US20150251509A1 - Amphibious armor - Google Patents

Amphibious armor Download PDF

Info

Publication number
US20150251509A1
US20150251509A1 US14/285,983 US201414285983A US2015251509A1 US 20150251509 A1 US20150251509 A1 US 20150251509A1 US 201414285983 A US201414285983 A US 201414285983A US 2015251509 A1 US2015251509 A1 US 2015251509A1
Authority
US
United States
Prior art keywords
strike face
armor
foam
laminate
laminate reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/285,983
Other versions
US9109858B1 (en
Inventor
Edward J. Terrenzi
Boris Y. Rozenoyer
Robert C. Sykes
Justin Trent Shackleford
James A. Carter
Jason Michael Kruise
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vencore Services and Solutions Inc
Original Assignee
Foster Miller Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foster Miller Inc filed Critical Foster Miller Inc
Priority to US14/285,983 priority Critical patent/US9109858B1/en
Application granted granted Critical
Publication of US9109858B1 publication Critical patent/US9109858B1/en
Publication of US20150251509A1 publication Critical patent/US20150251509A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0442Layered armour containing metal
    • F41H5/0457Metal layers in combination with additional layers made of fibres, fabrics or plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F3/00Amphibious vehicles, i.e. vehicles capable of travelling both on land and on water; Land vehicles capable of travelling under water
    • B60F3/003Parts or details of the vehicle structure; vehicle arrangements not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H7/00Armoured or armed vehicles
    • F41H7/02Land vehicles with enclosing armour, e.g. tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F3/00Amphibious vehicles, i.e. vehicles capable of travelling both on land and on water; Land vehicles capable of travelling under water
    • B60F3/003Parts or details of the vehicle structure; vehicle arrangements not otherwise provided for
    • B60F3/0038Flotation, updrift or stability devices

Abstract

Buoyant armor for jacketed rounds includes an outer, laminate reinforced strike face having a hardness greater than 640 Brinell. The strike face is configured to strip the jacket off a projectile as it passes through the strike face and to rotate the projectile. An inner, laminate reinforced strike face is separated from the outer, laminate reinforced strike face by a spacer layer. Foam greater than 40 mm thick is disposed behind the inner strike face and is configured to disperse a round and/or its fragments and to provide buoyancy to the armor.

Description

    RELATED APPLICATIONS
  • This application is a divisional of prior U.S. patent application Ser. No. 13/506,421, filed on Apr. 18, 2012, and which hereby claims the benefit of and priority to such prior application under 35 U.S.C. §§119, 120, 363, 365, and 37 C.F.R. §1.55 and §1.78, which application is incorporated into this divisional application by reference.
  • FIELD OF THE INVENTION
  • The subject invention relates to armor.
  • BACKGROUND OF THE INVENTION
  • Buoyant armor typically includes a metal outer layer or strike face and cellular material between the strike face and the vehicle or vessel hull. See U.S. Pat. No. 1, 266,196. See also U.S. Pat. Nos. 5,200,256 and 6,698,331 and pending patent application Ser. No. 12/765,546.
  • Still, there is a need for specialized armor adapted for military amphibious vehicles. One example is the Marine Corps “Expeditionary Fighting Vehicle” (EFV). Another example is the “Marine Personnel Carrier” or MPC. These and other vehicles may encounter many different caliber rounds and armor piercing projectiles such as 7.62 mm or 14.5 mm armor piercing type bullets or bomb fragments of various sizes.
  • Existing armor for such vehicles may not adequately protect the vehicle occupants when such rounds are fired at the vehicle.
  • SUMMARY OF THE INVENTION
  • The invention provides for a new armor system configuration especially adapted for amphibious vehicles.
  • Featured is a buoyant armor for jacketed rounds comprising an outer, laminate reinforced strike face having a hardness of greater than 640 Brinell and configured to strip the jacket off a round as it passes through the strike face and to rotate the projectile. Foam greater than 40 mm thick is disposed behind the strike face and is configured to disperse the round and/or its fragments and also to provide buoyancy to the armor.
  • In one example, the outer, laminate reinforced strike face is between 2 and 10 mm thick, (e.g., between 3-6 mm). The preferred foam includes a thicker lower density layer sandwiched between two thinner structural foam layers. The lower density layer may be a closed cell plastic foam.
  • Further included, in one embodiment is an inner, laminate reinforced strike face between the outer, laminate reinforced strike face and the foam. This layer is configured to fragment a stripped round. The inner, laminate reinforced strike face is preferably thicker than the outer, laminate reinforced strike face. The inner, laminate reinforced strike face preferably has a hardness greater than 640 Brinell, is reinforced, and is between 5-8 mm thick. In the preferred embodiment, there a spacer layer between the inner and outer laminate reinforced strike faces made of structural foam.
  • Buoyant armor in accordance with examples of the invention include an outer, laminate reinforced strike face having a hardness greater than 640 Brinell and configured to strip the jacket of a projectile as it passes through the strike face and to rotate the projectile, an inner, laminate reinforced strike face separated from the outer, laminate reinforced strike face by a spacer layer, and foam greater than 40 mm.
  • In one example, buoyant armor comprises an outer, laminate reinforced strike face having a hardness greater than 640 Brinell and a thickness of between 2-10 mm and configured to strip the jacket of a round as it passes through the strike face and to rotate the round. A thicker low density foam layer sandwiched is between two thinner structural foam layers behind the outer, laminate reinforced strike face. Together, the foam layers have a thickness of greater than 40 mm and are configured to disperse the round and/or its fragments and to provide buoyancy to the armor.
  • The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
  • FIG. 1 is a schematic three dimensional view showing an example of an amphibious vehicle equipped with the buoyant armor of the invention;
  • FIG. 2 is a schematic three dimensional exploded view showing various components of an example of an armor plate in accordance with the invention; and
  • FIG. 3 is a schematic three dimensional exploded view showing the various components of another example of an armor plate in accordance with the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Aside from the preferred embodiment of embodiment s disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of constructions and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.
  • FIG. 1 shows amphibious vehicle 12 protected with one or more armor plates 14 bolted to metal vehicle hull 16. More or less plates may be included. In one preferred design, each plate 14, FIG. 2 includes 3-6 mm thick outer laminate reinforced steel strike face 20. Hard steel (650 Brinell hardness) available from SSAB Swedish Steel, AB under the brand name “Armox” can be used. Outer surface 22 of strike face 20 was laminated, for example, with a fiber reinforced composite material such as a reinforced epoxy glass scrim to mitigate cracking of the brittle steel when impacted by a round. The laminate reinforcement was undertaken by Incident Control Systems, Inc. located in New Bedford, Mass., seller of “Revolution” brand armor.
  • Strike face 20 is thus designed to strip the jacket off a round as it easily passes through strike face 20. Strike face 20 is also configured to rotate the projectile, e.g., to cause it to yaw. Typically, the back or rear surface of the strike face is not reinforced. The strike face is preferably designed to allow an armor piercing projectile to pass through the strike face without severely damaging the strike face. The strike face, while reducing some of the velocity of the projectile, causes the projectile to yaw or rotate sideways so that the armor piercing core point is now oriented at an angle as opposed to normal to the armor plate components.
  • Behind strike face 20 is 12.7-38 mm spacer layer 24 (typically styrene acrylonitrile polymer structural foam). This foam material is used to prevent a reflected projectile shock wave from damaging strike face 20. Foam layer 24 also provides support to strike face 20 and creates space sufficient for the projectile to turn or rotate. Foam layer 24 also provides buoyancy to the armor system.
  • Inner strike face 26 is typically 3-7 mm thick and again it is reinforced with an outer laminate and is made of hard steel (650 Brinell) as discussed above. Preferably, strike face 26 is the same material as strike face 20 but strike face 28 is thicker.
  • Inner strike face 26 fractures the hardened steel core of the round upon its impact with strike face 26 taking most of the energy out of the projectile as well as significantly reducing its velocity. Strike face 26 thus fragments the stripped round.
  • Foam is then present between inner strike face 26 and vehicle hull 16, preferably thicker low density foam layer 32 sandwiched between thinner structural foam layers 30 and 34. Ply 30 can be 12.7-25.4 mm styrene acrylonitrile polymer structural foam, layer 34 can be 12.7-38 mm styrene acrylonitrile polymer structural foam, and layer 32 can be 25.4-50.8 industrial polymethacrylimide closed cell plasticfoam.
  • The first structural foam layer 30 functions to support strike face 26. Ply 32 functions to add buoyancy and to provide a void space. This material typically has a low density and thus is very soft and prone to cracking. Ply 34 is bonded to the back of layer 32 and thus layers 32 and 34 serve to reinforce low density buoyant foam ply 32.
  • Once projectile fragments pass through inner strike face 26, they enter foam plies 30, 32, 34 which together increase the spall cone and disperse the fragments onto hull plate 16.
  • Preferably, the aggregate specific gravity of all the layers combined is less than one g/cm3 making it positively buoyant. Particularly, it is preferred that 40-50 mm of foam reside behind first outer hardened metal strike face 20.
  • In one particular example, outer strike face 20 was 4 mm thick, foam layer 24 was 25.4 mm thick, inner strike face 26 was 5 mm thick, foam layer 30 was 12.7 mm thick, foam layer 32 was 25.4 mm thick, and foam layer 34 was 25.4 mm thick. All of these layers were bonded to each other using an adhesive. The resulting armor plate was bolted to a vehicle hull 8 mm thick make of high hardness steel. Strike face 20 could, however, be between 2-10 mm thick.
  • The technology was tested against the STANAG 4569 Level III and Level IV Threat requirements with a 14.5 mm×114 B32 Armor Piercing Projectile, a 7.62 mm×51 WC Armor Piercing Projectile, and 20 mm Fragment Simulating Projectiles at high velocities.
  • In another example, armor plate 14′, FIG. 3 includes outer strike face 40 and foam plies 42, 44, and 46. Typically outer strike face 40 includes laminate reinforced surface 41 and outer strike face 40 is 5-8 mm thick. Thus strike face 40 has the same composition as strike face 20, FIG. 2 but is thicker. Foam layers 42, 44, and 46 have the same composition as foam layers 30, 32, and 34, FIG. 2, respectively. Typically, foam layer 42 is 6.3-50.8 mm thick, foam layer 44 is 12.7-50.8 mm thick, and foam layer 46 is 6.35-50.8 mm. In one particular example, foam layer 42 was 12.7 mm thick, foam layer 44 was 50.8 mm thick, and foam layer 46 was 25.4 mm thick for an 8 mm high hardness steel vehicle hull 16. In total, foam greater than 40 mm thickness is preferred.
  • Strike face 40 preferably has a hardness greater than 640 Brinell. The steel material is laminated with a reinforced epoxy glass scrim to mitigate cracking of the brittle steel as discussed above. Strike face 40 is designed to allow the armor piercing projectile to pass through the strike face without severely damaging the strike face. When the projectile passes through strike face 40, the projectiles jacket is stripped from the round and the hardened steel core penetrator is fractured typically with the point being completely broken apart. Additionally, strike face 40 significantly reduces the velocity of the projectile and causes the larger remnants of the fractured core pieces to yaw or rotate sideways so that the larger core pieces are more likely to impact hull 16 broadside.
  • Structural foam layer 42 is used to support steel strike face 40. Foam layer 44 is used for buoyancy and void space. Structural foam layer 46 is bonded to the back of low density buoyant foam layer 44 and together with foam layer 42 reinforces and supports low density buoyant foam layer 44.
  • Once the projectile fragments pass through strike face 40, they enter foam layers 42, 44, and 46 which serve to increase the spall cone and disperse the fragments onto hull plate 16. Again, the combined aggregate specific gravity of the complete armor assembly is less than one g/cm3, making it positively buoyant.
  • A system of this configuration with an 8 mm strike face was tested on a steel hull and another system with a 6 mm strike face was tested on an aluminum hull.
  • The result in these and other configurations is a new armor system especially adapted for amphibious vehicles. The armor of the subject invention may find uses for other vehicles and vessels, however.
  • Therefore, although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.
  • In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.
  • Other embodiments will occur to those skilled in the art and are within the following claims.

Claims (20)

What is claimed is:
1. A buoyant armor for jacketed rounds comprising:
an outer, laminate reinforced strike face having a hardness of greater than 640 Brinell and configured to strip the jacket off a round as it passes through the strike face and to rotate the projectile;
foam greater than 40 mm thick behind the strike face configured to disperse the round and/or its fragments and to provide buoyancy to the armor and;
the aggregate specific gravity of all said layers combined being less than one g/cm3.
2. The armor of claim 1 in which the outer, laminate reinforced strike face is steel between 2 and 10 mm thick.
3. The armor of claim 1 in which the outer, laminate reinforced strike face is steel between 3 and 8 mm thick.
4. The armor of claim 1 in which the foam includes a thicker lower density layer sandwiched between two thinner structural foam layers.
5. The armor of claim 4 in which the lower density layer is a closed cell plastic foam.
6. The armor of claim 1 further including an inner, laminate reinforced strike face between the outer, laminate reinforced strike face and the foam and configured to fragment a stripped round.
7. The armor of claim 6 in which the inner, laminate reinforced strike face is thicker than the outer, laminate reinforced strike face.
8. The armor of claim 6 in which the inner, laminate reinforced strike face has a hardness greater than 640 Brinell.
9. The armor of claim 6 in which the inner, laminate of strike face is steel between 5-8 mm thick.
10. The armor of claim 6 further including a spacer layer between the inner and outer laminate reinforced strike faces.
11. The armor of claim 10 in which the spacer layer includes structural foam.
12. Buoyant armor for jacketed rounds comprising:
an outer, laminate reinforced strike face having a hardness greater than 640 Brinell and configured to strip the jacket of a projectile as it passes through the strike face and to rotate the projectile;
an inner, laminate reinforced strike face separated from the outer, laminate reinforced strike face by a spacer layer; and
foam greater than 40 mm thick behind the inner strike face and configured to disperse a round and/or its fragments and to provide buoyancy to the armor, in which the foam includes a thicker lower density layer sandwiched between two thinner structural foam layers; and
the aggregate specific gravity of all said layers combined being less than one g/cm3.
13. Buoyant armor for jacketed rounds comprising:
an outer, laminate reinforced strike face having a hardness greater than 640 Brinell and a thickness of between 2-10 mm and configured to strip the jacket of a round as it passes through the strike face and to rotate the round;
a thicker low density foam layer sandwiched between two thinner structural foam layers behind the outer, laminate reinforced strike face together having a thickness of greater than 40 mm and configured to disperse the round and/or its fragments and to provide buoyancy to the armor; and
the aggregate specific gravity of all said layers combined being less than one g/cm3.
14. The armor of claim 13 in which the low density layer is a closed cell plastic foam.
15. The armor of claim 13 further including an inner, laminate reinforced strike face between the outer laminate reinforced strike face and the foam sandwich and configured to fragment the stripped round.
16. The armor of claim 15 in which the inner, laminate reinforced strike face is thicker than the outer, laminate reinforced strike face.
17. The armor of claim 15 in which the inner, laminate reinforce strike face has a hardness greater than 640 Brinell.
18. The armor of claim 15 in which the inner, laminate of strike face is between 5-8 mm thick.
19. The armor of claim 15 further including a spacer layer between the inner and outer laminate reinforced strike faces.
20. The armor of claim 19 in which the spacer layer includes structural foam.
US14/285,983 2012-04-18 2014-05-23 Amphibious armor Active US9109858B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/285,983 US9109858B1 (en) 2012-04-18 2014-05-23 Amphibious armor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/506,421 US8763512B2 (en) 2012-04-18 2012-04-18 Amphibious armor
US14/285,983 US9109858B1 (en) 2012-04-18 2014-05-23 Amphibious armor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/506,421 Division US8763512B2 (en) 2012-04-18 2012-04-18 Amphibious armor

Publications (2)

Publication Number Publication Date
US9109858B1 US9109858B1 (en) 2015-08-18
US20150251509A1 true US20150251509A1 (en) 2015-09-10

Family

ID=49674016

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/506,421 Active 2032-05-29 US8763512B2 (en) 2012-04-18 2012-04-18 Amphibious armor
US14/285,983 Active US9109858B1 (en) 2012-04-18 2014-05-23 Amphibious armor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/506,421 Active 2032-05-29 US8763512B2 (en) 2012-04-18 2012-04-18 Amphibious armor

Country Status (2)

Country Link
US (2) US8763512B2 (en)
WO (1) WO2013180770A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140137728A1 (en) * 2012-05-03 2014-05-22 Bae Systems Land & Armaments, L.P. Buoyant armor applique system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119695A2 (en) * 2013-11-14 2015-08-13 The Regents Of The University Of Michigan Blast/impact frequency tuning and mitigation
US10041767B2 (en) 2013-11-14 2018-08-07 The Regents Of The University Of Michigan Blast/impact frequency tuning and mitigation
MX2016008537A (en) 2013-12-31 2017-02-02 Ppg Ind Ohio Inc Armor mounting system and armor incorporating the same.
US9803959B2 (en) * 2014-06-27 2017-10-31 Ppg Industries Ohio, Inc. Reduced weight armor systems and methods of manufacturing the same
PL3377843T3 (en) * 2015-11-18 2021-10-25 Foster-Miller, Inc. Rpg defeat method
US20190025015A1 (en) * 2017-01-13 2019-01-24 Central Lake Armor Express, Inc. Foam encapsulated ballistic plate
CN112428759B (en) * 2020-12-09 2022-08-09 内蒙古第一机械集团股份有限公司 Foldable flexible fairing suitable for amphibious vehicle with high navigational speed

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119750A (en) * 1977-05-02 1978-10-10 W. H. Porter, Inc. Sandwich panel structure
US6825137B2 (en) * 2001-12-19 2004-11-30 Telair International Incorporated Lightweight ballistic resistant rigid structural panel
US20120325076A1 (en) * 2011-06-23 2012-12-27 Monette Jr Stephen A Composite Armor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1266196A (en) 1917-05-07 1918-05-14 Frederic W Bentley Protective armor for ships.
US2380393A (en) 1943-05-17 1945-07-31 Berg Quentin Auxiliary armor mounting
US2751289A (en) 1951-10-08 1956-06-19 Bjorksten Res Lab Method of producing metal foam
US5200256A (en) 1989-01-23 1993-04-06 Dunbar C R Composite lightweight bullet proof panel for use on vessels, aircraft and the like
US6698331B1 (en) 1999-03-10 2004-03-02 Fraunhofer Usa, Inc. Use of metal foams in armor systems
US7210390B1 (en) 2005-02-23 2007-05-01 Simula, Inc. Buoyancy device for personnel protective plates
US8596183B2 (en) 2010-04-22 2013-12-03 Leading Technology Composites, Inc. Assembly for armoring an amphibious vehicle against projectile penetrations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119750A (en) * 1977-05-02 1978-10-10 W. H. Porter, Inc. Sandwich panel structure
US6825137B2 (en) * 2001-12-19 2004-11-30 Telair International Incorporated Lightweight ballistic resistant rigid structural panel
US20120325076A1 (en) * 2011-06-23 2012-12-27 Monette Jr Stephen A Composite Armor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140137728A1 (en) * 2012-05-03 2014-05-22 Bae Systems Land & Armaments, L.P. Buoyant armor applique system

Also Published As

Publication number Publication date
US20140150632A1 (en) 2014-06-05
WO2013180770A3 (en) 2015-06-18
US9109858B1 (en) 2015-08-18
US8763512B2 (en) 2014-07-01
WO2013180770A2 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
US9109858B1 (en) Amphibious armor
US6497966B2 (en) Laminated armor
US7799710B1 (en) Ballistic/impact resistant foamed composites and method for their manufacture
Grujicic et al. Design and material selection guidelines and strategies for transparent armor systems
Hogg Composites in armor
US7546796B2 (en) Armor and method of making same
AU2002223998A1 (en) Laminated armor
US7938053B1 (en) Armor
US9140524B2 (en) Multi-layered ballistics armor
Klement et al. Transparent armour materials
US8402876B2 (en) Ballistic lightweight ceramic armor with cross-pellets
WO2010123508A1 (en) Apparatus for defeating high energy projectiles
Nayak et al. Ballistic impact response of ceramic-faced aramid laminated composites against 7.62 mm armour piercing projectiles
Kumar et al. Nanomaterials-enabled lightweight military platforms
Liang et al. Resistant performance of perforation of multi-layered targets using an estimation procedure with marine application
US20120186434A1 (en) Ballistic Lightweight ceramic armor with resistant devices based on geometric shapes
Ellis et al. Ballistic impact resistance of SMA and spectra hybrid graphite composites
Horsfall et al. Structural ballistic armour for transport aircraft
Ash Vehicle armor
CA2845786C (en) Structural component for armoured vehicles
KR101247948B1 (en) Light Weight Layered Nano-Composites Hybrid Armor Material For Armored Vehicles
Ellis et al. Ballistic impact resistance of graphite composites with superelastic SMA and Spectra hybrid components
RU2367881C1 (en) Armored structure
Chairi et al. Preliminary study of lightweight fibre-ceramic composite structures for the ballistic protection on military vessels
Xu et al. Experimental investigation on the ballistic performance of B4C/Aramid/UHMWPE composite armors against API projectile under different temperatures

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8