US20170207560A1 - Electronic control connector, electronic control for driving a hermetic compressor and hermetic compressor - Google Patents

Electronic control connector, electronic control for driving a hermetic compressor and hermetic compressor Download PDF

Info

Publication number
US20170207560A1
US20170207560A1 US15/392,344 US201615392344A US2017207560A1 US 20170207560 A1 US20170207560 A1 US 20170207560A1 US 201615392344 A US201615392344 A US 201615392344A US 2017207560 A1 US2017207560 A1 US 2017207560A1
Authority
US
United States
Prior art keywords
electronic control
control connector
connector
fixing
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/392,344
Other versions
US10199757B2 (en
Inventor
Rafael Burg Rech
Marcelo Zanelato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Global Appliance Compressores e Solucoes em Refrigeracao Ltda
Original Assignee
Whirlpool SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102016013673-3A external-priority patent/BR102016013673B1/en
Application filed by Whirlpool SA filed Critical Whirlpool SA
Assigned to WHIRLPOOL S.A. reassignment WHIRLPOOL S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RECH, RAFAEL BURG, ZANELATO, MARCELO
Publication of US20170207560A1 publication Critical patent/US20170207560A1/en
Application granted granted Critical
Publication of US10199757B2 publication Critical patent/US10199757B2/en
Assigned to EMBRACO - INDÚSTRIA DE COMPRESSORES E SOLUÇÕES EM REFRIGERAÇÃO LTDA. reassignment EMBRACO - INDÚSTRIA DE COMPRESSORES E SOLUÇÕES EM REFRIGERAÇÃO LTDA. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WHIRLPOOL S.A.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/716Coupling device provided on the PCB
    • H01R12/718Contact members provided on the PCB without an insulating housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7005Guiding, mounting, polarizing or locking means; Extractors
    • H01R12/7011Locking or fixing a connector to a PCB
    • H01R12/7017Snap means
    • H01R12/7023Snap means integral with the coupling device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/716Coupling device provided on the PCB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/10Sockets for co-operation with pins or blades
    • H01R13/11Resilient sockets
    • H01R13/111Resilient sockets co-operating with pins having a circular transverse section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/40Securing contact members in or to a base or case; Insulating of contact members
    • H01R13/42Securing in a demountable manner
    • H01R13/428Securing in a demountable manner by resilient locking means on the contact members; by locking means on resilient contact members
    • H01R13/432Securing in a demountable manner by resilient locking means on the contact members; by locking means on resilient contact members by stamped-out resilient tongue snapping behind shoulder in base or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/301Assembling printed circuits with electric components, e.g. with resistor by means of a mounting structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/077Compressor control units, e.g. terminal boxes, mounted on the compressor casing wall containing for example starter, protection switches or connector contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • H01R12/526Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures the printed circuits being on the same board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/58Fixed connections for rigid printed circuits or like structures characterised by the terminals terminals for insertion into holes
    • H01R12/585Terminals having a press fit or a compliant portion and a shank passing through a hole in the printed circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7005Guiding, mounting, polarizing or locking means; Extractors
    • H01R12/7011Locking or fixing a connector to a PCB
    • H01R12/707Soldering or welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2105/00Three poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0235Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections for applying solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0256Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections for soldering or welding connectors to a printed circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10189Non-printed connector

Definitions

  • the present invention relates to an electronic control connector fixed to the printed circuit board of an electronic control, the connector simultaneously being fixed to said board and establishing an electrical connection with the tracks of the printed circuit board.
  • the connector being electrically connected to the connector of the hermetic compressor, such that the electronic control electrically drives the hermetic compressor.
  • VCC Variable Capacity Compressors
  • the variation in the mass flow is from a minimum value to a maximum value, said range of values being proportional to the rotation of the electric motor that drives the hermetic variable capacity compressor.
  • the variation of the rotation is obtained in these compressors by means of an electronic control, called frequency inverter, which adjusts the voltage and the frequency applied to the electric motor.
  • the frequency inverter is provided with various electronic circuits having different functions, such as, for example, a power circuit with input stage for electromagnetic interference filtering and a rectifier bridge stage for converting an alternating current coming from an external power source into a continuous voltage, a control circuit (microcontroller or Digital Signal Processor—DSP), an auxiliary power source for generating internal voltage for other circuits or components of the inverter, a circuit formed by power semiconductors for driving the electric motor employed in the compressor, among others.
  • a control circuit microcontroller or Digital Signal Processor—DSP
  • DSP Digital Signal Processor
  • Another problem noted concerns the use of cables for electrical connection between the frequency inverter and the connector, which is generally provided with three pins, of the hermetic compressor.
  • the use of a cable requires the fixing thereof to the printed circuit board of the frequency inverter, which results in increased general costs of production and time, due to the need to solder the cable to the board of the inverter or to use an additional connector on the board.
  • the frequency inverter is disposed in a closed plastic box, which is encased mechanically to the support surface (“fence”) of the hermetic compressor, being fastened by means of screws, to meet the standard requirements.
  • the first step is carried out by fixing the components and circuits which make up the frequency inverter on the printed circuit board.
  • the connector for feeding the hermetic compressor motor is mounted on the printed circuit board.
  • the grounding connector of the electromagnetic interference filtering circuit (ground connection point) is mounted on the printed circuit board.
  • the ground branch terminal is pressed in the plastic body of the outer casing.
  • the printed circuit board is then mounted on the plastic base of the plastic body of the outer casing.
  • a connection cable of the motor is connected to the connector for feeding the hermetic compressor motor, previously mounted on the printed circuit board.
  • a grounding cable of the electromagnetic interference filtering circuit is connected to the connector positioned on the printed circuit board.
  • the cable coming from the grounding connector of the electromagnetic interference filtering circuit is connected to the grounding terminal fixed to the plastic body.
  • the plastic body of the outer casing is mounted on the plastic base, such that the cables previously mounted pass through orifices existing in said body.
  • the plastic lid is then closed, making interface with the base and the plastic bodies, the lid is screwed to the assembly of base and body, the connector of the cable of the motor is coupled to the connector of the hermetic compressor, a branch of the grounding cable of the electromagnetic interference filtering circuit is coupled to the ground terminal of the compressor, the plastic assembly is encased in the compressor through the orifice existing in the plastic body and the assembly is fixed to the hermetic compressor by means of screws.
  • an electronic control connector (frequency inverter) encased in the printed circuit board of an electronic control, the connector being capable of simultaneously being fixed mechanically to said board and establishing an electrical connection with the tracks of the printed circuit board.
  • the connector being electrically connected to the connector of the hermetic compressor, such that the electronic control electrically drives the hermetic compressor.
  • the connector enabling the elimination of cables for connection to the hermetic compressor and fewer steps for connecting the frequency inverter to the support surface of the hermetic compressor.
  • the first objective of the present invention is to provide connection means of an electronic control, which require a fewer number of steps necessary for assembling and subsequent connection to the hermetic compressor.
  • the second objective of the present invention is to provide connection means of an electronic control, which eliminate the need to use cables for connection to the hermetic compressor.
  • a third objective of the present invention is to provide connection means of an electronic control, which have lower manufacturing costs.
  • a fourth objective of the present invention is to provide connection means of an electronic control having lower costs in the operation of assembling the compressor.
  • a fifth objective of the present invention is to provide a fast connection and disconnection of the electronic control connector.
  • an electronic control connector comprising at least an input orifice, at least a fixing leg and at least a terminal, the at least a terminal being inserted inside the at least an input orifice, the electronic control connector being fixed to a printed circuit board of an electronic control, by means of a mechanical fixing between the at least a fixing leg and at least a fixing orifice disposed on the printed circuit board of the electronic control, the fixing of the electronic control connector to the printed circuit board further establishing an electrical connection between the at least a terminal of the electronic control connector and the tracks of the printed circuit board of the electronic control.
  • an electronic control for driving a hermetic variable capacity compressor comprising a printed circuit board and an electronic control connector, the printed circuit board comprising tracks and at least a fixing orifice, the electronic control connector comprising at least an input orifice, at least a fixing leg and at least a terminal, the at least a terminal being inserted inside the at least an input orifice, at least a fixing leg being fixed to the at least a fixing orifice, the fixing establishing the fixing of the electronic control connector to the printed circuit board and the electrical connection between the terminal of the electronic control connector and the tracks of the printed circuit board of the electronic control.
  • a hermetic variable capacity compressor driven electrically by an electronic control comprising a connector of the hermetic compressor provided with at least three pins, the at least three pins of the connector of the hermetic compressor being electrically connected to at least three terminals of an electronic control connector, the electronic control connector being fixed to the electronic control and the at least a terminal being electrically connected to tracks of the electronic control.
  • FIG. 1 is an illustration of the electronic control seen from the first face of the printed circuit board, showing at least a fixing orifice for encasing the connector, according to the teachings of the present invention
  • FIG. 2 is a top view of the electronic control connector, according to the teachings of the present invention.
  • FIG. 3 is a bottom view of the electronic control connector, according to the teachings of the present invention.
  • FIGS. 4 to 9 are illustrations of the terminals which are inserted inside the input orifices of the electronic control connector, according to the teachings of the present invention.
  • FIG. 10 is a bottom view of the electronic control connector, showing the terminals inserted into the orifices of the connector, according to the teachings of the present invention.
  • FIG. 11 is a top view of the electronic control connector with the terminals inserted into its orifices, according to the teachings of the present invention.
  • FIG. 12 is an illustration of the electronic control connector encased in the second face of the printed circuit board, according to the teachings of the present invention.
  • FIG. 13 is an illustration of the hermetic compressor, showing its connector and its support surface, according to the teachings of the present invention.
  • FIG. 14 is an illustration of the electronic control to be connected to the hermetic compressor, by means of the electrical connection between its respective connectors, according to the teachings of the present invention
  • FIG. 15 is an illustration of the electronic control connected to the hermetic compressor, according to the teachings of the present invention.
  • FIG. 16 is a sectional view of the connection of the electronic control of the hermetic compressor, showing the mechanical fixing of the electronic control connector to the printed circuit board and the electrical connection between a terminal of the electronic control connector and a pin of the connector of the hermetic compressor. The picture also illustrates the terminal of the electronic control connector in contact with the printed circuit board;
  • FIG. 17 is an illustration of the electronic control to be connected to the connector of the hermetic compressor and to the support surface of the hermetic compressor, according to the teachings of the present invention.
  • FIGS. 2 to 3 illustrate the electronic control connector 30 and FIGS. 4 to 9 illustrate the terminals 34 which are inserted inside the input orifices 32 a of the electronic control connector 30 , objects of the present invention.
  • the electronic control connector 30 being used for electrically connecting an electronic control 50 to a hermetic compressor 200 .
  • the electronic control 50 can be a frequency inverter provided with various electronic circuits having different functions, such as, for example, a power circuit with input stage for electromagnetic interference filtering and a rectifier bridge stage for converting an alternating current coming from an external power source into a continuous voltage, a control circuit (microcontroller or Digital Signal Processor—DSP), an auxiliary power source for generating all internal voltages for other circuits or components of the inverter, a circuit formed by power semiconductors for driving the electric motor employed in the compressor, among others.
  • a control circuit microcontroller or Digital Signal Processor—DSP
  • DSP Digital Signal Processor
  • the electronic control 50 can be another type of component or a combination of other components, capable of controlling the hermetic compressor 200 , such as the start-up system for compressor with single-phase motor, a thermostat system for controlling the temperature of a cooler, a motor control system with Taps for arrangement in 110V or 220V, among others.
  • the electronic control 50 is used for controlling the voltage and the frequency applied to the hermetic compressor 200 , specifically for variable capacity compressors 200 , thus varying the pumping speed of the cooling gas, that is, its mass flow, in accordance with the system requirement and its demand for cooling.
  • the hermetic compressor 200 is driven by three-phase brushless DC electric motors.
  • the present invention is not limited to just this type of electric motor, such that other single-phase, two-phase or three-phase motors can be used, depending on the desired application.
  • the electronic control 50 object of the present invention, can be disposed on a first face 11 of a printed circuit board 10 , on a second face 12 of the printed circuit board 10 or on both faces 11 , 12 .
  • the first face 11 is the one that faces an outer casing 150 and the second face 12 is the one facing a support surface 201 of the hermetic compressor, as detailed ahead.
  • the disposition on a certain face neither establishes a limitative character, nor alters the innovative characteristics of the present invention.
  • the printed circuit board 10 is a board known in the state of the art, and can be made of phenolic, fiberglass, polyester fiber, diverse specific polymer-based films, among others.
  • the first face 11 and a second face 12 of the printed circuit board 10 being provided with fine copper foils, which establish conduction tracks, where the components of the electronic control 50 are soldered and electrically interconnected to each other.
  • the printed circuit board 10 is provided with external feed terminals 40 of the printed circuit board 10 , the terminals 40 being electrically connected to the electronic control 50 and to an external voltage feed source (not shown).
  • the printed circuit board 10 is provided with at least a fixing orifice 16 , which receives the electronic control connector 30 , as described ahead.
  • FIGS. 2 and 3 illustrate the electronic control connector 30 , object of the present invention.
  • the electronic control connector 30 is made of insulating plastic materials resistant to the high electric currents to be applied to the hermetic compressor 200 .
  • the electronic control connector 30 comprises at least an input orifice 32 a , at least a first support wall 32 b , at least a second support wall 32 c and at least a fixing leg 33 .
  • the at least a first support wall 32 b and the at least a second support wall 32 c are adjacent to the input orifice 32 a . More specifically, the at least a first and a second support walls 32 b , 32 c are opposite to each other in relation to the at least an input orifice 32 a , such that they substantially form a cavity or a passage duct from the outside to the inside of the connector 30 .
  • the at least a first support wall 32 b being further provided with a recess 32 d that surpasses the sides of the at least a first support wall 32 b and being positioned in an intermediary region between the upper and lower ends of said first support wall 32 b.
  • Said electronic control connector 30 receiving therein at least an input orifice 32 a at least a terminal 34 , as illustrated in FIGS. 10 and 11 and as described in greater detail ahead.
  • the at least a terminal 34 is inside the at least an input orifice 32 a , as described ahead and as illustrated in FIGS. 10 and 11 .
  • the at least a terminal 34 is made of phosphor bronze, capable of conducting electricity and having considerable resistance to corrosion and is approximately 0.40 millimeter (mm) thick.
  • the material of the at least a terminal 34 should conduct electricity and should be resistant to corrosion and to the high electric currents to be applied to the hermetic compressor 200 .
  • the at least a terminal 34 comprises an upper portion 34 a , a lower portion 34 b , a side support projection 34 c , an electric contact portion 34 d and a fixing projection 34 e.
  • the upper portion 34 a is substantially X-shaped, formed by two elliptical portions, the first portion on the horizontal axis having a wider cross-section in length (6.00 millimeters (mm)) and shorter in width compared to the second portion on the vertical axis (2.00 millimeters (mm)).
  • the second portion on the vertical axis presenting one of the ends with greater curvature than the other and having an inclination A of approximately 30° and 2.00 millimeters (mm) in length.
  • the intersection of the portions defines a central orifice. It is noted that it extends from the upper portion 34 a to the lower portion 34 b of the terminal 34 .
  • the central orifice is approximately 2.60 millimeters (mm) in diameter.
  • FIGS. 4 to 9 also illustrate a side support projection 34 c , which extends sidewardly along one of the ends of the horizontal portion of the upper portion 34 a of the terminal 34 .
  • Said side support projection 34 c extending linearly from the upper portion 34 a to beyond the lower portion 34 b , that is, the side support projection 34 c has a greater length than the one comprised between the upper portion 34 a and the lower portion 34 b.
  • the length between the upper portion 34 a and the lower portion 34 b is 6.50 millimeters (mm) and that of the side support projection 34 c is 11.00 millimeters (mm).
  • the side support projection 34 c in its greater length than the one comprised between the upper portion 34 a and the lower portion 34 b is 0.60 millimeter (mm) distant from the vertical axis of the central orifice.
  • the terminal 34 presents a single side support projection 34 c , said embodiment does not represent a limitative character.
  • the terminal 34 could comprise a plurality of side support projections 34 c or even a projection 34 c extending along part of or all the outer surface of the horizontal and vertical portions of the upper and lower portions 34 a , 34 b.
  • FIGS. 4 to 9 Another element illustrated in FIGS. 4 to 9 is the electric contact portion 34 d . It can be noted that it projects outwardly from the end and in an opposite direction to a vertical axis of the lower portion 34 b.
  • the electric contact portion 34 d comprises a curvilinear shape, a V-shape or a U-shape. It is noted that the shapes cited are not compulsory, such that any other shapes could be used, provided that their functionality is substantially similar to that of the preferred shapes.
  • the electric contact portion 34 d is formed by a first straight portion 35 , a curvilinear portion 36 and a second straight portion 37 .
  • the first straight portion 35 projecting from the end and in an opposite direction to the lower portion 34 b , the curvilinear portion 36 starting from the end of the first straight portion 35 and a second straight portion 37 starting from the end of the curvilinear portion 36 .
  • the function of the second straight portion 37 is to guide the terminal 34 inside the connector 30 , as seen in FIG. 10 and which will be described in greater detail ahead.
  • the length of the first straight portion 35 is 1.40 millimeter (mm) and begins after a patch with curvature B of 140 degrees and a radius of 2.00 millimeters (mm), the curvilinear portion 36 has a curvature C of 90 degrees and radius of 2.50 millimeters (mm) and the second straight portion 37 has a length of 4.30 millimeters (mm).
  • the thickness of the first straight portion 35 , of the curvilinear portion 36 and of the second straight portion 37 being 0.40 millimeter (mm).
  • the vertex of the curvilinear portion 36 being 1.00 millimeter (mm) higher and distant from the end of the side support projection 34 c.
  • the length between the end of the second straight portion 37 to the end of the terminal 34 opposite the second straight portion 37 being approximately 12.56 millimeters (mm) and the length between the vertex of the curvilinear portion 36 to the end of the terminal 34 opposite the second straight portion 37 being approximately 7.40 millimeters (mm).
  • the terminal 34 comprises two electric contact portions 34 d separated between a distance of 0.80 millimeter (mm) and having a maximum length between sides of approximately 4.00 millimeters (mm).
  • FIGS. 4 to 9 show the fixing projection 34 e in the terminal 34 .
  • the fixing projection 34 e projects outwardly and in the opposite direction to a vertical axis of the central orifice of the terminal 34 , the fixing projection 34 e being disposed and extending from a point near the upper portion 34 a to a point near the lower portion 34 b .
  • the fixing projection 34 e on the terminal 34 has a height of approximately 2.90 millimeters (mm) in relation to the vertical axis of the central orifice of the terminal 34 .
  • the fixing projection 34 e having a width of 1.50 millimeter (mm) and an angle of approximately 30 degrees in relation to the vertical axis of the central orifice of the terminal 34 .
  • the at least a fixing leg 33 is a projection positioned on an outer circumference of an upper surface of the electronic control 30 , the at least a fixing leg 33 having an outward-sticking tooth in an opposite direction to a vertical axis of an upper surface of the electronic control 30 , and may be L-shaped.
  • the at least a fixing leg 33 being disposed perpendicularly to the at least a first support wall 32 b and to the at least a second support wall 32 c.
  • the shape of the fixing leg 33 should be cooperative with the shape of the fixing orifice 16 , such that the fixing leg 33 can be inserted, encased and locked on the printed circuit board 10 .
  • the at least a fixing leg 33 is also made from plastic materials and presents a certain elasticity, so it elastically deforms towards the input orifice 32 a by applying pressure. Said characteristic enables the electronic control connector 30 to be inserted and encased in the fixing orifice 16 of the printed circuit board 10 .
  • the pressure on the fixing leg 33 should be interrupted, so that the fixing leg 33 elastically deforms to its initial position. This characteristic enables the electronic control connector 30 to be locked in the fixing orifice 16 of the printed circuit board 10 .
  • the above form of fixing is merely a preferred embodiment, and that any other form of fixing can be used, such as, for example, soldering the electronic control connector 30 on the printed circuit board 10 , by soldering the at least a fixing leg 33 to the at least a fixing orifice 16 . It must be emphasized that the form of fixing must guarantee permanent or provisional locking of the electronic control connector 30 in the fixing orifice 16 of the printed circuit board 10 .
  • the at least a terminal 34 is inserted inside the at least an input orifice 32 a of the electronic control connector 30 .
  • the upper portion 34 a and the lower portion 34 b of the terminal 34 are inserted into the cavity formed between the first and the second support walls 32 b , 32 c and the input orifice 32 a of the electronic control connector 30 .
  • the pressure created by the interference between the at least a fixing leg 33 and the wall of the at least an orifice 16 of the printed circuit board 10 that is, when pressing the connector 30 on the printed circuit board 10 , deformation of the fixing leg 33 occurs.
  • the electronic control connector 30 being encased in the at least a fixing orifice 16 on any of the faces 11 , 12 of the printed circuit board 10 .
  • the pressure on the at least a fixing leg 33 should be interrupted, so that the fixing leg 33 elastically deforms to its initial position. This characteristic enables the electronic control connector 30 to be locked on the fixing orifice 16 of the printed circuit board 10 .
  • the side support projection 34 c of the terminal 34 establish a contact with the printed circuit board 10 .
  • the side support projection 34 c prevents the terminal 34 from moving inside the electronic control connector 30 , thus preventing excessive deformation of the electric contact region 34 d , when the electronic control connector 30 with the terminals 34 is connected to the connector of the hermetic compressor 210 .
  • the electric contact portion 34 d presents a degree of freedom of movement capable of preventing the angular movement of the electric contact portion 34 d , guaranteeing the electrical connection between the electric contact portion 34 d and the tracks of the printed circuit board 10 of the electronic control 50 .
  • the side support projection 34 c acting as stopper, so that when connecting or removing the electronic control connector 30 of the connector of the hermetic compressor 210 , the terminal 34 does not move, thus exercising an excessive force in the contact region 34 d .
  • This excessive force may plastically deform the contact region 34 d meaning the electric contact between the portion 34 d and the tracks of the printed circuit board 10 is lost.
  • the electrical connection between said connector and the hermetic compressor 200 may be carried out.
  • the connector of the hermetic compressor 210 comprises at least three pins and the electronic control connector 30 comprises three terminals 34 . It must be emphasized that the number of terminals 34 of the electronic control 30 and the number of pins of the connector of the hermetic compressor 210 are proportional and vary according to the hermetic compressor 200 used (single-phase, two-phase, three-phase).
  • the pins of the connector of the hermetic compressor 210 are inserted inside the cavity formed between the first and the second support walls 32 b , 32 c and the input orifice 32 a of the electronic control connector 30 , such that the terminal 34 of the electronic control connector 30 is electrically connected to the respective pin of the connector of the hermetic compressor 210 .
  • At least a seating means 20 is fixed to the first face 11 and to the second face 12 of the printed circuit board 10 .
  • the at least a means 20 is disposed at the ends/vertices of the printed circuit board 10 , symmetrically between both faces 11 , 12 . Symmetry occurs by means of the connection of the at least a seating means 20 between the faces 11 , 12 by means of an orifice that surpasses the ends/vertices where it is disposed.
  • the at least a seating means 20 is made of elastically deformable materials, such as rubbers, polymers, springs or any other materials capable of elastically deforming by a mechanical effort (for example, compression).
  • the printed circuit board 10 is provided with a ground connection point 15 .
  • this is a metal contact in the shape of a hook, for subsequent electrical connection to a support surface 201 of the hermetic compressor 200 , as described ahead.
  • the ground connection point 15 being electrically connected to the board 10 and being configured to earth an electromagnetic interference circuit 130 disposed on the printed circuit board 10 .
  • the hook shape is merely a preferred embodiment, and any other type of connection can be used, provided that it is capable of establishing contact with the support surface 201 .
  • the hermetic compressor 200 it can be noted from FIG. 13 that it is provided with a support surface 201 and of a connector of the hermetic compressor 210 .
  • the support surface 201 has a shape cooperative with the shape of the printed circuit board 10 , since latter will be fixed thereon.
  • the support surface 201 presents in its central region an orifice for the passage of the connector of the hermetic compressor 210 .
  • the connector of the hermetic compressor 210 is provided with at least three connections (male connectors), which are electrically connected to the female-type connections of the electronic control connector 30 of the printed circuit board 10 .
  • the number of connections depends on the type of electric motor used (single-phase, two-phase or three-phase). As described ahead, said electrical connection enables the electric motor of the hermetic compressor 200 to receive power signals of the electronic control 50 .
  • FIG. 13 shows that the support surface 201 of the hermetic compressor 200 is provided with a projection 202 and of at least an encasement 205 .
  • the projection 202 of the support surface 201 being configured for subsequent electrical connection with the ground connection point 15 of the printed circuit board 10 , as described in greater detail ahead.
  • the at least an encasement 205 being configured for receiving the outer casing 150 of the connection and fixing means.
  • the hermetic compressor 200 , the projection 202 , the support surface 201 and the at least an encasement 205 being made of metal materials and all being grounded, to prevent damages from any electrical discharges and/or short circuits.
  • the outer casing 150 of the connection means and fixing is provided with an internal cavity 151 and with an opening 152 , preferably lateral, for access to the external power terminals 40 of the printed circuit board 10 , as subsequently described.
  • the outer casing 150 can be made of any material, especially plastic materials.
  • connection and fixing means object of the present invention, in the hermetic compressor 200 , especially the electrical connection and fixing of the printed circuit board 10 with the electronic control 50 to the support surface 201 of the hermetic compressor 200 .
  • the printed circuit board 10 with the electronic control 50 is initially placed parallel to the support surface 201 of the hermetic compressor 200 and being moved linearly until the electronic control connector 30 and the connector of the hermetic compressor 210 are aligned with each other.
  • the printed circuit board 10 is connected and fixed, respectively, to the connector of the hermetic compressor 210 and to the support surface 201 , in a substantially stable manner and without the need to use fixing means (such as screws). Moreover, it is noted that the electromagnetic interference filtering circuit 130 of the board 10 is grounded, since an electrical ground connection was established with the hermetic compressor 200 .
  • FIG. 17 illustrates the complete assembly of the connection and fixing means, object of the present invention, with the hermetic compressor 200 , especially the electrical connection and the fixing of the printed circuit board 10 with the electronic control 50 to the support surface 201 of the hermetic compressor, the encapsulation of the printed circuit board 10 with the electronic control 50 by the outer casing 150 and the fixing of the outer casing 150 to the support surface 201 of the hermetic compressor 200 .
  • the outer casing 150 receives and encapsulates, in its internal cavity 151 , the printed circuit board 10 with the electronic control 50 , with the at least a seating means 20 and with the electronic control connector 30 .
  • the outer casing 150 establishes a contact with the at least a seating means 20 of the first face 11 , the outer casing 150 being fixed to the support surface 201 of the hermetic compressor 200 by means of encasements 205 of the support surface 201 .
  • the external power terminals 40 of the printed circuit board 10 remain accessible from the side opening 152 of the outer casing 150 .
  • the side opening 152 being closed by a lid 153 and fixed by means of fixing elements 154 (such as screws).
  • the present invention brings various advantages over the state of the art, shorter time and fewer number of steps for assembly on the production lines, economy by eliminating cables, practicality in assembly, disassembly, maintenance, replacement of components, low production cost, among others.

Abstract

An electronic control connector (30) including at least an input orifice (32 a), at least a fixing leg (33) and at least a terminal (34), the terminal (34) being inserted inside the input orifice (32 a), the electronic control connector (30) being fixed to a printed circuit board (10) of an electronic control (50), by a fixing between the fixing leg (33) and a fixing orifice (16) disposed on the printed circuit board (10) of the electronic control (50), the fixing of the electronic control connector (30) to the printed circuit board (10) also establishing an electrical connection between the terminal (34) of the electronic control connector (30) and the tracks of the printed circuit board (10) of the electronic control (50).

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 USC 119 to Chinese Patent Application No. 201620154651.0 filed Jan. 15, 2016 and Brazilian Patent Application No. BR10201603673-3 filed Jun. 14, 2016, and the entire disclosure of each of these applications is hereby expressly incorporated by reference into the present application.
  • FIELD OF THE INVENTION
  • The present invention relates to an electronic control connector fixed to the printed circuit board of an electronic control, the connector simultaneously being fixed to said board and establishing an electrical connection with the tracks of the printed circuit board. The connector being electrically connected to the connector of the hermetic compressor, such that the electronic control electrically drives the hermetic compressor.
  • BACKGROUND
  • With the objective of achieving high energy and cooling efficiency, today household and commercial cooling systems use Variable Capacity Compressors—VCC. The characteristics of these compressors are adjustments in the cooling capacity by varying the pumping speed of cooling gas, that is, their mass flow, in accordance with the system requirement and cooling demand.
  • The variation in the mass flow is from a minimum value to a maximum value, said range of values being proportional to the rotation of the electric motor that drives the hermetic variable capacity compressor. The variation of the rotation is obtained in these compressors by means of an electronic control, called frequency inverter, which adjusts the voltage and the frequency applied to the electric motor.
  • In general terms, the frequency inverter is provided with various electronic circuits having different functions, such as, for example, a power circuit with input stage for electromagnetic interference filtering and a rectifier bridge stage for converting an alternating current coming from an external power source into a continuous voltage, a control circuit (microcontroller or Digital Signal Processor—DSP), an auxiliary power source for generating internal voltage for other circuits or components of the inverter, a circuit formed by power semiconductors for driving the electric motor employed in the compressor, among others.
  • It is noted that the electrical connection and fixing of the frequency inverter to the hermetic compressor requires carrying out various steps on the production line. This results in a loss of efficiency and high production and assembly cost of the frequency inverter.
  • Another problem noted concerns the use of cables for electrical connection between the frequency inverter and the connector, which is generally provided with three pins, of the hermetic compressor. The use of a cable requires the fixing thereof to the printed circuit board of the frequency inverter, which results in increased general costs of production and time, due to the need to solder the cable to the board of the inverter or to use an additional connector on the board.
  • Additionally, it is noted in the state of the art that the frequency inverter is disposed in a closed plastic box, which is encased mechanically to the support surface (“fence”) of the hermetic compressor, being fastened by means of screws, to meet the standard requirements.
  • The problems above are noted when carrying out the steps of fixing of the frequency inverter to the support surface (“fence”) of the hermetic compressor, which will be detailed ahead.
  • The first step is carried out by fixing the components and circuits which make up the frequency inverter on the printed circuit board.
  • After this step, the connector for feeding the hermetic compressor motor is mounted on the printed circuit board. The grounding connector of the electromagnetic interference filtering circuit (ground connection point) is mounted on the printed circuit board.
  • The ground branch terminal is pressed in the plastic body of the outer casing.
  • The printed circuit board is then mounted on the plastic base of the plastic body of the outer casing.
  • A connection cable of the motor is connected to the connector for feeding the hermetic compressor motor, previously mounted on the printed circuit board. A grounding cable of the electromagnetic interference filtering circuit is connected to the connector positioned on the printed circuit board.
  • The cable coming from the grounding connector of the electromagnetic interference filtering circuit is connected to the grounding terminal fixed to the plastic body.
  • The plastic body of the outer casing is mounted on the plastic base, such that the cables previously mounted pass through orifices existing in said body.
  • The plastic lid is then closed, making interface with the base and the plastic bodies, the lid is screwed to the assembly of base and body, the connector of the cable of the motor is coupled to the connector of the hermetic compressor, a branch of the grounding cable of the electromagnetic interference filtering circuit is coupled to the ground terminal of the compressor, the plastic assembly is encased in the compressor through the orifice existing in the plastic body and the assembly is fixed to the hermetic compressor by means of screws.
  • SUMMARY OF THE INVENTION
  • Therefore, it is not noted in the state of the art an electronic control connector (frequency inverter) encased in the printed circuit board of an electronic control, the connector being capable of simultaneously being fixed mechanically to said board and establishing an electrical connection with the tracks of the printed circuit board. The connector being electrically connected to the connector of the hermetic compressor, such that the electronic control electrically drives the hermetic compressor. The connector enabling the elimination of cables for connection to the hermetic compressor and fewer steps for connecting the frequency inverter to the support surface of the hermetic compressor.
  • The first objective of the present invention is to provide connection means of an electronic control, which require a fewer number of steps necessary for assembling and subsequent connection to the hermetic compressor.
  • The second objective of the present invention is to provide connection means of an electronic control, which eliminate the need to use cables for connection to the hermetic compressor.
  • A third objective of the present invention is to provide connection means of an electronic control, which have lower manufacturing costs.
  • A fourth objective of the present invention is to provide connection means of an electronic control having lower costs in the operation of assembling the compressor.
  • A fifth objective of the present invention is to provide a fast connection and disconnection of the electronic control connector.
  • The objectives of the present invention are achieved by means of an electronic control connector comprising at least an input orifice, at least a fixing leg and at least a terminal, the at least a terminal being inserted inside the at least an input orifice, the electronic control connector being fixed to a printed circuit board of an electronic control, by means of a mechanical fixing between the at least a fixing leg and at least a fixing orifice disposed on the printed circuit board of the electronic control, the fixing of the electronic control connector to the printed circuit board further establishing an electrical connection between the at least a terminal of the electronic control connector and the tracks of the printed circuit board of the electronic control.
  • The objectives of the present invention are further achieved by means of an electronic control for driving a hermetic variable capacity compressor comprising a printed circuit board and an electronic control connector, the printed circuit board comprising tracks and at least a fixing orifice, the electronic control connector comprising at least an input orifice, at least a fixing leg and at least a terminal, the at least a terminal being inserted inside the at least an input orifice, at least a fixing leg being fixed to the at least a fixing orifice, the fixing establishing the fixing of the electronic control connector to the printed circuit board and the electrical connection between the terminal of the electronic control connector and the tracks of the printed circuit board of the electronic control.
  • Lastly, the objectives of the present invention are achieved by means of a hermetic variable capacity compressor driven electrically by an electronic control comprising a connector of the hermetic compressor provided with at least three pins, the at least three pins of the connector of the hermetic compressor being electrically connected to at least three terminals of an electronic control connector, the electronic control connector being fixed to the electronic control and the at least a terminal being electrically connected to tracks of the electronic control.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will now be described in greater detail based on a sample execution represented in the drawings. The drawings show:
  • FIG. 1 is an illustration of the electronic control seen from the first face of the printed circuit board, showing at least a fixing orifice for encasing the connector, according to the teachings of the present invention;
  • FIG. 2 is a top view of the electronic control connector, according to the teachings of the present invention;
  • FIG. 3 is a bottom view of the electronic control connector, according to the teachings of the present invention;
  • FIGS. 4 to 9 are illustrations of the terminals which are inserted inside the input orifices of the electronic control connector, according to the teachings of the present invention;
  • FIG. 10 is a bottom view of the electronic control connector, showing the terminals inserted into the orifices of the connector, according to the teachings of the present invention;
  • FIG. 11 is a top view of the electronic control connector with the terminals inserted into its orifices, according to the teachings of the present invention;
  • FIG. 12 is an illustration of the electronic control connector encased in the second face of the printed circuit board, according to the teachings of the present invention;
  • FIG. 13 is an illustration of the hermetic compressor, showing its connector and its support surface, according to the teachings of the present invention;
  • FIG. 14 is an illustration of the electronic control to be connected to the hermetic compressor, by means of the electrical connection between its respective connectors, according to the teachings of the present invention;
  • FIG. 15 is an illustration of the electronic control connected to the hermetic compressor, according to the teachings of the present invention;
  • FIG. 16 is a sectional view of the connection of the electronic control of the hermetic compressor, showing the mechanical fixing of the electronic control connector to the printed circuit board and the electrical connection between a terminal of the electronic control connector and a pin of the connector of the hermetic compressor. The picture also illustrates the terminal of the electronic control connector in contact with the printed circuit board; and
  • FIG. 17 is an illustration of the electronic control to be connected to the connector of the hermetic compressor and to the support surface of the hermetic compressor, according to the teachings of the present invention.
  • DETAILED DESCRIPTION
  • FIGS. 2 to 3 illustrate the electronic control connector 30 and FIGS. 4 to 9 illustrate the terminals 34 which are inserted inside the input orifices 32 a of the electronic control connector 30, objects of the present invention.
  • The electronic control connector 30 being used for electrically connecting an electronic control 50 to a hermetic compressor 200.
  • In a preferred embodiment, the electronic control 50 can be a frequency inverter provided with various electronic circuits having different functions, such as, for example, a power circuit with input stage for electromagnetic interference filtering and a rectifier bridge stage for converting an alternating current coming from an external power source into a continuous voltage, a control circuit (microcontroller or Digital Signal Processor—DSP), an auxiliary power source for generating all internal voltages for other circuits or components of the inverter, a circuit formed by power semiconductors for driving the electric motor employed in the compressor, among others.
  • Obviously, this is just a preferred embodiment, such that alternatively the electronic control 50 can be another type of component or a combination of other components, capable of controlling the hermetic compressor 200, such as the start-up system for compressor with single-phase motor, a thermostat system for controlling the temperature of a cooler, a motor control system with Taps for arrangement in 110V or 220V, among others.
  • The electronic control 50 is used for controlling the voltage and the frequency applied to the hermetic compressor 200, specifically for variable capacity compressors 200, thus varying the pumping speed of the cooling gas, that is, its mass flow, in accordance with the system requirement and its demand for cooling.
  • In a preferred embodiment, the hermetic compressor 200 is driven by three-phase brushless DC electric motors. However, it is important to note that the present invention is not limited to just this type of electric motor, such that other single-phase, two-phase or three-phase motors can be used, depending on the desired application.
  • The electronic control 50, object of the present invention, can be disposed on a first face 11 of a printed circuit board 10, on a second face 12 of the printed circuit board 10 or on both faces 11, 12. In a preferred embodiment, the first face 11 is the one that faces an outer casing 150 and the second face 12 is the one facing a support surface 201 of the hermetic compressor, as detailed ahead. The disposition on a certain face neither establishes a limitative character, nor alters the innovative characteristics of the present invention.
  • In general terms, the printed circuit board 10 is a board known in the state of the art, and can be made of phenolic, fiberglass, polyester fiber, diverse specific polymer-based films, among others. The first face 11 and a second face 12 of the printed circuit board 10 being provided with fine copper foils, which establish conduction tracks, where the components of the electronic control 50 are soldered and electrically interconnected to each other.
  • Further, still in reference to FIG. 1, it can be noted that it illustrates that the printed circuit board 10 is provided with external feed terminals 40 of the printed circuit board 10, the terminals 40 being electrically connected to the electronic control 50 and to an external voltage feed source (not shown).
  • It is also noted that the printed circuit board 10 is provided with at least a fixing orifice 16, which receives the electronic control connector 30, as described ahead.
  • Regarding FIGS. 2 and 3, it can be noted that they illustrate the electronic control connector 30, object of the present invention. In a preferred embodiment, the electronic control connector 30 is made of insulating plastic materials resistant to the high electric currents to be applied to the hermetic compressor 200.
  • It is further noted from FIGS. 2 and 3 that the electronic control connector 30 comprises at least an input orifice 32 a, at least a first support wall 32 b, at least a second support wall 32 c and at least a fixing leg 33.
  • It is noted that the at least a first support wall 32 b and the at least a second support wall 32 c are adjacent to the input orifice 32 a. More specifically, the at least a first and a second support walls 32 b, 32 c are opposite to each other in relation to the at least an input orifice 32 a, such that they substantially form a cavity or a passage duct from the outside to the inside of the connector 30.
  • The at least a first support wall 32 b being further provided with a recess 32 d that surpasses the sides of the at least a first support wall 32 b and being positioned in an intermediary region between the upper and lower ends of said first support wall 32 b.
  • Said electronic control connector 30 receiving therein at least an input orifice 32 a at least a terminal 34, as illustrated in FIGS. 10 and 11 and as described in greater detail ahead.
  • In relation to the at least a terminal 34, illustrated in FIGS. 4 to 9, it is noted that it is inside the at least an input orifice 32 a, as described ahead and as illustrated in FIGS. 10 and 11. In a preferred embodiment, the at least a terminal 34 is made of phosphor bronze, capable of conducting electricity and having considerable resistance to corrosion and is approximately 0.40 millimeter (mm) thick.
  • Other materials such as copper alloys, tin alloys, stainless steels, among others, could also be used. It must be emphasized that the material of the at least a terminal 34 should conduct electricity and should be resistant to corrosion and to the high electric currents to be applied to the hermetic compressor 200.
  • In further reference to FIGS. 4 to 9, it is noted that the at least a terminal 34 comprises an upper portion 34 a, a lower portion 34 b, a side support projection 34 c, an electric contact portion 34 d and a fixing projection 34 e.
  • The upper portion 34 a is substantially X-shaped, formed by two elliptical portions, the first portion on the horizontal axis having a wider cross-section in length (6.00 millimeters (mm)) and shorter in width compared to the second portion on the vertical axis (2.00 millimeters (mm)). The second portion on the vertical axis presenting one of the ends with greater curvature than the other and having an inclination A of approximately 30° and 2.00 millimeters (mm) in length. The intersection of the portions defines a central orifice. It is noted that it extends from the upper portion 34 a to the lower portion 34 b of the terminal 34. Preferably, the central orifice is approximately 2.60 millimeters (mm) in diameter.
  • It must be emphasized that said shape and measurements refer solely to a preferred embodiment, such that any other shapes or measurements can be used, provided that the central orifice has a cooperating shape with the shape of the input orifice 32 a of the electronic control connector 30.
  • FIGS. 4 to 9 also illustrate a side support projection 34 c, which extends sidewardly along one of the ends of the horizontal portion of the upper portion 34 a of the terminal 34. Said side support projection 34 c extending linearly from the upper portion 34 a to beyond the lower portion 34 b, that is, the side support projection 34 c has a greater length than the one comprised between the upper portion 34 a and the lower portion 34 b.
  • Preferably, the length between the upper portion 34 a and the lower portion 34 b is 6.50 millimeters (mm) and that of the side support projection 34 c is 11.00 millimeters (mm). Moreover, the side support projection 34 c in its greater length than the one comprised between the upper portion 34 a and the lower portion 34 b is 0.60 millimeter (mm) distant from the vertical axis of the central orifice.
  • It must be emphasized that although the terminal 34 presents a single side support projection 34 c, said embodiment does not represent a limitative character. In other words, the terminal 34 could comprise a plurality of side support projections 34 c or even a projection 34 c extending along part of or all the outer surface of the horizontal and vertical portions of the upper and lower portions 34 a, 34 b.
  • Another element illustrated in FIGS. 4 to 9 is the electric contact portion 34 d. It can be noted that it projects outwardly from the end and in an opposite direction to a vertical axis of the lower portion 34 b.
  • In a preferred embodiment, the electric contact portion 34 d comprises a curvilinear shape, a V-shape or a U-shape. It is noted that the shapes cited are not compulsory, such that any other shapes could be used, provided that their functionality is substantially similar to that of the preferred shapes.
  • Further preferably, the electric contact portion 34 d is formed by a first straight portion 35, a curvilinear portion 36 and a second straight portion 37. The first straight portion 35 projecting from the end and in an opposite direction to the lower portion 34 b, the curvilinear portion 36 starting from the end of the first straight portion 35 and a second straight portion 37 starting from the end of the curvilinear portion 36. The function of the second straight portion 37 is to guide the terminal 34 inside the connector 30, as seen in FIG. 10 and which will be described in greater detail ahead.
  • Preferably, the length of the first straight portion 35 is 1.40 millimeter (mm) and begins after a patch with curvature B of 140 degrees and a radius of 2.00 millimeters (mm), the curvilinear portion 36 has a curvature C of 90 degrees and radius of 2.50 millimeters (mm) and the second straight portion 37 has a length of 4.30 millimeters (mm). The thickness of the first straight portion 35, of the curvilinear portion 36 and of the second straight portion 37 being 0.40 millimeter (mm). The vertex of the curvilinear portion 36 being 1.00 millimeter (mm) higher and distant from the end of the side support projection 34 c.
  • The length between the end of the second straight portion 37 to the end of the terminal 34 opposite the second straight portion 37 being approximately 12.56 millimeters (mm) and the length between the vertex of the curvilinear portion 36 to the end of the terminal 34 opposite the second straight portion 37 being approximately 7.40 millimeters (mm).
  • Also in a preferred embodiment, the terminal 34 comprises two electric contact portions 34 d separated between a distance of 0.80 millimeter (mm) and having a maximum length between sides of approximately 4.00 millimeters (mm).
  • It is also noted that FIGS. 4 to 9 show the fixing projection 34 e in the terminal 34. Preferably, it is disposed between the upper portion 34 a and the lower portion 34 b of the terminal 34. More specifically, the fixing projection 34 e projects outwardly and in the opposite direction to a vertical axis of the central orifice of the terminal 34, the fixing projection 34 e being disposed and extending from a point near the upper portion 34 a to a point near the lower portion 34 b. The fixing projection 34 e on the terminal 34 has a height of approximately 2.90 millimeters (mm) in relation to the vertical axis of the central orifice of the terminal 34. The fixing projection 34 e having a width of 1.50 millimeter (mm) and an angle of approximately 30 degrees in relation to the vertical axis of the central orifice of the terminal 34.
  • It is noted that the at least a fixing leg 33 is a projection positioned on an outer circumference of an upper surface of the electronic control 30, the at least a fixing leg 33 having an outward-sticking tooth in an opposite direction to a vertical axis of an upper surface of the electronic control 30, and may be L-shaped. The at least a fixing leg 33 being disposed perpendicularly to the at least a first support wall 32 b and to the at least a second support wall 32 c.
  • It must be emphasized that the shape of the fixing leg 33 should be cooperative with the shape of the fixing orifice 16, such that the fixing leg 33 can be inserted, encased and locked on the printed circuit board 10.
  • The at least a fixing leg 33 is also made from plastic materials and presents a certain elasticity, so it elastically deforms towards the input orifice 32 a by applying pressure. Said characteristic enables the electronic control connector 30 to be inserted and encased in the fixing orifice 16 of the printed circuit board 10.
  • After having been inserted into the fixing orifice 16, the pressure on the fixing leg 33 should be interrupted, so that the fixing leg 33 elastically deforms to its initial position. This characteristic enables the electronic control connector 30 to be locked in the fixing orifice 16 of the printed circuit board 10.
  • It must be emphasized that the above form of fixing is merely a preferred embodiment, and that any other form of fixing can be used, such as, for example, soldering the electronic control connector 30 on the printed circuit board 10, by soldering the at least a fixing leg 33 to the at least a fixing orifice 16. It must be emphasized that the form of fixing must guarantee permanent or provisional locking of the electronic control connector 30 in the fixing orifice 16 of the printed circuit board 10.
  • As previously highlighted, the at least a terminal 34 is inserted inside the at least an input orifice 32 a of the electronic control connector 30.
  • More specifically, and as noted from FIGS. 10 and 11, the upper portion 34 a and the lower portion 34 b of the terminal 34 are inserted into the cavity formed between the first and the second support walls 32 b, 32 c and the input orifice 32 a of the electronic control connector 30.
  • When inserting the at least a terminal 34 inside the at least an input orifice 32 a:
      • the fixing projection 34 e projects inwardly of the recess 32 d of the electronic control connector 30. The fixing projection 34 e being configured to lock the terminal 34 to the electronic control connector 30;
      • the side support projection 34 c remains disposed adjacent to the fixing leg 33, more specifically adjacently to an inner surface of the cavity formed between the first and the second support walls 32 b, 32 c and the input orifice 32 a of the electronic control connector 30; and
      • the terminal 34 is guided by the walls 32 b and 32 c for insertion into the connector 30.
  • After said insertion, the pressure created by the interference between the at least a fixing leg 33 and the wall of the at least an orifice 16 of the printed circuit board 10, that is, when pressing the connector 30 on the printed circuit board 10, deformation of the fixing leg 33 occurs. The electronic control connector 30 being encased in the at least a fixing orifice 16 on any of the faces 11, 12 of the printed circuit board 10.
  • After having been inserted into the fixing orifice 16, the pressure on the at least a fixing leg 33 should be interrupted, so that the fixing leg 33 elastically deforms to its initial position. This characteristic enables the electronic control connector 30 to be locked on the fixing orifice 16 of the printed circuit board 10.
  • It is noted that besides the electronic control connector 30 being mechanically fixed to the printed circuit board 10, an electrical connection is also established between the at least a terminal 34 of the electronic control connector 30 and the tracks of the printed circuit board 10 of the electronic control 50.
  • As well illustrated in FIG. 16, after having been fixed to the printed circuit board 10, some of the ends of the side support projection 34 c of the terminal 34 establish a contact with the printed circuit board 10. The side support projection 34 c prevents the terminal 34 from moving inside the electronic control connector 30, thus preventing excessive deformation of the electric contact region 34 d, when the electronic control connector 30 with the terminals 34 is connected to the connector of the hermetic compressor 210.
  • Similarly, the electric contact portion 34 d presents a degree of freedom of movement capable of preventing the angular movement of the electric contact portion 34 d, guaranteeing the electrical connection between the electric contact portion 34 d and the tracks of the printed circuit board 10 of the electronic control 50.
  • The side support projection 34 c acting as stopper, so that when connecting or removing the electronic control connector 30 of the connector of the hermetic compressor 210, the terminal 34 does not move, thus exercising an excessive force in the contact region 34 d. This excessive force may plastically deform the contact region 34 d meaning the electric contact between the portion 34 d and the tracks of the printed circuit board 10 is lost.
  • After the mechanical and electrical fixing of the electronic control connector 30 to the printed circuit board 10, the electrical connection between said connector and the hermetic compressor 200 may be carried out.
  • In a preferred embodiment, the connector of the hermetic compressor 210 comprises at least three pins and the electronic control connector 30 comprises three terminals 34. It must be emphasized that the number of terminals 34 of the electronic control 30 and the number of pins of the connector of the hermetic compressor 210 are proportional and vary according to the hermetic compressor 200 used (single-phase, two-phase, three-phase).
  • When electrically connecting the hermetic compressor 200, the pins of the connector of the hermetic compressor 210 are inserted inside the cavity formed between the first and the second support walls 32 b, 32 c and the input orifice 32 a of the electronic control connector 30, such that the terminal 34 of the electronic control connector 30 is electrically connected to the respective pin of the connector of the hermetic compressor 210.
  • It is noted from FIGS. 1 and 12 that at least a seating means 20 is fixed to the first face 11 and to the second face 12 of the printed circuit board 10. In a preferred embodiment, the at least a means 20 is disposed at the ends/vertices of the printed circuit board 10, symmetrically between both faces 11, 12. Symmetry occurs by means of the connection of the at least a seating means 20 between the faces 11, 12 by means of an orifice that surpasses the ends/vertices where it is disposed. This is merely a preferred embodiment, such that the at least a means 20 can be disposed on any region of the faces 11, 12 and can be maintained disconnected between them.
  • In a preferred embodiment, the at least a seating means 20 is made of elastically deformable materials, such as rubbers, polymers, springs or any other materials capable of elastically deforming by a mechanical effort (for example, compression).
  • It is also noted from FIGS. 1 and 12 that the printed circuit board 10 is provided with a ground connection point 15. Preferably, this is a metal contact in the shape of a hook, for subsequent electrical connection to a support surface 201 of the hermetic compressor 200, as described ahead. The ground connection point 15 being electrically connected to the board 10 and being configured to earth an electromagnetic interference circuit 130 disposed on the printed circuit board 10.
  • Obviously, the hook shape is merely a preferred embodiment, and any other type of connection can be used, provided that it is capable of establishing contact with the support surface 201.
  • Regarding the hermetic compressor 200, it can be noted from FIG. 13 that it is provided with a support surface 201 and of a connector of the hermetic compressor 210. In a preferred embodiment, the support surface 201 has a shape cooperative with the shape of the printed circuit board 10, since latter will be fixed thereon. The support surface 201 presents in its central region an orifice for the passage of the connector of the hermetic compressor 210.
  • Preferably, the connector of the hermetic compressor 210 is provided with at least three connections (male connectors), which are electrically connected to the female-type connections of the electronic control connector 30 of the printed circuit board 10. The number of connections depends on the type of electric motor used (single-phase, two-phase or three-phase). As described ahead, said electrical connection enables the electric motor of the hermetic compressor 200 to receive power signals of the electronic control 50.
  • Additionally, FIG. 13 shows that the support surface 201 of the hermetic compressor 200 is provided with a projection 202 and of at least an encasement 205.
  • The projection 202 of the support surface 201 being configured for subsequent electrical connection with the ground connection point 15 of the printed circuit board 10, as described in greater detail ahead. The at least an encasement 205 being configured for receiving the outer casing 150 of the connection and fixing means. The hermetic compressor 200, the projection 202, the support surface 201 and the at least an encasement 205 being made of metal materials and all being grounded, to prevent damages from any electrical discharges and/or short circuits.
  • As can be noted from FIG. 17, the outer casing 150 of the connection means and fixing is provided with an internal cavity 151 and with an opening 152, preferably lateral, for access to the external power terminals 40 of the printed circuit board 10, as subsequently described. The outer casing 150 can be made of any material, especially plastic materials.
  • It can be seen from FIGS. 13 to 15, the partial assembly of the connection and fixing means, object of the present invention, in the hermetic compressor 200, especially the electrical connection and fixing of the printed circuit board 10 with the electronic control 50 to the support surface 201 of the hermetic compressor 200.
  • The printed circuit board 10 with the electronic control 50 is initially placed parallel to the support surface 201 of the hermetic compressor 200 and being moved linearly until the electronic control connector 30 and the connector of the hermetic compressor 210 are aligned with each other.
  • It is noted that the printed circuit board 10 simultaneously:
      • establishes a contact with the hermetic compressor 200, by means of a contact between the at least a seating means 20 disposed on the second face 12 and the support surface 201 of the hermetic compressor 200;
      • establishes an electrical connection with the hermetic compressor 200, by means of an electrical connection between the electronic control connector 30 and the connector of the hermetic compressor 210; and
      • establishes an electrical connection between the ground connection point 15 of the printed circuit board 10 and a projection 202 of the support surface 201 of the hermetic compressor 200.
  • It can be noted that after having established the electrical connection and the mechanical contacts between the above elements, the printed circuit board 10 is connected and fixed, respectively, to the connector of the hermetic compressor 210 and to the support surface 201, in a substantially stable manner and without the need to use fixing means (such as screws). Moreover, it is noted that the electromagnetic interference filtering circuit 130 of the board 10 is grounded, since an electrical ground connection was established with the hermetic compressor 200.
  • FIG. 17 illustrates the complete assembly of the connection and fixing means, object of the present invention, with the hermetic compressor 200, especially the electrical connection and the fixing of the printed circuit board 10 with the electronic control 50 to the support surface 201 of the hermetic compressor, the encapsulation of the printed circuit board 10 with the electronic control 50 by the outer casing 150 and the fixing of the outer casing 150 to the support surface 201 of the hermetic compressor 200.
  • After said electrical connection and mechanical contacts previously described, the outer casing 150 receives and encapsulates, in its internal cavity 151, the printed circuit board 10 with the electronic control 50, with the at least a seating means 20 and with the electronic control connector 30.
  • After said encapsulation, the outer casing 150 establishes a contact with the at least a seating means 20 of the first face 11, the outer casing 150 being fixed to the support surface 201 of the hermetic compressor 200 by means of encasements 205 of the support surface 201. The external power terminals 40 of the printed circuit board 10 remain accessible from the side opening 152 of the outer casing 150. The side opening 152 being closed by a lid 153 and fixed by means of fixing elements 154 (such as screws).
  • As highlighted previously, the present invention brings various advantages over the state of the art, shorter time and fewer number of steps for assembly on the production lines, economy by eliminating cables, practicality in assembly, disassembly, maintenance, replacement of components, low production cost, among others.
  • Having described an example of a preferred embodiment, it should be understood that the scope of the present invention encompasses other possible variations, being limited solely by the content of the accompanying claims, potential equivalents included therein.

Claims (37)

1. An electronic control connector (30) comprising:
an input orifice (32 a);
a fixing leg (33); and
a terminal (34);
the terminal (34) being inserted inside the input orifice (32 a),
the electronic control connector (30) being fixed to a printed circuit board (10) of an electronic control (50), by means of a fixing between the fixing leg (33) and a fixing orifice (16) disposed on the printed circuit board (10) of the electronic control (50),
the fixing of the electronic control connector (30) on the printed circuit board (10) also establishing an electrical connection between the terminal (34) of the electronic control connector (30) and the tracks of the printed circuit board (10) of the electronic control (50).
2. The electronic control connector (30) according to claim 1, wherein the electronic control connector (30) is fixed on the printed circuit board (10) by means of mechanical encasement between the fixing leg (33) and the fixing orifice (16).
3. The electronic control connector (30) according to claim 1, wherein the electronic control connector (30) is fixed on the printed circuit board (10) by soldering the fixing leg (33) to the fixing orifice (16).
4. The electronic control connector (30) according to claim 1, wherein the fixing leg (33) comprises a projection positioned on an outer circumference of an upper surface of the electronic control (30), the fixing leg (33) comprising an outward-sticking tooth in the opposite direction to a vertical axis of an upper surface of the electronic control (30).
5. The electronic control connector (30) according to claim 4, wherein the fixing leg (33) is L-shaped.
6. The electronic control connector (30) according to claim 5, wherein the fixing leg (33) elastically deforms towards the input orifice (32 a) by applying pressure, enabling the fixing of the electronic control connector (30) to the fixing orifice (16) of the printed circuit board (10).
7. The electronic control connector (30) according to claim 6, wherein the fixing leg (33) elastically returns toward its initial position by interrupting the application of pressure, enabling the electronic control connector (30) to be locked in the fixing orifice (16) of the printed circuit board (10).
8. The electronic control connector (30) according to claim 1, further comprising a first support wall (32 b) and a second support wall (32 c) adjacent the input orifice (32 a).
9. The electronic control connector (30) according to claim 8, wherein the first and the second support walls (32 b, 32 c) are opposite to each other in relation to the input orifice (32 a).
10. The electronic control connector (30) according to claim 9, wherein the first and the second support walls (32 b, 32 c) and the input orifice (32 a) form a cavity.
11. The electronic control connector (30) according to claim 10, wherein the first support wall (32 b) comprises a recess (32 d).
12. The electronic control connector (30) according to claim 11, wherein the fixing leg (33) is disposed perpendicularly to the first support wall (32 b) and to the second support wall (32 c).
13. The electronic control connector (30) according to claim 12, wherein the terminal (34) comprises an upper portion (34 a), a lower portion (34 b), a side support projection (34 c), an electric contact portion (34 d) and a fixing projection (34 e).
14. The electronic control connector (30) according to claim 13, wherein the upper portion (34 a) comprises a central orifice having a shape cooperative with the shape of the input orifice (32 a) of the electronic control connector (30).
15. The electronic control connector (30) according to claim 14, wherein the central orifice extends from the upper portion (34 a) to the lower portion (34 b) of the terminal (34).
16. The electronic control connector (30) according to claim 13, wherein the side support projection (34 c) extends linearly from the upper portion (34 a) to beyond the lower portion (34 b) along one of the sides of the terminal (34).
17. The electronic control connector (30) according to claim 13, wherein electric contact portion (34 d) projects outwardly from the end and in an opposite direction to a vertical axis of the lower portion (34 b).
18. The electronic control connector (30) according to claim 17, wherein the electric contact portion (34 d) comprises a curvilinear shape.
19. The electronic control connector (30) according to claim 17, wherein the electric contact portion (34 d) is V-shaped.
20. The electronic control connector (30) according to claim 19, wherein the electric contact portion (34 d) comprises a first straight portion (35) which projects from the end and in an opposite direction to the lower portion (34 b), a curvilinear portion (36) which begins from the end of the first straight portion (35) and a second straight portion (37) which begins from the end of the curvilinear portion (36).
21. The electronic control connector (30) according to claim 13, wherein the fixing projection (34 e) is disposed between the upper portion (34 a) and the lower portion (34 b) of the terminal (34).
22. The electronic control connector (30) according to claim 21, wherein the fixing projection (34 e) projects outwardly and in an opposite direction to a vertical axis of the central orifice of the terminal (34) from a point near the upper portion (34 a) to a point near the lower portion (34 b).
23. The electronic control connector (30) according to claim 13, wherein the upper portion (34 a) and the lower portion (34 b) of the terminal (34) are inserted into the cavity formed between the first and the second support walls (32 b, 32 c) and the input orifice (32 a) of the electronic control connector (30).
24. The electronic control connector (30) according to claim 22, wherein the fixing projection (34 e) projects inwardly of the recess (32 d) of the electronic control connector (30).
25. The electronic control connector (30) according to claim 24, wherein the fixing projection (34 e) is configured to lock the terminal (34) to the electronic control connector (30).
26. The electronic control connector (30) according to claim 13, wherein the side support projection (34 c) is disposed adjacent to the fixing leg (33).
27. The electronic control connector (30) according to claim 26, wherein a first end of the side support projection (34 c) is disposed adjacently to an inner surface of the cavity formed between the first and the second support walls (32 b, 32 c) and the input orifice (32 a) of the electronic control connector (30) and a second end of the side support projection (34 c) is disposed adjacently to the printed circuit board (10).
28. The electronic control connector (30) according to claim 13, wherein the side support projection (34 c) is supported on the printed circuit board (10) and is configured to prevent the electric contact region (34 d) from elastically deforming.
29. The electronic control connector (30) according to claim 13, wherein the electric contact portion (34 d) has a degree of freedom of movement capable of enabling the angular movement of the electric contact portion (34 d).
30. The electronic control connector (30) according to claim 1, wherein the electronic control connector (30) is electrically connected to a connector of a hermetic compressor (210).
31. The electronic control connector (30) according to claim 30, wherein at least a pin of the connector of the hermetic compressor (210) is inserted into the cavity formed between the first and the second support walls (32 b, 32 c) and the input orifice (32 a) of the electronic control connector (30), such that the terminal (34) of the electronic control connector (30) is electrically connected to the respective pin of the connector of the hermetic compressor (210).
32. The electronic control connector (30) according to claim 31, wherein the number of terminals (34) of the electronic control (30) and the number of pins of the connector of the hermetic compressor (210) are proportional and vary in accordance with the hermetic compressor (200) used.
33. The electronic control connector (30) according to claim 32, comprising three terminals (34) and the connector hermetic compressor (210) comprises at least three pins.
34. The electronic control connector (30) according to claim 31, wherein the side support projection (34 c) is configured to be supported on the printed circuit board (10) of the electronic control (50), preventing deformation of the terminal (34) when being electrically connected to the pin of the connector hermetic compressor (210).
35. The electronic control connector (30) according to claim 34, configured to enable the angular movement of the electric contact portion (34 d), guaranteeing the electrical connection between the electric contact portion (34 d) and the tracks of the printed circuit board (10) of the electronic control (50).
36. An electronic control (50) for driving a variable capacity hermetic compressor (200) comprising a printed circuit board (10) and an electronic control connector (30),
the printed circuit board (10) comprising tracks and a fixing orifice (16),
the electronic control connector (30) comprising an input orifice (32 a), a fixing leg (33) and a terminal (34),
the terminal (34) being inserted inside the input orifice (32 a), the fixing leg (33) being fixed to the fixing orifice (16), thereby establishing the fixing of the electronic control connector (30) to the printed circuit board (10) and the electrical connection between the terminal (34) of the electronic control connector (30) and the tracks of the printed circuit board (10) of the electronic control (50).
37. A variable capacity hermetic compressor (200) driven electrically by an electronic control (50) comprising a connector of the hermetic compressor (210) provided with at least three pins, wherein the at least three pins of the connector of the hermetic compressor (210) are electrically connected to at least three terminals of an electronic control connector (30), the electronic control connector (30) being fixed to the electronic control (50) and the terminals (34) being electrically connected to tracks of the electronic control (50).
US15/392,344 2016-01-15 2016-12-28 Electronic control connector, electronic control for driving a hermetic compressor and hermetic compressor Active US10199757B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201620154651.0 2016-01-15
CN201620154651U 2016-01-15
CN201620154651 2016-01-15
BRBR102016013673-3 2016-06-14
BR102016013673-3A BR102016013673B1 (en) 2016-01-15 2016-06-14 ELECTRONIC CONTROL CONNECTOR OF A HERMETIC COMPRESSOR
BR102016013673 2016-06-14

Publications (2)

Publication Number Publication Date
US20170207560A1 true US20170207560A1 (en) 2017-07-20
US10199757B2 US10199757B2 (en) 2019-02-05

Family

ID=58016515

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/392,344 Active US10199757B2 (en) 2016-01-15 2016-12-28 Electronic control connector, electronic control for driving a hermetic compressor and hermetic compressor

Country Status (4)

Country Link
US (1) US10199757B2 (en)
EP (1) EP3206262B1 (en)
JP (1) JP2017127185A (en)
CN (1) CN107046202B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101930245B1 (en) 2017-11-27 2018-12-18 효성전기주식회사 Water Proof Gasket of Outer Rotor Type BLDC Motor
DE102019131791B8 (en) * 2019-11-25 2022-12-15 Hanon Systems Arrangements for connecting electrical connections for a device for driving a compressor and methods for assembling the arrangements and device for driving a compressor and use of the device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899754A (en) * 1998-02-13 1999-05-04 The Whitaker Corporation Coaxial connector
US7690951B2 (en) * 2008-07-08 2010-04-06 Tyco Electronics Corporation Ballast mounted connector receptacle
US20160156138A1 (en) * 2013-08-23 2016-06-02 Fujitsu Component Limited Connector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142167U (en) * 1988-03-25 1989-09-28
JPH02133168U (en) * 1989-04-03 1990-11-05
JPH0982431A (en) * 1995-09-19 1997-03-28 Whitaker Corp:The Electric connector and its preparation
US5772453A (en) * 1996-10-01 1998-06-30 Hon Hai Precision Ind. Co., Ltd. Side-by-side dual port USB connector
JP2001263229A (en) * 2000-03-21 2001-09-26 Toyota Autom Loom Works Ltd Motor-driven compressor
JP3994731B2 (en) * 2001-12-18 2007-10-24 株式会社デンソー Electric compressor
CN201266708Y (en) * 2008-04-30 2009-07-01 富士康(昆山)电脑接插件有限公司 Electric connector terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899754A (en) * 1998-02-13 1999-05-04 The Whitaker Corporation Coaxial connector
US7690951B2 (en) * 2008-07-08 2010-04-06 Tyco Electronics Corporation Ballast mounted connector receptacle
US20160156138A1 (en) * 2013-08-23 2016-06-02 Fujitsu Component Limited Connector

Also Published As

Publication number Publication date
JP2017127185A (en) 2017-07-20
EP3206262A2 (en) 2017-08-16
CN107046202B (en) 2020-12-04
EP3206262A3 (en) 2017-10-11
US10199757B2 (en) 2019-02-05
EP3206262B1 (en) 2019-10-23
CN107046202A (en) 2017-08-15

Similar Documents

Publication Publication Date Title
KR102017677B1 (en) Connector
EP2224541A1 (en) Electrical connector
US8500475B2 (en) Harness connector
US10700471B2 (en) System, method and means for connecting and fixing an electronic control to an airtight compressor and an airtight compressor
US10199757B2 (en) Electronic control connector, electronic control for driving a hermetic compressor and hermetic compressor
KR20180030400A (en) Flexible connector system for connecting a high current motor to a pcb of an integrated electronics system of a vehicle
CN114270637A (en) Sealing device for a plug-in connection for producing an electrical connection and device for driving a compressor having such a sealing device
CN102326298B (en) Electrical connecting terminal for feeding a line through a wall
ES2765806T3 (en) Electronic control connector, electronic control to drive a hermetic compressor
EP0029328A1 (en) Electric motor construction
US11201424B2 (en) Printed-circuit board connector for high-current transmission
US20220311164A1 (en) Arrangement for connecting electrical connections for a device used to drive a compressor, and device used to drive a compressor
EP3682459B1 (en) Switching device whose stationary contact is provided with test terminal
KR200475473Y1 (en) Connector deveic for brushless motor
US20190386434A1 (en) Mounting Frame Comprising a PE Contact
CN108736739A (en) Power semiconductor arrangement with the stacking connecting plate for improving geometry
US10468791B1 (en) Terminal block
US11121488B2 (en) Connector assembly
US11651921B2 (en) Electrical connector with non-linear spring force
CN210806101U (en) Horizontal Mini USB connector
US7972147B2 (en) Connector apparatus
KR20230072815A (en) Connector assembly for electronic components
CN105048225A (en) Coaxial connector
BR102016013673B1 (en) ELECTRONIC CONTROL CONNECTOR OF A HERMETIC COMPRESSOR
CN102428610B (en) Electrical plug-and-socket device

Legal Events

Date Code Title Description
AS Assignment

Owner name: WHIRLPOOL S.A., BRAZIL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RECH, RAFAEL BURG;ZANELATO, MARCELO;REEL/FRAME:041763/0288

Effective date: 20170316

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: EMBRACO - INDUSTRIA DE COMPRESSORES E SOLUCOES EM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WHIRLPOOL S.A.;REEL/FRAME:048453/0336

Effective date: 20190218

Owner name: EMBRACO - INDUSTRIA DE COMPRESSORES E SOLUCOES EM REFRIGERACAO LTDA., BRAZIL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WHIRLPOOL S.A.;REEL/FRAME:048453/0336

Effective date: 20190218

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4