US20170106173A1 - Variable diameter medical balloon - Google Patents

Variable diameter medical balloon Download PDF

Info

Publication number
US20170106173A1
US20170106173A1 US14/887,919 US201514887919A US2017106173A1 US 20170106173 A1 US20170106173 A1 US 20170106173A1 US 201514887919 A US201514887919 A US 201514887919A US 2017106173 A1 US2017106173 A1 US 2017106173A1
Authority
US
United States
Prior art keywords
balloon
connection
diameter
inflation pressure
fold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/887,919
Other versions
US10105519B2 (en
Inventor
Andrzej J. CHANDUSZKO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CR Bard Inc
Original Assignee
CR Bard Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CR Bard Inc filed Critical CR Bard Inc
Priority to US14/887,919 priority Critical patent/US10105519B2/en
Assigned to C.R. BARD, INC. reassignment C.R. BARD, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANDUSZKO, ANDRZEJ J.
Publication of US20170106173A1 publication Critical patent/US20170106173A1/en
Priority to US16/140,651 priority patent/US10898692B2/en
Application granted granted Critical
Publication of US10105519B2 publication Critical patent/US10105519B2/en
Priority to US17/132,141 priority patent/US11730930B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1018Balloon inflating or inflation-control devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22001Angioplasty, e.g. PCTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22062Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation to be filled with liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • A61M2025/1004Balloons with folds, e.g. folded or multifolded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1068Balloon catheters with special features or adapted for special applications having means for varying the length or diameter of the deployed balloon, this variations could be caused by excess pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1086Balloon catheters with special features or adapted for special applications having a special balloon surface topography, e.g. pores, protuberances, spikes or grooves

Definitions

  • Non-compliant medical balloons for performing angioplasty and other medical procedures are known.
  • U.S. Pat. No. 6,746,425 to Beckham discloses a non-compliant medical balloon and methods for manufacturing the balloon.
  • U.S. Patent Application Publication No. US 2006/0085022 to Hayes et al. discloses a non-compliant medical balloon having an integral woven fabric layer and methods for manufacturing the balloon.
  • U.S. Patent Application Publication No. US 2006/0085023 to Davies, Jr. et al. discloses a medical balloon having strengthening rods and methods for manufacturing the balloon.
  • the balloon is inserted into a vessel, typically on the end of a catheter, until the balloon reaches the area of interest. Adding pressure to the balloon causes the balloon to inflate. In one variation of use, the balloon creates an outwardly directed force when inflated, which can be used to treat a variety of conditions.
  • balloons having different diameters when inflated may require the use of balloons having different diameters when inflated.
  • manufacturers make multiple balloons available for use with different inflation diameters, and the clinician must select the appropriate balloon under a given set of conditions.
  • the number of balloons available may be more than twenty, ranging widely in diameter when inflated (e.g., from 12-26 millimeters) for a variety of different vessel diameters.
  • fully compliant balloons may be used to provide a variety of diameters under different inflation pressures, this compliance makes such a balloon generally ineffective for providing the treatment in the desired manner, especially where a significant force is required.
  • an apparatus for performing a medical procedure comprises a balloon, which may be non-compliant or semi-compliant.
  • the balloon may comprise an inflatable body and a first connection adapted to maintain the body substantially at a first diameter at a first inflation pressure, and to release or disconnect and thereby allow the body to expand to a second diameter.
  • the first connection may be released upon a second inflation pressure greater than the first inflation pressure being applied to the inflatable body, or by manual intervention by a clinician.
  • the apparatus may include a second connection adapted to allow the body to assume the second diameter, such as by disconnecting second and third portions of the balloon (or possibly associated with the first and second portions as well).
  • the second releasable connection may alternatively be adapted to allow the body to assume a third diameter, such as for example at a third inflation pressure greater than the second inflation pressure or as a result of manual intervention by a clinician.
  • the releasable connection(s) may take a variety of forms.
  • the releasable connection may comprise an adhesive, and thus may be considered a form of a frangible connection.
  • the connection may also comprise a first connector connected to the first portion and a second connector connected to the second portion and adapted for releasably engaging the first connector.
  • the connection may also be provided in the form of a retainer with interdigitated portions for maintaining the balloon a desired configuration, such as at a first diameter.
  • a line, such as a cord may also be provided for releasing the releasable connection from a remote location, which line may extend though a lumen in a catheter shaft associated with the balloon.
  • an apparatus for performing a medical procedure includes a balloon comprising an inflatable body having a first fold held in place by a first connection adapted to release the fold upon the body being inflated.
  • the first releasable connection is adapted to release the first fold upon the body being inflated to a predetermined inflation pressure.
  • the body may be inflated to provide a first diameter prior to the release of the fold and a second diameter upon release of the fold.
  • the balloon may comprise a plurality of folds, each held in place by a releasable connection.
  • Each releasable connection may be adapted to release the corresponding fold upon the body being inflated to a different inflation pressure.
  • each releasable connection may be adapted to release the corresponding fold upon the body being inflated to a predetermined inflation pressure.
  • the first releasable connection may be adapted to hold the first fold in place while the balloon is inflated to a nominal or first diameter for treatment.
  • the first fold may include a recessed portion between adjacent lobes, each of the lobes including a portion of the releasable connection.
  • an apparatus for performing a medical procedure comprises a non-compliant or semi-compliant balloon having a first, substantially constant diameter corresponding to a first range of inflation pressures and a second diameter, which may be substantially constant, corresponding to a second inflation pressure greater than the first range of inflation pressures.
  • the balloon may further include a third diameter, which may also be substantially constant, corresponding to a third inflation pressure greater than the second inflation pressure.
  • the balloon may comprise a first releasable connection adapted for retaining the balloon at the first diameter until the second inflation pressure is reached.
  • an apparatus for performing a medical procedure comprises a balloon comprising an inflatable body having a fold held in place by an adhesive.
  • the disclosure is also considered to pertain to methods of treatment using any apparatus disclosed herein.
  • FIG. 1 is a cutaway perspective view showing one embodiment of a balloon to which this disclosure may be applicable;
  • FIG. 2 is a cross-sectional view of the balloon of FIG. 1 along line 2 - 2 ;
  • FIG. 3 is a perspective view of a catheter including the balloon of FIG. 1 ;
  • FIG. 4 is an alternate embodiment of a catheter including the balloon of FIG. 1 ;
  • FIG. 5 is a schematic end view of a balloon according to one aspect of the disclosure, inflated to a first inflation pressure
  • FIG. 5 a is a close-up cutaway view of the balloon of FIG. 5 ;
  • FIG. 6 is a schematic end view of the balloon of FIG. 5 in a fully inflated condition
  • FIGS. 7-9 are schematic end views of balloons showing the reaction to a progressive increase of inflation pressures
  • FIG. 10 illustrates a further embodiment of an adjustable diameter balloon
  • FIG. 11 illustrates still another embodiment of such a balloon
  • FIGS. 12-16 illustrate further embodiments of various types of frangible or releasable connections for forming an adjustable diameter medical balloon.
  • a catheter 10 having a distal portion 11 with a balloon 12 mounted on a catheter tube 14 .
  • the balloon 12 has a body 13 including an intermediate section 16 , or “barrel” having the working surface W, and end sections 18 , 20 .
  • the end sections 18 , 20 reduce or taper in diameter to join the intermediate section 16 to the catheter tube 14 (and thus sections 18 , 20 are generally termed cones or cone sections, and the barrel provides the working surface W).
  • the balloon 12 is sealed to catheter tube 14 at balloon ends (proximal 15 a and distal 15 b ) on the end sections 18 , 20 to allow the inflation of the balloon 12 via one or more inflation lumens 17 extending within catheter tube 14 and communicating with the interior of the balloon 12 .
  • the catheter tube 14 also includes an elongated, tubular shaft 24 , which may form a lumen 23 that directs the guidewire 26 through the catheter 10 .
  • this guidewire 26 may be inserted through a first port 25 of a connector, such as a hub 27 , into the lumen 23 to achieve an “over the wire” (OTW) arrangement, but could also be provided in a “rapid exchange” configuration in which the guidewire 26 enters the lumen through a lateral opening 14 a closer to the distal end (see FIG. 4 ).
  • a connector such as a hub 27
  • a second port 29 may also be associated with catheter 10 , such as by way of connector (hub 27 ), for introducing a fluid (e.g., saline, a contrast agent, or both) into the interior of the balloon 12 via the inflation lumen 17 .
  • a fluid e.g., saline, a contrast agent, or both
  • Balloon 12 may include a single or multi-layered balloon wall 28 .
  • the balloon 12 may be a non-compliant balloon having a balloon wall 28 that maintains its size and shape in one or more directions when the balloon is inflated to a particular pressure or range of pressures (but below a rated burst pressure).
  • the balloon 12 could be semi-compliant instead, as described in U.S. Pat. No. 8,900,215.
  • the balloon wall 28 Prior to use, the balloon wall 28 is typically folded to assume an uninflated diameter that is only slightly greater than the diameter of the catheter tube 14 , which thus facilitates insertion into the vasculature.
  • the balloon 12 may be adapted for being inflated from a fully folded or collapsed condition to different diameters for different purposes or uses.
  • this may be achieved through the use of one or more releasable or frangible connections 30 adapted to retain the body 13 of the balloon 12 in a first configuration (such as corresponding to a first diameter) up to a first inflation pressure, and to release and thereby allow the body to assume a second configuration (such as corresponding to a second diameter).
  • the release may occur upon the balloon 12 being inflated to a second inflation pressure greater than the first inflation pressure, or by way of a manual release, as outlined further in the following description.
  • frrangible means readily or easily broken, and is not meant to limit the type of connection in any way.
  • the connections 30 are shown as being formed between first and second portions 28 a , 28 b of the balloon wall 28 , which may thus be arranged to create one or more folds 32 .
  • the folds 32 thus provide the balloon 12 with a corresponding number of lobes 12 a , 12 b when inflated to the first inflation pressure.
  • the folds 32 may extend along all or a portion of the barrel section 16 of the balloon 12 , and may form a recessed portion of the balloon, as perhaps best shown in FIG. 5 a .
  • four connections 30 are provided, thus giving the balloon 12 on inflation a quatrefoil shape in cross-section when the folds 32 comprise recessed portions, but more or fewer may be provided. It can be appreciated that the length of material of the balloon wall 28 forming the fold 32 corresponds directly to the increase in diameter achieved once the corresponding frangible connection 30 is released, and which length may be adjusted as desired during the manufacturing process to provide a greater or lesser increase in diameter.
  • Each connection 30 may comprise a bond adapted to disconnect or release, either from itself or from corresponding parts of the balloon 12 , upon the inflation pressure reaching or exceeding a particular level.
  • the balloon 12 may be inflated from a collapsed or folded condition (which is normally the case during insertion to a treatment area in the vasculature) associated with no inflation pressure to a first inflation pressure (such as, for example, 6 atmospheres), and reach a first diameter D 1 (such as for example 6 mm), as shown in FIG. 5 .
  • the balloon 12 may thus be used in this condition to treat a vessel having a corresponding diameter, which is typically less than the diameter on full inflation (e.g., 5 mm).
  • a second inflation pressure e.g., 8 atmospheres
  • the first inflation pressure or alternatively the pressure at which the connection(s) 30 would remain intact and maintain folds 32
  • a second diameter D 2 e.g. 9 mm, as indicated by reference numeral 12 ′.
  • the folds 32 are disappeared and the balloon 12 along the barrel section 16 with the generally cylindrical cross-section has a substantially smooth and uninterrupted surface.
  • This increased diameter may be used to treat a vessel having a different diameter (e.g., 8 mm), and may be created in situ during treatment.
  • a variable or adjustable diameter balloon 12 may be provided in a relatively simple and inexpensive manner, and which may eliminate the need for having different balloons corresponding to the treatment or vessel diameters at issue (5 mm and 8 mm in this example).
  • the balloon 12 may be characterized as a non-compliant or semi-compliant one designed to have a first, substantially constant diameter at a first range of inflation pressures (e.g., remaining at about 6 millimeters in diameter from 6 atmospheres up to 8 atmospheres), but then have a second diameter (e.g., 9 mm) at an inflation pressure greater than the first range (above 8 atmospheres).
  • the difference in diameters may be considerable (i.e., 6 millimeters versus 9 millimeters, or about 33% different, but possibly less or perhaps even greater).
  • the balloon 12 may be considered as one that has a different cross-sectional shape at different inflation pressures (such as between the quatrefoil shape of FIG. 5 and the circular shape of FIG. 6 ).
  • FIG. 7 illustrates a balloon 12 expanded to a second diameter D 2 (not necessarily the same diameter as D 2 in FIG. 6 ), and indicated by reference numeral 12 ′.
  • D 2 not necessarily the same diameter as D 2 in FIG. 6
  • FIG. 7 illustrates a balloon 12 expanded to a second diameter D 2 (not necessarily the same diameter as D 2 in FIG. 6 ), and indicated by reference numeral 12 ′.
  • one fold may be substantially disappeared, as a result of the application of a first inflation pressure, but three folds 32 a - 32 c remain intact as the result of connections 30 a , 30 b , 30 c , which thus form bonds that require a force greater than that created by the first inflation pressure in order to be broken.
  • FIG. 8 illustrates the situation where the inflation pressure has been increased to at least a second level sufficient to break the bond created by connection 30 a , which thus allows for fold 32 a to disappear.
  • the balloon 12 is thus expanded to a third diameter D 3 greater than diameter D 2 , as indicated by reference number 12 ′′.
  • Connections 30 b , 30 c remain intact, as do associated folds 32 b , 32 c , for so long as the pressure does not rise to a level sufficient to break the corresponding bond(s) and thus further expand the diameter.
  • Additional pressurization to at least a third pressure level higher than the level necessary to remove connection 30 a may cause further expansion to a fourth diameter D 4 , as indicated by reference number 12 ′′′. This may involve breaking the bond created by frangible connection 30 c , and thus expanding as a result of the unfurling of material of the balloon wall 28 associated with fold 32 c . Fold 32 b remains intact according to connection 30 b , which is designed to withstand the third inflation pressure (and possibly a range exceeding it). As should be appreciated, frangible connection 30 b could be designed to disconnect at the third pressure level, either instead of or in addition to the disconnection of connection 30 c.
  • a frangible-type connection 30 may be provided by applying an adhesive between different portions of the balloon 12 , such as along the outer surface of the balloon wall 28 , to thus form the folds 32 .
  • the adhesive may be provided along some or all of the wall 28 , including possibly within the material forming the fold 32 , which may provide for the desirable differential pressure reactions in order to achieve the variable diameters.
  • Multiple connections 30 may also be provided within a fold 32 , which could allow for a single fold to provide multiple changes in balloon diameter.
  • FIG. 10 illustrates that the releasable or frangible connection 30 may be associated with a remotely controlled actuator, such as an elongated cord or line 34 .
  • the line 34 may extend along all or part of the connection 30 and pass along an external surface of the balloon 12 though an opening 36 and into a lumen 23 formed by a tube, such as tube 24 .
  • the line 34 may pass to an external point for manual manipulation by the clinician (similar to guidewire 26 ). In this manner, the release of the connection 30 and the resulting expansion of the balloon 12 may be actively controlled in situ. Furthermore, the expansion may occur without a corresponding change in the inflation pressure.
  • the line 34 may be embedded in an adhesive forming the frangible connection 30 , and may thus form a pull or “rip” cord that facilitates to release the bond thus created.
  • a connector 40 may be provided between the balloon portions and forms the connection 30 , which connector may be associated with the line 34 .
  • the connector 40 may comprise a zipper-like connection, with a first part 40 a being attached to a first portion of the balloon 12 , and a second part 40 b being connected to a second portion of the balloon, and an actuator 40 c for releasing the connector 40 connected to the distal end of the line 34 .
  • Still another alternative is to provide a non-adhesive connector (such as, for example, an embedded fiber) that forms a connection or bond among parts of the balloon 12 that is simply overcome by pressurization, without using line 34 and without intervention by the clinician (except of course for causing the increase in pressure).
  • a non-adhesive connector such as, for example, an embedded fiber
  • FIGS. 12-14 illustrate another form of releasable connection 50 , which may be applied to along external surface of the balloon 12 , such as working surface W, in order to maintain one or more folds 32 .
  • the connection 50 may be established by connecting a retainer 52 to the balloon 12 , such as to the surface of the balloon wall 28 (inner or outer).
  • the retainer 52 includes offset openings 54 , as perhaps best understood in FIG. 14 .
  • Each opening 54 is adapted to receive an interleaving portion 56 when the retainer is attached to the balloon 12 along end portions 58 , 60 , as well as an intermediate portion 62 , and the balloon wall 28 is folded.
  • the interleaving portions 56 when interdigitated thus form a loop 62 through which an object, such as line 34 , may be inserted.
  • the line 34 thus holds the retainer 52 in a position to maintain the folds 32 in place, until withdrawn (such as from a remote location external to the body and through a lumen in the catheter).
  • the retainer 52 may relax or expand to release the underlying folds 32 and thereby increase the diameter of the balloon 12 .
  • more than one such releasable connections 50 may be associated with the balloon 12 , such as by being circumferentially spaced.
  • the use of multiple connections 50 may provide for a single larger diameter on expansion, or multiple larger diameters, which may be selectively controlled by the clinician to provide the desired adjustability for different diameters of vessels.
  • FIG. 15 illustrates that the balloon 12 may be provided with a releasable connection 60 in the form of a jacket 62 over the balloon 12 , and along the barrel section 16 , in particular.
  • the jacket 62 may be provided with releasably connected sections 62 a , 62 b , which may be connected by a frangible connection, such as for instance perforations 64 .
  • Pressurization of the balloon 12 to an inflation pressure insufficient to break the connection (perforation 64 ) would thus maintain the balloon at a first diameter, and further pressurization to a second inflation pressure (such as beyond a range associated with maintaining the first diameter) would break the connection and thus allow the balloon to expand in situ.
  • the balloon 12 is provided with one or more outwardly directed folds 32 (three shown).
  • the releasable or frangible connection 70 is established within the folds along the interior of the balloon 12 , which may be done during the process of forming the balloon from a sheet of material.
  • the connection 70 which may be an adhesive or the other forms described herein, is such that pressurization of the balloon 12 to an inflation pressure that is not sufficient to break the connection would thus maintain the balloon at a first diameter, and further pressurization to a second pressure level (beyond a range) would break the connection and thus allow the balloon to expand in situ during a procedure.

Abstract

An apparatus for performing a medical procedure includes a balloon comprising an inflatable body. A first releasable or frangible connection is provided to maintain the body at a first diameter up to a first inflation pressure, and to release, such as by disconnecting, and thus allow the body to assume a second diameter, such as at a second inflation pressure greater than the first inflation pressure or upon a manual release of the connection by a clinician. Multiple releasable or frangible connections may be provided, including between portions (folds) of the inflatable body of the balloon. This disclosure also pertains to a non-compliant or semi-compliant balloon having a first inflation diameter corresponding to a first range of inflation pressures and a second inflation diameter corresponding to a second inflation pressure greater than the first range of inflation pressures.

Description

    INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • BACKGROUND
  • Non-compliant medical balloons for performing angioplasty and other medical procedures are known. U.S. Pat. No. 6,746,425 to Beckham discloses a non-compliant medical balloon and methods for manufacturing the balloon. U.S. Patent Application Publication No. US 2006/0085022 to Hayes et al. discloses a non-compliant medical balloon having an integral woven fabric layer and methods for manufacturing the balloon. U.S. Patent Application Publication No. US 2006/0085023 to Davies, Jr. et al. discloses a medical balloon having strengthening rods and methods for manufacturing the balloon. U.S. Patent Application Publication No. US 2006/0085024 to Pepper et al. discloses a non-compliant medical balloon having an integral non-woven fabric layer and methods for manufacturing the balloon. U.S. Pat. No. 6,746,425 and Publication Nos. US 2006/0085022, US 2006/0085023 and US 2006/0085024.
  • During an intervention, the balloon is inserted into a vessel, typically on the end of a catheter, until the balloon reaches the area of interest. Adding pressure to the balloon causes the balloon to inflate. In one variation of use, the balloon creates an outwardly directed force when inflated, which can be used to treat a variety of conditions.
  • As can be appreciated, different applications (such as for treating different vessels or parts of the body) may require the use of balloons having different diameters when inflated. Currently, manufacturers make multiple balloons available for use with different inflation diameters, and the clinician must select the appropriate balloon under a given set of conditions. In some cases, the number of balloons available may be more than twenty, ranging widely in diameter when inflated (e.g., from 12-26 millimeters) for a variety of different vessel diameters. This clearly increases the demands on manufacturers to provide the full variety of balloons that might be required for use with different sizes of vessels (which can vary at the sub-millimeter level), and also adds complexity to the selection process by the clinician given the large number of options available. While fully compliant balloons may be used to provide a variety of diameters under different inflation pressures, this compliance makes such a balloon generally ineffective for providing the treatment in the desired manner, especially where a significant force is required.
  • Thus, it would be desirable to provide a single balloon that can be adjusted (including in situ) to treat a variety of vessel diameters in an effective and reliable manner.
  • SUMMARY OF THE DISCLOSURE
  • According to one aspect of the disclosure, an apparatus for performing a medical procedure comprises a balloon, which may be non-compliant or semi-compliant. The balloon may comprise an inflatable body and a first connection adapted to maintain the body substantially at a first diameter at a first inflation pressure, and to release or disconnect and thereby allow the body to expand to a second diameter. The first connection may be released upon a second inflation pressure greater than the first inflation pressure being applied to the inflatable body, or by manual intervention by a clinician.
  • The apparatus may include a second connection adapted to allow the body to assume the second diameter, such as by disconnecting second and third portions of the balloon (or possibly associated with the first and second portions as well). The second releasable connection may alternatively be adapted to allow the body to assume a third diameter, such as for example at a third inflation pressure greater than the second inflation pressure or as a result of manual intervention by a clinician.
  • The releasable connection(s) may take a variety of forms. For instance, the releasable connection may comprise an adhesive, and thus may be considered a form of a frangible connection. The connection may also comprise a first connector connected to the first portion and a second connector connected to the second portion and adapted for releasably engaging the first connector. The connection may also be provided in the form of a retainer with interdigitated portions for maintaining the balloon a desired configuration, such as at a first diameter. A line, such as a cord, may also be provided for releasing the releasable connection from a remote location, which line may extend though a lumen in a catheter shaft associated with the balloon.
  • According to a further aspect of the disclosure, an apparatus for performing a medical procedure includes a balloon comprising an inflatable body having a first fold held in place by a first connection adapted to release the fold upon the body being inflated. The first releasable connection is adapted to release the first fold upon the body being inflated to a predetermined inflation pressure. Thus, the body may be inflated to provide a first diameter prior to the release of the fold and a second diameter upon release of the fold.
  • The balloon may comprise a plurality of folds, each held in place by a releasable connection. Each releasable connection may be adapted to release the corresponding fold upon the body being inflated to a different inflation pressure. Alternatively, each releasable connection may be adapted to release the corresponding fold upon the body being inflated to a predetermined inflation pressure.
  • The first releasable connection may be adapted to hold the first fold in place while the balloon is inflated to a nominal or first diameter for treatment. The first fold may include a recessed portion between adjacent lobes, each of the lobes including a portion of the releasable connection.
  • According to a further aspect of the disclosure, an apparatus for performing a medical procedure is provided. The apparatus comprises a non-compliant or semi-compliant balloon having a first, substantially constant diameter corresponding to a first range of inflation pressures and a second diameter, which may be substantially constant, corresponding to a second inflation pressure greater than the first range of inflation pressures.
  • The balloon may further include a third diameter, which may also be substantially constant, corresponding to a third inflation pressure greater than the second inflation pressure. The balloon may comprise a first releasable connection adapted for retaining the balloon at the first diameter until the second inflation pressure is reached.
  • According to a further aspect of the disclosure, an apparatus for performing a medical procedure comprises a balloon comprising an inflatable body having a fold held in place by an adhesive. The disclosure is also considered to pertain to methods of treatment using any apparatus disclosed herein.
  • BRIEF DESCRIPTION OF THE DRAWING FIGURES
  • Reference is made below to the following drawing figures, which are not to scale and provided for purposes of illustration only:
  • FIG. 1 is a cutaway perspective view showing one embodiment of a balloon to which this disclosure may be applicable;
  • FIG. 2 is a cross-sectional view of the balloon of FIG. 1 along line 2-2;
  • FIG. 3 is a perspective view of a catheter including the balloon of FIG. 1;
  • FIG. 4 is an alternate embodiment of a catheter including the balloon of FIG. 1;
  • FIG. 5 is a schematic end view of a balloon according to one aspect of the disclosure, inflated to a first inflation pressure;
  • FIG. 5a is a close-up cutaway view of the balloon of FIG. 5;
  • FIG. 6 is a schematic end view of the balloon of FIG. 5 in a fully inflated condition;
  • FIGS. 7-9 are schematic end views of balloons showing the reaction to a progressive increase of inflation pressures;
  • FIG. 10 illustrates a further embodiment of an adjustable diameter balloon;
  • FIG. 11 illustrates still another embodiment of such a balloon;
  • FIGS. 12-16 illustrate further embodiments of various types of frangible or releasable connections for forming an adjustable diameter medical balloon.
  • DETAILED DESCRIPTION
  • The invention disclosed pertains to an inflatable balloon for performing a medical procedure. The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings.
  • Provided is a catheter 10 having a distal portion 11 with a balloon 12 mounted on a catheter tube 14. Referring to FIGS. 1, 2, and 3, the balloon 12 has a body 13 including an intermediate section 16, or “barrel” having the working surface W, and end sections 18, 20. In one embodiment, the end sections 18, 20 reduce or taper in diameter to join the intermediate section 16 to the catheter tube 14 (and thus sections 18, 20 are generally termed cones or cone sections, and the barrel provides the working surface W). The balloon 12 is sealed to catheter tube 14 at balloon ends (proximal 15 a and distal 15 b) on the end sections 18, 20 to allow the inflation of the balloon 12 via one or more inflation lumens 17 extending within catheter tube 14 and communicating with the interior of the balloon 12.
  • The catheter tube 14 also includes an elongated, tubular shaft 24, which may form a lumen 23 that directs the guidewire 26 through the catheter 10. As illustrated in FIG. 3, this guidewire 26 may be inserted through a first port 25 of a connector, such as a hub 27, into the lumen 23 to achieve an “over the wire” (OTW) arrangement, but could also be provided in a “rapid exchange” configuration in which the guidewire 26 enters the lumen through a lateral opening 14 a closer to the distal end (see FIG. 4). A second port 29 may also be associated with catheter 10, such as by way of connector (hub 27), for introducing a fluid (e.g., saline, a contrast agent, or both) into the interior of the balloon 12 via the inflation lumen 17.
  • Balloon 12 may include a single or multi-layered balloon wall 28. The balloon 12 may be a non-compliant balloon having a balloon wall 28 that maintains its size and shape in one or more directions when the balloon is inflated to a particular pressure or range of pressures (but below a rated burst pressure). However, the balloon 12 could be semi-compliant instead, as described in U.S. Pat. No. 8,900,215. Prior to use, the balloon wall 28 is typically folded to assume an uninflated diameter that is only slightly greater than the diameter of the catheter tube 14, which thus facilitates insertion into the vasculature.
  • According to one aspect of the disclosure, the balloon 12, despite being non-complaint or semi-compliant, may be adapted for being inflated from a fully folded or collapsed condition to different diameters for different purposes or uses. In one embodiment, and with reference to FIGS. 5 and 6, this may be achieved through the use of one or more releasable or frangible connections 30 adapted to retain the body 13 of the balloon 12 in a first configuration (such as corresponding to a first diameter) up to a first inflation pressure, and to release and thereby allow the body to assume a second configuration (such as corresponding to a second diameter). The release may occur upon the balloon 12 being inflated to a second inflation pressure greater than the first inflation pressure, or by way of a manual release, as outlined further in the following description. For purposes of this disclosure, “frangible” means readily or easily broken, and is not meant to limit the type of connection in any way.
  • The connections 30 are shown as being formed between first and second portions 28 a, 28 b of the balloon wall 28, which may thus be arranged to create one or more folds 32. The folds 32 thus provide the balloon 12 with a corresponding number of lobes 12 a, 12 b when inflated to the first inflation pressure. The folds 32 may extend along all or a portion of the barrel section 16 of the balloon 12, and may form a recessed portion of the balloon, as perhaps best shown in FIG. 5a . In the embodiment of FIG. 5, four connections 30 are provided, thus giving the balloon 12 on inflation a quatrefoil shape in cross-section when the folds 32 comprise recessed portions, but more or fewer may be provided. It can be appreciated that the length of material of the balloon wall 28 forming the fold 32 corresponds directly to the increase in diameter achieved once the corresponding frangible connection 30 is released, and which length may be adjusted as desired during the manufacturing process to provide a greater or lesser increase in diameter.
  • Each connection 30 may comprise a bond adapted to disconnect or release, either from itself or from corresponding parts of the balloon 12, upon the inflation pressure reaching or exceeding a particular level. Thus, by way of example, the balloon 12 may be inflated from a collapsed or folded condition (which is normally the case during insertion to a treatment area in the vasculature) associated with no inflation pressure to a first inflation pressure (such as, for example, 6 atmospheres), and reach a first diameter D1 (such as for example 6 mm), as shown in FIG. 5. The balloon 12 may thus be used in this condition to treat a vessel having a corresponding diameter, which is typically less than the diameter on full inflation (e.g., 5 mm).
  • Applying a second inflation pressure (e.g., 8 atmospheres) greater than the first inflation pressure, or alternatively the pressure at which the connection(s) 30 would remain intact and maintain folds 32, would thus cause the balloon 12 to expand to a second diameter D2 (e.g., 9 mm, as indicated by reference numeral 12′). In this condition, as can be appreciated from FIG. 6, the folds 32 are disappeared and the balloon 12 along the barrel section 16 with the generally cylindrical cross-section has a substantially smooth and uninterrupted surface. This increased diameter may be used to treat a vessel having a different diameter (e.g., 8 mm), and may be created in situ during treatment.
  • Thus, it can be appreciated that, by using the releasable or frangible connections 30, a variable or adjustable diameter balloon 12 may be provided in a relatively simple and inexpensive manner, and which may eliminate the need for having different balloons corresponding to the treatment or vessel diameters at issue (5 mm and 8 mm in this example). It can also be understood that the balloon 12 may be characterized as a non-compliant or semi-compliant one designed to have a first, substantially constant diameter at a first range of inflation pressures (e.g., remaining at about 6 millimeters in diameter from 6 atmospheres up to 8 atmospheres), but then have a second diameter (e.g., 9 mm) at an inflation pressure greater than the first range (above 8 atmospheres). The difference in diameters may be considerable (i.e., 6 millimeters versus 9 millimeters, or about 33% different, but possibly less or perhaps even greater). Likewise, the balloon 12 may be considered as one that has a different cross-sectional shape at different inflation pressures (such as between the quatrefoil shape of FIG. 5 and the circular shape of FIG. 6).
  • With reference to FIGS. 7-8, it can be appreciated that the balloon 12 may be adapted to expand to more than two diameters, such as by using different types of connections 30. Thus, for example, FIG. 7 illustrates a balloon 12 expanded to a second diameter D2 (not necessarily the same diameter as D2 in FIG. 6), and indicated by reference numeral 12′. In this condition, one fold may be substantially disappeared, as a result of the application of a first inflation pressure, but three folds 32 a-32 c remain intact as the result of connections 30 a, 30 b, 30 c, which thus form bonds that require a force greater than that created by the first inflation pressure in order to be broken.
  • FIG. 8 illustrates the situation where the inflation pressure has been increased to at least a second level sufficient to break the bond created by connection 30 a, which thus allows for fold 32 a to disappear. The balloon 12 is thus expanded to a third diameter D3 greater than diameter D2, as indicated by reference number 12″. Connections 30 b, 30 c remain intact, as do associated folds 32 b, 32 c, for so long as the pressure does not rise to a level sufficient to break the corresponding bond(s) and thus further expand the diameter.
  • Additional pressurization to at least a third pressure level higher than the level necessary to remove connection 30 a may cause further expansion to a fourth diameter D4, as indicated by reference number 12′″. This may involve breaking the bond created by frangible connection 30 c, and thus expanding as a result of the unfurling of material of the balloon wall 28 associated with fold 32 c. Fold 32 b remains intact according to connection 30 b, which is designed to withstand the third inflation pressure (and possibly a range exceeding it). As should be appreciated, frangible connection 30 b could be designed to disconnect at the third pressure level, either instead of or in addition to the disconnection of connection 30 c.
  • A frangible-type connection 30 may be provided by applying an adhesive between different portions of the balloon 12, such as along the outer surface of the balloon wall 28, to thus form the folds 32. The adhesive may be provided along some or all of the wall 28, including possibly within the material forming the fold 32, which may provide for the desirable differential pressure reactions in order to achieve the variable diameters. Multiple connections 30 may also be provided within a fold 32, which could allow for a single fold to provide multiple changes in balloon diameter.
  • FIG. 10 illustrates that the releasable or frangible connection 30 may be associated with a remotely controlled actuator, such as an elongated cord or line 34. The line 34 may extend along all or part of the connection 30 and pass along an external surface of the balloon 12 though an opening 36 and into a lumen 23 formed by a tube, such as tube 24. The line 34 may pass to an external point for manual manipulation by the clinician (similar to guidewire 26). In this manner, the release of the connection 30 and the resulting expansion of the balloon 12 may be actively controlled in situ. Furthermore, the expansion may occur without a corresponding change in the inflation pressure.
  • In one embodiment, the line 34 may be embedded in an adhesive forming the frangible connection 30, and may thus form a pull or “rip” cord that facilitates to release the bond thus created. Alternatively, with reference to FIG. 11, a connector 40 may be provided between the balloon portions and forms the connection 30, which connector may be associated with the line 34. Thus, as illustrated, the connector 40 may comprise a zipper-like connection, with a first part 40 a being attached to a first portion of the balloon 12, and a second part 40 b being connected to a second portion of the balloon, and an actuator 40 c for releasing the connector 40 connected to the distal end of the line 34. Still another alternative is to provide a non-adhesive connector (such as, for example, an embedded fiber) that forms a connection or bond among parts of the balloon 12 that is simply overcome by pressurization, without using line 34 and without intervention by the clinician (except of course for causing the increase in pressure).
  • FIGS. 12-14 illustrate another form of releasable connection 50, which may be applied to along external surface of the balloon 12, such as working surface W, in order to maintain one or more folds 32. As can be appreciated from FIGS. 13 and 14, the connection 50 may be established by connecting a retainer 52 to the balloon 12, such as to the surface of the balloon wall 28 (inner or outer). The retainer 52 includes offset openings 54, as perhaps best understood in FIG. 14. Each opening 54 is adapted to receive an interleaving portion 56 when the retainer is attached to the balloon 12 along end portions 58, 60, as well as an intermediate portion 62, and the balloon wall 28 is folded. As can be appreciated, the interleaving portions 56 when interdigitated thus form a loop 62 through which an object, such as line 34, may be inserted. The line 34 thus holds the retainer 52 in a position to maintain the folds 32 in place, until withdrawn (such as from a remote location external to the body and through a lumen in the catheter).
  • Upon withdrawal of the line 34 from the loop 62, the retainer 52 may relax or expand to release the underlying folds 32 and thereby increase the diameter of the balloon 12. As can be appreciated, more than one such releasable connections 50 may be associated with the balloon 12, such as by being circumferentially spaced. The use of multiple connections 50 may provide for a single larger diameter on expansion, or multiple larger diameters, which may be selectively controlled by the clinician to provide the desired adjustability for different diameters of vessels.
  • FIG. 15 illustrates that the balloon 12 may be provided with a releasable connection 60 in the form of a jacket 62 over the balloon 12, and along the barrel section 16, in particular. The jacket 62 may be provided with releasably connected sections 62 a, 62 b, which may be connected by a frangible connection, such as for instance perforations 64. Pressurization of the balloon 12 to an inflation pressure insufficient to break the connection (perforation 64) would thus maintain the balloon at a first diameter, and further pressurization to a second inflation pressure (such as beyond a range associated with maintaining the first diameter) would break the connection and thus allow the balloon to expand in situ.
  • A further embodiment is described with reference to FIG. 16. In this embodiment, the balloon 12 is provided with one or more outwardly directed folds 32 (three shown). The releasable or frangible connection 70 is established within the folds along the interior of the balloon 12, which may be done during the process of forming the balloon from a sheet of material. The connection 70, which may be an adhesive or the other forms described herein, is such that pressurization of the balloon 12 to an inflation pressure that is not sufficient to break the connection would thus maintain the balloon at a first diameter, and further pressurization to a second pressure level (beyond a range) would break the connection and thus allow the balloon to expand in situ during a procedure.
  • The foregoing discussion is intended to provide an illustration of the inventive concepts, and is not intended to limit the invention to any particular mode or form. Any elements described herein as singular can be pluralized (i.e., anything described as “one” can be more than one), and plural elements can be used individually. Characteristics disclosed of a single variation of an element, the device, the methods, or combinations thereof can be used or apply for other variations, for example, dimensions, burst pressures, shapes, materials, or combinations thereof. Any species element of a genus element can have the characteristics or elements of any other species element of that genus. “Substantially” means that the value may vary depending on the circumstances. The above-described configurations, elements or complete assemblies and methods and their elements for carrying out the invention, and variations of aspects of the invention can be combined and modified with each other in any combination (for instance, the various connections described can be combined in any manner for use in connection with a single balloon), along with any obvious modifications.

Claims (25)

1. An apparatus for performing a medical procedure, comprising:
a balloon comprising an inflatable body and a first connection adapted to maintain the body substantially at a first diameter at a first inflation pressure, and to disconnect to allow the inflatable body to expand to a second diameter.
2. The apparatus of claim 1, wherein the first connection is adapted to disconnect at a second inflation pressure greater than the first inflation pressure.
3. The apparatus of claim 2, further including a second connection adapted to disconnect at the second inflation pressure.
4. The apparatus of claim 2, further including a second connection adapted to disconnect and thereby allow the body to expand to a third diameter at a third inflation pressure greater than the second inflation pressure.
5. The apparatus of claim 1, wherein the body comprises a first portion connected to a second portion by the first connection.
6. The apparatus of claim 5, wherein the body includes a plurality of lobes when inflated to the first inflation pressure, the first portion being on a first lobe and a second portion being on a second lobe.
7. The apparatus of claim 1, wherein the first connection comprises a frangible connection.
8. The apparatus of claim 1, wherein the first connection comprises a first connector associated with a first portion of the balloon and a second connector associated with a second portion of the balloon and adapted for releasably engaging the first connector.
9. The apparatus of claim 1, wherein the first connection is selected from the group consisting of an adhesive, a line, a connector, a retainer including a plurality of interdigitated portions, a perforated jacket for receiving the inflatable body, and any combination of the foregoing.
10. The apparatus of claim 1, wherein the first connection comprises a line.
11. The apparatus of claim 10, further including a catheter shaft supporting the balloon, the catheter shaft including a lumen for receiving a portion of the line.
12. The apparatus of claim 12, wherein the balloon is non-compliant or semi-compliant.
13. An apparatus for performing a medical procedure, comprising:
a balloon comprising an inflatable body having a first fold held in place by a first connection, wherein the first connection is adapted to release to allow the balloon to expand from a first diameter when the first fold is held in place by the first connection to a second diameter greater than the first diameter.
14. The apparatus of claim 13, wherein the first connection is adapted to release the first fold upon the body being inflated to a predetermined inflation pressure, such that the body may be inflated to provide a first diameter prior to the release of the first fold and a second diameter upon release of the first fold.
15. The apparatus of claim 13, wherein the balloon includes a plurality of folds, each held in place by a releasable connection, each releasable connection being adapted to release the corresponding fold upon the body being inflated to a different inflation pressure.
16. The apparatus of claim 13, wherein the balloon includes a plurality of folds, each held in place by a releasable connection, each releasable connection being adapted to release the corresponding fold upon the body being inflated to a predetermined inflation pressure.
17. The apparatus of claim 13, wherein the first releasable connection is adapted to hold the first fold in place while the balloon is inflated to a nominal diameter for treatment.
18. The apparatus of claim 13, wherein the first fold includes a recessed portion between adjacent lobes of the balloon, each of the lobes including a portion of the first releasable connection.
19. The apparatus of claim 13, wherein the first releasable connection comprises a frangible connection.
20. The apparatus of claim 13, wherein the releasable connection is adapted to be manually released by an actuator adapted for being remotely controlled by a clinician.
21. An apparatus for performing a medical procedure, comprising:
a non-compliant or semi-compliant balloon having a first, substantially constant diameter corresponding to a first range of inflation pressures and a second diameter corresponding to a second inflation pressure greater than the first range of inflation pressures.
22. The apparatus of claim 21, wherein the balloon has a third diameter corresponding to a third inflation pressure greater than the second inflation pressure.
23. The apparatus of claim 21, wherein the balloon comprises a first releasable connection adapted for retaining the balloon substantially at the first diameter at least until the second inflation pressure is reached.
24. The apparatus of claim 21, wherein the balloon is non-complaint.
25. The apparatus of claim 21, wherein the second diameter is at least 33% greater than the first diameter.
US14/887,919 2015-10-20 2015-10-20 Variable diameter medical balloon Active 2036-08-21 US10105519B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/887,919 US10105519B2 (en) 2015-10-20 2015-10-20 Variable diameter medical balloon
US16/140,651 US10898692B2 (en) 2015-10-20 2018-09-25 Variable diameter medical balloon
US17/132,141 US11730930B2 (en) 2015-10-20 2020-12-23 Variable diameter medical balloon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/887,919 US10105519B2 (en) 2015-10-20 2015-10-20 Variable diameter medical balloon

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/140,651 Continuation US10898692B2 (en) 2015-10-20 2018-09-25 Variable diameter medical balloon

Publications (2)

Publication Number Publication Date
US20170106173A1 true US20170106173A1 (en) 2017-04-20
US10105519B2 US10105519B2 (en) 2018-10-23

Family

ID=58527017

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/887,919 Active 2036-08-21 US10105519B2 (en) 2015-10-20 2015-10-20 Variable diameter medical balloon
US16/140,651 Active 2036-03-19 US10898692B2 (en) 2015-10-20 2018-09-25 Variable diameter medical balloon
US17/132,141 Active 2036-07-05 US11730930B2 (en) 2015-10-20 2020-12-23 Variable diameter medical balloon

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/140,651 Active 2036-03-19 US10898692B2 (en) 2015-10-20 2018-09-25 Variable diameter medical balloon
US17/132,141 Active 2036-07-05 US11730930B2 (en) 2015-10-20 2020-12-23 Variable diameter medical balloon

Country Status (1)

Country Link
US (3) US10105519B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10105519B2 (en) * 2015-10-20 2018-10-23 C.R. Bard, Inc. Variable diameter medical balloon
US10398295B2 (en) 2014-12-22 2019-09-03 Smart Medical Systems Ltd. Balloon endoscope reprocessing system and method
US20190298385A1 (en) * 2018-03-30 2019-10-03 DePuy Synthes Products, Inc. Balloon assist device and method for using the same
US10835107B2 (en) 2015-04-03 2020-11-17 Smart Medical Systems Ltd. Endoscope electro-pneumatic adaptor
US11589874B2 (en) 2018-03-30 2023-02-28 DePuy Synthes Products, Inc. Split balloon assist device and method for using the same
US11819214B2 (en) 2018-03-30 2023-11-21 DePuy Synthes Products, Inc. Helical balloon assist device and method for using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229466B2 (en) 2018-01-12 2022-01-25 KyphEZE, Inc. Bone expansion systems and methods
CN110124186A (en) * 2019-06-26 2019-08-16 谢军伟 Three-channel single-sac pipe

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049131A (en) * 1989-05-31 1991-09-17 Ashridge Ag Balloon catheter
US5746745A (en) * 1993-08-23 1998-05-05 Boston Scientific Corporation Balloon catheter
US6746425B1 (en) * 1996-06-14 2004-06-08 Futuremed Interventional Medical balloon
US20040162575A1 (en) * 2003-02-13 2004-08-19 Show-Mean Wu Device and method for collapsing an angioplasty balloon
US20050059957A1 (en) * 2003-01-17 2005-03-17 Campbell Carey V. Catheter assembly
US20060085023A1 (en) * 2004-10-15 2006-04-20 Davies William F Jr Medical balloon having strengthening rods
US20060085024A1 (en) * 2004-10-15 2006-04-20 Pepper Lanny R Non-compliant medical balloon having an integral non-woven fabric layer
US20060085022A1 (en) * 2004-10-15 2006-04-20 Kelli Hayes Non-compliant medical balloon having an integral woven fabric layer
US20090054837A1 (en) * 2006-02-09 2009-02-26 B. Braun Melsungen Ag Coating Method for a Folded Balloon
US20090227949A1 (en) * 2008-03-06 2009-09-10 Boston Scientific Scimed, Inc. Balloon catheter devices with folded balloons
US20100152711A1 (en) * 2008-12-15 2010-06-17 Boston Scientific Scimed, Inc. Offset coupling region
US20110295201A1 (en) * 2008-07-23 2011-12-01 Nicolas Degen Balloon of a balloon catheter
US8216294B2 (en) * 2003-01-17 2012-07-10 W. L. Gore & Associates, Inc. Catheter with disruptable guidewire channel
US20130109906A1 (en) * 2011-10-26 2013-05-02 Radiadyne Llc Shaped Conforming Medical Balloons
US20150012032A1 (en) * 2012-03-06 2015-01-08 Futurematrix Intreventional, Inc. Medical balloon with enhanced refolding properties
US20170007805A1 (en) * 2015-07-06 2017-01-12 Terumo Kabushiki Kaisha Balloon catheter and method for manufacturing balloon

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199572A (en) * 1989-07-05 1993-04-06 Seietsu Abe Balloon storage system and method for assembling the same
EP1061984B2 (en) * 1998-03-09 2010-03-03 Kimberly-Clark Worldwide, Inc. Tracheal breathing apparatus
US10105519B2 (en) * 2015-10-20 2018-10-23 C.R. Bard, Inc. Variable diameter medical balloon

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049131A (en) * 1989-05-31 1991-09-17 Ashridge Ag Balloon catheter
US5746745A (en) * 1993-08-23 1998-05-05 Boston Scientific Corporation Balloon catheter
US6010480A (en) * 1993-08-23 2000-01-04 Boston Scientific Corporation Balloon catheter
US6746425B1 (en) * 1996-06-14 2004-06-08 Futuremed Interventional Medical balloon
US20050059957A1 (en) * 2003-01-17 2005-03-17 Campbell Carey V. Catheter assembly
US8845675B2 (en) * 2003-01-17 2014-09-30 W. L. Gore & Associates, Inc. Catheter with disruptable guidewire channel
US8308749B2 (en) * 2003-01-17 2012-11-13 W. L. Gore & Associates, Inc. Catheter with disruptable guidewire channel
US8216294B2 (en) * 2003-01-17 2012-07-10 W. L. Gore & Associates, Inc. Catheter with disruptable guidewire channel
US7879005B2 (en) * 2003-02-13 2011-02-01 Boston Scientific Scimed, Inc. Device and method for collapsing an angioplasty balloon
US20040162575A1 (en) * 2003-02-13 2004-08-19 Show-Mean Wu Device and method for collapsing an angioplasty balloon
US20070156166A1 (en) * 2003-02-13 2007-07-05 Boston Scientific Scimed, Inc. Device and method for collapsing an angioplasty balloon
US7285109B2 (en) * 2003-02-13 2007-10-23 Boston Scientific Scimed, Inc. Device and method for collapsing an angioplasty balloon
US20060085024A1 (en) * 2004-10-15 2006-04-20 Pepper Lanny R Non-compliant medical balloon having an integral non-woven fabric layer
US20060085022A1 (en) * 2004-10-15 2006-04-20 Kelli Hayes Non-compliant medical balloon having an integral woven fabric layer
US20060085023A1 (en) * 2004-10-15 2006-04-20 Davies William F Jr Medical balloon having strengthening rods
US7682335B2 (en) * 2004-10-15 2010-03-23 Futurematrix Interventional, Inc. Non-compliant medical balloon having an integral non-woven fabric layer
US7309324B2 (en) * 2004-10-15 2007-12-18 Futuremed Interventional, Inc. Non-compliant medical balloon having an integral woven fabric layer
US7354419B2 (en) * 2004-10-15 2008-04-08 Futuremed Interventional, Inc. Medical balloon having strengthening rods
US8287940B2 (en) * 2006-02-09 2012-10-16 B. Braun Melsungen Ag Coating method for a folded balloon
US20090054837A1 (en) * 2006-02-09 2009-02-26 B. Braun Melsungen Ag Coating Method for a Folded Balloon
US20130066268A1 (en) * 2006-02-09 2013-03-14 B. Braun Melsungen Ag Coating Method for a Folded Balloon
US8658239B2 (en) * 2006-02-09 2014-02-25 B. Braun Melsungen Ag Coating method for a folded balloon
US20090227949A1 (en) * 2008-03-06 2009-09-10 Boston Scientific Scimed, Inc. Balloon catheter devices with folded balloons
US20110295201A1 (en) * 2008-07-23 2011-12-01 Nicolas Degen Balloon of a balloon catheter
US8702745B2 (en) * 2008-07-23 2014-04-22 Nicolas Degen Balloon of a balloon catheter
US20100152711A1 (en) * 2008-12-15 2010-06-17 Boston Scientific Scimed, Inc. Offset coupling region
US20130109906A1 (en) * 2011-10-26 2013-05-02 Radiadyne Llc Shaped Conforming Medical Balloons
US9126035B2 (en) * 2011-10-26 2015-09-08 Radiadyne Llc Shaped conforming medical balloons
US20150012032A1 (en) * 2012-03-06 2015-01-08 Futurematrix Intreventional, Inc. Medical balloon with enhanced refolding properties
US20170007805A1 (en) * 2015-07-06 2017-01-12 Terumo Kabushiki Kaisha Balloon catheter and method for manufacturing balloon

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10398295B2 (en) 2014-12-22 2019-09-03 Smart Medical Systems Ltd. Balloon endoscope reprocessing system and method
US10835107B2 (en) 2015-04-03 2020-11-17 Smart Medical Systems Ltd. Endoscope electro-pneumatic adaptor
US10105519B2 (en) * 2015-10-20 2018-10-23 C.R. Bard, Inc. Variable diameter medical balloon
US20190022360A1 (en) * 2015-10-20 2019-01-24 C.R. Bard, Inc. Variable diameter medical balloon
US10898692B2 (en) * 2015-10-20 2021-01-26 C.R. Bard, Inc. Variable diameter medical balloon
US20210106796A1 (en) * 2015-10-20 2021-04-15 C.R. Bard, Inc. Variable diameter medical balloon
US11730930B2 (en) * 2015-10-20 2023-08-22 C.R. Bard, Inc. Variable diameter medical balloon
US20190298385A1 (en) * 2018-03-30 2019-10-03 DePuy Synthes Products, Inc. Balloon assist device and method for using the same
US10966726B2 (en) * 2018-03-30 2021-04-06 DePuy Synthes Products, Inc. Balloon assist device and method for using the same
US11589874B2 (en) 2018-03-30 2023-02-28 DePuy Synthes Products, Inc. Split balloon assist device and method for using the same
US11819214B2 (en) 2018-03-30 2023-11-21 DePuy Synthes Products, Inc. Helical balloon assist device and method for using the same

Also Published As

Publication number Publication date
US20190022360A1 (en) 2019-01-24
US11730930B2 (en) 2023-08-22
US10898692B2 (en) 2021-01-26
US20210106796A1 (en) 2021-04-15
US10105519B2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
US11730930B2 (en) Variable diameter medical balloon
US5358487A (en) Frangible balloon catheter
US6355013B1 (en) Balloon catheter with longitudinal safety stop
US6432129B2 (en) Stent delivery system
US20120197194A1 (en) Folding balloon catheter
US9839543B2 (en) Multi-stage balloon catheter
WO2016044647A4 (en) Expandable body device and method of use
ES2387743T3 (en) Balloon catheter
US20230372681A1 (en) Exoskeleton devices for use with elongated medical instruments
CA2916032C (en) Balloon catheter systems and methods
US20140364893A1 (en) Balloon catheter pressure relief valve
JP2014208184A (en) Endoscope system and anchoring assemblies
WO2002030484A9 (en) Material useable for medical balloons and catheters
US7879005B2 (en) Device and method for collapsing an angioplasty balloon
US20070073328A1 (en) Incrementally expandable balloon
US20140243843A1 (en) Rapid expansion balloon catheter
JP2004503295A5 (en)
US8512369B2 (en) Combined rolling membrane-balloon catheter
WO2019222425A1 (en) Devices, systems, and methods for locally engaging tissue using suction
CN104721944B (en) Medical balloon for catheter
US20140277069A1 (en) Variable length balloon
WO2015134138A1 (en) Prolate spheroid-shaped balloon
JP6378979B2 (en) Expansion device
EP3034127A2 (en) Ultrasonically visible medical balloon assembly
EP2977071A1 (en) Supportive balloon catheter

Legal Events

Date Code Title Description
AS Assignment

Owner name: C.R. BARD, INC., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHANDUSZKO, ANDRZEJ J.;REEL/FRAME:036834/0920

Effective date: 20151019

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4