US20150221235A1 - Training application for training a user to use a computing application - Google Patents

Training application for training a user to use a computing application Download PDF

Info

Publication number
US20150221235A1
US20150221235A1 US14/610,909 US201514610909A US2015221235A1 US 20150221235 A1 US20150221235 A1 US 20150221235A1 US 201514610909 A US201514610909 A US 201514610909A US 2015221235 A1 US2015221235 A1 US 2015221235A1
Authority
US
United States
Prior art keywords
user
database
application
training
task
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/610,909
Inventor
Sean Patrick Regan
Jay William Thayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salesforce Inc
Original Assignee
Salesforce com Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salesforce com Inc filed Critical Salesforce com Inc
Priority to US14/610,909 priority Critical patent/US20150221235A1/en
Assigned to SALESFORCE.COM, INC. reassignment SALESFORCE.COM, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REGAN, SEAN PATRICK, THAYER, JAY WILLIAM
Publication of US20150221235A1 publication Critical patent/US20150221235A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/30Creation or generation of source code
    • G06F8/38Creation or generation of source code for implementing user interfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/958Organisation or management of web site content, e.g. publishing, maintaining pages or automatic linking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • G09B19/0053Computers, e.g. programming
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]

Definitions

  • This patent document relates generally to providing services in an on-demand services environment using a database system and, more specifically, to techniques for providing a training application to train a user to use a computing application.
  • Cloud computing services provide shared resources, software, and information to computers and other devices upon request.
  • software can be accessible over the Internet rather than installed locally on in-house computer systems.
  • Cloud computing typically involves over-the-Internet provision of dynamically scalable and often virtualized resources. Technological details can be abstracted from the users, who no longer have need for expertise in, or control over, the technology infrastructure “in the cloud” that supports them.
  • FIG. 1 shows a flowchart of an example of a method 100 for providing a training application for training a user to use a computing application, performed in accordance with some implementations.
  • FIG. 2 shows a flowchart of an example of a method 200 for providing a training application for training a user to use a computing application, performed in accordance with some implementations.
  • FIG. 3 shows an example of a user interface 300 of a training application as displayed on a display of a computing device, in accordance with some implementations.
  • FIGS. 4A-4D show examples of different regions and states of a user interface 400 of a training application, in accordance with some implementations.
  • FIGS. 5A and 5B show examples of different regions and states of a user interface 500 of a training application, in accordance with some implementations.
  • FIGS. 6A-6E show examples of different regions and states of a user interface 600 of a training application, in accordance with some implementations.
  • FIGS. 7A and 7B show examples of different regions and states of a user interface 700 of a training application, in accordance with some implementations.
  • FIG. 8A shows a block diagram of an example of an environment 10 in which an on-demand database service can be used in accordance with some implementations.
  • FIG. 8B shows a block diagram of an example of some implementations of elements of FIG. 8A and various possible interconnections between these elements.
  • FIG. 9A shows a system diagram of an example of architectural components of an on-demand database service environment 900 , in accordance with some implementations.
  • FIG. 9B shows a system diagram further illustrating an example of architectural components of an on-demand database service environment, in accordance with some implementations.
  • an online cloud-based training platform may be provided using a server-based database system to deliver hands-on training to individuals or customers at their computing devices.
  • the hands-on training may merge interactive e-learning tutorials with guided exercises within the same training application, elevating the training experience for each user.
  • the training platform may provide a configurable interface for building training applications, which may include training courses or modules for using, configuring, or developing an application.
  • a training application may be built for a standard application running on a cloud-based platform, a custom application built on the cloud-based platform, configuring applications running on the cloud-based platform, and development tasks for building applications on the cloud-based platform.
  • some of the disclosed implementations may be used to train a newly hired sales agent to use a sales application of a customer relationship management (CRM) system implemented using a database storing CRM records in the form of accounts, opportunities, leads, cases, contacts, etc.
  • CRM customer relationship management
  • Some of the tasks that the sales agent may need to learn to complete are, for example, creating a lead based on a contact's information, converting a lead to an opportunity, and updating an account.
  • the training application may train the user to perform these various tasks.
  • the user may enroll in a training course to learn to perform these various tasks in the sales application.
  • the training course may be delivered using a training environment provisioned exclusively for the purposes of training the user to use or configure the sales application by deploying a designated version of the sales application and including an initial data set for the sales application.
  • the initial data set may include one or more accounts, opportunities, or leads that the users may interact with.
  • the training application may include walkthroughs and tutorials to show the user how to perform various tasks within the application, providing video/audio/text help or various e-learning modules upon request by the user. For example, the training application may show the user the various steps needed to create a lead in the sales application. The training application may also guide the user in exercises to perform the various tasks within the application and to validate that the user has correctly performed the tasks by examining the data model of the application.
  • the user may be instructed to create a new lead having particular lead information.
  • the training application may examine a CRM database storing properly created existing leads to determine whether the new lead was created as instructed. If the lead was correctly created, the training application may inform the user that the task was completed correctly. If the lead was not correctly created, the training application may inform the user or provide a hint as to how to properly perform the task.
  • the hint may be a tutorial for how to create a lead. Alternatively, the hint may be provided based on the user's progress in creating the lead. For example, if the user did create a new lead, but provided incorrect information for the newly created lead, the hint may highlight the incorrect information.
  • the training application may incorporate a scoring system to indicate a user's progress in performing various tasks in the training application.
  • the scoring system may be used to provide certifications to users for performing a particular set of tasks in the training application.
  • Various implementations may be used for training of new employees, as well as for trials to ensure that users are actually learning to perform the various tasks.
  • the disclosed implementations provide tutorials and guided exercises for various applications that may be created and provided through the training application, allowing companies to train their employees and users to use the various applications.
  • the employees and users may use the training application to view tutorials and to participate in guided hands-on exercises with real-time feedback, enhancing the training experience.
  • FIG. 1 shows a flowchart of an example of a method 100 for providing a training application for training a user to use a computing application, performed in accordance with some implementations.
  • a server of a database system provides a training application for display at a user's computing device in communication with the server.
  • the training application may provide online tutorials and walkthroughs for using any of a variety of computing applications.
  • a user may use the training application to learn to use a server-based computing application provided by the database system.
  • the training application may provide exercises for the user to perform within the computing application and provide feedback to the user regarding whether the exercises were performed correctly.
  • Source code files for the training application may be stored in the database system and used to provide the training application to the computing device of the user.
  • FIG. 3 shows an example of a user interface 300 of a training application as displayed on a display of a computing device, in accordance with some implementations.
  • the user interface 300 includes a user interface element 310 that displays the computing application for which the training application provides training.
  • the user interface element 310 may be displayed within an inline frame (iframe).
  • the user may interact with the computing application within the user interface element 310 of the training application.
  • the computing application may be a sales application, such as salesforce.com's® Sales Cloud®, capable of managing CRM records such as accounts, contacts, and business opportunities, and collaborating instantly from anywhere on any device.
  • the training application may provide a tutorial for how to perform a particular task, such as creating a lead, within the sales application by displaying step-by-step instructions within the user interface element 310 .
  • the training application may then instruct the user to perform the task of creating a lead.
  • the question box 324 provides the instruction to “Create a lead for Sarah Chapman who works for ‘Solution Works.’”
  • the user may then interact with the computing application in the user interface element 310 to perform the instructed task.
  • the server of the database system provides an instruction via the training application for the user to perform a designated task within a training environment generated by the training application.
  • the user interacts with the computing application within a training environment.
  • the training environment may be generated for the purpose of training the user to use the computing application.
  • the training environment may be an instance of, for example, a cloud computing infrastructure and platform that allows a user to access, deploy, or create applications with various feature sets, depending on the configuration of the environment.
  • the training environment may present data records and customizations stored in one or more databases, and the training environment may be based on a particular edition containing specific functionality, objects, storage, and limits.
  • the training environment may be associated with one or more servers of the cloud computing infrastructure configured to host the training environment and to provide a user access to the computing application within the environment.
  • the training environment for the computing application may include an initial set of data, including accounts, contacts, and opportunities, for the computing application to interact with. This allows a user to be trained to perform various tasks with respect to the initial set of data within training environment.
  • FIG. 4A shows an example of a user interface 400 of a training application, in accordance with some implementations.
  • the user interface 400 includes a question box 410 instructing the user to “Create a lead for Sarah Chapman who works for ‘Solution Works.’”
  • the task may be any action that may be performed in relation to the computing application. Performance of the task may involve causing one or more actual or simulated computing events to be performed.
  • the actual or simulated computing events may include a modification to data stored in a database of the training environment.
  • the task may be to create a record, update a record, delete a record, open a particular page, click on a link, update a set of permissions, and the like.
  • the task may be to create a lead, convert a lead into an opportunity, or update an account record.
  • FIGS. 4B-4D show examples of different regions and states of user interface 400 in relation to how a user may perform the instructed task in the training application.
  • the user interface 400 includes information about sales leads in the training environment. The user may select the “New” button 422 to create a new lead.
  • the user interface 400 includes a form 442 for entering information for a new sales lead. In this form 442 , the user may provide information, such as the contact information and identifying information for the new lead.
  • FIG. 4D the user has entered identifying information for Sarah Chapman 462 , 464 and Solution Works 466 for a new lead. After entering the information for the new lead, the user may click on Save 468 to create the new lead.
  • the training application may provide a walkthrough for configuring the training environment, and the instruction to the user may be to configure the training environment as demonstrated by the walkthrough.
  • the training application may demonstrate to the user how to set particular permission settings for the computing application.
  • the user may be instructed to assign a permission set license to a user of the sales application.
  • the server of the database system determines, based on a user input, whether the first task has been performed correctly. In one implementation, the determination may be based on the user's response to the instruction provided via the training application.
  • FIG. 5A shows an example of a user interface 500 of a training application, in accordance with some implementations.
  • the user has just completed creating a lead for Sarah Chapman, who works for Solution Works. The steps by which the user created the lead are described above with respect to FIGS. 4A-4D .
  • the user may select the “Submit Work” button 504 to indicate to the training application that he has completed the instructed task.
  • the training application may determine whether the instructed task—to create a lead for Sarah Chapman of Solution Works—was performed correctly. The training application may make this determination by examining the user's input in the form depicted in FIG. 4D . In the form of FIG.
  • the training application may save the user's input in a database accessible to the training application for the training application to later examine when the user submits his work in response to the instructed task.
  • the determination made by the server may be based on data stored in the database of the database system.
  • the data stored in the database may be associated with a CRM record, and the instructed task may be one of: creating a CRM record, updating a CRM record, deleting a CRM record, or modifying permissions associated with a CRM record.
  • a database entry is created in a database containing leads information for the computing application.
  • the database entry may include the user input, such as the name and company for the lead.
  • the training application may access the database containing the leads information for the computing application to determine whether the leads database contains a lead entry having the correct information.
  • the training application may look for a lead entry containing “Sarah Chapman” under the name field, and “Solution Works” under the company field. If such a lead entry is found, the training application may determine that the instructed task was completed correctly. If no such lead entry is found, the training application may determine that the instructed task was not completed correctly.
  • the training application may determine whether a user has correctly completed the instructed task by examining the database record to determine whether the designated attribute of the database record has been appropriately changed.
  • the training application may store in a database the browsing history for a user of the training application.
  • the browsing history may store historical actions performed by the user, including pages visited by the user.
  • the instructed task may be to navigate to a particular page within the computing application.
  • the training application may examine the database containing the browsing history for the user to determine whether the user has correctly navigated to the designated page of the computing application.
  • the training application may examine the database storing permission set license assignments to determine whether the user correctly performed the instructed task.
  • FIG. 2 shows a flowchart of an example of a method 200 for providing a training application for training a user to use a computing application, performed in accordance with some implementations.
  • a server of a database system provides a training application for display at a computing device in communication with the server, as generally described at block 104 of FIG. 1 .
  • the server of the database system provides an instruction via the training application for the user to perform a task within a training environment generated by the training application, as generally described at block 108 of FIG. 1 .
  • the server of the database system determines, based on a user input, whether the first task has been performed correctly, as generally described at block 112 of FIG. 1 .
  • the server of the database system responsive to a determination that the first task has been performed correctly, provides a notification in the training application that the first task was performed correctly.
  • the notification may inform the user that he has correctly performed the instructed task.
  • FIG. 5A displays the lead that the user has correctly created in response to the instruction.
  • FIG. 5B shows an example of an updated state of user interface 500 .
  • the training application may display a text box 522 with a notification indicating that the instructed task has been correctly performed.
  • the text box 522 may also include an option to proceed to the next task.
  • the training application may include a scoring system configured to provide a certification for a user for completing a number of tasks.
  • the scoring system may assign points to the user for correctly performing a task and may provide the certification when the user has received a designated number of points from correctly performing various tasks within the training application.
  • the training application may be part of a training course that the user is enrolled in.
  • the training course may require that the user view a number of walkthroughs or tutorials and correctly perform a number of tasks in order to complete the course.
  • the training application may keep track of which tasks the user has correctly performed in order to determine whether the user has completed the course. Examples of such a training course may be a tutorial for how to use a computer application, a traffic school course, a tutorial for how to play a game, and the like.
  • the training application may display one or more hints based on the data stored in the database, the data indicating a state of progress in performing the first task.
  • the user may incorrectly perform the instructed task of creating a lead for Sarah Chapman for Solution Works by, for example, creating a lead for Sarah Chapman without indicating “Solution Works” as the company.
  • the training application may examine the leads database and identify a new entry for “Sarah Chapman,” but may also determine that the identified entry does not include “Solution Works” in the company field of the lead entry. Based on this determination, the training application may determine that the user has made some progress in completing the assigned task, in that the user has created a lead for “Sarah Chapman,” but that the user has not fully completed the task.
  • the training application may then proceed to provide a hint to the user regarding how to fully complete the task.
  • the training application may display a detail page displaying the lead information for the “Sarah Chapman” lead and highlight the Company field name in the page.
  • the training application may display the form in which the user completed the lead information and highlight the Company field and display textbox indicating to the user that the field should include the text “Solution Works.” In this way, the data in the database may be utilized by the training application to determine the progress of a user in completing an assigned task.
  • the hints may describe a series of user actions for performing the first task correctly.
  • the hints may provide a tutorial or walkthrough for creating the Sarah Chapman lead correctly from start to finish.
  • the hint may provide a series of user actions for completing the first task correctly, starting from the point where the user performed an incorrect action.
  • the training application may start at the form completion step, in which the user enters lead information for Sarah Chapman, and display the correct series of steps from that point on.
  • FIGS. 6A-6E show examples of different regions and states of a user interface 600 of a training application, in accordance with some implementations.
  • a task box 604 indicates that the user has been instructed to convert the lead for Sarah Chapman.
  • the user may request a hint by selecting the hint button 602 .
  • the user may be presented with a dialog box 622 of FIG. 6B , indicating that the assigned task has not been performed and providing an option to view a tutorial on how to convert a lead.
  • the training application may display a walkthrough 642 for how to convert a lead, as depicted in FIG. 6C .
  • the user may return to the sales application and perform the necessary steps to convert the Sarah Chapman lead, which is depicted in FIG. 6D .
  • FIG. 6E shows an example of a message 682 that may be displayed to the user when the user has successfully converted the Sarah Chapman lead.
  • the training application may allow a user to reset the data for the training environment back to the initial data set.
  • resetting the data may allow the user to start over in performing the assigned task with a clean data set.
  • FIGS. 7A-7B show examples of different regions and states of a user interface 700 of a training application, in accordance with some implementations.
  • the user may select a Reset Data button 702 to reset the data in the database back to the initial data set.
  • FIG. 7B the user is presented with a message 722 indicating that the leads data has been reset. The user may now go back and recreate the Sarah Chapman lead in the training application prior to performing the assigned task of converting that lead.
  • FIG. 8A shows a block diagram of an example of an environment 10 in which an on-demand database service exists and can be used in accordance with some implementations.
  • Environment 10 may include user systems 12 , network 14 , database system 16 , processor system 17 , application platform 18 , network interface 20 , tenant data storage 22 , system data storage 24 , program code 26 , and process space 28 .
  • environment 10 may not have all of these components and/or may have other components instead of, or in addition to, those listed above.
  • a user system 12 may be implemented as any computing device(s) or other data processing apparatus such as a machine or system used by a user to access a database system 16 .
  • any of user systems 12 can be a handheld and/or portable computing device such as a mobile phone, a smartphone, a laptop computer, or a tablet.
  • Other examples of a user system include computing devices such as a work station and/or a network of computing devices.
  • FIG. 8A (and in more detail in FIG. 8B ) user systems 12 might interact via a network 14 with an on-demand database service, which is implemented in the example of FIG. 8A as database system 16 .
  • An on-demand database service is a service that is made available to users who do not need to necessarily be concerned with building and/or maintaining the database system. Instead, the database system may be available for their use when the users need the database system, i.e., on the demand of the users.
  • Some on-demand database services may store information from one or more tenants into tables of a common database image to form a multi-tenant database system (MTS).
  • a database image may include one or more database objects.
  • RDBMS relational database management system
  • Application platform 18 may be a framework that allows the applications of system 16 to run, such as the hardware and/or software, e.g., the operating system.
  • application platform 18 enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 12 , or third party application developers accessing the on-demand database service via user systems 12 .
  • the users of user systems 12 may differ in their respective capacities, and the capacity of a particular user system 12 might be entirely determined by permissions (permission levels) for the current user. For example, when a salesperson is using a particular user system 12 to interact with system 16 , the user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 16 , that user system has the capacities allotted to that administrator.
  • users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level, also called authorization.
  • Network 14 is any network or combination of networks of devices that communicate with one another.
  • network 14 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration.
  • Network 14 can include a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the Internet.
  • TCP/IP Transfer Control Protocol and Internet Protocol
  • the Internet will be used in many of the examples herein. However, it should be understood that the networks that the present implementations might use are not so limited.
  • User systems 12 might communicate with system 16 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc.
  • HTTP HyperText Transfer Protocol
  • user system 12 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP signals to and from an HTTP server at system 16 .
  • HTTP server might be implemented as the sole network interface 20 between system 16 and network 14 , but other techniques might be used as well or instead.
  • the network interface 20 between system 16 and network 14 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a number of servers. At least for users accessing system 16 , each of the servers has access to the MTS' data; however, other alternative configurations may be used instead.
  • system 16 implements a web-based CRM system.
  • system 16 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, web pages and other information to and from user systems 12 and to store to, and retrieve from, a database system related data, objects, and Webpage content.
  • data for multiple tenants may be stored in the same physical database object in tenant data storage 22 , however, tenant data typically is arranged in the storage medium(s) of tenant data storage 22 so that data of one tenant is kept logically separate from that of other tenants so that one tenant does not have access to another tenant's data, unless such data is expressly shared.
  • system 16 implements applications other than, or in addition to, a CRM application.
  • system 16 may provide tenant access to multiple hosted (standard and custom) applications, including a CRM application.
  • User (or third party developer) applications which may or may not include CRM, may be supported by the application platform 18 , which manages creation, storage of the applications into one or more database objects and executing of the applications in a virtual machine in the process space of the system 16 .
  • FIGS. 9A and 9B One arrangement for elements of system 16 is shown in FIGS. 9A and 9B , including a network interface 20 , application platform 18 , tenant data storage 22 for tenant data 23 , system data storage 24 for system data 25 accessible to system 16 and possibly multiple tenants, program code 26 for implementing various functions of system 16 , and a process space 28 for executing MTS system processes and tenant-specific processes, such as running applications as part of an application hosting service. Additional processes that may execute on system 16 include database indexing processes.
  • each user system 12 could include a desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access protocol (WAP) enabled device or any other computing device capable of interfacing directly or indirectly to the Internet or other network connection.
  • WAP wireless access protocol
  • the term “computing device” is also referred to herein simply as a “computer”.
  • User system 12 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) of user system 12 to access, process and view information, pages and applications available to it from system 16 over network 14 .
  • HTTP client e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like.
  • Each user system 12 also typically includes one or more user input devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a GUI provided by the browser on a display (e.g., a monitor screen, LCD display, OLED display, etc.) of the computing device in conjunction with pages, forms, applications and other information provided by system 16 or other systems or servers.
  • a display e.g., a monitor screen, LCD display, OLED display, etc.
  • display device can refer to a display of a computer system such as a monitor or touch-screen display, and can refer to any computing device having display capabilities such as a desktop computer, laptop, tablet, smartphone, a television set-top box, or wearable device such Google Glass® or other human body-mounted display apparatus.
  • the display device can be used to access data and applications hosted by system 16 , and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user.
  • implementations are suitable for use with the Internet, although other networks can be used instead of or in addition to the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
  • VPN virtual private network
  • non-TCP/IP based network any LAN or WAN or the like.
  • each user system 12 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like.
  • system 16 and additional instances of an MTS, where more than one is present
  • processor system 17 which may be implemented to include a central processing unit, which may include an Intel Pentium® processor or the like, and/or multiple processor units.
  • Non-transitory computer-readable media can have instructions stored thereon/in, that can be executed by or used to program a computing device to perform any of the methods of the implementations described herein.
  • Computer program code 26 implementing instructions for operating and configuring system 16 to intercommunicate and to process web pages, applications and other data and media content as described herein is preferably downloadable and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any other type of computer-readable medium or device suitable for storing instructions and/or data.
  • any other volatile or non-volatile memory medium or device such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive,
  • the entire program code, or portions thereof may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known.
  • a transmission medium e.g., over the Internet
  • any other conventional network connection e.g., extranet, VPN, LAN, etc.
  • any communication medium and protocols e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.
  • computer code for the disclosed implementations can be realized in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, JavaTM, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used.
  • JavaTM is a trademark of Sun Microsystems, Inc.
  • each system 16 is configured to provide web pages, forms, applications, data and media content to user (client) systems 12 to support the access by user systems 12 as tenants of system 16 .
  • system 16 provides security mechanisms to keep each tenant's data separate unless the data is shared.
  • MTS Mobility Management Entity
  • they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B).
  • each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations.
  • server is meant to refer to one type of computing device such as a system including processing hardware and process space(s), an associated storage medium such as a memory device or database, and, in some instances, a database application (e.g., OODBMS or RDBMS) as is well known in the art.
  • database application e.g., OODBMS or RDBMS
  • server system and “server” are often used interchangeably herein.
  • database objects described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
  • FIG. 8B shows a block diagram of an example of some implementations of elements of FIG. 8A and various possible interconnections between these elements. That is, FIG. 8B also illustrates environment 10 . However, in FIG. 8B elements of system 16 and various interconnections in some implementations are further illustrated.
  • FIG. 8B shows that user system 12 may include processor system 12 A, memory system 12 B, input system 12 C, and output system 12 D.
  • FIG. 8B shows network 14 and system 16 .
  • system 16 may include tenant data storage 22 , tenant data 23 , system data storage 24 , system data 25 , User Interface (UI) 30 , Application Program Interface (API) 32 , PL/SOQL 34 , save routines 36 , application setup mechanism 38 , application servers 50 1 - 50 N , system process space 52 , tenant process spaces 54 , tenant management process space 60 , tenant storage space 62 , user storage 64 , and application metadata 66 .
  • environment 10 may not have the same elements as those listed above and/or may have other elements instead of, or in addition to, those listed above.
  • processor system 12 A may be any combination of one or more processors.
  • Memory system 12 B may be any combination of one or more memory devices, short term, and/or long term memory.
  • Input system 12 C may be any combination of input devices, such as one or more keyboards, mice, trackballs, scanners, cameras, and/or interfaces to networks.
  • Output system 12 D may be any combination of output devices, such as one or more monitors, printers, and/or interfaces to networks.
  • system 16 may include a network interface 20 (of FIG.
  • Each application server 50 may be configured to communicate with tenant data storage 22 and the tenant data 23 therein, and system data storage 24 and the system data 25 therein to serve requests of user systems 12 .
  • the tenant data 23 might be divided into individual tenant storage spaces 62 , which can be either a physical arrangement and/or a logical arrangement of data.
  • user storage 64 and application metadata 66 might be similarly allocated for each user. For example, a copy of a user's most recently used (MRU) items might be stored to user storage 64 .
  • MRU most recently used
  • a UI 30 provides a user interface and an API 32 provides an application programmer interface to system 16 resident processes to users and/or developers at user systems 12 .
  • the tenant data and the system data may be stored in various databases, such as one or more Oracle® databases.
  • Application platform 18 includes an application setup mechanism 38 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 22 by save routines 36 for execution by subscribers as one or more tenant process spaces 54 managed by tenant management process 60 for example. Invocations to such applications may be coded using PL/SOQL 34 that provides a programming language style interface extension to API 32 .
  • PL/SOQL 34 provides a programming language style interface extension to API 32 .
  • a detailed description of some PL/SOQL language implementations is discussed in commonly assigned U.S. Pat. No. 7,730,478, titled METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, issued on Jun. 1, 2010, and hereby incorporated by reference in its entirety and for all purposes.
  • Invocations to applications may be detected by one or more system processes, which manage retrieving application metadata 66 for the subscriber making the invocation and
  • Each application server 50 may be communicably coupled to database systems, e.g., having access to system data 25 and tenant data 23 , via a different network connection.
  • one application server 50 1 might be coupled via the network 14 (e.g., the Internet)
  • another application server 50 N-1 might be coupled via a direct network link
  • another application server 50 N might be coupled by yet a different network connection.
  • Transfer Control Protocol and Internet Protocol TCP/IP are typical protocols for communicating between application servers 50 and the database system.
  • TCP/IP Transfer Control Protocol and Internet Protocol
  • each application server 50 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 50 .
  • an interface system implementing a load balancing function e.g., an F5 Big-IP load balancer
  • the load balancer uses a least connections algorithm to route user requests to the application servers 50 .
  • Other examples of load balancing algorithms such as round robin and observed response time, also can be used.
  • system 16 is multi-tenant, wherein system 16 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
  • one tenant might be a company that employs a sales force where each salesperson uses system 16 to manage their sales process.
  • a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 22 ).
  • tenant data storage 22 e.g., in tenant data storage 22 .
  • the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
  • user systems 12 (which may be client systems) communicate with application servers 50 to request and update system-level and tenant-level data from system 16 that may involve sending one or more queries to tenant data storage 22 and/or system data storage 24 .
  • System 16 e.g., an application server 50 in system 16
  • System data storage 24 may generate query plans to access the requested data from the database.
  • Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories.
  • a “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects according to some implementations. It should be understood that “table” and “object” may be used interchangeably herein.
  • Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields.
  • a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc.
  • Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc.
  • standard entity tables might be provided for use by all tenants.
  • such standard entities might include tables for case, account, contact, lead, and opportunity data objects, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
  • tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields.
  • custom objects Commonly assigned U.S. Pat. No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by Weissman et al., issued on Aug. 17, 2010, and hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system.
  • all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
  • FIG. 9A shows a system diagram of an example of architectural components of an on-demand database service environment 900 , in accordance with some implementations.
  • a client machine located in the cloud 904 may communicate with the on-demand database service environment via one or more edge routers 908 and 912 .
  • a client machine can be any of the examples of user systems 12 described above.
  • the edge routers may communicate with one or more core switches 920 and 924 via firewall 916 .
  • the core switches may communicate with a load balancer 928 , which may distribute server load over different pods, such as the pods 940 and 944 .
  • the pods 940 and 944 may each include one or more servers and/or other computing resources, may perform data processing and other operations used to provide on-demand services. Communication with the pods may be conducted via pod switches 932 and 936 . Components of the on-demand database service environment may communicate with a database storage 956 via a database firewall 948 and a database switch 952 .
  • accessing an on-demand database service environment may involve communications transmitted among a variety of different hardware and/or software components.
  • the on-demand database service environment 900 is a simplified representation of an actual on-demand database service environment. For example, while only one or two devices of each type are shown in FIGS. 9A and 9B , some implementations of an on-demand database service environment may include anywhere from one to many devices of each type. Also, the on-demand database service environment need not include each device shown in FIGS. 9A and 9B , or may include additional devices not shown in FIGS. 9A and 9B .
  • one or more of the devices in the on-demand database service environment 900 may be implemented on the same physical device or on different hardware. Some devices may be implemented using hardware or a combination of hardware and software. Thus, terms such as “data processing apparatus,” “machine,” “server” and “device” as used herein are not limited to a single hardware device, but rather include any hardware and software configured to provide the described functionality.
  • the cloud 904 is intended to refer to a data network or combination of data networks, often including the Internet.
  • Client machines located in the cloud 904 may communicate with the on-demand database service environment to access services provided by the on-demand database service environment. For example, client machines may access the on-demand database service environment to retrieve, store, edit, and/or process information.
  • the edge routers 908 and 912 route packets between the cloud 904 and other components of the on-demand database service environment 900 .
  • the edge routers 908 and 912 may employ the Border Gateway Protocol (BGP).
  • BGP is the core routing protocol of the Internet.
  • the edge routers 908 and 912 may maintain a table of IP networks or ‘prefixes’, which designate network reachability among autonomous systems on the Internet.
  • the firewall 916 may protect the inner components of the on-demand database service environment 900 from Internet traffic.
  • the firewall 916 may block, permit, or deny access to the inner components of the on-demand database service environment 900 based upon a set of rules and other criteria.
  • the firewall 916 may act as one or more of a packet filter, an application gateway, a stateful filter, a proxy server, or any other type of firewall.
  • the core switches 920 and 924 are high-capacity switches that transfer packets within the on-demand database service environment 900 .
  • the core switches 920 and 924 may be configured as network bridges that quickly route data between different components within the on-demand database service environment.
  • the use of two or more core switches 920 and 924 may provide redundancy and/or reduced latency.
  • the pods 940 and 944 may perform the core data processing and service functions provided by the on-demand database service environment.
  • Each pod may include various types of hardware and/or software computing resources.
  • An example of the pod architecture is discussed in greater detail with reference to FIG. 9B .
  • communication between the pods 940 and 944 may be conducted via the pod switches 932 and 936 .
  • the pod switches 932 and 936 may facilitate communication between the pods 940 and 944 and client machines located in the cloud 904 , for example via core switches 920 and 924 .
  • the pod switches 932 and 936 may facilitate communication between the pods 940 and 944 and the database storage 956 .
  • the load balancer 928 may distribute workload between the pods 940 and 944 . Balancing the on-demand service requests between the pods may assist in improving the use of resources, increasing throughput, reducing response times, and/or reducing overhead.
  • the load balancer 928 may include multilayer switches to analyze and forward traffic.
  • access to the database storage 956 may be guarded by a database firewall 948 .
  • the database firewall 948 may act as a computer application firewall operating at the database application layer of a protocol stack.
  • the database firewall 948 may protect the database storage 956 from application attacks such as structure query language (SQL) injection, database rootkits, and unauthorized information disclosure.
  • SQL structure query language
  • the database firewall 948 may include a host using one or more forms of reverse proxy services to proxy traffic before passing it to a gateway router.
  • the database firewall 948 may inspect the contents of database traffic and block certain content or database requests.
  • the database firewall 948 may work on the SQL application level atop the TCP/IP stack, managing applications' connection to the database or SQL management interfaces as well as intercepting and enforcing packets traveling to or from a database network or application interface.
  • communication with the database storage 956 may be conducted via the database switch 952 .
  • the multi-tenant database storage 956 may include more than one hardware and/or software components for handling database queries. Accordingly, the database switch 952 may direct database queries transmitted by other components of the on-demand database service environment (e.g., the pods 940 and 944 ) to the correct components within the database storage 956 .
  • the database storage 956 is an on-demand database system shared by many different organizations.
  • the on-demand database service may employ a multi-tenant approach, a virtualized approach, or any other type of database approach.
  • On-demand database services are discussed in greater detail with reference to FIGS. 9A and 9B .
  • FIG. 9B shows a system diagram further illustrating an example of architectural components of an on-demand database service environment, in accordance with some implementations.
  • the pod 944 may be used to render services to a user of the on-demand database service environment 900 .
  • each pod may include a variety of servers and/or other systems.
  • the pod 944 includes one or more content batch servers 964 , content search servers 968 , query servers 982 , file servers 986 , access control system (ACS) servers 980 , batch servers 984 , and app servers 988 .
  • the pod 944 includes database instances 990 , quick file systems (QFS) 992 , and indexers 994 .
  • some or all communication between the servers in the pod 944 may be transmitted via the switch 936 .
  • the app servers 988 may include a hardware and/or software framework dedicated to the execution of procedures (e.g., programs, routines, scripts) for supporting the construction of applications provided by the on-demand database service environment 900 via the pod 944 .
  • the hardware and/or software framework of an app server 988 is configured to cause performance of services described herein, including performance of one or more of the operations of methods described herein with reference to FIGS. 1-7 .
  • two or more app servers 988 may be included to cause such methods to be performed, or one or more other servers described herein can be configured to cause part or all of the disclosed methods to be performed.
  • the content batch servers 964 may handle requests internal to the pod. These requests may be long-running and/or not tied to a particular customer. For example, the content batch servers 964 may handle requests related to log mining, cleanup work, and maintenance tasks.
  • the content search servers 968 may provide query and indexer functions.
  • the functions provided by the content search servers 968 may allow users to search through content stored in the on-demand database service environment.
  • the file servers 986 may manage requests for information stored in the file storage 998 .
  • the file storage 998 may store information such as documents, images, and basic large objects (BLOBs). By managing requests for information using the file servers 986 , the image footprint on the database may be reduced.
  • BLOBs basic large objects
  • the query servers 982 may be used to retrieve information from one or more file systems.
  • the query system 982 may receive requests for information from the app servers 988 and then transmit information queries to the NFS 996 located outside the pod.
  • the pod 944 may share a database instance 990 configured as a multi-tenant environment in which different organizations share access to the same database. Additionally, services rendered by the pod 944 may call upon various hardware and/or software resources. In some implementations, the ACS servers 980 may control access to data, hardware resources, or software resources.
  • the batch servers 984 may process batch jobs, which are used to run tasks at specified times. Thus, the batch servers 984 may transmit instructions to other servers, such as the app servers 988 , to trigger the batch jobs.
  • the QFS 992 may be an open source file system available from Sun Microsystems® of Santa Clara, Calif.
  • the QFS may serve as a rapid-access file system for storing and accessing information available within the pod 944 .
  • the QFS 992 may support some volume management capabilities, allowing many disks to be grouped together into a file system. File system metadata can be kept on a separate set of disks, which may be useful for streaming applications where long disk seeks cannot be tolerated.
  • the QFS system may communicate with one or more content search servers 968 and/or indexers 994 to identify, retrieve, move, and/or update data stored in the network file systems 996 and/or other storage systems.
  • one or more query servers 982 may communicate with the NFS 996 to retrieve and/or update information stored outside of the pod 944 .
  • the NFS 996 may allow servers located in the pod 944 to access information to access files over a network in a manner similar to how local storage is accessed.
  • queries from the query servers 922 may be transmitted to the NFS 996 via the load balancer 928 , which may distribute resource requests over various resources available in the on-demand database service environment.
  • the NFS 996 may also communicate with the QFS 992 to update the information stored on the NFS 996 and/or to provide information to the QFS 992 for use by servers located within the pod 944 .
  • the pod may include one or more database instances 990 .
  • the database instance 990 may transmit information to the QFS 992 . When information is transmitted to the QFS, it may be available for use by servers within the pod 944 without using an additional database call.
  • database information may be transmitted to the indexer 994 .
  • Indexer 994 may provide an index of information available in the database 990 and/or QFS 992 .
  • the index information may be provided to file servers 986 and/or the QFS 992 .
  • a social networking system also referred to herein as a social network.
  • Social networking systems have become a popular way to facilitate communication among people, any of whom can be recognized as users of a social networking system.
  • a social networking system is Chatter®, provided by salesforce.com, inc. of San Francisco, Calif.
  • salesforce.com, inc. is a provider of social networking services, Customer Relationship Management (CRM) services and other database management services, any of which can be accessed and used in conjunction with the techniques disclosed herein in some implementations.
  • CRM Customer Relationship Management
  • the disclosed techniques can be implemented without having to install software locally, that is, on computing devices of users interacting with services available through the cloud. While the disclosed implementations are often described with reference to Chatter®, those skilled in the art should understand that the disclosed techniques are neither limited to Chatter® nor to any other services and systems provided by salesforce.com, inc. and can be implemented in the context of various other database systems and/or social networking systems such as Facebook®, LinkedIn®, Twitter®, Google+®, Yammer® and Jive® by way of example only.
  • Some social networking systems can be implemented in various settings, including organizations.
  • a social networking system can be implemented to connect users within an enterprise such as a company or business partnership, or a group of users within such an organization.
  • Chatter® can be used by employee users in a division of a business organization to share data, communicate, and collaborate with each other for various social purposes often involving the business of the organization.
  • each organization or group within the organization can be a respective tenant of the system, as described in greater detail herein.
  • users can access one or more social network feeds, which include information updates presented as items or entries in the feed.
  • a feed item can include a single information update or a collection of individual information updates.
  • a feed item can include various types of data including character-based data, audio data, image data and/or video data.
  • a social network feed can be displayed in a graphical user interface (GUI) on a display device such as the display of a computing device as described herein.
  • GUI graphical user interface
  • the information updates can include various social network data from various sources and can be stored in an on-demand database service environment.
  • the disclosed methods, apparatus, systems, and computer-readable storage media may be configured or designed for use in a multi-tenant database environment.
  • a social networking system may allow a user to follow data objects in the form of CRM records such as cases, accounts, or opportunities, in addition to following individual users and groups of users.
  • the “following” of a record stored in a database allows a user to track the progress of that record when the user is subscribed to the record.
  • Updates to the record also referred to herein as changes to the record, are one type of information update that can occur and be noted on a social network feed such as a record feed or a news feed of a user subscribed to the record. Examples of record updates include field changes in the record, updates to the status of a record, as well as the creation of the record itself.
  • Some records are publicly accessible, such that any user can follow the record, while other records are private, for which appropriate security clearance/permissions are a prerequisite to a user following the record.
  • Information updates can include various types of updates, which may or may not be linked with a particular record.
  • information updates can be social media messages submitted by a user or can otherwise be generated in response to user actions or in response to events.
  • Examples of social media messages include: posts, comments, indications of a user's personal preferences such as “likes” and “dislikes”, updates to a user's status, uploaded files, and user-submitted hyperlinks to social network data or other network data such as various documents and/or web pages on the Internet.
  • Posts can include alpha-numeric or other character-based user inputs such as words, phrases, statements, questions, emotional expressions, and/or symbols.
  • Comments generally refer to responses to posts or to other information updates, such as words, phrases, statements, answers, questions, and reactionary emotional expressions and/or symbols.
  • Multimedia data can be included in, linked with, or attached to a post or comment.
  • a post can include textual statements in combination with a JPEG image or animated image.
  • a like or dislike can be submitted in response to a particular post or comment.
  • uploaded files include presentations, documents, multimedia files, and the like.
  • Users can follow a record by subscribing to the record, as mentioned above. Users can also follow other entities such as other types of data objects, other users, and groups of users. Feed tracked updates regarding such entities are one type of information update that can be received and included in the user's news feed. Any number of users can follow a particular entity and thus view information updates pertaining to that entity on the users' respective news feeds.
  • users may follow each other by establishing connections with each other, sometimes referred to as “friending” one another. By establishing such a connection, one user may be able to see information generated by, generated about, or otherwise associated with another user. For instance, a first user may be able to see information posted by a second user to the second user's personal social network page.
  • a personal social network page is a user's profile page, for example, in the form of a web page representing the user's profile.
  • the first user's news feed can receive a post from the second user submitted to the second user's profile feed.
  • a user's profile feed is also referred to herein as the user's “wall,” which is one example of a social network feed displayed on the user's profile page.
  • a social network feed may be specific to a group of users of a social networking system. For instance, a group of users may publish a news feed. Members of the group may view and post to this group feed in accordance with a permissions configuration for the feed and the group. Information updates in a group context can also include changes to group status information.
  • an email notification or other type of network communication may be transmitted to all users following the user, group, or object in addition to the inclusion of the data as a feed item in one or more feeds, such as a user's profile feed, a news feed, or a record feed.
  • the occurrence of such a notification is limited to the first instance of a published input, which may form part of a larger conversation. For instance, a notification may be transmitted for an initial post, but not for comments on the post. In some other implementations, a separate notification is transmitted for each such information update.
  • multi-tenant database system generally refers to those systems in which various elements of hardware and/or software of a database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows of data such as feed items for a potentially much greater number of customers.
  • a “user profile” or “user's profile” is a database object or set of objects configured to store and maintain data about a given user of a social networking system and/or database system.
  • the data can include general information, such as name, title, phone number, a photo, a biographical summary, and a status, e.g., text describing what the user is currently doing.
  • the data can include social media messages created by other users.
  • a user is typically associated with a particular tenant. For example, a user could be a salesperson of a company, which is a tenant of the database system that provides a database service.
  • the term “record” generally refers to a data entity having fields with values and stored in database system.
  • An example of a record is an instance of a data object created by a user of the database service, for example, in the form of a CRM record about a particular (actual or potential) business relationship or project.
  • the record can have a data structure defined by the database service (a standard object) or defined by a user (custom object).
  • a record can be for a business partner or potential business partner (e.g., a client, vendor, distributor, etc.) of the user, and can include information describing an entire company, subsidiaries, or contacts at the company.
  • a record can be a project that the user is working on, such as an opportunity (e.g., a possible sale) with an existing partner, or a project that the user is trying to get.
  • each record for the tenants has a unique identifier stored in a common table.
  • a record has data fields that are defined by the structure of the object (e.g., fields of certain data types and purposes).
  • a record can also have custom fields defined by a user.
  • a field can be another record or include links thereto, thereby providing a parent-child relationship between the records.
  • feed are used interchangeably herein and generally refer to a combination (e.g., a list) of feed items or entries with various types of information and data. Such feed items can be stored and maintained in one or more database tables, e.g., as rows in the table(s), that can be accessed to retrieve relevant information to be presented as part of a displayed feed.
  • feed item (or feed element) generally refers to an item of information, which can be presented in the feed such as a post submitted by a user. Feed items of information about a user can be presented in a user's profile feed of the database, while feed items of information about a record can be presented in a record feed in the database, by way of example.
  • a profile feed and a record feed are examples of different types of social network feeds.
  • a second user following a first user and a record can receive the feed items associated with the first user and the record for display in the second user's news feed, which is another type of social network feed.
  • the feed items from any number of followed users and records can be combined into a single social network feed of a particular user.
  • a feed item can be a social media message, such as a user-generated post of text data, and a feed tracked update to a record or profile, such as a change to a field of the record. Feed tracked updates are described in greater detail herein.
  • a feed can be a combination of social media messages and feed tracked updates.
  • Social media messages include text created by a user, and may include other data as well. Examples of social media messages include posts, user status updates, and comments. Social media messages can be created for a user's profile or for a record. Posts can be created by various users, potentially any user, although some restrictions can be applied.
  • posts can be made to a wall section of a user's profile page (which can include a number of recent posts) or a section of a record that includes multiple posts.
  • the posts can be organized in chronological order when displayed in a GUI, for instance, on the user's profile page, as part of the user's profile feed.
  • a user status update changes a status of a user and can be made by that user or an administrator.
  • a record can also have a status, the update of which can be provided by an owner of the record or other users having suitable write access permissions to the record.
  • the owner can be a single user, multiple users, or a group.
  • a comment can be made on any feed item.
  • comments are organized as a list explicitly tied to a particular feed tracked update, post, or status update.
  • comments may not be listed in the first layer (in a hierarchal sense) of feed items, but listed as a second layer branching from a particular first layer feed item.
  • a “feed tracked update,” also referred to herein as a “feed update,” is one type of information update and generally refers to data representing an event.
  • a feed tracked update can include text generated by the database system in response to the event, to be provided as one or more feed items for possible inclusion in one or more feeds.
  • the data can initially be stored, and then the database system can later use the data to create text for describing the event. Both the data and/or the text can be a feed tracked update, as used herein.
  • an event can be an update of a record and/or can be triggered by a specific action by a user. Which actions trigger an event can be configurable. Which events have feed tracked updates created and which feed updates are sent to which users can also be configurable.
  • Social media messages and other types of feed updates can be stored as a field or child object of the record. For example, the feed can be stored as a child object of the record.
  • a “group” is generally a collection of users.
  • the group may be defined as users with a same or similar attribute, or by membership.
  • a “group feed”, also referred to herein as a “group news feed”, includes one or more feed items about any user in the group.
  • the group feed also includes information updates and other feed items that are about the group as a whole, the group's purpose, the group's description, and group records and other objects stored in association with the group. Threads of information updates including group record updates and social media messages, such as posts, comments, likes, etc., can define group conversations and change over time.
  • An “entity feed” or “record feed” generally refers to a feed of feed items about a particular record in the database. Such feed items can include feed tracked updates about changes to the record and posts made by users about the record.
  • An entity feed can be composed of any type of feed item. Such a feed can be displayed on a page such as a web page associated with the record, e.g., a home page of the record.
  • a “profile feed” or “user's profile feed” generally refers to a feed of feed items about a particular user.
  • the feed items for a profile feed include posts and comments that other users make about or send to the particular user, and status updates made by the particular user.
  • Such a profile feed can be displayed on a page associated with the particular user.
  • feed items in a profile feed could include posts made by the particular user and feed tracked updates initiated based on actions of the particular user.
  • any of the disclosed implementations may be embodied in various types of hardware, software, firmware, and combinations thereof.
  • some techniques disclosed herein may be implemented, at least in part, by computer-readable media that include program instructions, state information, etc., for performing various services and operations described herein.
  • Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by a computing device such as a server or other data processing apparatus using an interpreter.
  • Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as flash memory, compact disk (CD) or digital versatile disk (DVD); magneto-optical media; and hardware devices specially configured to store program instructions, such as read-only memory (“ROM”) devices and random access memory (“RAM”) devices.
  • ROM read-only memory
  • RAM random access memory
  • Any of the operations and techniques described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, object-oriented techniques.
  • the software code may be stored as a series of instructions or commands on a computer-readable medium.
  • Computer-readable media encoded with the software/program code may be packaged with a compatible device or provided separately from other devices (e.g., via Internet download). Any such computer-readable medium may reside on or within a single computing device or an entire computer system, and may be among other computer-readable media within a system or network.
  • a computer system or computing device may include a monitor, printer, or other suitable display for providing any of the results mentioned herein to a user.

Abstract

Disclosed are database systems, methods, computer program products, and systems for providing a training application for training a user to use a computing application. In some implementations, a server of a database system provides a training application configured to train a user to use a computing application, the training application associated with a source code file stored in a database of the database system. The server provides an instruction, via the training application, requesting the user to perform a first task within a training environment, the training environment enabling actual or simulated computing events of the computing application to be performed during use of the training application, the first task configured to cause one of the actual or simulated computing events to be performed including a modification to data stored in a database of the database system. The server determines whether the first task has been performed correctly.

Description

    COPYRIGHT NOTICE
  • A portion of the disclosure of this patent document contains material, which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
  • PRIORITY DATA
  • This patent document claims priority to co-pending and commonly assigned U.S. Provisional Patent Application No. 61/935,646, titled “Automated Training and Assessment Platform, and System for Emulating Ideal Markup for Integrating Web Applications,” by Regan et al., filed on Feb. 4, 2014 (Attorney Docket No. 1287PROV), which is hereby incorporated by reference in its entirety and for all purposes.
  • TECHNICAL FIELD
  • This patent document relates generally to providing services in an on-demand services environment using a database system and, more specifically, to techniques for providing a training application to train a user to use a computing application.
  • BACKGROUND
  • “Cloud computing” services provide shared resources, software, and information to computers and other devices upon request. In cloud computing environments, software can be accessible over the Internet rather than installed locally on in-house computer systems. Cloud computing typically involves over-the-Internet provision of dynamically scalable and often virtualized resources. Technological details can be abstracted from the users, who no longer have need for expertise in, or control over, the technology infrastructure “in the cloud” that supports them.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The included drawings are for illustrative purposes and serve only to provide examples of possible structures and operations for the disclosed inventive systems, apparatus, methods and computer program products for providing a training application to train a user to use a computing application. These drawings in no way limit any changes in form and detail that may be made by one skilled in the art without departing from the spirit and scope of the disclosed implementations.
  • FIG. 1 shows a flowchart of an example of a method 100 for providing a training application for training a user to use a computing application, performed in accordance with some implementations.
  • FIG. 2 shows a flowchart of an example of a method 200 for providing a training application for training a user to use a computing application, performed in accordance with some implementations.
  • FIG. 3 shows an example of a user interface 300 of a training application as displayed on a display of a computing device, in accordance with some implementations.
  • FIGS. 4A-4D show examples of different regions and states of a user interface 400 of a training application, in accordance with some implementations.
  • FIGS. 5A and 5B show examples of different regions and states of a user interface 500 of a training application, in accordance with some implementations.
  • FIGS. 6A-6E show examples of different regions and states of a user interface 600 of a training application, in accordance with some implementations.
  • FIGS. 7A and 7B show examples of different regions and states of a user interface 700 of a training application, in accordance with some implementations.
  • FIG. 8A shows a block diagram of an example of an environment 10 in which an on-demand database service can be used in accordance with some implementations.
  • FIG. 8B shows a block diagram of an example of some implementations of elements of FIG. 8A and various possible interconnections between these elements.
  • FIG. 9A shows a system diagram of an example of architectural components of an on-demand database service environment 900, in accordance with some implementations.
  • FIG. 9B shows a system diagram further illustrating an example of architectural components of an on-demand database service environment, in accordance with some implementations.
  • DETAILED DESCRIPTION
  • Examples of systems, apparatus, methods and computer program products according to the disclosed implementations are described in this section. These examples are being provided solely to add context and aid in the understanding of the disclosed implementations. It will thus be apparent to one skilled in the art that implementations may be practiced without some or all of these specific details. In other instances, certain operations have not been described in detail to avoid unnecessarily obscuring implementations. Other applications are possible, such that the following examples should not be taken as definitive or limiting either in scope or setting.
  • In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific implementations. Although these implementations are described in sufficient detail to enable one skilled in the art to practice the disclosed implementations, it is understood that these examples are not limiting, such that other implementations may be used and changes may be made without departing from their spirit and scope. For example, the operations of methods shown and described herein are not necessarily performed in the order indicated. It should also be understood that the methods may include more or fewer operations than are indicated. In some implementations, operations described herein as separate operations may be combined. Conversely, what may be described herein as a single operation may be implemented in multiple operations.
  • Some implementations of the disclosed systems, apparatus, methods and computer program products relate to providing training applications and environments to instruct users to use or configure a computer application and to validate that users have performed an instructed task correctly. In some implementations, an online cloud-based training platform may be provided using a server-based database system to deliver hands-on training to individuals or customers at their computing devices. By way of illustration, the hands-on training may merge interactive e-learning tutorials with guided exercises within the same training application, elevating the training experience for each user. The training platform may provide a configurable interface for building training applications, which may include training courses or modules for using, configuring, or developing an application. For example, a training application may be built for a standard application running on a cloud-based platform, a custom application built on the cloud-based platform, configuring applications running on the cloud-based platform, and development tasks for building applications on the cloud-based platform.
  • As an example, some of the disclosed implementations may be used to train a newly hired sales agent to use a sales application of a customer relationship management (CRM) system implemented using a database storing CRM records in the form of accounts, opportunities, leads, cases, contacts, etc. Some of the tasks that the sales agent may need to learn to complete are, for example, creating a lead based on a contact's information, converting a lead to an opportunity, and updating an account. The training application may train the user to perform these various tasks.
  • The user may enroll in a training course to learn to perform these various tasks in the sales application. For example, the training course may be delivered using a training environment provisioned exclusively for the purposes of training the user to use or configure the sales application by deploying a designated version of the sales application and including an initial data set for the sales application. For the sales application context, the initial data set may include one or more accounts, opportunities, or leads that the users may interact with.
  • The training application may include walkthroughs and tutorials to show the user how to perform various tasks within the application, providing video/audio/text help or various e-learning modules upon request by the user. For example, the training application may show the user the various steps needed to create a lead in the sales application. The training application may also guide the user in exercises to perform the various tasks within the application and to validate that the user has correctly performed the tasks by examining the data model of the application.
  • In the sales application example, the user may be instructed to create a new lead having particular lead information. The training application may examine a CRM database storing properly created existing leads to determine whether the new lead was created as instructed. If the lead was correctly created, the training application may inform the user that the task was completed correctly. If the lead was not correctly created, the training application may inform the user or provide a hint as to how to properly perform the task. The hint may be a tutorial for how to create a lead. Alternatively, the hint may be provided based on the user's progress in creating the lead. For example, if the user did create a new lead, but provided incorrect information for the newly created lead, the hint may highlight the incorrect information.
  • In some implementations, the training application may incorporate a scoring system to indicate a user's progress in performing various tasks in the training application. The scoring system may be used to provide certifications to users for performing a particular set of tasks in the training application. Various implementations may be used for training of new employees, as well as for trials to ensure that users are actually learning to perform the various tasks.
  • The disclosed implementations provide tutorials and guided exercises for various applications that may be created and provided through the training application, allowing companies to train their employees and users to use the various applications. The employees and users may use the training application to view tutorials and to participate in guided hands-on exercises with real-time feedback, enhancing the training experience.
  • FIG. 1 shows a flowchart of an example of a method 100 for providing a training application for training a user to use a computing application, performed in accordance with some implementations. In FIG. 1, at block 104, a server of a database system provides a training application for display at a user's computing device in communication with the server. The training application may provide online tutorials and walkthroughs for using any of a variety of computing applications. A user may use the training application to learn to use a server-based computing application provided by the database system. For example, the training application may provide exercises for the user to perform within the computing application and provide feedback to the user regarding whether the exercises were performed correctly. Source code files for the training application may be stored in the database system and used to provide the training application to the computing device of the user.
  • FIG. 3 shows an example of a user interface 300 of a training application as displayed on a display of a computing device, in accordance with some implementations. The user interface 300 includes a user interface element 310 that displays the computing application for which the training application provides training. In some implementations, the user interface element 310 may be displayed within an inline frame (iframe). The user may interact with the computing application within the user interface element 310 of the training application. As an example, the computing application may be a sales application, such as salesforce.com's® Sales Cloud®, capable of managing CRM records such as accounts, contacts, and business opportunities, and collaborating instantly from anywhere on any device. The training application may provide a tutorial for how to perform a particular task, such as creating a lead, within the sales application by displaying step-by-step instructions within the user interface element 310. The training application may then instruct the user to perform the task of creating a lead. In the example of FIG. 3, the question box 324 provides the instruction to “Create a lead for Sarah Chapman who works for ‘Solution Works.’” The user may then interact with the computing application in the user interface element 310 to perform the instructed task.
  • Returning to FIG. 1, at block 108, the server of the database system provides an instruction via the training application for the user to perform a designated task within a training environment generated by the training application. In some implementations, the user interacts with the computing application within a training environment. The training environment may be generated for the purpose of training the user to use the computing application. The training environment may be an instance of, for example, a cloud computing infrastructure and platform that allows a user to access, deploy, or create applications with various feature sets, depending on the configuration of the environment. The training environment may present data records and customizations stored in one or more databases, and the training environment may be based on a particular edition containing specific functionality, objects, storage, and limits. The training environment may be associated with one or more servers of the cloud computing infrastructure configured to host the training environment and to provide a user access to the computing application within the environment.
  • In the example of the sales application, the training environment for the computing application may include an initial set of data, including accounts, contacts, and opportunities, for the computing application to interact with. This allows a user to be trained to perform various tasks with respect to the initial set of data within training environment.
  • In some implementations, the instruction may be to perform any task within the computing application. FIG. 4A shows an example of a user interface 400 of a training application, in accordance with some implementations. In FIG. 4A, the user interface 400 includes a question box 410 instructing the user to “Create a lead for Sarah Chapman who works for ‘Solution Works.’”
  • In some implementations, the task may be any action that may be performed in relation to the computing application. Performance of the task may involve causing one or more actual or simulated computing events to be performed. The actual or simulated computing events may include a modification to data stored in a database of the training environment. For example, the task may be to create a record, update a record, delete a record, open a particular page, click on a link, update a set of permissions, and the like. In the context of a sales application, the task may be to create a lead, convert a lead into an opportunity, or update an account record.
  • In FIG. 4A, the task that is given to the user is to create a lead for a new customer. FIGS. 4B-4D show examples of different regions and states of user interface 400 in relation to how a user may perform the instructed task in the training application. In FIG. 4B, the user interface 400 includes information about sales leads in the training environment. The user may select the “New” button 422 to create a new lead. In FIG. 4C, the user interface 400 includes a form 442 for entering information for a new sales lead. In this form 442, the user may provide information, such as the contact information and identifying information for the new lead. In FIG. 4D, the user has entered identifying information for Sarah Chapman 462, 464 and Solution Works 466 for a new lead. After entering the information for the new lead, the user may click on Save 468 to create the new lead.
  • In some implementations, the training application may provide a walkthrough for configuring the training environment, and the instruction to the user may be to configure the training environment as demonstrated by the walkthrough. For example, the training application may demonstrate to the user how to set particular permission settings for the computing application. In the context of the sales application, the user may be instructed to assign a permission set license to a user of the sales application.
  • Returning to FIG. 1, at block 112, the server of the database system determines, based on a user input, whether the first task has been performed correctly. In one implementation, the determination may be based on the user's response to the instruction provided via the training application.
  • As an example, FIG. 5A shows an example of a user interface 500 of a training application, in accordance with some implementations. In FIG. 5A, the user has just completed creating a lead for Sarah Chapman, who works for Solution Works. The steps by which the user created the lead are described above with respect to FIGS. 4A-4D. Once the new lead has been created, the user may select the “Submit Work” button 504 to indicate to the training application that he has completed the instructed task. At this point, the training application may determine whether the instructed task—to create a lead for Sarah Chapman of Solution Works—was performed correctly. The training application may make this determination by examining the user's input in the form depicted in FIG. 4D. In the form of FIG. 4D, the user entered “Sarah,” “Chapman,” and “Solution Works,” and submitted the form to create the new lead. When the form is submitted with the user's input, the training application may save the user's input in a database accessible to the training application for the training application to later examine when the user submits his work in response to the instructed task.
  • In some implementations, the determination made by the server may be based on data stored in the database of the database system. The data stored in the database may be associated with a CRM record, and the instructed task may be one of: creating a CRM record, updating a CRM record, deleting a CRM record, or modifying permissions associated with a CRM record.
  • In the above example, when the user submits the form to create the new lead for Sarah Chapman, a database entry is created in a database containing leads information for the computing application. The database entry may include the user input, such as the name and company for the lead. When the user, in FIG. 5A, selects “Submit Work” 504, the training application may access the database containing the leads information for the computing application to determine whether the leads database contains a lead entry having the correct information. In particular, the training application may look for a lead entry containing “Sarah Chapman” under the name field, and “Solution Works” under the company field. If such a lead entry is found, the training application may determine that the instructed task was completed correctly. If no such lead entry is found, the training application may determine that the instructed task was not completed correctly.
  • As another example, if the instructed task is to update an attribute of a database record, the training application may determine whether a user has correctly completed the instructed task by examining the database record to determine whether the designated attribute of the database record has been appropriately changed.
  • In another example, the training application may store in a database the browsing history for a user of the training application. The browsing history may store historical actions performed by the user, including pages visited by the user. In this example, the instructed task may be to navigate to a particular page within the computing application. When the user has completed the instructed task and submitted his work, the training application may examine the database containing the browsing history for the user to determine whether the user has correctly navigated to the designated page of the computing application.
  • In the example where the training application instructs the user to configure the training environment as demonstrated by the walkthrough, and the user is instructed to assign a permission set license to a user of the sales application, the training application may examine the database storing permission set license assignments to determine whether the user correctly performed the instructed task.
  • FIG. 2 shows a flowchart of an example of a method 200 for providing a training application for training a user to use a computing application, performed in accordance with some implementations.
  • In FIG. 2, at block 204, a server of a database system provides a training application for display at a computing device in communication with the server, as generally described at block 104 of FIG. 1.
  • In FIG. 2, at block 208, the server of the database system provides an instruction via the training application for the user to perform a task within a training environment generated by the training application, as generally described at block 108 of FIG. 1.
  • In FIG. 2, at block 212, the server of the database system determines, based on a user input, whether the first task has been performed correctly, as generally described at block 112 of FIG. 1.
  • In FIG. 2, at block 216, responsive to a determination that the first task has been performed correctly, the server of the database system provides a notification in the training application that the first task was performed correctly. The notification may inform the user that he has correctly performed the instructed task.
  • Returning to the example of FIGS. 4A-4D and 5A, where the user has been instructed to create a lead for Sarah Chapman of Solution Works, FIG. 5A displays the lead that the user has correctly created in response to the instruction.
  • FIG. 5B shows an example of an updated state of user interface 500. When the user has submitted his work, and the training application determines that the user has correctly created the assigned lead, the training application may display a text box 522 with a notification indicating that the instructed task has been correctly performed. The text box 522 may also include an option to proceed to the next task.
  • In some implementations, the training application may include a scoring system configured to provide a certification for a user for completing a number of tasks. The scoring system may assign points to the user for correctly performing a task and may provide the certification when the user has received a designated number of points from correctly performing various tasks within the training application.
  • In some implementations, the training application may be part of a training course that the user is enrolled in. The training course may require that the user view a number of walkthroughs or tutorials and correctly perform a number of tasks in order to complete the course. The training application may keep track of which tasks the user has correctly performed in order to determine whether the user has completed the course. Examples of such a training course may be a tutorial for how to use a computer application, a traffic school course, a tutorial for how to play a game, and the like.
  • Returning to FIG. 2, at block 220, responsive to a determination that the first task has not been performed correctly, the training application may display one or more hints based on the data stored in the database, the data indicating a state of progress in performing the first task.
  • Returning to the example of FIGS. 4A-4D and 5A, the user may incorrectly perform the instructed task of creating a lead for Sarah Chapman for Solution Works by, for example, creating a lead for Sarah Chapman without indicating “Solution Works” as the company. When the user submits his work, the training application may examine the leads database and identify a new entry for “Sarah Chapman,” but may also determine that the identified entry does not include “Solution Works” in the company field of the lead entry. Based on this determination, the training application may determine that the user has made some progress in completing the assigned task, in that the user has created a lead for “Sarah Chapman,” but that the user has not fully completed the task. The training application may then proceed to provide a hint to the user regarding how to fully complete the task. As an example, the training application may display a detail page displaying the lead information for the “Sarah Chapman” lead and highlight the Company field name in the page. As another example, the training application may display the form in which the user completed the lead information and highlight the Company field and display textbox indicating to the user that the field should include the text “Solution Works.” In this way, the data in the database may be utilized by the training application to determine the progress of a user in completing an assigned task.
  • In some implementations, the hints may describe a series of user actions for performing the first task correctly. As an example, the hints may provide a tutorial or walkthrough for creating the Sarah Chapman lead correctly from start to finish. Alternatively, the hint may provide a series of user actions for completing the first task correctly, starting from the point where the user performed an incorrect action. In the above example, the training application may start at the form completion step, in which the user enters lead information for Sarah Chapman, and display the correct series of steps from that point on.
  • FIGS. 6A-6E show examples of different regions and states of a user interface 600 of a training application, in accordance with some implementations. In FIG. 6A, a task box 604 indicates that the user has been instructed to convert the lead for Sarah Chapman. In the case that the user does not know how to convert a lead using the sales application, the user may request a hint by selecting the hint button 602.
  • When the user requests a hint from the training application, the user may be presented with a dialog box 622 of FIG. 6B, indicating that the assigned task has not been performed and providing an option to view a tutorial on how to convert a lead. When the user selects the option to view a tutorial, the training application may display a walkthrough 642 for how to convert a lead, as depicted in FIG. 6C. After viewing the walkthrough, the user may return to the sales application and perform the necessary steps to convert the Sarah Chapman lead, which is depicted in FIG. 6D. FIG. 6E shows an example of a message 682 that may be displayed to the user when the user has successfully converted the Sarah Chapman lead.
  • In some implementations, the training application may allow a user to reset the data for the training environment back to the initial data set. In the event that a user has performed a number of actions and created a number of database records while failing to perform the assigned task, resetting the data may allow the user to start over in performing the assigned task with a clean data set.
  • FIGS. 7A-7B show examples of different regions and states of a user interface 700 of a training application, in accordance with some implementations. In FIG. 7A, the user may select a Reset Data button 702 to reset the data in the database back to the initial data set. In FIG. 7B, the user is presented with a message 722 indicating that the leads data has been reset. The user may now go back and recreate the Sarah Chapman lead in the training application prior to performing the assigned task of converting that lead.
  • Systems, apparatus, and methods are described below for implementing database systems in conjunction with the disclosed techniques. FIG. 8A shows a block diagram of an example of an environment 10 in which an on-demand database service exists and can be used in accordance with some implementations. Environment 10 may include user systems 12, network 14, database system 16, processor system 17, application platform 18, network interface 20, tenant data storage 22, system data storage 24, program code 26, and process space 28. In other implementations, environment 10 may not have all of these components and/or may have other components instead of, or in addition to, those listed above.
  • A user system 12 may be implemented as any computing device(s) or other data processing apparatus such as a machine or system used by a user to access a database system 16. For example, any of user systems 12 can be a handheld and/or portable computing device such as a mobile phone, a smartphone, a laptop computer, or a tablet. Other examples of a user system include computing devices such as a work station and/or a network of computing devices. As illustrated in FIG. 8A (and in more detail in FIG. 8B) user systems 12 might interact via a network 14 with an on-demand database service, which is implemented in the example of FIG. 8A as database system 16.
  • An on-demand database service, implemented using system 16 by way of example, is a service that is made available to users who do not need to necessarily be concerned with building and/or maintaining the database system. Instead, the database system may be available for their use when the users need the database system, i.e., on the demand of the users. Some on-demand database services may store information from one or more tenants into tables of a common database image to form a multi-tenant database system (MTS). A database image may include one or more database objects. A relational database management system (RDBMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 18 may be a framework that allows the applications of system 16 to run, such as the hardware and/or software, e.g., the operating system. In some implementations, application platform 18 enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 12, or third party application developers accessing the on-demand database service via user systems 12.
  • The users of user systems 12 may differ in their respective capacities, and the capacity of a particular user system 12 might be entirely determined by permissions (permission levels) for the current user. For example, when a salesperson is using a particular user system 12 to interact with system 16, the user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 16, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level, also called authorization.
  • Network 14 is any network or combination of networks of devices that communicate with one another. For example, network 14 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. Network 14 can include a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the Internet. The Internet will be used in many of the examples herein. However, it should be understood that the networks that the present implementations might use are not so limited.
  • User systems 12 might communicate with system 16 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 12 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP signals to and from an HTTP server at system 16. Such an HTTP server might be implemented as the sole network interface 20 between system 16 and network 14, but other techniques might be used as well or instead. In some implementations, the network interface 20 between system 16 and network 14 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a number of servers. At least for users accessing system 16, each of the servers has access to the MTS' data; however, other alternative configurations may be used instead.
  • In one implementation, system 16, shown in FIG. 8A, implements a web-based CRM system. For example, in one implementation, system 16 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, web pages and other information to and from user systems 12 and to store to, and retrieve from, a database system related data, objects, and Webpage content. With a multi-tenant system, data for multiple tenants may be stored in the same physical database object in tenant data storage 22, however, tenant data typically is arranged in the storage medium(s) of tenant data storage 22 so that data of one tenant is kept logically separate from that of other tenants so that one tenant does not have access to another tenant's data, unless such data is expressly shared. In certain implementations, system 16 implements applications other than, or in addition to, a CRM application. For example, system 16 may provide tenant access to multiple hosted (standard and custom) applications, including a CRM application. User (or third party developer) applications, which may or may not include CRM, may be supported by the application platform 18, which manages creation, storage of the applications into one or more database objects and executing of the applications in a virtual machine in the process space of the system 16.
  • One arrangement for elements of system 16 is shown in FIGS. 9A and 9B, including a network interface 20, application platform 18, tenant data storage 22 for tenant data 23, system data storage 24 for system data 25 accessible to system 16 and possibly multiple tenants, program code 26 for implementing various functions of system 16, and a process space 28 for executing MTS system processes and tenant-specific processes, such as running applications as part of an application hosting service. Additional processes that may execute on system 16 include database indexing processes.
  • Several elements in the system shown in FIG. 8A include conventional, well-known elements that are explained only briefly here. For example, each user system 12 could include a desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access protocol (WAP) enabled device or any other computing device capable of interfacing directly or indirectly to the Internet or other network connection. The term “computing device” is also referred to herein simply as a “computer”. User system 12 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) of user system 12 to access, process and view information, pages and applications available to it from system 16 over network 14. Each user system 12 also typically includes one or more user input devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a GUI provided by the browser on a display (e.g., a monitor screen, LCD display, OLED display, etc.) of the computing device in conjunction with pages, forms, applications and other information provided by system 16 or other systems or servers. Thus, “display device” as used herein can refer to a display of a computer system such as a monitor or touch-screen display, and can refer to any computing device having display capabilities such as a desktop computer, laptop, tablet, smartphone, a television set-top box, or wearable device such Google Glass® or other human body-mounted display apparatus. For example, the display device can be used to access data and applications hosted by system 16, and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user. As discussed above, implementations are suitable for use with the Internet, although other networks can be used instead of or in addition to the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
  • According to one implementation, each user system 12 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 16 (and additional instances of an MTS, where more than one is present) and all of its components might be operator configurable using application(s) including computer code to run using processor system 17, which may be implemented to include a central processing unit, which may include an Intel Pentium® processor or the like, and/or multiple processor units. Non-transitory computer-readable media can have instructions stored thereon/in, that can be executed by or used to program a computing device to perform any of the methods of the implementations described herein. Computer program code 26 implementing instructions for operating and configuring system 16 to intercommunicate and to process web pages, applications and other data and media content as described herein is preferably downloadable and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any other type of computer-readable medium or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for the disclosed implementations can be realized in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
  • According to some implementations, each system 16 is configured to provide web pages, forms, applications, data and media content to user (client) systems 12 to support the access by user systems 12 as tenants of system 16. As such, system 16 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to refer to one type of computing device such as a system including processing hardware and process space(s), an associated storage medium such as a memory device or database, and, in some instances, a database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database objects described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
  • FIG. 8B shows a block diagram of an example of some implementations of elements of FIG. 8A and various possible interconnections between these elements. That is, FIG. 8B also illustrates environment 10. However, in FIG. 8B elements of system 16 and various interconnections in some implementations are further illustrated. FIG. 8B shows that user system 12 may include processor system 12A, memory system 12B, input system 12C, and output system 12D. FIG. 8B shows network 14 and system 16. FIG. 8B also shows that system 16 may include tenant data storage 22, tenant data 23, system data storage 24, system data 25, User Interface (UI) 30, Application Program Interface (API) 32, PL/SOQL 34, save routines 36, application setup mechanism 38, application servers 50 1-50 N, system process space 52, tenant process spaces 54, tenant management process space 60, tenant storage space 62, user storage 64, and application metadata 66. In other implementations, environment 10 may not have the same elements as those listed above and/or may have other elements instead of, or in addition to, those listed above.
  • User system 12, network 14, system 16, tenant data storage 22, and system data storage 24 were discussed above in FIG. 8A. Regarding user system 12, processor system 12A may be any combination of one or more processors. Memory system 12B may be any combination of one or more memory devices, short term, and/or long term memory. Input system 12C may be any combination of input devices, such as one or more keyboards, mice, trackballs, scanners, cameras, and/or interfaces to networks. Output system 12D may be any combination of output devices, such as one or more monitors, printers, and/or interfaces to networks. As shown by FIG. 8B, system 16 may include a network interface 20 (of FIG. 8A) implemented as a set of application servers 50, an application platform 18, tenant data storage 22, and system data storage 24. Also shown is system process space 52, including individual tenant process spaces 54 and a tenant management process space 60. Each application server 50 may be configured to communicate with tenant data storage 22 and the tenant data 23 therein, and system data storage 24 and the system data 25 therein to serve requests of user systems 12. The tenant data 23 might be divided into individual tenant storage spaces 62, which can be either a physical arrangement and/or a logical arrangement of data. Within each tenant storage space 62, user storage 64 and application metadata 66 might be similarly allocated for each user. For example, a copy of a user's most recently used (MRU) items might be stored to user storage 64. Similarly, a copy of MRU items for an entire organization that is a tenant might be stored to tenant storage space 62. A UI 30 provides a user interface and an API 32 provides an application programmer interface to system 16 resident processes to users and/or developers at user systems 12. The tenant data and the system data may be stored in various databases, such as one or more Oracle® databases.
  • Application platform 18 includes an application setup mechanism 38 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 22 by save routines 36 for execution by subscribers as one or more tenant process spaces 54 managed by tenant management process 60 for example. Invocations to such applications may be coded using PL/SOQL 34 that provides a programming language style interface extension to API 32. A detailed description of some PL/SOQL language implementations is discussed in commonly assigned U.S. Pat. No. 7,730,478, titled METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, issued on Jun. 1, 2010, and hereby incorporated by reference in its entirety and for all purposes. Invocations to applications may be detected by one or more system processes, which manage retrieving application metadata 66 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
  • Each application server 50 may be communicably coupled to database systems, e.g., having access to system data 25 and tenant data 23, via a different network connection. For example, one application server 50 1 might be coupled via the network 14 (e.g., the Internet), another application server 50 N-1 might be coupled via a direct network link, and another application server 50 N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 50 and the database system. However, it will be apparent to one skilled in the art that other transport protocols may be used to optimize the system depending on the network interconnect used.
  • In certain implementations, each application server 50 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 50. In one implementation, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 50 and the user systems 12 to distribute requests to the application servers 50. In one implementation, the load balancer uses a least connections algorithm to route user requests to the application servers 50. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain implementations, three consecutive requests from the same user could hit three different application servers 50, and three requests from different users could hit the same application server 50. In this manner, by way of example, system 16 is multi-tenant, wherein system 16 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
  • As an example of storage, one tenant might be a company that employs a sales force where each salesperson uses system 16 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 22). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
  • While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 16 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant-specific data, system 16 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
  • In certain implementations, user systems 12 (which may be client systems) communicate with application servers 50 to request and update system-level and tenant-level data from system 16 that may involve sending one or more queries to tenant data storage 22 and/or system data storage 24. System 16 (e.g., an application server 50 in system 16) automatically generates one or more SQL statements (e.g., one or more SQL queries) that are designed to access the desired information. System data storage 24 may generate query plans to access the requested data from the database.
  • Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects according to some implementations. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for case, account, contact, lead, and opportunity data objects, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
  • In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. Commonly assigned U.S. Pat. No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by Weissman et al., issued on Aug. 17, 2010, and hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In certain implementations, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
  • FIG. 9A shows a system diagram of an example of architectural components of an on-demand database service environment 900, in accordance with some implementations. A client machine located in the cloud 904, generally referring to one or more networks in combination, as described herein, may communicate with the on-demand database service environment via one or more edge routers 908 and 912. A client machine can be any of the examples of user systems 12 described above. The edge routers may communicate with one or more core switches 920 and 924 via firewall 916. The core switches may communicate with a load balancer 928, which may distribute server load over different pods, such as the pods 940 and 944. The pods 940 and 944, which may each include one or more servers and/or other computing resources, may perform data processing and other operations used to provide on-demand services. Communication with the pods may be conducted via pod switches 932 and 936. Components of the on-demand database service environment may communicate with a database storage 956 via a database firewall 948 and a database switch 952.
  • As shown in FIGS. 9A and 9B, accessing an on-demand database service environment may involve communications transmitted among a variety of different hardware and/or software components. Further, the on-demand database service environment 900 is a simplified representation of an actual on-demand database service environment. For example, while only one or two devices of each type are shown in FIGS. 9A and 9B, some implementations of an on-demand database service environment may include anywhere from one to many devices of each type. Also, the on-demand database service environment need not include each device shown in FIGS. 9A and 9B, or may include additional devices not shown in FIGS. 9A and 9B.
  • Moreover, one or more of the devices in the on-demand database service environment 900 may be implemented on the same physical device or on different hardware. Some devices may be implemented using hardware or a combination of hardware and software. Thus, terms such as “data processing apparatus,” “machine,” “server” and “device” as used herein are not limited to a single hardware device, but rather include any hardware and software configured to provide the described functionality.
  • The cloud 904 is intended to refer to a data network or combination of data networks, often including the Internet. Client machines located in the cloud 904 may communicate with the on-demand database service environment to access services provided by the on-demand database service environment. For example, client machines may access the on-demand database service environment to retrieve, store, edit, and/or process information.
  • In some implementations, the edge routers 908 and 912 route packets between the cloud 904 and other components of the on-demand database service environment 900. The edge routers 908 and 912 may employ the Border Gateway Protocol (BGP). The BGP is the core routing protocol of the Internet. The edge routers 908 and 912 may maintain a table of IP networks or ‘prefixes’, which designate network reachability among autonomous systems on the Internet.
  • In one or more implementations, the firewall 916 may protect the inner components of the on-demand database service environment 900 from Internet traffic. The firewall 916 may block, permit, or deny access to the inner components of the on-demand database service environment 900 based upon a set of rules and other criteria. The firewall 916 may act as one or more of a packet filter, an application gateway, a stateful filter, a proxy server, or any other type of firewall.
  • In some implementations, the core switches 920 and 924 are high-capacity switches that transfer packets within the on-demand database service environment 900. The core switches 920 and 924 may be configured as network bridges that quickly route data between different components within the on-demand database service environment. In some implementations, the use of two or more core switches 920 and 924 may provide redundancy and/or reduced latency.
  • In some implementations, the pods 940 and 944 may perform the core data processing and service functions provided by the on-demand database service environment. Each pod may include various types of hardware and/or software computing resources. An example of the pod architecture is discussed in greater detail with reference to FIG. 9B.
  • In some implementations, communication between the pods 940 and 944 may be conducted via the pod switches 932 and 936. The pod switches 932 and 936 may facilitate communication between the pods 940 and 944 and client machines located in the cloud 904, for example via core switches 920 and 924. Also, the pod switches 932 and 936 may facilitate communication between the pods 940 and 944 and the database storage 956.
  • In some implementations, the load balancer 928 may distribute workload between the pods 940 and 944. Balancing the on-demand service requests between the pods may assist in improving the use of resources, increasing throughput, reducing response times, and/or reducing overhead. The load balancer 928 may include multilayer switches to analyze and forward traffic.
  • In some implementations, access to the database storage 956 may be guarded by a database firewall 948. The database firewall 948 may act as a computer application firewall operating at the database application layer of a protocol stack. The database firewall 948 may protect the database storage 956 from application attacks such as structure query language (SQL) injection, database rootkits, and unauthorized information disclosure.
  • In some implementations, the database firewall 948 may include a host using one or more forms of reverse proxy services to proxy traffic before passing it to a gateway router. The database firewall 948 may inspect the contents of database traffic and block certain content or database requests. The database firewall 948 may work on the SQL application level atop the TCP/IP stack, managing applications' connection to the database or SQL management interfaces as well as intercepting and enforcing packets traveling to or from a database network or application interface.
  • In some implementations, communication with the database storage 956 may be conducted via the database switch 952. The multi-tenant database storage 956 may include more than one hardware and/or software components for handling database queries. Accordingly, the database switch 952 may direct database queries transmitted by other components of the on-demand database service environment (e.g., the pods 940 and 944) to the correct components within the database storage 956.
  • In some implementations, the database storage 956 is an on-demand database system shared by many different organizations. The on-demand database service may employ a multi-tenant approach, a virtualized approach, or any other type of database approach. On-demand database services are discussed in greater detail with reference to FIGS. 9A and 9B.
  • FIG. 9B shows a system diagram further illustrating an example of architectural components of an on-demand database service environment, in accordance with some implementations. The pod 944 may be used to render services to a user of the on-demand database service environment 900. In some implementations, each pod may include a variety of servers and/or other systems. The pod 944 includes one or more content batch servers 964, content search servers 968, query servers 982, file servers 986, access control system (ACS) servers 980, batch servers 984, and app servers 988. Also, the pod 944 includes database instances 990, quick file systems (QFS) 992, and indexers 994. In one or more implementations, some or all communication between the servers in the pod 944 may be transmitted via the switch 936.
  • In some implementations, the app servers 988 may include a hardware and/or software framework dedicated to the execution of procedures (e.g., programs, routines, scripts) for supporting the construction of applications provided by the on-demand database service environment 900 via the pod 944. In some implementations, the hardware and/or software framework of an app server 988 is configured to cause performance of services described herein, including performance of one or more of the operations of methods described herein with reference to FIGS. 1-7. In alternative implementations, two or more app servers 988 may be included to cause such methods to be performed, or one or more other servers described herein can be configured to cause part or all of the disclosed methods to be performed.
  • The content batch servers 964 may handle requests internal to the pod. These requests may be long-running and/or not tied to a particular customer. For example, the content batch servers 964 may handle requests related to log mining, cleanup work, and maintenance tasks.
  • The content search servers 968 may provide query and indexer functions. For example, the functions provided by the content search servers 968 may allow users to search through content stored in the on-demand database service environment.
  • The file servers 986 may manage requests for information stored in the file storage 998. The file storage 998 may store information such as documents, images, and basic large objects (BLOBs). By managing requests for information using the file servers 986, the image footprint on the database may be reduced.
  • The query servers 982 may be used to retrieve information from one or more file systems. For example, the query system 982 may receive requests for information from the app servers 988 and then transmit information queries to the NFS 996 located outside the pod.
  • The pod 944 may share a database instance 990 configured as a multi-tenant environment in which different organizations share access to the same database. Additionally, services rendered by the pod 944 may call upon various hardware and/or software resources. In some implementations, the ACS servers 980 may control access to data, hardware resources, or software resources.
  • In some implementations, the batch servers 984 may process batch jobs, which are used to run tasks at specified times. Thus, the batch servers 984 may transmit instructions to other servers, such as the app servers 988, to trigger the batch jobs.
  • In some implementations, the QFS 992 may be an open source file system available from Sun Microsystems® of Santa Clara, Calif. The QFS may serve as a rapid-access file system for storing and accessing information available within the pod 944. The QFS 992 may support some volume management capabilities, allowing many disks to be grouped together into a file system. File system metadata can be kept on a separate set of disks, which may be useful for streaming applications where long disk seeks cannot be tolerated. Thus, the QFS system may communicate with one or more content search servers 968 and/or indexers 994 to identify, retrieve, move, and/or update data stored in the network file systems 996 and/or other storage systems.
  • In some implementations, one or more query servers 982 may communicate with the NFS 996 to retrieve and/or update information stored outside of the pod 944. The NFS 996 may allow servers located in the pod 944 to access information to access files over a network in a manner similar to how local storage is accessed.
  • In some implementations, queries from the query servers 922 may be transmitted to the NFS 996 via the load balancer 928, which may distribute resource requests over various resources available in the on-demand database service environment. The NFS 996 may also communicate with the QFS 992 to update the information stored on the NFS 996 and/or to provide information to the QFS 992 for use by servers located within the pod 944.
  • In some implementations, the pod may include one or more database instances 990. The database instance 990 may transmit information to the QFS 992. When information is transmitted to the QFS, it may be available for use by servers within the pod 944 without using an additional database call.
  • In some implementations, database information may be transmitted to the indexer 994. Indexer 994 may provide an index of information available in the database 990 and/or QFS 992. The index information may be provided to file servers 986 and/or the QFS 992.
  • Some but not all of the techniques described or referenced herein are implemented as part of or in conjunction with a social networking system, also referred to herein as a social network. Social networking systems have become a popular way to facilitate communication among people, any of whom can be recognized as users of a social networking system. One example of a social networking system is Chatter®, provided by salesforce.com, inc. of San Francisco, Calif. salesforce.com, inc. is a provider of social networking services, Customer Relationship Management (CRM) services and other database management services, any of which can be accessed and used in conjunction with the techniques disclosed herein in some implementations. These various services can be provided in a cloud computing environment, for example, in the context of a multi-tenant database system. Thus, the disclosed techniques can be implemented without having to install software locally, that is, on computing devices of users interacting with services available through the cloud. While the disclosed implementations are often described with reference to Chatter®, those skilled in the art should understand that the disclosed techniques are neither limited to Chatter® nor to any other services and systems provided by salesforce.com, inc. and can be implemented in the context of various other database systems and/or social networking systems such as Facebook®, LinkedIn®, Twitter®, Google+®, Yammer® and Jive® by way of example only.
  • Some social networking systems can be implemented in various settings, including organizations. For instance, a social networking system can be implemented to connect users within an enterprise such as a company or business partnership, or a group of users within such an organization. For instance, Chatter® can be used by employee users in a division of a business organization to share data, communicate, and collaborate with each other for various social purposes often involving the business of the organization. In the example of a multi-tenant database system, each organization or group within the organization can be a respective tenant of the system, as described in greater detail herein.
  • In some social networking systems, users can access one or more social network feeds, which include information updates presented as items or entries in the feed. Such a feed item can include a single information update or a collection of individual information updates. A feed item can include various types of data including character-based data, audio data, image data and/or video data. A social network feed can be displayed in a graphical user interface (GUI) on a display device such as the display of a computing device as described herein. The information updates can include various social network data from various sources and can be stored in an on-demand database service environment. In some implementations, the disclosed methods, apparatus, systems, and computer-readable storage media may be configured or designed for use in a multi-tenant database environment.
  • In some implementations, a social networking system may allow a user to follow data objects in the form of CRM records such as cases, accounts, or opportunities, in addition to following individual users and groups of users. The “following” of a record stored in a database, as described in greater detail herein, allows a user to track the progress of that record when the user is subscribed to the record. Updates to the record, also referred to herein as changes to the record, are one type of information update that can occur and be noted on a social network feed such as a record feed or a news feed of a user subscribed to the record. Examples of record updates include field changes in the record, updates to the status of a record, as well as the creation of the record itself. Some records are publicly accessible, such that any user can follow the record, while other records are private, for which appropriate security clearance/permissions are a prerequisite to a user following the record.
  • Information updates can include various types of updates, which may or may not be linked with a particular record. For example, information updates can be social media messages submitted by a user or can otherwise be generated in response to user actions or in response to events. Examples of social media messages include: posts, comments, indications of a user's personal preferences such as “likes” and “dislikes”, updates to a user's status, uploaded files, and user-submitted hyperlinks to social network data or other network data such as various documents and/or web pages on the Internet. Posts can include alpha-numeric or other character-based user inputs such as words, phrases, statements, questions, emotional expressions, and/or symbols. Comments generally refer to responses to posts or to other information updates, such as words, phrases, statements, answers, questions, and reactionary emotional expressions and/or symbols. Multimedia data can be included in, linked with, or attached to a post or comment. For example, a post can include textual statements in combination with a JPEG image or animated image. A like or dislike can be submitted in response to a particular post or comment. Examples of uploaded files include presentations, documents, multimedia files, and the like.
  • Users can follow a record by subscribing to the record, as mentioned above. Users can also follow other entities such as other types of data objects, other users, and groups of users. Feed tracked updates regarding such entities are one type of information update that can be received and included in the user's news feed. Any number of users can follow a particular entity and thus view information updates pertaining to that entity on the users' respective news feeds. In some social networks, users may follow each other by establishing connections with each other, sometimes referred to as “friending” one another. By establishing such a connection, one user may be able to see information generated by, generated about, or otherwise associated with another user. For instance, a first user may be able to see information posted by a second user to the second user's personal social network page. One implementation of such a personal social network page is a user's profile page, for example, in the form of a web page representing the user's profile. In one example, when the first user is following the second user, the first user's news feed can receive a post from the second user submitted to the second user's profile feed. A user's profile feed is also referred to herein as the user's “wall,” which is one example of a social network feed displayed on the user's profile page.
  • In some implementations, a social network feed may be specific to a group of users of a social networking system. For instance, a group of users may publish a news feed. Members of the group may view and post to this group feed in accordance with a permissions configuration for the feed and the group. Information updates in a group context can also include changes to group status information.
  • In some implementations, when data such as posts or comments input from one or more users are submitted to a social network feed for a particular user, group, object, or other construct within a social networking system, an email notification or other type of network communication may be transmitted to all users following the user, group, or object in addition to the inclusion of the data as a feed item in one or more feeds, such as a user's profile feed, a news feed, or a record feed. In some social networking systems, the occurrence of such a notification is limited to the first instance of a published input, which may form part of a larger conversation. For instance, a notification may be transmitted for an initial post, but not for comments on the post. In some other implementations, a separate notification is transmitted for each such information update.
  • The term “multi-tenant database system” generally refers to those systems in which various elements of hardware and/or software of a database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows of data such as feed items for a potentially much greater number of customers.
  • An example of a “user profile” or “user's profile” is a database object or set of objects configured to store and maintain data about a given user of a social networking system and/or database system. The data can include general information, such as name, title, phone number, a photo, a biographical summary, and a status, e.g., text describing what the user is currently doing. As mentioned herein, the data can include social media messages created by other users. Where there are multiple tenants, a user is typically associated with a particular tenant. For example, a user could be a salesperson of a company, which is a tenant of the database system that provides a database service.
  • The term “record” generally refers to a data entity having fields with values and stored in database system. An example of a record is an instance of a data object created by a user of the database service, for example, in the form of a CRM record about a particular (actual or potential) business relationship or project. The record can have a data structure defined by the database service (a standard object) or defined by a user (custom object). For example, a record can be for a business partner or potential business partner (e.g., a client, vendor, distributor, etc.) of the user, and can include information describing an entire company, subsidiaries, or contacts at the company. As another example, a record can be a project that the user is working on, such as an opportunity (e.g., a possible sale) with an existing partner, or a project that the user is trying to get. In one implementation of a multi-tenant database system, each record for the tenants has a unique identifier stored in a common table. A record has data fields that are defined by the structure of the object (e.g., fields of certain data types and purposes). A record can also have custom fields defined by a user. A field can be another record or include links thereto, thereby providing a parent-child relationship between the records.
  • The terms “social network feed” and “feed” are used interchangeably herein and generally refer to a combination (e.g., a list) of feed items or entries with various types of information and data. Such feed items can be stored and maintained in one or more database tables, e.g., as rows in the table(s), that can be accessed to retrieve relevant information to be presented as part of a displayed feed. The term “feed item” (or feed element) generally refers to an item of information, which can be presented in the feed such as a post submitted by a user. Feed items of information about a user can be presented in a user's profile feed of the database, while feed items of information about a record can be presented in a record feed in the database, by way of example. A profile feed and a record feed are examples of different types of social network feeds. A second user following a first user and a record can receive the feed items associated with the first user and the record for display in the second user's news feed, which is another type of social network feed. In some implementations, the feed items from any number of followed users and records can be combined into a single social network feed of a particular user.
  • As examples, a feed item can be a social media message, such as a user-generated post of text data, and a feed tracked update to a record or profile, such as a change to a field of the record. Feed tracked updates are described in greater detail herein. A feed can be a combination of social media messages and feed tracked updates. Social media messages include text created by a user, and may include other data as well. Examples of social media messages include posts, user status updates, and comments. Social media messages can be created for a user's profile or for a record. Posts can be created by various users, potentially any user, although some restrictions can be applied. As an example, posts can be made to a wall section of a user's profile page (which can include a number of recent posts) or a section of a record that includes multiple posts. The posts can be organized in chronological order when displayed in a GUI, for instance, on the user's profile page, as part of the user's profile feed. In contrast to a post, a user status update changes a status of a user and can be made by that user or an administrator. A record can also have a status, the update of which can be provided by an owner of the record or other users having suitable write access permissions to the record. The owner can be a single user, multiple users, or a group.
  • In some implementations, a comment can be made on any feed item. In some implementations, comments are organized as a list explicitly tied to a particular feed tracked update, post, or status update. In some implementations, comments may not be listed in the first layer (in a hierarchal sense) of feed items, but listed as a second layer branching from a particular first layer feed item.
  • A “feed tracked update,” also referred to herein as a “feed update,” is one type of information update and generally refers to data representing an event. A feed tracked update can include text generated by the database system in response to the event, to be provided as one or more feed items for possible inclusion in one or more feeds. In one implementation, the data can initially be stored, and then the database system can later use the data to create text for describing the event. Both the data and/or the text can be a feed tracked update, as used herein. In various implementations, an event can be an update of a record and/or can be triggered by a specific action by a user. Which actions trigger an event can be configurable. Which events have feed tracked updates created and which feed updates are sent to which users can also be configurable. Social media messages and other types of feed updates can be stored as a field or child object of the record. For example, the feed can be stored as a child object of the record.
  • A “group” is generally a collection of users. In some implementations, the group may be defined as users with a same or similar attribute, or by membership. In some implementations, a “group feed”, also referred to herein as a “group news feed”, includes one or more feed items about any user in the group. In some implementations, the group feed also includes information updates and other feed items that are about the group as a whole, the group's purpose, the group's description, and group records and other objects stored in association with the group. Threads of information updates including group record updates and social media messages, such as posts, comments, likes, etc., can define group conversations and change over time.
  • An “entity feed” or “record feed” generally refers to a feed of feed items about a particular record in the database. Such feed items can include feed tracked updates about changes to the record and posts made by users about the record. An entity feed can be composed of any type of feed item. Such a feed can be displayed on a page such as a web page associated with the record, e.g., a home page of the record. As used herein, a “profile feed” or “user's profile feed” generally refers to a feed of feed items about a particular user. In one example, the feed items for a profile feed include posts and comments that other users make about or send to the particular user, and status updates made by the particular user. Such a profile feed can be displayed on a page associated with the particular user. In another example, feed items in a profile feed could include posts made by the particular user and feed tracked updates initiated based on actions of the particular user.
  • While some of the disclosed implementations may be described with reference to a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants, the disclosed implementations are not limited to multi-tenant databases nor deployment on application servers. Some implementations may be practiced using various database architectures such as ORACLE®, DB2® by IBM and the like without departing from the scope of the implementations claimed.
  • It should be understood that some of the disclosed implementations can be embodied in the form of control logic using hardware and/or computer software in a modular or integrated manner. Other ways and/or methods are possible using hardware and a combination of hardware and software.
  • Any of the disclosed implementations may be embodied in various types of hardware, software, firmware, and combinations thereof. For example, some techniques disclosed herein may be implemented, at least in part, by computer-readable media that include program instructions, state information, etc., for performing various services and operations described herein. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by a computing device such as a server or other data processing apparatus using an interpreter. Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as flash memory, compact disk (CD) or digital versatile disk (DVD); magneto-optical media; and hardware devices specially configured to store program instructions, such as read-only memory (“ROM”) devices and random access memory (“RAM”) devices. A computer-readable medium may be any combination of such storage devices.
  • Any of the operations and techniques described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, object-oriented techniques. The software code may be stored as a series of instructions or commands on a computer-readable medium. Computer-readable media encoded with the software/program code may be packaged with a compatible device or provided separately from other devices (e.g., via Internet download). Any such computer-readable medium may reside on or within a single computing device or an entire computer system, and may be among other computer-readable media within a system or network. A computer system or computing device may include a monitor, printer, or other suitable display for providing any of the results mentioned herein to a user.
  • While various implementations have been described herein, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present application should not be limited by any of the implementations described herein, but should be defined only in accordance with the following and later-submitted claims and their equivalents.

Claims (20)

What is claimed is:
1. A database system comprising:
at least one database storing data objects; and
at least one server having at least one processor capable of executing code configured to cause:
providing a training application for display at a computing device, the training application configured to train a user to use a computing application, the training application associated with a source code file stored in a database of the database system,
providing an instruction via the training application for display at the computing device, the instruction requesting the user to perform a first task within a training environment capable of being generated by the training application and capable of being provided in a user interface of the training application, the training environment enabling actual or simulated computing events of the computing application to be performed during use of the training application, the first task configured to cause at least one of the actual or simulated computing events to be performed including a modification to data stored in a database of the database system, and
determining, based on an indication of input by the user via the user interface in relation to the instruction and/or in relation to the data stored in the database, whether the first task has been performed correctly.
2. The database system of claim 1, the code further configured to cause:
providing, responsive to determining that the first task has been performed correctly, a notification via the training application for display at the computing device, the notification indicating that the first task was performed correctly.
3. The database system of claim 1, the code further configured to cause:
providing, responsive to determining that the first task has not been performed correctly, at least one hint via the training application for display at the computing device, the at least one hint based on the data stored in the database, the data indicating a state of progress in performing the first task.
4. The database system of claim 3, wherein the at least one hint describes a series of user actions for performing the first task correctly.
5. The database system of claim 1, wherein at least one user interface of the training application is capable of being provided using an inline frame (iframe) of the source code file.
6. The database system of claim 1, wherein the training application includes a scoring system configured to assign points to users for correct performance of tasks and configured to provide certifications to users based on the points.
7. The database system of claim 1, wherein the training application is configured to: provide a walkthrough for configuring the training environment, instruct the user to configure the training environment as demonstrated by the walkthrough, and determine that the user has configured the training environment as instructed.
8. The database system of claim 1, wherein the data stored in the database is associated with a customer relationship management (CRM) record.
9. The database system of claim 1, wherein the first task is one of: creating a CRM record, updating a CRM record, deleting a CRM record, and modifying at least one permission associated with a CRM record.
10. A method comprising:
providing a training application for display at a computing device, the training application configured to train a user to use a computing application, the training application implemented using a database system including a customer relationship management (CRM) database storing a plurality of CRM records, the training application associated with a source code file stored in a database of the database system;
providing an instruction via the training application for display at the computing device, the instruction requesting the user to perform a first task within a training environment capable of being generated by the training application and capable of being provided in a user interface of the training application, the training environment enabling actual or simulated computing events of the computing application to be performed during use of the training application, the first task configured to cause at least one of the actual or simulated computing events to be performed including a modification to data stored in the CRM database of the database system;
receiving an indication of input by the user via the user interface in relation to the instruction and/or in relation to the data stored in the database; and
determining, based on the user input, whether the first task has been performed correctly.
11. The method of claim 10, further comprising:
providing, responsive to determining that the first task has been performed correctly, a notification via the training application for display at the computing device, the notification indicating that the first task was performed correctly.
12. The method of claim 10, further comprising:
providing, responsive to determining that the first task has not been performed correctly, at least one hint via the training application for display at the computing device, the at least one hint based on the data stored in the database, the data indicating a state of progress in performing the first task.
13. The method of claim 12, wherein the at least one hint describes a series of user actions for performing the first task correctly.
14. The method of claim 10, wherein at least one user interface of the training application is capable of being provided using an iframe of the source code file.
15. The method of claim 10, wherein the training application includes a scoring system configured to assign points to users for correct performance of tasks and configured to provide certifications to users based on the points.
16. A computer program product comprising program code to be executed by at least one processor when retrieved from a non-transitory computer-readable medium, the program code configured to cause:
providing a training application for display at a computing device, the training application configured to train a user to use a computing application, the training application implemented using a database system including a customer relationship management (CRM) database storing a plurality of CRM records, the training application associated with a source code file stored in a database of the database system;
providing an instruction via the training application for display at the computing device, the instruction requesting the user to perform a first task within a training environment capable of being generated by the training application and capable of being provided in a user interface of the training application, the training environment enabling actual or simulated computing events of the computing application to be performed during use of the training application, the first task configured to cause at least one of the actual or simulated computing events to be performed including a modification to data stored in the CRM database of the database system;
receiving an indication of input by the user via the user interface in relation to the instruction and/or in relation to the data stored in the database; and
determining, based on the user input, whether the first task has been performed correctly.
17. The computer program product of claim 16, the code further configured to cause:
providing, responsive to determining that the first task has been performed correctly, a notification via the training application for display at the computing device, the notification indicating that the first task was performed correctly.
18. The computer program product of claim 16, the code further configured to cause:
providing, responsive to determining that the first task has not been performed correctly, at least one hint via the training application for display at the computing device, the at least one hint based on the data stored in the database, the data indicating a state of progress in performing the first task.
19. A system comprising:
database system software stored on a non-transitory data storage medium for execution by at least one server of a database system, the database system software operable to cause:
providing a training application for display at a computing device, the training application configured to train a user to use a computing application, the training application associated with a source code file stored in a database of the database system,
providing an instruction via the training application for display at the computing device, the instruction requesting the user to perform a first task within a training environment capable of being generated by the training application and capable of being provided in a user interface of the training application, the training environment enabling actual or simulated computing events of the computing application to be performed during use of the training application, the first task configured to cause at least one of the actual or simulated computing events to be performed including a modification to data stored in a database of the database system, and
determining, based on an indication of input by the user via the user interface in relation to the instruction and/or in relation to the data stored in the database, whether the first task has been performed correctly.
20. The system of claim 19, wherein at least one user interface of the training application is capable of being provided using an iframe of the source code file.
US14/610,909 2014-02-04 2015-01-30 Training application for training a user to use a computing application Abandoned US20150221235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/610,909 US20150221235A1 (en) 2014-02-04 2015-01-30 Training application for training a user to use a computing application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461935646P 2014-02-04 2014-02-04
US14/610,909 US20150221235A1 (en) 2014-02-04 2015-01-30 Training application for training a user to use a computing application

Publications (1)

Publication Number Publication Date
US20150221235A1 true US20150221235A1 (en) 2015-08-06

Family

ID=53754874

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/606,855 Active 2035-05-17 US9753703B2 (en) 2014-02-04 2015-01-27 Generating identifiers for user interface elements of a web page of a web application
US14/610,909 Abandoned US20150221235A1 (en) 2014-02-04 2015-01-30 Training application for training a user to use a computing application

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/606,855 Active 2035-05-17 US9753703B2 (en) 2014-02-04 2015-01-27 Generating identifiers for user interface elements of a web page of a web application

Country Status (1)

Country Link
US (2) US9753703B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150295663A1 (en) * 2014-04-12 2015-10-15 The Boeing Company Voice communication system for simulated radio networks
CN106340216A (en) * 2016-10-25 2017-01-18 广东薪云科技有限公司 Online vocational education teaching and learning system
US20170054713A1 (en) * 2015-08-20 2017-02-23 Xiaomi Inc. Method and device for guiding an operation and electronic apparatus
US20180096282A1 (en) * 2016-09-30 2018-04-05 Salesforce.Com, Inc. Bi-directional notification framework
US20190213912A1 (en) * 2018-01-05 2019-07-11 Autodesk, Inc. Real-time orchestration for software learning workshops
US11004350B2 (en) 2018-05-29 2021-05-11 Walmart Apollo, Llc Computerized training video system
US20210240318A1 (en) * 2020-01-31 2021-08-05 Salesforce.Com, Inc. User interface migration using intermediate user interfaces

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595202B2 (en) * 2012-12-14 2017-03-14 Neuron Fuel, Inc. Programming learning center
US10510264B2 (en) 2013-03-21 2019-12-17 Neuron Fuel, Inc. Systems and methods for customized lesson creation and application
US9595205B2 (en) 2012-12-18 2017-03-14 Neuron Fuel, Inc. Systems and methods for goal-based programming instruction
US9983943B2 (en) 2014-03-27 2018-05-29 Salesforce.Com, Inc. Reversing object manipulations in association with a walkthrough for an application or online service
US10175999B2 (en) 2015-02-25 2019-01-08 Salesforce.Com, Inc. Converting video into a walkthrough for an application or an online service
US10560342B2 (en) * 2015-06-30 2020-02-11 SkyKick, Inc. Synchronizing data between cloud manager and providers
US10915299B2 (en) 2015-10-16 2021-02-09 Salesforce.Com, Inc. Automatically matching start criteria and completion criteria of a walkthrough for an application or online service
AU2017275884B9 (en) * 2016-05-29 2022-08-25 Wix.Com Ltd. Creation and update of hierarchical websites based on collected business knowledge
US11392720B2 (en) 2016-06-10 2022-07-19 OneTrust, LLC Data processing systems for verification of consent and notice processing and related methods
US11188615B2 (en) 2016-06-10 2021-11-30 OneTrust, LLC Data processing consent capture systems and related methods
US11544409B2 (en) 2018-09-07 2023-01-03 OneTrust, LLC Data processing systems and methods for automatically protecting sensitive data within privacy management systems
US11599919B2 (en) 2018-09-24 2023-03-07 Salesforce.Com, Inc Information exchange using a database system
US10936307B2 (en) * 2018-11-26 2021-03-02 International Business Machines Corporation Highlight source code changes in user interface
US11042390B2 (en) 2019-05-07 2021-06-22 International Business Machines Corporation Replaying operations on widgets in a graphical user interface
US11372661B2 (en) 2020-06-26 2022-06-28 Whatfix Private Limited System and method for automatic segmentation of digital guidance content
US11461090B2 (en) * 2020-06-26 2022-10-04 Whatfix Private Limited Element detection
US11699357B2 (en) * 2020-07-07 2023-07-11 Neuron Fuel, Inc. Collaborative learning system
US20220083907A1 (en) * 2020-09-17 2022-03-17 Sap Se Data generation and annotation for machine learning
US11562078B2 (en) 2021-04-16 2023-01-24 OneTrust, LLC Assessing and managing computational risk involved with integrating third party computing functionality within a computing system
US11704232B2 (en) 2021-04-19 2023-07-18 Whatfix Private Limited System and method for automatic testing of digital guidance content
USD997974S1 (en) * 2021-05-20 2023-09-05 Adp, Inc Display screen or portion thereof with graphical user interface
USD997973S1 (en) * 2021-05-20 2023-09-05 Adp, Inc. Display screen or portion thereof with graphical user interface
US11715384B2 (en) * 2021-06-02 2023-08-01 International Business Machines Corporation Automated personalization of a user experience
US11669353B1 (en) 2021-12-10 2023-06-06 Whatfix Private Limited System and method for personalizing digital guidance content
US11620142B1 (en) * 2022-06-03 2023-04-04 OneTrust, LLC Generating and customizing user interfaces for demonstrating functions of interactive user environments

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622013A (en) * 1984-05-21 1986-11-11 Interactive Research Corporation Interactive software training system
US4941829A (en) * 1987-12-23 1990-07-17 International Business Machines Corporation Method for providing a dynamic tutorial display
US5481667A (en) * 1992-02-13 1996-01-02 Microsoft Corporation Method and system for instructing a user of a computer system how to perform application program tasks
US5493658A (en) * 1992-03-26 1996-02-20 International Business Machines Corporation Interactive online tutorial system with monitoring function for software products
US5602982A (en) * 1994-09-23 1997-02-11 Kelly Properties, Inc. Universal automated training and testing software system
US6535713B1 (en) * 1996-05-09 2003-03-18 Verizon Services Corp. Interactive training application
US7000187B2 (en) * 1999-07-01 2006-02-14 Cisco Technology, Inc. Method and apparatus for software technical support and training
US20060047544A1 (en) * 2004-09-01 2006-03-02 Habon Michael W Software training method and apparatus
US20110093441A1 (en) * 2009-10-19 2011-04-21 Brad Jackson Method for Detecting a Delinquent Customer Record in a CRM Database
US20120072416A1 (en) * 2010-09-20 2012-03-22 Rockefeller Consulting Technology Integration, Inc. Software training system interacting with online entities
US20130254652A1 (en) * 2012-03-12 2013-09-26 Mentormob, Inc. Providing focus to portion(s) of content of a web resource
US8554705B1 (en) * 2012-10-29 2013-10-08 Wargaming.Net Llp Computer based education for use with multiuser software
US20140040162A1 (en) * 2012-02-21 2014-02-06 Salesforce.Com, Inc. Method and system for providing information from a customer relationship management system
US8684748B1 (en) * 2005-11-30 2014-04-01 Saba Software, Inc. System and method for playing web-based training content on a client computer system
US20150178348A1 (en) * 2013-12-20 2015-06-25 Salesforce.Com, Inc. Identifying recurring sequences of user interactions with an application
US9218128B1 (en) * 2007-11-30 2015-12-22 Matthew John Yuschik Method and system for training users to utilize multimodal user interfaces

Family Cites Families (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5649104A (en) 1993-03-19 1997-07-15 Ncr Corporation System for allowing user of any computer to draw image over that generated by the host computer and replicating the drawn image to other computers
US5608872A (en) 1993-03-19 1997-03-04 Ncr Corporation System for allowing all remote computers to perform annotation on an image and replicating the annotated image on the respective displays of other comuters
US7991347B1 (en) 1994-04-07 2011-08-02 Data Innovation Llc System and method for accessing set of digital data at a remote site
US5577188A (en) 1994-05-31 1996-11-19 Future Labs, Inc. Method to provide for virtual screen overlay
US7181758B1 (en) 1994-07-25 2007-02-20 Data Innovation, L.L.C. Information distribution and processing system
GB2300991B (en) 1995-05-15 1997-11-05 Andrew Macgregor Ritchie Serving signals to browsing clients
WO1996042172A2 (en) 1995-06-09 1996-12-27 Philips Electronics N.V. Method for enabling a user to fetch a specific information item from a set of information items, and a system for carrying out such a method
US5715450A (en) 1995-09-27 1998-02-03 Siebel Systems, Inc. Method of selecting and presenting data from a database using a query language to a user of a computer system
US5831610A (en) 1996-02-23 1998-11-03 Netsuite Development L.P. Designing networks
US5821937A (en) 1996-02-23 1998-10-13 Netsuite Development, L.P. Computer method for updating a network design
US6604117B2 (en) 1996-03-19 2003-08-05 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US5873096A (en) 1997-10-08 1999-02-16 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
WO1998038586A1 (en) 1997-02-26 1998-09-03 Siebel Systems, Inc. Method of determining the visibility to a remote databaseclient of a plurality of database transactions using simplified visibility rules
WO1998040804A2 (en) 1997-02-26 1998-09-17 Siebel Systems, Inc. Distributed relational database
WO1998038762A2 (en) 1997-02-26 1998-09-03 Siebel Systems, Inc. Determining visibility to a remote database client
AU6440398A (en) 1997-02-26 1998-09-18 Siebel Systems, Inc. Method of using a cache to determine the visibility to a remote database client of a plurality of database transactions
WO1998038583A1 (en) 1997-02-26 1998-09-03 Siebel Systems, Inc. Method of determining visibility to a remote database client of a plurality of database transactions having variable visibility strengths
AU6183798A (en) 1997-02-27 1998-09-29 Siebel Systems, Inc. Method of migrating to a successive level of a software distribution incorporating local modifications
WO1998040805A2 (en) 1997-02-27 1998-09-17 Siebel Systems, Inc. Method of synchronizing independently distributed software and database schema
AU6669198A (en) 1997-02-28 1998-09-18 Siebel Systems, Inc. Partially replicated distributed database with multiple levels of remote clients
US5983227A (en) 1997-06-12 1999-11-09 Yahoo, Inc. Dynamic page generator
US6169534B1 (en) 1997-06-26 2001-01-02 Upshot.Com Graphical user interface for customer information management
US6560461B1 (en) 1997-08-04 2003-05-06 Mundi Fomukong Authorized location reporting paging system
US5918159A (en) 1997-08-04 1999-06-29 Fomukong; Mundi Location reporting satellite paging system with optional blocking of location reporting
US6236978B1 (en) 1997-11-14 2001-05-22 New York University System and method for dynamic profiling of users in one-to-one applications
US20020059095A1 (en) 1998-02-26 2002-05-16 Cook Rachael Linette System and method for generating, capturing, and managing customer lead information over a computer network
US6732111B2 (en) 1998-03-03 2004-05-04 Siebel Systems, Inc. Method, apparatus, system, and program product for attaching files and other objects to a partially replicated database
US6772229B1 (en) 2000-11-13 2004-08-03 Groupserve, Inc. Centrifugal communication and collaboration method
US6161149A (en) 1998-03-13 2000-12-12 Groupserve, Inc. Centrifugal communication and collaboration method
US5963953A (en) 1998-03-30 1999-10-05 Siebel Systems, Inc. Method, and system for product configuration
CA2341871A1 (en) 1998-08-27 2000-03-09 Upshot Corporation A method and apparatus for network-based sales force management
WO2000022551A1 (en) 1998-10-13 2000-04-20 Chris Cheah Method and system for controlled distribution of information over a network
US6728960B1 (en) 1998-11-18 2004-04-27 Siebel Systems, Inc. Techniques for managing multiple threads in a browser environment
US6549908B1 (en) 1998-11-18 2003-04-15 Siebel Systems, Inc. Methods and apparatus for interpreting user selections in the context of a relation distributed as a set of orthogonalized sub-relations
US6601087B1 (en) 1998-11-18 2003-07-29 Webex Communications, Inc. Instant document sharing
EP1196882A1 (en) 1998-11-30 2002-04-17 Siebel Systems, Inc. Smart scripting call centers
JP2002531899A (en) 1998-11-30 2002-09-24 シーベル システムズ,インコーポレイティド State model for process monitoring
EP1135723A4 (en) 1998-11-30 2005-02-16 Siebel Systems Inc Development tool, method, and system for client server applications
EP1163604A4 (en) 1998-11-30 2002-01-09 Siebel Systems Inc Assignment manager
US7356482B2 (en) 1998-12-18 2008-04-08 Alternative Systems, Inc. Integrated change management unit
US6574635B2 (en) 1999-03-03 2003-06-03 Siebel Systems, Inc. Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers objects and components
US20020072951A1 (en) 1999-03-03 2002-06-13 Michael Lee Marketing support database management method, system and program product
US6288717B1 (en) 1999-03-19 2001-09-11 Terry Dunkle Headline posting algorithm
US6907566B1 (en) 1999-04-02 2005-06-14 Overture Services, Inc. Method and system for optimum placement of advertisements on a webpage
US7698160B2 (en) 1999-05-07 2010-04-13 Virtualagility, Inc System for performing collaborative tasks
US8095413B1 (en) 1999-05-07 2012-01-10 VirtualAgility, Inc. Processing management information
US6411949B1 (en) 1999-08-12 2002-06-25 Koninklijke Philips Electronics N.V., Customizing database information for presentation with media selections
US6621834B1 (en) 1999-11-05 2003-09-16 Raindance Communications, Inc. System and method for voice transmission over network protocols
US7454509B2 (en) 1999-11-10 2008-11-18 Yahoo! Inc. Online playback system with community bias
US6535909B1 (en) 1999-11-18 2003-03-18 Contigo Software, Inc. System and method for record and playback of collaborative Web browsing session
US6671714B1 (en) 1999-11-23 2003-12-30 Frank Michael Weyer Method, apparatus and business system for online communications with online and offline recipients
US6324568B1 (en) 1999-11-30 2001-11-27 Siebel Systems, Inc. Method and system for distributing objects over a network
US6829746B1 (en) * 1999-12-09 2004-12-07 International Business Machines Corp. Electronic document delivery system employing distributed document object model (DOM) based transcoding
US6654032B1 (en) 1999-12-23 2003-11-25 Webex Communications, Inc. Instant sharing of documents on a remote server
US7136860B2 (en) 2000-02-14 2006-11-14 Overture Services, Inc. System and method to determine the validity of an interaction on a network
US7266502B2 (en) 2000-03-31 2007-09-04 Siebel Systems, Inc. Feature centric release manager method and system
US6732100B1 (en) 2000-03-31 2004-05-04 Siebel Systems, Inc. Database access method and system for user role defined access
US6577726B1 (en) 2000-03-31 2003-06-10 Siebel Systems, Inc. Computer telephony integration hotelling method and system
US6336137B1 (en) 2000-03-31 2002-01-01 Siebel Systems, Inc. Web client-server system and method for incompatible page markup and presentation languages
US7730072B2 (en) 2000-04-14 2010-06-01 Rightnow Technologies, Inc. Automated adaptive classification system for knowledge networks
US6842748B1 (en) 2000-04-14 2005-01-11 Rightnow Technologies, Inc. Usage based strength between related information in an information retrieval system
US6434550B1 (en) 2000-04-14 2002-08-13 Rightnow Technologies, Inc. Temporal updates of relevancy rating of retrieved information in an information search system
US6665655B1 (en) 2000-04-14 2003-12-16 Rightnow Technologies, Inc. Implicit rating of retrieved information in an information search system
US6763501B1 (en) 2000-06-09 2004-07-13 Webex Communications, Inc. Remote document serving
US7069231B1 (en) 2000-07-20 2006-06-27 Oracle International Corporation Methods and systems for defining, applying and executing customer care relationship plans
KR100365357B1 (en) 2000-10-11 2002-12-18 엘지전자 주식회사 Method for data communication of mobile terminal
US7581230B2 (en) 2001-02-06 2009-08-25 Siebel Systems, Inc. Adaptive communication application programming interface
USD454139S1 (en) 2001-02-20 2002-03-05 Rightnow Technologies Display screen for a computer
US7310687B2 (en) 2001-03-23 2007-12-18 Cisco Technology, Inc. Methods and systems for managing class-based condensation
US7363388B2 (en) 2001-03-28 2008-04-22 Siebel Systems, Inc. Method and system for direct server synchronization with a computing device
US6829655B1 (en) 2001-03-28 2004-12-07 Siebel Systems, Inc. Method and system for server synchronization with a computing device via a companion device
US7174514B2 (en) 2001-03-28 2007-02-06 Siebel Systems, Inc. Engine to present a user interface based on a logical structure, such as one for a customer relationship management system, across a web site
US20030018705A1 (en) 2001-03-31 2003-01-23 Mingte Chen Media-independent communication server
US20030206192A1 (en) 2001-03-31 2003-11-06 Mingte Chen Asynchronous message push to web browser
US6732095B1 (en) 2001-04-13 2004-05-04 Siebel Systems, Inc. Method and apparatus for mapping between XML and relational representations
US7761288B2 (en) 2001-04-30 2010-07-20 Siebel Systems, Inc. Polylingual simultaneous shipping of software
US6711565B1 (en) 2001-06-18 2004-03-23 Siebel Systems, Inc. Method, apparatus, and system for previewing search results
US6782383B2 (en) 2001-06-18 2004-08-24 Siebel Systems, Inc. System and method to implement a persistent and dismissible search center frame
US6728702B1 (en) 2001-06-18 2004-04-27 Siebel Systems, Inc. System and method to implement an integrated search center supporting a full-text search and query on a database
US6763351B1 (en) 2001-06-18 2004-07-13 Siebel Systems, Inc. Method, apparatus, and system for attaching search results
US20030004971A1 (en) 2001-06-29 2003-01-02 Gong Wen G. Automatic generation of data models and accompanying user interfaces
US6724399B1 (en) 2001-09-28 2004-04-20 Siebel Systems, Inc. Methods and apparatus for enabling keyboard accelerators in applications implemented via a browser
US7761535B2 (en) 2001-09-28 2010-07-20 Siebel Systems, Inc. Method and system for server synchronization with a computing device
US6978445B2 (en) 2001-09-28 2005-12-20 Siebel Systems, Inc. Method and system for supporting user navigation in a browser environment
US6993712B2 (en) 2001-09-28 2006-01-31 Siebel Systems, Inc. System and method for facilitating user interaction in a browser environment
US6826582B1 (en) 2001-09-28 2004-11-30 Emc Corporation Method and system for using file systems for content management
US6901595B2 (en) 2001-09-29 2005-05-31 Siebel Systems, Inc. Method, apparatus, and system for implementing a framework to support a web-based application
US8359335B2 (en) 2001-09-29 2013-01-22 Siebel Systems, Inc. Computing system and method to implicitly commit unsaved data for a world wide web application
US7962565B2 (en) 2001-09-29 2011-06-14 Siebel Systems, Inc. Method, apparatus and system for a mobile web client
US7146617B2 (en) 2001-09-29 2006-12-05 Siebel Systems, Inc. Method, apparatus, and system for implementing view caching in a framework to support web-based applications
US7289949B2 (en) 2001-10-09 2007-10-30 Right Now Technologies, Inc. Method for routing electronic correspondence based on the level and type of emotion contained therein
US7062502B1 (en) 2001-12-28 2006-06-13 Kesler John N Automated generation of dynamic data entry user interface for relational database management systems
US6804330B1 (en) 2002-01-04 2004-10-12 Siebel Systems, Inc. Method and system for accessing CRM data via voice
US7058890B2 (en) 2002-02-13 2006-06-06 Siebel Systems, Inc. Method and system for enabling connectivity to a data system
US7672853B2 (en) 2002-03-29 2010-03-02 Siebel Systems, Inc. User interface for processing requests for approval
US7131071B2 (en) 2002-03-29 2006-10-31 Siebel Systems, Inc. Defining an approval process for requests for approval
US6850949B2 (en) 2002-06-03 2005-02-01 Right Now Technologies, Inc. System and method for generating a dynamic interface via a communications network
US7594181B2 (en) 2002-06-27 2009-09-22 Siebel Systems, Inc. Prototyping graphical user interfaces
US7437720B2 (en) 2002-06-27 2008-10-14 Siebel Systems, Inc. Efficient high-interactivity user interface for client-server applications
US8639542B2 (en) 2002-06-27 2014-01-28 Siebel Systems, Inc. Method and apparatus to facilitate development of a customer-specific business process model
US20040010489A1 (en) 2002-07-12 2004-01-15 Rightnow Technologies, Inc. Method for providing search-specific web pages in a network computing environment
US7251787B2 (en) 2002-08-28 2007-07-31 Siebel Systems, Inc. Method and apparatus for an integrated process modeller
US7069497B1 (en) 2002-09-10 2006-06-27 Oracle International Corp. System and method for applying a partial page change
US9448860B2 (en) 2003-03-21 2016-09-20 Oracle America, Inc. Method and architecture for providing data-change alerts to external applications via a push service
US7406501B2 (en) 2003-03-24 2008-07-29 Yahoo! Inc. System and method for instant messaging using an e-mail protocol
US7904340B2 (en) 2003-03-24 2011-03-08 Siebel Systems, Inc. Methods and computer-readable medium for defining a product model
WO2004086197A2 (en) 2003-03-24 2004-10-07 Siebel Systems, Inc. Custom common object
EP1606740A4 (en) 2003-03-24 2007-10-03 Siebel Systems Inc Common common object
US8762415B2 (en) 2003-03-25 2014-06-24 Siebel Systems, Inc. Modeling of order data
US7685515B2 (en) 2003-04-04 2010-03-23 Netsuite, Inc. Facilitating data manipulation in a browser-based user interface of an enterprise business application
US7412455B2 (en) 2003-04-30 2008-08-12 Dillon David M Software framework that facilitates design and implementation of database applications
US7620655B2 (en) 2003-05-07 2009-11-17 Enecto Ab Method, device and computer program product for identifying visitors of websites
US7409336B2 (en) 2003-06-19 2008-08-05 Siebel Systems, Inc. Method and system for searching data based on identified subset of categories and relevance-scored text representation-category combinations
US20040260659A1 (en) 2003-06-23 2004-12-23 Len Chan Function space reservation system
US7237227B2 (en) 2003-06-30 2007-06-26 Siebel Systems, Inc. Application user interface template with free-form layout
US7694314B2 (en) 2003-08-28 2010-04-06 Siebel Systems, Inc. Universal application network architecture
US7779039B2 (en) 2004-04-02 2010-08-17 Salesforce.Com, Inc. Custom entities and fields in a multi-tenant database system
US7607110B2 (en) * 2003-10-23 2009-10-20 Microsoft Corporation Element persistent identification
US7900133B2 (en) * 2003-12-09 2011-03-01 International Business Machines Corporation Annotation structure type determination
US7269590B2 (en) 2004-01-29 2007-09-11 Yahoo! Inc. Method and system for customizing views of information associated with a social network user
US7536672B1 (en) * 2004-03-05 2009-05-19 Adobe Systems Incorporated Management of user interaction history with software applications
US7392243B2 (en) * 2004-10-20 2008-06-24 Microsoft Corporation Using permanent identifiers in documents for change management
US7289976B2 (en) 2004-12-23 2007-10-30 Microsoft Corporation Easy-to-use data report specification
US7747648B1 (en) 2005-02-14 2010-06-29 Yahoo! Inc. World modeling using a relationship network with communication channels to entities
US20070050844A1 (en) * 2005-08-26 2007-03-01 Pierre Lebel Methods, systems and computer program products for monitoring a browsing session
US7827208B2 (en) 2006-08-11 2010-11-02 Facebook, Inc. Generating a feed of stories personalized for members of a social network
US7945653B2 (en) 2006-10-11 2011-05-17 Facebook, Inc. Tagging digital media
US9135228B2 (en) 2006-05-01 2015-09-15 Domo, Inc. Presentation of document history in a web browsing application
US8209308B2 (en) 2006-05-01 2012-06-26 Rueben Steven L Method for presentation of revisions of an electronic document
US8566301B2 (en) 2006-05-01 2013-10-22 Steven L. Rueben Document revisions in a collaborative computing environment
US7853881B1 (en) 2006-07-03 2010-12-14 ISQ Online Multi-user on-line real-time virtual social networks based upon communities of interest for entertainment, information or e-commerce purposes
US7779475B2 (en) 2006-07-31 2010-08-17 Petnote Llc Software-based method for gaining privacy by affecting the screen of a computing device
US8095531B2 (en) 2006-10-03 2012-01-10 Salesforce.Com, Inc. Methods and systems for controlling access to custom objects in a database
US7730478B2 (en) 2006-10-04 2010-06-01 Salesforce.Com, Inc. Method and system for allowing access to developed applications via a multi-tenant on-demand database service
US8082301B2 (en) 2006-11-10 2011-12-20 Virtual Agility, Inc. System for supporting collaborative activity
US20080172612A1 (en) * 2007-01-11 2008-07-17 Melanie Allen Dynamic help references for software documentation
US8954500B2 (en) 2008-01-04 2015-02-10 Yahoo! Inc. Identifying and employing social network relationships
US8073850B1 (en) 2007-01-19 2011-12-06 Wordnetworks, Inc. Selecting key phrases for serving contextually relevant content
US8719287B2 (en) 2007-08-31 2014-05-06 Business Objects Software Limited Apparatus and method for dynamically selecting componentized executable instructions at run time
US20090100342A1 (en) 2007-10-12 2009-04-16 Gabriel Jakobson Method and system for presenting address and mapping information
US9449333B2 (en) 2008-02-01 2016-09-20 Gabriel Jakobson Online advertising associated with electronic mapping systems
US8504945B2 (en) 2008-02-01 2013-08-06 Gabriel Jakobson Method and system for associating content with map zoom function
US8490025B2 (en) 2008-02-01 2013-07-16 Gabriel Jakobson Displaying content associated with electronic mapping systems
US8032297B2 (en) 2008-05-08 2011-10-04 Gabriel Jakobson Method and system for displaying navigation information on an electronic map
US8014943B2 (en) 2008-05-08 2011-09-06 Gabriel Jakobson Method and system for displaying social networking navigation information
US8646103B2 (en) 2008-06-30 2014-02-04 Gabriel Jakobson Method and system for securing online identities
US8510664B2 (en) 2008-09-06 2013-08-13 Steven L. Rueben Method and system for displaying email thread information
US8661056B1 (en) 2008-11-03 2014-02-25 Salesforce.Com, Inc. System, method and computer program product for publicly providing web content of a tenant using a multi-tenant on-demand database service
US9330191B2 (en) * 2009-06-15 2016-05-03 Microsoft Technology Licensing, Llc Identifying changes for online documents
CN101996093A (en) * 2009-08-10 2011-03-30 日电(中国)有限公司 Method and system for converting desktop application to network application
US8555253B2 (en) * 2009-11-02 2013-10-08 Hewlett-Packard Development Company, L.P. System and method for monitoring exploratory testing by a plurality of testers
US8510045B2 (en) 2009-12-22 2013-08-13 Steven L. Rueben Digital maps displaying search-resulting points-of-interest in user delimited regions
US8583587B2 (en) 2010-03-08 2013-11-12 Salesforce.Com, Inc. System, method and computer program product for performing one or more actions utilizing a uniform resource locator
US8925041B2 (en) 2010-04-01 2014-12-30 Salesforce.Com, Inc. System, method and computer program product for performing one or more actions based on a determined access permissions for a plurality of users
US8566654B2 (en) 2010-08-13 2013-10-22 Salesforce.Com, Inc. Debugging site errors by an admin as a guest user in a multi-tenant database environment
US8943002B2 (en) 2012-02-10 2015-01-27 Liveperson, Inc. Analytics driven engagement
US8756275B2 (en) 2012-02-17 2014-06-17 Zebedo Variable speed collaborative web browsing system
US8769017B2 (en) 2012-02-17 2014-07-01 Zebedo Collaborative web browsing system having document object model element interaction detection
US8769004B2 (en) 2012-02-17 2014-07-01 Zebedo Collaborative web browsing system integrated with social networks
US9411782B2 (en) * 2012-11-09 2016-08-09 Adobe Systems Incorporated Real time web development testing and reporting system
US20150006289A1 (en) 2013-07-01 2015-01-01 Gabriel Jakobson Advertising content in regions within digital maps
US20150007050A1 (en) 2013-07-01 2015-01-01 Gabriel Jakobson Method and system for processing and displaying email thread information
US20150095162A1 (en) 2013-09-27 2015-04-02 Gabriel Jakobson Method and systems for online advertising to users using fictitious user idetities
US20150142596A1 (en) 2013-11-18 2015-05-21 Gabriel Jakobson Commercial transactions via a wearable computer with a display
US20150172563A1 (en) 2013-12-18 2015-06-18 Gabriel Jakobson Incorporating advertising content into a digital video
US20160140503A1 (en) 2014-11-18 2016-05-19 Salesforce.Com, Inc. Database systems and methods for using credibility ratings of users to process online resumes in a social networking environment

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622013A (en) * 1984-05-21 1986-11-11 Interactive Research Corporation Interactive software training system
US4941829A (en) * 1987-12-23 1990-07-17 International Business Machines Corporation Method for providing a dynamic tutorial display
US5481667A (en) * 1992-02-13 1996-01-02 Microsoft Corporation Method and system for instructing a user of a computer system how to perform application program tasks
US5493658A (en) * 1992-03-26 1996-02-20 International Business Machines Corporation Interactive online tutorial system with monitoring function for software products
US5602982A (en) * 1994-09-23 1997-02-11 Kelly Properties, Inc. Universal automated training and testing software system
US6535713B1 (en) * 1996-05-09 2003-03-18 Verizon Services Corp. Interactive training application
US7000187B2 (en) * 1999-07-01 2006-02-14 Cisco Technology, Inc. Method and apparatus for software technical support and training
US20060047544A1 (en) * 2004-09-01 2006-03-02 Habon Michael W Software training method and apparatus
US8684748B1 (en) * 2005-11-30 2014-04-01 Saba Software, Inc. System and method for playing web-based training content on a client computer system
US9218128B1 (en) * 2007-11-30 2015-12-22 Matthew John Yuschik Method and system for training users to utilize multimodal user interfaces
US20110093441A1 (en) * 2009-10-19 2011-04-21 Brad Jackson Method for Detecting a Delinquent Customer Record in a CRM Database
US20120072416A1 (en) * 2010-09-20 2012-03-22 Rockefeller Consulting Technology Integration, Inc. Software training system interacting with online entities
US20140040162A1 (en) * 2012-02-21 2014-02-06 Salesforce.Com, Inc. Method and system for providing information from a customer relationship management system
US20130254652A1 (en) * 2012-03-12 2013-09-26 Mentormob, Inc. Providing focus to portion(s) of content of a web resource
US8554705B1 (en) * 2012-10-29 2013-10-08 Wargaming.Net Llp Computer based education for use with multiuser software
US20150178348A1 (en) * 2013-12-20 2015-06-25 Salesforce.Com, Inc. Identifying recurring sequences of user interactions with an application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Soffront- The Easiest to Use CRM, Soffront Software, August 8, 2011, https://www.youtube.com/watch?v=gz2aKwsvdSw *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150295663A1 (en) * 2014-04-12 2015-10-15 The Boeing Company Voice communication system for simulated radio networks
US9640086B2 (en) * 2014-04-12 2017-05-02 The Boeing Company Voice communication system for simulated radio networks
US20170054713A1 (en) * 2015-08-20 2017-02-23 Xiaomi Inc. Method and device for guiding an operation and electronic apparatus
US20180096282A1 (en) * 2016-09-30 2018-04-05 Salesforce.Com, Inc. Bi-directional notification framework
US10713604B2 (en) * 2016-09-30 2020-07-14 Salesforce.Com, Inc. Bi-directional notification framework
CN106340216A (en) * 2016-10-25 2017-01-18 广东薪云科技有限公司 Online vocational education teaching and learning system
US20190213912A1 (en) * 2018-01-05 2019-07-11 Autodesk, Inc. Real-time orchestration for software learning workshops
US11823588B2 (en) * 2018-01-05 2023-11-21 Autodesk, Inc. Real-time orchestration for software learning workshops
US11004350B2 (en) 2018-05-29 2021-05-11 Walmart Apollo, Llc Computerized training video system
US20210240318A1 (en) * 2020-01-31 2021-08-05 Salesforce.Com, Inc. User interface migration using intermediate user interfaces
US11537363B2 (en) * 2020-01-31 2022-12-27 Salesforce.Com, Inc. User interface migration using intermediate user interfaces

Also Published As

Publication number Publication date
US20150220312A1 (en) 2015-08-06
US9753703B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
US20150221235A1 (en) Training application for training a user to use a computing application
US11281847B2 (en) Generating content objects using an integrated development environment
US20220309070A1 (en) Configuring service consoles based on service feature templates using a database system
US11137883B2 (en) Leveraging and managing assessment environments in an assessment hub
US10146597B2 (en) Delegating handling of computing events of a mobile device application
US20180096024A1 (en) Release management in a content management system
US10984665B2 (en) Customizing sequences of content objects
US10540149B2 (en) Property editor component in a web application builder framework
US20180096127A1 (en) Associating multiple e-learning identities with a single user
US20190272282A1 (en) Using data object relationships in a database system to group database records and files associated with a designated database record
US10666722B2 (en) Message delivery in a distributed server environment
US10664244B2 (en) Dynamic page previewer for a web application builder
US11075863B2 (en) Publisher and share action integration in a user interface for automated messaging
US20200034561A1 (en) Customizable skills database
US11430346B2 (en) Systems and methods for validating localized assessments in an external system
US20190065487A1 (en) Filter logic in a dynamic page previewer
US10693922B2 (en) Multi-channel customer engagement platform
US20180276559A1 (en) Displaying feed content
US10713604B2 (en) Bi-directional notification framework
US20190129574A1 (en) Attaching customizable widgets to feed items

Legal Events

Date Code Title Description
AS Assignment

Owner name: SALESFORCE.COM, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REGAN, SEAN PATRICK;THAYER, JAY WILLIAM;SIGNING DATES FROM 20150130 TO 20150202;REEL/FRAME:035132/0042

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION