US20150272795A1 - Support Arrangement with Activation Mechanism - Google Patents

Support Arrangement with Activation Mechanism Download PDF

Info

Publication number
US20150272795A1
US20150272795A1 US14/736,368 US201514736368A US2015272795A1 US 20150272795 A1 US20150272795 A1 US 20150272795A1 US 201514736368 A US201514736368 A US 201514736368A US 2015272795 A1 US2015272795 A1 US 2015272795A1
Authority
US
United States
Prior art keywords
pin
support arrangement
patient support
medical patient
stable position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/736,368
Inventor
Travis Spoor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steelcase Inc
Original Assignee
Steelcase Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steelcase Inc filed Critical Steelcase Inc
Priority to US14/736,368 priority Critical patent/US20150272795A1/en
Assigned to STEELCASE INC. reassignment STEELCASE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPOOR, TRAVIS
Priority to US14/872,724 priority patent/US9579241B2/en
Publication of US20150272795A1 publication Critical patent/US20150272795A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1005Wheelchairs having brakes
    • A61G5/101Wheelchairs having brakes of the parking brake type, e.g. holding the wheelchair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1005Wheelchairs having brakes
    • A61G5/1013Wheelchairs having brakes engaging the wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B33/00Castors in general; Anti-clogging castors
    • B60B33/0078Castors in general; Anti-clogging castors characterised by details of the wheel braking mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/04Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting mechanically
    • B60T11/046Using cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/04Braking mechanisms; Locking devices against movement
    • B62B5/0433Braking mechanisms; Locking devices against movement foot operated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/04Braking mechanisms; Locking devices against movement
    • B62B5/0457Braking mechanisms; Locking devices against movement by locking in a braking position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B9/00Accessories or details specially adapted for children's carriages or perambulators
    • B62B9/08Braking mechanisms; Locking devices against movement
    • B62B9/082Braking mechanisms; Locking devices against movement foot operated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B9/00Accessories or details specially adapted for children's carriages or perambulators
    • B62B9/08Braking mechanisms; Locking devices against movement
    • B62B9/087Braking mechanisms; Locking devices against movement by locking in a braking position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/28Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged apart from the brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/58Mechanical mechanisms transmitting linear movement
    • F16D2125/60Cables or chains, e.g. Bowden cables

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Handcart (AREA)

Abstract

A support arrangement having an activation mechanism to control the movement of wheels is provided. The support arrangement includes a platform, a chassis attached to the platform, a pair of wheel assemblies movably coupled to the chassis, and the activation mechanism. The pair of wheel assemblies are operable between a first state and a second state. The activation mechanism includes a track having a first stable position and a second stable position spaced along a length of the track, and a pin configured to travel along the track. Wheels are in the first state when the pin is in the first stable position and are in the second state when the pin is in the second stable position.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of pending U.S. patent application Ser. No. 13/650,255, which was filed on Oct. 12, 2012 and entitled Braking Mechanism, the entire disclosure of which is hereby incorporated herein by reference.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a brake activation mechanism, more particularly, to a brake activation mechanism for movable furniture, such as chairs, beds, tables and the like. Although the following discussion relates to movable chairs, the present invention extends to all pieces of movable furniture on wheels.
  • Wheels are used on movable furniture, such as chairs, to allow for easy movement of the chair even while a person is seated in it. It is often desired to lock the wheels to secure the movable furniture when it is not being moved by a user. For example, a chair is equipped with caster wheels to allow a healthcare professional or other caretaker to easily move furniture, but locked casters are desired when a person is getting in and out of the chair or when the chair and person are not attended by a healthcare professional or other caretaker. Accordingly, pieces of movable furniture with casters may also include a braking mechanism. Users of the movable chairs, beds, and tables require a fast and simple way to activate and deactivate these caster brakes.
  • For example in healthcare, caretakers have faced a number challenges when dealing with movable furniture. One of those challenges has been the need to bend down to activate and deactivate the braking mechanism, and not having a stable hold on the chair, bed, or table while doing so. This is inconvenient for both caretakers and patients alike.
  • Caretakers often are not able to activate and deactivate the braking mechanism on both sides of the piece of furniture. This is inconvenient for the caretakers, and can create difficulties when transferring patients in and out of a movable chair because the activation device may be between the chair and another piece of furniture or too close to a wall, and therefore not accessible. Furthermore, braking mechanisms having one lever to activate the caster brakes and another lever to deactivate the caster brakes are cumbersome and confusing to users, especially in emergency situations.
  • Thus, a brake activation mechanism that allows a user to maintain a hold on a piece of movable furniture during activation and to access an activation/deactivation pedal from both sides of the furniture is activated is desired.
  • BRIEF SUMMARY OF THE INVENTION
  • In one embodiment of the present invention, a braking mechanism operably engages at least one wheel and can transition the at least one wheel between unlocked and locked states. The braking mechanism includes a flipper and a cam. The flipper includes a discontinuous track having an open slot portion and a surface path portion. The open slot portion includes a home position and an engaged position. The cam includes a pin which cooperatively moves along the discontinuous track. In the unlocked state, the pin is located in the home position. As the at least one wheel transitions from the unlocked state to the locked state, the pin moves along the open slot portion from the home position to the engaged position. As the at least one wheel transitions from the locked state to the unlocked state, the pin moves along the open slot portion and then along the surface path portion from the engaged position to the home position.
  • In another embodiment of the present invention, a braking mechanism includes at least one pedal, a connecting rod, a flipper, a cam, a cable junction and cables. The at least one pedal is fixed to an end of the connecting rod. The flipper is movable in X, Y and Z-directions and includes a discontinuous track. The cam is attached to the connecting rod and includes a pin cooperatively movable within the discontinuous track. The cable junction is attached to the connecting rod. Each cable includes one end attached to the cable junction and a second end engaging a brake.
  • In yet another embodiment of the present invention, a supporting platform includes a chassis, a plurality of wheels attached to an underside of the chassis, and a mechanism operatively connected to the plurality of wheels. Each wheel includes a brake and the mechanism is capable of transitioning the wheels between locked and unlocked states. The mechanism includes a connecting rod, an activation subassembly and a cable junction attached to the connecting rod, and a pedal fixed to a connecting rod end. The activation subassembly includes a plate fixed to the chassis, a flipper having a discontinuous track, a spring biased rod pivotally connecting the plate and flipper, and a cam fixed to the connecting rod. The cam includes a pin which cooperatively travels within the discontinuous track.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other items and advantages of the present invention will be appreciated more fully from the following figures, where like reference characters designate like features in which:
  • FIG. 1 is a perspective view of the braking activation mechanism in one embodiment of the invention, the brake activation mechanism including a cable junction and an activation subassembly;
  • FIG. 2 is a perspective view of the braking activation mechanism of FIG. 1 attached to a movable chassis;
  • FIG. 3 is a top perspective view of the cable junction of the braking activation mechanism of FIG. 1;
  • FIG. 4 is a side view of the cable junction of FIG. 3 when the braking activation mechanism is in an unlocked state;
  • FIG. 5 is a side view of the cable junction of FIG. 3 when the braking activation mechanism is in a locked state;
  • FIG. 6 is a side perspective view of a portion of FIG. 2, showing a braked caster;
  • FIG. 7 is a side perspective view of the activation subassembly of the braking activation mechanism of FIG. 1, the activation subassembly including a pin and a discontinuous track;
  • FIG. 8 is a top view of the activation subassembly of FIG. 7;
  • FIG. 9 is a schematic side view of the activation subassembly of FIG. 7, where the braking activation mechanism is in the unlocked stated and the pin is in a home position of the discontinuous track;
  • FIG. 10 is a schematic side view of the activation subassembly of FIG. 7, where the braking activation mechanism is being activated and the pin is in a first temporary stop position of the discontinuous track;
  • FIG. 11 is a schematic side view of the activation subassembly of FIG. 7, where the braking activation mechanism is in the locked state and the pin is in an engaged position of the discontinuous track;
  • FIG. 12 is a schematic side view of the activation subassembly of FIG. 7, where the braking activation mechanism is being activated and the pin is in a second temporary stop position of the discontinuous track;
  • FIG. 13 is a schematic side view of the activation subassembly of FIG. 7, where the braking activation mechanism is being activated and the pin is traveling along a surface path portion of the discontinuous track;
  • FIG. 13A is a cutaway end view of the activation subassembly of FIG. 13;
  • FIG. 14 is a schematic side view of the activation subassembly of FIG. 7, where the braking activation mechanism is in the unlocked stated and the pin is in the home position of the discontinuous track; and
  • FIG. 14A is a cutaway end view of the activation subassembly of FIG. 14.
  • DETAILED DESCRIPTION OF THE INVENTION
  • For purposes of description herein, it is to be understood that the specific devices illustrated in the attached drawings, and described below are simply exemplary embodiments of the invented concepts. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting. Also, components described hereinafter as making up various elements of the invention are intended to be illustrative and not limiting. Many suitable components that would perform the same or similar functions as the components described herein are intended to be considered within the scope of the invention.
  • Referring to FIG. 1, the present brake activation mechanism 10 includes a connecting rod 12 having a first end 14 and a second end 16; at least one pedal 18 attached to the connecting rod; a cable junction 20 and an activation sub assembly 22. As illustrated in FIG. 2, the brake activation mechanism 10 can be attached to a chassis 24. The chassis 24 can be attached to a supporting platform of a chair, a bed, a table, or any other movable product.
  • Referring to FIGS. 1 and 2, the connecting rod 12 may be any shape, but preferably includes at least one planar surface. In one embodiment, the connecting rod 12 is a tube having a square cross section. The connecting rod 12 is attached to a chassis 24 and spans a width of the chassis. In an exemplary embodiment, the connecting rod 12 is attached to an underside of the chassis 24. At least one pedal 18 is fixed to an end of the connecting rod 12 and preferably, a pedal 18 is fixed to the first end 14 of the connecting rod 12 and a pedal is fixed to the second end 16 of the connecting rod. The pedal 18 extends slightly from underneath a side of the chassis 24. The pedal may be any shape, but preferably has a flat paddle shape for easy foot access. In an exemplary embodiment, the cable junction 20 and actuation subassembly 22 are positioned toward opposite ends 14, 16 of the connecting rod 12. However, the cable junction 20 and activation subassembly 22 can be positioned anywhere on the connecting rod 12.
  • Now referring to FIGS. 1 and 3-6, the cable junction 20 holds a plurality of brake cables 21 and includes a first cable holding portion 26 and a second cable holding portion 28. The first cable holding portion 26 of the cable junction 20 includes slits 30 at a top edge and fastening apertures at a bottom end. First ends 31 of the plurality of brake cables 21 fit in the slits 30 and are held there. Fasteners 32, such as bolts, pass through the fastening apertures at the bottom end of the first cable holding portion 26 to secure the first cable holding portion of the cable junction 20 to the connecting rod 12. The second cable holding portion 28 of the cable junction 20 includes a V-shaped plate 34 and an adjacent attached L-shaped bracket 36. The V-shaped plate 34 is attached to the chassis 24 by fasteners 38, such as bolts, and is apertured to contain a bearing 40 that surrounds the connecting rod 12 at a first bearing point. The L-shaped bracket 36 contains notches 42 for supporting brake cable end fittings 44 through which the plurality of brake cables 21 pass. A spring 46 having a first end 48 and a second end 50 is connected at its first end 48 to the first cable holding portion 26 and at its second end 50 to the second cable holding portion 28. As illustrated in FIG. 6, second ends 52 of the plurality of brake cables 21 are operatively attached to a plurality of brakes 54. In a preferred embodiment, the brakes 54 are attached to wheels such as casters 56.
  • As illustrated in FIGS. 7 and 8, the activation subassembly 22 includes a plate 58, a cam 60, a flipper 64 having a discontinuous track 66 and ramp 68. The plate 58 is fixed to the chassis 24 by fasteners 70, such as bolts, and apertured to contain a bearing 72 that surrounds the connecting rod 12 at a second bearing point. The plate 58 further includes a guide rod 74, a spring connection rod 76, and a spring 77 biased rod 78. The guide rod 74 protrudes from a center of the plate 58 towards the center of the brake activation mechanism 10. The spring connection rod 76 protrudes from an upper portion of the plate 58 away from the center of the mechanism 10. The spring 77 biased rod 78 protrudes from the plate 58 toward the center of the mechanism 10.
  • Referring to FIG. 7, the cam 60 includes a tab 80 at its lower end, a pin 82 at its upper end, and a guide track 84 proximate its center. The tab 80 is apertured to allow fasteners 86, such as bolts, to pass there through and fix the cam 60 to the connecting rod 12. The pin 82 protrudes from the cam 60 towards the center of the mechanism 10. The pin 82 travels along a path defined by the discontinuous track 66 of the flipper 64. The guide track 84 houses the guide rod 74 that is fixed to the plate 58. The guide rod 74 moves in the guide track 84 to maintain the position of the cam 60 relative to the plate 58.
  • Still referring to FIG. 7, the flipper 64 includes an upper portion 88 and a lower portion 90. The lower portion 90 of the flipper 64 is positioned at the upper end of the cam 60 on the side of the cam that is closest to the center of the mechanism 10. The lower portion 90 includes the discontinuous track 66, the ramp 68, and an aperture. The spring 77 biased rod 78 protruding from the plate 58 passes through the aperture to loosely and pivotably connect the flipper 64 to the plate. The discontinuous track 66 is a complete and closed loop including two types of track, namely an open slot portion 92 and a surface path portion 94. The open slot portion 92 of the discontinuous track 66 includes a home position 96 and bends which define a first temporary stop position 98, an engaged position 100 and a second temporary stop position 102. The home position 96, first temporary stop position 98, engaged position 100 and secondary temporary stop position 102 function as stop points for the pin 82. The home position 96 is located at one end of the open slot portion 92 of the discontinuous track 66 and the ramp 68 is located at an opposite end of the open slot portion. The ramp 68 operates to transition the pin 82 from the open slot portion 92 to the surface path portion 94 of the discontinuous track 66. The surface path portion 94 is defined by a route connecting the ramp 68 and home position 96 in the open slot portion 92. The surface path portion 94 is located on a planar surface of the lower portion 90 of the flipper 64 which faces the plate 58. The upper portion 88 of the flipper 64 is positioned over the cam 60 and the plate 58, away from the center of the mechanism 10. As best illustrated in FIG. 8, a spring 104 connects the plate 58 spring connection rod 76 to the flipper 64 upper portion 88. In particular, a first end 106 of spring 104 engages the spring connection rod 76 and a second end 108 engages the upper portion 88.
  • When the brake activation mechanism 10 is deactivated, the chassis 24 is movable and the at least one pedal 18 is parallel with the floor. The first and second cable holding parts 26, 28 of the cable junction 20 are perpendicular to the floor and parallel to each other as illustrated in FIG. 4. Referring to FIG. 9, the pin 82 is in the home position 92 in the discontinuous track 66 of the flipper 64.
  • To activate the brake activation mechanism 10, a user depresses a pedal 18. The pedal 18 rotates downward relative to the connecting rod 12 forming an acute angle with the floor. Where there is a pedal 18 located on opposite sides of the chassis, the user only needs to push one of the pedals which causes both pedals to rotate downward. For clarity, activation and deactivation of the brake activation mechanism are described in terms of one pedal, but it is to be understood that the mechanism may include two pedals. Because the pedal 18 is fixed to the connecting rod 12, the connecting rod also rotates. As the connecting rod 12 rotates, the cam 60 which is fixed to the connecting rod, also rotates. As illustrated in FIGS. 9-14, rotation of the cam 60 causes the pin 82 to move along the discontinuous track 66 of the flipper 64. First, the user steps on the pedal 18, which moves the pin 82 from the home position 96 (FIG. 9) to a first temporary stop position 98 (FIG. 10) in the open slot portion 92 of the discontinuous track 66, thereby stretching the spring 104 between the flipper 64 and the plate 58. The stretch of the spring 104 and movement of the spring over the plate 58 provides audible feedback to the user to signal that the brake activation mechanism 10 will engage. Concomitantly, the first cable holding portion 26 of the cable junction 20, which is fixed to the connecting rod 12, also rotates with the pedal 18 and connecting rod. The first cable holding portion 26 rotates away from the second cable holding portion 28 of the cable junction 20, thereby creating an obtuse angle between the lower ends of the first and second cable holding portions. When the user then removes his or her foot from the pedal 18, the pedal slightly rotates back up away from the floor, but still maintains a rotated position relative to the floor. As the pedal 18 rotates slightly back, the connecting rod 12 also rotates slightly, which causes the pin 82 on the cam 60 to snap up from the first temporary stop position 98 (FIG. 10) to the engaged position 100 (FIG. 11). The first cable holding portion 26 of the cable junction 20 remains angled away from the second cable holding portion 28, thereby forming an obtuse angle between the lower ends of the first and second cable holding portions and holding tension in the plurality of braking cables 21. Tension in the plurality of braking cables 21 causes the brakes 54 to be activated and lock the caster wheels 56. The rotated position of the at least one pedal 18 is a visible indication to the user that the brakes 54 are engaged and the caster wheels 56 are locked. In one embodiment, three caster wheels 56 are equipped with brakes 54 to prevent any movement of the chassis 24 when the brakes are engaged.
  • To deactivate the brake activation mechanism 10, the user again steps downward on pedal 18. This downward motion rotates the cam 60 with the connecting rod 12 causing the pin 82 to move out of the engaged position 100 (FIG. 11) in the open slot portion 92 of the discontinuous track 66 and to a second temporary stop position 102 (FIG. 12). Movement of the pin 82 on the cam 60 to the second temporary stop position 102 stretches the spring 104 between the flipper 64 and the plate 58, which again provides audible feedback to the user to signal the deactivation of the brake activation mechanism 10. When the user removes their foot from the pedal 18, the pedal 18 rotates up away from the floor which causes the connecting rod 12 to rotate, thereby rotating the cam 60. The rotating cam 60 moves the pin 82 through the open slot portion 92 of the discontinuous track 66 toward the ramp 68. Referring to FIG. 13A, when the pin 82 contacts the ramp 68, the ramp forces the flipper 64 to translate on the spring 77 biased rod 78 away from the pin 82, cam 60, and plate 58. The pin 82 travels up the ramp 68, behind the flipper and onto the surface path portion 94 of the discontinuous track 66 (FIG. 13), and returns to the home position 96 (FIG. 14). As soon as the pin 82 reaches the home position 96, the spring 77 between the flipper 64 and the plate 58 forces the flipper back into alignment with the pin in its home position (FIGS. 14 and 14A). The first cable holding portion 26 of the cable junction 20 also returns to its deactivated position of being perpendicular to the floor releasing tension in the plurality of braking cables 21. Release of the tension in the plurality of braking cables 21 causes the brakes 54 to be deactivated and unlock the caster wheels 56. The unrotated position of the at least one pedal 18 is a visible indication to the user that the brakes 54 are disengaged and the caster wheels 56 are unlocked.
  • As described in detail above, the flipper 64 is adapted to include three degrees of motion which facilitates movement of the pin 82 along the discontinuous track 66. As illustrated in FIGS. 9-12, the flipper 64 moves in an X-Y direction parallel to plate 58 as the pin 82 travels along the open slot portion 92 of the discontinuous track 66. As illustrated in FIGS. 13 and 13A, when the pin 82 contacts the ramp 68 and travels along the surface path portion 94 of the discontinuous track 66, the flipper 64 additionally translates in a Z-direction away from plate 58. Movement in the Z-direction is limited by upper portion 88 of the flipper 64 coming into contact with plate 58. Referring to FIGS. 14 and 14A, when the pin 82 reaches home position 96, the flipper 64 again translates in a Z-direction toward the plate 58.

Claims (30)

1. A medical patient support arrangement, comprising:
a platform configured to support a patient;
a chassis attached to the platform;
a pair of wheel assemblies laterally spaced from one another across a width of the chassis and movably coupled to the chassis, the pair of wheel assemblies operable between a first state and a second state different from the first state; and
an activation mechanism that controls the movement of each of the wheels of the pair of wheels with respect to the chassis, the activation mechanism including a track having a first stable position and a second stable position spaced along a length of the track, the activation mechanism further including a pin configured to travel along the track, wherein each of the wheels of the pair of wheels is in the first state when the pin is in the first stable position and each of the wheels of the pair of wheels is in the second state when the pin is in the second stable position.
2. The medical patient support arrangement of claim 1, wherein the movement of the pair of wheels assembly is a rolling movement.
3. The medical patient support arrangement of claim 2, wherein the first state is a rotationally unlocked state and the second state is a rotationally locked state.
4. The medical patient support arrangement of claim 1, wherein the pin is spring biased into the first stable position.
5. The medical patient support arrangement of claim 4, wherein the pin is spring biased into the second stable position.
6. The medical patient support arrangement of claim 1, wherein the pin travels through a continuous loop.
7. The medical patient support arrangement of claim 6, wherein the track is discontinuous.
8. The medical patient support arrangement of claim 1, further comprising:
a movable input member adapted to receive an input from an operator, the input member operably coupled to the activation mechanism to move the pin between the first and second stable positions.
9. The medical patient support arrangement of claim 8, wherein a first input to the input member from the operator moves the pin along the track from the first stable position toward the second stable position.
10. The medical patient support arrangement of claim 9, wherein a second input to the input member from the operator moves the pin along the track from the second stable position toward the first stable position.
11. The medical patient support arrangement of claim 10, wherein the activation mechanism is configured such the input mechanism is moved in the same direction for the first input and the second input.
12. A medical patient support arrangement, comprising:
a platform configured to support a patient;
a chassis attached to the platform;
a pair of wheel assemblies laterally spaced from one another across a width of the chassis and movably coupled to the chassis, the pair of wheel assemblies operable between a first state and a second state different from the first state;
an activation mechanism that controls the movement of each of the wheels of the pair of wheels with respect to the chassis, the activation mechanism including a track having a first stable position and a second stable position spaced along a length of the track, the activation mechanism further including a pin configured to travel along the track, wherein each of the wheels of the pair of wheels is in the first state when the pin is in the first stable position and each of the wheels of the pair of wheels is in the second state when the pin is in the second stable position; and
a movable foot pedal adapted to receive an input from an operator, the foot pedal operably coupled to the activation mechanism to move the pin between the first and second stable positions, wherein the foot pedal partially extends from beneath the chassis and is substantially parallel with a floor surface when the pin is in the first stable position.
13. The medical patient support arrangement of claim 12, wherein the foot pedal forms an acute angle with a floor surface when the pin is in the second stable position.
14. The medical patient support arrangement of claim 12, wherein the foot pedal is one of a pair of foot pedals, and wherein the pair of foot pedals are laterally spaced from one another across the width of the chassis.
15. The medical patient support arrangement of claim 1, wherein the medical patient support arrangement comprises a chair.
16. A medical patient support arrangement, comprising:
a platform configured to support a patient;
a chassis attached to the platform;
one or more wheel assemblies coupled to the chassis and operable between a locked state where a wheel of the one or more wheel assemblies is locked from rotation, and an unlocked state where the wheel is free to rotate; and
an activation mechanism that controls the operation of the one or more wheel assemblies, the activation mechanism including a track having a first stable position and a second stable position spaced along a length of the track, the activation mechanism further including a pin configured to travel along the track, wherein each of the wheel is in the unlocked state when the pin is in the first stable position and the wheel is in the locked state when the pin is in the second stable position.
17. The medical patient support arrangement of claim 16, wherein the pin is spring biased into the first stable position.
18. The medical patient support arrangement of claim 17, wherein the pin is spring biased into the second stable position.
19. The medical patient support arrangement of claim 16, wherein the pin travels through a continuous loop.
20. The medical patient support arrangement of claim 19, wherein the track is discontinuous.
21. The medical patient support arrangement of claim 16, further comprising:
a movable input member adapted to receive an input from an operator, the input member operably coupled to the activation mechanism to move the pin between the first and second stable positions.
22. The medical patient support arrangement of claim 21, wherein a first input to the input member from the operator moves the pin along the track from the first stable position toward the second stable position.
23. The medical patient support arrangement of claim 22, wherein a second input to the input member from the operator moves the pin along the track from the second stable position toward the first stable position.
24. The medical patient support arrangement of claim 23, wherein the activation mechanism is configured such the input mechanism is moved in the same direction for the first input and the second input.
25. The medical patient support arrangement of claim 21, wherein the input member is a foot pedal.
26. The medical patient support arrangement of claim 25, wherein the foot pedal partially extends from beneath the chassis.
27. The medical patient support arrangement of claim 26, wherein the foot pedal is substantially parallel with a floor surface when the pin is in the first stable position.
28. The medical patient support arrangement of claim 27, wherein the foot pedal forms an acute angle with a floor surface when the pin is in the second stable position.
29. The medical patient support arrangement of claim 25, wherein the foot pedal is one of a pair of foot pedals, and wherein the pair of foot pedal are laterally spaced from one another across the a width of the chassis.
30. The medical patient support arrangement of claim 16, wherein the medical patient support arrangement comprises a chair.
US14/736,368 2012-10-12 2015-06-11 Support Arrangement with Activation Mechanism Abandoned US20150272795A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/736,368 US20150272795A1 (en) 2012-10-12 2015-06-11 Support Arrangement with Activation Mechanism
US14/872,724 US9579241B2 (en) 2012-10-12 2015-10-01 Support arrangement with activation mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/650,255 US9074648B2 (en) 2012-10-12 2012-10-12 Braking mechanism
US14/736,368 US20150272795A1 (en) 2012-10-12 2015-06-11 Support Arrangement with Activation Mechanism

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/650,255 Continuation US9074648B2 (en) 2012-10-12 2012-10-12 Braking mechanism

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/872,724 Continuation-In-Part US9579241B2 (en) 2012-10-12 2015-10-01 Support arrangement with activation mechanism

Publications (1)

Publication Number Publication Date
US20150272795A1 true US20150272795A1 (en) 2015-10-01

Family

ID=50474396

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/650,255 Expired - Fee Related US9074648B2 (en) 2012-10-12 2012-10-12 Braking mechanism
US14/736,368 Abandoned US20150272795A1 (en) 2012-10-12 2015-06-11 Support Arrangement with Activation Mechanism

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/650,255 Expired - Fee Related US9074648B2 (en) 2012-10-12 2012-10-12 Braking mechanism

Country Status (1)

Country Link
US (2) US9074648B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180346008A1 (en) * 2015-11-25 2018-12-06 Medtech Sa Mechanical system for stabilization of vehicles on castors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9579241B2 (en) 2012-10-12 2017-02-28 Steelcase Inc. Support arrangement with activation mechanism
US9918888B2 (en) * 2014-03-21 2018-03-20 Medline Industries, Inc. Locking mechanism with pivotable foot actuation lever
US9944121B2 (en) * 2015-08-24 2018-04-17 Darcor Limited Dual end remote swivel-lock for caster carts and carts equipped with same
US11197791B2 (en) 2018-11-21 2021-12-14 Stryker Corporation Patient transport apparatus with cable connected brake and steer lock assemblies
US11324648B2 (en) 2018-11-21 2022-05-10 Stryker Corporation Patient transport apparatus with steer lock assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29720134U1 (en) * 1997-11-13 1998-01-08 Chen Chin Chiao Car with a braking device
US6256812B1 (en) * 1999-01-15 2001-07-10 Stryker Corporation Wheeled carriage having auxiliary wheel spaced from center of gravity of wheeled base and cam apparatus controlling deployment of auxiliary wheel and deployable side rails for the wheeled carriage
US6820294B2 (en) * 2002-02-26 2004-11-23 Stryker Corporation Linkage for lift/lowering control for a patient supporting platform

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684734A (en) 1951-06-22 1954-07-27 Robert L Wilson Wheel lock for mechanic's creepers
CH443987A (en) 1966-03-26 1967-09-15 Barmag Barmer Maschf Device for actuating an adjustable device, in particular a brake or clutch, on a textile machine
DE1575681A1 (en) 1967-01-21 1972-02-24 Tente Rollen Gmbh & Co Caster, in particular a swivel castor, with a locking device for blocking the running mobility and / or pivoting mobility of the running wheel
US3409105A (en) 1967-06-21 1968-11-05 Stewart Warner Corp Caster assembly
IT992615B (en) 1973-03-03 1975-09-30 Tente Rollen Gmbh U Co CARRIER WITH A LOCKING DEVICE SPECIALLY AS A GUIDE WHEEL
DE2344208C3 (en) 1973-09-01 1978-05-24 Acousa Saxon S.A., Saxon (Schweiz) Centrally lockable swivel castor, especially for movable hospital beds
DE2645982A1 (en) 1976-10-12 1978-04-13 Hans O Schroeter BRAKE CONTROL DEVICE WITH A CLAMPING LEVER
US4276962A (en) 1979-03-09 1981-07-07 American Hospital Supply Corporation Caster brake for stretcher or the like
US4248444A (en) 1979-06-07 1981-02-03 Dentsply Research & Development Corp. Steering mechanism for mobile carriage
DE3119649A1 (en) 1981-05-16 1982-12-02 Tente-Rollen Gmbh & Co, 5632 Wermelskirchen "ROLLER WITH A LOCKING DEVICE"
US4417648A (en) 1981-07-14 1983-11-29 General Electric Company Braking arrangement for vehicles
US4479566A (en) 1981-12-23 1984-10-30 Sugatsune Industrial Co. Ltd. Stopper for caster
US4526253A (en) 1982-12-02 1985-07-02 Lermer Apparatebau Gmbh Brake for rollable receiving elements utilized particularly in airplanes
DE3479354D1 (en) 1984-05-05 1989-09-14 Deere & Co Single lever setting device
DE3531824A1 (en) 1985-09-06 1987-03-19 Tente Rollen Gmbh & Co STEERING WHEEL
GB2190985B (en) 1986-05-27 1989-12-13 Massey Ferguson Mfg Pedal actuators
NL8700155A (en) 1987-01-22 1988-08-16 Skf Transportwielen Bv SWIVEL WHEEL.
US4793445A (en) 1987-10-05 1988-12-27 Babcock Industries, Inc. Caster brake assembly
US4922574A (en) 1989-04-24 1990-05-08 Snap-On Tools Corporation Caster locking mechanism and carriage
DK159726C (en) 1989-04-27 1991-04-22 Scantrolley Aps COMBINED WHEEL AND BRAKE ARRANGEMENT FOR A TRANSPORT Means
DE3933612C1 (en) 1989-10-07 1991-04-18 Rolf Rodehau Gmbh & Co Kg Metallwarenfabrik, 6070 Langen, De
DE8915173U1 (en) 1989-12-23 1991-04-18 Tente-Rollen Gmbh & Co, 5632 Wermelskirchen, De
GB9002555D0 (en) 1990-02-06 1990-04-04 Colson Castors Europ Ltd Castor with brake mechanism
JPH077201Y2 (en) 1990-05-23 1995-02-22 スガツネ工業株式会社 Castor lock display
US5205381A (en) 1991-02-19 1993-04-27 Waterloo Industries, Inc. Brake system
JPH04125901U (en) 1991-05-08 1992-11-17 スガツネ工業株式会社 Caster stopper device
DE4137757C2 (en) 1991-11-16 1995-02-16 Schulte Soehne Gmbh Co A Swivel castor, in particular for movable hospital beds
US5368133A (en) 1993-09-17 1994-11-29 Yang; Sung-Wang Brake system for roller casters
EP0678438B1 (en) 1994-04-21 2001-07-04 Bucher Management AG Brake system for roll-container
US5579871A (en) 1995-05-31 1996-12-03 Lermer Corporation Brake assembly for rollable utility carts
SE506620C2 (en) 1996-04-25 1998-01-19 Scandinavian Airlines System D Serving trolley, especially for use in confined spaces
DE19626178C2 (en) 1996-06-29 1998-07-30 Daimler Benz Aerospace Airbus Actuator for actuating an actuator
DE29612551U1 (en) 1996-07-19 1997-11-13 Tente Rollen Gmbh & Co Roll with a locking device
US5832784A (en) 1997-03-18 1998-11-10 Dura Automotive Systems, Inc. Variable ratio parking brake control with enhanced cable take-up
US6047609A (en) 1998-09-04 2000-04-11 Brunswick Corporation Remote control mechanism
DE29914681U1 (en) 1999-08-21 2000-12-28 Tente Rollen Gmbh & Co Swivel castor
US6409187B1 (en) 1999-11-29 2002-06-25 Fki Industries Inc. Brake system for a cart
JP4488329B2 (en) 2000-12-05 2010-06-23 株式会社小松製作所 Construction system vehicle control lever system
US6575052B2 (en) 2001-07-31 2003-06-10 Ge Medical Systems Global Technology Company, Llc Pedal mechanism for operating brake and directional lock on lever-operated caster wheels
US6810560B1 (en) 2003-11-06 2004-11-02 Hai-Ming Tsai Castor
CN2701725Y (en) 2004-04-30 2005-05-25 明门实业股份有限公司 Brake device for pushcart
TWI261504B (en) 2004-11-12 2006-09-11 C & C Luggage Mfg Co Ltd Baggage
CN2782505Y (en) 2005-01-28 2006-05-24 明门实业股份有限公司 Brake
CA2559463A1 (en) 2005-09-15 2007-03-15 Dynatool Industries Inc. Powered locking caster wheel
US7657953B2 (en) 2005-11-17 2010-02-09 Hill-Rom Services, Inc. Birthing bed calf support
JP2007193767A (en) 2005-12-22 2007-08-02 Denso Corp Operating lever device
US7810822B2 (en) * 2006-01-19 2010-10-12 Hill-Rom Services, Inc. Stretcher having hand actuated caster braking apparatus
US7406745B2 (en) 2006-10-20 2008-08-05 Haion Caster Industrial Co., Ltd. Wheel assembly
EP1970286A1 (en) 2007-03-15 2008-09-17 Team-Tex Device for transporting a child
US8794391B2 (en) * 2007-07-10 2014-08-05 Ton-Rong TSENG Safety braking system
US7810613B2 (en) 2007-11-29 2010-10-12 Ching-Sung Lin Cart braking device
DE102008021604B4 (en) 2008-04-30 2016-06-30 Fresenius Medical Care Deutschland Gmbh Device for actuating brake devices of a mobile device, mobile frame and medical device
JP5173605B2 (en) 2008-05-30 2013-04-03 トーヨーベンディング株式会社 Floor mount fixing device
JP5294461B2 (en) 2008-12-16 2013-09-18 トーヨーベンディング株式会社 Wire cable branching device used for wheel brake mechanism
US8516656B2 (en) * 2012-01-11 2013-08-27 Sunny Castors Co., Ltd. Combination castor whose castor units are braked simultaneously

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29720134U1 (en) * 1997-11-13 1998-01-08 Chen Chin Chiao Car with a braking device
US6256812B1 (en) * 1999-01-15 2001-07-10 Stryker Corporation Wheeled carriage having auxiliary wheel spaced from center of gravity of wheeled base and cam apparatus controlling deployment of auxiliary wheel and deployable side rails for the wheeled carriage
US6820294B2 (en) * 2002-02-26 2004-11-23 Stryker Corporation Linkage for lift/lowering control for a patient supporting platform

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electronic Translation of DE 29720134 U1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180346008A1 (en) * 2015-11-25 2018-12-06 Medtech Sa Mechanical system for stabilization of vehicles on castors
US10640136B2 (en) * 2015-11-25 2020-05-05 Medtech S.A. Mechanical system for stabilization of vehicles on castors

Also Published As

Publication number Publication date
US9074648B2 (en) 2015-07-07
US20140102834A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
US9579241B2 (en) Support arrangement with activation mechanism
US20150272795A1 (en) Support Arrangement with Activation Mechanism
JP5129177B2 (en) Tray system for children's infant chair
US8910953B2 (en) Device for actuating brake means of mobile appliances
JP4085321B2 (en) stretcher
US11642915B2 (en) Person support apparatus with braking system
US7293307B2 (en) Locking mechanism for a hospital bed
US20180050671A1 (en) Sliding-type heel pad with height adjustment function
US5579871A (en) Brake assembly for rollable utility carts
WO2009073691A2 (en) Handle and braking system for medical device
JP5927029B2 (en) Table device
JP3173158U (en) Caster equipment
JP2019172249A (en) Brake device for trolley
US10925401B1 (en) Adjustable chair
JP6744621B2 (en) Bicycle front child ride
WO2011004178A1 (en) Braking system for transportation device
WO2012001717A1 (en) Braking assembly, particularly for wheels of trolleys, bins and manually moved structures in general
CN105935204B (en) Brake mechanism and movable table with same
JP4567610B2 (en) wheelchair
JP6270172B2 (en) wheelchair
JP2009297318A (en) Chair
JP5093888B2 (en) Bathing assistance wheelchair
JP2006304961A (en) Child-care apparatus
JP7235805B2 (en) Casters for equipment, furniture and especially medical equipment
WO2015025173A1 (en) Locking device

Legal Events

Date Code Title Description
AS Assignment

Owner name: STEELCASE INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPOOR, TRAVIS;REEL/FRAME:035821/0368

Effective date: 20150609

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION