US2111743A - Aerial system - Google Patents

Aerial system Download PDF

Info

Publication number
US2111743A
US2111743A US104354A US10435436A US2111743A US 2111743 A US2111743 A US 2111743A US 104354 A US104354 A US 104354A US 10435436 A US10435436 A US 10435436A US 2111743 A US2111743 A US 2111743A
Authority
US
United States
Prior art keywords
aerial
feeder
impedance
inductance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US104354A
Inventor
Blumlein Alan Dower
Cork Edward Cecil
Pawsey Joseph Lade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMI Ltd
Electrical and Musical Industries Ltd
Original Assignee
EMI Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMI Ltd filed Critical EMI Ltd
Application granted granted Critical
Publication of US2111743A publication Critical patent/US2111743A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Balance/unbalance networks
    • H03H7/422Balance/unbalance networks comprising distributed impedance elements together with lumped impedance elements

Definitions

  • This invention relates to aerial and feeder and the impedance at the transmitter input will systems for short wave transmitting apparatus vary for any given aerial impedance and freand has particularrefercnce to aerial systems q y With the length o ef de If t e for use with signal frequencies of the order feeder s app x mat y an int al num er, of
  • the feeder will be an integral number of When transmitting signals with a wide side -q a w v n h long and Will act as a band, such as television signals, it may be i transformer so that at these frequencies the practicableto match the transmitter impedance pe at the transmitter end will be less 15 to the feeder impedance and also to the aerial h the mp d n a t a -f qu n y.
  • the impedance 40 qu at Small departures from the tuning presented to a transmitter connected with an 40 frequency of the ia considerable reactance aerial by an electrically long feeder and so obmay be p e
  • an aerial has tainin a substantially even response over a dea natural band width of :5'megacycles per secsired range of frequencies, 0nd ⁇ the band width being taken as the Width of
  • variation in reactance fall more than 3 ibe below the maximum, of the aerial is corrected by the insertion at or then, t 5 ycles per Sec d from tuned near the aerial of circuits which convert the imfr qu y, h reactance of t aerial w ll qual edance of the aerial systemto a substantially its resistance- At One e ae 'p Second from constant resistance.
  • acthe tim d q y the reeetenee W be pcording to the invention, the aerial, by the addiproximately one-fifth of (or five times if contion of reactance with or without resistance, presidered in parallel) the resistance.
  • This is a 20% sents a substantially constant terminating. reerror in matching impedance. sistance tothe feeder at all important frequencies It is well known thatif a feeder is not correctly within a. working range of frequencies.
  • Fig. 1 illustrates diagrammatically a known dipole aerial system fed from a potential antinode, in this case one end of the aerial.
  • the aerial as represented includes a resistance R, a condenser C, and an inductance L connected in shunt with one another between earth and a common point.
  • a concentric feeder F of characteristic impedance Z is connected at one end to a transmitter (not shown) and at its other end has its central conductor G connected to a point H which is one end of the aerial.
  • the outer conductor of the feeder F is earthed.
  • R, C and L represent the resistance, capacity and inductance, respectively, of the aerial. It will be seen that at frequencies off resonance, even when the reactance of L and C is still considerably greater than R, the feeder of impedance Z, assumed to be substantially resistive, will not be correctly terminated by the aerial.
  • Fig. 2 illustrates the application of the invention to the aerial system shown in Fig. 1.
  • An inductance L2 and condenser C2 are connected in series between the aerial and the feeder.
  • Condenser C2 and inductance L2 are shunted by the resistance 1' equal in magnitude to the resistance of the feeder and have the values Under these conditions the impedance facing the feeder will be invariant with frequency and equal to R, i. e., equal to Z. If only comparatively small departures from the resonant frequency of the aerial are considered, the resistance r may be omitted altogether since the variation of resistance presented to the feeder will not be seriousand the only effect which it is necessary to correct is the reactance introduced by L and C. This can be corrected for small departures from resonance by the reactances L2 and C2.
  • the impedance of the feeder does not match the impedance of the aerial directly, i. e., if Z is not equal to R, which is usual in practice when the end fed aerial is one-half of a wavelength long, it is necessary to insert a transformer between the feeder and aerial.
  • This may take the form of a tuned circuit connected between the earth and the end of the aerial, the central conductor of the feeder being connected to a tapping point on the inductance of the tuned circuit while the sheath of the feeder is earthed.
  • the inductance and capacity of the tuned circuit are in parallel with the corresponding inductance and capacity of the equivalent aerial circuit.
  • the resultant inductance and capacity are shown by L1 and C1 in Fig. 3, which shows the application of the invention to the aerial and transformer system.
  • the inductance L3 and condenser C3 are connected in series between the aerial end of the central core G of the feeder F, and the tapping point on the inductance L1.
  • the resistance 1' equal in magnitude to the resistance of the feeder, shunts the condenser C3 and inductance L3 as in Fig. 2. If it is assumed that the transformer ratio is the square root of n, where n is equal to then the apparent inductance value of L1 at the tapping point will be and the apparent value of C1 at the same point will be nC. L3 is then made equal to nC1Z and C3 is made equal to Under these conditions, assuming a perfect transformer, the impedance facing the feeder will be equal to Z. As in the case of the arrangement shown in Fig.
  • the resistance r may be omitted if only small departures from the resonant frequency of the aerial are considered.
  • Correction for the reactance introduced by L1 and C1 for small departures from resonance can be corrected by the reactances L3 and C3.
  • L3 may be composed of the leakage inductance of the transformer so that in some cases only C: need be added.
  • Fig. 4 illustrates the case of an aerial fed at its centre, the aerial system being represented by an inductance L, a condenser C and a resistance R, connected in series with one another and between the aerial end of the feeder F and earth. It is assumed that the feeder impedance has been made equal to R.
  • the present invention is shown applied to this arrangement by the addition of a shunt load comprising an inductance L4 and capacity C4 and resistance r.
  • the lower terminal of resistance r is earthed and its upper terminal is connected to one terminal of condenser C4 and to one terminal of inductance L4.
  • the other terminals of the inductance L4 and condenser C4 are connected to the aerial end of the central conductor G.
  • 6 is equal to R
  • E is equal to R and T is equal to R.
  • resistance 1 may be omitted and for this purpose may be short circuited.
  • Fig. 5 shows another method of applying the invention to the aerial system described with reference to Fig. 3.
  • the tapping point on the inductance L remains directly connected to the end of the central conductor G of the feeder F, and a shunt load is connected between the central conductor G of the feeder and earth at a point I located a quarter wavelength or an odd number of quarter wavelengths from the aerial end of the feeder.
  • the shunt load is of the type deand C5 is equal to 110.
  • a dipole aerial l is represented diagrammatically and includes a parallel line circuit 2. If it is assumed that the dipole aerial is a line of characteristic impedance Zn and of a length 9a with a radiation resistance R1 in series, and that the line'2 has an impedance Z0, an electrical length 9 and has in series a resistance R2, then the impedance between the points A and B may be obtained by the following equation:-
  • a concentric feeder havin inner and outer conductors 3 and 4 is connected to a dipole aerial 5, 6.
  • the parallel line corresponding with the line 2 in Fig. 6 is constituted by an outer sheath I enclosing the sheath 4 of the feeder. sheath 4 at a point 8 approximately one electrical quarter of a wavelength from the aerial 5, 6.
  • a symmetrical arrangement is'shown in which the parallel line is formed by adding an inner conductor 9 to a hollow line In used normally as a dummy line serving the same purpose as an interference suppressing line of the kind described in the specification of British Patent No. 438,506.
  • This interference suppressing line renders the end of the feeder connected to the aerial electrically symmetrical with respect to earth, and also acts so that interference picked up by and propagated along the outside of the feeder acts equally on each half of the dipole aerial so that no potential difference due to inter ference is established between the conductors of the feeders 3, 4.
  • Fig. 9 a symmetrical arrangement is shown, but in this case two parallel lines 'H and I2 are used as the correcting lines, the dummy line H] shown in Fig. 8 being retained.
  • a further symmetrical arrangement is shown but in this case two auxiliary concentric lines having inner and outer conductors I3 and I4, and I and I6, respectively, are used for correction purposes.
  • aerial asource of high frequency energy; a feeder coupling said aerial to said source,”and acircuit coupled to -said feeder near the coupling point of said aerial and feeder for presenting a substantially pure resistance of constant magnitude to said feeder over a range of frequencies which said aerial is adapted to radiate.
  • an aerial In a short wave transmitting system, an aerial, a source of high frequency energy, a feeder coupling said aerial to said source, and a circuit inserted in series between said aerial and feeder and located near the coupling point of said aerial and feeder for presenting to said feeder a substantially pure resistance over a range of frequencies which said aerial is adapted to radiate.
  • an aerial In a short wave transmitting system, an aerial, a source of high frequency energy, a feeder coupling said aerial to said source, and a circuit including a concentrated reactance coupled to said feeder near the coupling point of said aerial and feeder for presenting a substantially pure resistance to said feeder over a range of frequencies which said aerial is adapted to radiate.
  • an aerial a source of high frequency energy, a feeder coupling said aerial to said source, and a circuit including a capacitance and an inductance effectively arranged in series inserted between said aerial and feeder near the coupling point of said aerial and feeder, said capacitance and inductance having such values as to present to said feeder a substantially pure terminating resistance over a range of frequencies.
  • an aerial a source of energy, a feeder a plurality of wavelengths long at the operating frequencies coupling one end of said aerial to said source, and a circuit including a capacitance and an inductance effectively arranged inseries inserted between said aerial and feeder near the coupling point of said aerial and feeder, said capacitance and inductance having such values as to present to said feeder, a substantially pure terminating resistance over a range of frequencies.
  • a short wave transmitting system an aerial, a source of high frequency energy, a feeder coupling the center of said aerial to said 7 source, and a circuit including a capacitance and an inductance effectively arranged in parallel coupled between said feeder and ground at a point near the coupling point of said aerial and feeder, said capacitance and inductance having such values as to present to said feeder a substantially pure terminating resistance over a range of frequencies which said aerial is adapted to radiate.
  • a short wave transmitting system an aerial, a source of high frequency energy, a feeder coupling the center of said aerial to said source, and a circuit including a capacitance and inductance effectively arranged in parallel coupled between said feeder and ground at a point a multiple of a quarter wavelength, including unity, from the coupling point of said aerial and feeder, said capacitance and inductance having ductance are substantially uniformly distributed such values as to present to said feeder a suband in the form of portions of concentric transstantially pure terminating resistance over a mission lines.

Description

March 22, 1938.
A. D. BLUMLEIN ET AL AERIAL SYSTEM Filed Oct. '7, 1956 2 Sheets-Sheet 1 HUN INVENTORS ALAN DOWER BLIJMLEIN, EDWARD CECIL CORR AND.) EP ADE PAWSEY ATTORNEY March 22, 1938. A. D. BLUMLEIN E? AL 2,111,743
AERIAL SYSTEM Filed Oct. 7, 1936 2 Sheets-Shet 2 7/0 INVENTORS ALAN DOWER BLUMLEIN,EBWAKD CECIL CORK AND JOSE? LADE PAWSEY ATTORNEY 355 terminated, standing waves occur in the feeder In order that the invention may be more clearly 65 Patented Mar. 22, 1938 I r 2,111,743:
UNITED" STATES PATENT OFFICE AERIAL SYSTEM Alan Dower Blumlein and Edward Cecil Cork, Ealing, London, and Joseph Lade Pawsey, Hillingdon, England, assignors to Electric & Musical Industries Limited, Middlesex, England, a British company Application October 7, 1936, Serial No. 104,354
In=Great Britain October 19, 1935 '9 Claims. (01. 250-47) This invention relates to aerial and feeder and the impedance at the transmitter input will systems for short wave transmitting apparatus vary for any given aerial impedance and freand has particularrefercnce to aerial systems q y With the length o ef de If t e for use with signal frequencies of the order feeder s app x mat y an int al num er, of
employed in television transmission systems. half a e s long at h S bend q y, v
In the case of a short wave transmitter feedt e pe ce at t t a s tt r d of t e ing an aerial through a transmission line, it is feeder W a so be in error by 20%. If at thecarusual to match the resistive impedance of the e frequency the ed is a different integral aerial to the. characteristic impedance of the n m r of h lf w vel g, then at some der, and further, if possible, to match this frequency or frequencies between the carrier frecharacteristic impedance to the impedance of q n y nd th on me cy l id b n fr the transmitter. v quency, the feeder will be an integral number of When transmitting signals with a wide side -q a w v n h long and Will act as a band, such as television signals, it may be i transformer so that at these frequencies the practicableto match the transmitter impedance pe at the transmitter end will be less 15 to the feeder impedance and also to the aerial h the mp d n a t a -f qu n y. impedance, and at the sam tim btai th The response characteristic of the aerial, innecessary band width; in fact the load thrown stead o s o m e a d op t wa ds he exon the transmitter by .the aerial seen through treme d b frequencies. w also xhib t the feeder may be much lower than the impedalternatelises and falls 7 20 ance of the transmitter. Any small errors or If L IS e length of the feeder a f0 d f1 variations inthe impedance of the aerial as seen are the carrier d Side a q i s r through the feeder then affect the output. :If sp the numbers of s d wav s in the these errors are variable with frequency, the refeeder 2,it these tWO frequencies a sponse of the transmitter will also not be uniform, L ML 25 and will vary with the impedance of the aerial T a T as seen through the feeder. 1 V
Now, if the feeder is electrically long and the Where c Is the veloclty epe of waYes aerial impedance does not match the characterm feeder and eppitixlmatme to t istic impedance of the feeder, serious variations of hght' The feeder 15 defined as bemg electrl" of impedance seenby the transmitter may take long w respect to the highest modulation 30 place within. the working range of frequencies frequency and these variations of impedance: will cause QQZQ .variations in the response of the transmitter. c
Such failure of matching between the aerial and Th if (f -f )=i2 megacycles, the undet e f d r may be due o maladjustment t the sired effect will occur when L is greater than variation of the aerial impedance with frequency. about 75 meters Ev n if the aerial h s a n r l r q n It is the object of the invention to provide SDOHSe Curve adequately Wide for the bend in means for preventing variations of. the impedance 40 qu at Small departures from the tuning presented to a transmitter connected with an 40 frequency of the ia considerable reactance aerial by an electrically long feeder and so obmay be p e For example, if an aerial has tainin a substantially even response over a dea natural band width of :5'megacycles per secsired range of frequencies, 0nd} the band width being taken as the Width of According to the present invention, in ashort t e bend Within-Which the response does not wave transmitting system, variation in reactance fall more than 3 ibe below the maximum, of the aerial is corrected by the insertion at or then, t 5 ycles per Sec d from tuned near the aerial of circuits which convert the imfr qu y, h reactance of t aerial w ll qual edance of the aerial systemto a substantially its resistance- At One e ae 'p Second from constant resistance. In particular systems, acthe tim d q y, the reeetenee W be pcording to the invention, the aerial, by the addiproximately one-fifth of (or five times if contion of reactance with or without resistance, presidered in parallel) the resistance. This is a 20% sents a substantially constant terminating. reerror in matching impedance. sistance tothe feeder at all important frequencies It is well known thatif a feeder is not correctly within a. working range of frequencies.
understood and readily carried into effect, some aerial and feeder systems embodying the invention will now be described by way of example with reference to the accompanying drawings, wherein Figs. 1 and 6 are given for purposes of exposition and Figs. 2 to 5, inclusive, and '7 to 10, inclusive, illustrate various applications of the invention considered, respectively, first from the 7 angle of equivalent constants for the antenna circuits, and then actual antenna constructions. Referring to the drawings, Fig. 1 illustrates diagrammatically a known dipole aerial system fed from a potential antinode, in this case one end of the aerial. The aerial as represented includes a resistance R, a condenser C, and an inductance L connected in shunt with one another between earth and a common point. A concentric feeder F of characteristic impedance Z is connected at one end to a transmitter (not shown) and at its other end has its central conductor G connected to a point H which is one end of the aerial. The outer conductor of the feeder F is earthed. R, C and L represent the resistance, capacity and inductance, respectively, of the aerial. It will be seen that at frequencies off resonance, even when the reactance of L and C is still considerably greater than R, the feeder of impedance Z, assumed to be substantially resistive, will not be correctly terminated by the aerial. Fig. 2 illustrates the application of the invention to the aerial system shown in Fig. 1. An inductance L2 and condenser C2 are connected in series between the aerial and the feeder. Condenser C2 and inductance L2 are shunted by the resistance 1' equal in magnitude to the resistance of the feeder and have the values Under these conditions the impedance facing the feeder will be invariant with frequency and equal to R, i. e., equal to Z. If only comparatively small departures from the resonant frequency of the aerial are considered, the resistance r may be omitted altogether since the variation of resistance presented to the feeder will not be seriousand the only effect which it is necessary to correct is the reactance introduced by L and C. This can be corrected for small departures from resonance by the reactances L2 and C2.
If the impedance of the feeder does not match the impedance of the aerial directly, i. e., if Z is not equal to R, which is usual in practice when the end fed aerial is one-half of a wavelength long, it is necessary to insert a transformer between the feeder and aerial. This may take the form of a tuned circuit connected between the earth and the end of the aerial, the central conductor of the feeder being connected to a tapping point on the inductance of the tuned circuit while the sheath of the feeder is earthed. The inductance and capacity of the tuned circuit are in parallel with the corresponding inductance and capacity of the equivalent aerial circuit. The resultant inductance and capacity are shown by L1 and C1 in Fig. 3, which shows the application of the invention to the aerial and transformer system. The inductance L3 and condenser C3 are connected in series between the aerial end of the central core G of the feeder F, and the tapping point on the inductance L1. The resistance 1', equal in magnitude to the resistance of the feeder, shunts the condenser C3 and inductance L3 as in Fig. 2. If it is assumed that the transformer ratio is the square root of n, where n is equal to then the apparent inductance value of L1 at the tapping point will be and the apparent value of C1 at the same point will be nC. L3 is then made equal to nC1Z and C3 is made equal to Under these conditions, assuming a perfect transformer, the impedance facing the feeder will be equal to Z. As in the case of the arrangement shown in Fig. 2, the resistance r may be omitted if only small departures from the resonant frequency of the aerial are considered. Correction for the reactance introduced by L1 and C1 for small departures from resonance can be corrected by the reactances L3 and C3. In this case L3 may be composed of the leakage inductance of the transformer so that in some cases only C: need be added.
Fig. 4 illustrates the case of an aerial fed at its centre, the aerial system being represented by an inductance L, a condenser C and a resistance R, connected in series with one another and between the aerial end of the feeder F and earth. It is assumed that the feeder impedance has been made equal to R. The present invention is shown applied to this arrangement by the addition of a shunt load comprising an inductance L4 and capacity C4 and resistance r. The lower terminal of resistance r is earthed and its upper terminal is connected to one terminal of condenser C4 and to one terminal of inductance L4. The other terminals of the inductance L4 and condenser C4 are connected to the aerial end of the central conductor G. In this case it is arranged that 6 is equal to R,
E, is equal to R and T is equal to R. This is a counterpart of the arrangement described with reference to Fig. 3, and again, as a first approxi mation, resistance 1 may be omitted and for this purpose may be short circuited.
Fig. 5 shows another method of applying the invention to the aerial system described with reference to Fig. 3. The tapping point on the inductance L remains directly connected to the end of the central conductor G of the feeder F, and a shunt load is connected between the central conductor G of the feeder and earth at a point I located a quarter wavelength or an odd number of quarter wavelengths from the aerial end of the feeder. The shunt load is of the type deand C5 is equal to 110. As before, as a first approximation close to resonance r may be effectively omitted by short circuiting it. If this type bf correction is employed; it is advisable-to' put the correcting"circuit-wily a" small *number-jof quarter wavelengths away from the"aerial, if correction-oyer a wide frequency band is. required. By putting theload-a-quarter wavelength away, the impedanceerrors ar'iriverted so that the type of circuit required is altered.
Further applications of the invention are illustrated in- Figs. 7, 8, 9 and 10, and will be more clearly understood when considered in relation to the following explanation of Fig. 6. In this figure a dipole aerial l is represented diagrammatically and includes a parallel line circuit 2. If it is assumed that the dipole aerial is a line of characteristic impedance Zn and of a length 9a with a radiation resistance R1 in series, and that the line'2 has an impedance Z0, an electrical length 9 and has in series a resistance R2, then the impedance between the points A and B may be obtained by the following equation:-
12,122+ z,,z,, cot 0,, tan ow -(121a, tan Z tan 04 If, in this equation is inserted:
and tan 9A=tan 9, then Z=R, from which it is seen that the reactance variation has disappeared.
Referring to Fig. 7, a concentric feeder havin inner and outer conductors 3 and 4 is connected to a dipole aerial 5, 6. The parallel line corresponding with the line 2 in Fig. 6 is constituted by an outer sheath I enclosing the sheath 4 of the feeder. sheath 4 at a point 8 approximately one electrical quarter of a wavelength from the aerial 5, 6.
In Fig. 8 a symmetrical arrangement is'shown in which the parallel line is formed by adding an inner conductor 9 to a hollow line In used normally as a dummy line serving the same purpose as an interference suppressing line of the kind described in the specification of British Patent No. 438,506. This interference suppressing line renders the end of the feeder connected to the aerial electrically symmetrical with respect to earth, and also acts so that interference picked up by and propagated along the outside of the feeder acts equally on each half of the dipole aerial so that no potential difference due to inter ference is established between the conductors of the feeders 3, 4.
In Fig. 9 a symmetrical arrangement is shown, but in this case two parallel lines 'H and I2 are used as the correcting lines, the dummy line H] shown in Fig. 8 being retained.
In Fig. 10 a further symmetrical arrangement is shown but in this case two auxiliary concentric lines having inner and outer conductors I3 and I4, and I and I6, respectively, are used for correction purposes.
It will be understood that the invention may be carried out in further ways which will occur to those skilled in the art, and it is further to be understood that the invention may be applied to aerials of other types than dipoles, the correction in certain cases being made at the junction of the aerial and its feeder.
What is claimed is:
1. In a short Wave transmitting system, an
aerial, a source of high frequency energy, a feeder coupling said aerial to said source, and a circuit coupled to said feeder near the coupling point of said aerial and feeder for presenting a R Z tan 9 The sheath I is connected directly to the *2. In a short wave transmitting system, an
aerial, asource of high frequency energy; a feeder coupling said aerial to said source,"and acircuit coupled to -said feeder near the coupling point of said aerial and feeder for presenting a substantially pure resistance of constant magnitude to said feeder over a range of frequencies which said aerial is adapted to radiate.
3. In a short wave transmitting system, an aerial, a source of high frequency energy, a feeder coupling said aerial to said source, and a circuit inserted in series between said aerial and feeder and located near the coupling point of said aerial and feeder for presenting to said feeder a substantially pure resistance over a range of frequencies which said aerial is adapted to radiate.
4. In a short wave transmitting system, an aerial, a source of high frequency energy, a feeder coupling said aerial to said source, and a circuit including a concentrated reactance coupled to said feeder near the coupling point of said aerial and feeder for presenting a substantially pure resistance to said feeder over a range of frequencies which said aerial is adapted to radiate.
5. In a short wave transmitting system, an aerial, a source of high frequency energy, a feeder coupling said aerial to said source, and a circuit including a capacitance and an inductance effectively arranged in series inserted between said aerial and feeder near the coupling point of said aerial and feeder, said capacitance and inductance having such values as to present to said feeder a substantially pure terminating resistance over a range of frequencies.
6. In a short wave transmitting system, an aerial, a source of energy, a feeder a plurality of wavelengths long at the operating frequencies coupling one end of said aerial to said source, and a circuit including a capacitance and an inductance effectively arranged inseries inserted between said aerial and feeder near the coupling point of said aerial and feeder, said capacitance and inductance having such values as to present to said feeder, a substantially pure terminating resistance over a range of frequencies.
'7. In a short wave transmitting system, an aerial, a source of high frequency energy, a feeder coupling the center of said aerial to said 7 source, and a circuit including a capacitance and an inductance effectively arranged in parallel coupled between said feeder and ground at a point near the coupling point of said aerial and feeder, said capacitance and inductance having such values as to present to said feeder a substantially pure terminating resistance over a range of frequencies which said aerial is adapted to radiate.
'8. In a short wave transmitting system, an aerial, a source of high frequency energy, a feeder coupling the center of said aerial to said source, and a circuit including a capacitance and inductance effectively arranged in parallel coupled between said feeder and ground at a point a multiple of a quarter wavelength, including unity, from the coupling point of said aerial and feeder, said capacitance and inductance having ductance are substantially uniformly distributed such values as to present to said feeder a suband in the form of portions of concentric transstantially pure terminating resistance over a mission lines.
range of frequencies which said aerial is adapted ALAN DOWER BLUMLEIN. to radiate. EDWARD CECIL CORK.
9. A system in accordance with claim 5, char- JOSEPH LADE PAWSEY.
acterized in this that said capacitance and in-
US104354A 1935-10-19 1936-10-07 Aerial system Expired - Lifetime US2111743A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB28907/35A GB464443A (en) 1935-10-19 1935-10-19 Improvements in or relating to aerial systems

Publications (1)

Publication Number Publication Date
US2111743A true US2111743A (en) 1938-03-22

Family

ID=10283102

Family Applications (1)

Application Number Title Priority Date Filing Date
US104354A Expired - Lifetime US2111743A (en) 1935-10-19 1936-10-07 Aerial system

Country Status (3)

Country Link
US (1) US2111743A (en)
FR (1) FR812253A (en)
GB (1) GB464443A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2478313A (en) * 1945-07-19 1949-08-09 Rca Corp Antenna construction
US2498059A (en) * 1947-12-11 1950-02-21 Bell Telephone Labor Inc Modulation of high-frequency generators
US2512704A (en) * 1943-12-06 1950-06-27 Int Standard Electric Corp Arrangement for coupling wide frequency band antennae to transmission lines
US2530048A (en) * 1950-11-14 Unbalanced-to-balanced impedance
US2533030A (en) * 1946-10-23 1950-12-05 Rca Corp Wide band impedance matching network
US2624000A (en) * 1946-05-03 1952-12-30 Rca Corp Antenna system
US2637533A (en) * 1949-09-24 1953-05-05 Andrew Corp Multi-v fm antenna
US2682592A (en) * 1952-05-16 1954-06-29 Hearst Corp Radio frequency switch for systems using coaxial cables
US2692335A (en) * 1950-02-09 1954-10-19 Alford Andrew Balanced coupling unit for highfrequency transmission
US2756393A (en) * 1952-10-03 1956-07-24 Philco Corp Constant bandwidth coupling system
US3217275A (en) * 1962-06-01 1965-11-09 Collins Radio Co Multicoupler system utilizing tunable trap
US3343088A (en) * 1963-12-12 1967-09-19 Westinghouse Electric Corp Wideband high efficiency transmitter system
US3408598A (en) * 1963-11-15 1968-10-29 John T. Beeston Jr. Load compensating circuit for radio frequency generators
US3504304A (en) * 1967-03-02 1970-03-31 Merrimac Research & Dev Inc Wideband hybrid ring network
US4328501A (en) * 1980-04-23 1982-05-04 The United States Of America As Represented By The Secretary Of The Army Small broadband antennas using lossy matching networks
US4443803A (en) * 1980-04-23 1984-04-17 The United States Of America As Represented By The Secretary Of The Army Lossy matching for broad bonding low profile small antennas
US5493312A (en) * 1993-10-26 1996-02-20 Texas Instruments Deutschland Gmbh Reduced current antenna circuit
EP2230722A1 (en) * 2009-03-19 2010-09-22 Sony Corporation Antenna device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE765138C (en) * 1937-07-23 1953-10-12 Julius Pintsch K G Device for coupling an ultra-high frequency consumer or radiator, in particular a surface radiator, to a tubular power line
DE752924C (en) * 1939-04-04 1953-02-23 Telefunken Gmbh Broadband antenna

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530048A (en) * 1950-11-14 Unbalanced-to-balanced impedance
US2512704A (en) * 1943-12-06 1950-06-27 Int Standard Electric Corp Arrangement for coupling wide frequency band antennae to transmission lines
US2478313A (en) * 1945-07-19 1949-08-09 Rca Corp Antenna construction
US2624000A (en) * 1946-05-03 1952-12-30 Rca Corp Antenna system
US2533030A (en) * 1946-10-23 1950-12-05 Rca Corp Wide band impedance matching network
US2498059A (en) * 1947-12-11 1950-02-21 Bell Telephone Labor Inc Modulation of high-frequency generators
US2637533A (en) * 1949-09-24 1953-05-05 Andrew Corp Multi-v fm antenna
US2692335A (en) * 1950-02-09 1954-10-19 Alford Andrew Balanced coupling unit for highfrequency transmission
US2682592A (en) * 1952-05-16 1954-06-29 Hearst Corp Radio frequency switch for systems using coaxial cables
US2756393A (en) * 1952-10-03 1956-07-24 Philco Corp Constant bandwidth coupling system
US3217275A (en) * 1962-06-01 1965-11-09 Collins Radio Co Multicoupler system utilizing tunable trap
US3408598A (en) * 1963-11-15 1968-10-29 John T. Beeston Jr. Load compensating circuit for radio frequency generators
US3343088A (en) * 1963-12-12 1967-09-19 Westinghouse Electric Corp Wideband high efficiency transmitter system
US3504304A (en) * 1967-03-02 1970-03-31 Merrimac Research & Dev Inc Wideband hybrid ring network
US4328501A (en) * 1980-04-23 1982-05-04 The United States Of America As Represented By The Secretary Of The Army Small broadband antennas using lossy matching networks
US4443803A (en) * 1980-04-23 1984-04-17 The United States Of America As Represented By The Secretary Of The Army Lossy matching for broad bonding low profile small antennas
US5493312A (en) * 1993-10-26 1996-02-20 Texas Instruments Deutschland Gmbh Reduced current antenna circuit
EP2230722A1 (en) * 2009-03-19 2010-09-22 Sony Corporation Antenna device
US20100238088A1 (en) * 2009-03-19 2010-09-23 Sony Corporation Antenna device
CN101853984A (en) * 2009-03-19 2010-10-06 索尼公司 Antenna assembly
US8487827B2 (en) 2009-03-19 2013-07-16 Sony Corporation Antenna device
CN101853984B (en) * 2009-03-19 2014-05-07 索尼公司 Antenna device

Also Published As

Publication number Publication date
FR812253A (en) 1937-05-04
GB464443A (en) 1937-04-19

Similar Documents

Publication Publication Date Title
US2111743A (en) Aerial system
US2270416A (en) Electrical wave system
US2286179A (en) Wide band antenna
US2241582A (en) Arrangement for matching antennae for wide frequency bands
US1947003A (en) Oscillation generation
US2193859A (en) Ultra short wave antenna
US2512704A (en) Arrangement for coupling wide frequency band antennae to transmission lines
US2202700A (en) Transmission apparatus
US3049682A (en) Constant bandwidth coupling system
GB485959A (en) System for amplitude modulation employing impedance inversion for high-frequency electric signalling
US2266197A (en) Wide frequency band amplifier system
US1546878A (en) Radio receiving system
US2572672A (en) Impedance transforming network
US2412090A (en) Turnstile antenna
US2097491A (en) Transmission line for electrical signaling systems
US1820809A (en) Electrical system
US2253381A (en) Harmonic reduction circuits
US4112394A (en) Method and means of link coupling with separate control of link reactance and coupling coefficient
US2054799A (en) High frequency distribution system
US2405314A (en) Transmission coupling circuit
US2031103A (en) Ultra short wave receiver
US1861183A (en) Radio reception system
US1854448A (en) Radio signaling
US2312827A (en) Coupling circuit
US2003962A (en) Radio frequency distribution system