US20150260704A1 - Gender, viability and/or developmental stage determination of avian embryos in ovo - Google Patents

Gender, viability and/or developmental stage determination of avian embryos in ovo Download PDF

Info

Publication number
US20150260704A1
US20150260704A1 US14/418,506 US201314418506A US2015260704A1 US 20150260704 A1 US20150260704 A1 US 20150260704A1 US 201314418506 A US201314418506 A US 201314418506A US 2015260704 A1 US2015260704 A1 US 2015260704A1
Authority
US
United States
Prior art keywords
embryo
egg
eggs
male
female
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/418,506
Inventor
Wouter Sebastiaan Bruins
Wil Marijn Stutterheim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
In Ovo Holding BV
Original Assignee
In Ovo BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL2009255A external-priority patent/NL2009255C2/en
Priority claimed from NL2009256A external-priority patent/NL2009256C2/en
Application filed by In Ovo BV filed Critical In Ovo BV
Priority to US14/418,506 priority Critical patent/US20150260704A1/en
Assigned to IN OVO B.V. reassignment IN OVO B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRUINS, Wouter Sebastiaan, STUTTERHEIM, Wil Marijn
Publication of US20150260704A1 publication Critical patent/US20150260704A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K45/00Other aviculture appliances, e.g. devices for determining whether a bird is about to lay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/08Eggs, e.g. by candling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7057(Intracellular) signaling and trafficking pathways
    • G01N2800/7066Metabolic pathways
    • G01N2800/7071Carbohydrate metabolism, e.g. glycolysis, gluconeogenesis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7057(Intracellular) signaling and trafficking pathways
    • G01N2800/7066Metabolic pathways
    • G01N2800/7076Amino acid metabolism

Definitions

  • the present invention relates to a process for the determination of the gender, developmental stage and/or viability of an avian embryo in ovo, by determining the presence of developmental markers in the egg, more specifically in the allantoic fluid.
  • the present process further refers to a process for the determination of viability of an avian embryo, and the selection of male eggs and female eggs, and to the production of vaccines and/or chicks using these selected eggs.
  • Fertilized eggs of most avian species in particular those reared commercially, such as domesticated chicken ( Gallus gallus domesticus ), ducks, geese and turkeys tend to result upon hatching in an about equal distribution of male and female chicks.
  • domesticated chicken Gallus gallus domesticus
  • ducks, geese and turkeys tend to result upon hatching in an about equal distribution of male and female chicks.
  • the incubation and rearing of male chicks is highly undesirable, leading to the culling of billions of male chicks every year.
  • an egg is inspected using a light source emitting light of a wavelength that permits to pass at least in part through the egg.
  • an incubation capacity of present chick farms is required which is at least twice as large as necessary if an early gender selection would be available, permitting the selection of primarily only female chick embryos.
  • a further benefit would be if the method also permitted to select viable embryos over unfertilized and/or otherwise nonviable eggs, increasing the efficiency of the hatching process further.
  • US-A-2003/0096319 and WO-A-2006124456 disclose methods of determining the gender of an avian embryo in an egg by determining the presence of an estrogenic steroid compound in a sample of embryonic fluid, such as allantoic fluid or blood from the avian egg. While this may be feasible without destruction of the egg, the amounts of estrogenic steroid are minimal, and the test will only be successful after development of the gonads, hence at a comparatively late point in the development of the embryo. Yet further, the method of WO-A-2006124456 would also likely require the modification of fluorescence markers for each species and subgroup thereof, or the genetic modification of such species.
  • the present invention relates to a process for the determination of gender, developmental stage and/or viability of an avian embryo in an egg, comprising (a) detecting at least a first developmental marker compound selected from sugars and/or amino acids, precursors and metabolites thereof in an egg at a time period of from the beginning of the incubation of the egg until the hatching; (b) measuring the amount of the at least first detected developmental marker compound, and (c) comparing the amount to a base line established for male and female, developmental stage of the embryo, and/or alive and deceased or non-developed embryo, to determine whether the embryo is viable, male and/or female, and/or the developmental stage of the embryo.
  • the subject process also relates to a process for the determination of gender and/or viability of an avian embryo in an egg, comprising (a) detecting at least a first developmental marker compound selected from sugars and/or amino acids, precursors and metabolites thereof in an egg at a time period of from the beginning of the incubation of the egg until the hatching; (b) measuring the amount of the at least first detected developmental marker compound, and (c) comparing the amount to a base line established for male and female, and/or alive and deceased or non-developed embryo, to determine whether the embryo is viable, male and/or female.
  • a first developmental marker compound selected from sugars and/or amino acids, precursors and metabolites thereof in an egg at a time period of from the beginning of the incubation of the egg until the hatching
  • the subject invention relates to a process for the determination of the developmental stage of an avian embryo in an egg according to any one of the previous claims, comprising (a) detecting at least a first developmental marker compound selected from amino acids, precursors and metabolites thereof in an egg; (b) measuring the amount of the at least first detected developmental marker compound, and (c) comparing the amount to a base line established for the developmental stage from laying until hatching, to determine the developmental stage of the embryo and the time until hatching is likely to occur.
  • FIG. 1 depicts the partial least square modelling, an unsupervised multivariate data analysis, for 1 H NMR data to group samples based on all the metabolites detected in 1 H NMR from a laboratory set of chicken eggs.
  • F represents female
  • M represents Male.
  • FIG. 2 depicts the partial least square modelling, an unsupervised multivariate data analysis, for 1 H NMR data to group samples based on all the metabolites detected in 1 H NMR of a larger test set from a commercial chicken hatchery.
  • F represents female
  • M represents Male.
  • avian and “bird” as used herein include males or females of any avian species, but are primarily intended to encompass poultry which are commercially raised for eggs or meat. Accordingly, the terms “bird” and “avian” are particularly intended to encompass chicken, turkeys, ducks, geese, quail and pheasant.
  • incubation refers to the process by which birds hatch their eggs, and to the development of the embryo within the egg after leaving the hen's tract.
  • the incubation period herein refers to the uninterrupted time during which a particular egg is subjected to conditions emulating the brooding until the hatching, i.e. emergence of the birds, including any handling or transfers from e.g. an incubator to a hatchery unit, provided the development of a bird is not stalled.
  • in ovo refers to bird embryos contained within an egg prior to hatch.
  • the present invention may be practiced with any type of bird egg, including, but not limited to, (domesticated) chicken, turkey, duck, goose, quail, and pheasant eggs.
  • injection and “injecting” herein encompass methods of inserting a device (typically an elongate device) into an egg or embryo, including methods of delivering or discharging a substance into an egg or embryo, methods of removing a substance (i.e., a sample) from an egg or embryo, and/or methods of inserting a detector device into an egg or embryo.
  • a device typically an elongate device
  • methods of delivering or discharging a substance into an egg or embryo including methods of delivering or discharging a substance into an egg or embryo, methods of removing a substance (i.e., a sample) from an egg or embryo, and/or methods of inserting a detector device into an egg or embryo.
  • the determination according to the present invention is performed as a non-destructive method, i.e. allowing the thus tested avian embryos to grow, if so desired, or to subject it to further steps such as in ovo vaccine production, provided the embryo is viable.
  • allantoic fluid encompasses allantoic fluid with or without the presence of other egg materials.
  • the term allantoic fluid may include a mixture of blood and allantoic fluid.
  • Embodiments of the present invention are not limited to extracting material from the allantoic fluid or from areas near the upper surface of an egg. Removal of material from the allantoic fluid as described herein is provided as merely one example of possible embodiments of the present invention.
  • Various materials including but not limited to amnion, yolk, shell, albumen, tissue, membrane and/or blood, may be extracted from an egg and assayed to identify one or more developmental markers, as described below. Material may be extracted from eggs having virtually any orientation.
  • predetermined location indicates a fixed position or depth within an egg.
  • a device may be injected into an egg to a fixed depth and/or fixed position in the egg.
  • the injection may be carried out based on information obtained from the egg, e.g., regarding the position of the embryo or the subgerminal cavity within the egg.
  • the term “comparing the amount” advantageously may include a univariate or preferably multivariate analysis of the measured metabolites, and a determination of the association of an avian embryo with a certain population.
  • the step may comprise determining the presence of the analytes, i.e. metabolites, in the sample material by multivariate statistical analysis of the mass spectral, NMR, or otherwise measured suitable data.
  • the multivariate statistical analysis program preferably comprises a principal components analysis program, and/or a partial least-squares regression analysis program.
  • the subject invention thus also pertains to a process, apparatus and system for determination of gender, developmental stage and/or viability of an avian embryo in ovo, comprising multivariate statistical analysis program, as well as a microprocessor implemented process for the determination thereof.
  • Processes and apparatus according to embodiments of the present invention may be utilized for identifying one or more characteristics of an egg at any time during the embryonic development period, also referred to as the incubation period thereof.
  • Embodiments of the present invention are not limited to a particular day during the embryonic development period.
  • the developmental markers may preferably be analysed invasively or non-invasively.
  • this typically includes the extraction of a sample of egg material.
  • the sample is preferably taken from an embryonic fluid, preferably from the allantoic fluid, since this will least likely harm the embryo.
  • the allantoic fluid typically is an excretory medium for the nitrogenous metabolites of an avian embryo.
  • the allantoic fluid begins to form around day 3 of incubation, as disclosed by Hamburger, V and Hamilton, H L (1951). “A series of normal stages in the development of the chick embryo”. Journal of Morphology 88 (1): 49-92.
  • the allantois was distinguishable at 65 hours after incubation, as a short, thick-walled pocket; not yet vesicular. After 72 hours, the allantois was vesicular, variable in size; on the average of the size of the midbrain, indicating that the allantois and the allantoic fluid are present as of day 3.
  • the allantoic fluid is separated from the eggshell by the inner and outer shell membranes and the chorioallantoic membranes. Although the allantoic fluid encompasses the entire periphery of an embryonated egg, the allantoic fluid typically accumulates at the top of an egg directly underneath the membranes overlying the air cell.
  • the accumulation of the allantoic fluid at the top of the egg is due to gravity and displacement by the dense embryo and yolk sac. Attempting to accurately sample the allantoic fluid through the top of an egg while the egg is upright may be difficult due to the variability of the air space from egg to egg. Gravity can be used to pool the allantoic fluid in a localized site. When an egg is turned on its longitudinal axis, the allantoic fluid will pool at the top side of the egg, directly underneath the shell. Laying the egg on its longitudinal axis renders the allantoic fluid useful for extraction of a sample.
  • the extraction of material, such as allantoic fluid, from eggs may be performed in various ways, including penetrating the egg shell, and inserting a sampling cannula trough the membranes. A sample of the fluid to be sampled may then be retrieved, while the membrane and/or shell is actively sealed with a suitable sealant, or allowed to seal itself.
  • Suitable methods and apparatus for the penetration of eggs and invasively sampling of egg material are disclosed for instance in US-A-20070137577, WO-A-00/22921 or WO-A-99/34667.
  • the thus taken sample is then preferably subjected to a suitable protocol to permit the detection of the developmental markers, and an analysis of the relative and/or absolute amounts of developmental markers present.
  • the sample may be analysed by any method suitable to detect and to quantify the developmental marker or markers.
  • the analysis is performed by a magnetic resonance imaging method including nuclear resonance methods; spectral resonance methods including infrared or Raman spectroscopy, and/or analytical methods such as GC or HPLC coupled with suitable detectors, fluorescence spectroscopy, and/or enzyme-linked immunosorbent assay, including wet and dry methods, such as using a dipstick method.
  • the invasive methods permit to take a sample directly, and to subject the sampled fluid to an analysis, preferably the analysis is performed non-invasively due to the efficiency of such analysis method, and to the fact that the eggshell and membranes therein remain imperforated.
  • any suitable method may be employed to perform such non-invasive analysis.
  • quantitative spectral resonance methods including infrared or Raman spectroscopy may be employed, preferably using secondary spectra for the determination of the presence and absolute and/or relative amounts of developmental markers present in an egg.
  • non-invasive methods e.g. US-A-2011/144473 and U.S. Pat. No. 7,950,349
  • these publications only vaguely describe overall emission spectra; which in practice do not permit to select the development stage the viability and/or the gender of an embryo.
  • the present process differs in particular from the disclosed methods in that the presence of specific components in the egg is determined, which may advantageously be done by using secondary derivative spectra that allow to selectively seek for the absolute and relative amounts of one or more developmental marker compound(s).
  • differential second-derivative Fourier transform infrared (FTIR) and FT-Raman spectroscopy, or combination thereof may advantageously be employed to achieve the necessary accuracy and repeatability, while nuclear magnetic resonance methods may suitably be employed to determine the nature of the developmental markers, and to establish a base line to calibrate the system.
  • FTIR differential second-derivative Fourier transform infrared
  • FT-Raman spectroscopy or combination thereof may advantageously be employed to achieve the necessary accuracy and repeatability
  • nuclear magnetic resonance methods may suitably be employed to determine the nature of the developmental markers, and to establish a base line to calibrate the system.
  • the present process advantageously permits to determine the viability, and/or gender of an embryo, and/or preferably the developmental stages from the beginning of the incubation of the egg until the hatching.
  • the determination is performed at a period of from 1 to 15 days, more preferably of from 2 to 14, yet more preferably of from 3 to 13, and even more preferably of from 4 to 12 days after the incubation is started, such as performing step a) preferably at a time period of from 6 to 12 days after the beginning of the incubation of the egg.
  • the developmental markers according to subject invention preferably are selected from sugars, amino acids, and their respective metabolites and/or precursors.
  • Choline and trimethylglycine are considered to be particularly used to support the foetus's developing nervous system. It was found that the choline and trimethylglycine (betain) ratio differs strongly between male and female embryos, while also the absolute amounts of choline were higher in the allantoic fluid of female embryos.
  • choline and its metabolites are needed for three main physiological purposes: structural integrity and signaling roles for cell membranes, cholinergic neurotransmission (acetylcholine synthesis), and a major source for methyl groups via its metabolite, Trimethylglycine (betaine) which participates in the S-adenosylmethionine (SAMe) synthesis pathways.
  • SAMe S-adenosylmethionine
  • a first or further developmental marker is glucose in absolute amount for a female embryo in the range of from 30 ⁇ M/ml to 70 ⁇ M/ml, and for a male embryo of from 1 ⁇ M/ml to 30 ⁇ M/ml in the allantoic fluid.
  • a further first or further preferred developmental marker for Gallus gallus domesticus embryos is Choline, in an absolute amount for a female embryo in the range of from 110 ⁇ M/ml to 130 ⁇ M/ml, and for a male embryo of from 90 ⁇ M/ml up to, but not including 110 ⁇ M/ml, in the allantoic fluid.
  • a further first or further developmental marker for Gallus gallus domesticus embryos preferably is Valine, in an absolute amount for a female embryo in the range of from 110 ⁇ M/ml to 130 ⁇ M/ml, and for a male embryo of from 90 ⁇ M/ml up to, but not including 110 ⁇ M/ml, in the allantoic fluid.
  • At least a second marker is detected in step (a), and wherein the at least first and second markers are analysed and compared to the base line, and to each other to establish a developmental marker ratio.
  • the selectivity of the determination of viability and gender may advantageously be improved further. Accordingly, preferably at least a first and a second and/or further developmental marker are detected and analysed, wherein the absolute amounts and the ratio of the at least first to second and/or further markers is employed to determine the gender and/or viability.
  • the present process further advantageously comprises determining whether an embryo in an egg is viable and male, or viable and female, and separating a multitude of viable male eggs from a multitude of viable female eggs, to form a predominantly male or predominantly female egg selection.
  • the thus formed viable female or male egg selections may advantageously be subjected to an incubation and hatching process to form a predominantly female or male chick population.
  • the present process further preferably comprises injecting a virus or virus-like material into each egg identified as containing a live embryo and male or female, and preferably, after incubation comprises isolating the obtained vaccine from the incubated eggs.
  • the eggs containing live embryos are preferably transferred to an incubator for a predetermined period of time. At the end of this period of time, the eggs are transferred to a vaccine harvesting station where material from each egg, e.g., amniotic fluid is extracted.
  • the present process preferably also comprises the steps of euthanizing an embryo in the infected egg, and harvesting amniotic fluid from each euthanized egg, wherein the amniotic fluid comprises vaccine; and preferably isolating a vaccine from the amniotic fluid.
  • the virus comprises human influenza virus, and hence the harvested amniotic fluid comprises human influenza vaccine.
  • the developmental markers according to subject invention preferably may also be employed to determine the age of an embryo, or other markers may suitably applied.
  • Developmental markers useful for the determination of the embryo age are preferably selected from amino acids, and their respective metabolites and/or precursors.
  • amino acids more preferably Trimethylglycine, also known as Betaine, Aspartate and Asparagine, Glutamate and Glutamine and Proline could be directly related to the developmental stage of an avian embryo in ovo. This is highly relevant, since there are few features that allow determining the developmental stage, or age, of an avian embryo, in particular at early stages of the development.
  • the present process accordingly also preferably permits to select eggs of essentially the same developmental stage, or actual age, and to combine a multitude of eggs of essentially the same age, to subject the eggs to a controlled incubation.
  • the resulting hatching period should be more uniform, resulting in a more uniform chick population, of higher quality due to recued stress, and reducing the number of early hatched bird that are subject to prolonged exposure to the artificial incubation conditions.
  • the resulting hatched bird population will show a higher quality, resulting in a higher yield, and reduced follow-up requirements for the chick population, e.g. through reduced amounts of treatments.
  • age selected populations of eggs will also permit to prepare vaccines more efficiently, since herein the developmental stage of an avian embryo is relevant for the point in time when most efficiently a virus is injected, and a vaccine harvested.
  • the present invention also relates to egg selections, and after hatching, to a chick or a chick population obtainable by the process.
  • Gallus gallus domesticus eggs were incubated at 37.8° C., turning every hour, in an incubator model 50 , commercially obtainable from MS Broedmachines V.O.F.
  • One group of 12 eggs was incubated for 9 days, a second group of 12 eggs for 10 days, and a third group of 12 eggs for 11 days.
  • the egg was skewed and a 1 ml pipette was then used to blow air into the cavity, after which 1.5 to 2 ml of allantoic fluid was extracted using the pipette. This was transferred into a cryovial, which was immediately plunged into liquid nitrogen. The samples were then taken out and stored in ⁇ 80° C.
  • the embryo was taken out of the egg, by cutting away the membranes and by using a small spoon. It was put in a falcon tube filled with 96% ethanol and on ice and stored in a dark place at room temperature.
  • the allantoic fluid was taken out of ⁇ 80° C., defrosted and a sample of 1 ml was taken out and put in a glass vial.
  • Gallus gallus domesticus eggs were incubated at 37.8° C. at a commercial hatchery, turning every hour, in an industrial incubator commercially available from Petersime Nev.
  • One group of 50 eggs was incubated for 8 days, a second group of 50 eggs for 9 days, and a third group of 50 eggs for 10 days.
  • the shell and membranes were punctured and broken open around the air sack, leaving the inner membranes intact. Using light, the blood vessels running over the inner shell membrane were located, and a small puncture avoiding the blood vessels was made through the inner and outer membranes into the allantoic cavity.
  • the egg was skewed and a 1 ml pipette was then used to blow air into the cavity, after which 1.5 to 2 ml of allantoic fluid was extracted using the pipette. This was transferred into a cryovial, which was immediately plunged into liquid nitrogen. The samples were then taken out and stored in ⁇ 80° C.
  • the embryo was taken out of the egg, by cutting away the membranes and by using a small spoon. It was put in a falcon tube filled with 96% ethanol and on ice and stored in a dark place at room temperature.
  • the allantoic fluid was taken out of ⁇ 80° C., defrosted and a sample of 0.5 ml of was put into cryovial. The cap of this cryovial was punctured and it was freeze dried overnight. This freeze dried product was employed as NMR sample.
  • the chicken embryo was taken out of the ethanol and left out to dry for 10 minutes at room temperature. A small portion of the left leg was cut off and this was used to extract DNA, using a DNA extraction kit (commercially obtainable as Qiagen DNeasy kit), after which the amount was measured using a nanodrop device.
  • a DNA extraction kit commercially obtainable as Qiagen DNeasy kit
  • the PCR program used was, 95° C. for 5 minutes, then 36 times 95° C. for 45 seconds, 56° C. for 45 seconds, 72° C. for 1 minute, after which one run was done at 72° C. for 5 minutes.
  • the gender of the embryo was determined based on the resulting PCR product, identified by using a 2% agar gel.
  • sample material obtained as described above were subjected to two-dimensional (2D)- 1 H- 1 H-J-resolved NMR measurements, using 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid (TSP) as an internal standard, as disclosed in Nature Protocols, Vol. 5, No. 3, 2010, pages 536-549, and Phytochemistry 71, 2010, 773-784.
  • FIGS. 1 and 2 disclose the results of a multivariate analysis of Example 1, and 2, respectively, and overlay with the gender determination.
  • Example 1 was repeated, however analysing the following developmental markers that were found relevant for the determination of the developmental stage, or age of the embryos.
  • the multivariate model demonstrated the association between gender, age and/or viability of an embryo and the relative amounts of metabolites present.
  • alternative analytical methods such as for instance GCMS, gave similar results, thereby corroborating the results.
  • the analysis not only revealed the absolute amounts of developmental markers for the developmental stage, but also the relative amounts. When a second, third and fourth marker were added, respectively, the selectivity of the test increased further.

Abstract

The present invention relates to a process for the non-destructive determination of gender, developmental stage and/or viability of an avian embryo in an egg, comprising (a) detecting at least a first developmental marker compound selected from sugars and/or amino acids, precursors and metabolites thereof in an egg at a time period of from the beginning of the incubation of the egg until the hatching; (b) measuring the amount of the at least first detected developmental marker compound, and (c) comparing the amount to a base line established for male and female, developmental stage of the embryo, and/or alive and deceased or non-developed embryo, to determine whether the embryo is viable, male and/or female, and/or the developmental stage of the embryo.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a process for the determination of the gender, developmental stage and/or viability of an avian embryo in ovo, by determining the presence of developmental markers in the egg, more specifically in the allantoic fluid. The present process further refers to a process for the determination of viability of an avian embryo, and the selection of male eggs and female eggs, and to the production of vaccines and/or chicks using these selected eggs.
  • BACKGROUND OF THE INVENTION
  • Fertilized eggs of most avian species, in particular those reared commercially, such as domesticated chicken (Gallus gallus domesticus), ducks, geese and turkeys tend to result upon hatching in an about equal distribution of male and female chicks. In hatchery management, it may be desirable to separate birds based upon various characteristics, in particular gender. It may for instance be desirable to inoculate male and female birds with different vaccines, or to separate the populations to gain feed efficiencies, improve processing uniformity, and to reduce production costs where there are differences in growth rate and nutritional requirements of male and female birds. Yet further, for commercial egg production, the incubation and rearing of male chicks is highly undesirable, leading to the culling of billions of male chicks every year.
  • Furthermore, there is a percentage of eggs that are unfertilized, or do not comprise a viable embryo at the beginning of the incubation period, which greatly reduces the capacity of the incubators at hatcheries. So far, determination of viable, i.e. live embryos, typically was performed employing a technique known as “candling”, as for instance disclosed in EP-A-2369336 and U.S. Pat. No. 7,950,349.
  • Herein, an egg is inspected using a light source emitting light of a wavelength that permits to pass at least in part through the egg.
  • While this may permit to identify whether an egg contains a live embryo, however, in order to yield reliable results, it will require the egg to have progressed at least to day 11, or even to a later stage of its development. Furthermore, although this technique may discriminate between live and non-live eggs, it does not allow to reliably determine the gender and other characteristics of the unhatched birds.
  • As a result, an incubation capacity of present chick farms is required which is at least twice as large as necessary if an early gender selection would be available, permitting the selection of primarily only female chick embryos.
  • Accordingly, it would be of great value for the environment, by reduction of the amount of energy and other resources required, but equally for the elimination of unnecessary male chick culling, as well as reduction of stress for the newly hatched birds, if an early stage method was available that allowed to determine the gender of avian embryos prior to the incubation phase, also permitting to strongly increase the capacity of hatcheries.
  • A further benefit would be if the method also permitted to select viable embryos over unfertilized and/or otherwise nonviable eggs, increasing the efficiency of the hatching process further.
  • Y. Feng et al. disclose in Appl. Magn. Reson. (2007), 32, 257-268 the analysis of metabolites in allantoic fluid of chicken eggs at day 9 by NMR spectroscopy at super high field strength of 900 MHz.
  • Gu D.-C. et al, Chinese Journal of Animal Science, Vol. 7, 23-25 discloses the analysis of free aspartic acid, glutamic acid, arginine and leucine concentrations in allantoic and amnionic fluids during egg breeding incubation of by HPLC. However, the disclosed process does not go beyond producing a base line for comparison of eggs of a not specified laying date, but simply establishes a base line for four amino acids. Furthermore, the disclosed examination method is destructive in that the eggs with live embryos were not allowed to mature to hatchlings after examination, or used for other purposes, such as vaccine production.
  • US-A-2003/0096319 and WO-A-2006124456 disclose methods of determining the gender of an avian embryo in an egg by determining the presence of an estrogenic steroid compound in a sample of embryonic fluid, such as allantoic fluid or blood from the avian egg. While this may be feasible without destruction of the egg, the amounts of estrogenic steroid are minimal, and the test will only be successful after development of the gonads, hence at a comparatively late point in the development of the embryo. Yet further, the method of WO-A-2006124456 would also likely require the modification of fluorescence markers for each species and subgroup thereof, or the genetic modification of such species.
  • Ohta Y. et al., Poultry Science, Vol. 80, Nr. 10, 1430-1346, discloses the effect of in ovo administration of amino acids, to see how this affects amino acid concentrations of embryos and other egg contents from broiler breeder eggs. This however is not a method to determine gender, viability and/or developmental stage of an avian egg.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention relates to a process for the determination of gender, developmental stage and/or viability of an avian embryo in an egg, comprising (a) detecting at least a first developmental marker compound selected from sugars and/or amino acids, precursors and metabolites thereof in an egg at a time period of from the beginning of the incubation of the egg until the hatching; (b) measuring the amount of the at least first detected developmental marker compound, and (c) comparing the amount to a base line established for male and female, developmental stage of the embryo, and/or alive and deceased or non-developed embryo, to determine whether the embryo is viable, male and/or female, and/or the developmental stage of the embryo.
  • In a further aspect, the subject process also relates to a process for the determination of gender and/or viability of an avian embryo in an egg, comprising (a) detecting at least a first developmental marker compound selected from sugars and/or amino acids, precursors and metabolites thereof in an egg at a time period of from the beginning of the incubation of the egg until the hatching; (b) measuring the amount of the at least first detected developmental marker compound, and (c) comparing the amount to a base line established for male and female, and/or alive and deceased or non-developed embryo, to determine whether the embryo is viable, male and/or female.
  • In yet a further aspect, the subject invention relates to a process for the determination of the developmental stage of an avian embryo in an egg according to any one of the previous claims, comprising (a) detecting at least a first developmental marker compound selected from amino acids, precursors and metabolites thereof in an egg; (b) measuring the amount of the at least first detected developmental marker compound, and (c) comparing the amount to a base line established for the developmental stage from laying until hatching, to determine the developmental stage of the embryo and the time until hatching is likely to occur.
  • SHORT DESCRIPTION OF THE FIGURES
  • FIG. 1 depicts the partial least square modelling, an unsupervised multivariate data analysis, for 1H NMR data to group samples based on all the metabolites detected in 1H NMR from a laboratory set of chicken eggs. F represents female, M represents Male.
  • FIG. 2 depicts the partial least square modelling, an unsupervised multivariate data analysis, for 1H NMR data to group samples based on all the metabolites detected in 1H NMR of a larger test set from a commercial chicken hatchery. F represents female, M represents Male.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention now is described more fully hereinafter with reference to the accompanying drawing, in which a preferred embodiment of the invention is shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.
  • The terms “avian” and “bird” as used herein, include males or females of any avian species, but are primarily intended to encompass poultry which are commercially raised for eggs or meat. Accordingly, the terms “bird” and “avian” are particularly intended to encompass chicken, turkeys, ducks, geese, quail and pheasant.
  • The term “incubation” herein refers to the process by which birds hatch their eggs, and to the development of the embryo within the egg after leaving the hen's tract. The incubation period herein refers to the uninterrupted time during which a particular egg is subjected to conditions emulating the brooding until the hatching, i.e. emergence of the birds, including any handling or transfers from e.g. an incubator to a hatchery unit, provided the development of a bird is not stalled.
  • The term “in ovo” as used herein, refers to bird embryos contained within an egg prior to hatch. The present invention may be practiced with any type of bird egg, including, but not limited to, (domesticated) chicken, turkey, duck, goose, quail, and pheasant eggs.
  • The terms “injection” and “injecting” herein encompass methods of inserting a device (typically an elongate device) into an egg or embryo, including methods of delivering or discharging a substance into an egg or embryo, methods of removing a substance (i.e., a sample) from an egg or embryo, and/or methods of inserting a detector device into an egg or embryo.
  • Preferably the determination according to the present invention is performed as a non-destructive method, i.e. allowing the thus tested avian embryos to grow, if so desired, or to subject it to further steps such as in ovo vaccine production, provided the embryo is viable.
  • The term “allantoic fluid” herein encompasses allantoic fluid with or without the presence of other egg materials. For example, the term allantoic fluid may include a mixture of blood and allantoic fluid. Embodiments of the present invention are not limited to extracting material from the allantoic fluid or from areas near the upper surface of an egg. Removal of material from the allantoic fluid as described herein is provided as merely one example of possible embodiments of the present invention. Various materials including but not limited to amnion, yolk, shell, albumen, tissue, membrane and/or blood, may be extracted from an egg and assayed to identify one or more developmental markers, as described below. Material may be extracted from eggs having virtually any orientation.
  • The term “predetermined location” herein indicates a fixed position or depth within an egg. For example, a device may be injected into an egg to a fixed depth and/or fixed position in the egg. In alternative embodiments, the injection may be carried out based on information obtained from the egg, e.g., regarding the position of the embryo or the subgerminal cavity within the egg.
  • The term “comparing the amount” advantageously may include a univariate or preferably multivariate analysis of the measured metabolites, and a determination of the association of an avian embryo with a certain population. The step may comprise determining the presence of the analytes, i.e. metabolites, in the sample material by multivariate statistical analysis of the mass spectral, NMR, or otherwise measured suitable data. The multivariate statistical analysis program preferably comprises a principal components analysis program, and/or a partial least-squares regression analysis program. The subject invention thus also pertains to a process, apparatus and system for determination of gender, developmental stage and/or viability of an avian embryo in ovo, comprising multivariate statistical analysis program, as well as a microprocessor implemented process for the determination thereof.
  • Processes and apparatus according to embodiments of the present invention may be utilized for identifying one or more characteristics of an egg at any time during the embryonic development period, also referred to as the incubation period thereof. Embodiments of the present invention are not limited to a particular day during the embryonic development period.
  • In the present process, the developmental markers may preferably be analysed invasively or non-invasively.
  • If the analysis is performed invasively, this typically includes the extraction of a sample of egg material. The sample is preferably taken from an embryonic fluid, preferably from the allantoic fluid, since this will least likely harm the embryo. The allantoic fluid typically is an excretory medium for the nitrogenous metabolites of an avian embryo. The allantoic fluid begins to form around day 3 of incubation, as disclosed by Hamburger, V and Hamilton, H L (1951). “A series of normal stages in the development of the chick embryo”. Journal of Morphology 88 (1): 49-92.
  • Herein is indicated that the allantois was distinguishable at 65 hours after incubation, as a short, thick-walled pocket; not yet vesicular. After 72 hours, the allantois was vesicular, variable in size; on the average of the size of the midbrain, indicating that the allantois and the allantoic fluid are present as of day 3.
  • It attains a maximum volume on about day 13 of incubation and then wanes in volume as incubation continues due to moisture loss and fluid resorption, but is still present in significant volumes on day 18 of incubation.
  • The allantoic fluid is separated from the eggshell by the inner and outer shell membranes and the chorioallantoic membranes. Although the allantoic fluid encompasses the entire periphery of an embryonated egg, the allantoic fluid typically accumulates at the top of an egg directly underneath the membranes overlying the air cell.
  • The accumulation of the allantoic fluid at the top of the egg is due to gravity and displacement by the dense embryo and yolk sac. Attempting to accurately sample the allantoic fluid through the top of an egg while the egg is upright may be difficult due to the variability of the air space from egg to egg. Gravity can be used to pool the allantoic fluid in a localized site. When an egg is turned on its longitudinal axis, the allantoic fluid will pool at the top side of the egg, directly underneath the shell. Laying the egg on its longitudinal axis renders the allantoic fluid useful for extraction of a sample.
  • The extraction of material, such as allantoic fluid, from eggs may be performed in various ways, including penetrating the egg shell, and inserting a sampling cannula trough the membranes. A sample of the fluid to be sampled may then be retrieved, while the membrane and/or shell is actively sealed with a suitable sealant, or allowed to seal itself.
  • Suitable methods and apparatus for the penetration of eggs and invasively sampling of egg material are disclosed for instance in US-A-20070137577, WO-A-00/22921 or WO-A-99/34667. The thus taken sample is then preferably subjected to a suitable protocol to permit the detection of the developmental markers, and an analysis of the relative and/or absolute amounts of developmental markers present.
  • The sample may be analysed by any method suitable to detect and to quantify the developmental marker or markers. Preferably, the analysis is performed by a magnetic resonance imaging method including nuclear resonance methods; spectral resonance methods including infrared or Raman spectroscopy, and/or analytical methods such as GC or HPLC coupled with suitable detectors, fluorescence spectroscopy, and/or enzyme-linked immunosorbent assay, including wet and dry methods, such as using a dipstick method. While the invasive methods permit to take a sample directly, and to subject the sampled fluid to an analysis, preferably the analysis is performed non-invasively due to the efficiency of such analysis method, and to the fact that the eggshell and membranes therein remain imperforated.
  • Any suitable method may be employed to perform such non-invasive analysis. Typically, quantitative spectral resonance methods including infrared or Raman spectroscopy may be employed, preferably using secondary spectra for the determination of the presence and absolute and/or relative amounts of developmental markers present in an egg. While several publications have disclosed the use of non-invasive methods, e.g. US-A-2011/144473 and U.S. Pat. No. 7,950,349, these publications only vaguely describe overall emission spectra; which in practice do not permit to select the development stage the viability and/or the gender of an embryo. The present process differs in particular from the disclosed methods in that the presence of specific components in the egg is determined, which may advantageously be done by using secondary derivative spectra that allow to selectively seek for the absolute and relative amounts of one or more developmental marker compound(s).
  • In particular differential second-derivative Fourier transform infrared (FTIR) and FT-Raman spectroscopy, or combination thereof may advantageously be employed to achieve the necessary accuracy and repeatability, while nuclear magnetic resonance methods may suitably be employed to determine the nature of the developmental markers, and to establish a base line to calibrate the system.
  • The present process advantageously permits to determine the viability, and/or gender of an embryo, and/or preferably the developmental stages from the beginning of the incubation of the egg until the hatching.
  • Preferably the determination is performed at a period of from 1 to 15 days, more preferably of from 2 to 14, yet more preferably of from 3 to 13, and even more preferably of from 4 to 12 days after the incubation is started, such as performing step a) preferably at a time period of from 6 to 12 days after the beginning of the incubation of the egg.
  • This permits to avoid the costs involved in incubating eggs that are either no viable and/or not the desired gender. Furthermore, the actual developmental stage of an egg can be determined. For species with shorter or longer incubation times than those of domesticated chicken, other periods may apply, as suitable.
  • The developmental markers according to subject invention preferably are selected from sugars, amino acids, and their respective metabolites and/or precursors.
  • Of these, developmental markers of particularly importance included Glucose, Choline and Valine, each of which had a statistically significant influence on the determination of the gender of the avian embryo.
  • Without wishing to be bound to any particular theory, Choline and trimethylglycine, its amino acid derivative, are considered to be particularly used to support the foetus's developing nervous system. It was found that the choline and trimethylglycine (betain) ratio differs strongly between male and female embryos, while also the absolute amounts of choline were higher in the allantoic fluid of female embryos. Generally, choline and its metabolites are needed for three main physiological purposes: structural integrity and signaling roles for cell membranes, cholinergic neurotransmission (acetylcholine synthesis), and a major source for methyl groups via its metabolite, Trimethylglycine (betaine) which participates in the S-adenosylmethionine (SAMe) synthesis pathways. Valine and Glucose on the other hand were also found to vary significantly between male and female embryos.
  • Where the avian species is Gallus gallus domesticus, preferably a first or further developmental marker is glucose in absolute amount for a female embryo in the range of from 30 μM/ml to 70 μM/ml, and for a male embryo of from 1 μM/ml to 30 μM/ml in the allantoic fluid.
  • A further first or further preferred developmental marker for Gallus gallus domesticus embryos is Choline, in an absolute amount for a female embryo in the range of from 110 μM/ml to 130 μM/ml, and for a male embryo of from 90 μM/ml up to, but not including 110 μM/ml, in the allantoic fluid.
  • Yet a further first or further developmental marker for Gallus gallus domesticus embryos preferably is Valine, in an absolute amount for a female embryo in the range of from 110 μM/ml to 130 μM/ml, and for a male embryo of from 90 μM/ml up to, but not including 110 μM/ml, in the allantoic fluid.
  • Preferably, in the subject process at least a second marker is detected in step (a), and wherein the at least first and second markers are analysed and compared to the base line, and to each other to establish a developmental marker ratio.
  • By correlating the analysis of two or three markers, the selectivity of the determination of viability and gender may advantageously be improved further. Accordingly, preferably at least a first and a second and/or further developmental marker are detected and analysed, wherein the absolute amounts and the ratio of the at least first to second and/or further markers is employed to determine the gender and/or viability.
  • The present process further advantageously comprises determining whether an embryo in an egg is viable and male, or viable and female, and separating a multitude of viable male eggs from a multitude of viable female eggs, to form a predominantly male or predominantly female egg selection.
  • The thus formed viable female or male egg selections may advantageously be subjected to an incubation and hatching process to form a predominantly female or male chick population.
  • The present process further preferably comprises injecting a virus or virus-like material into each egg identified as containing a live embryo and male or female, and preferably, after incubation comprises isolating the obtained vaccine from the incubated eggs.
  • After injection with a seed virus, the eggs containing live embryos are preferably transferred to an incubator for a predetermined period of time. At the end of this period of time, the eggs are transferred to a vaccine harvesting station where material from each egg, e.g., amniotic fluid is extracted.
  • Accordingly, the present process preferably also comprises the steps of euthanizing an embryo in the infected egg, and harvesting amniotic fluid from each euthanized egg, wherein the amniotic fluid comprises vaccine; and preferably isolating a vaccine from the amniotic fluid. Preferably the virus comprises human influenza virus, and hence the harvested amniotic fluid comprises human influenza vaccine.
  • The developmental markers according to subject invention preferably may also be employed to determine the age of an embryo, or other markers may suitably applied.
  • Developmental markers useful for the determination of the embryo age are preferably selected from amino acids, and their respective metabolites and/or precursors. Applicants found that in particular the absolute and relative amounts of amino acids, more preferably Trimethylglycine, also known as Betaine, Aspartate and Asparagine, Glutamate and Glutamine and Proline could be directly related to the developmental stage of an avian embryo in ovo. This is highly relevant, since there are few features that allow determining the developmental stage, or age, of an avian embryo, in particular at early stages of the development.
  • The present process accordingly also preferably permits to select eggs of essentially the same developmental stage, or actual age, and to combine a multitude of eggs of essentially the same age, to subject the eggs to a controlled incubation. The resulting hatching period should be more uniform, resulting in a more uniform chick population, of higher quality due to recued stress, and reducing the number of early hatched bird that are subject to prolonged exposure to the artificial incubation conditions.
  • The resulting hatched bird population will show a higher quality, resulting in a higher yield, and reduced follow-up requirements for the chick population, e.g. through reduced amounts of treatments.
  • Similarly, the use of age selected populations of eggs will also permit to prepare vaccines more efficiently, since herein the developmental stage of an avian embryo is relevant for the point in time when most efficiently a virus is injected, and a vaccine harvested.
  • The present invention also relates to egg selections, and after hatching, to a chick or a chick population obtainable by the process.
  • The following, non-limiting examples are provided to illustrate the invention.
  • Example 1 Protocol Metabolic Profiling in Ovo
  • Gallus gallus domesticus eggs were incubated at 37.8° C., turning every hour, in an incubator model 50, commercially obtainable from MS Broedmachines V.O.F.
  • One group of 12 eggs was incubated for 9 days, a second group of 12 eggs for 10 days, and a third group of 12 eggs for 11 days.
  • Eggs were taken out of the incubator, placed in a paper holder, under a microscope, with the air sack up. The shell and membranes were punctured and broken open around the air sack, leaving the inner membranes intact. Using light, the blood vessels running over the inner shell membrane were located, and a small puncture avoiding the blood vessels was made through the inner and outer membranes into the allantoic cavity.
  • The egg was skewed and a 1 ml pipette was then used to blow air into the cavity, after which 1.5 to 2 ml of allantoic fluid was extracted using the pipette. This was transferred into a cryovial, which was immediately plunged into liquid nitrogen. The samples were then taken out and stored in −80° C.
  • The embryo was taken out of the egg, by cutting away the membranes and by using a small spoon. It was put in a falcon tube filled with 96% ethanol and on ice and stored in a dark place at room temperature.
  • The allantoic fluid was taken out of −80° C., defrosted and a sample of 1 ml was taken out and put in a glass vial.
  • 1 ml of chloroform and 1 ml of a mixture of methanol and water (1:1) were added to the sample, using glass Pasteur pipettes. The vials were closed using a cap and then shaken for 20 seconds, then placed at 4° C. for 10 minutes. Using a glass Pasteur pipette, 1 ml of the upper part of the mixture was taken out and transferred to a cryovial. The cap of this cryovial was punctured and it was freeze dried overnight. This freeze dried product was employed as NMR sample.
  • Example 2 Protocol Metabolic Profiling in Ovo
  • Gallus gallus domesticus eggs were incubated at 37.8° C. at a commercial hatchery, turning every hour, in an industrial incubator commercially available from Petersime Nev. One group of 50 eggs was incubated for 8 days, a second group of 50 eggs for 9 days, and a third group of 50 eggs for 10 days.
  • Eggs were taken out of the incubator, placed in a plastic holder, under a microscope, with the air sack up.
  • The shell and membranes were punctured and broken open around the air sack, leaving the inner membranes intact. Using light, the blood vessels running over the inner shell membrane were located, and a small puncture avoiding the blood vessels was made through the inner and outer membranes into the allantoic cavity.
  • The egg was skewed and a 1 ml pipette was then used to blow air into the cavity, after which 1.5 to 2 ml of allantoic fluid was extracted using the pipette. This was transferred into a cryovial, which was immediately plunged into liquid nitrogen. The samples were then taken out and stored in −80° C.
  • The embryo was taken out of the egg, by cutting away the membranes and by using a small spoon. It was put in a falcon tube filled with 96% ethanol and on ice and stored in a dark place at room temperature.
  • The allantoic fluid was taken out of −80° C., defrosted and a sample of 0.5 ml of was put into cryovial. The cap of this cryovial was punctured and it was freeze dried overnight. This freeze dried product was employed as NMR sample.
  • Gender Determination—Verification:
  • The chicken embryo was taken out of the ethanol and left out to dry for 10 minutes at room temperature. A small portion of the left leg was cut off and this was used to extract DNA, using a DNA extraction kit (commercially obtainable as Qiagen DNeasy kit), after which the amount was measured using a nanodrop device.
  • PCR using primer pair 1272H and 1237L, commercially obtainable from Sigma, was used to determine the gender of the embryo. The PCR program used was, 95° C. for 5 minutes, then 36 times 95° C. for 45 seconds, 56° C. for 45 seconds, 72° C. for 1 minute, after which one run was done at 72° C. for 5 minutes. The gender of the embryo was determined based on the resulting PCR product, identified by using a 2% agar gel.
  • NMR Sample Preparation
  • 50-100 mg of sample material obtained as described above were subjected to two-dimensional (2D)-1H-1H-J-resolved NMR measurements, using 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid (TSP) as an internal standard, as disclosed in Nature Protocols, Vol. 5, No. 3, 2010, pages 536-549, and Phytochemistry 71, 2010, 773-784.
  • The obtained data for Example 1 is depicted in Table 1:
  • TABLE 1
    Measured Data for Male and Female embryos
    Female (μM/mL; Male (μM/mL;
    standard deviation in standard deviation in
    Dev. Markers brackets) brackets)
    Glucose   51 (17.7) 32.2 (10.5)
    Choline 125.8 (21.4) 101.3 (21.1) 
    Valine  23.7 (4.09) 28.6 (3.63)
  • Multivariate Data Analysis
  • A partial least square modelling, an unsupervised multivariate data analysis, was employed for the 1H NMR data to group samples based on all the metabolites detected in 1H NMR. The most important information obtained was the correlation between two data sets, i.e. the measured 1H NMR signals (metabolites) and the sample classification (group information).
  • The analysis not only revealed the absolute amounts of developmental markers for either male or female embryos, but also the relative amounts. When a second marker and a third marker were added, respectively, the selectivity of the test increased further. FIGS. 1 and 2 disclose the results of a multivariate analysis of Example 1, and 2, respectively, and overlay with the gender determination.
  • Example 3 Determination of Embryo Age
  • Example 1 was repeated, however analysing the following developmental markers that were found relevant for the determination of the developmental stage, or age of the embryos.
  • TABLE 2
    Measured Data for Days 9 to 11
    9 days (μM/mL,
    Development Standard deviation in 10 days 11 days
    Marker brackets)) (μM/mL) (μM/mL)
    Trimethylglycine 0.75 (0.27) 0.65 (0.2)  0.43 (0.13)
    (Betaine)
    Aspartate and 9.35 (3.2)  7.72 (2.75) 5.34 (3.91)
    Asparagine
    Glutamate and 41.5 (7.71) 37.1 (3.94) 31.7 (5.33)
    Glutamine
    Proline 12.7 (2.69) 11 (1.58) 9.02 (1.59)
  • The above data clearly indicates that the developmental stage of en embryo can be determined from one or more developmental markers.
  • A partial least square modelling, an unsupervised multivariate data analysis, was employed for the 1H NMR data to group samples based on all the metabolites detected in 1H NMR. The most important information obtained was the correlation between two data sets, i.e. the measured 1H NMR signals (metabolites) and the sample classification (group information).
  • The multivariate model demonstrated the association between gender, age and/or viability of an embryo and the relative amounts of metabolites present. Using alternative analytical methods, such as for instance GCMS, gave similar results, thereby corroborating the results.
  • The analysis not only revealed the absolute amounts of developmental markers for the developmental stage, but also the relative amounts. When a second, third and fourth marker were added, respectively, the selectivity of the test increased further.
  • The examples above clearly show the advantages of the process and materials of the present invention. Although several specific embodiments of the present invention have been described in the detailed description above, this description is not intended to limit the invention to the particular form or embodiments disclosed herein since they are to be recognised as illustrative rather than restrictive, and it will be obvious to those skilled in the art that the invention is not limited to the examples.

Claims (18)

1. A process for the non-destructive determination of gender, developmental stage and/or viability of an avian embryo in an egg, comprising
(a) detecting at least a first developmental marker compound selected from sugars and/or amino acids, precursors and metabolites thereof in an egg at a time period of from the beginning of the incubation of the egg until the hatching;
(b) measuring the amount of the at least first detected developmental marker compound, and
(c) comparing the amount to a base line established for male and female, developmental stage of the embryo, and/or alive and deceased or non-developed embryo, to determine whether the embryo is viable, male and/or female, and/or the developmental stage of the embryo.
2.-34. (canceled)
35. The process according to claim 1, wherein the at least first developmental marker compound is detected in an embryonic fluid of an egg,
36. The process according to claim 1, wherein the embryonic fluid is the allantoic fluid.
37. The process according to claim 1, wherein at least a second marker is detected in step (a), and wherein the at least first and second markers are analysed and compared to the base line, and to each other to establish a developmental marker ratio.
38. The process according to claim 1, wherein the developmental markers are selected from Glucose, Choline and/or Valine.
39. The process according to claim 38, wherein the avian species is Gallus gallus domesticus, and wherein a first or further developmental marker is selected from at least one of:
Glucose in absolute amount for a female embryo in the range of from 30 μM/ml to 70 μM/ml, and for a male embryo of from 1 μM/ml to 30 μM/ml;
Choline in an absolute amount for a female embryo in the range of from 1 10 μM/ml to 130 μM/ml, and for a male embryo of from 90 μM/ml up to, but not including 1 10 μM/ml; or
Valine in an absolute amount for a female embryo in the range of from 1 10 μM/ml to 130 μM/ml, and for a male embryo of from 90 μM/ml up to, but not including 1 10 μM/ml.
40. The process according to claim 38, wherein at least a first and a second developmental marker are detected and analysed, and wherein the absolute amounts and the ratio of the at least first to second markers is employed to determine the gender and/or viability.
41. The process according to claim 1, comprising the step of analysing the embryonic fluid invasively or non-invasively.
42. The process according to claim 41, wherein the analysis is performed by a magnetic resonance imaging method including nuclear resonance methods; by a spectral resonance method including infrared or Raman spectroscopy; and/or an analytical method such as GC or HPLC coupled with suitable detectors, fluorescence spectroscopy and/or an enzyme-linked immunosorbent assay.
43. The process according to claim 1, further comprising at least one of;
(i) determining whether an embryo in an egg is viable and male, or viable and female, and separating a multitude of viable male eggs from a multitude of viable female eggs, to form an predominantly male or predominantly female egg selection;
(ii) subjecting the viable female or male egg selections to an incubation and hatching process to form a predominantly female or male chick population;
(iii) determining the developmental stage of the embryo and the time until hatching is likely to occur, and separating eggs into multitudes of eggs with similar or equal developmental stage;
(iv) determining the viability of the embryo, and separating eggs into multitudes of viable eggs and non-viable eggs;
(v) subjecting the viable egg selections to an incubation and hatching process in line with the expected hatching date, to form a chick population of predominantly the same developmental stage; and
(vi) injecting a virus or virus-like material into each egg identified as containing a live embryo and male or female, and/or of a certain developmental stage.
44. The process according to claim 43, further comprising isolating the obtained vaccine from the incubated eggs.
45. A chick or a chick population obtainable by the process according to claim 43.
46. The process according to claim 37, wherein the avian species is Gallus gallus domesticus, and wherein the developmental markers are selected from at least one of:
Trimethylglycine; Aspartate and/or Asparagine; Glutamate and/or Glutamine, and/or Proline.
47. The process according to claim 1, further comprising at least one of:
(i) selecting eggs of essentially the same development stage;
(ii) subjecting the egg selection to an incubation and hatching process in line with the developmental stage, to form a chick population of essentially the same age;
(iii) determining whether an embryo in an egg is viable, and separating non-viable eggs prior to hatching and/or vaccine injection steps;
(iv) determining whether an embryo is male, or female, and separating a multitude of male eggs from a multitude of female eggs, to form a predominantly male or predominantly female egg selection; and
(v) injecting a virus or virus-like material into each egg identified as containing a live embryo and male or female, in line with the developmental stage of the embryo.
48. The process according to claim 47, further comprising isolating the obtained vaccine from the incubated eggs.
49. A multitude of eggs obtainable from the process of claim 48.
50. The multitude of eggs of claim 49 for animal and/or human feed production, for the production and/or isolation of cosmetic, medical and/or nutritional compounds, for methane production through fermentation, and/or high quality fertilizer production.
US14/418,506 2012-07-30 2013-07-30 Gender, viability and/or developmental stage determination of avian embryos in ovo Abandoned US20150260704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/418,506 US20150260704A1 (en) 2012-07-30 2013-07-30 Gender, viability and/or developmental stage determination of avian embryos in ovo

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261677227P 2012-07-30 2012-07-30
NL2009256 2012-07-30
NL2009255A NL2009255C2 (en) 2012-07-30 2012-07-30 Gender determination of avian embryos in ovo.
NL2009256A NL2009256C2 (en) 2012-07-30 2012-07-30 Age determination of avian embryos in ovo.
NL2009255 2012-07-30
US14/418,506 US20150260704A1 (en) 2012-07-30 2013-07-30 Gender, viability and/or developmental stage determination of avian embryos in ovo
PCT/NL2013/050569 WO2014021715A2 (en) 2012-07-30 2013-07-30 Gender, viability and/or developmental stage determination of avian embryos in ovo

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2013/050569 A-371-Of-International WO2014021715A2 (en) 2012-07-30 2013-07-30 Gender, viability and/or developmental stage determination of avian embryos in ovo

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/166,035 Division US20210215663A1 (en) 2012-07-30 2021-02-03 Apparatus for analysis of eggs

Publications (1)

Publication Number Publication Date
US20150260704A1 true US20150260704A1 (en) 2015-09-17

Family

ID=50028615

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/418,506 Abandoned US20150260704A1 (en) 2012-07-30 2013-07-30 Gender, viability and/or developmental stage determination of avian embryos in ovo
US17/166,035 Pending US20210215663A1 (en) 2012-07-30 2021-02-03 Apparatus for analysis of eggs

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/166,035 Pending US20210215663A1 (en) 2012-07-30 2021-02-03 Apparatus for analysis of eggs

Country Status (17)

Country Link
US (2) US20150260704A1 (en)
EP (1) EP2880440B1 (en)
JP (1) JP6279574B2 (en)
KR (1) KR102174868B1 (en)
CN (1) CN104704360B (en)
AU (1) AU2013297168B2 (en)
BR (1) BR112015002156B1 (en)
CA (1) CA2917414C (en)
DK (1) DK2880440T3 (en)
ES (1) ES2709027T3 (en)
MX (1) MX362096B (en)
PL (1) PL2880440T3 (en)
RU (1) RU2681536C2 (en)
TR (1) TR201901409T4 (en)
UA (1) UA118544C2 (en)
WO (1) WO2014021715A2 (en)
ZA (1) ZA201501224B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016004051B3 (en) * 2016-04-04 2017-07-27 Technische Universität Dresden Method and device for optical in-ovo sexing of fertilized and incubated bird eggs
US9835560B2 (en) 2014-07-04 2017-12-05 Technische Universitaet Dresden Method and device for the raman spectroscopic, in ovo sex determination of fertilised and incubated birds' eggs
US10458967B2 (en) 2015-07-29 2019-10-29 Agri Advanced Technologies Gmbh Method and apparatus for creating an opening in the calcified shell in the region of the blunt end of an incubated bird egg with embryo and for determining the sex thereof
US11116184B2 (en) 2017-11-13 2021-09-14 Technische Universität München Automated noninvasive determining the fertility of a bird's egg
CN113692225A (en) * 2019-03-05 2021-11-23 以色列农业和农村发展部农业研究组织(范卡尼中心) Genome-edited birds
US20220351381A1 (en) * 2020-08-03 2022-11-03 Emgenisys, Inc. Embryo evaluation based on real-time video
US11686732B2 (en) * 2016-05-24 2023-06-27 In Ovo Holding B.V. Method and system for the non-destructive in ovo determination of fowl gender
US11774454B2 (en) 2019-08-25 2023-10-03 The Board Of Trustees Of The University Of Illinois Non-invasive analysis of embryo metabolites

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023617B1 (en) * 2014-07-11 2018-06-15 Tronico NON - INVASIVE DEVICE FOR DETERMINING THE FERTILITY AND / OR SEX OF AN EGG AND CORRESPONDING METHOD.
WO2016020838A1 (en) 2014-08-04 2016-02-11 Gencell Biosystems Ltd. Genomic analysis device and methods of use
EP3384051A4 (en) * 2015-12-03 2019-04-24 Eggxyt Ltd Methods for gender determination of avian embryos in unhatched eggs and means thereof
AU2017266331A1 (en) * 2016-05-17 2018-12-06 Osaka University Blood sample analysis method and system, for determining diabetes
DE102016011348A1 (en) 2016-09-16 2018-03-22 Technische Universität Dresden Method for classifying spectra of objects with complex information content
EP3648584A1 (en) * 2017-07-06 2020-05-13 Seleggt GmbH Method for producing chicken including determining the gender of chicken embryo's
JP6930727B2 (en) * 2017-07-20 2021-09-01 株式会社ナベル Gender-oriented selection device for seed eggs before laying eggs
FR3071701B1 (en) * 2017-10-03 2023-05-12 Nectra DEVICE FOR IN-OVO INJECTION
CN108802002B (en) * 2018-05-08 2020-11-17 华南农业大学 Silkworm egg Raman spectrum model construction method for rapidly identifying and removing diapause without damage
NL2021022B1 (en) * 2018-05-30 2019-12-10 Seleggt Gmbh Method for determining the gender of a chicken embryo
CN109618981B (en) * 2019-01-25 2021-07-27 天津大学 Detection method for chick embryo survival state based on absorption spectrum frequency characteristics
NL2023176B1 (en) 2019-05-22 2020-12-01 In Ovo B V Composition comprising eggs and use of such composition
DE102021127696B3 (en) 2021-10-25 2023-03-09 Technische Universität Dresden, Körperschaft des öffentlichen Rechts Method and arrangement for in ovo sexing of avian eggs
KR102632163B1 (en) 2022-04-13 2024-02-01 오보젠 주식회사 Device for detcting and selecting an egg embryo
CN115808414A (en) * 2023-01-18 2023-03-17 苏州贝康医疗器械有限公司 Raman spectrum analysis method for noninvasive evaluation of embryonic development quality and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365339B1 (en) * 1998-09-04 2002-04-02 Bechtel Bwxt Idaho, Llc Gender determination of avian embryo
US7041439B2 (en) * 2001-04-17 2006-05-09 Embrex, Inc. Methods and apparatus for selectively processing eggs having identified characteristics

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1671680A1 (en) * 1989-04-04 1991-08-23 Всесоюзный научно-исследовательский проектно-конструкторский институт прикладной биохимии A method of selecting allantoic fluid from chicken embryos
BRPI9712485B1 (en) * 1996-10-04 2017-05-30 Embrex Inc Soc Norte Americana Method of classifying birds in ovo
UY25347A1 (en) 1998-01-12 1999-05-14 Embrex Inc MULTIPLE INJECTION PROCEDURE FOR THE TREATMENT OF AVIAN EMBRYOS IN OVO, AND AUTOMATED DEVICE FOR INJECTION IN OVO.
US6176199B1 (en) * 1998-10-20 2001-01-23 Embrex, Inc. Method for localizing allantoic fluid of avian eggs
RU2161403C1 (en) * 1999-06-03 2001-01-10 Кубанский государственный аграрный университет Meat bird selection method
GB0001270D0 (en) * 2000-01-19 2000-03-08 Univ York Assessment method
US6850316B2 (en) 2002-06-10 2005-02-01 Embrex, Inc. Methods and apparatus for harvesting vaccine from eggs
CA2607284A1 (en) 2005-05-11 2006-11-23 Embrex, Inc. Competitive particle immunoassay methods utilizing fluorescence microscopy
US7418922B2 (en) 2005-10-05 2008-09-02 Embrex, Inc. Methods for injecting and sampling material through avian egg membranes
US7950349B1 (en) 2008-01-18 2011-05-31 Jack Dean Rollins Avian egg fertility and gender detection
RU2403711C2 (en) * 2008-04-14 2010-11-20 Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" Method of determining viability of bird eggs
KR101090505B1 (en) * 2008-12-30 2011-12-06 최은아 Composition comprising egg white-chalcanthite for preventing or treating cancer
JP2010264785A (en) * 2009-05-12 2010-11-25 Kanto Auto Works Ltd Vehicle door opening and closing device
RU2406371C1 (en) * 2009-07-21 2010-12-20 Государственное учреждение Всероссийский научно-исследовательский институт птицеперерабатывающей промышленности (ГУ ВНИИПП) Method for production of egg albumen product
DK2336751T3 (en) * 2009-12-16 2014-11-17 Fraunhofer Ges Forschung Method for determining the sex of the bird eggs
CN102210708A (en) * 2010-04-01 2011-10-12 王莉娜 Chinese medicine and egg external application therapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365339B1 (en) * 1998-09-04 2002-04-02 Bechtel Bwxt Idaho, Llc Gender determination of avian embryo
US7041439B2 (en) * 2001-04-17 2006-05-09 Embrex, Inc. Methods and apparatus for selectively processing eggs having identified characteristics

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Feng Applied Magnetic Res. 2007, 32, 2570268) and US *
Feng et al Appl. Magn. Reson. (2007), 32, 257-268 *
Gu et al, (Chinese Journal of Animal Science, 2012, Vol. 7, 23-25 *
Lu et al Poultry Science, 2007 86:673-683) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9835560B2 (en) 2014-07-04 2017-12-05 Technische Universitaet Dresden Method and device for the raman spectroscopic, in ovo sex determination of fertilised and incubated birds' eggs
US10458967B2 (en) 2015-07-29 2019-10-29 Agri Advanced Technologies Gmbh Method and apparatus for creating an opening in the calcified shell in the region of the blunt end of an incubated bird egg with embryo and for determining the sex thereof
US10852284B2 (en) 2016-04-04 2020-12-01 Technische Universität Dresden Method and device for optical in ovo sex determination of fertilized and incubated birds' eggs
DE102016004051B3 (en) * 2016-04-04 2017-07-27 Technische Universität Dresden Method and device for optical in-ovo sexing of fertilized and incubated bird eggs
US11686732B2 (en) * 2016-05-24 2023-06-27 In Ovo Holding B.V. Method and system for the non-destructive in ovo determination of fowl gender
US11116184B2 (en) 2017-11-13 2021-09-14 Technische Universität München Automated noninvasive determining the fertility of a bird's egg
US11122778B2 (en) 2017-11-13 2021-09-21 Technische Universität München Automated noninvasive determining the sex of an embryo and the fertility of a bird's egg
CN113692225A (en) * 2019-03-05 2021-11-23 以色列农业和农村发展部农业研究组织(范卡尼中心) Genome-edited birds
US11774454B2 (en) 2019-08-25 2023-10-03 The Board Of Trustees Of The University Of Illinois Non-invasive analysis of embryo metabolites
US11620750B2 (en) * 2020-08-03 2023-04-04 Emgenisys, Inc. Embryo evaluation based on real-time video
US11636595B2 (en) 2020-08-03 2023-04-25 Emgenisys, Inc. Bovine embryo evaluation using AI/ML analysis of real-time frame speed video for predicting female-sex offspring
US11645751B2 (en) 2020-08-03 2023-05-09 Emgenisys, Inc. Bovine embryo evaluation using AI/ML analysis of real-time frame speed video for predicting male-sex offspring
US11645750B2 (en) 2020-08-03 2023-05-09 Emgenisys, Inc. Human embryo evaluation using AI/ML analysis of real-time frame speed video for predicting female-sex offspring
US20220351381A1 (en) * 2020-08-03 2022-11-03 Emgenisys, Inc. Embryo evaluation based on real-time video

Also Published As

Publication number Publication date
WO2014021715A3 (en) 2014-04-10
EP2880440A2 (en) 2015-06-10
RU2681536C2 (en) 2019-03-07
JP6279574B2 (en) 2018-02-14
JP2015523097A (en) 2015-08-13
TR201901409T4 (en) 2019-02-21
MX362096B (en) 2019-01-07
AU2013297168B2 (en) 2019-05-30
CN104704360A (en) 2015-06-10
KR102174868B1 (en) 2020-11-06
EP2880440B1 (en) 2018-10-31
UA118544C2 (en) 2019-02-11
CN104704360B (en) 2018-05-15
KR20150036781A (en) 2015-04-07
RU2015106609A (en) 2016-09-20
PL2880440T3 (en) 2019-05-31
CA2917414A1 (en) 2014-02-06
US20210215663A1 (en) 2021-07-15
MX2015001297A (en) 2015-06-05
BR112015002156B1 (en) 2024-01-02
ZA201501224B (en) 2016-01-27
AU2013297168A1 (en) 2015-03-05
WO2014021715A2 (en) 2014-02-06
DK2880440T3 (en) 2019-02-25
CA2917414C (en) 2021-09-14
ES2709027T3 (en) 2019-04-12
BR112015002156A2 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
US20210215663A1 (en) Apparatus for analysis of eggs
ES2877368T3 (en) Method and system for the non-destructive in ovo determination of the gender of birds
EP1021717B1 (en) Method of sorting birds in ovo
US7249569B2 (en) Methods for injecting avian eggs
Akhlaghi et al. Prestorage in ovo injection of biological buffers: An approach to improve hatchability in long-term stored eggs
Mbajiorgu Effect of hatching egg size on hatchability and chick hatch-weight of indigenous Venda chickens
NL2009255C2 (en) Gender determination of avian embryos in ovo.
NL2009256C2 (en) Age determination of avian embryos in ovo.
NL2016819B1 (en) Method and system for the non-destructive in ovo determination of fowl gender.
Walstra et al. Adaptive response to Eimeriaacervulina in rearing hens is affected by suboptimal incubation temperature and heat exposure in later life
Mbajiorgu EFFECT OF HA EFFECT OF HATCHING EGG SIZE ON HA CHING EGG SIZE ON HA CHING EGG SIZE ON HATCHABILITY CHABILITY AND CHICK HA AND CHICK HATCH-WEIGHT OF INDIGENOUS VENDA CHICKENS WEIGHT OF INDIGENOUS VENDA CHICKENS

Legal Events

Date Code Title Description
AS Assignment

Owner name: IN OVO B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRUINS, WOUTER SEBASTIAAN;STUTTERHEIM, WIL MARIJN;REEL/FRAME:035925/0069

Effective date: 20150401

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION