US20160022867A1 - Template for bacterial cellulose implant processed within bioreactor - Google Patents

Template for bacterial cellulose implant processed within bioreactor Download PDF

Info

Publication number
US20160022867A1
US20160022867A1 US14/806,015 US201514806015A US2016022867A1 US 20160022867 A1 US20160022867 A1 US 20160022867A1 US 201514806015 A US201514806015 A US 201514806015A US 2016022867 A1 US2016022867 A1 US 2016022867A1
Authority
US
United States
Prior art keywords
implant
bacterial cellulose
sheet
oxidized
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/806,015
Inventor
Yves Bayon
Sebastien Ladet
Olivier Lefranc
Philippe Gravagna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sofradim Production SAS
Original Assignee
Sofradim Production SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sofradim Production SAS filed Critical Sofradim Production SAS
Priority to US14/806,015 priority Critical patent/US20160022867A1/en
Assigned to SOFRADIM PRODUCTION reassignment SOFRADIM PRODUCTION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAYON, YVES, GRAVAGNA, PHILIPPE, LEFRANC, OLIVIER, LADET, SEBASTIEN
Publication of US20160022867A1 publication Critical patent/US20160022867A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • A61F13/01012
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00051Accessories for dressings
    • A61F13/00059Accessories for dressings provided with visual effects, e.g. printed or colored
    • A61F13/01021
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00089Wound bandages
    • A61F2013/00153Wound bandages coloured or with decoration pattern or printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00089Wound bandages
    • A61F2013/00246Wound bandages in a special way pervious to air or vapours
    • A61F2013/00255Wound bandages in a special way pervious to air or vapours with pores
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00089Wound bandages
    • A61F2013/00314Wound bandages with surface treatments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the implants described herein include a sheet of bacterial cellulose having a macro-pattern positioned on at least one side of the sheet.
  • Methods for producing such implants include culturing bacteria capable of producing a bacterial cellulose in a bioreactor in the presence of a template having a macro-patterned surface.
  • An aspect of the present invention is an implant comprising:
  • a sheet of bacterial cellulose having a macro-pattern positioned on at least a portion thereof.
  • the bacterial cellulose may derived from Acetobacter xylinum.
  • the bacterial cellulose may be oxidized.
  • Another aspect of the present invention is a method of making an implant comprising:
  • the bacteria may be Acetobacter xylinum.
  • Another aspect of the present invention is a method of treating a wound comprising contacting a wound with an implant as described above.
  • FIG. 1 is a schematic perspective view of a template having a three-dimensional macro-pattern according to an embodiment described in the present disclosure.
  • FIG. 2 is schematic, cross-sectional view of a bioreactor including a template and a porous sheet of bacterial cellulose according to an embodiment described in the present disclosure.
  • FIG. 3 is a schematic perspective view of a porous sheet of bacterial cellulose according to an embodiment described in the present disclosure.
  • the term “implant” is intended to mean a biocompatible or bioresorbable medical device, at least a portion of which can be implanted in the human or animal body.
  • bioresorbable is intended to mean the characteristic according to which an implant and/or a material is degraded by the biological tissues and the surrounding fluids, in vivo after a given period of time, that may vary, for example, from one day to several months, depending on the chemical nature of the implant and/or of the material.
  • bioreactor is intended to include any device or system capable of supporting a biologically active environment for growing or culturing materials.
  • the bioreactors may also include the ability to provide agitation, pressure changes, temperature controls, humidity controls, media exchange, and ventilation.
  • sheet is intended to include generally planar-shaped formats, such as films, foams, pellicles, layers and combinations thereof.
  • the sheet of bacterial cellulose may be produced from bacteria that synthesize cellulose.
  • Cellulose is synthesized by bacteria belonging to the genera Acetobacter, Rhizobium, Agrobacterium, and Sarcina .
  • Cellulose can be produced by certain bacteria from glucose in the presence of oxygen, (such as, for example, Acetobacter xylinum, referenced hereinafter as the “bacteria”), in static conditions or in a bioreactor (see, e.g. U.S. Pat. Nos. 4,912,049 and 5,955,326, the entire disclosures of which are incorporated herein by this reference).
  • Cellulose suitable for use in the present implants can be obtained by the fermentation of the bacteria.
  • a derivative of the cellulose is employed, such as oxidized cellulose resulting from the oxidation of the cellulose by periodic acid or nitrogen dioxide.
  • Bacterial cellulose possesses inherent characteristics which allow effective promotion of wound healing (see, e.g. U.S. Pat. No. 7,390,492, the entire disclosures of which are incorporated herein by this reference).
  • bacterial cellulose displays properties (such as unique multi-layer three dimensional laminar structures) that distinguish it from plant cellulose and other natural polymeric materials.
  • Bacterial cellulose shows excellent wet strength, does not easily breakdown under compression and demonstrates high moisture handling ability.
  • the sheet of bacterial cellulose is porous and includes a macro-pattern thereon.
  • the porous sheet 100 is formed on or around a template 10 having a three dimensional (“3D”) macro-pattern positioned within the bioreactor 50 . (See FIG. 2 .)
  • the template is positioned on or near the bottom of the bioreactor. It should be understood that instead of a separate structure positioned within the bioreactor, the template may be formed directly into a surface of the bioreactor, such as, for example, formed into the bottom surface of the bioreactor.
  • the porosity of the cellulose sheet is created during the fermentation process when the cellulose is synthesized by the bacteria in a bioreactor which includes culture media.
  • the cellulose synthesis on and around the template having the 3D macro-pattern formed on at least a portion of the bioreactor can lead to the sheet having a well-defined porosity. Because the sheet is formed in the presence of the template, the macro-pattern is imparted to the sheet during formation without the use of additional processing.
  • the materials used to form the 3D macro-pattern on a template of the bioreactor are compatible with the culture media, the culture conditions and any other contents in the bioreactor which allows for growth of the bacteria on the predetermined 3D macro-pattern portion of the bioreactor.
  • the template may be made from but not limited to poly(lactic acid), poly (glycolic acid), poly (hydroxybutyrate), poly (phosphazine), polyesters, polyethylene glycols, polyethylene oxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly (ether-esters), polyalkylene oxalates, polyamides, poly (iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and copolymers, block copolymers, homopolymers, blends and combinations thereof, polychloride vinyle (PVC), polycarbonate, polysulfone, fluorocarbones (eg.
  • PVC polychloride vinyle
  • PVC
  • 3D macro-pattern on the template can be designed having any form, geometry or topography which allows for removal of the implant from the bioreactor surface following the biosynthesis of the bacterial cellulose.
  • the materials used to design the 3D macro-pattern such as peaks, tubes, rods, and spikes, have the ability to withstand the growth of the bacterial cellulose thereby creating a macro-pattern, while retaining a softness and flexibility in order to allow the bacterial cellulose to be withdrawn from the bioreactor without damaging the macro-pattern.
  • 3D macro-pattern 10 includes a series of regularly spaced rods 15 .
  • the macro-pattern may create pores, openings or perforations in the sheet having any geometric shape or dimension.
  • the pores may be circular, conical, rectangular, square, oval, elliptical, polygonal and the like.
  • the macro-pattern on the bacterial cellulose sheet improves the implants ability to integrate tissue.
  • sheet 100 includes regularly distributed circular openings 120 resulting from culturing bacteria in the presence of the 3D macro-pattern shown in FIG. 1 .
  • the size of the pores may be from about 0.5 mm to 5 mm, in embodiments from about 1 mm to 3 mm.
  • the macro-pattern needs not pass completely through the sheet (e.g., holes), but rather may be indententions resulting from the sheet being formed around and over at least a portion of the macro-pattern template.
  • the sheet may have a continuous, not indentented surface for the prevention of post-operative tissular adhesions.
  • the macropattern may pass completely through the sheet (e.g., full thickness holes).
  • the implants described herein are useful for implantation where soft tissues are in need of repair, reinforcement, replacement or augmentation.
  • the implants may be useful near the abdominal wall, vascular tissue or the pelvic floor.
  • the implants may be easily fixed for surgeries, by any known techniques, among them suturing, stitching, stapling and tacking.
  • the bacterial cellulose is harvested at the end of the fermentation of the bacteria.
  • the harvested cellulose is subjected to purification and depyrogenation processes.
  • the bacterial cellulose may be oxidized by periodic acid or by nitrogen dioxide before, after, or during the purification and depyrogenation process.
  • the bacterial cellulose may be oxidized when the cellulose is at least partly purified and depyrogenated.
  • the final level of oxidation can be controlled in such a way to produce a resorption time of from several days to several months.
  • the degree of oxidation can be from about 0.1 to about 0.9, in embodiments from about 0.2 to about 0.65.
  • bacterial cellulose for the generation of cellulose derivatives
  • Cellulose belong to the family of biodegradable, renewable polymers that provides a broad range of important functional properties, and are thus widely used in industry today.
  • native cellulose are commonly modified by physical, chemical, enzymatic or genetic means in order to obtain specific functional properties (Richardson, et al., Analytica Chimica Acta, 2003; Kennedy, et al., Cellulose and its Derivatives: Chemistry, Biochemistry and Applications, Ellis Horwood, Chichester, 1985; Guilbot, et al., The Polysaccharides, G.
  • Native cellulose has an intrinsic lack of solubility in water and most organic solvent systems which constitutes a major obstacle for utilizing cellulose in many industrial applications. It may be a goal to chemically derivatize the bacterial cellulose in such a way to obtain derivatives soluble in organic solvents, for an easier remodeling of the bacterial cellulose, for example.
  • the present implants which include a bacterial cellulose sheet having a 3D macro-pattern may advantageously maintain one or more of the original properties of bacterial cellulose sheets (such as, for example, high biocompatibility, extreme hydrophilicity, unique multi-layered three dimensional laminar structures which provide its moisture handling properties, excellent wet strength, high resistance to breakdown under compression, conformability, absence of generation of harmful particles of the cellulose mesh after rubbing against surrounding tissues or erosion at sharp edges of tissues—e.g., sharp edges of bone and cartilage tissues) while inducing controlled porosity directly during the biosynthesis within the sheets for better tissue integration and cell colonization when implanted.
  • Bacterial cellulose sheets can have superior mechanical properties compared to other bioresorbable implants.
  • Medical implants in accordance with this disclosure may be produced at a predetermined size or produced in large sheets which may be cut to sizes appropriate for the envisaged application.
  • the medical implants may be packaged in single or dual pouches and sterilized using conventional techniques, such as, but not limited to, irradiation with beta (electronic irradiation) or gamma (irradiation using radioactive cobalt) rays at about 25 KGy to about 35 KGy, and/or sterilized by ethylene oxide.

Abstract

The present invention relates to an implant comprising: a sheet of bacterial cellulose having a macro-pattern positioned on at least a portion thereof. The invention also relates to a method for making such an implant.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/125,607 filed Jul. 11, 2011, now U.S. Pat. No. 9,107,978, which is a National Stage Application of PCT/1809/007661 filed Nov. 6, 2009, which claims benefit of U.S. Provisional Application No. 61/112,298 filed Nov. 7, 2008, and the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.
  • The implants described herein include a sheet of bacterial cellulose having a macro-pattern positioned on at least one side of the sheet.
  • Methods for producing such implants include culturing bacteria capable of producing a bacterial cellulose in a bioreactor in the presence of a template having a macro-patterned surface.
  • An aspect of the present invention is an implant comprising:
  • a sheet of bacterial cellulose having a macro-pattern positioned on at least a portion thereof.
  • The bacterial cellulose may derived from Acetobacter xylinum. The bacterial cellulose may be oxidized.
  • Another aspect of the present invention is a method of making an implant comprising:
  • providing a bioreactor having a macro-patterned surface; and
  • culturing a bacteria on the macro-patterned surface, wherein the bacteria is capable of producing a sheet of bacterial cellulose.
  • The bacteria may be Acetobacter xylinum.
  • Another aspect of the present invention is a method of treating a wound comprising contacting a wound with an implant as described above.
  • FIG. 1 is a schematic perspective view of a template having a three-dimensional macro-pattern according to an embodiment described in the present disclosure.
  • FIG. 2 is schematic, cross-sectional view of a bioreactor including a template and a porous sheet of bacterial cellulose according to an embodiment described in the present disclosure.
  • FIG. 3 is a schematic perspective view of a porous sheet of bacterial cellulose according to an embodiment described in the present disclosure.
  • In the present disclosure, the term “implant” is intended to mean a biocompatible or bioresorbable medical device, at least a portion of which can be implanted in the human or animal body.
  • In the present disclosure, the term “bioresorbable” is intended to mean the characteristic according to which an implant and/or a material is degraded by the biological tissues and the surrounding fluids, in vivo after a given period of time, that may vary, for example, from one day to several months, depending on the chemical nature of the implant and/or of the material.
  • In the present disclosure, the term “bioreactor” is intended to include any device or system capable of supporting a biologically active environment for growing or culturing materials. In addition to containers or vessels capable of seeding or growing bacteria, the bioreactors may also include the ability to provide agitation, pressure changes, temperature controls, humidity controls, media exchange, and ventilation.
  • In the present disclosure, the term “sheet” is intended to include generally planar-shaped formats, such as films, foams, pellicles, layers and combinations thereof.
  • In the present disclosure, the sheet of bacterial cellulose may be produced from bacteria that synthesize cellulose. Cellulose is synthesized by bacteria belonging to the genera Acetobacter, Rhizobium, Agrobacterium, and Sarcina. Cellulose can be produced by certain bacteria from glucose in the presence of oxygen, (such as, for example, Acetobacter xylinum, referenced hereinafter as the “bacteria”), in static conditions or in a bioreactor (see, e.g. U.S. Pat. Nos. 4,912,049 and 5,955,326, the entire disclosures of which are incorporated herein by this reference). Cellulose suitable for use in the present implants can be obtained by the fermentation of the bacteria. In embodiments, a derivative of the cellulose is employed, such as oxidized cellulose resulting from the oxidation of the cellulose by periodic acid or nitrogen dioxide.
  • Bacterial cellulose possesses inherent characteristics which allow effective promotion of wound healing (see, e.g. U.S. Pat. No. 7,390,492, the entire disclosures of which are incorporated herein by this reference). In this regard, bacterial cellulose displays properties (such as unique multi-layer three dimensional laminar structures) that distinguish it from plant cellulose and other natural polymeric materials. Bacterial cellulose shows excellent wet strength, does not easily breakdown under compression and demonstrates high moisture handling ability.
  • In the present disclosure, at least a portion of the sheet of bacterial cellulose is porous and includes a macro-pattern thereon. The porous sheet 100 is formed on or around a template 10 having a three dimensional (“3D”) macro-pattern positioned within the bioreactor 50. (See FIG. 2.) In embodiments, the template is positioned on or near the bottom of the bioreactor. It should be understood that instead of a separate structure positioned within the bioreactor, the template may be formed directly into a surface of the bioreactor, such as, for example, formed into the bottom surface of the bioreactor. The porosity of the cellulose sheet is created during the fermentation process when the cellulose is synthesized by the bacteria in a bioreactor which includes culture media. The cellulose synthesis on and around the template having the 3D macro-pattern formed on at least a portion of the bioreactor can lead to the sheet having a well-defined porosity. Because the sheet is formed in the presence of the template, the macro-pattern is imparted to the sheet during formation without the use of additional processing.
  • The materials used to form the 3D macro-pattern on a template of the bioreactor are compatible with the culture media, the culture conditions and any other contents in the bioreactor which allows for growth of the bacteria on the predetermined 3D macro-pattern portion of the bioreactor. For example, the template may be made from but not limited to poly(lactic acid), poly (glycolic acid), poly (hydroxybutyrate), poly (phosphazine), polyesters, polyethylene glycols, polyethylene oxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly (ether-esters), polyalkylene oxalates, polyamides, poly (iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and copolymers, block copolymers, homopolymers, blends and combinations thereof, polychloride vinyle (PVC), polycarbonate, polysulfone, fluorocarbones (eg. Teflon® and derivatives, Halar ECTFE [ethylenechlorortrifluoroethylene copolymers)], Tefzel EFTE [ethylene tetrafluorethylene], polyfluoride vinyle [PVDF], stainless steel. The 3D macro-pattern on the template can be designed having any form, geometry or topography which allows for removal of the implant from the bioreactor surface following the biosynthesis of the bacterial cellulose. The materials used to design the 3D macro-pattern, such as peaks, tubes, rods, and spikes, have the ability to withstand the growth of the bacterial cellulose thereby creating a macro-pattern, while retaining a softness and flexibility in order to allow the bacterial cellulose to be withdrawn from the bioreactor without damaging the macro-pattern. For example, as seen in FIG. 1, 3D macro-pattern 10 includes a series of regularly spaced rods 15.
  • The macro-pattern may create pores, openings or perforations in the sheet having any geometric shape or dimension. For example, the pores may be circular, conical, rectangular, square, oval, elliptical, polygonal and the like. The macro-pattern on the bacterial cellulose sheet improves the implants ability to integrate tissue. As seen in FIG. 3, sheet 100 includes regularly distributed circular openings 120 resulting from culturing bacteria in the presence of the 3D macro-pattern shown in FIG. 1.
  • The size of the pores may be from about 0.5 mm to 5 mm, in embodiments from about 1 mm to 3 mm.
  • It should be understood that the macro-pattern needs not pass completely through the sheet (e.g., holes), but rather may be indententions resulting from the sheet being formed around and over at least a portion of the macro-pattern template. In such embodiments, the sheet may have a continuous, not indentented surface for the prevention of post-operative tissular adhesions.
  • In other embodiments, it should be understood that the macropattern may pass completely through the sheet (e.g., full thickness holes).
  • The implants described herein are useful for implantation where soft tissues are in need of repair, reinforcement, replacement or augmentation. For instance, the implants may be useful near the abdominal wall, vascular tissue or the pelvic floor. The implants may be easily fixed for surgeries, by any known techniques, among them suturing, stitching, stapling and tacking.
  • In embodiments, the bacterial cellulose is harvested at the end of the fermentation of the bacteria. The harvested cellulose is subjected to purification and depyrogenation processes. The bacterial cellulose may be oxidized by periodic acid or by nitrogen dioxide before, after, or during the purification and depyrogenation process. In embodiments, the bacterial cellulose may be oxidized when the cellulose is at least partly purified and depyrogenated. The final level of oxidation can be controlled in such a way to produce a resorption time of from several days to several months. The degree of oxidation can be from about 0.1 to about 0.9, in embodiments from about 0.2 to about 0.65.
  • Other chemical modifications of the bacterial cellulose for the generation of cellulose derivatives are also within the scope of the present disclosure. Cellulose belong to the family of biodegradable, renewable polymers that provides a broad range of important functional properties, and are thus widely used in industry today. However, some of the inherent properties of these polysaccharides limit their utility in certain applications. Therefore, native cellulose are commonly modified by physical, chemical, enzymatic or genetic means in order to obtain specific functional properties (Richardson, et al., Analytica Chimica Acta, 2003; Kennedy, et al., Cellulose and its Derivatives: Chemistry, Biochemistry and Applications, Ellis Horwood, Chichester, 1985; Guilbot, et al., The Polysaccharides, G. Aspinall (Ed.), Academic Press, New York, 1985). Native cellulose has an intrinsic lack of solubility in water and most organic solvent systems which constitutes a major obstacle for utilizing cellulose in many industrial applications. It may be a goal to chemically derivatize the bacterial cellulose in such a way to obtain derivatives soluble in organic solvents, for an easier remodeling of the bacterial cellulose, for example.
  • The present implants which include a bacterial cellulose sheet having a 3D macro-pattern may advantageously maintain one or more of the original properties of bacterial cellulose sheets (such as, for example, high biocompatibility, extreme hydrophilicity, unique multi-layered three dimensional laminar structures which provide its moisture handling properties, excellent wet strength, high resistance to breakdown under compression, conformability, absence of generation of harmful particles of the cellulose mesh after rubbing against surrounding tissues or erosion at sharp edges of tissues—e.g., sharp edges of bone and cartilage tissues) while inducing controlled porosity directly during the biosynthesis within the sheets for better tissue integration and cell colonization when implanted. Bacterial cellulose sheets can have superior mechanical properties compared to other bioresorbable implants.
  • Medical implants in accordance with this disclosure may be produced at a predetermined size or produced in large sheets which may be cut to sizes appropriate for the envisaged application. The medical implants may be packaged in single or dual pouches and sterilized using conventional techniques, such as, but not limited to, irradiation with beta (electronic irradiation) or gamma (irradiation using radioactive cobalt) rays at about 25 KGy to about 35 KGy, and/or sterilized by ethylene oxide.
  • It will be understood that various modifications may be made to the embodiments disclosed herein. Thus, those skilled in the art will envision other modifications within the scope and spirit of the disclosure.

Claims (21)

1-5. (canceled)
6. An implant comprising:
a sheet of bacterial cellulose having a macro-pattern positioned on at least a portion thereof, wherein the sheet includes pores of a size from about 0.5 to 5 mm and which do not pass completely through the sheet.
7. The implant of claim 6, wherein the pores are from about 0.1 mm to 3 mm in size.
8. The implant of claim 6, wherein the bacterial cellulose is derived from Acetobacter xylinum.
9. The implant of claim 6, wherein the bacterial cellulose is oxidized.
10. The implant of claim 9, wherein the bacterial cellulose is oxidized with a degree of oxidation from 0.1 to 0.9.
11. The implant of claim 9, wherein the bacterial cellulose is oxidized with a degree of oxidation from 0.2 to 0.65.
12. The implant of claim 9, wherein the bacterial cellulose is oxidized by periodic acid or nitrogen dioxide.
13. The implant of claim 12, wherein the bacterial cellulose is oxidized when the cellulose is at least partially purified and depyrogenated.
14. The implant of claim 6, wherein the sheet is a generally planar film.
15. The implant of claim 6, wherein the implant is bioresorbable.
16. The implant of claim 6, wherein the pores comprise a shape selected from the group consisting of circular, conical, rectangular, square, oval, and, elliptical.
17. The implant of claim 6, wherein the pores are regularly distributed circular openings.
18. The implant of claim 6, wherein the sheet is sterilized.
19. A bioresorbable implant comprising:
a sheet of bacterial cellulose which includes a first surface which allows tissue integration and includes a macro-pattern positioned on at least a portion thereof which includes pores which do not pass completely through the sheet, and a second continuous, not indented surface for the prevention of post-operative adhesions.
20. The bioresorbable implant of claim 19, wherein the pores are from about 0.5 mm to 5 mm in size.
21. The bioresorbable implant of claim 19, wherein the pores are from about 0.1 mm to 3 mm in size.
22. The bioresorbable implant of claim 19, wherein the bacterial cellulose is derived from Acetobacter xylinum.
23. The bioresorbable implant of claim 19, wherein the bacterial cellulose is oxidized.
24. The bioresorbable implant of claim 23, wherein the bacterial cellulose is oxidized with a degree of oxidation from 0.1 to 0.9.
25. The bioresorbable implant of claim 23, wherein the bacterial cellulose is oxidized by periodic acid or nitrogen dioxide.
US14/806,015 2008-11-07 2015-07-22 Template for bacterial cellulose implant processed within bioreactor Abandoned US20160022867A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/806,015 US20160022867A1 (en) 2008-11-07 2015-07-22 Template for bacterial cellulose implant processed within bioreactor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11229808P 2008-11-07 2008-11-07
PCT/IB2009/007661 WO2010052583A2 (en) 2008-11-07 2009-11-06 Template for bacterial cellulose implant processed within bioreactor
US201113125607A 2011-07-11 2011-07-11
US14/806,015 US20160022867A1 (en) 2008-11-07 2015-07-22 Template for bacterial cellulose implant processed within bioreactor

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2009/007661 Continuation WO2010052583A2 (en) 2008-11-07 2009-11-06 Template for bacterial cellulose implant processed within bioreactor
US13/125,607 Continuation US9107978B2 (en) 2008-11-07 2009-11-06 Template for bacterial cellulose implant processed within bioreactor

Publications (1)

Publication Number Publication Date
US20160022867A1 true US20160022867A1 (en) 2016-01-28

Family

ID=42062544

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/125,607 Expired - Fee Related US9107978B2 (en) 2008-11-07 2009-11-06 Template for bacterial cellulose implant processed within bioreactor
US14/806,015 Abandoned US20160022867A1 (en) 2008-11-07 2015-07-22 Template for bacterial cellulose implant processed within bioreactor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/125,607 Expired - Fee Related US9107978B2 (en) 2008-11-07 2009-11-06 Template for bacterial cellulose implant processed within bioreactor

Country Status (5)

Country Link
US (2) US9107978B2 (en)
EP (1) EP2365832A2 (en)
AU (1) AU2009312478A1 (en)
CA (1) CA2741516A1 (en)
WO (1) WO2010052583A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140129234A (en) 2012-02-22 2014-11-06 신세스 게엠바하 Resorbable cellulose based biomaterial and implant
US9499636B2 (en) * 2012-06-28 2016-11-22 Covidien Lp Dissolution of oxidized cellulose and particle preparation by cross-linking with multivalent cations
FI126854B (en) * 2013-12-30 2017-06-30 Upm Kymmene Corp A membrane, its use and a process for the preparation of the membranes
US10774227B2 (en) * 2017-04-25 2020-09-15 Cellheal As Preparation and applications of biocompatible conductive inks based on cellulose nanofibrils for 3D printing of conductive biomedical devices and for use as models for study of neurodegenerative disorders and connection between brain/neurons and communication or other electronic devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588400A (en) * 1982-12-16 1986-05-13 Johnson & Johnson Products, Inc. Liquid loaded pad for medical applications
US4803032A (en) * 1983-05-17 1989-02-07 James River-Norwalk, Inc. Method of spot embossing a fibrous sheet
US20040028722A1 (en) * 2002-04-26 2004-02-12 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364200A (en) * 1960-03-28 1968-01-16 Johnson & Johnson Oxidized cellulose product and method for preparing the same
BR8404937A (en) 1984-10-01 1986-05-06 Bio Fill Ind E Comercio De Pro PROCESS FOR PREPARING CELLULOSE FILM, CELLULOSE FILM OBTAINED BY THE SAME, ARTIFICIAL SKIN IMPLANT, INJURY TREATMENT PROCESS USING THE REFERRED CELLULOSE FILM AND USE
EP0396344A3 (en) 1989-04-28 1991-04-03 Ajinomoto Co., Inc. Hollow microbial cellulose, process for preparation thereof, and artificial blood vessel formed of said cellulose
US5955326A (en) * 1995-08-01 1999-09-21 Rensselaer Polytechnic Institute Production of microbial cellulose using a rotating disk film bioreactor
WO2001015708A1 (en) 1999-09-02 2001-03-08 Michigan State University Vaccine to control equine protozoal myeloencephalitis in horses
US6777227B2 (en) * 2002-01-09 2004-08-17 John L. Ricci Bio-reactor and cell culture surface with microgeometric surfaces
US6926950B2 (en) * 2002-12-20 2005-08-09 Sca Hygiene Products Ab Production of a dyed patterned web
US7884258B2 (en) * 2004-04-13 2011-02-08 Boehringer Technologies, L.P. Wound contact device
WO2006042287A2 (en) * 2004-10-12 2006-04-20 Trustees Of Tufts College Method for producing biomaterial scaffolds
US7709631B2 (en) * 2006-03-13 2010-05-04 Xylos Corporation Oxidized microbial cellulose and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588400A (en) * 1982-12-16 1986-05-13 Johnson & Johnson Products, Inc. Liquid loaded pad for medical applications
US4803032A (en) * 1983-05-17 1989-02-07 James River-Norwalk, Inc. Method of spot embossing a fibrous sheet
US20040028722A1 (en) * 2002-04-26 2004-02-12 Xylos Corporation Microbial cellulose wound dressing for treating chronic wounds

Also Published As

Publication number Publication date
US20110262706A1 (en) 2011-10-27
AU2009312478A1 (en) 2010-05-14
US9107978B2 (en) 2015-08-18
WO2010052583A2 (en) 2010-05-14
WO2010052583A3 (en) 2010-11-04
CA2741516A1 (en) 2010-05-14
EP2365832A2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
US9510928B2 (en) Composite mesh including a 3D mesh and a non porous film of oxidized cellulose from bacterial cellulose origin
US20110262696A1 (en) Medical device including a bacterial cellulose sheet, perforated or microperforated as a mesh
US20160022867A1 (en) Template for bacterial cellulose implant processed within bioreactor
JP4907345B2 (en) Cellulose from heat-denatured microorganisms for in vivo transplantation
WO2008079034A2 (en) A biomaterial composed of microbiological cellulose for internal use, a method of producing the biomaterial and the use of the biomaterial composed of microbiological cellulose in soft tissue surgery and bone surgery
Ludwicka et al. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications
US20170258964A1 (en) Porous Structures of Microbial-Derived Cellulose In Vivo Implantation
Foresti et al. Bacterial nanocellulose: Synthesis, properties and applications
CN100536799C (en) Growth inducing stand for animal tissue
US8679779B2 (en) Medical devices with definable porosity produced by bacterial polymer bio-synthesis
RU2316290C2 (en) Gauze endoprosthesis usable in plastic surgery
AU2009312481B2 (en) Medical device including bacterial cellulose reinforced by resorbable or non resorbable reinforcing materials
KR20140009458A (en) Hemisphere for bladder expansion in patients with low compliance
JP4674331B2 (en) Cell / tissue culture substrate and host embedded structure
TWI270376B (en) Application of hPHA as biomedical material
WO2013131499A1 (en) Polymeric composite with co-continual structure, especially for the preparation of implants with the increased bio-compatibility
Melliawati Bacterial Cellulose
JPH0661258B2 (en) Calcium phosphate carrier for animal cell culture

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOFRADIM PRODUCTION, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAYON, YVES;LADET, SEBASTIEN;LEFRANC, OLIVIER;AND OTHERS;SIGNING DATES FROM 20110705 TO 20110706;REEL/FRAME:036154/0867

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION