US20150374068A1 - Cleated shoe having a molded sole with separate sections - Google Patents

Cleated shoe having a molded sole with separate sections Download PDF

Info

Publication number
US20150374068A1
US20150374068A1 US14/752,273 US201514752273A US2015374068A1 US 20150374068 A1 US20150374068 A1 US 20150374068A1 US 201514752273 A US201514752273 A US 201514752273A US 2015374068 A1 US2015374068 A1 US 2015374068A1
Authority
US
United States
Prior art keywords
sole structure
outsole
midsole
sections
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/752,273
Inventor
Ryan A. Duke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teshub Sports Ltd
Original Assignee
Teshub Sports Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teshub Sports Ltd filed Critical Teshub Sports Ltd
Priority to US14/752,273 priority Critical patent/US20150374068A1/en
Assigned to TESHUB SPORTS LTD. reassignment TESHUB SPORTS LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUKE, RYAN A.
Publication of US20150374068A1 publication Critical patent/US20150374068A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/16Pieced soles
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/141Soles; Sole-and-heel integral units characterised by the constructive form with a part of the sole being flexible, e.g. permitting articulation or torsion
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/22Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer
    • A43B13/24Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer by use of insertions
    • A43B13/26Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer by use of insertions projecting beyond the sole surface
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B5/00Footwear for sporting purposes
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B5/00Footwear for sporting purposes
    • A43B5/02Football boots or shoes, i.e. for soccer, football or rugby

Definitions

  • This disclosure relates generally to footwear, and more particularly, to a molded sole structure for cleated footwear.
  • a typical shoe includes at least an upper and a sole.
  • the upper is usually a soft material that covers the foot and secures it onto the sole.
  • the sole is usually a harder material that provides support for the foot as well as a surface for contacting the ground.
  • the sole may be constructed to provide traction and to help control the motion of the foot.
  • a cleated shoe is often used by athletes in many sports, such as baseball, football, lacrosse, soccer, track, field hockey, etc., in order to improve the user's traction on the playing field.
  • the sole structure of a cleated shoe is typically constructed of a single hard material forming an outsole plate having downward traction elements or cleats attached to the bottom of the outsole, with the outsole attached either directly to the uppers, or to a foam midsole.
  • a soft insole may also be part of the sole structure on top of the midsole to provide additional comfort for the user.
  • the shoe restricts the flexible movement of the user's foot due to the single hard material outsole plate. Further, when running, shifting weight, or moving the foot, the user's foot movements are restricted by the hardness of the plate across both the lateral and longitudinal axes of the footwear. This restriction requires the user to apply a greater force in order to flex the cleat. When flexed, however, the shape of the single hard material outsole plate is generally unable to accurately match the natural flex shape of the foot, which in turn causes a lower percentage of surface area contact between the foot and the support structure.
  • the rigid construction of a single hard material molded outsole reduces the flexibility of the shoe, decreases the responsiveness of the shoe to the foot motion of the wearer, reduces the wearer's proprioception, and negatively affects the functional and biomechanical performance of the shoe during foot strike and takeoff.
  • FIG. 1 is a side plan view of a sole structure for a cleated athletic shoe.
  • FIG. 2 is a bottom plan view of the sole structure of FIG. 1 .
  • This disclosure describes a molded sole structure for a cleated athletic shoe in which a number of discrete outsole sections are separately attached to a midsole.
  • the midsole and outsole sections may be formed of similar materials, but the outsole sections are formed to have an increased hardness or a higher material density than the midsole.
  • the midsole may be made from a soft foam material while the outsole sections may be made from a hard plastic material.
  • Each outsole section extends substantially across the entire width of the sole structure and includes at least one ground penetrating traction element on the lateral side of the sole structure and at least one ground penetrating traction element on the medial side of the sole structure.
  • the outsole sections are separately attached to the midsole from the heel to the toe of the sole structure.
  • FIGS. 1-2 illustrate one embodiment of a sole structure 100 for a cleated athletic shoe.
  • the sole structure 100 includes a molded midsole section 110 , and a number of discrete molded outsole sections 120 , 130 , 140 , 150 , 160 , each separately attached to the midsole, for example, with a suitable adhesive.
  • Each of the outsole sections 120 , 130 , 140 , 150 , 160 extends substantially across the entire width of the sole structure from the lateral side to the medial side of the sole. However, in some embodiments, the outsole sections do not extend across the entire width of the sole structure, but only across a significant width of the sole structure, for example, 75% of the width.
  • the outsole sections should extend far enough across the width of the outsole to provide torsional rigidity and restricted lateral flex to provide lateral foot support. In one embodiment, some or all of the outsole sections may be symmetrical about the longitudinal axis of the sole structure, but in other embodiments, some or all of the outsole sections may be asymmetrical, or a combination of symmetrical and asymmetrical sections.
  • Each of the outsole sections 120 , 130 , 140 , 150 , 160 includes several ground penetrating traction elements, namely, a downward projecting platform 121 having a metal or plastic cleat 122 in the platform.
  • the metal or plastic cleat is embedded with the downward projecting platform 121 .
  • a plastic cleat could be molded in place with the outsole, or a metal cleat could be positioned in the mold.
  • the metal or plastic cleat is removable, for example, by providing a threaded receptacle (not shown) as part of the downward projecting platform.
  • each of the outsole sections 120 , 130 , 140 , 150 , 160 includes at least one ground penetrating traction element on the lateral side of the sole and at least one ground penetrating traction element on the medial side of the sole.
  • An additional ground penetrating traction element may be included in the center of the toe region, e.g., element 161 on outsole section 160 as shown, and in the center of the heel region, e.g., on outsole section 120 (not shown).
  • the ground penetrating elements may be configured in different arrangements or configurations depending upon the sport or application.
  • the midsole 110 and the outsole sections 120 , 130 , 140 , 150 , 160 are separately formed from materials having a sufficient degree of difference in their hardness or density to allow each material to flex in response to different levels of applied force.
  • a harder material is used for the outsole sections 120 , 130 , 140 , 150 , 160 and a softer material is used for the midsole 110 , as further described below.
  • the individual hard material outsole sections 120 , 130 , 140 , 150 , 160 are each separately connected to the softer material midsole 110 , but in one embodiment, are not connected with the other hard material outsole sections.
  • the harder material outsole sections 120 , 130 , 140 , 150 , 160 provide rigidity across the lateral axis, e.g., the width of the sole, thereby reducing lateral flex and providing lateral support for the foot.
  • the softer material of the midsole 110 provides a connective membrane which allows for flex across the longitudinal axis (e.g., the length of the sole) along which the sole support structure can flex with the movement of the foot.
  • the midsole 110 also includes recessed areas 111 between each of the outsole sections 120 , 130 , 140 , 150 , 160 that help enable longitudinal flex.
  • the midsole 110 and the outsole sections 120 , 130 , 140 , 150 , 160 can be made from a variety of different materials with similar results.
  • the outsole sections are formed of thermoplastic polyurethane (“TPU”), which is a plastic material with elasticity and resistance to oil, grease and abrasion, while the midsole is formed of ethylene-vinyl acetate (“EVA”), another thermoplastic material, or polyurethane foam (“PU foam”), a low density elastomer.
  • TPU thermoplastic polyurethane
  • EVA ethylene-vinyl acetate
  • PU foam polyurethane foam
  • the outsole sections 120 , 130 , 140 , 150 , 160 can be formed to have an increased hardness relative to the outsole 110 .
  • the maximum hardness of the midsole is Asker C 70, while the minimum hardnesss of the outsole sections is Shore A 70.
  • the midsole 110 and outsole sections 120 , 130 , 140 , 150 , 160 are typically formed by injection molding or compression molding.
  • Other suitable materials include leather, polymers such as thermoplastic elastomer (“TPE”), a nylon and fiberglass compound, Pebax®, carbon fiber, and other suitable plastic or rubberized materials.
  • a support structure for a cleated shoe is constructed with individual hard material outsole sections that reach across the width of the shoe from the lateral side to medial side (lateral axis) but are separated along the longitudinal axis (from forefoot to heel section) to allow for some degree of flex about the longitudinal axis of the sole structure.
  • two or more outsole sections By attaching two or more outsole sections to the midsole, production costs can be reduced.
  • two or more individually molded outsole sections can be configured to fit with a larger number of different size midsoles and uppers, and corresponding shoe sizes, therefore reducing the number of size-specific parts that must be made on the production line.
  • the outsole could be a single molded member having segmented sections 120 , 130 , 140 , 150 , 160 coupled together at thin break points (not shown) that coincide with recesses 111 on the midsole.
  • segmented sections can flex at the break points to provide flexibility in the longitudinal direction, while remaining solid to restrict flex in the lateral direction.
  • midsole soft material base unit
  • lateral axis a lower level of flex across the lateral axis
  • users can apply a much lower force load to flex the cleat across the longitudinal axis while still benefiting from restricted lateral flex, which provides lateral support.
  • This type of support corresponds more closely to the natural forefoot-to-heel flexibility of the foot, thus providing greater range of motion in response to lower applied force loads, while also providing torsional rigidity and restricted lateral flex to provide lateral support for the foot. This allows the user's foot to flex in the support structure when moving forward and backward without having a concern for the shoe flexing to the same extent side to side.
  • Support structures of the type described above are also advantageous by allowing a user's foot to maintain a greater percentage of surface area contact with the support structure throughout a greater percentage of the gait cycle, as the user's weight shifts, or as the user's foot moves.
  • the user's foot will flex across the longitudinal axis as the user accelerates forward.
  • This motion is desired by the user and the acceleration is supported by a shoe that provides greater flexibility across the longitudinal axis, which allows for more surface area contact of the user's foot with the footwear support structure and requires a lower applied force load to flex the shoe in support of acceleration, which can also increase comfort and speed of the gait cycle.

Abstract

A molded sole structure for a cleated athletic shoe has a number of hard outsole sections separately attached to a softer midsole. Each outsole section extends substantially across the width of the sole structure and includes at least one ground penetrating traction element on the lateral side of the sole structure and at least one ground penetrating traction element on the medial side of the sole structure. Each outsole section is attached to the midsole in series from the heel to the toe of the sole structure.

Description

    CROSS REFERENCE
  • This disclosure claims a priority benefit from U.S. Provisional Patent Application No. 62/018,333, filed Jun. 27, 2014, the entirety of which is incorporated herein by reference.
  • TECHNICAL FIELD
  • This disclosure relates generally to footwear, and more particularly, to a molded sole structure for cleated footwear.
  • BACKGROUND
  • A typical shoe includes at least an upper and a sole. The upper is usually a soft material that covers the foot and secures it onto the sole. The sole is usually a harder material that provides support for the foot as well as a surface for contacting the ground. In addition, the sole may be constructed to provide traction and to help control the motion of the foot.
  • For example, a cleated shoe is often used by athletes in many sports, such as baseball, football, lacrosse, soccer, track, field hockey, etc., in order to improve the user's traction on the playing field. The sole structure of a cleated shoe is typically constructed of a single hard material forming an outsole plate having downward traction elements or cleats attached to the bottom of the outsole, with the outsole attached either directly to the uppers, or to a foam midsole. A soft insole may also be part of the sole structure on top of the midsole to provide additional comfort for the user.
  • When a user is wearing cleated footwear, the shoe restricts the flexible movement of the user's foot due to the single hard material outsole plate. Further, when running, shifting weight, or moving the foot, the user's foot movements are restricted by the hardness of the plate across both the lateral and longitudinal axes of the footwear. This restriction requires the user to apply a greater force in order to flex the cleat. When flexed, however, the shape of the single hard material outsole plate is generally unable to accurately match the natural flex shape of the foot, which in turn causes a lower percentage of surface area contact between the foot and the support structure.
  • Thus, the rigid construction of a single hard material molded outsole reduces the flexibility of the shoe, decreases the responsiveness of the shoe to the foot motion of the wearer, reduces the wearer's proprioception, and negatively affects the functional and biomechanical performance of the shoe during foot strike and takeoff.
  • Therefore, it would be desirable to provide an outsole for a cleated shoe that provides improved performance and responsiveness to support flexible athletic foot motions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side plan view of a sole structure for a cleated athletic shoe.
  • FIG. 2 is a bottom plan view of the sole structure of FIG. 1.
  • DETAILED DESCRIPTION
  • This disclosure describes a molded sole structure for a cleated athletic shoe in which a number of discrete outsole sections are separately attached to a midsole. The midsole and outsole sections may be formed of similar materials, but the outsole sections are formed to have an increased hardness or a higher material density than the midsole. For example, the midsole may be made from a soft foam material while the outsole sections may be made from a hard plastic material. Each outsole section extends substantially across the entire width of the sole structure and includes at least one ground penetrating traction element on the lateral side of the sole structure and at least one ground penetrating traction element on the medial side of the sole structure. The outsole sections are separately attached to the midsole from the heel to the toe of the sole structure.
  • FIGS. 1-2 illustrate one embodiment of a sole structure 100 for a cleated athletic shoe. The sole structure 100 includes a molded midsole section 110, and a number of discrete molded outsole sections 120, 130, 140, 150, 160, each separately attached to the midsole, for example, with a suitable adhesive. Each of the outsole sections 120, 130, 140, 150, 160 extends substantially across the entire width of the sole structure from the lateral side to the medial side of the sole. However, in some embodiments, the outsole sections do not extend across the entire width of the sole structure, but only across a significant width of the sole structure, for example, 75% of the width. The outsole sections should extend far enough across the width of the outsole to provide torsional rigidity and restricted lateral flex to provide lateral foot support. In one embodiment, some or all of the outsole sections may be symmetrical about the longitudinal axis of the sole structure, but in other embodiments, some or all of the outsole sections may be asymmetrical, or a combination of symmetrical and asymmetrical sections.
  • Each of the outsole sections 120, 130, 140, 150, 160 includes several ground penetrating traction elements, namely, a downward projecting platform 121 having a metal or plastic cleat 122 in the platform. In one embodiment, the metal or plastic cleat is embedded with the downward projecting platform 121. For example, a plastic cleat could be molded in place with the outsole, or a metal cleat could be positioned in the mold. In another embodiment, the metal or plastic cleat is removable, for example, by providing a threaded receptacle (not shown) as part of the downward projecting platform.
  • Typically, each of the outsole sections 120, 130, 140, 150, 160 includes at least one ground penetrating traction element on the lateral side of the sole and at least one ground penetrating traction element on the medial side of the sole. An additional ground penetrating traction element may be included in the center of the toe region, e.g., element 161 on outsole section 160 as shown, and in the center of the heel region, e.g., on outsole section 120 (not shown). The ground penetrating elements may be configured in different arrangements or configurations depending upon the sport or application.
  • The midsole 110 and the outsole sections 120, 130, 140, 150, 160 are separately formed from materials having a sufficient degree of difference in their hardness or density to allow each material to flex in response to different levels of applied force. Thus, a harder material is used for the outsole sections 120, 130, 140, 150, 160 and a softer material is used for the midsole 110, as further described below. The individual hard material outsole sections 120, 130, 140, 150, 160 are each separately connected to the softer material midsole 110, but in one embodiment, are not connected with the other hard material outsole sections.
  • The harder material outsole sections 120, 130, 140, 150, 160 provide rigidity across the lateral axis, e.g., the width of the sole, thereby reducing lateral flex and providing lateral support for the foot. The softer material of the midsole 110 provides a connective membrane which allows for flex across the longitudinal axis (e.g., the length of the sole) along which the sole support structure can flex with the movement of the foot. In one embodiment, the midsole 110 also includes recessed areas 111 between each of the outsole sections 120, 130, 140, 150, 160 that help enable longitudinal flex.
  • The midsole 110 and the outsole sections 120, 130, 140, 150, 160 can be made from a variety of different materials with similar results. For example, in one embodiment, the outsole sections are formed of thermoplastic polyurethane (“TPU”), which is a plastic material with elasticity and resistance to oil, grease and abrasion, while the midsole is formed of ethylene-vinyl acetate (“EVA”), another thermoplastic material, or polyurethane foam (“PU foam”), a low density elastomer. In an embodiment, the outsole sections 120, 130, 140, 150, 160 can be formed to have an increased hardness relative to the outsole 110. For example, in one embodiment, the maximum hardness of the midsole is Asker C 70, while the minimum hardnesss of the outsole sections is Shore A 70. The midsole 110 and outsole sections 120, 130, 140, 150, 160 are typically formed by injection molding or compression molding. Other suitable materials include leather, polymers such as thermoplastic elastomer (“TPE”), a nylon and fiberglass compound, Pebax®, carbon fiber, and other suitable plastic or rubberized materials.
  • Thus, in one embodiment, a support structure for a cleated shoe is constructed with individual hard material outsole sections that reach across the width of the shoe from the lateral side to medial side (lateral axis) but are separated along the longitudinal axis (from forefoot to heel section) to allow for some degree of flex about the longitudinal axis of the sole structure.
  • By attaching two or more outsole sections to the midsole, production costs can be reduced. For example, two or more individually molded outsole sections can be configured to fit with a larger number of different size midsoles and uppers, and corresponding shoe sizes, therefore reducing the number of size-specific parts that must be made on the production line.
  • In an alternative embodiment, the outsole could be a single molded member having segmented sections 120, 130, 140, 150, 160 coupled together at thin break points (not shown) that coincide with recesses 111 on the midsole. Thus, the segmented sections can flex at the break points to provide flexibility in the longitudinal direction, while remaining solid to restrict flex in the lateral direction.
  • A support structure of the type described above, with a soft material base unit (midsole) and harder material outsole sections, provides a higher level of flex across the longitudinal axis and a lower level of flex across the lateral axis, which allows for greater longitudinal flexibility to match the movement and flex of the foot, while restricting lateral flexibility to provide lateral support for the foot. By providing individual outsole section, users can apply a much lower force load to flex the cleat across the longitudinal axis while still benefiting from restricted lateral flex, which provides lateral support. This type of support corresponds more closely to the natural forefoot-to-heel flexibility of the foot, thus providing greater range of motion in response to lower applied force loads, while also providing torsional rigidity and restricted lateral flex to provide lateral support for the foot. This allows the user's foot to flex in the support structure when moving forward and backward without having a concern for the shoe flexing to the same extent side to side.
  • Support structures of the type described above are also advantageous by allowing a user's foot to maintain a greater percentage of surface area contact with the support structure throughout a greater percentage of the gait cycle, as the user's weight shifts, or as the user's foot moves.
  • For example, when a baseball player runs to first base from out of the batter's box after a hit ball, the user's foot will flex across the longitudinal axis as the user accelerates forward. This motion is desired by the user and the acceleration is supported by a shoe that provides greater flexibility across the longitudinal axis, which allows for more surface area contact of the user's foot with the footwear support structure and requires a lower applied force load to flex the shoe in support of acceleration, which can also increase comfort and speed of the gait cycle.
  • In this same motion of running from the batter's box to first base, the user's center of gravity shifts from side to side across the latitudinal axis. A greater variance in the shift tends to slow the rate of acceleration. This motion requires the sole structure of the user's footwear to provide less flex across the lateral axis and a greater level of rigidity and support across the lateral axis.
  • It will be understood that the inventive sole structure has been described with reference to particular embodiments. However, additions, deletions and changes could be made to these embodiments without departing from the scope of the disclosure. Although the sole structure for a cleated athletic shoe has been described to include various components, it is well understood that these components and the described configuration can be modified and rearranged in various other configurations.

Claims (18)

1. A sole structure for a cleated athletic shoe, comprising:
a soft midsole; and
a plurality of hard outsole sections affixed to the midsole and arranged adjacent to each other along a longitudinal axis of the sole structure, each outsole section extending laterally across a width of the sole structure.
2. The sole structure of claim 1, wherein the outsole sections are coupled together at a plurality of lateral break lines such that the sole structure can be flexed at each break line about the longitudinal axis.
3. A sole structure for a cleated athletic shoe, comprising:
a midsole; and
a plurality of outsole sections each separately attached to the midsole in series from a heel region to a toe region, each outsole section being formed of a harder material than the midsole.
4. The sole structure of claim 3, wherein each outsole section extends across a width of the sole structure.
5. The sole structure of claim 4, wherein each outsole section extends across a portion of the width of the sole structure, the portion being adequate to provide torsional rigidity to restrict lateral movement.
6. The sole structure of claim 4, wherein at least one of the outsole sections is symmetrical about a longitudinal axis of the sole structure.
7. The sole structure of claim 4, wherein at least one of the outsole sections is asymmetrical about a longitudinal axis of the sole structure.
8. The sole structure of claim 6, each outsole section further comprising at least a pair of ground penetrating traction elements affixed to a bottom side of the outsole section, with a first one of the ground penetrating traction elements affixed on a lateral side of the sole structure and a second one of the ground penetrating traction elements affixed on a medial side of the sole structure.
9. The sole structure of claim 3, the midsole further comprising a plurality of recessed areas formed laterally across the midsole in between each of the outsole sections.
10. The sole structure of claim 3, the midsole formed of a soft foam material and each of the outsole sections formed of a hard plastic material.
11. A sole structure for a cleated athletic shoe, comprising:
a midsole formed of a first material having a first hardness; and
a plurality of outsole sections each formed of a second material having a second hardness, the second hardness is greater than the first hardness, each outsole section separately attached to the midsole.
12. The sole structure of claim 11, wherein each outsole section is separately attached to the midsole in series from a heel region to a toe region of the sole structure.
13. The sole structure of claim 12, wherein each outsole section extends across a width of the sole structure.
14. The sole structure of claim 13, wherein at last one of the outsole sections is symmetrical about a longitudinal axis of the sole structure.
15. The sole structure of claim 13, wherein at last one of the outsole sections is asymmetrical about a longitudinal axis of the sole structure.
16. The sole structure of claim 11, each outsole section further comprising at least a pair of ground penetrating traction elements affixed to a bottom side of the outsole section, with a first one of the ground penetrating traction elements affixed on a lateral side of the sole structure and a second one of the ground penetrating traction elements affixed on a medial side of the sole structure.
17. The sole structure of claim 11, the midsole further comprising a plurality of recessed areas formed laterally across the midsole in between each of the outsole sections.
18. The sole structure of claim 11, the first material is a soft foam material and the second material is a hard plastic material.
US14/752,273 2014-06-27 2015-06-26 Cleated shoe having a molded sole with separate sections Abandoned US20150374068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/752,273 US20150374068A1 (en) 2014-06-27 2015-06-26 Cleated shoe having a molded sole with separate sections

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462018333P 2014-06-27 2014-06-27
US14/752,273 US20150374068A1 (en) 2014-06-27 2015-06-26 Cleated shoe having a molded sole with separate sections

Publications (1)

Publication Number Publication Date
US20150374068A1 true US20150374068A1 (en) 2015-12-31

Family

ID=54929155

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/752,273 Abandoned US20150374068A1 (en) 2014-06-27 2015-06-26 Cleated shoe having a molded sole with separate sections

Country Status (1)

Country Link
US (1) US20150374068A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150237958A1 (en) * 2013-09-18 2015-08-27 Nike, Inc. Midsole Component and Outer Sole Members With Auxetic Structure
USD811064S1 (en) * 2016-11-12 2018-02-27 Nike, Inc. Shoe outsole
USD812881S1 (en) * 2016-12-02 2018-03-20 Converse Inc. Shoe outsole
USD813510S1 (en) * 2016-12-02 2018-03-27 Converse Inc. Shoe outsole
US20180140052A1 (en) * 2016-11-23 2018-05-24 Nike, Inc. Sole structure having a midsole component with movable traction members
GB2556666A (en) * 2016-09-20 2018-06-06 Nasser Rue Ali Mahmoud A footwear device

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US485459A (en) * 1892-11-01 crocker
US2126077A (en) * 1934-07-11 1938-08-09 Walter K Youngberg Shoe sole
US2364691A (en) * 1942-12-14 1944-12-12 Cagney Storer Inc Method of making shoe soles
US2370963A (en) * 1941-06-24 1945-03-06 Issaly Raoul Marcel Laurent Wooden sole for shoes
US2833057A (en) * 1957-06-21 1958-05-06 Ripple Sole Corp Resilient shoe soles
US3947979A (en) * 1971-08-23 1976-04-06 The B. F. Goodrich Company Mud resistant elastomer
US4241524A (en) * 1979-05-07 1980-12-30 Sink Jeffrey A Athletic shoe with flexible sole
US4309831A (en) * 1980-01-24 1982-01-12 Pritt Donald S Flexible athletic shoe
US4325194A (en) * 1978-04-14 1982-04-20 Asics Corporation Sport shoe sole
US4364190A (en) * 1980-08-14 1982-12-21 Brs, Inc. Outer sole for athletic shoe
US4439936A (en) * 1982-06-03 1984-04-03 Nike, Inc. Shock attenuating outer sole
US4538366A (en) * 1983-08-26 1985-09-03 Nike, Inc. Athletic shoe with ridged outsole
US4562651A (en) * 1983-11-08 1986-01-07 Nike, Inc. Sole with V-oriented flex grooves
US4569142A (en) * 1984-01-17 1986-02-11 Askinasi Joseph K Athletic shoe sole
US4607440A (en) * 1984-01-12 1986-08-26 Converse Inc. Outsole for athletic shoe
US4631842A (en) * 1983-11-28 1986-12-30 Tauno Koskela Sport shoe sole provided with pedestals
US4742626A (en) * 1986-07-12 1988-05-10 Adidas Sportschuhfabriken Adi Dassler Stiftung & Co. Kg Golf shoe sole
US4785557A (en) * 1986-10-24 1988-11-22 Avia Group International, Inc. Shoe sole construction
US4827631A (en) * 1988-06-20 1989-05-09 Anthony Thornton Walking shoe
US4833795A (en) * 1987-02-06 1989-05-30 Reebok Group International Ltd. Outsole construction for athletic shoe
US5335429A (en) * 1990-11-21 1994-08-09 Ross Hansen Cleated outer sole
USD388597S (en) * 1996-12-20 1998-01-06 Vans, Inc. Shoe sole
US6115945A (en) * 1990-02-08 2000-09-12 Anatomic Research, Inc. Shoe sole structures with deformation sipes
US6161315A (en) * 1999-01-27 2000-12-19 Cutter & Buck Shoe outsole having a stability ridge
US6276073B1 (en) * 1998-12-04 2001-08-21 John J. Curley, Jr. Dynamic permanent spike outsole
USD490225S1 (en) * 2003-05-14 2004-05-25 Columbia Insurance Company Outsole
US7047672B2 (en) * 2003-10-17 2006-05-23 Nike, Inc. Sole for article of footwear for sand surfaces
US7168190B1 (en) * 2002-07-18 2007-01-30 Reebok International Ltd. Collapsible shoe
US7290357B2 (en) * 2003-10-09 2007-11-06 Nike, Inc. Article of footwear with an articulated sole structure
USD573780S1 (en) * 2007-08-06 2008-07-29 Oakley, Inc. Footwear sole
US20080289224A1 (en) * 2007-05-22 2008-11-27 K-Swiss Inc. Shoe outsole having semicircular protrusions
US7946058B2 (en) * 2007-03-21 2011-05-24 Nike, Inc. Article of footwear having a sole structure with an articulated midsole and outsole
USD659965S1 (en) * 2010-01-12 2012-05-22 Reebok International Limited Portion of a shoe sole
US8656613B2 (en) * 2012-07-13 2014-02-25 Skechers U.S.A., Inc. Ii Article of footwear having articulated sole member
USD713134S1 (en) * 2012-01-25 2014-09-16 Reebok International Limited Shoe sole

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US485459A (en) * 1892-11-01 crocker
US2126077A (en) * 1934-07-11 1938-08-09 Walter K Youngberg Shoe sole
US2370963A (en) * 1941-06-24 1945-03-06 Issaly Raoul Marcel Laurent Wooden sole for shoes
US2364691A (en) * 1942-12-14 1944-12-12 Cagney Storer Inc Method of making shoe soles
US2833057A (en) * 1957-06-21 1958-05-06 Ripple Sole Corp Resilient shoe soles
US3947979A (en) * 1971-08-23 1976-04-06 The B. F. Goodrich Company Mud resistant elastomer
US4325194A (en) * 1978-04-14 1982-04-20 Asics Corporation Sport shoe sole
US4241524A (en) * 1979-05-07 1980-12-30 Sink Jeffrey A Athletic shoe with flexible sole
US4309831A (en) * 1980-01-24 1982-01-12 Pritt Donald S Flexible athletic shoe
US4364190A (en) * 1980-08-14 1982-12-21 Brs, Inc. Outer sole for athletic shoe
US4439936A (en) * 1982-06-03 1984-04-03 Nike, Inc. Shock attenuating outer sole
US4538366A (en) * 1983-08-26 1985-09-03 Nike, Inc. Athletic shoe with ridged outsole
US4562651A (en) * 1983-11-08 1986-01-07 Nike, Inc. Sole with V-oriented flex grooves
US4631842A (en) * 1983-11-28 1986-12-30 Tauno Koskela Sport shoe sole provided with pedestals
US4607440A (en) * 1984-01-12 1986-08-26 Converse Inc. Outsole for athletic shoe
US4569142A (en) * 1984-01-17 1986-02-11 Askinasi Joseph K Athletic shoe sole
US4742626A (en) * 1986-07-12 1988-05-10 Adidas Sportschuhfabriken Adi Dassler Stiftung & Co. Kg Golf shoe sole
US4785557A (en) * 1986-10-24 1988-11-22 Avia Group International, Inc. Shoe sole construction
US4833795A (en) * 1987-02-06 1989-05-30 Reebok Group International Ltd. Outsole construction for athletic shoe
US4827631A (en) * 1988-06-20 1989-05-09 Anthony Thornton Walking shoe
US6115945A (en) * 1990-02-08 2000-09-12 Anatomic Research, Inc. Shoe sole structures with deformation sipes
US5335429A (en) * 1990-11-21 1994-08-09 Ross Hansen Cleated outer sole
USD388597S (en) * 1996-12-20 1998-01-06 Vans, Inc. Shoe sole
US6276073B1 (en) * 1998-12-04 2001-08-21 John J. Curley, Jr. Dynamic permanent spike outsole
US6161315A (en) * 1999-01-27 2000-12-19 Cutter & Buck Shoe outsole having a stability ridge
US7168190B1 (en) * 2002-07-18 2007-01-30 Reebok International Ltd. Collapsible shoe
USD490225S1 (en) * 2003-05-14 2004-05-25 Columbia Insurance Company Outsole
US7290357B2 (en) * 2003-10-09 2007-11-06 Nike, Inc. Article of footwear with an articulated sole structure
US7047672B2 (en) * 2003-10-17 2006-05-23 Nike, Inc. Sole for article of footwear for sand surfaces
US7946058B2 (en) * 2007-03-21 2011-05-24 Nike, Inc. Article of footwear having a sole structure with an articulated midsole and outsole
US20080289224A1 (en) * 2007-05-22 2008-11-27 K-Swiss Inc. Shoe outsole having semicircular protrusions
US8365445B2 (en) * 2007-05-22 2013-02-05 K-Swiss, Inc. Shoe outsole having semicircular protrusions
USD573780S1 (en) * 2007-08-06 2008-07-29 Oakley, Inc. Footwear sole
USD659965S1 (en) * 2010-01-12 2012-05-22 Reebok International Limited Portion of a shoe sole
USD674581S1 (en) * 2010-01-12 2013-01-22 Reebok International Limited Shoe sole
USD713134S1 (en) * 2012-01-25 2014-09-16 Reebok International Limited Shoe sole
US8656613B2 (en) * 2012-07-13 2014-02-25 Skechers U.S.A., Inc. Ii Article of footwear having articulated sole member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150237958A1 (en) * 2013-09-18 2015-08-27 Nike, Inc. Midsole Component and Outer Sole Members With Auxetic Structure
US9456656B2 (en) * 2013-09-18 2016-10-04 Nike, Inc. Midsole component and outer sole members with auxetic structure
GB2556666A (en) * 2016-09-20 2018-06-06 Nasser Rue Ali Mahmoud A footwear device
GB2556666B (en) * 2016-09-20 2020-03-25 Nasser Rue Ali Mahmoud A footwear device
USD811064S1 (en) * 2016-11-12 2018-02-27 Nike, Inc. Shoe outsole
US20180140052A1 (en) * 2016-11-23 2018-05-24 Nike, Inc. Sole structure having a midsole component with movable traction members
US11019884B2 (en) * 2016-11-23 2021-06-01 Nike, Inc. Sole structure having a midsole component with movable traction members
USD812881S1 (en) * 2016-12-02 2018-03-20 Converse Inc. Shoe outsole
USD813510S1 (en) * 2016-12-02 2018-03-27 Converse Inc. Shoe outsole

Similar Documents

Publication Publication Date Title
US11172730B2 (en) Article of footwear with base plate having structure and studs
EP1993391B1 (en) Flexible and/or laterally stable foot-support structures and products containing such support structures
EP1986517B1 (en) Sole with a special structure
US10182611B2 (en) Article of footwear with flexible reinforcing plate
CN106659266B (en) Article of footwear with the inclination midsole containing embedded elastic plate
US20150374068A1 (en) Cleated shoe having a molded sole with separate sections
CN107072348B (en) Article of footwear with dynamic edge cavity indsole
EP2879540B1 (en) Article of footwear with reinforcing shank arrangement for sole structure
US9277783B2 (en) Footwear with power kick plate
US20100050475A1 (en) Footwear sole structure
US20110179675A1 (en) Sport specific footwear insole
US20190150557A1 (en) Bone-shaped stone guard and shoe incorporating same
US20160302519A1 (en) Article of Footwear Having a Midsole and Methods of Making the Same
US11490679B2 (en) Foot support components for articles of footwear
US20230284750A1 (en) Outsole for a shoe, in particular for a soccer shoe, shoe with such an outsole, and method for the manufacture of such items

Legal Events

Date Code Title Description
AS Assignment

Owner name: TESHUB SPORTS LTD., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DUKE, RYAN A.;REEL/FRAME:035940/0985

Effective date: 20150627

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION