US2018285A - Method of well development - Google Patents

Method of well development Download PDF

Info

Publication number
US2018285A
US2018285A US755046A US75504634A US2018285A US 2018285 A US2018285 A US 2018285A US 755046 A US755046 A US 755046A US 75504634 A US75504634 A US 75504634A US 2018285 A US2018285 A US 2018285A
Authority
US
United States
Prior art keywords
well
sand
wall
mud
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US755046A
Inventor
Schweitzer Reuben Richard
Sundquist Chester Royal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US755046A priority Critical patent/US2018285A/en
Application granted granted Critical
Publication of US2018285A publication Critical patent/US2018285A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/04Gravelling of wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/26Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers
    • E21B10/32Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • E21B37/08Methods or apparatus for cleaning boreholes or wells cleaning in situ of down-hole filters, screens, e.g. casing perforations, or gravel packs

Definitions

  • This invention relates to a method in develop ing a well, and more particularly a water well of the gravel type.
  • the boring tool in initially forming the well bore, operates in so- -called slush or water with a relatively high percentage of mud in suspension, and, during the boring operation, the muddy water or slush is plastered against the wall of the well bore by the action of the boring tool and serves as an effective medium for preventing collapse of the sand stratas of the well through which the water finds its way into the well.
  • This mud wall must obviously be removed and it has been heretofore proposed, particularly in applications filed byus, Serial Nos. 726,818 and 701,712, to remove the mud wall by hydraulic action, the present application being in eiect a continuation in part of said applications and particularly application Serial No. 726,818.
  • the sand area or areas must be cut away to materially increase the diameter of the well bore in such area or areas for the purposes mentioned.
  • This cutting away or under-reaming of the well has been previously accomplished by mechanical under-reamers which dig out the sand to the diameter desired and in the use of such mechanical under-reamers, they have been operated in the presence of the slush or muddy water with a View to causing the under-reamers to plaster over the wall formed vby the under-reaming action a layer of mud which will serve as the binding medium and,v in combination with the hydraulic pressure or hydraulic head, prevent collapse of the sand following completion of the under-teaming action.
  • the hydraulic head is the dierence between .the static head, that is the determined level of the water in the well incident to the iiow through the sands into the well, and the level of the slush or wash mud head plus the differential in speciic gravity between the slush and the clear water flowing through the sands into the well. That is to say, if the water were permitted to flow through the sands into the well, it would reach a certain level in the well which may be termed a static head.
  • the gravel is introduced eitherl before or after the insertion of the well tube and as the gravel aords a more or less eifective medium against the collapse of the sand, the pumping ac- 10 tion of the well is intended to break down and remove this mud wall under the out-owing water in clearing the well.
  • this mud wall will tend to fill up the interstices between 7the gravel 1B and tnus interfere with the maximum flow of water and further tend, for a very considerable period, to be present in the water ⁇ drawn from the well.
  • the diameter of the well throughout the sand area may be increased to any desired extent within reasonable limits by the use of flexible arms through which water is directed under 25 pressure, which flexible arms tend to assume a denite relation and are permitted to assume this relation as the sand is washed away.
  • the hydraulic action dislodges a very considerable portion of the sand and provision is made in the ap- 30 plication referred to for removing this sand from the well.
  • this'hydraulic under-roaming is not only effective in permitting a materially increased 50 if it can be so called, of this under-reaming development of the well is primarily incident to the fact that it has been presumed that, as stated in the application referred to, the gravel must be placed during the under-reaming action to take the place of the excavated sand and prevent further collapse of the sand when the under-reaming action ceases.
  • the present method is-more particularly concerned with the under-reaming stem and is directed to providing against the collapse of the sand in the under-reamed area wholly regardless of the introduction of the gravel. This permits the removal of the under-reaming tool from the well and the introduction of gravel .bodily into the well to iill out the under-reamed area and provide the necessary protection against collapse of the sand and the filtering vaction during the pumping operation on the well.
  • the slush or muddy water is used in the hydraulic under-reaming operation.
  • the jets from theunderreaming iiexible area are effective for dislodging the sand
  • the mud in suspension in the water, which by the jets is directed against the sand surface is continuously washed away and floated to the surface of the well.
  • the hydraulic under-reaming action has reached its limit of effectiveness, namely a point at which the force of the jets will no longer dislodge the sand, there is an accumulation of slush or muddy water over the sand wall resulting from the excavation.
  • This slush or muddy Water is not under any effective pressure from the jets because their effective limit has been reached, and, therefore, the mud or slush in the water used in the hydraulic action is not plastered or forced by the jets against the sand wall.
  • the effective pressure acting against the sand wall will cause the mud particles in the hydraulic fluid to be applied to that sand wall in just suilicient quantity to act as a binder and, with the addition of the pressure referred to, prevent collapse of the sand.
  • the hydraulic tool may then be removed and the sand wall will, by the binding action of the mud or slush plus the favoring pressure, be held substantially in the condition resulting from the hydraulic action.
  • 'I'he gravel may then be introduced into an otherwise clear well or the well tube may be introduced with the conventional screens and the' gravel later introduced to surround the well tube.
  • the well tube must be bailed down through the gravel, which is a well understood operation.
  • the length of the exible jets of the underreaming tool determines the extent of underreaming, it is, of course, possible to under-raam to any desired extent, within reasonable limits, by regulating the length of the jet tubes, and as the sand wall, after the under-reaming action is completed, will be held in the manner described 5 against collapse, the under-reaming tool may be removed and well later supplied with gravel. This is essentially a very much easier, less expensive and more readily effected operation than.
  • a separating tube may be introduced into the well and the gravels of different characters applied on the outside and inside of the tube, with the well tube and screen either within the gravel separat- 45 ing tube before the application of the gravel or bailed down through the gravel in the gravel straining tube, all of which are conventional in well practice and need no specific description herein.
  • the salient feature of the present method is the utilization of the slush or muddy water ordinarily employed in the well either with its maximum mud or slush content as ordinarily employed in boring or with a lesser predetermined mud or slush content as may be found advisable as the hydraulic medium and the utilization of such mud or slush particles to be forced against the sand wall after the completion of the hydraulic action by the favoring pressures previously re- 30 ferred to, with the effect to provide sufficient of the mud particles to act merely as a binder between the grains of sand in the mud wall, which binder plus the pressure referred to will prevent collapse of the sand wall.
  • Figure 1 is a sectional view of a well with the hydraulic under-reamer in position of -initial use. u;
  • Figure 2 is a broken section, showing the position of the under-reamer at the end of the hydraulic under-reaming action.
  • Figure 3 is a view similar to Figures 1 and 2, with the hydraulic under-reamer withdrawn and the black dots indicating the accumulation of mud or slush against the sand wall for the binding action.
  • Figure 4 is a view illustrating the hydraulic under-reaming and the application of gravel to serve as a filtering media and prevent the collapse of the sand wall.
  • the well bore l is, as the result of the boring action, covered by a mud wall, indicated at 2.
  • the under-reamer comprises a head 3 of any desired or conventional design and flexible jet tubes 4 through which the water delivered into the head from the top of the well is jetted from the ends of the tubes.
  • the tubes are flexible, rst to permit the convenient introduction of the head and tubes into the well, but more particularly to secure an automatic underreaming action as the operation progresses.
  • the tubes are of a character that, while resilient, have nevertheless an inherent tendency to straighten out, so that under this inherent tendency due to the pressure of the water flowing through them, there is a considerable and appreciable force tending to straighten the tubes.
  • the tubes will tend to straighten and thus direct the jetted stream more and more directly against the sand wall. This dislodges the sand wall and provides the under-reaming effect.
  • the under-reaming effect that is the relative diameter of the under-reamed portion with that of the well bore
  • the under-reaming effect can readily be determined within reasonable limits by the length of the tubes and by the force of the Water delivered through them, for the longer the tubes and the greater the pressure of the hydraulic medium, the greater the effect of the jets against the sand wall and naturally the greater the quantity of sand dislodged by the jets.
  • the effective sand dislodging action of the fluid forced through the tubes will cease and the under-reaming limit has thus been reached.
  • the sand dislodged .during the hydraulic action is, as far as possible, taken from the well, either by theotation method or by a suction method disclosed in our applications referred to, or in any other desired manner.
  • the sand wall with the binder particles ofmud ⁇ or slush indicated by black dots in Figure 3, supplemented by the diierence in pressure referred to, is held against collapse, the subsequent necessary operations in completing the well maybe carried out at a later period and with greater convenience.
  • the initial pumping action creating now a pressure in opposition 20 to the pressure utilized to hold the sand Wall against collapse, will draw the water through the sand wall and into the well.
  • This water naturally displaces the binding particles, either carrying them bodily through the gravel or dis- 25 lodging them, so that these particles of what may be termed binder material are carried through the gravel, through the screen and out through the well, leaving the clear sand and gravel throughout the under-reamed area.
  • a plastered mud wall may be broken down in spots and may eventually, after a long period of time, be substantially dislodged under the pumping operation, but during all this time the water delivered from the well suffers from the mud content due to the gradually dislodging of the' mud wall, and, furthermore, incident to the character and volume of this mud wall, the interstices of the gravel during the pumping action are so restricted n orfllled that the otherwise possible output volume of the well is very materially reduced.
  • the present method contemplates such a step, that the Water used in the hydraulic action is substantially clear or at best of very slight mud or slush content, because the object is to obtain the minimum amount of binder mud or slush which will, with the favoring pressure referred to, prevent collapse of the sand wall, and in some areas and under some conditions a very slight accumulation of mud or slush in the hydraulic medium will be found eective.
  • the gravel may be introduced into the Well simultaneously with the hydraulic action or immediately succeeding such action in order to serve as a filtering media for the water during the opermay be surrounded by a pipe 8 which has a diameter exceeding that of the pipe 1 and provides between it and the pipe 1 a passage 9 opening at the lower end at a point above the hydraulic head and connected at the upper end to a source of suction, indicated at I0, through which passage materials dislodged by the jets in the underi reaming action may be forcibly withdrawn. 'This insures that even dislodged particles, which would ordinarily not be subjected to delivery to the top of the well by the flotation method, can be satisfactorily withdrawn.
  • the muddy consistency of the water used that is the proportion of sediment in such water, will necessarily vary in accordance with such conditions.
  • tlie muddy water may be light in sediment and, under other circumstances, the sediment character of the water may vary up to a maximum sediment condition.
  • the character of v the :muddy water can 4be varied in accordance with such conditions.
  • the term muddy water used herein and in the claims is intended ⁇ to indicate a water having that proportion Vof sediment which will -5 carry out the functionsvot this application with due regard to the conditions of the water-bearing area.
  • a method of developing a water well consisting in subjecting the unconsolidated water-bearing area to reaming by hydraulic action, with the 25 use of muddy Water as the hydraulic medium, the effective pressure of the hydraulic medium in the well against the reamed wall being utilized to bind the particles of such wall together and substantially seal the interstices between the particles 3,0 of such wall by the mud particles vin the hydraulic medium to cause the effective hydrostatic head in the well to maintain such Wall against collapse following 'cessation of the hydraulic action.
  • a method of well development consisting in boring a well, hydraulically reaming the unconsolidated water-bearing area through the use of muddy water, the hydraulic pressure during rea-ming being utilized to direct against the wall sufficient particles from the muddy water of the hydraulic medium to act as a binder for the particles and a seal between the particles in the surface of the reamed wall, an effective overbalancing pressure in the well in opposition to the static'head of water flowing from the sand area into the well being maintained to cause a suilicient pressure against the reamed wall to hold said Wall against collapse following cessation of the hydraulic action 65 REUBEN RICHARD SCHWEITZER. CHESTER ROYAL SUNDQUIST. [1.. 5.]

Description

Oct. 22, 1935. R. R. scHwElTzER Er AL METHOD OF WELL DEVELOPMENT Filed Nov. 2?, 1934 Patented Oct. 22, V1935 PATENT OFFICE METHOD OE WELL DEVELOPMENT vlteuben Richard Schweitzer and Chester Royal Sundquist, Norfolk, Va.
Application November 27, 1934, Serial No. 755,046 4 claims. .(cl. 16s- 21) This invention relates to a method in develop ing a well, and more particularly a water well of the gravel type.
In developing wells of this type, the boring tool, in initially forming the well bore, operates in so- -called slush or water with a relatively high percentage of mud in suspension, and, during the boring operation, the muddy water or slush is plastered against the wall of the well bore by the action of the boring tool and serves as an effective medium for preventing collapse of the sand stratas of the well through which the water finds its way into the well. This mud wall must obviously be removed and it has been heretofore proposed, particularly in applications filed byus, Serial Nos. 726,818 and 701,712, to remove the mud wall by hydraulic action, the present application being in eiect a continuation in part of said applications and particularly application Serial No. 726,818.
Furthermore, in wells of this type, in order to increase the volume flow of water through the sand strata to the well bore, the sand area or areas must be cut away to materially increase the diameter of the well bore in such area or areas for the purposes mentioned. This cutting away or under-reaming of the well has been previously accomplished by mechanical under-reamers which dig out the sand to the diameter desired and in the use of such mechanical under-reamers, they have been operated in the presence of the slush or muddy water with a View to causing the under-reamers to plaster over the wall formed vby the under-reaming action a layer of mud which will serve as the binding medium and,v in combination with the hydraulic pressure or hydraulic head, prevent collapse of the sand following completion of the under-teaming action.
The hydraulic head, of course, is the dierence between .the static head, that is the determined level of the water in the well incident to the iiow through the sands into the well, and the level of the slush or wash mud head plus the differential in speciic gravity between the slush and the clear water flowing through the sands into the well. That is to say, if the water were permitted to flow through the sands into the well, it would reach a certain level in the well which may be termed a static head. This is, of course, below the top of the well and as the slush or wash mud head extends at least to the top of the well, there is a difference inpressure acting against the mud layer on the sand wall due to this difference in level and this difference in level pressure is augmented by the diifex'ence in speciiic gravity between the clear water through the sand and the wash mud or slush. In any event, this mud wall is plastered onto the sand and is held in place both by its own character and by the pressure against it to prevent the collapse of the sand. 5
Following the mechanical under-reaming of this type, the gravel is introduced eitherl before or after the insertion of the well tube and as the gravel aords a more or less eifective medium against the collapse of the sand, the pumping ac- 10 tion of the well is intended to break down and remove this mud wall under the out-owing water in clearing the well. As a matter of fact, however, it has been found that this mud wall will tend to fill up the interstices between 7the gravel 1B and tnus interfere with the maximum flow of water and further tend, for a very considerable period, to be present in the water` drawn from the well.
In our application, Serial No. 726,818, provision 20 is made for hydraulically under-reaming the well,
wherein the diameter of the well throughout the sand area may be increased to any desired extent within reasonable limits by the use of flexible arms through which water is directed under 25 pressure, which flexible arms tend to assume a denite relation and are permitted to assume this relation as the sand is washed away. The hydraulic action dislodges a very considerable portion of the sand and provision is made in the ap- 30 plication referred to for removing this sand from the well.
Inthis application, and generally in wells of this type as heretofore developed, it has been considered necessary to supply gravel to the well 35 immediately at the completion of the underreaming action and, in effect, before the underreaming action is completed, so that when the limit of vunder-reaming action incident to hydraulic ow is reached, the gravel will immedi- 40 ately take the place of the displaced sand and prevent further collapse of the sand. In this type of well there is practically an uninterrupted iiow of water through thesand area under pumping action, at least the iiow is not impeded by a mud 45 wall to be removed nor is the filtering action of the gravel interfered with by the presence of mud particles in the interstices between the gravel.
Therefore, this'hydraulic under-roaming is not only effective in permitting a materially increased 50 if it can be so called, of this under-reaming development of the well is primarily incident to the fact that it has been presumed that, as stated in the application referred to, the gravel must be placed during the under-reaming action to take the place of the excavated sand and prevent further collapse of the sand when the under-reaming action ceases.
The present method is-more particularly concerned with the under-reaming stem and is directed to providing against the collapse of the sand in the under-reamed area wholly regardless of the introduction of the gravel. This permits the removal of the under-reaming tool from the well and the introduction of gravel .bodily into the well to iill out the under-reamed area and provide the necessary protection against collapse of the sand and the filtering vaction during the pumping operation on the well.
In carrying out the method, the slush or muddy water is used in the hydraulic under-reaming operation. Of course, while the jets from theunderreaming iiexible area are effective for dislodging the sand, the mud in suspension in the water, which by the jets is directed against the sand surface, is continuously washed away and floated to the surface of the well. When the hydraulic under-reaming action has reached its limit of effectiveness, namely a point at which the force of the jets will no longer dislodge the sand, there is an accumulation of slush or muddy water over the sand wall resulting from the excavation. This slush or muddy Water is not under any effective pressure from the jets because their effective limit has been reached, and, therefore, the mud or slush in the water used in the hydraulic action is not plastered or forced by the jets against the sand wall.
However, incident to the difference in pressures above referred to, it has been found that a very light layer of the mud or slush in the water will, by reason of these pressures, be caused to adhere to the sand wall. That is to say, the pressure will serve to direct mud or slush particles from the muddy water against the sand wall and while this accumulation is very slight as compared with the usual mud wall, it is nevertheless sufficient to act as a binder between the particles of 'sand or small gravel or the like which form this sand wall, and as the result of this binder, coupled with the pressure above referred to which acts against the collapse of the sand wall, it has been proven that the sand wall will be held against collapse. In other words, after the limit of the hydraulic action has been reached, the effective pressure acting against the sand wall will cause the mud particles in the hydraulic fluid to be applied to that sand wall in just suilicient quantity to act as a binder and, with the addition of the pressure referred to, prevent collapse of the sand.
The hydraulic tool may then be removed and the sand wall will, by the binding action of the mud or slush plus the favoring pressure, be held substantially in the condition resulting from the hydraulic action. 'I'he gravel may then be introduced into an otherwise clear well or the well tube may be introduced with the conventional screens and the' gravel later introduced to surround the well tube. Of course, if the gravel is first introduced, the well tube must be bailed down through the gravel, which is a well understood operation.
As the length of the exible jets of the underreaming tool determines the extent of underreaming, it is, of course, possible to under-raam to any desired extent, within reasonable limits, by regulating the length of the jet tubes, and as the sand wall, after the under-reaming action is completed, will be held in the manner described 5 against collapse, the under-reaming tool may be removed and well later supplied with gravel. This is essentially a very much easier, less expensive and more readily effected operation than. in the methods previously described.` 10 After the well has been completed under the method described, a pumping action will serve initially to separate the binding particles of mud or slush with the incoming water, and will, by reason of the comparatively slight quantity of 15 such mud or slush particles, readily carry such particles, mostly in solution, through the gravel and into the well screen veryearly in the clearing operation of the well. Thus, following the pumping operation to initially clear the well, 20 substantially all of the mud particles which have been used as a binder against the sand wall have been removed, and even if any of these particles should tend to lodge in the interstices between the gravel, they are in such relatively small quan- 25 tity as to have very little effect, if any, upon the maximum water flow. Thus, under the present method, the sand wal is held against collapse during the removal of the hydraulic under-reamer and for as long a 30.
period thereafter as may be desired, because the binding action of the slush or mud particles on the sand wall, plus the pressure against the sand wall incident to the difference between the static head and wash mud head, plus the differential -in 35 specific gravities, will maintain the sand wall against collapse, permitting the introduction of the gravel and the well screen at a later period in a Well free of any obstruction and with a substantial and decidedly economical advantage. 40
Of course, if the well is of the two-gravel type,
a separating tube may be introduced into the well and the gravels of different characters applied on the outside and inside of the tube, with the well tube and screen either within the gravel separat- 45 ing tube before the application of the gravel or bailed down through the gravel in the gravel straining tube, all of which are conventional in well practice and need no specific description herein. l
The salient feature of the present method is the utilization of the slush or muddy water ordinarily employed in the well either with its maximum mud or slush content as ordinarily employed in boring or with a lesser predetermined mud or slush content as may be found advisable as the hydraulic medium and the utilization of such mud or slush particles to be forced against the sand wall after the completion of the hydraulic action by the favoring pressures previously re- 30 ferred to, with the effect to provide sufficient of the mud particles to act merely as a binder between the grains of sand in the mud wall, which binder plus the pressure referred to will prevent collapse of the sand wall. The subsequent intro- 35 duction of the gravel, the manner of that introduction, and the completion of the well, either by a two-type gravel or by the introduction of the well tube and screen, are notparticularly important in connection with the presentmethod. In order to more particularly disclose the method, reference is had to the accompanying drawing, in which:
Figure 1 is a sectional view of a well with the hydraulic under-reamer in position of -initial use. u;
Figure 2 is a broken section, showing the position of the under-reamer at the end of the hydraulic under-reaming action.
Figure 3 is a view similar to Figures 1 and 2, with the hydraulic under-reamer withdrawn and the black dots indicating the accumulation of mud or slush against the sand wall for the binding action. n
Figure 4 is a view illustrating the hydraulic under-reaming and the application of gravel to serve as a filtering media and prevent the collapse of the sand wall.
In the drawing, the well bore l is, as the result of the boring action, covered by a mud wall, indicated at 2. The under-reamer comprises a head 3 of any desired or conventional design and flexible jet tubes 4 through which the water delivered into the head from the top of the well is jetted from the ends of the tubes. The tubes are flexible, rst to permit the convenient introduction of the head and tubes into the well, but more particularly to secure an automatic underreaming action as the operation progresses.
The tubes are of a character that, while resilient, have nevertheless an inherent tendency to straighten out, so that under this inherent tendency due to the pressure of the water flowing through them, there is a considerable and appreciable force tending to straighten the tubes. As the water jetted from the tubes dislodges the sand area and thereby removes obstructions from the ends of the tubes which have held the tubes in bent relation, the tubes will tend to straighten and thus direct the jetted stream more and more directly against the sand wall. This dislodges the sand wall and provides the under-reaming effect.
Of course, the under-reaming effect, that is the relative diameter of the under-reamed portion with that of the well bore, can readily be determined Within reasonable limits by the length of the tubes and by the force of the Water delivered through them, for the longer the tubes and the greater the pressure of the hydraulic medium, the greater the effect of the jets against the sand wall and naturally the greater the quantity of sand dislodged by the jets. Eventually, however, the effective sand dislodging action of the fluid forced through the tubes will cease and the under-reaming limit has thus been reached.
With the use of the slush or muddy water as the hydraulic medium, there will be a body-of this medium overlying the sand wall of the underreamed area after the effective hydraulic action of the jets has ceased. Incident to the difference in pressures hereinbefore referred to, this volume of muddy water is held against the sand wall and, as the result of this pressure, particles of mud, slush and the like in the water will be moyed into contact with the sand wall, with the result that particles of such mud and slush will serve as a binder against the grains of sand and the like of the sand wall, which binder, together with the favoring pressure referred to, will prevent collapse of the sand wall. n
Of course, the sand dislodged .during the hydraulic action is, as far as possible, taken from the well, either by theotation method or by a suction method disclosed in our applications referred to, or in any other desired manner. As the sand wall with the binder particles ofmud `or slush, indicated by black dots in Figure 3, supplemented by the diierence in pressure referred to, is held against collapse, the subsequent necessary operations in completing the well maybe carried out at a later period and with greater convenience.
Heretofore it has been found desir-able, if not absolutely necessary, to introduce the filtering gravel into the well during the under-reaming 5 action to utilize the gravel as the medium for preventing collapse of the sand wall. In the present method, however, the collapse of the sand Wall prevented as described is wholly independent of any gravel accumulation and the under-ream- 10 ing tool may be rapidly removed from the well and after the well is cleared, the gravel may be introduced by any one of several accepted methods and the well otherwise completed in the usual manner. This gravel, of course, will naturally 15 flll the under-reamed portion of the well and will thereafter serve as the medium for preventing collapse of the sand wall.
After completion of the well, the initial pumping action, creating now a pressure in opposition 20 to the pressure utilized to hold the sand Wall against collapse, will draw the water through the sand wall and into the well. This water naturally displaces the binding particles, either carrying them bodily through the gravel or dis- 25 lodging them, so that these particles of what may be termed binder material are carried through the gravel, through the screen and out through the well, leaving the clear sand and gravel throughout the under-reamed area. 30
It is to be emphasized that in no instance is the binder action of the mud or slush particles in the hydraulic medium obtained as a result of the hydraulic action. There is no mud, slush or the like plastered against the sand wall by the hy- 35 draulic jets. These jets will wash away and absolutely prevent the plastering of any mud or slush against the sand wall and, of course, when the limitI of the hydraulic action of the jets is reached, they can have no plastering effect upon 40 the mud or slush in the water.
Therefore, it is only incident to the favoring pressure referred to that the binder particles of the slush or mud are brought into contact with and lodged against the sand wall. These particles 45 do not become a layer, they are not forced into the sand wall as would be a plastered layer, but they are merely a surface accumulation in scattered volume or even an extremely thin layerheld against the sand wall by the means referred to. 50 This is essentially important because it must be easy for the water flowing through the sand and 'into the Well under the pumping operation to dislodge these binder particles or layer and carry them off through the well tube almost at once. 55 This could not be accomplished if the mud or slush were'plastered in a layer against the mud wall vas would be the case in mechanical underreaming, because Where the mud or slush is plastered against the sand wall, it has been found 00 effective to prevent collapse of the wall but is of such a character and is driven to such depth into the sand that it cannot effectively be removed lby any pumping operation which the well will stand. Experience has proven that a plastered mud wall may be broken down in spots and may eventually, after a long period of time, be substantially dislodged under the pumping operation, but during all this time the water delivered from the well suffers from the mud content due to the gradually dislodging of the' mud wall, and, furthermore, incident to the character and volume of this mud wall, the interstices of the gravel during the pumping action are so restricted n orfllled that the otherwise possible output volume of the well is very materially reduced.
In other words, where a plastered mud wall is used as the retaining medium, the well is practically useless, the water being contaminated for a very long period and for recurring periods and the volume of incoming water very materially reduced, while with the method described the fine binder particles or extremelythin layer which is not plastered in position but merely held by the favoring pressures, is dislodged almost at once or shortly after the initial pumping operation and cannot thereafter contaminate the water delivered nor can it interfere to any appreciable extent in the maximum possible out-flow from the well. 'L
It may be found desirable in some instances, and the present method contemplates such a step, that the Water used in the hydraulic action is substantially clear or at best of very slight mud or slush content, because the object is to obtain the minimum amount of binder mud or slush which will, with the favoring pressure referred to, prevent collapse of the sand wall, and in some areas and under some conditions a very slight accumulation of mud or slush in the hydraulic medium will be found eective.
It is, of course, to be understood that as described in the application of Serial No.726,818, the gravel may be introduced into the Well simultaneously with the hydraulic action or immediately succeeding such action in order to serve as a filtering media for the water during the opermay be surrounded by a pipe 8 which has a diameter exceeding that of the pipe 1 and provides between it and the pipe 1 a passage 9 opening at the lower end at a point above the hydraulic head and connected at the upper end to a source of suction, indicated at I0, through which passage materials dislodged by the jets in the underi reaming action may be forcibly withdrawn. 'This insures that even dislodged particles, which would ordinarily not be subjected to delivery to the top of the well by the flotation method, can be satisfactorily withdrawn.
The term muddy water .as used herein and in the claims is intended to mean any water having lsufficient sediment to carry outthe function previously described. It is, of course, ap-
parent that incident to varying conditions in the y water-bearing area, the muddy consistency of the water used, that is the proportion of sediment in such water, will necessarily vary in accordance with such conditions. Thus, under some circumstances, tlie muddy water may be light in sediment and, under other circumstances, the sediment character of the water may vary up to a maximum sediment condition. As the conditions of the water-bearing area can be readily deteraoiases mined, the character of v the :muddy water can 4be varied in accordance with such conditions. Hence the term muddy water" used herein and in the claims is intended `to indicate a water having that proportion Vof sediment which will -5 carry out the functionsvot this application with due regard to the conditions of the water-bearing area.
What is claimed to be new is: l. A method of well development consisting in 10 hydraulically reaming the unconsolidated waterbearing area of the well with muddy water as the hydraulic medium, the effective pressure of the column of muddy water in the well being utilized y to direct and maintain particles of mud and the 15 like from such muddy water in the interstices and between the sand particles of the reamed wall to thereby substantially seal the reamed wall against substantial passage of water therethrough from the well, the effective hydrostatic head in the well 20 being utilized to prevent collapse of the reamed wall following cessation of the hydraulic action.
2. A method of developing a water well consisting in subjecting the unconsolidated water-bearing area to reaming by hydraulic action, with the 25 use of muddy Water as the hydraulic medium, the effective pressure of the hydraulic medium in the well against the reamed wall being utilized to bind the particles of such wall together and substantially seal the interstices between the particles 3,0 of such wall by the mud particles vin the hydraulic medium to cause the effective hydrostatic head in the well to maintain such Wall against collapse following 'cessation of the hydraulic action.
3. A method of developing a water well ccn- 35 sisting in reamingthe unconsolidated water-bearing area by hydraulic action, with utilization of muddy water as the hydraulic medium, the
particles of mud in the hydraulic medium being pressure. I
4. A method of well development consisting in boring a well, hydraulically reaming the unconsolidated water-bearing area through the use of muddy water, the hydraulic pressure during rea-ming being utilized to direct against the wall sufficient particles from the muddy water of the hydraulic medium to act as a binder for the particles and a seal between the particles in the surface of the reamed wall, an effective overbalancing pressure in the well in opposition to the static'head of water flowing from the sand area into the well being maintained to cause a suilicient pressure against the reamed wall to hold said Wall against collapse following cessation of the hydraulic action 65 REUBEN RICHARD SCHWEITZER. CHESTER ROYAL SUNDQUIST. [1.. 5.]
US755046A 1934-11-27 1934-11-27 Method of well development Expired - Lifetime US2018285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US755046A US2018285A (en) 1934-11-27 1934-11-27 Method of well development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US755046A US2018285A (en) 1934-11-27 1934-11-27 Method of well development

Publications (1)

Publication Number Publication Date
US2018285A true US2018285A (en) 1935-10-22

Family

ID=25037492

Family Applications (1)

Application Number Title Priority Date Filing Date
US755046A Expired - Lifetime US2018285A (en) 1934-11-27 1934-11-27 Method of well development

Country Status (1)

Country Link
US (1) US2018285A (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2619180A (en) * 1948-05-15 1952-11-25 Roy A Smith Apparatus for pressurizing liquid and cleaning well holes therewith
US2708567A (en) * 1953-05-13 1955-05-17 Exxon Research Engineering Co Pellet impact bore hole enlarger
US3070361A (en) * 1960-09-02 1962-12-25 Gen Crude Oil Company Fluid mining of underground ore deposits
US3313351A (en) * 1964-07-01 1967-04-11 Texaco Inc Preperforation apparatus for wells
US4086866A (en) * 1974-03-28 1978-05-02 United Kingdom of Great Britain and Northern Ireland, The Secretary of State for Industry in Her Britannic Majesty's Government of the Anchoring devices
US4385667A (en) * 1980-10-14 1983-05-31 Electric Power Research Institute, Inc. Cable reaming apparatus
US4534425A (en) * 1980-10-14 1985-08-13 Electric Power Research Institute, Inc. Cable reaming apparatus and method
US4688648A (en) * 1984-05-25 1987-08-25 Kajima Corporation Method of and apparatus for crushing earth under the ground
US4790384A (en) * 1987-04-24 1988-12-13 Penetrators, Inc. Hydraulic well penetration apparatus and method
US4928757A (en) * 1987-04-24 1990-05-29 Penetrators, Inc. Hydraulic well penetration apparatus
US4934466A (en) * 1989-02-23 1990-06-19 Paveliev Vladimir F Device for borehole hydraulic mining
US5107943A (en) * 1990-10-15 1992-04-28 Penetrators, Inc. Method and apparatus for gravel packing of wells
US5327970A (en) * 1993-02-19 1994-07-12 Penetrator's, Inc. Method for gravel packing of wells
US5363927A (en) * 1993-09-27 1994-11-15 Frank Robert C Apparatus and method for hydraulic drilling
US6189629B1 (en) 1998-08-28 2001-02-20 Mcleod Roderick D. Lateral jet drilling system
US6280000B1 (en) 1998-11-20 2001-08-28 Joseph A. Zupanick Method for production of gas from a coal seam using intersecting well bores
US6412556B1 (en) * 2000-08-03 2002-07-02 Cdx Gas, Inc. Cavity positioning tool and method
US6425448B1 (en) 2001-01-30 2002-07-30 Cdx Gas, L.L.P. Method and system for accessing subterranean zones from a limited surface area
US6446365B1 (en) 2000-09-15 2002-09-10 Vermeer Manufacturing Company Nozzle mount for soft excavation
US6454000B1 (en) 1999-11-19 2002-09-24 Cdx Gas, Llc Cavity well positioning system and method
US6575255B1 (en) 2001-08-13 2003-06-10 Cdx Gas, Llc Pantograph underreamer
US6591922B1 (en) 2001-08-13 2003-07-15 Cdx Gas, Llc Pantograph underreamer and method for forming a well bore cavity
US6595301B1 (en) 2001-08-17 2003-07-22 Cdx Gas, Llc Single-blade underreamer
US6595302B1 (en) 2001-08-17 2003-07-22 Cdx Gas, Llc Multi-blade underreamer
US6598686B1 (en) 1998-11-20 2003-07-29 Cdx Gas, Llc Method and system for enhanced access to a subterranean zone
US6644422B1 (en) 2001-08-13 2003-11-11 Cdx Gas, L.L.C. Pantograph underreamer
US6662870B1 (en) 2001-01-30 2003-12-16 Cdx Gas, L.L.C. Method and system for accessing subterranean deposits from a limited surface area
US6679322B1 (en) 1998-11-20 2004-01-20 Cdx Gas, Llc Method and system for accessing subterranean deposits from the surface
US6681855B2 (en) 2001-10-19 2004-01-27 Cdx Gas, L.L.C. Method and system for management of by-products from subterranean zones
US6708764B2 (en) 2002-07-12 2004-03-23 Cdx Gas, L.L.C. Undulating well bore
US6722452B1 (en) 2002-02-19 2004-04-20 Cdx Gas, Llc Pantograph underreamer
US6725922B2 (en) 2002-07-12 2004-04-27 Cdx Gas, Llc Ramping well bores
US6751893B2 (en) 2000-09-15 2004-06-22 Vermeer Manufacturing Company Nozzle mount for soft excavation
US6848508B2 (en) 2001-10-30 2005-02-01 Cdx Gas, Llc Slant entry well system and method
US6851479B1 (en) 2002-07-17 2005-02-08 Cdx Gas, Llc Cavity positioning tool and method
US20050139358A1 (en) * 2002-07-17 2005-06-30 Zupanick Joseph A. Cavity positioning tool and method
US6942030B2 (en) 2002-09-12 2005-09-13 Cdx Gas, Llc Three-dimensional well system for accessing subterranean zones
US6962216B2 (en) 2002-05-31 2005-11-08 Cdx Gas, Llc Wedge activated underreamer
US6964308B1 (en) 2002-10-08 2005-11-15 Cdx Gas, Llc Method of drilling lateral wellbores from a slant well without utilizing a whipstock
US6976547B2 (en) 2002-07-16 2005-12-20 Cdx Gas, Llc Actuator underreamer
US6988548B2 (en) 2002-10-03 2006-01-24 Cdx Gas, Llc Method and system for removing fluid from a subterranean zone using an enlarged cavity
US6991048B2 (en) 2002-07-12 2006-01-31 Cdx Gas, Llc Wellbore plug system and method
US6991047B2 (en) 2002-07-12 2006-01-31 Cdx Gas, Llc Wellbore sealing system and method
US7025154B2 (en) 1998-11-20 2006-04-11 Cdx Gas, Llc Method and system for circulating fluid in a well system
US7073595B2 (en) 2002-09-12 2006-07-11 Cdx Gas, Llc Method and system for controlling pressure in a dual well system
US7100687B2 (en) 2003-11-17 2006-09-05 Cdx Gas, Llc Multi-purpose well bores and method for accessing a subterranean zone from the surface
US7134494B2 (en) 2003-06-05 2006-11-14 Cdx Gas, Llc Method and system for recirculating fluid in a well system
US7163063B2 (en) 2003-11-26 2007-01-16 Cdx Gas, Llc Method and system for extraction of resources from a subterranean well bore
US7182157B2 (en) 2004-12-21 2007-02-27 Cdx Gas, Llc Enlarging well bores having tubing therein
US7207390B1 (en) 2004-02-05 2007-04-24 Cdx Gas, Llc Method and system for lining multilateral wells
US7207395B2 (en) 2004-01-30 2007-04-24 Cdx Gas, Llc Method and system for testing a partially formed hydrocarbon well for evaluation and well planning refinement
US7222670B2 (en) 2004-02-27 2007-05-29 Cdx Gas, Llc System and method for multiple wells from a common surface location
US7264048B2 (en) 2003-04-21 2007-09-04 Cdx Gas, Llc Slot cavity
US7299864B2 (en) 2004-12-22 2007-11-27 Cdx Gas, Llc Adjustable window liner
US20080066913A1 (en) * 2006-09-18 2008-03-20 Lynde Gerald D Radially expandable downhole fluid jet cutting tool
US7353877B2 (en) 2004-12-21 2008-04-08 Cdx Gas, Llc Accessing subterranean resources by formation collapse
US7360595B2 (en) 2002-05-08 2008-04-22 Cdx Gas, Llc Method and system for underground treatment of materials
US7373984B2 (en) 2004-12-22 2008-05-20 Cdx Gas, Llc Lining well bore junctions
US7419223B2 (en) 2003-11-26 2008-09-02 Cdx Gas, Llc System and method for enhancing permeability of a subterranean zone at a horizontal well bore
US7571771B2 (en) 2005-05-31 2009-08-11 Cdx Gas, Llc Cavity well system
US8291974B2 (en) 1998-11-20 2012-10-23 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8333245B2 (en) 2002-09-17 2012-12-18 Vitruvian Exploration, Llc Accelerated production of gas from a subterranean zone
US8376052B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for surface production of gas from a subterranean zone

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2619180A (en) * 1948-05-15 1952-11-25 Roy A Smith Apparatus for pressurizing liquid and cleaning well holes therewith
US2708567A (en) * 1953-05-13 1955-05-17 Exxon Research Engineering Co Pellet impact bore hole enlarger
US3070361A (en) * 1960-09-02 1962-12-25 Gen Crude Oil Company Fluid mining of underground ore deposits
US3313351A (en) * 1964-07-01 1967-04-11 Texaco Inc Preperforation apparatus for wells
US4086866A (en) * 1974-03-28 1978-05-02 United Kingdom of Great Britain and Northern Ireland, The Secretary of State for Industry in Her Britannic Majesty's Government of the Anchoring devices
US4385667A (en) * 1980-10-14 1983-05-31 Electric Power Research Institute, Inc. Cable reaming apparatus
US4534425A (en) * 1980-10-14 1985-08-13 Electric Power Research Institute, Inc. Cable reaming apparatus and method
US4688648A (en) * 1984-05-25 1987-08-25 Kajima Corporation Method of and apparatus for crushing earth under the ground
US4790384A (en) * 1987-04-24 1988-12-13 Penetrators, Inc. Hydraulic well penetration apparatus and method
US4928757A (en) * 1987-04-24 1990-05-29 Penetrators, Inc. Hydraulic well penetration apparatus
US4934466A (en) * 1989-02-23 1990-06-19 Paveliev Vladimir F Device for borehole hydraulic mining
US5107943A (en) * 1990-10-15 1992-04-28 Penetrators, Inc. Method and apparatus for gravel packing of wells
US5327970A (en) * 1993-02-19 1994-07-12 Penetrator's, Inc. Method for gravel packing of wells
US5363927A (en) * 1993-09-27 1994-11-15 Frank Robert C Apparatus and method for hydraulic drilling
US6189629B1 (en) 1998-08-28 2001-02-20 Mcleod Roderick D. Lateral jet drilling system
US6976533B2 (en) 1998-11-20 2005-12-20 Cdx Gas, Llc Method and system for accessing subterranean deposits from the surface
US7025154B2 (en) 1998-11-20 2006-04-11 Cdx Gas, Llc Method and system for circulating fluid in a well system
US8291974B2 (en) 1998-11-20 2012-10-23 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8297377B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US6439320B2 (en) 1998-11-20 2002-08-27 Cdx Gas, Llc Wellbore pattern for uniform access to subterranean deposits
US8297350B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US8316966B2 (en) 1998-11-20 2012-11-27 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US6478085B2 (en) 1998-11-20 2002-11-12 Cdx Gas, Llp System for accessing subterranean deposits from the surface
US6561288B2 (en) 1998-11-20 2003-05-13 Cdx Gas, Llc Method and system for accessing subterranean deposits from the surface
US8371399B2 (en) 1998-11-20 2013-02-12 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US6575235B2 (en) 1998-11-20 2003-06-10 Cdx Gas, Llc Subterranean drainage pattern
US8376052B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for surface production of gas from a subterranean zone
US8376039B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8434568B2 (en) 1998-11-20 2013-05-07 Vitruvian Exploration, Llc Method and system for circulating fluid in a well system
US6598686B1 (en) 1998-11-20 2003-07-29 Cdx Gas, Llc Method and system for enhanced access to a subterranean zone
US6604580B2 (en) 1998-11-20 2003-08-12 Cdx Gas, Llc Method and system for accessing subterranean zones from a limited surface area
US8464784B2 (en) 1998-11-20 2013-06-18 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8469119B2 (en) 1998-11-20 2013-06-25 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US6668918B2 (en) 1998-11-20 2003-12-30 Cdx Gas, L.L.C. Method and system for accessing subterranean deposit from the surface
US6679322B1 (en) 1998-11-20 2004-01-20 Cdx Gas, Llc Method and system for accessing subterranean deposits from the surface
US6357523B1 (en) 1998-11-20 2002-03-19 Cdx Gas, Llc Drainage pattern with intersecting wells drilled from surface
US6688388B2 (en) 1998-11-20 2004-02-10 Cdx Gas, Llc Method for accessing subterranean deposits from the surface
US8479812B2 (en) 1998-11-20 2013-07-09 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US6280000B1 (en) 1998-11-20 2001-08-28 Joseph A. Zupanick Method for production of gas from a coal seam using intersecting well bores
US8505620B2 (en) 1998-11-20 2013-08-13 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US6732792B2 (en) 1998-11-20 2004-05-11 Cdx Gas, Llc Multi-well structure for accessing subterranean deposits
US6964298B2 (en) 1998-11-20 2005-11-15 Cdx Gas, Llc Method and system for accessing subterranean deposits from the surface
US8511372B2 (en) 1998-11-20 2013-08-20 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US9551209B2 (en) 1998-11-20 2017-01-24 Effective Exploration, LLC System and method for accessing subterranean deposits
US8813840B2 (en) 1998-11-20 2014-08-26 Efective Exploration, LLC Method and system for accessing subterranean deposits from the surface and tools therefor
US6454000B1 (en) 1999-11-19 2002-09-24 Cdx Gas, Llc Cavity well positioning system and method
US7434620B1 (en) 2000-08-03 2008-10-14 Cdx Gas, Llc Cavity positioning tool and method
US6412556B1 (en) * 2000-08-03 2002-07-02 Cdx Gas, Inc. Cavity positioning tool and method
US7213644B1 (en) 2000-08-03 2007-05-08 Cdx Gas, Llc Cavity positioning tool and method
US6751893B2 (en) 2000-09-15 2004-06-22 Vermeer Manufacturing Company Nozzle mount for soft excavation
US6446365B1 (en) 2000-09-15 2002-09-10 Vermeer Manufacturing Company Nozzle mount for soft excavation
US6662870B1 (en) 2001-01-30 2003-12-16 Cdx Gas, L.L.C. Method and system for accessing subterranean deposits from a limited surface area
US7036584B2 (en) 2001-01-30 2006-05-02 Cdx Gas, L.L.C. Method and system for accessing a subterranean zone from a limited surface area
US6425448B1 (en) 2001-01-30 2002-07-30 Cdx Gas, L.L.P. Method and system for accessing subterranean zones from a limited surface area
US6986388B2 (en) 2001-01-30 2006-01-17 Cdx Gas, Llc Method and system for accessing a subterranean zone from a limited surface area
US6575255B1 (en) 2001-08-13 2003-06-10 Cdx Gas, Llc Pantograph underreamer
US6591922B1 (en) 2001-08-13 2003-07-15 Cdx Gas, Llc Pantograph underreamer and method for forming a well bore cavity
US6644422B1 (en) 2001-08-13 2003-11-11 Cdx Gas, L.L.C. Pantograph underreamer
US6595302B1 (en) 2001-08-17 2003-07-22 Cdx Gas, Llc Multi-blade underreamer
US6595301B1 (en) 2001-08-17 2003-07-22 Cdx Gas, Llc Single-blade underreamer
US6681855B2 (en) 2001-10-19 2004-01-27 Cdx Gas, L.L.C. Method and system for management of by-products from subterranean zones
US7048049B2 (en) 2001-10-30 2006-05-23 Cdx Gas, Llc Slant entry well system and method
US6848508B2 (en) 2001-10-30 2005-02-01 Cdx Gas, Llc Slant entry well system and method
US6722452B1 (en) 2002-02-19 2004-04-20 Cdx Gas, Llc Pantograph underreamer
US7360595B2 (en) 2002-05-08 2008-04-22 Cdx Gas, Llc Method and system for underground treatment of materials
US6962216B2 (en) 2002-05-31 2005-11-08 Cdx Gas, Llc Wedge activated underreamer
US6708764B2 (en) 2002-07-12 2004-03-23 Cdx Gas, L.L.C. Undulating well bore
US6991047B2 (en) 2002-07-12 2006-01-31 Cdx Gas, Llc Wellbore sealing system and method
US6991048B2 (en) 2002-07-12 2006-01-31 Cdx Gas, Llc Wellbore plug system and method
US6725922B2 (en) 2002-07-12 2004-04-27 Cdx Gas, Llc Ramping well bores
US6976547B2 (en) 2002-07-16 2005-12-20 Cdx Gas, Llc Actuator underreamer
US7007758B2 (en) 2002-07-17 2006-03-07 Cdx Gas, Llc Cavity positioning tool and method
US6851479B1 (en) 2002-07-17 2005-02-08 Cdx Gas, Llc Cavity positioning tool and method
US20050139358A1 (en) * 2002-07-17 2005-06-30 Zupanick Joseph A. Cavity positioning tool and method
US7090009B2 (en) 2002-09-12 2006-08-15 Cdx Gas, Llc Three-dimensional well system for accessing subterranean zones
US6942030B2 (en) 2002-09-12 2005-09-13 Cdx Gas, Llc Three-dimensional well system for accessing subterranean zones
US7025137B2 (en) 2002-09-12 2006-04-11 Cdx Gas, Llc Three-dimensional well system for accessing subterranean zones
US7073595B2 (en) 2002-09-12 2006-07-11 Cdx Gas, Llc Method and system for controlling pressure in a dual well system
US8333245B2 (en) 2002-09-17 2012-12-18 Vitruvian Exploration, Llc Accelerated production of gas from a subterranean zone
US6988548B2 (en) 2002-10-03 2006-01-24 Cdx Gas, Llc Method and system for removing fluid from a subterranean zone using an enlarged cavity
US6964308B1 (en) 2002-10-08 2005-11-15 Cdx Gas, Llc Method of drilling lateral wellbores from a slant well without utilizing a whipstock
US7264048B2 (en) 2003-04-21 2007-09-04 Cdx Gas, Llc Slot cavity
US7134494B2 (en) 2003-06-05 2006-11-14 Cdx Gas, Llc Method and system for recirculating fluid in a well system
US7100687B2 (en) 2003-11-17 2006-09-05 Cdx Gas, Llc Multi-purpose well bores and method for accessing a subterranean zone from the surface
US7163063B2 (en) 2003-11-26 2007-01-16 Cdx Gas, Llc Method and system for extraction of resources from a subterranean well bore
US7419223B2 (en) 2003-11-26 2008-09-02 Cdx Gas, Llc System and method for enhancing permeability of a subterranean zone at a horizontal well bore
US7207395B2 (en) 2004-01-30 2007-04-24 Cdx Gas, Llc Method and system for testing a partially formed hydrocarbon well for evaluation and well planning refinement
US7207390B1 (en) 2004-02-05 2007-04-24 Cdx Gas, Llc Method and system for lining multilateral wells
US7222670B2 (en) 2004-02-27 2007-05-29 Cdx Gas, Llc System and method for multiple wells from a common surface location
US7182157B2 (en) 2004-12-21 2007-02-27 Cdx Gas, Llc Enlarging well bores having tubing therein
US7353877B2 (en) 2004-12-21 2008-04-08 Cdx Gas, Llc Accessing subterranean resources by formation collapse
US7373984B2 (en) 2004-12-22 2008-05-20 Cdx Gas, Llc Lining well bore junctions
US7299864B2 (en) 2004-12-22 2007-11-27 Cdx Gas, Llc Adjustable window liner
US7571771B2 (en) 2005-05-31 2009-08-11 Cdx Gas, Llc Cavity well system
US20080066913A1 (en) * 2006-09-18 2008-03-20 Lynde Gerald D Radially expandable downhole fluid jet cutting tool
US7434633B2 (en) * 2006-09-18 2008-10-14 Baker Hughes Incorporated Radially expandable downhole fluid jet cutting tool

Similar Documents

Publication Publication Date Title
US2018285A (en) Method of well development
US3393736A (en) Well completion method
US2434239A (en) Method of producing oil
US4066127A (en) Processes for producing bitumen from tar sands and methods for forming a gravel pack in tar sands
US2280851A (en) Method of well drilling
US2356769A (en) Washing gravel out of perforate well casings
US2286835A (en) Well drilling and completion
US2223804A (en) Method of sealing pervious strata in oil or gas wells
US3349851A (en) Fracturing process
US3391737A (en) Well cementing process
CN110130825A (en) A method of increasing ground-dipping uranium extraction producing well area of passage
US2083625A (en) Method of depositing foraminate beds around well casings
US2018284A (en) Method and means for well development
GB2237594A (en) Dislodging sand bridges
US2309791A (en) Method and apparatus for cementing wells
US1774640A (en) Method of cleaning wells
RU2717167C1 (en) Well bottomhole washing method
US2018283A (en) Method and means for well development
US2054353A (en) Method and apparatus for shutting off water intrusion through perforated casings
SU1709076A1 (en) Method of filtration well completion
US3088717A (en) Formation of storage cavities in salt domes
US2096904A (en) Graveling tool
US2846011A (en) Method for perforating well formations
US2188936A (en) Method of developing wells
US3454119A (en) Jet-type reamer for use with drill pipe strings