of the beam 102 without the use of lap strips. The coupling of the end surfaces 132 is facilitated by adhesively bonding the end surfaces 132 with the inner surface 124 of the sidewall 122 .
  • FIG. 4 b also shows other locations where welds may be used.
  • the choice of adhesive 140 may be determined by the design and loading requirements of the beam 102 structure.
  • the adhesive 140 should have sufficient tensile strength, shear strength, and torsional strength to withstand maximum loading per the design requirements for the beam 102 .
  • the adhesive 140 should have sufficient fatigue strength to withstand a pre-determined fatigue loading and number of use cycles for the intended design life of the beam 102 .
  • Another consideration for the adhesive 140 is a useful temperature range for the adhesive 140 .
  • the adhesive 140 temperature range may be dependent upon anticipated environment conditions for the expected use.
  • the adhesive 140 should be configured to withstand temperatures in the range of ⁇ 60 to 160 Degrees F. However, other temperature ranges for the adhesive 140 may be used.
  • the adhesive may be moisture, grease, and/or oil resistant.
  • the adhesive 140 does not require a heating/baking process to cure.
  • the adhesive 140 may be an epoxy or comparable type adhesive that cures via chemical reaction.
  • the adhesive 140 may cure via heating/baking. As such, the curing may be accomplished during a baking procedure for curing paint (not shown) applied to the beam 102 .
  • FIG. 5 illustrates a flow chart of an embodiment of a method 400 for forming a beam 102 according to the present disclosure.
  • the method 400 begins at block 402 and proceeds to block 404 .
  • end surfaces 132 of the baffle 120 is coupled with the first surface 136 of the lap strip 134 .
  • the first surface 136 of the lap strip 134 can be coupled with the end surfaces 132 of the baffle 120 by welding.
  • the first surface 136 of the lap strip 134 can also be adhesively bonded with the end surfaces 132 of the baffle 120 .
  • the method 400 then proceeds to block 406 where the second surface 138 of the lap strip 134 is adhesively bonded with the inner surface 124 of the sidewall 102 .
  • the second surface 138 of the lap strip 134 is attached to the inner surface 124 of the sidewall wall 122 by first applying the adhesive layer 140 on the lap strip 134 and/or the inner surface 124 of the sidewall 124 . Thereafter, the second surface 138 of the lap strip 134 is pressed with the inner surface 124 of the sidewall 122 having the adhesive layer 140 therebetween.
  • the lap strip 134 may be welded with the inner surface 124 of the sidewall 122 .
  • the welds 142 may be formed substantially along the neutral axis 130 of the beam 102 .
  • the welds 142 secure the lap strip 134 with the sidewall 122 until the adhesive 140 is cured. Welding may or may not be desired based on the curing time of the adhesive 140 . In an alternate embodiment adhesives that do not require curing may be used.
  • the second surface 138 of the lap strip 134 can be coupled with another lap strip 144 . Thereafter, the second lap strip 144 is adhesively bonded to the inner surface 124 of the sidewall 122 .
  • any number of lap strips can be layered together for coupling the baffle 120 with the sidewalls 122 of the beam 102 .
  • successive lap strip layers may be larger than previous layers. Such increased width of the lap strips helps to spread out forces along sidewalls 122 of the beam 116 .
  • the method 400 then proceeds to block 408 where the sidewalls 122 are assembled together to form the beam 102 .
  • the sidewalls 122 are positioned together and welded together to form the beam 102 .
  • the beam 102 may be heated in an oven to cure the adhesive 140 . It should be noted that curing may be optional, depending on the type of adhesive used or the curing process of the adhesive 140 .
  • the method 400 ends at block 410 .
  • the present disclosure relates generally to a beam structure for a machine, such as an excavator (e.g., machine 100 ). Specifically, the present disclosure relates to an easily manufactured beam that improves fatigue strength of the beam by reducing stress concentrators related to welding of baffles/cross members (e.g., 120 ) inside the beam.
  • a machine such as an excavator (e.g., machine 100 ).
  • the present disclosure relates to an easily manufactured beam that improves fatigue strength of the beam by reducing stress concentrators related to welding of baffles/cross members (e.g., 120 ) inside the beam.
  • a beam of the present disclosure (e.g., 102 ) is formed by adding additional lap strips (e.g., 134 and/or 144 ) to outer edges of a baffle plate (e.g., 120 ) and adhering the lap strips and baffle inside the beam using an adhesive.
  • lap strips are welded to outer edges of a baffle plate using fillet welds on both sides of the baffle plate at the intersection with the lap strips. This can be welded outside of the beam at any convenient location.
  • An adhesive is applied to outer surfaces of the lap strips.
  • This baffle assembly is installed inside a partially assembled beam (e.g., pre-assembled sidewalls welded together).
  • the adhesive may be applied to any remaining lap strips, which didn't previously receive adhesive. Spot welds or plug welds may be applied to hold the baffle assembly in place during curing time for the adhesive. Conversely, fasteners, clamps, or other securing methods may be used to hold the baffle assembly in place during curing time for the adhesive. In an embodiment, the welds may be applied along a neutral axis/centerline of the beam. Any remaining sidewalls for the beam are then assembled together with the beam assembly and welded together around the baffle assembly. The beam may then be painted, heated (for curing the paint and/or adhesive), and installed on a machine.
  • the beam of the present disclosure (e.g., 102 ) provides an easy to manufacture structure with improved strength.
  • the beam provides improved service performance as there is a more spread out distribution of stress along the contact surface area of the lap strip (e.g., 134 , 144 ) and sidewall (e.g., 122 ) of the beam.
  • adhesively bonding the lap strips to the sidewalls reduces a need for welding the baffles into place inside the beam. Accordingly, this improves the overall rigidity of the beam since the adhesive bond provides high fatigue strength against compressive loading.
  • the strength of the adhesively bonded joints can be changed by changing the width of the lap strips, the thickness of the baffle, and choice of adhesive.
  • the beam is easy to manufacture because the cross members are coupled inside the beam using an adhesive rather than welding in difficult to reach areas.

Abstract

A beam structure of the present disclosure includes a baffle plate. A plurality of lap strips are attached around outer edges of the baffle plate. An adhesive layer is applied to outer surfaces of the lap strips. A plurality of sidewalls are assembled together around the adhesive layer, the lap strips and the baffle plate, thereby forming the beam structure. In an embodiment, the beam structure may be used as a boom assembly for a machine, such as an excavator machine.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This patent application is a Divisional of U.S. patent application Ser. No. 13/245,241 filed Sep. 26, 2011, entitled “BEAM STRUCTURE,” which is incorporated by reference herein in its entirety.
  • TECHNICAL FIELD
  • The present disclosure relates generally to a beam structure for a machine, such as an excavator. Specifically, the present disclosure relates to an easily manufactured beam that improves fatigue strength of the beam by reducing stress concentrators related to welding of baffles (cross members) inside the beam.
  • BACKGROUND
  • A construction machine, such as an excavator, may have a movable beam (boom) configured to dig or otherwise move earthen materials. The beam of the machine is generally formed as an elongated hollow tube using a number of rigid sidewall parts or plates assembled together. Reinforcing cross members known as baffles may be present inside the hollow tube beam. These reinforcing cross members are traditionally attached inside the beam by welding prior to the final assembly of the beam. Generally, the welding is performed manually. Because the reinforcing members may be located at hard to reach positions within the beam, the welding operation is difficult, time consuming, and costly. In addition, the location of the reinforcing members, may make it difficult to ensure the quality of the weld joint.
  • Because the reinforcing members are attached at high stress areas and intensive longitudinal and torsion loads are applied to the beam during use, these loads create high stresses that result in fatigue cracks at the weld joints. Furthermore, cracks initiated at the weld joint may propagate through the beam's sidewalls or plates, which may lead to premature beam failure.
  • Thus, in light of these and other shortcomings in the art, there is a need for improved beam structures.
  • SUMMARY
  • An embodiment of the present disclosure provides a beam which can include a baffle plate, a first set of lap strips attached around outer edges of the baffle plate, an adhesive layer applied to outer surfaces of the lap strips, and a plurality of sidewalls assembled together around the adhesive layer, the first set of lap strips, and the baffle plate.
  • Another embodiment of the present disclosure provides a baffle plate, which can include lap strips having a first surface and a second surface, the first surface attached around end surfaces of the baffle plate, and the second surface is attached to an inner surface of a sidewall of a beam, and an adhesive layer applied to the first and second surfaces of the lap strips.
  • Yet another embodiment of the present disclosure provides a method of forming a baffle plate for use in a beam, which can include the steps of coupling a first surface of a lap strip with end surfaces of the baffle plate, applying a layer of adhesive to a second surface of the lap strip, coupling the second surface of the lap strip with an inner surface of a sidewall of the beam with the adhesive layer, and welding the first surface of the lap strip to the inner surface of the sidewall of the beam.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 illustrates a side view of a machine having a beam according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a perspective view of a portion of the beam for the machine of FIG. 1 having a baffle according to the present disclosure.
  • FIG. 3 illustrates a cross-sectional view of an embodiment of the beam of FIG. 2 along line 3-3 showing an embodiment of the baffle according to the present disclosure.
  • FIG. 4 a illustrates a cross-sectional view of an embodiment of the baffle of FIG. 3 along line 4-4.
  • FIG. 4 b illustrates a cross-sectional view of another embodiment of the baffle of FIG. 3 along line 4-4.
  • FIG. 5 illustrates a flow chart of an embodiment of a method for forming a beam according to the present disclosure.
  • DETAILED DESCRIPTION
  • The present disclosure relates generally to a beam structure for a machine, such as an excavator. Specifically, the present disclosure relates to an easily manufactured beam that improves fatigue strength of the beam by reducing stress concentrators related to welding of baffles (e.g., cross members) inside the beam and a method of making such beam. While the present disclosure is described herein with respect to an excavator machine, those having ordinary skill in the art should readily understand that the beam of the present disclosure may have wide ranging uses, both on and off of mobile machines.
  • FIG. 1 illustrates a side view of a machine 100 having a beam 102 according to an embodiment of the present disclosure. The machine 100 includes a beam 102, a stick 104, a work tool, such as a bucket 106, an operator station 108, and an undercarriage 110. The beam 102 is pivotally coupled to the machine 100 at one end. Further, the beam 102 is configured to pivot in an upward and a downward direction with respect to the operator station 108. Furthermore, the beam 102 is pivotally coupled with the stick 104 at its other end. The stick 104 is configured to pivot back and fourth with respect to the beam 102. The stick 104 pivots with respect to the beam 102, by an actuating hydraulic cylinder 112. The bucket 106 is pivotally coupled to an opposite end of the stick 104. The bucket 106 pivots back and fourth with respect to the stick 104 when hydraulic cylinder 114, coupled between the bucket 106 and the stick 104, is extended or retracted. The beam 102, stick 104, bucket 106, and hydraulic cylinders 112 and 114 make-up a boom assembly 116.
  • The operator station 108 is configured to allow an operator access to controls for operating the machine 100. Further, the operator station 108 is located on a machine frame 111, which is rotatably coupled with the undercarriage 110 such that the operator station 108 can rotate in a clockwise or a counter-clockwise direction with respect to the undercarriage 110. A power system 109, such as an engine, a cooling system, and/or a hydraulic system is also located on the frame 111 and provides operating power for the propulsion and operation of the machine 100 as should be readily understood by those having ordinary skill in the art.
  • FIG. 2 illustrates a perspective view of an embodiment of a portion of the beam 102 for the machine 100. The beam 102 includes one or more baffles 120 according to the present disclosure. The beam 102 comprises a number of sidewalls 122 and is formed by assembling the sidewalls 122 together in the desired shape and then welding at the intersections of the sidewalls 122 to form a rigid beam 102. In the embodiment shown, the beam 102 has four sidewalls 122 and forms a rectangular or square cross-section. In other words, sidewalls 122 form a cuboid or hollow square beam with four outer walls 122, each having an inner surface 124 and an outer surface 126. However, in other embodiments other numbers of sidewalls 122 may form the beam 102. For example, an embodiment of the beam 102 may have a trapezoidal cross section or any suitable geometric shape.
  • As shown in FIG. 2, the beam 102 has one or more baffles 120 located inside the sidewalls 122. The baffle(s) 120 provide(s) reinforcement to increase the rigidity and strengthen the beam 102.
  • FIG. 3 illustrates a cross-sectional view of an embodiment of the beam 102 along line 3-3 in FIG. 2 showing an embodiment of a baffle 120 according to the present disclosure. FIG. 4 a illustrates a cross-sectional view of an embodiment of the baffle 120 along line 4-4 of FIG. 3. The baffle 120 is attached inside sidewalls 122 of the beam 102 to provide rigidity to the beam 102. End surfaces 132 of the baffle 120 are attached to the inner surface 124 of the sidewalls 122 using a plurality of lap strips 134. The lap strips 134 may be formed of steel and are layered between the end/edge surfaces 132 of the baffle 120 and the inner surface 124 of the sidewalls 122 of the beam 102. In an embodiment, the baffle 120 is a baffle plate having four end surfaces 132. In an embodiment, the baffle 120 is a one-piece member casted from suitable rigid material such as iron, steel, or other material. In an alternative embodiment, the baffle plate 120 is formed by stamping, machining, or other forming process. Other materials and methods of forming may be used for the lap strips 134, the baffle 120, and/or the sidewalls 122.
  • The lap strips 134 have a first surface 136 and a second surface 138. In an embodiment, the first surface 136 is coupled with the end surfaces 132 of the baffle 120 by welding. In another embodiment, the first surface 136 may be adhesively bonded with the end surfaces 132. The second surface 138 of the lap strip 134 is adhesively bonded with the inner surface 124 of a sidewall 122 of the beam 102 by an adhesive layer 140.
  • In addition, the lap strip 134 may also be welded (shown at 142) with the inner surface 124 of the sidewall 122 of the beam 102. It is to be noted that the lap strip 134 is welded to prevent relative motion between the lap strip 134 and the inner surface 124, until the adhesive 140 is cured. In an embodiment, the welds 142 are located in low stress/non fatigue critical areas determined by expected service loading conditions of the beam 102, such as along a neutral axis 130 of the beam 102. In an alternate embodiment, advanced adhesives are used, which may not require long curing times and thus, the welds 142 may be omitted. FIG. 4 a also shows other locations where welds may be used.
  • In another embodiment, an additional lap strip 144 similar to lap strip 134 can be placed between the lap strip 134 and the inner surface 124 of sidewall 122 of the beam 102. FIG. 4 b illustrates a cross-sectional view of another embodiment of the baffle 120 along line 4-4 of FIG. 3. It should be understood that any number of lap strips can be used for coupling the baffle 120 to the sidewalls 122 of the beam 102. In addition it should be understood that the lap strips 134 and 144 may be formed of materials other than metal, if desired. In another embodiment, the baffle 120 is coupled inside the sidewalls 122 by coupling the end surfaces 132 of the baffle 120 with the sidewall 122 of the beam 102 without the use of lap strips. The coupling of the end surfaces 132 is facilitated by adhesively bonding the end surfaces 132 with the inner surface 124 of the sidewall 122. FIG. 4 b also shows other locations where welds may be used.
  • The choice of adhesive 140 may be determined by the design and loading requirements of the beam 102 structure. For Example, the adhesive 140 should have sufficient tensile strength, shear strength, and torsional strength to withstand maximum loading per the design requirements for the beam 102. Similarly, the adhesive 140 should have sufficient fatigue strength to withstand a pre-determined fatigue loading and number of use cycles for the intended design life of the beam 102. Another consideration for the adhesive 140 is a useful temperature range for the adhesive 140. In other words, the adhesive 140 temperature range may be dependent upon anticipated environment conditions for the expected use. In one such embodiment, the adhesive 140 should be configured to withstand temperatures in the range of −60 to 160 Degrees F. However, other temperature ranges for the adhesive 140 may be used. Other considerations for the adhesive are that the adhesive may be moisture, grease, and/or oil resistant. In an embodiment, the adhesive 140 does not require a heating/baking process to cure. For example, the adhesive 140 may be an epoxy or comparable type adhesive that cures via chemical reaction. In an alternative embodiment, the adhesive 140 may cure via heating/baking. As such, the curing may be accomplished during a baking procedure for curing paint (not shown) applied to the beam 102.
  • FIG. 5 illustrates a flow chart of an embodiment of a method 400 for forming a beam 102 according to the present disclosure. The method 400 begins at block 402 and proceeds to block 404. At block 404 end surfaces 132 of the baffle 120 is coupled with the first surface 136 of the lap strip 134. The first surface 136 of the lap strip 134 can be coupled with the end surfaces 132 of the baffle 120 by welding. In another embodiment, the first surface 136 of the lap strip 134 can also be adhesively bonded with the end surfaces 132 of the baffle 120.
  • The method 400 then proceeds to block 406 where the second surface 138 of the lap strip 134 is adhesively bonded with the inner surface 124 of the sidewall 102. The second surface 138 of the lap strip 134 is attached to the inner surface 124 of the sidewall wall 122 by first applying the adhesive layer 140 on the lap strip 134 and/or the inner surface 124 of the sidewall 124. Thereafter, the second surface 138 of the lap strip 134 is pressed with the inner surface 124 of the sidewall 122 having the adhesive layer 140 therebetween.
  • In an embodiment of the method 400, the lap strip 134 may be welded with the inner surface 124 of the sidewall 122. The welds 142 may be formed substantially along the neutral axis 130 of the beam 102. The welds 142 secure the lap strip 134 with the sidewall 122 until the adhesive 140 is cured. Welding may or may not be desired based on the curing time of the adhesive 140. In an alternate embodiment adhesives that do not require curing may be used.
  • In another embodiment (as shown in FIG. 4 b), the second surface 138 of the lap strip 134 can be coupled with another lap strip 144. Thereafter, the second lap strip 144 is adhesively bonded to the inner surface 124 of the sidewall 122. Also, it can be appreciated that any number of lap strips can be layered together for coupling the baffle 120 with the sidewalls 122 of the beam 102. In an embodiment, successive lap strip layers may be larger than previous layers. Such increased width of the lap strips helps to spread out forces along sidewalls 122 of the beam 116.
  • The method 400 then proceeds to block 408 where the sidewalls 122 are assembled together to form the beam 102. In other words, the sidewalls 122 are positioned together and welded together to form the beam 102. In an embodiment, the beam 102 may be heated in an oven to cure the adhesive 140. It should be noted that curing may be optional, depending on the type of adhesive used or the curing process of the adhesive 140. Thereafter, the method 400 ends at block 410.
  • INDUSTRIAL APPLICABILITY
  • The present disclosure relates generally to a beam structure for a machine, such as an excavator (e.g., machine 100). Specifically, the present disclosure relates to an easily manufactured beam that improves fatigue strength of the beam by reducing stress concentrators related to welding of baffles/cross members (e.g., 120) inside the beam.
  • In an embodiment, a beam of the present disclosure (e.g., 102) is formed by adding additional lap strips (e.g., 134 and/or 144) to outer edges of a baffle plate (e.g., 120) and adhering the lap strips and baffle inside the beam using an adhesive. In an embodiment, lap strips are welded to outer edges of a baffle plate using fillet welds on both sides of the baffle plate at the intersection with the lap strips. This can be welded outside of the beam at any convenient location. An adhesive is applied to outer surfaces of the lap strips. This baffle assembly is installed inside a partially assembled beam (e.g., pre-assembled sidewalls welded together). Then, the adhesive may be applied to any remaining lap strips, which didn't previously receive adhesive. Spot welds or plug welds may be applied to hold the baffle assembly in place during curing time for the adhesive. Conversely, fasteners, clamps, or other securing methods may be used to hold the baffle assembly in place during curing time for the adhesive. In an embodiment, the welds may be applied along a neutral axis/centerline of the beam. Any remaining sidewalls for the beam are then assembled together with the beam assembly and welded together around the baffle assembly. The beam may then be painted, heated (for curing the paint and/or adhesive), and installed on a machine.
  • The beam of the present disclosure (e.g., 102) provides an easy to manufacture structure with improved strength. In addition, the beam provides improved service performance as there is a more spread out distribution of stress along the contact surface area of the lap strip (e.g., 134, 144) and sidewall (e.g., 122) of the beam. Further, adhesively bonding the lap strips to the sidewalls reduces a need for welding the baffles into place inside the beam. Accordingly, this improves the overall rigidity of the beam since the adhesive bond provides high fatigue strength against compressive loading.
  • Further, the strength of the adhesively bonded joints can be changed by changing the width of the lap strips, the thickness of the baffle, and choice of adhesive. Also, the beam is easy to manufacture because the cross members are coupled inside the beam using an adhesive rather than welding in difficult to reach areas.
  • While the present disclosure is described herein with respect to an excavator machine, those having ordinary skill in the art should readily understand that the beam of the present disclosure may have wide ranging uses, both on and off of mobile machines.
  • In the foregoing specification, the disclosure and its benefits and advantages have been described with reference to specific embodiments. However, one of ordinary skill in the art would appreciate that various modifications and changes can be made without departing from the scope of the present disclosure, as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present disclosure. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage or solution to occur or become more pronounced are not to be construed as critical, required or essential features or elements of any or all the claims. The disclosure is defined solely by the appended claims, including any amendments made during the pendency of this application, and all equivalents of those claims, as issued.

Claims (20)

We claim:
1. A beam comprising:
a baffle plate;
a first set of lap strips attached around outer edges of the baffle plate;
an adhesive layer applied to outer surfaces of the lap strips; and
a plurality of sidewalls assembled together around the adhesive layer, the first set of lap strips, and the baffle plate.
2. The beam of claim 1, wherein the baffle plate, the first set of lap strips, or the plurality of sidewalls include iron.
3. The beam of claim 1, wherein the first set of lap strips are attached to the baffle plate at an angle substantially perpendicular to the baffle plate.
4. The beam of claim 1, wherein the first set of lap strips are welded to the baffle plate.
5. The beam of claim 1, wherein the plurality of sidewalls are welded together.
6. The beam of claim 1, wherein the baffle plate is substantially perpendicular to the plurality of the sidewalls.
7. The beam of claim 1 further comprising a second set of lap strips attached between the baffle plate and the plurality of sidewalls.
8. A baffle plate, comprising:
lap strips having a first surface and a second surface, the first surface attached around end surfaces of the baffle plate, and the second surface is attached to an inner surface of a sidewall of a beam; and
an adhesive layer applied to the first and second surfaces of the lap strips.
9. The baffle plate of claim 8, wherein the baffle plate and the lap strips include iron or steel.
10. The baffle plate of claim 8, wherein the lap strips are welded to the baffle plate.
11. The baffle plate of claim 10, wherein the lap strips are welded in a low stress portion of the beam.
12. The baffle plate of claim 8, wherein the adhesive layer is configured to withstand temperatures from −60 to 160° F.
13. The baffle plate of claim 8, wherein the adhesive layer is an epoxy.
14. The baffle plate of claim 8, wherein the adhesive layer is cured by heating.
15. The baffle plate of claim 8, wherein the end surfaces are four end surfaces.
16. The baffle plate of claim 8, wherein the adhesive layer is moisture, grease or oil resistant.
17. A method of forming a baffle plate for use in a beam, comprising the steps of:
coupling a first surface of a lap strip with end surfaces of the baffle plate;
applying a layer of adhesive to a second surface of the lap strip;
coupling the second surface of the lap strip with an inner surface of a sidewall of the beam with the adhesive layer; and
welding the first surface of the lap strip to the inner surface of the sidewall of the beam.
18. The method of claim 17, wherein the coupling the second surface of the lap strip is through adhesively bonding the second surface of the lap strip with the inner surface of the sidewall.
19. The method of claim 17 further comprising applying the layer of adhesive to the inner surface of the sidewall.
20. The method of claim 18 further comprising pressing the second surface of the lap strip with the inner surface of the side wall.
US14/627,165 2011-09-26 2015-02-20 Beam Structure Abandoned US20150167272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/627,165 US20150167272A1 (en) 2011-09-26 2015-02-20 Beam Structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/245,241 US8991029B2 (en) 2011-09-26 2011-09-26 Beam structure
US14/627,165 US20150167272A1 (en) 2011-09-26 2015-02-20 Beam Structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/245,241 Division US8991029B2 (en) 2011-09-26 2011-09-26 Beam structure

Publications (1)

Publication Number Publication Date
US20150167272A1 true US20150167272A1 (en) 2015-06-18

Family

ID=47911476

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/245,241 Expired - Fee Related US8991029B2 (en) 2011-09-26 2011-09-26 Beam structure
US14/627,165 Abandoned US20150167272A1 (en) 2011-09-26 2015-02-20 Beam Structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/245,241 Expired - Fee Related US8991029B2 (en) 2011-09-26 2011-09-26 Beam structure

Country Status (1)

Country Link
US (2) US8991029B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011571A (en) * 2017-06-29 2019-01-24 株式会社クボタ Work machine
CN109537656A (en) * 2018-11-26 2019-03-29 中联重科股份有限公司 Swing arm, the manufacturing method of swing arm and excavator
CN110017106A (en) * 2019-04-17 2019-07-16 中联重科股份有限公司 Mast, rotary drilling rig, the partition for mast and mast manufacturing method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534352B2 (en) 2013-06-28 2017-01-03 Kubota Corporation Boom for working machine with swelling part
JP6301754B2 (en) * 2014-06-26 2018-03-28 株式会社神戸製鋼所 Plate material, attachment for construction machine equipped with the same, and method for manufacturing attachment
JP6305846B2 (en) * 2014-06-26 2018-04-04 株式会社神戸製鋼所 Attachment component, attachment of construction machine equipped with the same, and method of manufacturing attachment
US9376783B2 (en) 2014-07-28 2016-06-28 Caterpillar Inc. Boom for linkage assembly of machine with fork reinforcement plate
US9650756B2 (en) 2014-07-28 2017-05-16 Caterpillar Inc. Stick for linkage assembly of machine
US9662746B2 (en) 2014-07-28 2017-05-30 Caterpillar Inc. Linkage assembly for implement system of machine
JP6253153B2 (en) * 2014-09-11 2017-12-27 キャタピラー エス エー アール エル Construction machine work arm structure
DE102014220754A1 (en) * 2014-10-14 2016-04-14 Putzmeister Engineering Gmbh Mast arm and concrete distributor mast
DE102014224462A1 (en) * 2014-11-28 2016-06-02 Putzmeister Engineering Gmbh Mast for a working machine and method for its production
JP6626644B2 (en) * 2015-06-29 2019-12-25 キャタピラー エス エー アール エル Work machine boom reinforcement structure
JP6499953B2 (en) * 2015-09-30 2019-04-10 株式会社クボタ Working machine
US20180029851A1 (en) 2016-08-01 2018-02-01 Caterpillar Inc. Linkage assembly for machine
CN106638736A (en) * 2017-01-13 2017-05-10 浙江工业大学 Manufacturing method for bucket rod device of mineral crowd-shovel hydraulic excavator and product thereof
JP6910803B2 (en) * 2017-01-17 2021-07-28 住友重機械工業株式会社 Excavator
DE102017208031A1 (en) * 2017-05-12 2018-11-15 Putzmeister Engineering Gmbh Cranked boom with variable cross-section for mobile concrete pumps
DE102017115442A1 (en) * 2017-07-10 2019-01-10 Hartmut Ilch Industrial robots and method for manufacturing an industrial robot
US10927522B2 (en) 2019-05-21 2021-02-23 Deere & Company Structural assembly for a work machine and method of assembling node and strut structure

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1688016A (en) * 1927-06-23 1928-10-16 Benjamin J Klaasen Hollow metal joist
US1974458A (en) * 1932-10-19 1934-09-25 Gen Steel Castings Corp Dipper handle
US3257764A (en) * 1962-09-27 1966-06-28 Reynolds Metals Co Bridge construction with girder having triangular intermediate and rectangular end cross-sectional configurations
US4275542A (en) * 1978-12-29 1981-06-30 Poclain Welded structure of a power arm
JPS57103785A (en) * 1980-12-19 1982-06-28 Nippon Kokan Kk <Nkk> Production of box column
US4529460A (en) * 1982-04-05 1985-07-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing an industrial robot arm
US6253524B1 (en) * 2000-01-31 2001-07-03 Sika Corporation Reinforcing member with thermally expansible structural reinforcing material and directional shelf
US20020053179A1 (en) * 1996-05-10 2002-05-09 Wycech Joseph S. Internal reinforcement for hollow structural elements.
US20040093825A1 (en) * 2001-02-15 2004-05-20 Dae-Jun Lee Tubular structure and modular building assembly using the same
US20050072106A1 (en) * 2002-10-29 2005-04-07 Minoru Hiragaki Construct for buildings and a method for manufacturing the same
US20050279049A1 (en) * 2004-06-22 2005-12-22 Mackenzie Steven K Internally reinforced hydroformed assembly and method of making same
US20060286333A1 (en) * 2005-06-17 2006-12-21 Pei-Chung Wang Method of and apparatus for weld-bonding workpieces
US20110068076A1 (en) * 2008-03-08 2011-03-24 Terex Demag Gmbh A German Corporation Boom for Receiving Loads on the End Thereof, Boom Assembly with at Least Two Such Booms and Method of Manufacturing Such a Boom
US8631851B2 (en) * 2007-02-03 2014-01-21 Clarence Jules Migues Brace for awning roller tube

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2610754A (en) * 1949-10-20 1952-09-16 Leo A Inskeep Dipper handle
BE1013229A3 (en) 2000-01-13 2001-11-06 Groep Stevens Int Nv SUPPORT FOR A VEHICLE AND METHOD FOR MANUFACTURING OF SPARS therefor.
US6572323B2 (en) 2000-12-29 2003-06-03 Case Corporation Lift arm structure for a work vehicle
US6786233B1 (en) * 2001-02-23 2004-09-07 Schwing America, Inc. Boom utilizing composite material construction
JP4695355B2 (en) * 2004-07-15 2011-06-08 新日本製鐵株式会社 Boom / arm member for construction machine with excellent weld fatigue strength and method for manufacturing the same
DE102004055100B4 (en) 2004-11-15 2011-07-14 Benteler Automobiltechnik GmbH, 33102 Axle construction for a motor vehicle
CN101652597A (en) * 2007-02-09 2010-02-17 奥里加米工业股份有限公司 Load-bearing three-dimensional structure
US20110097598A1 (en) * 2009-10-28 2011-04-28 Mcnutt Matthew M Laser-welded aluminum alloy parts and method for manufacturing the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1688016A (en) * 1927-06-23 1928-10-16 Benjamin J Klaasen Hollow metal joist
US1974458A (en) * 1932-10-19 1934-09-25 Gen Steel Castings Corp Dipper handle
US3257764A (en) * 1962-09-27 1966-06-28 Reynolds Metals Co Bridge construction with girder having triangular intermediate and rectangular end cross-sectional configurations
US4275542A (en) * 1978-12-29 1981-06-30 Poclain Welded structure of a power arm
JPS57103785A (en) * 1980-12-19 1982-06-28 Nippon Kokan Kk <Nkk> Production of box column
US4529460A (en) * 1982-04-05 1985-07-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of producing an industrial robot arm
US20020053179A1 (en) * 1996-05-10 2002-05-09 Wycech Joseph S. Internal reinforcement for hollow structural elements.
US6253524B1 (en) * 2000-01-31 2001-07-03 Sika Corporation Reinforcing member with thermally expansible structural reinforcing material and directional shelf
US20040093825A1 (en) * 2001-02-15 2004-05-20 Dae-Jun Lee Tubular structure and modular building assembly using the same
US20050072106A1 (en) * 2002-10-29 2005-04-07 Minoru Hiragaki Construct for buildings and a method for manufacturing the same
US20050279049A1 (en) * 2004-06-22 2005-12-22 Mackenzie Steven K Internally reinforced hydroformed assembly and method of making same
US20060286333A1 (en) * 2005-06-17 2006-12-21 Pei-Chung Wang Method of and apparatus for weld-bonding workpieces
US8631851B2 (en) * 2007-02-03 2014-01-21 Clarence Jules Migues Brace for awning roller tube
US20110068076A1 (en) * 2008-03-08 2011-03-24 Terex Demag Gmbh A German Corporation Boom for Receiving Loads on the End Thereof, Boom Assembly with at Least Two Such Booms and Method of Manufacturing Such a Boom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine translation of Foreign reference JP57-103785 A, obtained from https://www4.j-platpat.inpit.go.jp/cgi-bin/tran_web_cgi_ejje?u=http://www4.j-platpat.inpit.go.jp/eng/translation/201709120512492845071828861508151916A19D2338DEEEF1C720DB41DBFD5DE (last accessed on 09/11/2017). *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011571A (en) * 2017-06-29 2019-01-24 株式会社クボタ Work machine
CN109537656A (en) * 2018-11-26 2019-03-29 中联重科股份有限公司 Swing arm, the manufacturing method of swing arm and excavator
CN110017106A (en) * 2019-04-17 2019-07-16 中联重科股份有限公司 Mast, rotary drilling rig, the partition for mast and mast manufacturing method

Also Published As

Publication number Publication date
US8991029B2 (en) 2015-03-31
US20130078072A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
US8991029B2 (en) Beam structure
KR101234178B1 (en) Improved structural sandwich plate members
WO2012144037A1 (en) Boom for construction machine
US7670099B2 (en) Working arm for construction machine and method of producing the same
US20080237305A1 (en) High-Capacity Air Cargo Pallet Using Friction Stir Welding
JP2010255195A (en) Method for repairing steel structure
WO2019074050A1 (en) Joint structure for h-beam
US20180029851A1 (en) Linkage assembly for machine
EP2214892A1 (en) Improved method of forming structural sandwich plate members
JP2013238024A (en) Structure reinforcement method, reinforcement structure, and unevenness absorber
RU2516503C2 (en) Method of making joints between composite parts
JP2020513324A (en) STRUCTURE HAVING STRESS-PROTECTED GROOVE WELDING AND STRUCTURAL MEMBER FORMING THE SAME
JPH09217419A (en) Reinforcing structure of steel frame member
JP5970211B2 (en) Strengthening structure of existing piles
JP2007205138A (en) Welded structure
JP2006336231A (en) Composite floor slab
CN110670473A (en) Connecting structure of prefabricated steel-concrete composite beam and construction method thereof
JP2004156291A (en) Bridge girder structure and erection method for bridge girder
JP5028303B2 (en) Member joint structure
JP7079448B2 (en) Joint structure of H-shaped steel pile
US8261931B2 (en) Fluid tank having a heat-activated adhesive joint
JPH08121088A (en) Segment joint structure
JP4021771B2 (en) How to connect deck panel and girder
JP3110548B2 (en) Plate-like structural material using brazed aluminum honeycomb panel
KR200352589Y1 (en) Composite floor slab, execution structure thereof and joint section of composite floor slab

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YELISTRATOV, ALEXEI P.;FORCK, JAMES A.;SIGNING DATES FROM 20150121 TO 20150122;REEL/FRAME:034992/0237

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION