US20150190599A1 - Endoscopic bite block - Google Patents

Endoscopic bite block Download PDF

Info

Publication number
US20150190599A1
US20150190599A1 US14/662,727 US201514662727A US2015190599A1 US 20150190599 A1 US20150190599 A1 US 20150190599A1 US 201514662727 A US201514662727 A US 201514662727A US 2015190599 A1 US2015190599 A1 US 2015190599A1
Authority
US
United States
Prior art keywords
channel
oxygen
bite block
patient
airway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/662,727
Inventor
Joshua Lewis Colman
Gershon Levitsky
Kathleen Niebel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oridion Medical 1987 Ltd
Original Assignee
Oridion Medical 1987 Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oridion Medical 1987 Ltd filed Critical Oridion Medical 1987 Ltd
Priority to US14/662,727 priority Critical patent/US20150190599A1/en
Assigned to ORIDION MEDICAL 1987 LTD. reassignment ORIDION MEDICAL 1987 LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLMAN, JOSHUA LEWIS, LEVITSKY, GERSHON, NIEBEL, KATHLEEN
Publication of US20150190599A1 publication Critical patent/US20150190599A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0488Mouthpieces; Means for guiding, securing or introducing the tubes
    • A61M16/049Mouthpieces
    • A61M16/0493Mouthpieces with means for protecting the tube from damage caused by the patient's teeth, e.g. bite block
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00154Holding or positioning arrangements using guiding arrangements for insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0836Measuring rate of CO2 production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0488Mouthpieces; Means for guiding, securing or introducing the tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0488Mouthpieces; Means for guiding, securing or introducing the tubes
    • A61M16/0497Tube stabilizer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0841Joints or connectors for sampling
    • A61M16/085Gas sampling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1005Preparation of respiratory gases or vapours with O2 features or with parameter measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/05Surgical care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0625Mouth
    • A61M2210/0637Teeth

Definitions

  • the invention relates to medical appliances.
  • ESD Esophagogastroduodenoscopy
  • a procedure comprising the insertion of a flexible endoscope through the mouth until reaching the duodenum (first and shortest part of the small intestine).
  • the endoscope when inserted is used to provide a visual inspection of the organs, and optionally to perform medical procedures such as, for example, biopsies, incisions, and retrieval of foreign objects.
  • Endoscopic procedures are usually performed while a patient is under topical or moderate sedation, although in some circumstances it may be performed while the patient is under general anesthesia.
  • moderate sedation or general anesthesia the patient is generally sedated intravenously to minimize gagging and to facilitate the procedure.
  • a bite block is used to prevent the patient from biting on the endoscope, to facilitate the introduction of the endoscope into the mouth, and to maneuver the endoscope relatively freely while inserted in the mouth.
  • a frequent occurrence when administering intravenous sedation is reduced breathing in the patient, which may lead to hypoxia, or a reduction of oxygen in the blood. It is then substantially common practice to administer oxygen or another breathable gas to the patient, usually through a nasal cannula, while the patient is sedated. Additionally, the patient's exhaled breath is typically monitored, by means of a capnograph, in order to corroborate that the patient's carbon dioxide levels in the blood and the tissues are within safe limits
  • bite blocks have been adapted with features to supply oxygen, or optionally some other type of breathable gas, to a sedated patient. Some have been further adapted with features which allow the patient to be connected to a capnograph for measuring the carbon dioxide contents in the patient's exhaled breath.
  • the following patents and/or publications describe different types of bite blocks adapted with some of these features, all of which are incorporated herein by reference.
  • U.S. Pat. No. 5,273,032 “Oxygenating Oral Medical Appliance”, describes an “endoscopic mouth guard having a smoothly contoured, waisted tube merging into a peripheral flange at the front end of said tube, a manifold integral with the front face of said flange defining a closed ended, transverse distribution duct, and two open ended, upwardly directed branch ducts ending, in use, closely below the nostrils of a patient fitted with the guard, two further, open ended branch ducts extending rearwardly from said distributor duct into the bore of said tube, and a laterally and rearwardly directed tapered spigot on said manifold, defining an extension of said distributor duct, adapted to enter the bore of a gas supply tube.
  • the finished guard is a single article of plastics material having a smooth hard surface.”
  • U.S. Pat. No. 5,513,634 “Combination Integral Bite Block Airway and Nasal Cannula”, describes a “combination plastic relatively rigid bite block and soft nasal cannula intended for one-time use for supplying oxygen to a patient's nostrils during an endoscopic procedure.
  • the cannula is fixed into the bite block by an integral clip portion of the cannula extending downwardly from a manifold portion and adhered to the bite block.
  • Flexible nasal prongs extend upwardly from the manifold into the patient's nostrils to supply supplementary gas separately from air breathed through the patient's mouth.”
  • the bite block is utilized during oral fiberscopic procedures.
  • the bite block includes a main structure having an orifice sized to accommodate entry of a fiberscope, such as an endoscope, through the orifice.
  • the bite block includes an extension extending inward from the main structure when positioned within the mouth of a patient.
  • On each side of the orifice is a loop for handling and positioning the bite block within the patient's mouth.
  • the bite block includes an exhalation tube running from the extension to a monitoring device which allows monitoring of the patient's expelled gases.
  • an inhalation tube may be used to provide supplemental oxygen to the patient.
  • the bite block is positioned in the mouth of the patient with the mouth of the patient surrounding the extension.
  • the tubes include openings which are located on the extension and lie in the interior of the mouth to provide monitoring of uncontaminated gasses expelled by the patient.”
  • An aspect of some embodiments of the invention relates to a device, such as a bite block device, a system, such as a bite block and an oral nasal breath sampling cannula, and method for sampling breath, for example for the purpose of capnographic measurements, while performing a medical procedure such as insertion of an endoscope.
  • the device may also include oxygen delivery element(s).
  • the device, system and method provide oxygen delivery and oxygen flow regulation means that facilitate the direction of the oxygen flow to the mouth and/or to the nose as needed and/or when needed.
  • the system when the bite block is in place the system is adapted to provide more oxygen to the mouth or even, only to the mouth.
  • the system is adapted to provide more oxygen to the nose or even, only to the nose.
  • problems have been encountered associated with the oxygen being delivered at a relatively higher pressure than that at which the exhaled breath is expelled by the patient.
  • the collection of the exhaled breath may be diluted with the supplied oxygen, which affects the accuracy of the capnographic measurements.
  • Another example may be during medical procedures known as MAC, monitoring anesthesia care, where U.E. procedures are performed using high levels of oxygen, typically in excess of 5 l/min.
  • the device, system and method are adapted to improve breath sampling and to reduce dilution of the sampled breath with oxygen.
  • the device, system and method are adapted to provide high oxygen delivery, optionally at rates up to 10 l/hr.
  • orally delivered oxygen or optionally, any other breathable gas, delivered at a relatively high pressure is substantially prevented from interfering with the free flow of orally exhaled breath, by separately channeling the oxygen through an oxygen channel and the exhaled breath through an airway channel, and by maintaining a substantial distance between the openings to these channels.
  • the pressure of the oxygen at an opening of the airway channel is less than the pressure of the opposing exhaled breath and therefore, oxygen is substantially prevented from entering the airway channel and diluting the exhaled breath.
  • the oxygen channel may include a relatively large aperture at one end through which the oxygen flows from the oxygen channel into the back of the patient's mouth.
  • the oxygen channel or channels may include several apertures. The distance between the two channel openings may be determined by the pressure at which the oxygen exits the oxygen channel in the bite block.
  • the airway channel may be designed to extend inwardly to the direction of the mouth of the patient relative to the oxygen channel.
  • the oxygen channel may be designed such that the oxygen flow is not directly in the direction into the back of the mouth of the patient, for example, slanted downwards. In this manner, an efficient collection of exhaled breath for capnographic measurements may be maintained while substantially high oxygen delivery is performed.
  • the oxygen channel may comprise one or more apertures in the insertion channel through which oxygen, or optionally a portion of the delivered oxygen, may flow out of the oxygen channel into the patient's mouth.
  • a bite block including an insertion channel through which a medical instrument, for example, an endoscope, may be inserted into the mouth of the patient.
  • the bite block may further include an airway channel, which extends further into the mouth of the patient relative to the oxygen channel and to the insertion channel.
  • an opening may extend partially or entirely, along the length between the airway channel and the insertion channel.
  • the bite block may also include an oxygen channel through which oxygen is delivered to the patient. The exhaled breath may freely flow through the airway channel towards a sampling port connected to the capnograph.
  • the oxygen channel may be formed along a side of the insertion channel for patient comfort.
  • the oxygen channel may be positioned in the bite block in any manner which permits high oxygen delivery, the distance between the airway channel and the oxygen channel preferably not less than the distance between the airway channel and the insertion channel.
  • the bite block comprises an extendable oral nasal cannula, which is substantially maintained inside the patient's nostrils generally independent of the patient's head position and of movement of the bite block.
  • the airway channel opens into a cavity in a forward section of the bite block, external to the patient's mouth.
  • An oral prong in the oral nasal cannula is adapted to slide in a generally lateral direction along a z-axis back and forth along the cavity, and to rotate and tilt relative to a y-axis substantially perpendicular to the direction of sliding, in order to compensate for movement of the bite block relative to the patient's mouth.
  • the oral prong is adapted to slidingly extend in and out of an oral prong extension in a generally vertical direction along the y-axis substantially extending the length of the oral prong.
  • substantially continuous flow of exhaled breath is maintained to the capnograph.
  • the bite block comprises an airway channel which includes an opening to which the oral prong is affixed. Exhaled breath may then flow through the opening in the airway channel into the oral prong.
  • the bite block may include an oral prong as an integral part of the bite block.
  • the oral prong may be connected to one or more nasal prongs.
  • the integral oral prong may open into a roof of the airway channel.
  • the device and system may be adjustable to fit different patients.
  • a bite block comprising an insertion channel and an airway channel, wherein the airway channel is adapted to pass substantially free flow of breath, and wherein the insertion channel is adapted to pass substantially free flow of breath and to pass a medical instrument.
  • a portion of the airway channel opens into a cavity adapted to receive an oral prong, wherein the oral prong is adapted to sample breath from a patient.
  • the cavity is further adapted to allow relative motion between the bite block and the prong without substantially reducing the breath sampling.
  • the airway channel is adapted to receive an oral prong, wherein the oral prong is adapted to sample breath from a patient.
  • the airway channel is adapted to pass substantially free flow of breath through a duct.
  • the duct is further adapted to enable a viewer to view the position of an oral prong functionally connected to the bite block.
  • the bite block further comprises an oxygen channel located in proximity to the insertion channel, wherein the oxygen channel is adapted to direct oxygen towards the inside of the mouth of a patient.
  • the airway channel is adapted to protrude further into the back of the mouth relative to the insertion channel and/or the oxygen channel.
  • the bite block is adapted to reduce the flow of oxygen from the oxygen channel into the airway channel, such that the oxygen pressure is adapted to be lower than the opposing pressure created by the exhaled breath, so that the exhaled breath can push back out of the mouth the oxygen, and at least partially prevent oxygen from reaching the airway channel opening and consequently diluting the sampled breath.
  • a bite block comprising an airway channel, wherein the airway channel is adapted to pass substantially free flow of breath and wherein a portion of the airway channel opens into a cavity adapted to receive an oral prong for sample breath from a patient.
  • the cavity is further adapted to allow relative motion between the bite block and the prong without substantially reducing the breath sampling.
  • the bite block further comprises an insertion channel adapted to pass substantially free flow of breath, and to pass a medical instrument.
  • the airway channel is adapted to pass substantially free flow of breath through a duct.
  • the duct is further adapted to enable a viewer to view the position of an oral prong functionally connected to the bite block.
  • the bite block further comprises an oxygen channel located in proximity to the channel, wherein the oxygen channel is adapted to direct oxygen towards the inside of the mouth of a patient.
  • the airway channel is adapted to protrude further into the back of the mouth relative to the insertion channel and/or said oxygen channel.
  • the bite block is adapted to reduce the flow of oxygen from the oxygen channel into the airway channel, such that the oxygen pressure is adapted to be lower than the opposing pressure created by the exhaled breath, so that the exhaled breath can push back out of the mouth the oxygen, and at least partially prevent oxygen from reaching the airway channel opening and consequently diluting the sampled breath.
  • a system for sampling breath comprising: a bite block comprising an insertion channel and an airway channel, wherein the airway channel is adapted to pass substantially free flow of breath, and wherein said an insertion channel is adapted to pass substantially free flow of breath and to pass a medical instrument; and a valve adapted to regulate oxygen delivery to the oxygen channel.
  • the airway channel opens into a cavity adapted to receive an oral prong, wherein the oral prong is adapted to sample breath from a patient.
  • the cavity is further adapted to allow relative motion between the bite block and the prong without substantially reducing the breath sampling.
  • the airway channel is adapted to receive an oral prong, wherein the oral prong is adapted to sample breath from a patient.
  • the airway channel is adapted to pass substantially free flow of breath through a duct.
  • the duct is further adapted to enable a viewer to view the position of an oral prong functionally connected to said bite block.
  • the system further comprises an oxygen channel located in proximity to the insertion channel, wherein the oxygen channel is adapted to direct oxygen towards the inside of the mouth of a patient.
  • airway channel extends further into the mouth relative to the insertion channel and/or the oxygen channel.
  • a system for sampling breath comprising: a bite block comprising an airway channel, wherein the airway channel is adapted to pass substantially free flow of breath and wherein a portion of the airway channel opens into a cavity adapted to receive an oral prong for sampling breath from a patient, the cavity is further adapted to allow relative motion between said bite block and said prong without substantially reducing the breath sampling; and a valve adapted to regulate oxygen delivery to said oxygen channel.
  • the system further comprising an insertion channel adapted pass substantially free flow of breath and to pass a medical instrument.
  • a system for sampling breath comprising: a bite block comprising an insertion channel and an airway channel, wherein the airway channel is adapted to pass substantially free flow of breath and wherein the insertion channel is adapted to pass substantially free flow of breath and to pass a medical instrument; and an oral nasal cannula adapted to sample breath.
  • FIG. 1 schematically shows an isometric front view of an exemplary bite block adapted for capnography and oxygen delivery to a patient, in accordance with an embodiment of the invention
  • FIG. 2 schematically shows an isometric back view of the exemplary bite block in FIG. 1 in accordance with an embodiment of the invention
  • FIG. 3 schematically shows an isometric front view of an exemplary bite block comprising an oral nasal cannula and an oxygen tube;
  • FIG. 4 schematically shows an back view of the exemplary bite block in FIG. 3 in accordance with an embodiment of the invention.
  • FIG. 5 schematically shows a cross-sectional view A-A of the exemplary bite block of FIG. 3 , in accordance with an embodiment of the invention.
  • FIGS. 1 and 2 schematically show an isometric front view and back view, respectively, of an exemplary bite block 100 adapted for passing a medical instrument, perform capnography and if required, deliver oxygen to a patient, in accordance with an embodiment of the invention.
  • Bite block 100 comprises an external section 101 and an oral insert, which may be refereed to as a mouthpiece 111 .
  • Mouthpiece 111 is adapted to be placed inside a patient's mouth, while external section 101 is configured to be fitted over the mouth and to substantially restrict movement of the mouthpiece inside the patient's mouth.
  • External section 101 comprises a main body portion 102 , which includes an opening 104 to an insertion channel 134 .
  • Insertion channel 134 is adapted to receive a medical instrument, for example an endoscope, which is inserted through opening 104 and extends through insertion channel 134 into a patient's mouth.
  • Main body portion 102 comprises a first lateral section 103 which laterally extends from one side of main body portion 102 towards a first attachment 112 .
  • a second lateral section 105 laterally extends towards a second attachment 113 .
  • First attachment 112 and second attachment 113 comprise openings 114 and 115 , respectively, the attachments adapted to receive a strap, or some other means of fixing the bite block to a patient's mouth, generally by attaching the strap, or other means, around the back of the head of the patient.
  • more than one strap or other means of attachment may be used to fix the bite block to the patient's mouth.
  • Mouthpiece 111 comprises insertion channel 134 , an airway channel 132 and an oxygen channel 136 .
  • Insertion channel 134 extends from opening 104 along a major portion of the length of the mouthpiece to an end opening 131 .
  • Insertion channel 134 is formed by a surface 145 which is usually supported by the tongue when the mouthpiece is inserted in the patient's mouth, and a surface 143 which provides a biting surface for the patient's lower teeth.
  • Surfaces 145 and 143 are contoured with rounded edges to substantially reduce any possible harm to the patient's mouth and/or tongue, and/or patient discomfort, typically associated with sharp edges.
  • oxygen tube adapter 108 Protruding from first lateral section 103 is an oxygen tube adapter 108 , adapted to receive an oxygen tube for orally administering oxygen to the patient.
  • oxygen tube adapter 108 may protrude from second lateral section 105 .
  • the oxygen tube adapter may protrude from first lateral section 103 and second lateral section 105 , or from other parts of bite block 100 .
  • Oxygen channel 136 extends from oxygen tube adapter 108 laterally along a length of insertion channel 134 .
  • Oxygen channel 136 is adapted to conduct oxygen flowing into oxygen tube adapter 108 through an opening 110 , and through aperture 137 at the other end of oxygen channel 136 , into the mouth of the patient.
  • oxygen channel 136 may extend the whole length of insertion channel 134 .
  • Oxygen channel 136 is formed by a substantially curved surface 138 to reduce any possible harm to the patient's mouth and/or tongue, and/or patient discomfort, typically associated with sharp edges.
  • aperture 137 is of a relative large diameter, generally in the range of 0.5-20 mm, for example, 2 mm, 3 mm, 5 mm, 8 mm, 12 mm, 15 mm, 18 mm, adapted to create a pressure decrease in the oxygen flow when flowing out of oxygen channel 136 into the mouth of the patient.
  • oxygen channel 136 may include more than one aperture.
  • oxygen channel 136 may comprise one or more apertures, such as aperture 137 in insertion channel 134 through which oxygen, or optionally a portion of the delivered oxygen, may flow out of the oxygen channel into the patient's mouth.
  • airway channel 132 is adapted to receive exhaled breath from the patient and to allow exhaled breath and inhaled air to flow freely back and forth along the channel.
  • the exhaled breath free flows along airway channel 132 in the direction of a cavity 142 , included in the forward section of the airway channel.
  • Airway channel 132 extends from cavity 142 in a direction inwardly, or deeper, into the mouth of the patient a distance d compared to insertion channel 134 .
  • the distance d is measured in a direction along an x-axis from an opening 135 comprised in airway channel 132 to opening 131 and generally ranges from 5 mm-20 mm, for example 5 mm, 8 mm, 12 mm, 16 mm, 20 mm.
  • the pressure of the oxygen at opening 135 of airway channel 132 is less than the pressure of the opposing exhaled breath and therefore, oxygen is substantially prevented from entering airway channel 132 and diluting the exhaled breath.
  • Airway channel 132 is formed by a substantially curved surface 140 which may slope upwards in the direction of the roof of the mouth when the mouthpiece is inserted in the patient's mouth, and substantially curved surface 141 which provides a biting surface for the patient's upper teeth. Upward sloping of surface 140 allows for a larger opening 135 in airway channel 132 much like a funnel, opening 135 adapted to capture relatively large amounts of exhaled breath.
  • the funnel design of airway channel 132 provided by sloping surface 140 , provides for substantial free flow of breath in the airway channel.
  • Surfaces 140 and 141 are contoured with rounded edges to substantially reduce any possible harm to the patient's mouth and/or to reduce patient discomfort, typically associated with sharp edges.
  • an opening may extend, partially or entirely, along the length between airway channel 132 and insertion channel 134 .
  • the dimensions of cavity 142 are such that they allow an oral nasal cannula (not shown) to move, relative to bite block 100 , linearly inside the cavity along the x-axis and/or y-axis and and/or z-axis, and/or angularly about the x and/or y and/or z axis, Relative motion of the oral nasal cannula substantially compensates for movement of bite block 100 relative to a patient's mouth, allowing oral nasal cannula to remain inserted in cavity 142 generally at all times.
  • Cavity 142 is formed from a substantially vertical inner surface 144 of a section of main portion 102 , a section of first lateral section 103 , and a section of second lateral section 105 .
  • a border 146 perpendicularly extends from surface 141 at the border of the airway channel 132 with cavity 142 , and generally serves to demarcate the border between the mouthpiece and the external section.
  • a cavity floor 148 comprises a surface adapted to support the oral nasal cannula when fitted into the cavity.
  • Cavity 142 further comprises a duct 106 in inner surface 144 adapted to allow exhaled breath and inhaled air to flow freely in and out of airway channel 132 .
  • Duct 106 may also be used by a viewer to view the position of the oral nasal cannula inside the cavity.
  • FIG. 3 schematically shows an isometric front view of an exemplary bite block comprising an oral nasal cannula and an oxygen tube
  • FIG. 4 schematically shows a back view of the exemplary bite block in FIG. 3
  • FIG. 5 schematically shows a cross-sectional view A-A of the exemplary bite block of FIG. 3 and FIG. 4 , in accordance with an embodiment of the invention.
  • Bite block 200 is the same or substantially similar to bite block 100 shown in FIGS. 1 and 2 , additionally comprising an oral nasal cannula 260 positioned inside cavity 242 and an oxygen tube 290 , including a valve 291 , attached to the bite block at an oxygen tube adapter 208 .
  • Bite block 200 comprises an external section 201 , a mouthpiece 211 , a main body portion 202 , an opening 204 , an insertion channel 234 , a first lateral section 203 , a first attachment 212 , a second lateral section 205 , a second attachment 213 , openings 214 and 215 , an airway channel 232 , an oxygen channel 236 , an end opening 231 , a surface 245 , a surface 243 , oxygen channel 236 , a curved surface 238 , a cavity 242 , an opening 235 , a curved surface 240 , a curved surface 241 , a vertical inner surface 244 , a border 246 , a cavity floor 248 , and a duct 206 , all the same or substantially similar to that shown in FIGS.
  • curved surface 240 is a sloping surface extending from opening 231 to intersect curved surface 241 , such that a height h1 of airway channel 232 is a maximum at opening 231 and decreases to a height h2 at the intersection with surface 241 .
  • the relatively large opening in airway channel 232 allows for better collection of orally exhaled breath from the patient.
  • Height h1 of airway channel 232 is generally limited by the structure of the mouth and is typically in a range of 5-25 mm, for example, 10 mm, 14 mm, 16 mm, or 20 mm.
  • Height h2 of airway channel 232 is generally limited by the size of the bite, and is typically in a range of 1-10 mm, for example, 2 mm, 3.5 mm, or 5 mm.
  • heights h1 and h2 may be the same.
  • Oxygen tube 290 is connected to bite block 200 by means of a rotational nipple 274 which is inserted into oxygen tube adapter 208 .
  • rotational nipple 274 is a fixed nipple not adapted for rotational motion.
  • Oxygen, or some other type of breathable gas is delivered to the bite block through oxygen tube 290 . The gas flows through the nipple into oxygen tube adapter 208 and through oxygen channel 236 into a patient's mouth.
  • Valve 291 is adapted to regulate oxygen flow in the direction of oxygen tube adapter 208 and oxygen channel 236 , and in the direction of oral nasal cannula 260 .
  • Oxygen flow to oral nasal cannula 260 may be maintained, when bite block 200 is removed, through a nasal oxygen tube (not shown) extending from valve 291 to opening 268 in oral nasal cannula 260 .
  • Oral nasal cannula 260 comprises a main body 262 from which extend two nasal prongs 264 adapted to be inserted into the patient's nostrils for exhaled breath collection.
  • the exhaled breath from the patient's nostrils flows through the nasal prongs into a breath conduit 276 .
  • Breath conduit 276 leads through main body 262 to an exit opening 269 to which a breath sampling tube may be connected for delivering the exhaled breath to a capnograph.
  • Main body 262 further comprises oxygen delivery holes such as, for example hole 266 , through which oxygen, or some other breathable gas, flows out of the main body into the patient's nostrils.
  • the oxygen is delivered to the oral nasal cannula through a nasal oxygen tube which connects to opening 268 at one end of the main body.
  • Opening 268 leads to a conduit 263 in main body 262 through which the oxygen flows to the oxygen delivery holes.
  • opening 268 leads to a conduit 263 , through which oxygen may flow into prongs (not shown).
  • oral prong 270 comprising a hollow tube with a cut-away tip 274 is attached to the bottom side of main body 262 .
  • oral prong 270 comprises a hollow oral prong extension 272 into which the oral prong may be slidingly inserted into and retracted from, substantially extending the length of the oral prong when fully retracted.
  • oral prong 270 and oral prong extension 272 are fixed with respect to one another.
  • Oral prong extension 272 comprises a hollow tube with a cut-away tip 273 , and is adapted to be inserted into cavity 242 .
  • Oral prong 270 is usually positioned in cavity 242 in a vertical position along a y-axis, supported by an extended abutment of oral prong extension 272 with inner surface 244 , and by an abutment of cut-away tip 273 with cavity surface 248 .
  • Oral prong 270 is generally oriented such that an opening in cut-away tip 273 faces in the direction of airway channel 232 .
  • oral prong 270 is adapted to sample the breath of a patient in airway channel 232 .
  • Orally exhaled breath flowing through airway channel 232 may flow with ease into oral prong extension 272 through cut-away tip 273 , and into oral prong 270 through cut-away tip 274 .
  • the orally exhaled breath flowing into oral prong 270 flows through the prong into conduit 276 in main body 262 where it may combine with exhaled breath from the patient's nostrils.
  • the exhaled breath then flows out exit opening 269 .
  • oral prong 270 is adapted to slide in a generally lateral direction, relative to bite block 200 , along a z-axis back and forth along the cavity floor 248 , and to rotate and tilt relative to the y-axis substantially perpendicular to the direction of sliding.
  • a large degree of freedom in movement in oral prong 270 , and thereby in oral nasal cannula 260 substantially compensates for movement of bite block 200 relative to a patient's mouth, allowing oral nasal cannula 260 to remain inserted in cavity 242 generally at all times.
  • bite block 200 comprises an airway channel 232 which includes an opening to which oral prong 270 is affixed. Exhaled breath may then flow through the opening in airway channel 232 into oral prong 270 .
  • each of the words, “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated.

Abstract

There is provided herein, a bite block comprising an insertion channel and an airway channel, wherein the airway channel is adapted to receive exhaled breath and wherein the first insert channel is adapted to pass a medical instrument. There is provided herein, a bite block comprising an oral insert channel, wherein a portion of said channel opens into a cavity adapted to slidably receive an oral prong the oral insert channel is adapted to receive exhaled breath.

Description

    FIELD
  • The invention relates to medical appliances.
  • BACKGROUND
  • Numerous medical procedures require the insertion of an instrument, such as an endoscope, down a person's mouth and into the body. Such is the case when performing, for example, an Esophagogastroduodenoscopy (EGD), a procedure comprising the insertion of a flexible endoscope through the mouth until reaching the duodenum (first and shortest part of the small intestine). The endoscope when inserted is used to provide a visual inspection of the organs, and optionally to perform medical procedures such as, for example, biopsies, incisions, and retrieval of foreign objects.
  • Endoscopic procedures are usually performed while a patient is under topical or moderate sedation, although in some circumstances it may be performed while the patient is under general anesthesia. During moderate sedation or general anesthesia the patient is generally sedated intravenously to minimize gagging and to facilitate the procedure. A bite block is used to prevent the patient from biting on the endoscope, to facilitate the introduction of the endoscope into the mouth, and to maneuver the endoscope relatively freely while inserted in the mouth.
  • A frequent occurrence when administering intravenous sedation is reduced breathing in the patient, which may lead to hypoxia, or a reduction of oxygen in the blood. It is then substantially common practice to administer oxygen or another breathable gas to the patient, usually through a nasal cannula, while the patient is sedated. Additionally, the patient's exhaled breath is typically monitored, by means of a capnograph, in order to corroborate that the patient's carbon dioxide levels in the blood and the tissues are within safe limits
  • A number of bite blocks have been adapted with features to supply oxygen, or optionally some other type of breathable gas, to a sedated patient. Some have been further adapted with features which allow the patient to be connected to a capnograph for measuring the carbon dioxide contents in the patient's exhaled breath. The following patents and/or publications describe different types of bite blocks adapted with some of these features, all of which are incorporated herein by reference.
  • U.S. Pat. No. 5,273,032 “Oxygenating Oral Medical Appliance”, describes an “endoscopic mouth guard having a smoothly contoured, waisted tube merging into a peripheral flange at the front end of said tube, a manifold integral with the front face of said flange defining a closed ended, transverse distribution duct, and two open ended, upwardly directed branch ducts ending, in use, closely below the nostrils of a patient fitted with the guard, two further, open ended branch ducts extending rearwardly from said distributor duct into the bore of said tube, and a laterally and rearwardly directed tapered spigot on said manifold, defining an extension of said distributor duct, adapted to enter the bore of a gas supply tube. The finished guard is a single article of plastics material having a smooth hard surface.”
  • U.S. Pat. No. 5,513,634 “Combination Integral Bite Block Airway and Nasal Cannula”, describes a “combination plastic relatively rigid bite block and soft nasal cannula intended for one-time use for supplying oxygen to a patient's nostrils during an endoscopic procedure. The cannula is fixed into the bite block by an integral clip portion of the cannula extending downwardly from a manifold portion and adhered to the bite block. Flexible nasal prongs extend upwardly from the manifold into the patient's nostrils to supply supplementary gas separately from air breathed through the patient's mouth.”
  • US Patent Application Publication No. US 2007/0006878 A1 “Capnographic-oxygenating Oro-fiberscopic Bite block”, describes an oro-fiberscopic bite block. “The bite block is utilized during oral fiberscopic procedures. The bite block includes a main structure having an orifice sized to accommodate entry of a fiberscope, such as an endoscope, through the orifice. The bite block includes an extension extending inward from the main structure when positioned within the mouth of a patient. On each side of the orifice is a loop for handling and positioning the bite block within the patient's mouth. The bite block includes an exhalation tube running from the extension to a monitoring device which allows monitoring of the patient's expelled gases. In addition, an inhalation tube may be used to provide supplemental oxygen to the patient. The bite block is positioned in the mouth of the patient with the mouth of the patient surrounding the extension. The tubes include openings which are located on the extension and lie in the interior of the mouth to provide monitoring of uncontaminated gasses expelled by the patient.”
  • PCT International Application Publication No. WO 2007/063532 “Endoscopic Bite Block”, describes a “bite block assembly adapted for capnography and oxygen delivery to a subject, the bite block assembly including a first capnography passageway adapted for passage therethrough of exhaled breath from the subject to a capnograph and a second oxygen delivery passageway, separate from the first passageway, adapted for passage therethrough of oxygen from an oxygen source to the mouth of the subject.”
  • There is still a need in the art for improved bite blocks, systems including them and methods that would allow efficient breath sampling during medical procedures such as endoscopy.
  • SUMMARY
  • An aspect of some embodiments of the invention relates to a device, such as a bite block device, a system, such as a bite block and an oral nasal breath sampling cannula, and method for sampling breath, for example for the purpose of capnographic measurements, while performing a medical procedure such as insertion of an endoscope. In addition, the device may also include oxygen delivery element(s).
  • Since experience has shown that patients have a tendency to breath through their mouth during a procedure such as endoscopy, according to some embodiments, the device, system and method provide oxygen delivery and oxygen flow regulation means that facilitate the direction of the oxygen flow to the mouth and/or to the nose as needed and/or when needed. For example, when the bite block is in place the system is adapted to provide more oxygen to the mouth or even, only to the mouth. However, when the bite block is not in a patient's mouth the system is adapted to provide more oxygen to the nose or even, only to the nose. In addition, in many of the existing bite blocks adapted to deliver oxygen and allow capnographic measurements, problems have been encountered associated with the oxygen being delivered at a relatively higher pressure than that at which the exhaled breath is expelled by the patient. The higher pressure, at which the oxygen is delivered orally and/or nasally, occasionally forces the exhaled breath away from an entrance to exhaled breath collection means or allows oxygen into the sampling tubes. For example, when a patient is lightly breathing through the nose or not breathing through the nose at all, during endoscopy or due to any other reason, the collection of the exhaled breath may be diluted with the supplied oxygen, which affects the accuracy of the capnographic measurements. Another example may be during medical procedures known as MAC, monitoring anesthesia care, where U.E. procedures are performed using high levels of oxygen, typically in excess of 5 l/min. According to some embodiments, the device, system and method are adapted to improve breath sampling and to reduce dilution of the sampled breath with oxygen. Furthermore, the device, system and method are adapted to provide high oxygen delivery, optionally at rates up to 10 l/hr.
  • According to an aspect of some embodiments of the invention, orally delivered oxygen or optionally, any other breathable gas, delivered at a relatively high pressure, is substantially prevented from interfering with the free flow of orally exhaled breath, by separately channeling the oxygen through an oxygen channel and the exhaled breath through an airway channel, and by maintaining a substantial distance between the openings to these channels. The pressure of the oxygen at an opening of the airway channel is less than the pressure of the opposing exhaled breath and therefore, oxygen is substantially prevented from entering the airway channel and diluting the exhaled breath. Additionally, the oxygen channel may include a relatively large aperture at one end through which the oxygen flows from the oxygen channel into the back of the patient's mouth. The use of a relatively large aperture causes a pressure decrease in the flow of oxygen when exiting from the oxygen channel. Optionally, more than one oxygen channels may be used. Additionally or alternatively, the oxygen channel or channels may include several apertures. The distance between the two channel openings may be determined by the pressure at which the oxygen exits the oxygen channel in the bite block. For example, the airway channel may be designed to extend inwardly to the direction of the mouth of the patient relative to the oxygen channel. Optionally, the oxygen channel may be designed such that the oxygen flow is not directly in the direction into the back of the mouth of the patient, for example, slanted downwards. In this manner, an efficient collection of exhaled breath for capnographic measurements may be maintained while substantially high oxygen delivery is performed. In some embodiments of the invention, the oxygen channel may comprise one or more apertures in the insertion channel through which oxygen, or optionally a portion of the delivered oxygen, may flow out of the oxygen channel into the patient's mouth.
  • In accordance with some embodiments of the invention, there is provided a bite block including an insertion channel through which a medical instrument, for example, an endoscope, may be inserted into the mouth of the patient. The bite block may further include an airway channel, which extends further into the mouth of the patient relative to the oxygen channel and to the insertion channel. In some embodiments of the invention, an opening may extend partially or entirely, along the length between the airway channel and the insertion channel. The bite block may also include an oxygen channel through which oxygen is delivered to the patient. The exhaled breath may freely flow through the airway channel towards a sampling port connected to the capnograph. The oxygen channel may be formed along a side of the insertion channel for patient comfort. Alternatively, the oxygen channel may be positioned in the bite block in any manner which permits high oxygen delivery, the distance between the airway channel and the oxygen channel preferably not less than the distance between the airway channel and the insertion channel.
  • In some embodiments of the invention, the bite block comprises an extendable oral nasal cannula, which is substantially maintained inside the patient's nostrils generally independent of the patient's head position and of movement of the bite block. The airway channel opens into a cavity in a forward section of the bite block, external to the patient's mouth. An oral prong in the oral nasal cannula is adapted to slide in a generally lateral direction along a z-axis back and forth along the cavity, and to rotate and tilt relative to a y-axis substantially perpendicular to the direction of sliding, in order to compensate for movement of the bite block relative to the patient's mouth. Additionally, the oral prong is adapted to slidingly extend in and out of an oral prong extension in a generally vertical direction along the y-axis substantially extending the length of the oral prong. A large degree of freedom of movement in the oral prong, and thereby in the oral nasal cannula, substantially reduces the possibility that the nasal prong may slip out of the bite block due to movement of the bite block relative to the patient's mouth. As a result, substantially continuous flow of exhaled breath is maintained to the capnograph. In some embodiments of the invention, the bite block comprises an airway channel which includes an opening to which the oral prong is affixed. Exhaled breath may then flow through the opening in the airway channel into the oral prong. In some embodiments of the invention, the bite block may include an oral prong as an integral part of the bite block. The oral prong may be connected to one or more nasal prongs. The integral oral prong may open into a roof of the airway channel.
  • In addition, according to some embodiments, the device and system may be adjustable to fit different patients.
  • In accordance with an embodiment of the invention, there is provided a bite block comprising an insertion channel and an airway channel, wherein the airway channel is adapted to pass substantially free flow of breath, and wherein the insertion channel is adapted to pass substantially free flow of breath and to pass a medical instrument. Optionally, a portion of the airway channel opens into a cavity adapted to receive an oral prong, wherein the oral prong is adapted to sample breath from a patient. Optionally, the cavity is further adapted to allow relative motion between the bite block and the prong without substantially reducing the breath sampling.
  • In accordance with some embodiments of the invention, the airway channel is adapted to receive an oral prong, wherein the oral prong is adapted to sample breath from a patient.
  • In accordance with some embodiments of the invention, the airway channel is adapted to pass substantially free flow of breath through a duct. Optionally, the duct is further adapted to enable a viewer to view the position of an oral prong functionally connected to the bite block.
  • In accordance with some embodiments of the invention, the bite block further comprises an oxygen channel located in proximity to the insertion channel, wherein the oxygen channel is adapted to direct oxygen towards the inside of the mouth of a patient. Optionally, the airway channel is adapted to protrude further into the back of the mouth relative to the insertion channel and/or the oxygen channel. Additionally or alternatively, the bite block is adapted to reduce the flow of oxygen from the oxygen channel into the airway channel, such that the oxygen pressure is adapted to be lower than the opposing pressure created by the exhaled breath, so that the exhaled breath can push back out of the mouth the oxygen, and at least partially prevent oxygen from reaching the airway channel opening and consequently diluting the sampled breath.
  • In accordance with an embodiment of the invention, there is provided a bite block comprising an airway channel, wherein the airway channel is adapted to pass substantially free flow of breath and wherein a portion of the airway channel opens into a cavity adapted to receive an oral prong for sample breath from a patient. The cavity is further adapted to allow relative motion between the bite block and the prong without substantially reducing the breath sampling. Optionally, the bite block further comprises an insertion channel adapted to pass substantially free flow of breath, and to pass a medical instrument.
  • In accordance with some embodiments of the invention, the airway channel is adapted to pass substantially free flow of breath through a duct. Optionally, the duct is further adapted to enable a viewer to view the position of an oral prong functionally connected to the bite block.
  • In accordance with some embodiments of the invention, the bite block further comprises an oxygen channel located in proximity to the channel, wherein the oxygen channel is adapted to direct oxygen towards the inside of the mouth of a patient. Optionally, the airway channel is adapted to protrude further into the back of the mouth relative to the insertion channel and/or said oxygen channel. Additionally or alternatively, the bite block is adapted to reduce the flow of oxygen from the oxygen channel into the airway channel, such that the oxygen pressure is adapted to be lower than the opposing pressure created by the exhaled breath, so that the exhaled breath can push back out of the mouth the oxygen, and at least partially prevent oxygen from reaching the airway channel opening and consequently diluting the sampled breath.
  • In accordance with an embodiment of the invention, there is provided a system for sampling breath, the system comprising: a bite block comprising an insertion channel and an airway channel, wherein the airway channel is adapted to pass substantially free flow of breath, and wherein said an insertion channel is adapted to pass substantially free flow of breath and to pass a medical instrument; and a valve adapted to regulate oxygen delivery to the oxygen channel.
  • In accordance with some embodiments of the invention, the airway channel opens into a cavity adapted to receive an oral prong, wherein the oral prong is adapted to sample breath from a patient. Optionally, the cavity is further adapted to allow relative motion between the bite block and the prong without substantially reducing the breath sampling.
  • In accordance with some embodiments of the invention, the airway channel is adapted to receive an oral prong, wherein the oral prong is adapted to sample breath from a patient. Optionally, the airway channel is adapted to pass substantially free flow of breath through a duct. Additionally, the duct is further adapted to enable a viewer to view the position of an oral prong functionally connected to said bite block.
  • In accordance with some embodiments of the invention, the system further comprises an oxygen channel located in proximity to the insertion channel, wherein the oxygen channel is adapted to direct oxygen towards the inside of the mouth of a patient. Optionally, airway channel extends further into the mouth relative to the insertion channel and/or the oxygen channel.
  • In accordance with some embodiments of the invention, there is provided a system for sampling breath, the system comprising: a bite block comprising an airway channel, wherein the airway channel is adapted to pass substantially free flow of breath and wherein a portion of the airway channel opens into a cavity adapted to receive an oral prong for sampling breath from a patient, the cavity is further adapted to allow relative motion between said bite block and said prong without substantially reducing the breath sampling; and a valve adapted to regulate oxygen delivery to said oxygen channel. Optionally, the system further comprising an insertion channel adapted pass substantially free flow of breath and to pass a medical instrument.
  • In accordance with an embodiment of the invention, there is provided a system for sampling breath, the system comprising: a bite block comprising an insertion channel and an airway channel, wherein the airway channel is adapted to pass substantially free flow of breath and wherein the insertion channel is adapted to pass substantially free flow of breath and to pass a medical instrument; and an oral nasal cannula adapted to sample breath.
  • BRIEF DESCRIPTION OF FIGURES
  • Examples illustrative of embodiments of the invention are described below with reference to figures attached hereto. In the figures, identical structures, elements or parts that appear in more than one figure are generally labeled with a same numeral in all the figures in which they appear. Dimensions of components and features shown in the figures are generally chosen for convenience and clarity of presentation and are not necessarily shown to scale. The figures are listed below.
  • FIG. 1 schematically shows an isometric front view of an exemplary bite block adapted for capnography and oxygen delivery to a patient, in accordance with an embodiment of the invention;
  • FIG. 2 schematically shows an isometric back view of the exemplary bite block in FIG. 1 in accordance with an embodiment of the invention;
  • FIG. 3 schematically shows an isometric front view of an exemplary bite block comprising an oral nasal cannula and an oxygen tube;
  • FIG. 4 schematically shows an back view of the exemplary bite block in FIG. 3 in accordance with an embodiment of the invention; and
  • FIG. 5 schematically shows a cross-sectional view A-A of the exemplary bite block of FIG. 3, in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION
  • Reference is made to FIGS. 1 and 2 which schematically show an isometric front view and back view, respectively, of an exemplary bite block 100 adapted for passing a medical instrument, perform capnography and if required, deliver oxygen to a patient, in accordance with an embodiment of the invention. Bite block 100 comprises an external section 101 and an oral insert, which may be refereed to as a mouthpiece 111. Mouthpiece 111 is adapted to be placed inside a patient's mouth, while external section 101 is configured to be fitted over the mouth and to substantially restrict movement of the mouthpiece inside the patient's mouth. External section 101 comprises a main body portion 102, which includes an opening 104 to an insertion channel 134. Insertion channel 134 is adapted to receive a medical instrument, for example an endoscope, which is inserted through opening 104 and extends through insertion channel 134 into a patient's mouth. Main body portion 102 comprises a first lateral section 103 which laterally extends from one side of main body portion 102 towards a first attachment 112. On the other side of main body portion 102, a second lateral section 105 laterally extends towards a second attachment 113. First attachment 112 and second attachment 113 comprise openings 114 and 115, respectively, the attachments adapted to receive a strap, or some other means of fixing the bite block to a patient's mouth, generally by attaching the strap, or other means, around the back of the head of the patient. Optionally, more than one strap or other means of attachment may be used to fix the bite block to the patient's mouth.
  • Mouthpiece 111 comprises insertion channel 134, an airway channel 132 and an oxygen channel 136. Insertion channel 134 extends from opening 104 along a major portion of the length of the mouthpiece to an end opening 131. Insertion channel 134 is formed by a surface 145 which is usually supported by the tongue when the mouthpiece is inserted in the patient's mouth, and a surface 143 which provides a biting surface for the patient's lower teeth. Surfaces 145 and 143 are contoured with rounded edges to substantially reduce any possible harm to the patient's mouth and/or tongue, and/or patient discomfort, typically associated with sharp edges.
  • Protruding from first lateral section 103 is an oxygen tube adapter 108, adapted to receive an oxygen tube for orally administering oxygen to the patient. Alternatively, oxygen tube adapter 108 may protrude from second lateral section 105. Optionally, the oxygen tube adapter may protrude from first lateral section 103 and second lateral section 105, or from other parts of bite block 100. Oxygen channel 136 extends from oxygen tube adapter 108 laterally along a length of insertion channel 134. Oxygen channel 136 is adapted to conduct oxygen flowing into oxygen tube adapter 108 through an opening 110, and through aperture 137 at the other end of oxygen channel 136, into the mouth of the patient. Optionally, oxygen channel 136 may extend the whole length of insertion channel 134. Oxygen channel 136 is formed by a substantially curved surface 138 to reduce any possible harm to the patient's mouth and/or tongue, and/or patient discomfort, typically associated with sharp edges. In accordance with an embodiment of the invention, aperture 137 is of a relative large diameter, generally in the range of 0.5-20 mm, for example, 2 mm, 3 mm, 5 mm, 8 mm, 12 mm, 15 mm, 18 mm, adapted to create a pressure decrease in the oxygen flow when flowing out of oxygen channel 136 into the mouth of the patient. Optionally, oxygen channel 136 may include more than one aperture. Additionally or alternatively, oxygen channel 136 may comprise one or more apertures, such as aperture 137 in insertion channel 134 through which oxygen, or optionally a portion of the delivered oxygen, may flow out of the oxygen channel into the patient's mouth.
  • In accordance with an embodiment of the invention, airway channel 132 is adapted to receive exhaled breath from the patient and to allow exhaled breath and inhaled air to flow freely back and forth along the channel. The exhaled breath free flows along airway channel 132 in the direction of a cavity 142, included in the forward section of the airway channel. Airway channel 132 extends from cavity 142 in a direction inwardly, or deeper, into the mouth of the patient a distance d compared to insertion channel 134. The distance d is measured in a direction along an x-axis from an opening 135 comprised in airway channel 132 to opening 131 and generally ranges from 5 mm-20 mm, for example 5 mm, 8 mm, 12 mm, 16 mm, 20 mm. In accordance with an embodiment of the invention, the pressure of the oxygen at opening 135 of airway channel 132 is less than the pressure of the opposing exhaled breath and therefore, oxygen is substantially prevented from entering airway channel 132 and diluting the exhaled breath.
  • Airway channel 132 is formed by a substantially curved surface 140 which may slope upwards in the direction of the roof of the mouth when the mouthpiece is inserted in the patient's mouth, and substantially curved surface 141 which provides a biting surface for the patient's upper teeth. Upward sloping of surface 140 allows for a larger opening 135 in airway channel 132 much like a funnel, opening 135 adapted to capture relatively large amounts of exhaled breath. The funnel design of airway channel 132, provided by sloping surface 140, provides for substantial free flow of breath in the airway channel. Surfaces 140 and 141 are contoured with rounded edges to substantially reduce any possible harm to the patient's mouth and/or to reduce patient discomfort, typically associated with sharp edges. In some embodiments of the invention, an opening may extend, partially or entirely, along the length between airway channel 132 and insertion channel 134.
  • In accordance with an embodiment of the invention the dimensions of cavity 142 are such that they allow an oral nasal cannula (not shown) to move, relative to bite block 100, linearly inside the cavity along the x-axis and/or y-axis and and/or z-axis, and/or angularly about the x and/or y and/or z axis, Relative motion of the oral nasal cannula substantially compensates for movement of bite block 100 relative to a patient's mouth, allowing oral nasal cannula to remain inserted in cavity 142 generally at all times. Cavity 142 is formed from a substantially vertical inner surface 144 of a section of main portion 102, a section of first lateral section 103, and a section of second lateral section 105. A border 146 perpendicularly extends from surface 141 at the border of the airway channel 132 with cavity 142, and generally serves to demarcate the border between the mouthpiece and the external section. A cavity floor 148 comprises a surface adapted to support the oral nasal cannula when fitted into the cavity. Cavity 142 further comprises a duct 106 in inner surface 144 adapted to allow exhaled breath and inhaled air to flow freely in and out of airway channel 132. Duct 106 may also be used by a viewer to view the position of the oral nasal cannula inside the cavity.
  • Reference is made to FIG. 3 which schematically shows an isometric front view of an exemplary bite block comprising an oral nasal cannula and an oxygen tube, to FIG. 4 which schematically shows a back view of the exemplary bite block in FIG. 3, and to FIG. 5 which schematically shows a cross-sectional view A-A of the exemplary bite block of FIG. 3 and FIG. 4, in accordance with an embodiment of the invention.
  • Bite block 200 is the same or substantially similar to bite block 100 shown in FIGS. 1 and 2, additionally comprising an oral nasal cannula 260 positioned inside cavity 242 and an oxygen tube 290, including a valve 291, attached to the bite block at an oxygen tube adapter 208. Bite block 200 comprises an external section 201, a mouthpiece 211, a main body portion 202, an opening 204, an insertion channel 234, a first lateral section 203, a first attachment 212, a second lateral section 205, a second attachment 213, openings 214 and 215, an airway channel 232, an oxygen channel 236, an end opening 231, a surface 245, a surface 243, oxygen channel 236, a curved surface 238, a cavity 242, an opening 235, a curved surface 240, a curved surface 241, a vertical inner surface 244, a border 246, a cavity floor 248, and a duct 206, all the same or substantially similar to that shown in FIGS. 1 and/or 2 at 101, 111, 102, 104, 134, 103, 112, 105, 113, 114, 115, 132, 136, 131, 145, 143, 136, 138, 142, 135, 140, 141, 144, 146, 148, and 106. It may be appreciated from FIG. 5 that curved surface 240 is a sloping surface extending from opening 231 to intersect curved surface 241, such that a height h1 of airway channel 232 is a maximum at opening 231 and decreases to a height h2 at the intersection with surface 241. The relatively large opening in airway channel 232 allows for better collection of orally exhaled breath from the patient. Height h1 of airway channel 232 is generally limited by the structure of the mouth and is typically in a range of 5-25 mm, for example, 10 mm, 14 mm, 16 mm, or 20 mm. Height h2 of airway channel 232 is generally limited by the size of the bite, and is typically in a range of 1-10 mm, for example, 2 mm, 3.5 mm, or 5 mm. Optionally, heights h1 and h2 may be the same.
  • Oxygen tube 290 is connected to bite block 200 by means of a rotational nipple 274 which is inserted into oxygen tube adapter 208. Optionally, rotational nipple 274 is a fixed nipple not adapted for rotational motion. Oxygen, or some other type of breathable gas, is delivered to the bite block through oxygen tube 290. The gas flows through the nipple into oxygen tube adapter 208 and through oxygen channel 236 into a patient's mouth.
  • Valve 291 is adapted to regulate oxygen flow in the direction of oxygen tube adapter 208 and oxygen channel 236, and in the direction of oral nasal cannula 260. Oxygen flow to oral nasal cannula 260 may be maintained, when bite block 200 is removed, through a nasal oxygen tube (not shown) extending from valve 291 to opening 268 in oral nasal cannula 260.
  • Oral nasal cannula 260 comprises a main body 262 from which extend two nasal prongs 264 adapted to be inserted into the patient's nostrils for exhaled breath collection. The exhaled breath from the patient's nostrils flows through the nasal prongs into a breath conduit 276. Breath conduit 276 leads through main body 262 to an exit opening 269 to which a breath sampling tube may be connected for delivering the exhaled breath to a capnograph.
  • Main body 262 further comprises oxygen delivery holes such as, for example hole 266, through which oxygen, or some other breathable gas, flows out of the main body into the patient's nostrils. The oxygen is delivered to the oral nasal cannula through a nasal oxygen tube which connects to opening 268 at one end of the main body. Opening 268 leads to a conduit 263 in main body 262 through which the oxygen flows to the oxygen delivery holes. Alternatively, opening 268 leads to a conduit 263, through which oxygen may flow into prongs (not shown).
  • An oral prong 270 comprising a hollow tube with a cut-away tip 274 is attached to the bottom side of main body 262. In accordance with an embodiment of the invention oral prong 270 comprises a hollow oral prong extension 272 into which the oral prong may be slidingly inserted into and retracted from, substantially extending the length of the oral prong when fully retracted. Optionally, oral prong 270 and oral prong extension 272 are fixed with respect to one another. Oral prong extension 272, comprises a hollow tube with a cut-away tip 273, and is adapted to be inserted into cavity 242.
  • Oral prong 270 is usually positioned in cavity 242 in a vertical position along a y-axis, supported by an extended abutment of oral prong extension 272 with inner surface 244, and by an abutment of cut-away tip 273 with cavity surface 248. Oral prong 270 is generally oriented such that an opening in cut-away tip 273 faces in the direction of airway channel 232. In accordance with an embodiment of the invention, oral prong 270 is adapted to sample the breath of a patient in airway channel 232. Orally exhaled breath flowing through airway channel 232 may flow with ease into oral prong extension 272 through cut-away tip 273, and into oral prong 270 through cut-away tip 274. The orally exhaled breath flowing into oral prong 270 flows through the prong into conduit 276 in main body 262 where it may combine with exhaled breath from the patient's nostrils. The exhaled breath then flows out exit opening 269.
  • In accordance with an embodiment of the invention oral prong 270 is adapted to slide in a generally lateral direction, relative to bite block 200, along a z-axis back and forth along the cavity floor 248, and to rotate and tilt relative to the y-axis substantially perpendicular to the direction of sliding. A large degree of freedom in movement in oral prong 270, and thereby in oral nasal cannula 260, substantially compensates for movement of bite block 200 relative to a patient's mouth, allowing oral nasal cannula 260 to remain inserted in cavity 242 generally at all times. In some embodiments of the invention, bite block 200 comprises an airway channel 232 which includes an opening to which oral prong 270 is affixed. Exhaled breath may then flow through the opening in airway channel 232 into oral prong 270.
  • In the description and claims of embodiments of the present invention, each of the words, “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated.
  • The invention has been described using various detailed descriptions of embodiments thereof that are provided by way of example and are not intended to limit the scope of the invention. The described embodiments may comprise different features, not all of which are required in all embodiments of the invention. Some embodiments of the invention utilize only some of the features or possible combinations of the features. Variations of embodiments of the invention that are described and embodiments of the invention comprising different combinations of features noted in the described embodiments will occur to persons with skill in the art. The scope of the invention is limited only by the claims.

Claims (9)

1-20. (canceled)
21. A bite block comprising a mouthpiece, said mouthpiece comprising:
an airway channel configured to receive exhaled breath from a patient;
an insertion channel extending essentially along the length of said mouthpiece, said insertion channel configured to pass a medical instrument and to allow substantially free flow of breath; and
an oxygen channel located along an inner wall of said insertion channel, said oxygen channel configured to deliver oxygen therethrough,
wherein said airway channel is formed parallel to a wall of said insertion channel such that said airway channel is separated from said insertion channel and said oxygen channel, and wherein said airway channel is configured to protrude further into the mouth than said oxygen channel when in use, such that a substantial distance is maintained between the openings of said channels.
22. The bite block of claim 21, wherein said airway is parallel to said insertion channel along its entire length.
23. The bite block of claim 21, further including a cavity positioned in a forward section of the bite block, said cavity positioned external to the patient's mouth, when in use.
24. The bite block of claim 23, wherein said cavity is configured to receive an oral nasal cannula.
25. The bite block of claim 24, wherein said cavity comprises a floor comprising a surface adapted to support said oral nasal cannula, when fitted in said cavity.
26. The bite block of claim 21, further comprising a main body portion configured to be positioned externally to the patient's mouth, said main body portion comprising an opening to said insertion channel.
27. The bite block of claim 26, wherein said main body portion comprises a first lateral section extending laterally from one side of said main body portion towards a first attachment point and a second lateral section extending laterally extends towards a second attachment point.
28. The bite block of claim 27, wherein each of said first and second attachment points comprise openings adapted to receive a strap, said strap configured to fix said bite block around the back of the patient's head.
US14/662,727 2007-11-25 2015-03-19 Endoscopic bite block Abandoned US20150190599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/662,727 US20150190599A1 (en) 2007-11-25 2015-03-19 Endoscopic bite block

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/744,647 US9849259B2 (en) 2007-11-25 2007-11-25 Endoscopic bite block
PCT/IL2007/001451 WO2009066277A1 (en) 2007-11-25 2007-11-25 Improved endoscopic bite block
US14/662,727 US20150190599A1 (en) 2007-11-25 2015-03-19 Endoscopic bite block

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US12/744,647 Continuation US9849259B2 (en) 2007-11-25 2007-11-25 Endoscopic bite block
PCT/IL2007/001451 Continuation WO2009066277A1 (en) 2007-11-25 2007-11-25 Improved endoscopic bite block

Publications (1)

Publication Number Publication Date
US20150190599A1 true US20150190599A1 (en) 2015-07-09

Family

ID=39596325

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/744,647 Active 2028-09-17 US9849259B2 (en) 2007-11-25 2007-11-25 Endoscopic bite block
US14/662,727 Abandoned US20150190599A1 (en) 2007-11-25 2015-03-19 Endoscopic bite block

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/744,647 Active 2028-09-17 US9849259B2 (en) 2007-11-25 2007-11-25 Endoscopic bite block

Country Status (3)

Country Link
US (2) US9849259B2 (en)
EP (1) EP2227282A1 (en)
WO (1) WO2009066277A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10010313B2 (en) 2015-05-18 2018-07-03 Richard L. Arden Mandibular subluxation device and method
US10258319B2 (en) 2015-05-18 2019-04-16 Richard L. Arden Airway assist device and method
US10342526B2 (en) 2015-07-01 2019-07-09 Richard L. Arden Airway assist device and method
WO2020214722A1 (en) * 2019-04-15 2020-10-22 David Smith Self-retaining oral device
US20210008321A1 (en) * 2019-07-08 2021-01-14 OCA Holdings LLC Oral capnography accessory device
EP3764962A4 (en) * 2018-03-12 2021-12-22 Oventus Medical Limited Oral appliance and valve arrangement
WO2022066711A1 (en) * 2020-09-22 2022-03-31 Duke University Oral splint with tracheal passage
US11452322B2 (en) 2015-11-16 2022-09-27 Q Sports Science, LLC Traumatic brain injury protection devices
US11478253B2 (en) 2013-03-15 2022-10-25 Tbi Innovations Llc Methods and devices to reduce the likelihood of injury from concussive or blast forces
US11612710B2 (en) 2016-10-13 2023-03-28 Hollister Incorporated Endotracheal tube holding device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8534278B2 (en) * 2005-12-01 2013-09-17 Oridion Medical (1987) Ltd. Endoscopic bite block
US8973573B2 (en) * 2009-06-29 2015-03-10 Creighton University Bite block with airway mount
WO2011085427A1 (en) * 2010-01-13 2011-07-21 Borody Thomas J A mask for use with a patient undergoing a sedated endoscopic procedure
US8684919B2 (en) 2010-02-22 2014-04-01 Merit Medical Systems, Inc. Mouthpiece and methods of use of same
US9283343B2 (en) * 2010-11-23 2016-03-15 Institute For Cancer Research Nasal cannula adapter
US20130092165A1 (en) * 2011-09-26 2013-04-18 Anthony David Wondka Nasal Ventilation Cannula System and Methods
MX358061B (en) * 2012-02-24 2018-08-03 Optinose As Nasal delivery devices.
GB201317499D0 (en) * 2013-10-03 2013-11-20 Flexicare Medical Ltd Naso-Oral Device
WO2015060907A2 (en) * 2013-10-22 2015-04-30 Gi Supply, Inc. Medical bite blocks or mouthpieces
USD754847S1 (en) * 2014-08-13 2016-04-26 Gi Supply, Inc. Medical bite block
USD754846S1 (en) * 2014-08-13 2016-04-26 Gi Supply, Inc. Medical bite block
EP3247439B8 (en) 2015-01-23 2021-03-03 Masimo Corporation Nasal/oral cannula system
US9968341B2 (en) 2015-04-21 2018-05-15 Ascentcare Dental Labs, Llc Dental bite block assembly
USD829916S1 (en) * 2016-01-19 2018-10-02 The Lethean Company Llc Bite block device
USD787069S1 (en) 2016-04-20 2017-05-16 Ascentcare Dental Labs Illuminated dental accessory for holding saliva ejection tube
USD817492S1 (en) 2016-04-20 2018-05-08 Ascentcare Dental Labs, Llc Dental accessory with tongue suppressor
USD782048S1 (en) * 2016-04-20 2017-03-21 Ascentcare Dental Labs, Llc Dental bite block
USD787070S1 (en) 2016-04-20 2017-05-16 Ascentcare Dental Labs Illuminated dental accessory with tongue suppressor
USD782047S1 (en) 2016-04-20 2017-03-21 Ascentcare Dental Labs, Llc Dental accessory for holding a saliva ejection tube
JP6904667B2 (en) * 2016-06-14 2021-07-21 日本光電工業株式会社 Bit block and gas sensor kit
WO2018152661A1 (en) * 2017-02-21 2018-08-30 战国策智权股份有限公司 Medical bite block
USD840040S1 (en) * 2017-09-07 2019-02-05 Riccardo Tonini Dental instrument
JP7064920B2 (en) 2018-03-27 2022-05-11 日本光電工業株式会社 Respiratory aid
JP2022088036A (en) * 2020-12-02 2022-06-14 日本光電工業株式会社 Medical device, nasal adapter, and bite block
CN112956997A (en) * 2021-02-09 2021-06-15 复旦大学附属中山医院 Oropharynx protection and oxygen inhalation combined device for endoscope minimally invasive diagnosis and treatment
SE545552C2 (en) * 2021-09-10 2023-10-17 Stairway Medical Ab A procedural sedation mouthpiece

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774616A (en) * 1972-02-01 1973-11-27 Perry Plastics Inc Endotracheal tube holder and airway
US4425911A (en) * 1981-07-27 1984-01-17 Raymond Luomanen Bite-block
US5273032A (en) * 1989-12-01 1993-12-28 Gastro Services Pty Ltd. Oxygenating oral medical appliance
US5413095A (en) * 1994-04-15 1995-05-09 Arrow Precision Products, Inc. Mouthpiece with oxygen receiving and directing structure
US5513634A (en) * 1994-05-06 1996-05-07 Chek-Med Systems, Inc. Combination integral bite block airway and nasal cannula
US20100132700A1 (en) * 2007-05-21 2010-06-03 Filipi Charles J Bite blocks

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452366A (en) 1966-06-21 1969-07-01 Avco Corp Percutaneous conduit and connector
US4495945A (en) * 1982-03-29 1985-01-29 Liegner Kenneth B Bite block
US4446869A (en) 1983-03-07 1984-05-08 Trimed, Inc. Water absorbing trap to protect an infrared exhaled carbon dioxide apnea monitor of a patient's respiration
DE3574824D1 (en) 1985-02-02 1990-01-25 Krayer Oriplast Gmbh PINCH CONNECTOR.
GB2173105A (en) 1985-04-04 1986-10-08 Neil Christopher Barnes Mouthpiece
US4848331A (en) * 1986-11-14 1989-07-18 Northway Meyer Robert Apparatus and method for pulmonary ventilation of a patient concurrent with fiberoptic respiratory tract examination and tracheal intubation
US5291882A (en) * 1992-05-11 1994-03-08 Makhoul Imad R Multi-lumen ITPV endotracheal tube
IL119562A (en) 1996-11-04 2003-12-10 Oridion Medical Ltd Fluid analyzer with tube connector verifier
US6063062A (en) 1997-04-18 2000-05-16 Paradis; Joseph R. Universal luer activatable and swabbable antireflux valve
US6089541A (en) 1998-09-10 2000-07-18 Halkey-Roberts Corporation Valve having a valve body and a deformable stem therein
US6098617A (en) * 1997-12-05 2000-08-08 Connell; Donald G. Device for administering/sampling inhalant/expired gases in an oro/nasopharyngeal airway
US6626175B2 (en) * 2000-10-06 2003-09-30 Respironics, Inc. Medical ventilator triggering and cycling method and mechanism
US7044441B2 (en) 2001-08-10 2006-05-16 Cardinal Health 303, Inc. Valved male luer connector having sequential valve timing
WO2004030723A2 (en) * 2002-10-03 2004-04-15 Scott Laboratories, Inc. Bite block apparatus and method for use with a sedation an analgesia system
AU2003904278A0 (en) * 2003-08-13 2003-08-28 Thomas J. Borody Improved oral oxygenating device
US7970631B2 (en) * 2004-08-31 2011-06-28 Ethicon Endo-Surgery, Inc. Medical effector system
US20080053434A1 (en) * 2004-09-20 2008-03-06 Owen Greenings & Mumford Limited Mouth Prop
US20070006878A1 (en) * 2005-07-06 2007-01-11 Mackey Mark F Capnographic-oxygenating oro-fiberscopic biteblock
US20070113844A1 (en) 2005-11-22 2007-05-24 Garren Mary L Endoscopic bite block
US8534278B2 (en) 2005-12-01 2013-09-17 Oridion Medical (1987) Ltd. Endoscopic bite block
US7735489B2 (en) 2006-01-13 2010-06-15 Olympus Medical Systems Corp. Endotracheal tube, device for use in medical procedure through natural opening and medical procedure through natural opening
US20070225647A1 (en) 2006-03-23 2007-09-27 Luther Ronald B Flush entrance hemostasis valve with unobstructed passageway
WO2007140478A2 (en) * 2006-05-31 2007-12-06 Masimo Corporation Respiratory monitoring
US8413658B2 (en) * 2006-10-13 2013-04-09 Andrea R. Williams Oral airway for endoscopic and intubating procedures
US7946288B2 (en) * 2006-11-10 2011-05-24 Encompas Unlimited, Inc. Bite block system and method
WO2008077033A1 (en) * 2006-12-18 2008-06-26 Russ Hauge Apparatus for maintaining a surgical airway and method of the same
US7922148B2 (en) 2007-04-27 2011-04-12 Carefusion 303, Inc. Electronically activated access valve
US20080284167A1 (en) 2007-05-18 2008-11-20 Eugene Lim Low-volume fittings
EP2164549A4 (en) 2007-06-04 2016-03-23 Ethicon Endo Surgery Inc Endoscopic bite block for use with cannula

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774616A (en) * 1972-02-01 1973-11-27 Perry Plastics Inc Endotracheal tube holder and airway
US4425911A (en) * 1981-07-27 1984-01-17 Raymond Luomanen Bite-block
US5273032A (en) * 1989-12-01 1993-12-28 Gastro Services Pty Ltd. Oxygenating oral medical appliance
US5413095A (en) * 1994-04-15 1995-05-09 Arrow Precision Products, Inc. Mouthpiece with oxygen receiving and directing structure
US5513634A (en) * 1994-05-06 1996-05-07 Chek-Med Systems, Inc. Combination integral bite block airway and nasal cannula
US20100132700A1 (en) * 2007-05-21 2010-06-03 Filipi Charles J Bite blocks

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478253B2 (en) 2013-03-15 2022-10-25 Tbi Innovations Llc Methods and devices to reduce the likelihood of injury from concussive or blast forces
US10010313B2 (en) 2015-05-18 2018-07-03 Richard L. Arden Mandibular subluxation device and method
US10258319B2 (en) 2015-05-18 2019-04-16 Richard L. Arden Airway assist device and method
US10342526B2 (en) 2015-07-01 2019-07-09 Richard L. Arden Airway assist device and method
US11452322B2 (en) 2015-11-16 2022-09-27 Q Sports Science, LLC Traumatic brain injury protection devices
US11612710B2 (en) 2016-10-13 2023-03-28 Hollister Incorporated Endotracheal tube holding device
EP3764962A4 (en) * 2018-03-12 2021-12-22 Oventus Medical Limited Oral appliance and valve arrangement
WO2020214722A1 (en) * 2019-04-15 2020-10-22 David Smith Self-retaining oral device
US20210008321A1 (en) * 2019-07-08 2021-01-14 OCA Holdings LLC Oral capnography accessory device
WO2022066711A1 (en) * 2020-09-22 2022-03-31 Duke University Oral splint with tracheal passage

Also Published As

Publication number Publication date
WO2009066277A1 (en) 2009-05-28
US9849259B2 (en) 2017-12-26
US20100262033A1 (en) 2010-10-14
EP2227282A1 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
US9849259B2 (en) Endoscopic bite block
US9687623B2 (en) Endoscopic bite block
AU2014228824B2 (en) Medical breathing apparatus
US8555886B2 (en) Endoscopic bite block
US5937858A (en) Oro/nasopharyngeal airway for administering/sampling inhalent/expired gases
CA2310598C (en) Oro/nasopharyngeal airway
AU2023100076A4 (en) Breath Sampling Interface
IL205940A (en) Endoscopic bite block
TWI747981B (en) Respiratory gas delivery and sampling system
IL191648A (en) Endoscopic bite block

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORIDION MEDICAL 1987 LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COLMAN, JOSHUA LEWIS;LEVITSKY, GERSHON;NIEBEL, KATHLEEN;REEL/FRAME:035453/0709

Effective date: 20150309

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION