US20150267000A1 - End-capped poly(ester amide) copolymers - Google Patents

End-capped poly(ester amide) copolymers Download PDF

Info

Publication number
US20150267000A1
US20150267000A1 US14/732,568 US201514732568A US2015267000A1 US 20150267000 A1 US20150267000 A1 US 20150267000A1 US 201514732568 A US201514732568 A US 201514732568A US 2015267000 A1 US2015267000 A1 US 2015267000A1
Authority
US
United States
Prior art keywords
poly
lactide
medical device
implantable medical
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/732,568
Inventor
Jessica Renee DesNoyer
Stephen Dirk Pacetti
Vidya Nayak
Lothar Kleiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Cardiovascular Systems Inc
Original Assignee
Abbott Cardiovascular Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/975,247 external-priority patent/US20060089485A1/en
Application filed by Abbott Cardiovascular Systems Inc filed Critical Abbott Cardiovascular Systems Inc
Priority to US14/732,568 priority Critical patent/US20150267000A1/en
Publication of US20150267000A1 publication Critical patent/US20150267000A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/041Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide

Definitions

  • This invention generally relates to end-capped poly(ester amide) copolymers useful in the manufacture or coating of an implantable medical device.
  • Poly(ester amide)s (PEA)s are useful as polymeric carriers of bioactive substances when coated on implantable medical devices such as stents to reduce restenosis and other problems associated with the treatment of atherosclerosis (see, e.g., U.S. Pat. No. 6,503,538, B1).
  • PEAs can be made by condensation polymerization of a diamino compound with a diester dicarboxylic acid (Scheme I).
  • Scheme I the dicarboxylic acids are converted to an active di-p-nitrophenyl derivative to facilitate the polymerization.
  • the PEA formed has one terminal carboxylic acid group and one terminal amino group.
  • the PEA formed can have excess terminal carboxylic acid groups if more of the dicarboxylic acid subunit is used or excess terminal amino groups if more of the diamino subunit is used.
  • Reactive end groups in PEAs can be problematic. First, since active amino and active carboxyl end groups are present, polymerization can continue. Second, if the PEA formed is combined with a drug that possesses an functional group capable of reacting with a carboxyl (activated or unactivated) or amino group, it is possible that the drug will react and covalently attach to the PEA, essentially rendering the drug unavailable for therapeutic use.
  • PEAs in which the end groups are rendered inactive so as to avoid the above problem and any other than might arise because of the presence of the active terminal functional groups.
  • the present invention provide such PEAs and methods for preparing them.
  • an aspect of the present invention is a poly(ester amide) (PEA) comprising inactivated terminal amino groups and inactivated terminal carboxyl groups wherein the inactivated terminal amino groups are end-capped and the inactivated terminal carboxyl groups are either the free acid, a salt thereof or are end-capped.
  • PEA poly(ester amide)
  • At least 50% of the terminal amino groups have been inactivated and at least 50% of the terminal carboxyl groups have been inactivated.
  • At least 90% of the terminal amino groups have been inactivated and at least 90% of the terminal carboxyl groups have been inactivated.
  • At least 99% of the terminal amino groups have been inactivated and at least 99% of the terminal carboxyl groups have been inactivated.
  • the terminal amino groups or the terminal carboxyl groups are inactivated by reaction with a bioactive agent.
  • An aspect of this invention is a method of inactivating a poly(ester amide) (PEA), comprising end-capping terminal amino groups by reaction with a first chemical agent and end-capping terminal carboxyl groups with a second chemical agent.
  • PEA poly(ester amide)
  • the first chemical agent or the second chemical agent in the above method is a bioactive agent.
  • a coating for an implantable medical device comprising the PEA of claim 1 .
  • the coating further comprising a biocompatible polymer or a biobeneficial or a bioactive agent or any combination thereof.
  • the implantable medical device is a stent.
  • the implantable medical device is a stent.
  • An aspect of this invention is an implantable medical device formed of a material comprising a PEA of claim 1 .
  • the material further comprises a bioactive agent.
  • the bioactive agent is selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutase mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxyl)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propylrapamycin, 40-O-[2-(2-hydroxyl)ethoxy]ethylrapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, progenitor cell capturing antibody, prohealing drugs, prodrugs thereof, co-drugs thereof, and a combination thereof.
  • An aspect of this invention is a method of treating or preventing a disorder in a patient in need thereof comprising implanting in the patient an implantable device comprising the coating of claim 12 , wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
  • poly(ester amide) or “PEA” refers to a polymer formed by the condensation reaction of a diacid having the general structure
  • m is an integer
  • n is 0 or an integer
  • X, Y, Z 1 and Z 2 are independently branched or straight chain alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic or any combinations thereof and any of which may be optionally substituted.
  • a nonlimiting example of such a PEA is shown in Scheme 1 above.
  • Other exemplary PEAs are described in, e.g., U.S. Pat. No. 6,503,538 B1.
  • the carboxyl groups of the dicarboxy monomer In the synthesis of PEAs it is often desirable to activate the carboxyl groups of the dicarboxy monomer to facilitate the condensation with the diamines. This is most often accomplished by a reaction that substitutes for the hydrogen of the free carboxylic acid (—C(O)OH) or the alkyl group of an inactive ester such as a methyl or ethyl ester (—C(O)OCH 3 ), —C(O)OCH 2 CH 3 ) an entity that has the property of being a good leaving group.
  • the carboxyl groups can be activated by any number of methods well-known to those skilled in the art. All such methods as well as any that might be devised in the future are within the scope of this invention.
  • activating functionalities are, without limitation, mononitrophenyl compounds such as p-nitrophenyl, m-nitrophenyl or o-nitrophenyl, dinitrophenyl compounds, trinitrophenyl compounds, and phenyl groups bearing one, two, or three cyano, halogen, keto, ester, or sulfone groups.
  • the amino groups of the diamine monomer used in the synthesis of the PEA generally need no further activation, they are sufficiently active in their own right.
  • a “terminal amino group” and a “terminal carboxyl group” refer to the groups at the end of PEA chains as exemplified in Scheme I).
  • end-capping refers to the reaction of a terminal amino group and/or a terminal carboxyl group with one or more moiety(ies) that alters the chemical properties of the terminal group, rendering it less likely to spontaneously react with other functionalized compounds with which they may come in contact such as, in particular for the purposes of this invention, bioactive agents.
  • the thus-altered amino or carboxyl group can be referred to as “inactivated.”
  • end-capping a terminal carboxyl group includes simply hydrolyzing or otherwise substituting an activating moiety on the carboxyl group with an hydrogen atom to form the free acid (—C(O)OH) or a salt thereof.
  • the end-capped PEA may optionally contain in its polymeric matrix one or more biocompatible polymers (that may be biodegradable, bioabsorbable, non-biodegradable, or non-bioabsorbable) other than a PEA, a biobeneficial material, a bioactive agent or any combination of these.
  • the composition can be used to coat an implantable device or to form the implantable device itself, such as, without limitation, a stent.
  • the amino active groups on the PEA can be end-capped first.
  • the end-capping process is a separate reaction done after the polymerization.
  • the PEA may, or may not be purified before the amino endcapping reaction.
  • the active amino group can be end-capped by alkylation of the amino group, forming a quaternary ammonium group:
  • the active amino group can be end-capped by reaction with an acid chloride to form an amide:
  • the active amino group can be subjected to reductive amination with an aldehyde in the presence of a reducing agent, e.g., NaCNBH 3 and NaBH 4 :
  • a reducing agent e.g., NaCNBH 3 and NaBH 4 :
  • R any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms
  • the active amino group can be rendered inactive by reaction with a diazo compound in the presence of a Lewis acid such as BF 3 , forming an alkylated amino group:
  • R hydrogen or any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms
  • diazotization of the amine can be used to inactivate an active primary amino group.
  • diazotization is shown below:
  • Active primary amino groups can be rendered inactive by oxidation, forming a —NO 2 group:
  • an active amino group on the PEA can react with an anhydride, an epoxide, isocyanate, or isothiocyanate respectively to inactivate the active amino group:
  • R is an alkyl moiety, which can be saturated or unsaturated, linear or branched alkyl or a cycloalkyl or an aryl moiety.
  • R is an alkyl or cycloalkyl with 2-12 carbons.
  • An active amino group on the PEA may also be inactivated by Michael addition to an ⁇ , ⁇ -unsaturated ester, ketone, aldehyde or another unsaturated electron-withdrawing group, e.g., —CN:
  • the carboxyl groups or activated carboxyl groups on the PEA can be inactivated by reaction with a primary amine, a secondary amine, heterocyclic amine, a thiol, alcohol, malonate anion, carbanion, or other nucleophilic group.
  • PEA with a p-nitrophenyl carboxyl end group can be inactivated as follows:
  • R any carbon alkyl, or unsaturated, linear or branched, with, e.g. 2 to 12 carbon atoms;
  • R 1 , R 2 H or any alkyl radical having, e.g., 2 to 12 carbon atoms or R 1 , R 2 may also be alkyl ether, alkyl hydroxyl such as 2-hydroxyethyl
  • the p-nitrophenyl carboxyl group on the PEA can be hydrolyzed under acidic or basic conditions so as to form a free carboxylic acid group or carboxylate group (Scheme XI):
  • the p-nitrophenol ester may also be reacted with reducing agents such as sodium borohydride or sodium cyanoborohydride to convert the ester to a hydroxyl group.
  • reducing agents such as sodium borohydride or sodium cyanoborohydride to convert the ester to a hydroxyl group.
  • the biocompatible polymer that can be used with the end-capped PEA in the coatings or medical devices described herein can be any biocompatible polymer known in the art, which can be biodegradable or nondegradable.
  • Representative examples of polymers that can be used to coat an implantable device in accordance with the present invention include, but are not limited to, ethylene vinyl alcohol copolymer (EVOH, EVAL), poly(hydroxyvalerate), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactide), poly(L-lactide-co-D,L-lactide), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(D,L-lactide-co-glycolide) (PDLLAGA), poly(glycolic acid
  • the biocompatible polymer can provide controlled release of a bioactive agent if such is included in the coating and/or if binding the bioactive agent to a substrate, which can be the surface of an implantable device or a coating thereon.
  • Controlled release and delivery of bioactive agent using a polymeric carrier has been extensively researched in the past several decades (see, for example, Mathiowitz, Ed., Encyclopedia of Controlled Drug Delivery, C.H.I.P.S., 1999).
  • PLA based drug delivery systems have provided controlled release of many therapeutic drugs with various degrees of success (see, for example, U.S. Pat. No. 5,581,387 to Labrie, et al.).
  • the release rate of the bioactive agent can be controlled by, for example, selection of a particular type of biocompatible polymer, which can provide a desired release profile of the bioactive agent.
  • One of ordinary skill in the art can readily select a carrier system using a biocompatible polymer to provide a controlled release of the bioactive agent. Examples of the controlled release carrier system can come from the examples provided above; however, other possibilities not provided are also achievable.
  • a presently preferred biocompatible polymer is a polyester, such as PLA, PLGA, PGA, PHA, poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly((3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), and a combination thereof, and polycaprolactone (PCL).
  • PHB poly(3-hydroxybutyrate)
  • PHA poly(3-hydroxybutyrate)
  • PHA poly(3-hydroxybutyrate)
  • PHA poly(3-hydroxybutyrate)
  • PHA poly(3-hydroxybutyrate)
  • PHA poly(3-hydroxybutyrate)
  • PHA poly(3-hydroxybutyrate)
  • PHA poly(3-hydroxybutyrate)
  • PHA poly(3-hydroxybutyrate)
  • PHA poly(3-hydroxybutyrate-co
  • the end-capped PEA described herein can form a coating on an implantable medical device or can form the device itself where one or more bioactive agents are contained in the polymeric matrix.
  • the bioactive agent(s) can be any which has a therapeutic, prophylactic or diagnostic effect. These agents can have, without limitation, anti-proliferative, anti-inflammatory, antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant or cystostatic properties.
  • suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities.
  • Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes.
  • Some other examples of other bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy.
  • anti-proliferative agents examples include rapamycin, 40-O-(2-hydroxyl)ethyl-rapamycin (everolimus), methyl rapamycin (ABT-578), 40-O-(3-hydroxyl)propyl-rapamycin, 40-O-[2-(2-hydroxyl)ethoxy]ethyl-rapamycin, 40-O-tetrazole-rapamycin, paclitaxel and, docetaxel.
  • antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g.
  • antiplatelet, anticoagulant, antifibrin and antithrombin compounds include, again without limitation, sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid),
  • FGF fibroblast growth factor
  • anti-inflammatory agents including steroidal and non-steroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, combinations thereof.
  • cytostatic substance include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.).
  • An example of an antiallergic agent is permirolast potassium.
  • therapeutic substances or agents which may be appropriate include alpha-interferon, bioactive RGD, and genetically engineered epithelial cells.
  • the foregoing substances can also be used in the form of prodrugs or co-drugs thereof.
  • Other active agents which are currently available or that may be developed in the future are equally applicable.
  • the dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained.
  • the dosage or concentration of the bioactive agent required to inhibit the desired cellular activity of the vascular region can depend upon factors such as the particular circumstances of the patient; the nature of the tissues being delivered to; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other active agents are employed, the nature and type of the substance or combination of substances.
  • Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
  • the biobeneficial material that can be used with the end-capped PEA to form a coating on or an implantable medical device per se as described herein can be a polymeric material or non-polymeric material.
  • the biobeneficial material is preferably flexible, biocompatible and biodegradable.
  • a biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
  • a biobeneficial material has a relatively low glass transition temperature (T g ).
  • T g glass transition temperature
  • the T g is below human body temperature. This attribute renders the biobeneficial material relatively soft as compared to the biocompatible polymer and allows a layer of coating containing the biobeneficial material to fill any surface damages that may arise when an implantable medical device is coated with a layer comprising the biocompatible polymer. For example, during radial expansion of the stent, a more rigid biocompatible polymer can crack or have surface fractures. A softer biobeneficial material can fill in the crack and fractures.
  • hydrophilicity Another attribute of a biobeneficial material is hydrophilicity.
  • the hydrophilicity of the biobeneficial agent contributes to the overall hydrophilicity of the coating containing the agent. Generally, the higher the hydrophilicity of a coating, the higher the drug release rate from that coating and the higher the degradation rate of the coating.
  • biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol), copoly(ether-esters) (e.g. PEO/PLA); polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, poly(ethylene glycol) acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-tri
  • the biobeneficial material is a block copolymer having flexible poly(ethylene glycol) and poly(butylene terephthalate) blocks (PEG/PBT, e.g., PolyActiveTM).
  • PEG/PBT poly(butylene terephthalate) blocks
  • PolyActiveTM includes AB, ABA and BAB copolymers where A is PEG and B is PBT.
  • an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient.
  • implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.).
  • the underlying structure of the device can be of virtually any design.
  • the device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
  • ELGILOY cobalt chromium alloy
  • stainless steel 316L
  • high nitrogen stainless steel e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
  • BIODUR 108 cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol)
  • tantalum nickel-t
  • MP35N consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum.
  • MP20N consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.
  • Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.
  • a coating of the various described embodiments can be formed on an implantable medical device or prosthesis, e.g., a stent.
  • the agent will be retained on the device during delivery and expansion and then will be released at a desired rate and for a predetermined duration at the site of implantation.
  • the medical device is a stent.
  • a stent having the above-described coating is useful for a variety of medical procedures, including, without limitation, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways.
  • a stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by atherosclerosis, abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis.
  • Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
  • Dry triethylamine (61.6 ml, 0.44 mole) is added to a mixture of di-p-toluenesulfonic acid salt of bis-(L-leucine)-1,6-hexylene diester (120.4 g, 0.18 mole), di-p-toluenesulfonic acid salt of L-lysine benzyl ester (11.61 g, 0.02 mole), and di-p-nitrophenyl sebacinate (88.88 g, 0.2 mole) in dry DMF (110 ml). The mixture is stirred and heated at 80° C. for 12 hours.
  • the active amino end groups on the PEA prepared in Example 1 can be endcapped as follows: While stirring, the DMF/PEA solution of Example 1 is cooled to 0° C. Triethylamine (0.0057 mole) is added and acetyl chloride (0.448 g, 0.0057 mole) is added dropwise to the mixture. Stirring is continued for 12 hours while the solution is allowed to equilibrate to room temperature. The solution is diluted with ethanol (300 ml), and poured into one liter of deionized water. The precipitated polymer is collected, extracted with two, one liter portions of phosphate buffer (0.1 M, pH 7), a final, one liter portion of deionized water, isolated by suction filtration, and vacuum dried at 40° C.
  • the active amino endgroups on the PEA prepared in Example 1 can also be endcapped as follows: Ethyl acrylate (0.571 g, 0.0057 mole) is added to the DMF/PEA solution of Example 1. Phosphoric acid (0.011 g, 0.000114 mole) is added as an acid catalyst. With stirring, the solution is heated to 100° C. and stirred for 60 minutes. The solution is diluted with ethanol (300 ml), and poured into one liter of deionized water. The precipitated polymer is collected, extracted with two, one liter portions of phosphate buffer (0.1 M, pH 7), a final, one liter portion of deionized water, isolated by suction filtration, and vacuum dried at 40° C.
  • a medical article with two layers can be fabricated to comprise everolimus by preparing a first composition and a second composition, wherein the first composition is a layer containing a bioactive agent which includes a matrix of the PEA of Example 2 and a bioactive agent, and the second composition is a topcoat layer comprising the PEA of Example 2.
  • the first composition can be prepared by mixing about 2% (w/w) of the PEA of Example 2 and about 0.33% (w/w) everolimus in absolute ethanol, sprayed onto a surface of a bare, 12 mm VISIONTM stent (Guidant Corp.) and dried to form a coating.
  • An exemplary coating technique involves spray coating with a 0.014 fan nozzle, a feed pressure of about 0.2 atm, and an atomization pressure of about 1.3 atm; applying about 20 ⁇ g of wet coating per pass; drying the coating at about 62° C. for about 10 seconds between passes and baking the coating at about 50° C. for about 1 hour after the final pass to form a dry agent layer.
  • the layer containing a bioactive agent would be comprised of about 336 ⁇ g of the PEA of Example 2 and about 56 ⁇ g of everolimus.
  • the second composition can be prepared by mixing about 2% (w/w) of the PEA of Example 2 in absolute ethanol. The solution is then applied over the dried agent layer using the same coating technique above.
  • the topcoat would contain about 400 ⁇ g of the PEA of Example 2.
  • the total weight of the stent coating would be about 792 ⁇ g.

Abstract

This invention relates to poly(ester amide)s (PEAs) comprising inactivated terminal amino and carboxyl groups, methods of synthesizing the inactivated PEAs and uses for them in the treatment of vascular diseases.

Description

    FIELD
  • This invention generally relates to end-capped poly(ester amide) copolymers useful in the manufacture or coating of an implantable medical device.
  • BACKGROUND
  • Poly(ester amide)s (PEA)s are useful as polymeric carriers of bioactive substances when coated on implantable medical devices such as stents to reduce restenosis and other problems associated with the treatment of atherosclerosis (see, e.g., U.S. Pat. No. 6,503,538, B1).
  • PEAs can be made by condensation polymerization of a diamino compound with a diester dicarboxylic acid (Scheme I). In Scheme I, the dicarboxylic acids are converted to an active di-p-nitrophenyl derivative to facilitate the polymerization.
  • When the dicarboxylic acid and the diamino subunits are used stoichiometrically, the PEA formed has one terminal carboxylic acid group and one terminal amino group. When the dicarboxylic acid and the diamino subunits are not used in a 1:1 ratio, the PEA formed can have excess terminal carboxylic acid groups if more of the dicarboxylic acid subunit is used or excess terminal amino groups if more of the diamino subunit is used.
  • Figure US20150267000A1-20150924-C00001
  • Reactive end groups in PEAs can be problematic. First, since active amino and active carboxyl end groups are present, polymerization can continue. Second, if the PEA formed is combined with a drug that possesses an functional group capable of reacting with a carboxyl (activated or unactivated) or amino group, it is possible that the drug will react and covalently attach to the PEA, essentially rendering the drug unavailable for therapeutic use.
  • What is needed are PEAs in which the end groups are rendered inactive so as to avoid the above problem and any other than might arise because of the presence of the active terminal functional groups. The present invention provide such PEAs and methods for preparing them.
  • SUMMARY
  • Thus, an aspect of the present invention is a poly(ester amide) (PEA) comprising inactivated terminal amino groups and inactivated terminal carboxyl groups wherein the inactivated terminal amino groups are end-capped and the inactivated terminal carboxyl groups are either the free acid, a salt thereof or are end-capped.
  • In an aspect of this invention, at least 50% of the terminal amino groups have been inactivated and at least 50% of the terminal carboxyl groups have been inactivated.
  • In an aspect of this invention, at least 90% of the terminal amino groups have been inactivated and at least 90% of the terminal carboxyl groups have been inactivated.
  • In an aspect of this invention, at least 99% of the terminal amino groups have been inactivated and at least 99% of the terminal carboxyl groups have been inactivated.
  • In an aspect of this invention, the terminal amino groups or the terminal carboxyl groups are inactivated by reaction with a bioactive agent.
  • An aspect of this invention is a method of inactivating a poly(ester amide) (PEA), comprising end-capping terminal amino groups by reaction with a first chemical agent and end-capping terminal carboxyl groups with a second chemical agent.
  • In an aspect of this invention, the first chemical agent or the second chemical agent in the above method is a bioactive agent.
  • In aspect of this invention is a coating for an implantable medical device comprising the PEA of claim 1.
  • In an aspect of this invention, the coating further comprising a biocompatible polymer or a biobeneficial or a bioactive agent or any combination thereof.
  • In an aspect of this invention, in the above coating the implantable medical device is a stent.
  • In an aspect of this invention, in the above coating, the implantable medical device is a stent.
  • An aspect of this invention is an implantable medical device formed of a material comprising a PEA of claim 1.
  • In an aspect of this invention, with regard to the above implantable medical device, the material further comprises a bioactive agent.
  • In an aspect of this invention with regard to the above coating and the above implantable medical device, the bioactive agent is selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutase mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxyl)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propylrapamycin, 40-O-[2-(2-hydroxyl)ethoxy]ethylrapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, progenitor cell capturing antibody, prohealing drugs, prodrugs thereof, co-drugs thereof, and a combination thereof.
  • An aspect of this invention is a method of treating or preventing a disorder in a patient in need thereof comprising implanting in the patient an implantable device comprising the coating of claim 12, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
  • DETAILED DESCRIPTION
  • As used herein, “poly(ester amide)” or “PEA” refers to a polymer formed by the condensation reaction of a diacid having the general structure
  • Figure US20150267000A1-20150924-C00002
  • with a diaminodiester having the general structure
  • Figure US20150267000A1-20150924-C00003
  • and optionally with a diamine having the general structure NH2—Y—NH2 to afford a compound having the general structure
  • Figure US20150267000A1-20150924-C00004
  • wherein m is an integer, n is 0 or an integer; X, Y, Z1 and Z2 are independently branched or straight chain alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic or any combinations thereof and any of which may be optionally substituted. A nonlimiting example of such a PEA is shown in Scheme 1 above. Other exemplary PEAs are described in, e.g., U.S. Pat. No. 6,503,538 B1.
  • In the synthesis of PEAs it is often desirable to activate the carboxyl groups of the dicarboxy monomer to facilitate the condensation with the diamines. This is most often accomplished by a reaction that substitutes for the hydrogen of the free carboxylic acid (—C(O)OH) or the alkyl group of an inactive ester such as a methyl or ethyl ester (—C(O)OCH3), —C(O)OCH2CH3) an entity that has the property of being a good leaving group. Thus, the carboxyl groups can be activated by any number of methods well-known to those skilled in the art. All such methods as well as any that might be devised in the future are within the scope of this invention. Among these activating functionalities are, without limitation, mononitrophenyl compounds such as p-nitrophenyl, m-nitrophenyl or o-nitrophenyl, dinitrophenyl compounds, trinitrophenyl compounds, and phenyl groups bearing one, two, or three cyano, halogen, keto, ester, or sulfone groups.
  • The amino groups of the diamine monomer used in the synthesis of the PEA generally need no further activation, they are sufficiently active in their own right.
  • As used herein, a “terminal amino group” and a “terminal carboxyl group” refer to the groups at the end of PEA chains as exemplified in Scheme I).
  • As used herein “end-capping” refers to the reaction of a terminal amino group and/or a terminal carboxyl group with one or more moiety(ies) that alters the chemical properties of the terminal group, rendering it less likely to spontaneously react with other functionalized compounds with which they may come in contact such as, in particular for the purposes of this invention, bioactive agents. The thus-altered amino or carboxyl group can be referred to as “inactivated.” For the purposes of this invention, “end-capping” a terminal carboxyl group includes simply hydrolyzing or otherwise substituting an activating moiety on the carboxyl group with an hydrogen atom to form the free acid (—C(O)OH) or a salt thereof.
  • The end-capped PEA may optionally contain in its polymeric matrix one or more biocompatible polymers (that may be biodegradable, bioabsorbable, non-biodegradable, or non-bioabsorbable) other than a PEA, a biobeneficial material, a bioactive agent or any combination of these. As such, the composition can be used to coat an implantable device or to form the implantable device itself, such as, without limitation, a stent.
  • End-Capping Amino Groups
  • The amino active groups on the PEA can be end-capped first. The end-capping process is a separate reaction done after the polymerization. The PEA may, or may not be purified before the amino endcapping reaction.
  • In one embodiment, the active amino group can be end-capped by alkylation of the amino group, forming a quaternary ammonium group:

  • PEA-NH2+RX→PEA-NR3 +X
  • wherein X=Br, Cl, I and R=any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms
  • Scheme II
  • In another embodiment, the active amino group can be end-capped by reaction with an acid chloride to form an amide:
  • Figure US20150267000A1-20150924-C00005
  • wherein X=Br, Cl, I and R=any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms
  • The active amino group can be subjected to reductive amination with an aldehyde in the presence of a reducing agent, e.g., NaCNBH3 and NaBH4:
  • Figure US20150267000A1-20150924-C00006
  • wherein R=any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms
  • In still a further embodiment, the active amino group can be rendered inactive by reaction with a diazo compound in the presence of a Lewis acid such as BF3, forming an alkylated amino group:

  • PEA-NH2+CR2N2+BF3→PEA-N(CR2)2
  • wherein R=hydrogen or any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms
  • Scheme V
  • In some other embodiments, diazotization of the amine can be used to inactivate an active primary amino group. One example of such diazotization is shown below:

  • PEA-CH2—CH2—NH2+NaNO2+aq. HCl→PEA-CH═CH2
  • Scheme VI
  • Active primary amino groups can be rendered inactive by oxidation, forming a —NO2 group:

  • PEA-CH2—CH2—NH2+oxidizing agent→PEA-NO2
  • Scheme VII
  • Alternatively, an active amino group on the PEA can react with an anhydride, an epoxide, isocyanate, or isothiocyanate respectively to inactivate the active amino group:
  • Figure US20150267000A1-20150924-C00007
  • In Scheme VIII, R is an alkyl moiety, which can be saturated or unsaturated, linear or branched alkyl or a cycloalkyl or an aryl moiety. Preferably, R is an alkyl or cycloalkyl with 2-12 carbons.
    An active amino group on the PEA may also be inactivated by Michael addition to an α,β-unsaturated ester, ketone, aldehyde or another unsaturated electron-withdrawing group, e.g., —CN:
  • Figure US20150267000A1-20150924-C00008
  • wherein R=hydrogen, any primary or secondary alkyl radical having 2 to 12 carbon atoms, or OR′, wherein R′=any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms
  • End-Capping Carboxyl Groups
  • The carboxyl groups or activated carboxyl groups on the PEA can be inactivated by reaction with a primary amine, a secondary amine, heterocyclic amine, a thiol, alcohol, malonate anion, carbanion, or other nucleophilic group. For example, PEA with a p-nitrophenyl carboxyl end group can be inactivated as follows:
  • Figure US20150267000A1-20150924-C00009
  • wherein R=any carbon alkyl, or unsaturated, linear or branched, with, e.g. 2 to 12 carbon atoms; R1, R2=H or any alkyl radical having, e.g., 2 to 12 carbon atoms or R1, R2 may also be alkyl ether, alkyl hydroxyl such as 2-hydroxyethyl
  • Alternatively, the p-nitrophenyl carboxyl group on the PEA can be hydrolyzed under acidic or basic conditions so as to form a free carboxylic acid group or carboxylate group (Scheme XI):
  • Figure US20150267000A1-20150924-C00010
  • Or the p-nitrophenol ester may also be reacted with reducing agents such as sodium borohydride or sodium cyanoborohydride to convert the ester to a hydroxyl group.
  • Other means of inactivating the carboxyl group will become apparent to those skilled in the art based on the disclosures herein. All such inactivating techniques are within the scope of this invention.
  • Biocompatible Polymer
  • The biocompatible polymer that can be used with the end-capped PEA in the coatings or medical devices described herein can be any biocompatible polymer known in the art, which can be biodegradable or nondegradable. Representative examples of polymers that can be used to coat an implantable device in accordance with the present invention include, but are not limited to, ethylene vinyl alcohol copolymer (EVOH, EVAL), poly(hydroxyvalerate), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactide), poly(L-lactide-co-D,L-lactide), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(D,L-lactide-co-glycolide) (PDLLAGA), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), poly(butylene terephthalate-co-PEG-terephthalate), polyurethanes, polyphosphazenes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride, polyvinyl ethers, such as polyvinyl methyl ether, polyvinylidene halides, such as vinylidene fluoride (without limitation Solef™ or Kynar™), polyvinylidene fluoride (PVDF) or poly(vinylidene-co-hexafluoropropylene) (PVDF-co-HFP), polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, poly(glyceryl sebacate), poly(propylene fumarate), epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose.
  • The biocompatible polymer can provide controlled release of a bioactive agent if such is included in the coating and/or if binding the bioactive agent to a substrate, which can be the surface of an implantable device or a coating thereon. Controlled release and delivery of bioactive agent using a polymeric carrier has been extensively researched in the past several decades (see, for example, Mathiowitz, Ed., Encyclopedia of Controlled Drug Delivery, C.H.I.P.S., 1999). For example, PLA based drug delivery systems have provided controlled release of many therapeutic drugs with various degrees of success (see, for example, U.S. Pat. No. 5,581,387 to Labrie, et al.). The release rate of the bioactive agent can be controlled by, for example, selection of a particular type of biocompatible polymer, which can provide a desired release profile of the bioactive agent. The release profile of the bioactive agent can be further controlled by selecting the molecular weight of the biocompatible polymer and/or the ratio of the biocompatible polymer to the bioactive agent. Additional ways to control the release of the bioactive agent are specifically designing the polymer coating construct, conjugating the active agent onto the polymeric backbone, designing a micro-phase-separated PEA where the agent resides in the more mobile segment, and designing a PEA in which the bioactive has an appropriate level of solubility. One of ordinary skill in the art can readily select a carrier system using a biocompatible polymer to provide a controlled release of the bioactive agent. Examples of the controlled release carrier system can come from the examples provided above; however, other possibilities not provided are also achievable.
  • A presently preferred biocompatible polymer is a polyester, such as PLA, PLGA, PGA, PHA, poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly((3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), and a combination thereof, and polycaprolactone (PCL).
  • Bioactive Agents
  • The end-capped PEA described herein can form a coating on an implantable medical device or can form the device itself where one or more bioactive agents are contained in the polymeric matrix. The bioactive agent(s) can be any which has a therapeutic, prophylactic or diagnostic effect. These agents can have, without limitation, anti-proliferative, anti-inflammatory, antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant or cystostatic properties. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Some other examples of other bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of anti-proliferative agents include rapamycin, 40-O-(2-hydroxyl)ethyl-rapamycin (everolimus), methyl rapamycin (ABT-578), 40-O-(3-hydroxyl)propyl-rapamycin, 40-O-[2-(2-hydroxyl)ethoxy]ethyl-rapamycin, 40-O-tetrazole-rapamycin, paclitaxel and, docetaxel. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of antiplatelet, anticoagulant, antifibrin and antithrombin compounds include, again without limitation, sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of anti-inflammatory agents including steroidal and non-steroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, combinations thereof. Examples of such cytostatic substance include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, bioactive RGD, and genetically engineered epithelial cells. The foregoing substances can also be used in the form of prodrugs or co-drugs thereof. Other active agents which are currently available or that may be developed in the future are equally applicable.
  • The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent required to inhibit the desired cellular activity of the vascular region can depend upon factors such as the particular circumstances of the patient; the nature of the tissues being delivered to; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
  • Biobeneficial Material
  • The biobeneficial material that can be used with the end-capped PEA to form a coating on or an implantable medical device per se as described herein can be a polymeric material or non-polymeric material. The biobeneficial material is preferably flexible, biocompatible and biodegradable. A biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
  • Generally, a biobeneficial material has a relatively low glass transition temperature (Tg). In some embodiments, the Tg is below human body temperature. This attribute renders the biobeneficial material relatively soft as compared to the biocompatible polymer and allows a layer of coating containing the biobeneficial material to fill any surface damages that may arise when an implantable medical device is coated with a layer comprising the biocompatible polymer. For example, during radial expansion of the stent, a more rigid biocompatible polymer can crack or have surface fractures. A softer biobeneficial material can fill in the crack and fractures.
  • Another attribute of a biobeneficial material is hydrophilicity. The hydrophilicity of the biobeneficial agent contributes to the overall hydrophilicity of the coating containing the agent. Generally, the higher the hydrophilicity of a coating, the higher the drug release rate from that coating and the higher the degradation rate of the coating.
  • Representative biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol), copoly(ether-esters) (e.g. PEO/PLA); polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, poly(ethylene glycol) acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, chitosan, alginate, silicones, and combinations thereof.
  • In a preferred embodiment, the biobeneficial material is a block copolymer having flexible poly(ethylene glycol) and poly(butylene terephthalate) blocks (PEG/PBT, e.g., PolyActive™). PolyActive™ includes AB, ABA and BAB copolymers where A is PEG and B is PBT.
  • Examples of Implantable Medical Devices
  • As used herein, an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.
  • Method of Use
  • In accordance with embodiments of the invention, a coating of the various described embodiments can be formed on an implantable medical device or prosthesis, e.g., a stent. For coatings including one or more active agents, the agent will be retained on the device during delivery and expansion and then will be released at a desired rate and for a predetermined duration at the site of implantation. Preferably at present, the medical device is a stent. A stent having the above-described coating is useful for a variety of medical procedures, including, without limitation, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by atherosclerosis, abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
  • EXAMPLES
  • The following examples are for illustrative purposes only and are not intended nor should they be construed as limiting the scope of this invention in any manner.
  • Example 1 Preparation of co-poly-{[N,N′-sebacoyl-bis-(L-leucine)-1,6-hexylene diester]-[N,N′-sebacoyl-L-lysine benzyl ester]}
  • Dry triethylamine (61.6 ml, 0.44 mole) is added to a mixture of di-p-toluenesulfonic acid salt of bis-(L-leucine)-1,6-hexylene diester (120.4 g, 0.18 mole), di-p-toluenesulfonic acid salt of L-lysine benzyl ester (11.61 g, 0.02 mole), and di-p-nitrophenyl sebacinate (88.88 g, 0.2 mole) in dry DMF (110 ml). The mixture is stirred and heated at 80° C. for 12 hours.
  • Example 2
  • The active amino end groups on the PEA prepared in Example 1 can be endcapped as follows: While stirring, the DMF/PEA solution of Example 1 is cooled to 0° C. Triethylamine (0.0057 mole) is added and acetyl chloride (0.448 g, 0.0057 mole) is added dropwise to the mixture. Stirring is continued for 12 hours while the solution is allowed to equilibrate to room temperature. The solution is diluted with ethanol (300 ml), and poured into one liter of deionized water. The precipitated polymer is collected, extracted with two, one liter portions of phosphate buffer (0.1 M, pH 7), a final, one liter portion of deionized water, isolated by suction filtration, and vacuum dried at 40° C.
  • Example 3
  • The active amino endgroups on the PEA prepared in Example 1 can also be endcapped as follows: Ethyl acrylate (0.571 g, 0.0057 mole) is added to the DMF/PEA solution of Example 1. Phosphoric acid (0.011 g, 0.000114 mole) is added as an acid catalyst. With stirring, the solution is heated to 100° C. and stirred for 60 minutes. The solution is diluted with ethanol (300 ml), and poured into one liter of deionized water. The precipitated polymer is collected, extracted with two, one liter portions of phosphate buffer (0.1 M, pH 7), a final, one liter portion of deionized water, isolated by suction filtration, and vacuum dried at 40° C.
  • Example 4
  • A medical article with two layers can be fabricated to comprise everolimus by preparing a first composition and a second composition, wherein the first composition is a layer containing a bioactive agent which includes a matrix of the PEA of Example 2 and a bioactive agent, and the second composition is a topcoat layer comprising the PEA of Example 2. The first composition can be prepared by mixing about 2% (w/w) of the PEA of Example 2 and about 0.33% (w/w) everolimus in absolute ethanol, sprayed onto a surface of a bare, 12 mm VISION™ stent (Guidant Corp.) and dried to form a coating. An exemplary coating technique involves spray coating with a 0.014 fan nozzle, a feed pressure of about 0.2 atm, and an atomization pressure of about 1.3 atm; applying about 20 μg of wet coating per pass; drying the coating at about 62° C. for about 10 seconds between passes and baking the coating at about 50° C. for about 1 hour after the final pass to form a dry agent layer. The layer containing a bioactive agent would be comprised of about 336 μg of the PEA of Example 2 and about 56 μg of everolimus. The second composition can be prepared by mixing about 2% (w/w) of the PEA of Example 2 in absolute ethanol. The solution is then applied over the dried agent layer using the same coating technique above. The topcoat would contain about 400 μg of the PEA of Example 2. The total weight of the stent coating would be about 792 μg.
  • While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims (12)

1-16. (canceled)
17. An implantable medical device which is formed of a material or comprises a coating, wherein the material or the coating comprises a polymer of formula:
PEA—Inactivated Terminal Amino Group
or
Inactivated Terminal Carboxyl Group—PEA;
wherein PEA comprises formula I:
Figure US20150267000A1-20150924-C00011
wherein:
m is an integer;
n is 0 or an integer;
X, Y, Z1 and Z2 are each independently branched or straight chain alkylene, cycloalkylene, alkenylene, alkynylene, arylene, heteroarylene, or heterocycloalkylene;
Inactivated Terminal Carboxyl Group is: —C(O)NR1R2, wherein R1 and R2 are H, 2 to 12 carbon alkyl, alkyl ether, or alkyl hydroxyl; or —C(O)SR, wherein R is 2 to 12 carbon alkyl; and
Inactivated Terminal Amino Group is: —NR3 +X, wherein X is Br, Cl, or I, and each R is a primary or secondary alkyl radical having 2 to 12 carbon atoms; —NHC(O)R, wherein R is a primary or secondary alkyl radical having 2 to 12 carbon atoms; —NHR, wherein R is a primary or secondary alkyl radical having 2 to 12 carbon atoms; —N(C(R)3)2, wherein each R is hydrogen or a primary or secondary alkyl radical having 2 to 12 carbon atoms; —CH═CH2; —NO2; —NHC(O)R, wherein R is cycloalkyl, aryl, or a saturated, linear or branched alkyl; —NHCH2CH(OH)R, wherein R is cycloalkyl, aryl, or a saturated, linear or branched alkyl; —NHC(O)NHR, wherein R is cycloalkyl, aryl, or a saturated, linear or branched alkyl; —NHC(S)NHR, wherein R is cycloalkyl, aryl, or a saturated, linear or branched alkyl; or —NHCH2CH2C(O)R, wherein R is hydrogen, a primary or secondary alkyl radical having 2 to 12 carbon atoms, or OR′, wherein R′ is a primary or secondary alkyl radical having 2 to 12 carbon atoms.
18. The implantable medical device of claim 17, which is formed of the material, wherein the material further comprises a bioactive agent.
19. The implantable medical device of claim 17, which comprises the coating, wherein the coating further comprises a bioactive agent.
20. The implantable medical device of claim 18, wherein the bioactive agent is selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutase, super oxide dismutase mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, 40-O-(2-hydroxyl)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propylrapamycin, 40-O-[2-(2-hydroxyl)ethoxy]ethylrapamycin, 40-O-tetrazole-rapamycin, ABT-578, clobetasol, progenitor cell capturing antibody, and a combination thereof.
21. The implantable medical device of claim 19, wherein the bioactive agent is selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutase, super oxide dismutase mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, 40-O-(2-hydroxyl)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propylrapamycin, 40-O-[2-(2-hydroxyl)ethoxy]ethylrapamycin, 40-O-tetrazole-rapamycin, ABT-578, clobetasol, progenitor cell capturing antibody, and a combination thereof.
22. The implantable medical device of claim 17, which is a stent.
23. The implantable medical device of claim 17, which is formed of the material wherein the material further comprises a biocompatible polymer.
24. The implantable medical device of claim 17, which comprises a coating wherein the coating further comprises a biocompatible polymer.
25. The implantable medical device of claim 23, wherein the biocompatible polymer is selected from the group consisting of poly(hydroxyvalerate), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactide), poly(L-lactide-co-D,L-lactide), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(D,L-lactide-co-glycolide) (PDLLAGA), poly(glycolic acid-co-trimethylene carbonate), poly(trimethylene carbonate), poly(butylene terephthalate-co-PEG-terephthalate), and a combination thereof.
26. The implantable medical device of claim 24, wherein the biocompatible polymer is selected from the group consisting of poly(hydroxyvalerate), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactide), poly(L-lactide-co-D,L-lactide), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(D,L-lactide-co-glycolide) (PDLLAGA), poly(glycolic acid-co-trimethylene carbonate), poly(trimethylene carbonate), poly(butylene terephthalate-co-PEG-terephthalate), and a combination thereof.
27. A method of treating or preventing a disorder in a patient in need thereof comprising implanting in the patient an implantable device of claim 17, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and a combination thereof.
US14/732,568 2004-10-27 2015-06-05 End-capped poly(ester amide) copolymers Abandoned US20150267000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/732,568 US20150267000A1 (en) 2004-10-27 2015-06-05 End-capped poly(ester amide) copolymers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/975,247 US20060089485A1 (en) 2004-10-27 2004-10-27 End-capped poly(ester amide) copolymers
US12/409,129 US8603634B2 (en) 2004-10-27 2009-03-23 End-capped poly(ester amide) copolymers
US14/083,226 US9067000B2 (en) 2004-10-27 2013-11-18 End-capped poly(ester amide) copolymers
US14/732,568 US20150267000A1 (en) 2004-10-27 2015-06-05 End-capped poly(ester amide) copolymers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/083,226 Division US9067000B2 (en) 2004-10-27 2013-11-18 End-capped poly(ester amide) copolymers

Publications (1)

Publication Number Publication Date
US20150267000A1 true US20150267000A1 (en) 2015-09-24

Family

ID=41063289

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/409,129 Expired - Fee Related US8603634B2 (en) 2004-10-27 2009-03-23 End-capped poly(ester amide) copolymers
US14/083,226 Expired - Fee Related US9067000B2 (en) 2004-10-27 2013-11-18 End-capped poly(ester amide) copolymers
US14/732,568 Abandoned US20150267000A1 (en) 2004-10-27 2015-06-05 End-capped poly(ester amide) copolymers

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/409,129 Expired - Fee Related US8603634B2 (en) 2004-10-27 2009-03-23 End-capped poly(ester amide) copolymers
US14/083,226 Expired - Fee Related US9067000B2 (en) 2004-10-27 2013-11-18 End-capped poly(ester amide) copolymers

Country Status (1)

Country Link
US (3) US8603634B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603634B2 (en) * 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
CN110804177B (en) * 2019-09-30 2021-02-26 中山大学 Polyesteramide nano drug delivery system based on lysine and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503538B1 (en) * 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US20030027940A1 (en) * 2001-05-07 2003-02-06 Meidong Lang Biodegradable copolymers linked to segment with a plurality of functional groups
US8603634B2 (en) * 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers

Family Cites Families (298)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US616765A (en) 1898-12-27 Oscar b
FR732895A (en) 1932-10-18 1932-09-25 Consortium Elektrochem Ind Articles spun in polyvinyl alcohol
US2386454A (en) 1940-11-22 1945-10-09 Bell Telephone Labor Inc High molecular weight linear polyester-amides
US3849514A (en) 1967-11-17 1974-11-19 Eastman Kodak Co Block polyester-polyamide copolymers
US3773737A (en) 1971-06-09 1973-11-20 Sutures Inc Hydrolyzable polymers of amino acid and hydroxy acids
US4329383A (en) 1979-07-24 1982-05-11 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
SU790725A1 (en) 1979-07-27 1983-01-23 Ордена Ленина Институт Элементоорганических Соединений Ан Ссср Process for preparing alkylaromatic polyimides
US4226243A (en) 1979-07-27 1980-10-07 Ethicon, Inc. Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
SU811750A1 (en) 1979-08-07 1983-09-23 Институт Физиологии Им.С.И.Бериташвили Bis-bicarbonates of aliphatic diols as monomers for preparing polyurethanes and process for producing the same
SU872531A1 (en) 1979-08-07 1981-10-15 Институт Физиологии Им.И.С.Бериташвили Ан Гсср Method of producing polyurethans
SU876663A1 (en) 1979-11-11 1981-10-30 Институт Физиологии Им. Академика И.С.Бериташвили Ан Гсср Method of producing polyarylates
SU1016314A1 (en) 1979-12-17 1983-05-07 Институт Физиологии Им.И.С.Бериташвили Process for producing polyester urethanes
US4343931A (en) 1979-12-17 1982-08-10 Minnesota Mining And Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
US4529792A (en) 1979-12-17 1985-07-16 Minnesota Mining And Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
SU905228A1 (en) 1980-03-06 1982-02-15 Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср Method for preparing thiourea
SU1293518A1 (en) 1985-04-11 1987-02-28 Тбилисский зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий Installation for testing specimen of cross-shaped structure
US4656242A (en) 1985-06-07 1987-04-07 Henkel Corporation Poly(ester-amide) compositions
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4611051A (en) 1985-12-31 1986-09-09 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
JPH0696023B2 (en) 1986-11-10 1994-11-30 宇部日東化成株式会社 Artificial blood vessel and method for producing the same
US5721131A (en) 1987-03-06 1998-02-24 United States Of America As Represented By The Secretary Of The Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US4894231A (en) 1987-07-28 1990-01-16 Biomeasure, Inc. Therapeutic agent delivery system
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
JP2561309B2 (en) 1988-03-28 1996-12-04 テルモ株式会社 Medical material and manufacturing method thereof
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
US5328471A (en) 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
IL90193A (en) 1989-05-04 1993-02-21 Biomedical Polymers Int Polurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
JPH05503934A (en) 1990-01-30 1993-06-24 アクゾ・エヌ・ヴエー Article for controlled delivery of active substances, consisting of a hollow space completely surrounded by walls and filled in whole or in part with one or more active substances
WO1991012846A1 (en) 1990-02-26 1991-09-05 Slepian Marvin J Method and apparatus for treatment of tubular organs
US5300295A (en) 1990-05-01 1994-04-05 Mediventures, Inc. Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
US5298260A (en) 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5292516A (en) 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5306501A (en) 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
AU7998091A (en) 1990-05-17 1991-12-10 Harbor Medical Devices, Inc. Medical device polymer
CA2038605C (en) 1990-06-15 2000-06-27 Leonard Pinchuk Crack-resistant polycarbonate urethane polymer prostheses and the like
EP0533816B1 (en) 1990-06-15 1995-06-14 Cortrak Medical, Inc. Drug delivery apparatus
US6060451A (en) 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
US5112457A (en) 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5258020A (en) 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US5462990A (en) 1990-10-15 1995-10-31 Board Of Regents, The University Of Texas System Multifunctional organic polymers
GB9027793D0 (en) 1990-12-21 1991-02-13 Ucb Sa Polyester-amides containing terminal carboxyl groups
HU222501B1 (en) 1991-06-28 2003-07-28 Endorecherche Inc. Controlled release pharmaceutical composition containing mpa or mga and process for its preparation
US5330768A (en) 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5573934A (en) 1992-04-20 1996-11-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5599352A (en) 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
GB9206736D0 (en) 1992-03-27 1992-05-13 Sandoz Ltd Improvements of organic compounds and their use in pharmaceutical compositions
US5219980A (en) 1992-04-16 1993-06-15 Sri International Polymers biodegradable or bioerodiable into amino acids
DE69325845T2 (en) 1992-04-28 2000-01-05 Terumo Corp Thermoplastic polymer composition and medical devices made therefrom
DE4224401A1 (en) 1992-07-21 1994-01-27 Pharmatech Gmbh New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.
US5399665A (en) 1992-11-05 1995-03-21 Massachusetts Institute Of Technology Biodegradable polymers for cell transplantation
FR2699168B1 (en) 1992-12-11 1995-01-13 Rhone Poulenc Chimie Method of treating a material comprising a polymer by hydrolysis.
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US20020055710A1 (en) 1998-04-30 2002-05-09 Ronald J. Tuch Medical device for delivering a therapeutic agent and method of preparation
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
JPH0767895A (en) 1993-06-25 1995-03-14 Sumitomo Electric Ind Ltd Antimicrobial artificial blood vessel and suture yarn for antimicrobial operation
US5994341A (en) 1993-07-19 1999-11-30 Angiogenesis Technologies, Inc. Anti-angiogenic Compositions and methods for the treatment of arthritis
EG20321A (en) 1993-07-21 1998-10-31 Otsuka Pharma Co Ltd Medical material and process for producing the same
GB2281161B (en) 1993-08-04 1997-05-28 Fulcrum Communications Limited Optical data communications networks
DE4327024A1 (en) 1993-08-12 1995-02-16 Bayer Ag Thermoplastically processable and biodegradable aliphatic polyesteramides
US5380299A (en) 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
WO1995010989A1 (en) 1993-10-19 1995-04-27 Scimed Life Systems, Inc. Intravascular stent pump
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5759205A (en) 1994-01-21 1998-06-02 Brown University Research Foundation Negatively charged polymeric electret implant
US6051576A (en) 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
EP0804249A2 (en) 1994-03-15 1997-11-05 Brown University Research Foundation Polymeric gene delivery system
US5567410A (en) 1994-06-24 1996-10-22 The General Hospital Corporation Composotions and methods for radiographic imaging
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5788979A (en) 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5516881A (en) 1994-08-10 1996-05-14 Cornell Research Foundation, Inc. Aminoxyl-containing radical spin labeling in polymers and copolymers
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5485496A (en) 1994-09-22 1996-01-16 Cornell Research Foundation, Inc. Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
FR2724938A1 (en) 1994-09-28 1996-03-29 Lvmh Rech POLYMERS FUNCTIONALIZED BY AMINO ACIDS OR AMINO ACID DERIVATIVES, THEIR USE AS SURFACTANTS, IN PARTICULAR, IN COSMETIC COMPOSITIONS AND IN PARTICULAR NAIL POLISH.
EP0785774B1 (en) 1994-10-12 2001-01-31 Focal, Inc. Targeted delivery via biodegradable polymers
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5569198A (en) 1995-01-23 1996-10-29 Cortrak Medical Inc. Microporous catheter
US5919570A (en) 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
US6017577A (en) 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US5869127A (en) 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5854376A (en) 1995-03-09 1998-12-29 Sekisui Kaseihin Kogyo Kabushiki Kaisha Aliphatic ester-amide copolymer resins
US5605696A (en) 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
HUP9801633A3 (en) 1995-04-19 1999-03-01 Kataoka Kazunori Heterotelechelic block copolymers and process for producing the same
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US7611533B2 (en) 1995-06-07 2009-11-03 Cook Incorporated Coated implantable medical device
AU716005B2 (en) 1995-06-07 2000-02-17 Cook Medical Technologies Llc Implantable medical device
US6010530A (en) 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US7550005B2 (en) 1995-06-07 2009-06-23 Cook Incorporated Coated implantable medical device
WO1996040174A1 (en) 1995-06-07 1996-12-19 The American National Red Cross Supplemented and unsupplemented tissue sealants, methods of their production and use
WO1998017331A1 (en) 1995-06-07 1998-04-30 Cook Incorporated Silver implantable medical device
US6774278B1 (en) 1995-06-07 2004-08-10 Cook Incorporated Coated implantable medical device
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5820917A (en) 1995-06-07 1998-10-13 Medtronic, Inc. Blood-contacting medical device and method
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5877224A (en) 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5658995A (en) 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
DE19545678A1 (en) 1995-12-07 1997-06-12 Goldschmidt Ag Th Copolymers of polyamino acid esters
PT876165E (en) 1995-12-18 2006-10-31 Angiotech Biomaterials Corp COMPOSITIONS OF RETICULATED POLYMERS AND PROCESSES FOR THEIR USE
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US6054553A (en) 1996-01-29 2000-04-25 Bayer Ag Process for the preparation of polymers having recurring agents
US5737313A (en) * 1996-03-15 1998-04-07 Nec Usa, Inc. Design of a closed loop feed back control for ABR service
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5955509A (en) 1996-05-01 1999-09-21 Board Of Regents, The University Of Texas System pH dependent polymer micelles
US5610241A (en) 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
EP1616563A3 (en) 1996-05-24 2006-01-25 Angiotech Pharmaceuticals, Inc. Perivascular administration of anti-angiogenic factors for treating or preventing vascular diseases
US5876433A (en) 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US5874165A (en) 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
NL1003459C2 (en) 1996-06-28 1998-01-07 Univ Twente Copoly (ester amides) and copoly (ester urethanes).
US5711958A (en) 1996-07-11 1998-01-27 Life Medical Sciences, Inc. Methods for reducing or eliminating post-surgical adhesion formation
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US6060518A (en) 1996-08-16 2000-05-09 Supratek Pharma Inc. Polymer compositions for chemotherapy and methods of treatment using the same
AU4090997A (en) 1996-08-30 1998-03-19 Helix Medical Corporation Medical devices having microbial resistant material properties
US5783657A (en) 1996-10-18 1998-07-21 Union Camp Corporation Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids
US6530951B1 (en) 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6120491A (en) 1997-11-07 2000-09-19 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
EP0967933B1 (en) 1997-01-28 2004-12-29 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
ES2192762T3 (en) 1997-01-28 2003-10-16 United States Surgical Corp POLYESTERAMIDE, ITS PREPARATION AND SURGICAL DEVICES MANUFACTURED FROM IT.
CA2279270C (en) 1997-01-28 2007-05-15 United States Surgical Corporation Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom
KR100526913B1 (en) 1997-02-20 2005-11-09 쿡 인코포레이티드 Coated implantable medical device
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US5879697A (en) 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US6159978A (en) 1997-05-28 2000-12-12 Aventis Pharmaceuticals Product, Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6180632B1 (en) 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6056993A (en) 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
EP1019034A2 (en) 1997-07-01 2000-07-19 Atherogenics, Inc. Antioxidant enhancement of therapy for hyperproliferative conditions
US6211249B1 (en) 1997-07-11 2001-04-03 Life Medical Sciences, Inc. Polyester polyether block copolymers
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
WO1999007814A1 (en) 1997-08-08 1999-02-18 The Procter & Gamble Company Laundry detergent compositions with amino acid based polymers to provide appearance and integrity benefits to fabrics laundered therewith
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6120788A (en) 1997-10-16 2000-09-19 Bioamide, Inc. Bioabsorbable triglycolic acid poly(ester-amide)s
US6015541A (en) 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US6221425B1 (en) 1998-01-30 2001-04-24 Advanced Cardiovascular Systems, Inc. Lubricious hydrophilic coating for an intracorporeal medical device
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US7658727B1 (en) 1998-04-20 2010-02-09 Medtronic, Inc Implantable medical device with enhanced biocompatibility and biostability
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
WO1999055396A1 (en) 1998-04-27 1999-11-04 Surmodics, Inc. Bioactive agent release coating
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
KR100314496B1 (en) 1998-05-28 2001-11-22 윤동진 Non-thrombogenic heparin derivatives, process for preparation and use thereof
AU4435399A (en) 1998-06-11 1999-12-30 Cerus Corporation Inhibiting proliferation of arterial smooth muscle cells
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
AU4645299A (en) 1998-07-08 2000-02-01 Advanced Biocompatible Coatings Inc. Biocompatible metallic stents with hydroxy methacrylate coating
JP4898991B2 (en) 1998-08-20 2012-03-21 クック メディカル テクノロジーズ エルエルシー Sheathed medical device
US6248127B1 (en) 1998-08-21 2001-06-19 Medtronic Ave, Inc. Thromboresistant coated medical device
US6335029B1 (en) 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
CA2338788A1 (en) 1998-09-02 2000-03-09 Scimed Life Systems, Inc. Drug delivery device for stent
US6011125A (en) 1998-09-25 2000-01-04 General Electric Company Amide modified polyesters
WO2000018446A1 (en) 1998-09-25 2000-04-06 Cathnet-Science S.A. Multi-layered sleeve for intravascular expandable device
US6530950B1 (en) 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US6419692B1 (en) 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
EP1175236A1 (en) 1999-04-23 2002-01-30 Agion Technologies, L.L.C. Stent having antimicrobial agent
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6283947B1 (en) 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6494862B1 (en) 1999-07-13 2002-12-17 Advanced Cardiovascular Systems, Inc. Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6177523B1 (en) 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
FI19991852A (en) 1999-09-01 2001-03-01 Yli Urpo Antti New multilayer material with a biologically active agent, and its preparation
US20040029952A1 (en) 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6503556B2 (en) 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US6287628B1 (en) 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
EP1214108B1 (en) 1999-09-03 2007-01-10 Advanced Cardiovascular Systems, Inc. A porous prosthesis and a method of depositing substances into the pores
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6759054B2 (en) 1999-09-03 2004-07-06 Advanced Cardiovascular Systems, Inc. Ethylene vinyl alcohol composition and coating
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6503954B1 (en) 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6713119B2 (en) 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
US6749626B1 (en) 2000-03-31 2004-06-15 Advanced Cardiovascular Systems, Inc. Actinomycin D for the treatment of vascular disease
US20070032853A1 (en) 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US6203551B1 (en) 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6251136B1 (en) 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US6613432B2 (en) 1999-12-22 2003-09-02 Biosurface Engineering Technologies, Inc. Plasma-deposited coatings, devices and methods
US6908624B2 (en) 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
AU2599501A (en) 1999-12-29 2001-07-09 Advanced Cardiovascular Systems Inc. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US6899731B2 (en) 1999-12-30 2005-05-31 Boston Scientific Scimed, Inc. Controlled delivery of therapeutic agents by insertable medical devices
JP4473390B2 (en) 2000-01-07 2010-06-02 川澄化学工業株式会社 Stent and stent graft
US6703040B2 (en) 2000-01-11 2004-03-09 Intralytix, Inc. Polymer blends as biodegradable matrices for preparing biocomposites
CA2430500A1 (en) 2000-01-11 2001-07-19 Intralytix, Inc. Method and device for sanitation using bacteriophages
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US20020007215A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US20020005206A1 (en) 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007214A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007213A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US6395326B1 (en) 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US6673385B1 (en) 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US6585765B1 (en) 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
US20020077693A1 (en) 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
WO2002003890A1 (en) 2000-07-06 2002-01-17 Biosurface Engineering Technologies, Inc. Drug diffusion coatings, applications and methods
US6555157B1 (en) 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
JP5244279B2 (en) 2000-07-27 2013-07-24 ラトガーズ,ザ ステイト ユニバーシティ Therapeutic polyesters and polyamides
US6451373B1 (en) 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US6585926B1 (en) 2000-08-31 2003-07-01 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
AU2001288809A1 (en) 2000-09-26 2002-04-08 Advanced Cardiovascular Systems Inc. A method of loading a substance onto an implantable device
US6254632B1 (en) 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US6716444B1 (en) 2000-09-28 2004-04-06 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US7261735B2 (en) 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US6746773B2 (en) 2000-09-29 2004-06-08 Ethicon, Inc. Coatings for medical devices
US6506437B1 (en) 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US6783793B1 (en) 2000-10-26 2004-08-31 Advanced Cardiovascular Systems, Inc. Selective coating of medical devices
US6558733B1 (en) 2000-10-26 2003-05-06 Advanced Cardiovascular Systems, Inc. Method for etching a micropatterned microdepot prosthesis
US6758859B1 (en) 2000-10-30 2004-07-06 Kenny L. Dang Increased drug-loading and reduced stress drug delivery device
JP2004523275A (en) 2000-12-22 2004-08-05 アバンテク バスキュラー コーポレーション Delivery of therapeutic drugs
US6824559B2 (en) 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US7077859B2 (en) 2000-12-22 2006-07-18 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US6544543B1 (en) 2000-12-27 2003-04-08 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
US6663662B2 (en) 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US6540776B2 (en) 2000-12-28 2003-04-01 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
US20020087123A1 (en) 2001-01-02 2002-07-04 Hossainy Syed F.A. Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices
US6544582B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US6645195B1 (en) 2001-01-05 2003-11-11 Advanced Cardiovascular Systems, Inc. Intraventricularly guided agent delivery system and method of use
US6740040B1 (en) 2001-01-30 2004-05-25 Advanced Cardiovascular Systems, Inc. Ultrasound energy driven intraventricular catheter to treat ischemia
US20030032767A1 (en) 2001-02-05 2003-02-13 Yasuhiro Tada High-strength polyester-amide fiber and process for producing the same
AU2002238076B2 (en) 2001-02-09 2007-05-17 Endoluminal Therapeutics, Inc. Endomural therapy
US20030004141A1 (en) 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US6780424B2 (en) 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US6645135B1 (en) 2001-03-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance
US6623448B2 (en) 2001-03-30 2003-09-23 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
US6625486B2 (en) 2001-04-11 2003-09-23 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US6712845B2 (en) 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
WO2002087586A1 (en) 2001-04-26 2002-11-07 Control Delivery Systems, Inc. Sustained release drug delivery system containing codrugs
US6660034B1 (en) 2001-04-30 2003-12-09 Advanced Cardiovascular Systems, Inc. Stent for increasing blood flow to ischemic tissues and a method of using the same
US6656506B1 (en) 2001-05-09 2003-12-02 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
US7651695B2 (en) 2001-05-18 2010-01-26 Advanced Cardiovascular Systems, Inc. Medicated stents for the treatment of vascular disease
US6605154B1 (en) 2001-05-31 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent mounting device
US7862495B2 (en) 2001-05-31 2011-01-04 Advanced Cardiovascular Systems, Inc. Radiation or drug delivery source with activity gradient to minimize edge effects
US6743462B1 (en) 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US6666880B1 (en) 2001-06-19 2003-12-23 Advised Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US6572644B1 (en) 2001-06-27 2003-06-03 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
US7247313B2 (en) 2001-06-27 2007-07-24 Advanced Cardiovascular Systems, Inc. Polyacrylates coatings for implantable medical devices
US6673154B1 (en) 2001-06-28 2004-01-06 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
US6565659B1 (en) 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
US6527863B1 (en) 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US6706013B1 (en) 2001-06-29 2004-03-16 Advanced Cardiovascular Systems, Inc. Variable length drug delivery catheter
EP1273314A1 (en) 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
US6641611B2 (en) 2001-11-26 2003-11-04 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
WO2003028590A1 (en) 2001-09-24 2003-04-10 Medtronic Ave Inc. Rational drug therapy device and methods
US7195640B2 (en) 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US6753071B1 (en) 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US20030059520A1 (en) 2001-09-27 2003-03-27 Yung-Ming Chen Apparatus for regulating temperature of a composition and a method of coating implantable devices
US20030073961A1 (en) 2001-09-28 2003-04-17 Happ Dorrie M. Medical device containing light-protected therapeutic agent and a method for fabricating thereof
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
ATE367172T1 (en) 2001-11-08 2007-08-15 Atrium Medical Corp INTRALUMINAL DEVICE HAVING A COATING CONTAINING A THERAPEUTIC AGENT
US7585516B2 (en) 2001-11-12 2009-09-08 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices
US6663880B1 (en) 2001-11-30 2003-12-16 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
US6709514B1 (en) 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
AU2003225882A1 (en) 2002-03-20 2003-10-08 Advanced Cardiovascular Systems, Inc. Biodegradable hydrophobic polymer for stents
US7491233B1 (en) 2002-07-19 2009-02-17 Advanced Cardiovascular Systems Inc. Purified polymers for coatings of implantable medical devices
US20040054104A1 (en) 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20040063805A1 (en) 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
US7087263B2 (en) 2002-10-09 2006-08-08 Advanced Cardiovascular Systems, Inc. Rare limiting barriers for implantable medical devices
US7063884B2 (en) 2003-02-26 2006-06-20 Advanced Cardiovascular Systems, Inc. Stent coating
US6926919B1 (en) 2003-02-26 2005-08-09 Advanced Cardiovascular Systems, Inc. Method for fabricating a coating for a medical device
US7056591B1 (en) 2003-07-30 2006-06-06 Advanced Cardiovascular Systems, Inc. Hydrophobic biologically absorbable coatings for drug delivery devices and methods for fabricating the same
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US7220816B2 (en) 2003-12-16 2007-05-22 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on poly(ester amides) and methods for fabricating the same
US7435788B2 (en) 2003-12-19 2008-10-14 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US20050265960A1 (en) 2004-05-26 2005-12-01 Pacetti Stephen D Polymers containing poly(ester amides) and agents for use with medical articles and methods of fabricating the same
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US20050271700A1 (en) 2004-06-03 2005-12-08 Desnoyer Jessica R Poly(ester amide) coating composition for implantable devices
US7166680B2 (en) 2004-10-06 2007-01-23 Advanced Cardiovascular Systems, Inc. Blends of poly(ester amide) polymers
US7390497B2 (en) 2004-10-29 2008-06-24 Advanced Cardiovascular Systems, Inc. Poly(ester amide) filler blends for modulation of coating properties

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503538B1 (en) * 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US20030027940A1 (en) * 2001-05-07 2003-02-06 Meidong Lang Biodegradable copolymers linked to segment with a plurality of functional groups
US8603634B2 (en) * 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers

Also Published As

Publication number Publication date
US20140107148A1 (en) 2014-04-17
US20090232865A1 (en) 2009-09-17
US8603634B2 (en) 2013-12-10
US9067000B2 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
US9345814B2 (en) Methacrylate copolymers for medical devices
US20060089485A1 (en) End-capped poly(ester amide) copolymers
US9468706B2 (en) Phosphoryl choline coating compositions
US9517292B2 (en) Polymer for creating hemocompatible surface
US20170216495A1 (en) Coatings comprising bis-(alpha-amino-diol-diester) containing polyesteramide
US20060115449A1 (en) Bioabsorbable, biobeneficial, tyrosine-based polymers for use in drug eluting stent coatings
US20070005130A1 (en) Biodegradable polymer for coating
JP6080172B2 (en) Substituted polycaprolactone for coating
US9737638B2 (en) Polyester amide copolymers having free carboxylic acid pendant groups
US20060115513A1 (en) Derivatized poly(ester amide) as a biobeneficial coating
US8105391B2 (en) Merhods of treatment with devices having a coating containing pegylated hyaluronic acid and a pegylated non-hyaluronic acid polymer
US9580558B2 (en) Polymers containing siloxane monomers
US20080175882A1 (en) Polymers of aliphatic thioester
US9067000B2 (en) End-capped poly(ester amide) copolymers
US20080319551A1 (en) Thioester-ester-amide copolymers

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION