US20160157409A1 - Caden Edge Welding Process - Google Patents

Caden Edge Welding Process Download PDF

Info

Publication number
US20160157409A1
US20160157409A1 US14/740,426 US201514740426A US2016157409A1 US 20160157409 A1 US20160157409 A1 US 20160157409A1 US 201514740426 A US201514740426 A US 201514740426A US 2016157409 A1 US2016157409 A1 US 2016157409A1
Authority
US
United States
Prior art keywords
wear
face
coating
weld
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/740,426
Inventor
Loran R. Balvanz
Paul R. Gray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BALVANZ LAND LLC
Original Assignee
BALVANZ LAND LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BALVANZ LAND LLC filed Critical BALVANZ LAND LLC
Priority to US14/740,426 priority Critical patent/US20160157409A1/en
Publication of US20160157409A1 publication Critical patent/US20160157409A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B15/00Elements, tools, or details of ploughs
    • A01B15/02Plough blades; Fixing the blades
    • A01B15/04Shares
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B15/00Elements, tools, or details of ploughs
    • A01B15/02Plough blades; Fixing the blades
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Definitions

  • This invention relates to an apparatus and method for applying a wear coating to the back side of a wear part.
  • Wear parts such ground engagement tools used in agricultural applications such as plow sweeps and rippers, as well as other wear parts, are subject to extreme wear and tear. These parts are as a result frequently replaced as they deteriorate to the point where they are no longer effect at the intended task. This occurs because the leading face, which does the bulk of the work, becomes dull from abrasion and wears away dramatically limiting the effectiveness of the part.
  • the leading face (the face that undergoes the most wear) is coated with a wear resistant coating. This will extend the life of the tool, but it has the drawback of making it a less effective cutting tool.
  • Wear resistant coatings such as tungsten carbide, are very dense and thick. As a result, they interfere with the flow of the material over the leading face of the wear part. Also, they dull the leading face reducing the cutting, or tearing, effect of the face.
  • both the leading and back side face of the wear part are coated with a wear resistant coating.
  • a wear resistant coating There is no disclosed advantage of coating both sides, and such parts suffer from the same disadvantages as parts with coatings on the leading face.
  • coating both sides appears to do nothing to enhance the tools but is a waste of wear coating.
  • An object of the present invention is to provide a wear part with a wear resistant coating that substantially eliminates the problems of the prior art.
  • the present invention comprises a wear part with a leading face and a back face, wherein the back face is coated with wear resistant coating.
  • FIG. 1 a shows back face of a plow sweep.
  • FIG. 1 b shows the leading (front) face of the plow sweep.
  • FIG. 2 shows various hammer tips.
  • FIG. 3 shows the back face of a standard ripper and a ripper with wear coating.
  • FIG. 4 is a flow chart of a welding process.
  • the present invention involves the addition of Tungsten Carbide chips to the molten puddle of a MIG weld.
  • a fine to coarse grit carbide can be used for different applications. It is preferred that the weld puddle be as fluid as possible for best results. This restricts the welding to a horizontal plane only.
  • the part being welded must be flat and level, or a positioner can also be incorporated.
  • a robot can move a part under a stationary MIG gun and carbide feeder, instead of moving the welding head. This will allow application of the weld efficiently to a curved or multi faceted part with minimal handling. This is also important in applying the weld in a manner that best protects the high wear areas.
  • This invention is particularly applicable to “ground engagement” tools such as rippers and sweeps, specifically in the agriculture market.
  • “ground engagement” tools such as rippers and sweeps, specifically in the agriculture market.
  • hard face welding in many forms has been used in these fields with only moderate success.
  • the invention is more broadly applicable to general wear parts such as hammers and hammer tips of the type used with rotary hammermills in tub grinders, and wear parts used in construction, mining, screening, conveying, crushing, plowing, road maintenance, and grader applications. These can include for example cutting faces, teeth, adapters, jaws, wedges, blades, and the like.
  • the wear surface has been applied to the face of the tool (the side in full contact with the soil).
  • application of a narrow weld to the back side of the leading face of these various tools achieves a much longer tool life than the prior art, and at a minimal cost.
  • the present invention utilizes multiple stationary welding stations with the ability to apply both coarse and fine grit carbide welds to the same part without handling the part twice, and without changing anything with a welder.
  • FIG. 1 a shows the backside weld of the present invention applied to the backside of a plow sweep blade, comprised of tungsten carbide.
  • FIG. 1 b shows the reverse (leading) side of the plow sweep blade, which is not coated with any wear coating.
  • FIG. 2 shows the backside of various wear parts with the weld applied. The wear parts are of the type used with a rotary hammermill of a tub grinder or the like.
  • FIG. 3 shows the back face of a standard ripper blade and one with wear coating of the present invention.
  • the welding cell welders of the present invention because they are now stationary will be different and much more sophisticated as the speed and the heat levels and makeup of the matrix of weld and carbide mix can all be programmed to work in parallel with the robots programs.
  • Prior art welds are hard facing such that the abrasion wear is always put on the face of the working part that makes contact with soils or other contact surface, such as for digging, grind materials, or soil contacts.
  • the solid carbide can only be applied to a flat and prepared surface, and the surface tends to shatter on impact with foreign objects, rocks and any abrasive material trying to be stirred, moved or conveyed.
  • the working face is actually reinforced, and made stronger.
  • the weld does not allow the face to prematurely wear off, and does not diminish the flow of the material to be moved. As the part finally starts to wear, the weld does not wear and this tends to sharpen the face as the wear is forced to occur on front face or top.
  • Another advantage of the present invention comes from the fact that the welding process does not weaken or soften the forward working face of the wear part with our process. Studies have shown on typical hard surface coating that once a wear coating erodes the base material will then wear at an accelerated rate because it was softened in the weld process. The present invention solves this problem.
  • the welding cell shown in the flow diagram below, used to apply the welds of the present invention has the following properties:
  • the present welding machine makes one pass at a described width and speed and then the jig is rotated by the operator holding the parts (usually six to ten parts at a time) and the welder makes another pass.
  • Prior art welders and carbide applicators move on a linear line and weave the weld on the parts that are held in line side by side.
  • the prior art welders must make four complete passes, and are manually rotated by the operator, until the top and front of each part has been covered.
  • the operator then removes the parts from the jig, manually breaks them apart since the weld is continuous and holds the parts together.
  • the parts move to a manual station where an operator manually applies welds to the corners and sides as needed by the customer.
  • the manual welding is done one at a time and the welder, wire and carbide float above the part as the operator directs where the weld is to be put.
  • the welder, wire and carbide applicator are all stationary.
  • a robot works on two ⁇ 90 degree arcs.
  • the robot has two stations each working within a 90-degree arc actually creating two stations with one robot. While the robot is working on one 90 section, the operator can be setting up the robot for the next part to be welded. Thus, eliminating the down time between setups.
  • the welding station could even be set up with as many different carbide matrixes welders as desired to apply multiple coatings to the same part. For example, a first weld with one carbide mixtures and configuration of widths, and then a second weld and applicator at the same station with a different programmed width, size, and mixture.
  • the robot can be rotated to its other 90 degree arc two station set up position, and it begins work immediately while the operate loads the non working welding system.
  • the present invention is adaptable and/or useful in the following applications and tools, agricultural ground engagement tools, seed openers plows points, sweeps, furrowers, knives, shovels, and shanks or any tool that makes contact with soils and that would benefit from preservation or prevention of damage to the leading point or face.
  • the present invention is applicable to commercial mixing blades, augers, or any application that where it would be helpful to extend the life of the leading face of such tools and apparatus. Construction applications are also applicable such as graders, blades, bucket teeth, and compactor teeth.
  • the invention is more broadly applicable to general wear parts such as hammers and hammer tips of the type used with rotary hammermills in tub grinders, and wear parts used in construction, mining, screening, conveying, crushing, plowing, road maintenance, and grader applications. These can include for example cutting edges, teeth, adapters, jaws, wedges, blades, and the like.

Abstract

A method and apparatus for applying a wear coating to the back side of a wear part.

Description

    RELATED APPLICATIONS
  • The present application is a continuation of U.S. Utility patent application Ser. No. 13/624,055 filed on Sep. 21, 2012, which claims priority to U.S. Provisional Patent Application No. 61/538,451 filed on Sep. 23, 2011, the foregoing are incorporated by reference hereto.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to an apparatus and method for applying a wear coating to the back side of a wear part.
  • 2. Background
  • Wear parts such ground engagement tools used in agricultural applications such as plow sweeps and rippers, as well as other wear parts, are subject to extreme wear and tear. These parts are as a result frequently replaced as they deteriorate to the point where they are no longer effect at the intended task. This occurs because the leading face, which does the bulk of the work, becomes dull from abrasion and wears away dramatically limiting the effectiveness of the part.
  • The part then requires replacement, which involves expense and down time. The problems of wear and replacement have been somewhat ameliorated by the use of wear resistance coatings placed on the working face of the wear parts. These coatings are very dense and resistant to abrasion. Tungsten carbide is a common wear resistant coating used for extending the life of such wear parts.
  • In the prior art, the leading face (the face that undergoes the most wear) is coated with a wear resistant coating. This will extend the life of the tool, but it has the drawback of making it a less effective cutting tool. Wear resistant coatings, such as tungsten carbide, are very dense and thick. As a result, they interfere with the flow of the material over the leading face of the wear part. Also, they dull the leading face reducing the cutting, or tearing, effect of the face.
  • In some prior art applications, the both the leading and back side face of the wear part are coated with a wear resistant coating. There is no disclosed advantage of coating both sides, and such parts suffer from the same disadvantages as parts with coatings on the leading face. Thus, coating both sides appears to do nothing to enhance the tools but is a waste of wear coating.
  • Accordingly, a need exists for a wear coating that will extend the life of a wear part but not interfere with the effective use of the tool.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a wear part with a wear resistant coating that substantially eliminates the problems of the prior art.
  • These and other objects of the present invention will become apparent to those skilled in the art upon reference to the following specification, drawings, and claims. To that end, the present invention comprises a wear part with a leading face and a back face, wherein the back face is coated with wear resistant coating.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1a shows back face of a plow sweep.
  • FIG. 1b shows the leading (front) face of the plow sweep.
  • FIG. 2 shows various hammer tips.
  • FIG. 3 shows the back face of a standard ripper and a ripper with wear coating.
  • FIG. 4 is a flow chart of a welding process.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention involves the addition of Tungsten Carbide chips to the molten puddle of a MIG weld. A fine to coarse grit carbide can be used for different applications. It is preferred that the weld puddle be as fluid as possible for best results. This restricts the welding to a horizontal plane only. The part being welded must be flat and level, or a positioner can also be incorporated. A robot can move a part under a stationary MIG gun and carbide feeder, instead of moving the welding head. This will allow application of the weld efficiently to a curved or multi faceted part with minimal handling. This is also important in applying the weld in a manner that best protects the high wear areas. By concentrating on the initial points of wear, the life of the parts is extended with a minimal amount of weld. This invention is particularly applicable to “ground engagement” tools such as rippers and sweeps, specifically in the agriculture market. Previously, hard face welding in many forms has been used in these fields with only moderate success. The invention is more broadly applicable to general wear parts such as hammers and hammer tips of the type used with rotary hammermills in tub grinders, and wear parts used in construction, mining, screening, conveying, crushing, plowing, road maintenance, and grader applications. These can include for example cutting faces, teeth, adapters, jaws, wedges, blades, and the like.
  • In prior art applications, the wear surface has been applied to the face of the tool (the side in full contact with the soil). In the present invention, application of a narrow weld to the back side of the leading face of these various tools achieves a much longer tool life than the prior art, and at a minimal cost. The present invention utilizes multiple stationary welding stations with the ability to apply both coarse and fine grit carbide welds to the same part without handling the part twice, and without changing anything with a welder.
  • FIG. 1a shows the backside weld of the present invention applied to the backside of a plow sweep blade, comprised of tungsten carbide. FIG. 1b shows the reverse (leading) side of the plow sweep blade, which is not coated with any wear coating. FIG. 2 shows the backside of various wear parts with the weld applied. The wear parts are of the type used with a rotary hammermill of a tub grinder or the like. FIG. 3 shows the back face of a standard ripper blade and one with wear coating of the present invention.
  • Placing the wear coating on the back, non-impact surface, of the wear part produces surprising advantages. The presence of the wear coating on the backside supports the impact front side surface and better prevents wear than coating the front side. This is counter intuitive, and the prior art teaches away from such an approach. Additionally, in those situation where the sharpness of the face matters, coating the back side preserves a sharp cutting face. Coating the front side with a substance such as tungsten carbide defeats this advantage due to the fact that carbide coatings dull the face. Still further, the wear coating lasts longer since it is not in the path of abrasion as it would be with front side coating. Also, coating the back side reduces the amount of wear coating that needs to be applied in those cases where coating is applied to both sides of a wear part.
  • The welding cell welders of the present invention, because they are now stationary will be different and much more sophisticated as the speed and the heat levels and makeup of the matrix of weld and carbide mix can all be programmed to work in parallel with the robots programs.
  • Prior art welds are hard facing such that the abrasion wear is always put on the face of the working part that makes contact with soils or other contact surface, such as for digging, grind materials, or soil contacts. In many prior art applications, the solid carbide can only be applied to a flat and prepared surface, and the surface tends to shatter on impact with foreign objects, rocks and any abrasive material trying to be stirred, moved or conveyed.
  • By using a granule or other carbide weld matrix on the backside of the face to be protected the working face is actually reinforced, and made stronger. The weld does not allow the face to prematurely wear off, and does not diminish the flow of the material to be moved. As the part finally starts to wear, the weld does not wear and this tends to sharpen the face as the wear is forced to occur on front face or top.
  • Another advantage of the present invention comes from the fact that the welding process does not weaken or soften the forward working face of the wear part with our process. Studies have shown on typical hard surface coating that once a wear coating erodes the base material will then wear at an accelerated rate because it was softened in the weld process. The present invention solves this problem.
  • Studies have also shown that because the weld will not delaminate on impact and will only crack when the base material fails. This is not the case with the prior art welds. The weld of the present invention actually becomes part of the base material, thus creating a very durable face that almost cannot be removed with 4 to 10 times the wear of standard material.
  • The welding cell, shown in the flow diagram below, used to apply the welds of the present invention has the following properties:
  • 1. It is computer-controlled robotics, with infinite variations for programming applications to many different parts of literally any wear surface that needs to be sustained in abrasion situations.
  • 2. The present welding machine makes one pass at a described width and speed and then the jig is rotated by the operator holding the parts (usually six to ten parts at a time) and the welder makes another pass. Prior art welders and carbide applicators move on a linear line and weave the weld on the parts that are held in line side by side. The prior art welders must make four complete passes, and are manually rotated by the operator, until the top and front of each part has been covered. The operator then removes the parts from the jig, manually breaks them apart since the weld is continuous and holds the parts together. Then the parts move to a manual station where an operator manually applies welds to the corners and sides as needed by the customer. The manual welding is done one at a time and the welder, wire and carbide float above the part as the operator directs where the weld is to be put. In the present invention, the welder, wire and carbide applicator are all stationary.
  • 2. A robot works on two −90 degree arcs.
  • 3. The robot has two stations each working within a 90-degree arc actually creating two stations with one robot. While the robot is working on one 90 section, the operator can be setting up the robot for the next part to be welded. Thus, eliminating the down time between setups.
  • 4. The welding station could even be set up with as many different carbide matrixes welders as desired to apply multiple coatings to the same part. For example, a first weld with one carbide mixtures and configuration of widths, and then a second weld and applicator at the same station with a different programmed width, size, and mixture.
  • 5. The robot can be rotated to its other 90 degree arc two station set up position, and it begins work immediately while the operate loads the non working welding system.
  • 6. By using this system, where the part is moved and completed in one pass, standard parts can be welded in one pass. This can be applied to any type of part, where the only change necessary is to change the fixtures used for the particular part, and a change to the program. For example, the system can be easily adapted to weld an Ag sweep, a bucket tooth hardfacing, or mixer blades for commercial mixers.
  • While the preferred embodiment of the invention has been described in reference to the Figures, the invention is not so limited. The present invention is adaptable and/or useful in the following applications and tools, agricultural ground engagement tools, seed openers plows points, sweeps, furrowers, knives, shovels, and shanks or any tool that makes contact with soils and that would benefit from preservation or prevention of damage to the leading point or face. Also, the present invention is applicable to commercial mixing blades, augers, or any application that where it would be helpful to extend the life of the leading face of such tools and apparatus. Construction applications are also applicable such as graders, blades, bucket teeth, and compactor teeth. The invention is more broadly applicable to general wear parts such as hammers and hammer tips of the type used with rotary hammermills in tub grinders, and wear parts used in construction, mining, screening, conveying, crushing, plowing, road maintenance, and grader applications. These can include for example cutting edges, teeth, adapters, jaws, wedges, blades, and the like.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar to or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods, and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety to the extent allowed by applicable law and regulations. In case of conflict, the present specification, including definitions, will control.
  • The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof, and it is therefore desired that the present embodiment be considered in all respects as illustrative and not restrictive, reference being made to the appended claims rather than to the foregoing description to indicate the scope of the invention. Those of ordinary skill in the art that have the disclosure before them will be able to make modifications and variations therein without departing from the scope of the invention.

Claims (3)

1. A wear part comprising a leading face and a back face, wherein the back face is coated with wear resistant coating.
2. A method of engaging the ground with a wear part, comprising:
coating the back face of a wear part with a resistance coating,
engaging the ground with the wear part.
3. A method of welding a wear part, comprising,
covering the back face of a wear part with a wear resistant coating.
US14/740,426 2011-09-23 2015-06-16 Caden Edge Welding Process Abandoned US20160157409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/740,426 US20160157409A1 (en) 2011-09-23 2015-06-16 Caden Edge Welding Process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161538451P 2011-09-23 2011-09-23
US13/624,055 US9090041B2 (en) 2011-09-23 2012-09-21 Caden edge welding process
US14/740,426 US20160157409A1 (en) 2011-09-23 2015-06-16 Caden Edge Welding Process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/624,055 Continuation US9090041B2 (en) 2011-09-23 2012-09-21 Caden edge welding process

Publications (1)

Publication Number Publication Date
US20160157409A1 true US20160157409A1 (en) 2016-06-09

Family

ID=49212107

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/624,055 Active US9090041B2 (en) 2011-09-23 2012-09-21 Caden edge welding process
US14/740,426 Abandoned US20160157409A1 (en) 2011-09-23 2015-06-16 Caden Edge Welding Process

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/624,055 Active US9090041B2 (en) 2011-09-23 2012-09-21 Caden edge welding process

Country Status (1)

Country Link
US (2) US9090041B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321117B2 (en) 2014-03-18 2016-04-26 Vermeer Manufacturing Company Automatic system for abrasive hardfacing
US10314221B2 (en) * 2015-12-03 2019-06-11 Balvanz Land, Llc Vertical tillage tool
RU188108U1 (en) * 2018-04-19 2019-03-28 Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) Working body for subsurface tillage
CN111451689B (en) * 2020-04-20 2022-07-01 陈丹 Pressing mechanism for welding of scarifier reinforcing blocks
US20220022357A1 (en) * 2020-07-21 2022-01-27 Osmundson Mfg. Co. Agricultural sweep with wear resistant coating
US11882777B2 (en) * 2020-07-21 2024-01-30 Osmundson Mfg. Co. Agricultural sweep with wear resistant coating

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497942A (en) * 1967-04-21 1970-03-03 Caterpillar Tractor Co Method of welding tungsten carbide materials to steel
US3819901A (en) * 1972-09-14 1974-06-25 Inst Cercetari Tehnologice Pen Welding process using granular or powder filler delivered on open-channel strip
US4931102A (en) * 1988-09-01 1990-06-05 Eaton Corporation Metal cleaning process
US5361740A (en) * 1993-03-29 1994-11-08 Jacobs Brake Technology Corporation Mechanical assemblies with hardened bearing surfaces
US6039642A (en) * 1998-09-15 2000-03-21 Collins; Walter W. Blade sharpener
US6135218A (en) * 1999-03-09 2000-10-24 Camco International Inc. Fixed cutter drill bits with thin, integrally formed wear and erosion resistant surfaces
US20070034416A1 (en) * 2005-08-09 2007-02-15 Cho Hyun S Weldable ultrahard materials and associated methods of manufacture
US20080085407A1 (en) * 2006-10-10 2008-04-10 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US20080083530A1 (en) * 2006-10-06 2008-04-10 Boyd's Bit Service, Inc. Frac head including a mixing chamber
US20090194339A1 (en) * 2007-07-13 2009-08-06 Baker Hughes Incorporated Earth boring bit with wear resistant bearing and seal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630699A (en) * 1969-09-02 1971-12-28 Remington Arms Co Inc Method for producing armored saber saws
US3635271A (en) * 1970-08-26 1972-01-18 Deere & Co Cutterhead and shear bar for forage harvesters
DE2910962C2 (en) * 1979-03-21 1981-07-02 Josef 4250 Bottrop Adam Method for applying a matrix-forming metallic layer with wear-resistant material embedded therein on a carrier
DE3503105A1 (en) * 1985-01-30 1986-07-31 Leybold-Heraeus GmbH, 5000 Köln METHOD FOR COATING MACHINE PARTS AND TOOLS WITH CARBIDE MATERIAL AND MACHINE PARTS AND TOOLS PRODUCED BY THE METHOD
GB2176683A (en) * 1985-06-21 1987-01-07 George Lucas Rotary lawn mower blade
AT390709B (en) * 1988-05-09 1990-06-25 Busatis Geb Gmbh DEVICE FOR PICKING AND / OR CHOPPING, AND / OR CUTTING PLANTS OF ALL TYPES
GB2264033B (en) * 1992-02-12 1994-06-01 Atco Qualcast Ltd Cylinder lawnmowers
US6327970B1 (en) * 2000-03-06 2001-12-11 John C. Kooima Grain husk cracking plate
US8105692B2 (en) * 2003-02-07 2012-01-31 Diamond Innovations Inc. Process equipment wear surfaces of extended resistance and methods for their manufacture
DE602007012957D1 (en) * 2006-05-10 2011-04-21 Fraunhofer Ges Forschung cutter
US7992371B2 (en) * 2008-08-21 2011-08-09 Deere & Company Stalk roll with coating

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497942A (en) * 1967-04-21 1970-03-03 Caterpillar Tractor Co Method of welding tungsten carbide materials to steel
US3819901A (en) * 1972-09-14 1974-06-25 Inst Cercetari Tehnologice Pen Welding process using granular or powder filler delivered on open-channel strip
US4931102A (en) * 1988-09-01 1990-06-05 Eaton Corporation Metal cleaning process
US5361740A (en) * 1993-03-29 1994-11-08 Jacobs Brake Technology Corporation Mechanical assemblies with hardened bearing surfaces
US6039642A (en) * 1998-09-15 2000-03-21 Collins; Walter W. Blade sharpener
US6135218A (en) * 1999-03-09 2000-10-24 Camco International Inc. Fixed cutter drill bits with thin, integrally formed wear and erosion resistant surfaces
US20070034416A1 (en) * 2005-08-09 2007-02-15 Cho Hyun S Weldable ultrahard materials and associated methods of manufacture
US20080083530A1 (en) * 2006-10-06 2008-04-10 Boyd's Bit Service, Inc. Frac head including a mixing chamber
US20080085407A1 (en) * 2006-10-10 2008-04-10 Us Synthetic Corporation Superabrasive elements, methods of manufacturing, and drill bits including same
US20090194339A1 (en) * 2007-07-13 2009-08-06 Baker Hughes Incorporated Earth boring bit with wear resistant bearing and seal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Li, Lianjie, et al., "Dissolving behavior of tungsten carbide in surface welded using flux-cored wire". 2011 Chinese Materials Conference, Procedia Engineering 27 (2012) 823-827. *
Northrop, I.T., et al., "The joining of tungsten carbide hardmetal to steel". J. S. Afr. Inst. Min. Metall., Vol.87, No.5, May 1987, pp.125-135. *
Ray, Santanu, Kr., et al., "Microstructural characterization of tungsten carbide hard-facing weld deposit." Journal of Materials Science Letters 7 (1988) 775-777. *

Also Published As

Publication number Publication date
US20130252023A1 (en) 2013-09-26
US9090041B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
US20160157409A1 (en) Caden Edge Welding Process
EP0726117B1 (en) Method of forming wear-resistant padding layer and wear-resistant composite material
CA2683749C (en) Ripper excavation tool
US20190177954A1 (en) Implement cutting edge with brazed white cast iron teeth
US7322133B2 (en) Multi-shank ripper
JP6559392B2 (en) 畦 coating machine
CN106687646B (en) Equipment cut edge abrasion member
US9840825B2 (en) Implement end cutting-bit
US9556595B2 (en) High performance implement wear member
US20160032559A1 (en) Wear component for ground engaging tool
CA2956083C (en) Wear component for ground engaging tool
CA2865178C (en) Improved apparatus and method for applying a wear coating
CN106715804B (en) Equipment end tool bit abrasion component
US2718162A (en) Bucket tooth repointing
US9043963B2 (en) Tree stump excavation tool
US20210301361A1 (en) Tool for a hydraulic hammer
DE102004033934B4 (en) Bucket wheel excavator for mining high strength materials for continuous dredging
US11903347B2 (en) Optimized stump harvester
JP2018110599A (en) Ridge coating machine
KR20170014134A (en) The Stone Processing Apparatus
RU2243631C2 (en) Working tool for tillage machine
EP1872896B1 (en) A method for producing a sharp-edged tool
JPH05138539A (en) Abrasion resistant road cutting blade
CN106930351B (en) Wear assembly for loader bucket
JP2019162142A (en) Ridge coating machine

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION