US20160174601A1 - System and method for pasteurizing at least one liquid - Google Patents

System and method for pasteurizing at least one liquid Download PDF

Info

Publication number
US20160174601A1
US20160174601A1 US15/042,639 US201615042639A US2016174601A1 US 20160174601 A1 US20160174601 A1 US 20160174601A1 US 201615042639 A US201615042639 A US 201615042639A US 2016174601 A1 US2016174601 A1 US 2016174601A1
Authority
US
United States
Prior art keywords
product
pasteurization
buffer container
container
pasteurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/042,639
Inventor
Angelo Cadeo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tetra Pak Processing Equipment AG
Original Assignee
Miteco AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miteco AG filed Critical Miteco AG
Priority to US15/042,639 priority Critical patent/US20160174601A1/en
Assigned to MITECO AG reassignment MITECO AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CADEO, ANGELO
Publication of US20160174601A1 publication Critical patent/US20160174601A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/16Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials
    • A23L3/18Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials while they are progressively transported through the apparatus
    • A23L3/22Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials while they are progressively transported through the apparatus with transport through tubes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C3/00Preservation of milk or milk preparations
    • A23C3/02Preservation of milk or milk preparations by heating
    • A23C3/03Preservation of milk or milk preparations by heating the materials being loose unpacked
    • A23C3/033Preservation of milk or milk preparations by heating the materials being loose unpacked and progressively transported through the apparatus
    • A23C3/0332Preservation of milk or milk preparations by heating the materials being loose unpacked and progressively transported through the apparatus in contact with multiple heating plates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/003Control or safety devices for sterilisation or pasteurisation systems
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/001Details of apparatus, e.g. for transport, for loading or unloading manipulation, pressure feed valves

Definitions

  • the invention relates to a system for pasteurizing a liquid product consisting of at least one liquid component that can be pumped, with a supply container for supplying the unpasteurized product, an inlet line and an outlet line for conveying the unpasteurized product, a heating circuit for heating up the product to a pasteurization temperature and pasteurization circuit for pasteurizing the product, and a method for pasteurizing the liquid product according to the preambles of the independent claims.
  • Devices and methods offering solutions for pasteurizing a liquid product consisting of one or more components are known in the production of liquid products.
  • Tasks of such systems or methods respectively comprise the provision of the liquid product, the pasteurization itself and the supply of the mixed liquid product to installations for further processing.
  • a further processing step consists in filling the liquid product into containers provided for this.
  • a variety of refreshing beverages, particularly products containing milk, etc. are produced in the food industry by means of such systems.
  • the pasteurization of the untreated product plays a central role in ensuring the product quality.
  • the pasteurization is a method for which a liquid is heated up for a short period of time and is subsequently cooled down again, by which most bacteria are killed. For this, it is important that the product to be pasteurized remains a certain time under the influence of the higher temperature. This time period is called “contact time”. It is of e.g. around 30 seconds at 75 to 90° C. After this time the product is again cooled down and is deemed to be harmless for consumption. However, the contact time also depends on the temperature. In order to take into account this dependence, a variable, the pasteurization unit, has been introduced. It is calculated according to the following equation:
  • t is the resting time in minutes at the temperature T.
  • a substantially constant number of pasteurization units shall be maintained.
  • the products to be pasteurized are guided for the required contact time through pipe coils which are kept hot.
  • the path of the product can be extended or shortened at the constant temperature by means of which the contact time can be changed.
  • Parallel pipe systems with different features are also used, wherein the liquid to be pasteurized can be guided either through the one or through the other pipe system in order to satisfy different pasteurization requirements in the same installation.
  • the product After the pasteurization the product is e.g. cooled down and transported further. Often, the product which was pasteurized in this way is filled into a so-called aseptic container, in other words a bacteria-free container, before it is supplied to e.g. a filler device.
  • these filler devices are subject to the so-called stop-go principle, i.e. varying quantities of the liquid product are extracted non-continuously. If the delivery has to be interrupted, the product is guided back by cooling it down, as the case may be, and has to be pasteurized again because the bacteria-free state cannot be ensured anymore. If the interruption exceeds a certain time period, this process has to be repeated, with the result that the same product has to be heated up and cooled down multiple times.
  • the invention has the objective to provide a system which has a high flexibility in absorbing supply interruptions of the product to an installation for further processing. Furthermore, it is an objective of the invention to provide a method for pasteurization of liquid products.
  • a system for pasteurizing a liquid product consisting of at least one liquid component that can be pumped comprises a supply container for supplying the unpasteurized product, an inlet line for conveying the unpasteurized product, a pasteurization circuit for pasteurizing the product, and an outlet line for conveying the pasteurized product.
  • the pasteurization circuit comprises a buffer container for holding the product during a prescribed constant contact time for pasteurization and a fluctuating flow rate of the product through the buffer container.
  • a method for pasteurizing a liquid product consisting of at least one liquid component that can be pumped, for which the unpasteurized product is supplied out of a supply container into an inlet line, is subsequently pasteurized in a pasteurization circuit and the pasteurized product is supplied to an outlet line.
  • the product is supplied to a buffer container in the pasteurization circuit and is held in it during a prescribed constant contact time for the pasteurization and in the presence of a fluctuating flow rate of the product through the buffer container.
  • the drawing shows a schematic of an embodiment of a system according to the invention with corresponding components and their connections.
  • the FIGURE shows a preferred embodiment of the system 1 with corresponding components and their connections.
  • the product P to be pasteurized is filled into a supply container 6 .
  • Water W can equally be filled into the container 6 .
  • the function of the water W will be explained later in more detail.
  • the supply container 6 is connected to a pasteurization circuit 25 , which is indicated by the dashed lines, by means of an inlet line 8 a.
  • a first pump 7 which preferably has a variable flow rate, is arranged in the inlet line 8 a downstream of the supply container 6 .
  • the actual flow quantity through the inlet line 8 a is measured by a flow meter 15 , wherein the measurement result is supplied to a controller 9 .
  • the controller 9 controls a first control element 14 which post-regulates the first pump 7 in a known way until a correct flow quantity is measured.
  • the flow rate may however also be regulated by other means, e.g. by means of a regulating valve arranged downstream of the first pump 7 .
  • a recuperation zone 13 is arranged downstream of the flow meter 15 , which takes care of a heat exchange of the product flowing through it. This will be explained in more detail later.
  • a pasteurization circuit 25 is arranged downstream of the recuperation zone 13 . It comprises a first heat exchanger 10 , e.g. a plate heat exchanger, which is coupled to an external heating circuit 16 . It is understood that the heating circuit may also be a part of the pasteurization circuit 25 .
  • a heating circuit 16 The construction of a heating circuit 16 is known and is only shortly explained here for the sake of completeness. It comprises a transport line for hot water for supplying energy to the first heat exchanger 10 , a second heat exchanger 12 which keeps up the heat energy of the hot water in the heating circuit 16 by means of supplied steam D and a pump 11 for transporting the hot water through the transport line.
  • a buffer container 2 is arranged in the pasteurization circuit 25 downstream of the first heat exchanger 10 , inside which the main pasteurization phase takes place, i.e. the storage of the product at a target temperature for the time period of the contact time.
  • the buffer container has a content of e.g. 100 or 300 liters. It comprises preferably at least one, particularly exchangeable, baffle device for controlling the product flow direction, arranged in its interior. The baffle device is not shown here because of clarity reasons. Its task is explained in more detail in connection with the explanation of the product path through the system.
  • the buffer container 2 comprises preferably at least one insulating layer for thermally insulating the content against the ambient, which covers substantially entirely its walls and which is not shown here.
  • the inner walls of the buffer container 2 are polished smooth.
  • a flow meter 3 for measuring the filling level inside the buffer container 2 is provided at the buffer container 2 .
  • the variable filling level is illustrated by the double arrow L.
  • a second pump 5 is arranged downstream of the buffer container 2 , which is preferably a pump with variable flow rate.
  • the pump is connected to a second control element 4 , e.g. a motor with a frequency converter, for adjusting the desired flow rate of the pasteurized product P.
  • the controller 9 is connected to the filling level meter 3 for capturing the current filling level of the buffer container 2 . Furthermore, it is connected to the second control element 4 in order to capture and control the current flow rate of the product P through the second pump 5 .
  • the connections of the controller 9 are illustrated by the dashed/dotted lines. They are not shown here exclusively. In fact the controller 9 may also be used to capture other parameters of the system 1 , e.g. the temperature of the product P in different phases.
  • the second pump 5 is connected to the recuperation zone 13 at the output of the pasteurization circuit 25 .
  • the pasteurized product is guided into an outlet line 8 b.
  • a first refractometer 18 for determining the density of the pasteurized product P is arranged in the outlet line 8 b .
  • a third heat exchanger 20 is arranged in the outlet line 8 b, being used for cooling the pasteurized product P by means of cooling water K. Downstream of the third heat exchanger 20 the end product P may be passed on to an installation for further processing, e.g. a filler, which is not shown here. Alternatively, it may be filled into an aseptic container 22 , from which it is passed on to the installation for further processing via the line O.
  • a first switch 21 may be provided at the inlet of the aseptic container in order to redirect the end product into a disposal line 19 in order to be disposed of.
  • a second refractometer 17 is arranged in this line 19 , which measures the density of the end product P to be disposed of.
  • a second switch 23 is arranged at the outlet of the disposal line 19 , by means of which the discharged end product P may either be disposed of in a sewer 24 or may be guided back into the supply container 6 .
  • temperature values of the product P are given, which shall however only serve as examples. Other temperature values are readily possible.
  • the unpasteurized product P is pumped out of the supply container 6 through the recuperation zone 13 by means of the first pump 7 .
  • the product P has a temperature of 20° C. before the recuperation zone 13 .
  • In the recuperation zone 13 it is heated up strongly and has a temperature of already 85° C. at the exit of the recuperation zone 13 . It is heated up more to the required pasteurization temperature of 90° C. by means of the first heat exchanger 10 and thereafter it gets into the buffer container 2 . Because of the insulation of the buffer container 2 the product keeps its temperature of 90° C.
  • the product particles follow the path to the outlet of the buffer container 2 and are pasteurized during this contact time.
  • a piston flow is present in order to make sure that substantially all particles of the product P remain in the buffer container 2 for the duration of the same contact time.
  • the usage of the buffer container 2 has a further advantage because of its constitution; the flow inside it is less turbulent than inside pipe coils, in case of which turbulence is generated at each deviation.
  • the already described at least one baffle device is used to further reduce turbulences. It can e.g.
  • the mesh may be a mesh by means of which the direction of the velocity vector of the particles flowing through the mesh are parallelized and the majority of them point in the direction of the outlet of the buffer container 2 .
  • the mesh may be dimensioned to be fine or coarse depending on the consistency of the product and is preferably exchangeable in this sense.
  • the pasteurized product After passing through the buffer container 2 the pasteurized product exits the buffer container 2 and is transported into the recuperation zone 13 by means of the second pump 5 , still having a temperature of almost 90° C.
  • the path of the pasteurized product P in the recuperation zone 13 is illustrated by the dashed line. Because of the energy balance the product has a temperature of 25° C. at the exit of the recuperation zone and the entrance into the outlet line 8 b. This is known and is not explained here in more detail.
  • the pasteurized product P is guided into the third heat exchanger 20 and is cooled down to a desired end temperature therein. Finally, the cooled down, pasteurized end product P is transported into the aseptic container 22 and further into the device for further processing. This type of filling is called “aseptic cold-filling”.
  • the present invention can amongst others also be used for a so-called “hot-filling” which is not shown here.
  • hot-filling the still warm, pasteurized product P is directly filled, such that the third heat exchanger 20 , the recuperation zone 13 and the optional aseptic container 22 are obsolete.
  • the quantity of the unpasteurized product P per time unit flowing out of the inlet line 8 a into the pasteurization circuit 25 and into the buffer container 2 is regulated by means of the first pump 7 arranged downstream of the supply container 6 and the delivery quantity of the pasteurized product P per time unit is regulated by the second pump 5 of the pasteurization circuit 25 , which is arranged downstream of the buffer container 2 .
  • the first and the second pump 7 5 an efficient level regulation can be achieved inside the buffer container 2 , such that on the one hand the contact time in the buffer container 2 can always be maintained and on the other hand the delivery quantity of the pasteurized product P can be adjusted to the requirements of the device for further processing.
  • This interaction is controlled and adjusted by means of the controller 9 which calculates the required delivery quantity per time unit, which shall be fed out of the inlet line 8 a into the pasteurization circuit 25 and which shall be supplied out of the pasteurization circuit 25 into the outlet line 8 b , depending on at least one parameter.
  • This parameter may e.g. be the filling level in the buffer container 2 .
  • the filling level in the aseptic container 21 can be used as a further parameter.
  • Other parameters e.g. an extraction rate of the end product P from the aseptic container, etc. are also possible. It is understood that individual parameters or a combination of parameters can be used.
  • the required product quantity per time unit for the first and the second pump 7 , 5 is adjusted by means of the respective control element 14 , 4 .
  • a special operation case arises in case of a stop of the supply of the end product P to the device for further processing. This is a frequent operation case and therefore has to be taken into consideration for a pasteurization system. Such a stop may arise e.g. by interruptions in the installation arranged downstream of the pasteurization system, e.g. filler or labelling machine, because of changes in the filling rate.
  • this undesired effect is at least minimized because a certain duration of the delivery stop can be bridged because of using the buffer container 2 . It is only when this duration has lapsed without a production restart that the product has to be guided back. Consequently, the number of times the product is guided back and pasteurized again is reduced, with the consequence that the entire emptying of the pasteurization system 1 can in many cases be avoided.
  • a stop or a reduction of the delivery of the pasteurized product P out of the pasteurization circuit 25 is triggered by the controller 9 .
  • the supply of the unpasteurized product P into the buffer container 2 is additionally reduced to a minimum product quantity per time unit.
  • the minimum product quantity per time unit may e.g. be in the range of about 10% of the nominal throughput quantity of the product P. However, other values are also possible.
  • the transport of the product P can however be restarted after stopping the delivery of the end product for an allowable interruption time of the delivery of the end product. It is only after the interruption time has elapsed that the product is disposed of from the inlet line 8 a, the pasteurization circuit 25 and the outlet line 8 b in case of the “aseptic cold-filling”. This is done by supplying water W into the supply container 6 and pumping the water W into the inlet line 8 a, further into the pasteurization circuit 25 , further into the outlet line 8 b and finally into the disposal line 19 . The instant of the complete disposal is measured by the second refractometer 17 . In case of the “hot-filling” which is not showed herein, a heat exchanger for cooling down the product to be disposed of would be arranged in the disposal line.
  • a further advantage of the invention consists in that the allowable interruption time can be significantly extended, in case of stopping the delivery of the end product, because of the reduction of the quantity of the unpasteurized product P which is supplied into the buffer container 2 to a minimum product quantity per time unit. For example, an interruption time which is ten times longer is possible in case of a reduction of the product quantity to 10% of the nominal throughput quantity. In other words the buffer time until the system has to be entirely emptied extends.
  • the first refractometer 18 measures the density of the liquid flowing in the outlet line 8 b, with the consequence that the instant of the readiness for operation and of the possible re-delivery of the end product can be determined.
  • the present invention allows an increase in flexibility during the pasteurization, particularly in case of the stop-go operation of a beverage production system, by using an active buffer for the product to be produced and a significant saving of the product in case of operation failures. Furthermore, the production quantity can be adjusted to the requirements because of the variably adjustable throughput quantity of the product.

Abstract

A system for pasteurizing a liquid product includes at least one liquid component that can be pumped, including a supply container for making the unpasteurized product available, an inlet line for conveying the unpasteurized product, a pasteurization circuit for pasteurizing the product, and an outlet line for conveying the pasteurized product. The pasteurization circuit includes a buffer container for holding the product during a prescribed constant contact time for pasteurization and a fluctuating flow rate of the product through the buffer container.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of and Applicant claims priority under 35 U.S.C. §§120 and 121 of U.S. application Ser. No. 13/698,758 filed on Nov. 19, 2012, which application is the National Stage of PCT/CH2010/000129 filed on May 20, 2010, the disclosures of which are incorporated by reference. The international application under PCT article 21(2) was not published in English.
  • TECHNICAL FIELD
  • The invention relates to a system for pasteurizing a liquid product consisting of at least one liquid component that can be pumped, with a supply container for supplying the unpasteurized product, an inlet line and an outlet line for conveying the unpasteurized product, a heating circuit for heating up the product to a pasteurization temperature and pasteurization circuit for pasteurizing the product, and a method for pasteurizing the liquid product according to the preambles of the independent claims.
  • BACKGROUND
  • Devices and methods offering solutions for pasteurizing a liquid product consisting of one or more components are known in the production of liquid products. Tasks of such systems or methods respectively, comprise the provision of the liquid product, the pasteurization itself and the supply of the mixed liquid product to installations for further processing. Typically, a further processing step consists in filling the liquid product into containers provided for this. For example, a variety of refreshing beverages, particularly products containing milk, etc. are produced in the food industry by means of such systems.
  • The pasteurization of the untreated product plays a central role in ensuring the product quality. The pasteurization is a method for which a liquid is heated up for a short period of time and is subsequently cooled down again, by which most bacteria are killed. For this, it is important that the product to be pasteurized remains a certain time under the influence of the higher temperature. This time period is called “contact time”. It is of e.g. around 30 seconds at 75 to 90° C. After this time the product is again cooled down and is deemed to be harmless for consumption. However, the contact time also depends on the temperature. In order to take into account this dependence, a variable, the pasteurization unit, has been introduced. It is calculated according to the following equation:

  • PU=t×1,39(T−60°)
  • Thereby, t is the resting time in minutes at the temperature T. In order to reach a reliable pasteurization, a substantially constant number of pasteurization units shall be maintained. Thus, according to this equation it is possible to vary the temperature, keeping the contact time constant, or to vary the contact time, keeping the temperature constant, within certain limits, such that PU remains substantially constant.
  • In order to satisfy this requirement, in known solutions the products to be pasteurized are guided for the required contact time through pipe coils which are kept hot. Depending on the shape of these pipe devices, like e.g. the number of deviations, the path of the product can be extended or shortened at the constant temperature by means of which the contact time can be changed. Parallel pipe systems with different features are also used, wherein the liquid to be pasteurized can be guided either through the one or through the other pipe system in order to satisfy different pasteurization requirements in the same installation.
  • On the other hand there are also solutions in case of which the temperature is varied, however this has the disadvantage that a temperature regulation per se is not efficient and is difficult to be realised because of the inherent inertia of such a regulation, particularly in case of small temperature variations.
  • Systems using a combination of both described methods are also known.
  • After the pasteurization the product is e.g. cooled down and transported further. Often, the product which was pasteurized in this way is filled into a so-called aseptic container, in other words a bacteria-free container, before it is supplied to e.g. a filler device. These filler devices are subject to the so-called stop-go principle, i.e. varying quantities of the liquid product are extracted non-continuously. If the delivery has to be interrupted, the product is guided back by cooling it down, as the case may be, and has to be pasteurized again because the bacteria-free state cannot be ensured anymore. If the interruption exceeds a certain time period, this process has to be repeated, with the result that the same product has to be heated up and cooled down multiple times. This can only be done a couple of times, whereafter the product is unusable because of thermal stress. The consequence is that the system has to be cleaned up by means of water and only after that new unpasteurized product can be refilled. This is disadvantageous for the operators of such systems because they loose on the one hand valuable production time and on the other hand a high quantity of the product.
  • DISCLOSURE OF THE INVENTION
  • The invention has the objective to provide a system which has a high flexibility in absorbing supply interruptions of the product to an installation for further processing. Furthermore, it is an objective of the invention to provide a method for pasteurization of liquid products.
  • This objective is solved by a system for pasteurizing a liquid product consisting of at least one liquid component that can be pumped. The system comprises a supply container for supplying the unpasteurized product, an inlet line for conveying the unpasteurized product, a pasteurization circuit for pasteurizing the product, and an outlet line for conveying the pasteurized product. The pasteurization circuit comprises a buffer container for holding the product during a prescribed constant contact time for pasteurization and a fluctuating flow rate of the product through the buffer container.
  • Furthermore, a method for pasteurizing a liquid product is claimed, consisting of at least one liquid component that can be pumped, for which the unpasteurized product is supplied out of a supply container into an inlet line, is subsequently pasteurized in a pasteurization circuit and the pasteurized product is supplied to an outlet line. The product is supplied to a buffer container in the pasteurization circuit and is held in it during a prescribed constant contact time for the pasteurization and in the presence of a fluctuating flow rate of the product through the buffer container. Thus, according to the claims, a system and a method with a buffer function in the pasteurization circuit are provided. By this, it is departed from the conventional solutions based on the use of pipe coils and on a constant transport quantity in order to maintain the contact time and which imply a temperature regulation. In case of the present solution the observance of the contact time is given by the use of the buffer container which can receive a variable quantity of a product to pasteurize. This regulation is easier to achieve and results in a better energy balance. Particularly, by controlling/regulating the inlet into the buffer container and, as the case may be, also by controlling/regulating the outlet paths out of the buffer container, it is possible to adjust the level of the product in the buffer container.
  • SHORT DESCRIPTION OF THE DRAWINGS
  • The drawing shows a schematic of an embodiment of a system according to the invention with corresponding components and their connections.
  • WAY OF CARRYING OUT THE INVENTION
  • Further advantageous embodiments of the invention result from the dependent claims and from the embodiment examples described in the following by means of the FIGURE.
  • The FIGURE shows a preferred embodiment of the system 1 with corresponding components and their connections.
  • The components of the system 1 and their connections are described first and subsequently the path of the product P through the system 1 by taking into account the special features of the components.
  • The product P to be pasteurized is filled into a supply container 6. Water W can equally be filled into the container 6. The function of the water W will be explained later in more detail. The supply container 6 is connected to a pasteurization circuit 25, which is indicated by the dashed lines, by means of an inlet line 8 a. A first pump 7, which preferably has a variable flow rate, is arranged in the inlet line 8 a downstream of the supply container 6. The actual flow quantity through the inlet line 8 a is measured by a flow meter 15, wherein the measurement result is supplied to a controller 9. In case of deviations of the actual flow quantity from the target flow quantity, the controller 9 controls a first control element 14 which post-regulates the first pump 7 in a known way until a correct flow quantity is measured. The flow rate may however also be regulated by other means, e.g. by means of a regulating valve arranged downstream of the first pump 7. A recuperation zone 13 is arranged downstream of the flow meter 15, which takes care of a heat exchange of the product flowing through it. This will be explained in more detail later. A pasteurization circuit 25 is arranged downstream of the recuperation zone 13. It comprises a first heat exchanger 10, e.g. a plate heat exchanger, which is coupled to an external heating circuit 16. It is understood that the heating circuit may also be a part of the pasteurization circuit 25.
  • The construction of a heating circuit 16 is known and is only shortly explained here for the sake of completeness. It comprises a transport line for hot water for supplying energy to the first heat exchanger 10, a second heat exchanger 12 which keeps up the heat energy of the hot water in the heating circuit 16 by means of supplied steam D and a pump 11 for transporting the hot water through the transport line.
  • A buffer container 2 is arranged in the pasteurization circuit 25 downstream of the first heat exchanger 10, inside which the main pasteurization phase takes place, i.e. the storage of the product at a target temperature for the time period of the contact time. The buffer container has a content of e.g. 100 or 300 liters. It comprises preferably at least one, particularly exchangeable, baffle device for controlling the product flow direction, arranged in its interior. The baffle device is not shown here because of clarity reasons. Its task is explained in more detail in connection with the explanation of the product path through the system. Furthermore, the buffer container 2 comprises preferably at least one insulating layer for thermally insulating the content against the ambient, which covers substantially entirely its walls and which is not shown here. Preferably, the inner walls of the buffer container 2 are polished smooth.
  • A flow meter 3 for measuring the filling level inside the buffer container 2 is provided at the buffer container 2. The variable filling level is illustrated by the double arrow L.
  • A second pump 5 is arranged downstream of the buffer container 2, which is preferably a pump with variable flow rate. The pump is connected to a second control element 4, e.g. a motor with a frequency converter, for adjusting the desired flow rate of the pasteurized product P.
  • The controller 9 is connected to the filling level meter 3 for capturing the current filling level of the buffer container 2. Furthermore, it is connected to the second control element 4 in order to capture and control the current flow rate of the product P through the second pump 5. The connections of the controller 9 are illustrated by the dashed/dotted lines. They are not shown here exclusively. In fact the controller 9 may also be used to capture other parameters of the system 1, e.g. the temperature of the product P in different phases.
  • The second pump 5 is connected to the recuperation zone 13 at the output of the pasteurization circuit 25. After the recuperation’ zone 13 the pasteurized product is guided into an outlet line 8 b. A first refractometer 18 for determining the density of the pasteurized product P is arranged in the outlet line 8 b. Furthermore, a third heat exchanger 20 is arranged in the outlet line 8 b, being used for cooling the pasteurized product P by means of cooling water K. Downstream of the third heat exchanger 20 the end product P may be passed on to an installation for further processing, e.g. a filler, which is not shown here. Alternatively, it may be filled into an aseptic container 22, from which it is passed on to the installation for further processing via the line O. A first switch 21 may be provided at the inlet of the aseptic container in order to redirect the end product into a disposal line 19 in order to be disposed of. A second refractometer 17 is arranged in this line 19, which measures the density of the end product P to be disposed of. A second switch 23 is arranged at the outlet of the disposal line 19, by means of which the discharged end product P may either be disposed of in a sewer 24 or may be guided back into the supply container 6.
  • Now, the path of the product through the system is described. For the sake of better understanding, temperature values of the product P are given, which shall however only serve as examples. Other temperature values are readily possible.
  • The unpasteurized product P is pumped out of the supply container 6 through the recuperation zone 13 by means of the first pump 7. The product P has a temperature of 20° C. before the recuperation zone 13. In the recuperation zone 13 it is heated up strongly and has a temperature of already 85° C. at the exit of the recuperation zone 13. It is heated up more to the required pasteurization temperature of 90° C. by means of the first heat exchanger 10 and thereafter it gets into the buffer container 2. Because of the insulation of the buffer container 2 the product keeps its temperature of 90° C.
  • In the buffer container 2 the product particles follow the path to the outlet of the buffer container 2 and are pasteurized during this contact time. During the passage from the inlet of the buffer container 2 until its outlet it is desired that a piston flow is present in order to make sure that substantially all particles of the product P remain in the buffer container 2 for the duration of the same contact time. The usage of the buffer container 2 has a further advantage because of its constitution; the flow inside it is less turbulent than inside pipe coils, in case of which turbulence is generated at each deviation. However, the already described at least one baffle device is used to further reduce turbulences. It can e.g. be a mesh by means of which the direction of the velocity vector of the particles flowing through the mesh are parallelized and the majority of them point in the direction of the outlet of the buffer container 2. The mesh may be dimensioned to be fine or coarse depending on the consistency of the product and is preferably exchangeable in this sense.
  • After passing through the buffer container 2 the pasteurized product exits the buffer container 2 and is transported into the recuperation zone 13 by means of the second pump 5, still having a temperature of almost 90° C. The path of the pasteurized product P in the recuperation zone 13 is illustrated by the dashed line. Because of the energy balance the product has a temperature of 25° C. at the exit of the recuperation zone and the entrance into the outlet line 8 b. This is known and is not explained here in more detail.
  • Subsequently, the pasteurized product P is guided into the third heat exchanger 20 and is cooled down to a desired end temperature therein. Finally, the cooled down, pasteurized end product P is transported into the aseptic container 22 and further into the device for further processing. This type of filling is called “aseptic cold-filling”.
  • Alternatively to the cold-filling (aseptic cold-filling), the present invention can amongst others also be used for a so-called “hot-filling” which is not shown here. In case of this hot-filling the still warm, pasteurized product P is directly filled, such that the third heat exchanger 20, the recuperation zone 13 and the optional aseptic container 22 are obsolete.
  • As already described, the quantity of the unpasteurized product P per time unit flowing out of the inlet line 8 a into the pasteurization circuit 25 and into the buffer container 2 is regulated by means of the first pump 7 arranged downstream of the supply container 6 and the delivery quantity of the pasteurized product P per time unit is regulated by the second pump 5 of the pasteurization circuit 25, which is arranged downstream of the buffer container 2. By the interaction of the first and the second pump 7, 5 an efficient level regulation can be achieved inside the buffer container 2, such that on the one hand the contact time in the buffer container 2 can always be maintained and on the other hand the delivery quantity of the pasteurized product P can be adjusted to the requirements of the device for further processing. This interaction is controlled and adjusted by means of the controller 9 which calculates the required delivery quantity per time unit, which shall be fed out of the inlet line 8 a into the pasteurization circuit 25 and which shall be supplied out of the pasteurization circuit 25 into the outlet line 8 b, depending on at least one parameter. This parameter may e.g. be the filling level in the buffer container 2. The filling level in the aseptic container 21 can be used as a further parameter. Other parameters, e.g. an extraction rate of the end product P from the aseptic container, etc. are also possible. It is understood that individual parameters or a combination of parameters can be used. After the calculation by the controller 9 the required product quantity per time unit for the first and the second pump 7, 5 is adjusted by means of the respective control element 14, 4.
  • A special operation case arises in case of a stop of the supply of the end product P to the device for further processing. This is a frequent operation case and therefore has to be taken into consideration for a pasteurization system. Such a stop may arise e.g. by interruptions in the installation arranged downstream of the pasteurization system, e.g. filler or labelling machine, because of changes in the filling rate.
  • In case of known solutions with a constant product throughput the product has to be guided back into the supply container in such a case. The alternative would be to dispose of the product until the entire circuit has been pumped out. However, this would lead to a too high wasting of the product, particularly because in many cases the delivery stop is of short duration. Because of this, the product is guided back and mixes with the still unpasteurized product present in the supply container 6. After a new delivery start the portion of the product which has been guided back is pasteurized once more. In case of multiple delivery stops it is possible that the product has to be pasteurized several times, with the result that it looses its quality and cannot be consumed anymore. The consequence is that the pasteurization system has to be entirely emptied and the contents have to be disposed of. The practice shows that this case occurs regularly. By this, the operator faces high costs which have to be avoided or minimized.
  • In case of the present invention this undesired effect is at least minimized because a certain duration of the delivery stop can be bridged because of using the buffer container 2. It is only when this duration has lapsed without a production restart that the product has to be guided back. Consequently, the number of times the product is guided back and pasteurized again is reduced, with the consequence that the entire emptying of the pasteurization system 1 can in many cases be avoided.
  • After a stop of the delivery of the end product to the installation for further processing, a stop or a reduction of the delivery of the pasteurized product P out of the pasteurization circuit 25 is triggered by the controller 9. After stopping the delivery of the end product P the supply of the unpasteurized product P into the buffer container 2 is additionally reduced to a minimum product quantity per time unit. The minimum product quantity per time unit may e.g. be in the range of about 10% of the nominal throughput quantity of the product P. However, other values are also possible. After reaching a maximum filling level of the buffer container 2 and/or of a maximum stop time the supply into the buffer container is completely stopped by the controller 9.
  • The transport of the product P can however be restarted after stopping the delivery of the end product for an allowable interruption time of the delivery of the end product. It is only after the interruption time has elapsed that the product is disposed of from the inlet line 8 a, the pasteurization circuit 25 and the outlet line 8 b in case of the “aseptic cold-filling”. This is done by supplying water W into the supply container 6 and pumping the water W into the inlet line 8 a, further into the pasteurization circuit 25, further into the outlet line 8 b and finally into the disposal line 19. The instant of the complete disposal is measured by the second refractometer 17. In case of the “hot-filling” which is not showed herein, a heat exchanger for cooling down the product to be disposed of would be arranged in the disposal line.
  • A further advantage of the invention consists in that the allowable interruption time can be significantly extended, in case of stopping the delivery of the end product, because of the reduction of the quantity of the unpasteurized product P which is supplied into the buffer container 2 to a minimum product quantity per time unit. For example, an interruption time which is ten times longer is possible in case of a reduction of the product quantity to 10% of the nominal throughput quantity. In other words the buffer time until the system has to be entirely emptied extends.
  • When the operation of the pasteurization system 1 is restarted, the first refractometer 18 measures the density of the liquid flowing in the outlet line 8 b, with the consequence that the instant of the readiness for operation and of the possible re-delivery of the end product can be determined.
  • The present invention allows an increase in flexibility during the pasteurization, particularly in case of the stop-go operation of a beverage production system, by using an active buffer for the product to be produced and a significant saving of the product in case of operation failures. Furthermore, the production quantity can be adjusted to the requirements because of the variably adjustable throughput quantity of the product.
  • Although advantageous embodiments of the invention have been shown and described, the invention is not restricted thereto but it may be executed and applied in other various ways within the scope of the following claims.
  • LIST OF REFERENCE NUMERALS
    • 1=pasteurization system
    • 2=buffer container
    • 3=filling level meter
    • 4=second control element
    • 5=second pump
    • 6=supply container
    • 7=first pump
    • 8 a=inlet line
    • 8 b=outlet line
    • 9=controller
    • 10=first heat exchanger
    • 11=pump of the heating circuit
    • 12=second heat exchanger
    • 13=recuperation zone
    • 14=first control element
    • 15=flow meter
    • 16=heating circuit
    • 17=second refractometer
    • 18=first refractometer
    • 19=disposal line
    • 20=third heat exchanger
    • 21=first switch
    • 22=aseptic container
    • 23=second switch
    • 25=pasteurization circuit
    • D=steam
    • P=product
    • O=outlet of the end product
    • K=cooling water
    • L=filling level in the buffer circuit
    • W=water

Claims (7)

What is claimed is:
1. A system for pasteurizing a liquid product comprising at least one liquid component that can be pumped, the system comprising a supply container for supplying the unpasteurized product, an inlet line for conveying the unpasteurized product, connected to the supply container, and connected to a heat exchanger configured to heat the liquid product in the inlet line, a pasteurization circuit for pasteurizing the product and connected to the inlet line, and an outlet line for conveying the pasteurized product and connected to the pasteurization circuit, wherein the pasteurization circuit comprises a buffer container for maintaining the product during a contact time for pasteurization and a fluctuating flow rate of the product in the buffer container.
2. The system according to claim 1, wherein the quantity of the unpasteurized product per time unit flowing out of the inlet line into the pasteurization circuit into the buffer container is regulated via a feed pump arranged downstream of the supply container, and wherein the feed pump has a variable flow rate.
3. The system according to claim 1, wherein the pasteurization circuit comprises a removal pump arranged downstream of the buffer container, having a variable flow rate, and for regulating the delivery quantity of the pasteurized product per time unit out of the buffer container into the outlet line.
4. The system according to claim 1, wherein a filling level meter is provided for measuring the filling level inside the buffer container.
5. The system according to claim 1, wherein the buffer container comprises, arranged in its interior, at least one, particularly replaceable, baffle device for controlling the product flow direction.
6. The system according to claim 1, wherein the buffer container comprises at least one insulating layer for thermally insulating it from the ambient, which surrounds its walls substantially entirely.
7. The system according to claim 1, wherein a controller is provided for calculating the required product quantity per time unit to be supplied out of the inlet line into the pasteurization circuit and out of the pasteurization circuit into the outlet line depending on at least one parameter.
US15/042,639 2010-05-20 2016-02-12 System and method for pasteurizing at least one liquid Abandoned US20160174601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/042,639 US20160174601A1 (en) 2010-05-20 2016-02-12 System and method for pasteurizing at least one liquid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CH2010/000129 WO2011143782A1 (en) 2010-05-20 2010-05-20 System and method for pasteurizing at least one liquid
US201213698758A 2012-11-19 2012-11-19
US15/042,639 US20160174601A1 (en) 2010-05-20 2016-02-12 System and method for pasteurizing at least one liquid

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/698,758 Division US9295279B2 (en) 2010-05-20 2010-05-20 System and method for pasteurizing at least one liquid
PCT/CH2010/000129 Division WO2011143782A1 (en) 2010-05-20 2010-05-20 System and method for pasteurizing at least one liquid

Publications (1)

Publication Number Publication Date
US20160174601A1 true US20160174601A1 (en) 2016-06-23

Family

ID=43034575

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/698,758 Expired - Fee Related US9295279B2 (en) 2010-05-20 2010-05-20 System and method for pasteurizing at least one liquid
US15/042,639 Abandoned US20160174601A1 (en) 2010-05-20 2016-02-12 System and method for pasteurizing at least one liquid

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/698,758 Expired - Fee Related US9295279B2 (en) 2010-05-20 2010-05-20 System and method for pasteurizing at least one liquid

Country Status (10)

Country Link
US (2) US9295279B2 (en)
EP (1) EP2571372B1 (en)
JP (1) JP6129071B2 (en)
CN (1) CN102933085B (en)
BR (1) BR112012029320A2 (en)
ES (1) ES2552388T3 (en)
MX (1) MX340265B (en)
PL (1) PL2571372T3 (en)
RU (1) RU2573908C2 (en)
WO (1) WO2011143782A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019133122A1 (en) * 2019-12-05 2021-06-10 Krones Ag Device for producing and providing sterile water and method for operating the device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036019A1 (en) * 2009-08-04 2011-02-10 Krones Ag Method and device for heating, in particular high-viscosity products
ITTO20120240A1 (en) 2012-03-19 2013-09-20 Sidel Spa Con Socio Unico FILLING DEVICE
CA2883317C (en) 2012-09-24 2017-10-24 Nestec S.A. Methods and systems for coordination of aseptic sterilization and aseptic package filling rate
US20140087035A1 (en) * 2012-09-24 2014-03-27 Nestec S.A. Methods and systems for coordination of aseptic sterilization and aseptic package filling rate
FR3016794B1 (en) * 2014-01-24 2018-03-02 Pierre Fabre Dermo-Cosmetique DEVICE AND METHOD FOR TRANSFERRING A STERILE PRODUCT BETWEEN TWO CONTAINERS
WO2017055501A1 (en) * 2015-09-29 2017-04-06 Red Bull Gmbh System and method for pasteurizing foods
DE102016100674B4 (en) * 2016-01-15 2019-03-21 Krohne Messtechnik Gmbh Method for operating a non-contact ultrasonic or radar level gauge and non-contact ultrasonic or radar level gauge
CN105815650A (en) * 2016-04-08 2016-08-03 佛山吉宝信息科技有限公司 Mobile pasteurization machine
DE102016217342A1 (en) * 2016-09-12 2018-03-15 Krones Ag Filling plant for heat treatment and filling of a liquid
DE102017215436A1 (en) * 2017-09-04 2019-03-07 Krones Ag Apparatus and method for pasteurization and filling of medium
DE102019126946A1 (en) * 2019-10-08 2021-04-08 Krones Aktiengesellschaft Method and device for hot filling of liquid product
DE102021100003A1 (en) * 2021-01-04 2022-07-07 Krones Aktiengesellschaft Process for buffering a sterilized liquid product and filling plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667590A (en) * 1984-12-10 1987-05-26 Mars, Inc. Closed food processing system and liquid adjustment apparatus for use therein
US4972386A (en) * 1988-04-13 1990-11-20 Endress U. Hauser Gmbh U. Co. Filling level meter
US5160633A (en) * 1989-01-10 1992-11-03 The Coca-Cola Company Frontal separator system for separating particles from beverage liquids
US20040187707A1 (en) * 1998-06-03 2004-09-30 Nielsen Jorgen Tage Method of pasteurizing, monitoring PU-uptake, controlling PU-up-take and apparatus for pasteurizing

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL205190A (en) * 1955-03-11
CH552537A (en) 1971-12-15 1974-08-15 Seitz Werke Gmbh LIQUID FILLING PLANT.
US4313370A (en) * 1980-06-02 1982-02-02 Fmc Corporation Pasteurizing system for carbonated soft drinks
DE3510412A1 (en) * 1985-03-22 1986-09-25 Gea Ahlborn Gmbh & Co Kg, 3203 Sarstedt Installation for the continuous pasteurisation and drawing off of beer and other drinks containing gas
US5503064A (en) * 1994-08-31 1996-04-02 Custom Control Products, Inc. Apparatus and method for controlling a pasteurizing system
RU2075163C1 (en) * 1994-09-20 1997-03-10 Товарищество с ограниченной ответственностью ММ "Прис" DEVICE FOR PROCESSING A LIQUID BY RADIATION IN A THIN LAYER
JPH0910286A (en) * 1995-06-27 1997-01-14 Mitsubishi Heavy Ind Ltd Device and method for heating and sterilizing product liquid
JPH11103834A (en) * 1997-09-30 1999-04-20 Hisaka Works Ltd Plate type fluid sterilizing system
DE19921657C1 (en) * 1999-05-11 2001-02-15 Till Gea Gmbh & Co Process and plant for the treatment of liquids
JP4366779B2 (en) * 1999-09-03 2009-11-18 澁谷工業株式会社 Beverage production line
US6599546B2 (en) * 2001-05-18 2003-07-29 The Coca Cola Company Process and apparatus for in-line production of heat-processed beverage made from concentrate
SE521921C2 (en) * 2002-03-15 2003-12-16 Tetra Laval Holdings & Finance Method of maintaining aseptic conditions in a juice plant at short production stops
NL1024796C2 (en) * 2003-11-17 2005-05-18 Kalsbeek Assen Holding B V A Water sterilization system for producing drinking water, e.g. on boats, has system for supplying hot sterilized water directly to tap point from hot water storage vessel
SE530577C2 (en) * 2006-11-22 2008-07-08 Tetra Laval Holdings & Finance Method for treating a whey protein concentrate by microparticulation
CN101596012B (en) * 2009-06-10 2011-06-01 梁浚菱 Effective energy-saving pasteurization cooling machine set

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667590A (en) * 1984-12-10 1987-05-26 Mars, Inc. Closed food processing system and liquid adjustment apparatus for use therein
US4972386A (en) * 1988-04-13 1990-11-20 Endress U. Hauser Gmbh U. Co. Filling level meter
US5160633A (en) * 1989-01-10 1992-11-03 The Coca-Cola Company Frontal separator system for separating particles from beverage liquids
US20040187707A1 (en) * 1998-06-03 2004-09-30 Nielsen Jorgen Tage Method of pasteurizing, monitoring PU-uptake, controlling PU-up-take and apparatus for pasteurizing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tang, CN 101269894 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019133122A1 (en) * 2019-12-05 2021-06-10 Krones Ag Device for producing and providing sterile water and method for operating the device

Also Published As

Publication number Publication date
PL2571372T3 (en) 2016-01-29
CN102933085A (en) 2013-02-13
EP2571372B1 (en) 2015-08-05
JP2013526283A (en) 2013-06-24
US20130064952A1 (en) 2013-03-14
RU2012155283A (en) 2014-06-27
MX340265B (en) 2016-07-04
RU2573908C2 (en) 2016-01-27
ES2552388T3 (en) 2015-11-27
MX2012013185A (en) 2012-12-17
JP6129071B2 (en) 2017-05-24
BR112012029320A2 (en) 2015-09-08
CN102933085B (en) 2015-12-16
EP2571372A1 (en) 2013-03-27
US9295279B2 (en) 2016-03-29
WO2011143782A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US9295279B2 (en) System and method for pasteurizing at least one liquid
US8127662B2 (en) Apparatus for preparing a beverage from sterilized water of a predetermined consumption temperature
US9402408B2 (en) Machine for making and dispensing semiliquid and/or semisolid products
US10898024B2 (en) Assembly and method for frothing fluid
AU2011217569B2 (en) Method and UHT installation for treating heat-sensitive liquid food products
CN104955366A (en) Liquid heating apparatus and operating methods
CN103040071B (en) Device and method for heating a liquid product
CN100457600C (en) Liquid filling method and liquid filling device
KR20180120168A (en) Assembly and method for milking milk
DK2233010T3 (en) A method of operating a pasteurizer and pasteurisation
US9283293B2 (en) Pasteurizer with controlled sprayer output
SE521921C2 (en) Method of maintaining aseptic conditions in a juice plant at short production stops
JP2018157815A (en) Pasteurization plant and method for operating the pasteurizing plant
US11751587B2 (en) Tunnel pasteuriser and method for operating a tunnel pasteuriser
EP3003067A1 (en) A method and system for providing a heat treated liquid product
KR20230137870A (en) Liquid food manufacturing equipment
JP7201220B2 (en) Electric heating device for fluid food material and its control method
JP7312424B2 (en) Electric heating device and method for fluid food material
JP2023139666A (en) Manufacturing line and manufacturing method
JPH0138467B2 (en)
JPH0631081B2 (en) Liquid feed control device for liquid sterilizer
BRPI1103602A2 (en) device and method for providing a liquid product for reuse and treatment

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITECO AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CADEO, ANGELO;REEL/FRAME:037726/0593

Effective date: 20121106

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION