US2364626A - Resuscitator - Google Patents

Resuscitator Download PDF

Info

Publication number
US2364626A
US2364626A US464948A US46494842A US2364626A US 2364626 A US2364626 A US 2364626A US 464948 A US464948 A US 464948A US 46494842 A US46494842 A US 46494842A US 2364626 A US2364626 A US 2364626A
Authority
US
United States
Prior art keywords
chamber
valve
gas
port
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US464948A
Inventor
John H Emerson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23845908&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US2364626(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US464948A priority Critical patent/US2364626A/en
Application granted granted Critical
Publication of US2364626A publication Critical patent/US2364626A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • A61M16/0012Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration by Venturi means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2544Supply and exhaust type

Definitions

  • This invention relates to apparatus of automatic type, wherein gas supplied under pressure acts alternately to inflate and deflate the lungs, designed in particular for treating patients who are unable to breathe normally, as, for example, when suffering from gas asphyxiation, drowning or the like.
  • the principal object of this invention is to provide a small, compact, portable resuscitator which is light and may be conveniently used in the field for first aid punposes.
  • a further object is to provide a resuscitator which may be manipulated by a single attendant.
  • Fig. 5 is an enlarged section taken on the lines 55 of Fig. 2;
  • Fig. 6 is a section taken on the lines 6-6 of Fig. 5;
  • Fig. 7 is a reduced of Fig. 6.
  • the apparatus requires a source of gas under super-atmospheric,- pref- When section on the lines 1-4 v. of the plunger and stored in the reservoir [1.
  • the pressure gauge [3 indicates the gas pressure in the reservoir ll.
  • Such a pump serves as a convenient light and portable source of gas under positive pressure for field use of the improved resuscitator device. It should be understood,
  • a cylinder of compressed oxygen The operative parts of the resuscitator (Fig. 1) are all contained in the two-piece housing
  • This housing or casing is hollow and externally shaped and dimensioned to permit it to be held in the palm of one hand, in effect constituting a handle for the mask M which is attached directly to the housing or casing by a rigid connection, thus leaving the other hand free to operate the plunger of the pump.
  • the face mask M is detachably secured to the resuscitator R, preferably by a telescopic rigid connection,
  • the weight of the resuscitator is so small that when a patient reclines, his head can comfortably support the entire resuscitator (exclusive of the pump), its weight being distributed over the area of his face which is in contact with the face mask M.
  • Thetwo housing parts w and I5 are devtachably secured together by two screws I6 (Fig.
  • a rigid cap member 3! including a cylindrical flange 32, the lower edge a of which engages a gasket 33 which extends around the edge of the upper face of the casting 20.
  • the flange 32 is held tightly against the gasket 33 by two screws (not shown) which extend through the cap 3
  • a rigid, tubular promotion or nipple 31 is secured to or formed integrally with the cap 3
  • the mask is directly secured to the casing, the mask having a tubular member 38 (Fig. 1) which telescopes over the outer surface of the tubular member 31, thus permitting the separation of the mask and casing when desired.
  • a flexible rubber tube 40 (Fig. 1) is detachably connected with the outlet from the positive pressure gas reservoir H by a bayonet coupling.
  • the other end of this tube or conduit 40 is connected to one end of the metallic nozzle tube 42 (Figs. 2, 3 and 4).
  • the opposite end of the tube 42 (Fig. 6) is shaped to constitute the primary nozzle of an aspirator device, having an orifice 43 of restricted cross-section so that the speed of the gas passingthrough the orifice is accelerated.
  • the gas passing through the orifice is supplied from the positivepressure reservoir ll through the tube 40.
  • the orifice 43 of the 'rprimary'nozzle delivers the'fiuid into the interior of the secondary or forcer nozzle 44 which has an orifice 45 of slightly larger cross-section than that of the orifice'43.
  • hereinafter referred to'for convenience as-the intermediate delivery chamber, (Figs. Bend 6), is provided with a port 53 which communicates with the atmosphere and his also provided with a'port' 54 which communicates with'the-chamber 55, hereinafter 'referred to for convenience as the upper delivery chamber, communicating with the valve reversing or motor chamber '30.
  • the second valve chamber 62 hereinafter referred'to fo'r convenience as theintermediate inlet chamber, is provided with'a port 63 which communicates-with the atmosphere and it is also provided' with 'a'port64which communicates with thechamber 65, hereinafter referred to for convenienceas the upper'inlet chamber, communicating with the valve reversing or motor chamber 30.
  • the motor .mechanism is substantially identical withthat'disclosed in the patent to Colltt No. 2,268,172, December 30, .1941, comprising a U-shaped member 10 having :parallel legs H, II (Figs.-.6 and-7).
  • This member lflis'secured at its base-to the-center of *the'diaphragm 23 so that it is carried up and down by corresponding movement of the center of the diaphragm.
  • the inner adjacent ends of the toggle members 12 and 82 are pivotally supported by the edges of the legs H, H which engage grooves provided in the ends of .the toggle-members.
  • the coiled tension spring serves to force the adjacent inner-ends of these toggle members toward each other at all times, thereby keeping these ends .in engagement with the legs H at all times.
  • the outerencl of the toggle member .12 passes loosely around the bolt 73 and it is prevented from sliding over the end of the bolt by the washer 14 and the nut 15.
  • the outer end of the toggle member 82 passes loosely through a yoke 85 which is mounted for vertical sliding movement on the two pins 86.
  • the valve stems 56 and 66 have their upper ends secured by nuts to the yoke 85 so that when the yoke moves up and down on the pins 86, corresponding vertical movement is impart-ed to these valve stems.
  • the valve stem 56 is provided with two spaced valve members 51 and 58 (Figs. 5 and 6).
  • the valve 51 is seated, closing the orifice 53, and the valve 58 is unseated, permittin gas to pass through the orifice 54.
  • the valve 58 is seated, closingthe orifice 54, and 'the valve 51 is unseated, permitting gas to pass through the orifice 53.
  • this stem is in the elevated position of Fig. 5, the valve 61 is seated, closing the orifice'63, and the'valve68 is unseated, permitting gas to pass through the ori- 'fice 64.
  • the patient In use, the patient usually reclines and the mask is placed over his nose and mouth and heldfirmly in place by one hand of the operator, sealing both nose and mouth from atmospheric pressure. A constant supplyof air under positive pressure is maintained in the positive pressure reservoir I I. This air, under positive pressure, thatis tosay, super-atmospheric, is continuously delivered through the restricted orifice 43 (Fig.
  • the stem 56 is elevated (as shown in Fig. 5) the stem .66 is also elevated and the orifice 64 is opened.
  • the air passing at high velocity through the orifices 43 and 45 aspirates or suction in the tube 6!, the second valve chamber 62, the passage 65, the valve reversing or metor chamber 35!, the members 3'1, 38 the face mask M and the patients lungs, thus drawing gas from his lungs and eventually forcin it out through the orifice 53 to the atmosphere.
  • an artificial resuscitator of the kind wherein gas supplies the energy for alternately inflating and deflating the lungs and having a face mask provided with a rigid attaching nipple a case of asize such that it may be held in the palm of one hand, said case having a rigid nipple constructed and arranged for releasable connection to the nipple on the mask thereby detachably to unite the case and mask, an aspirator 5B and 66, closing the port 64 and opening the port 54, thus closing the passage 65 so that negative pressure or suction is no longer created therein. This terminates the period of exhalation and automatically begins the next period of in halation.
  • valve port between the intermediate inlet chamber and the upper inlet chamber, a valve port between each intermediate chamber and the atmosphere, a valve for controlling each of said ports, means for connecting the inlet valves and means con necting the delivery valves, the connecting means being so designed and arranged that when one inlet valve is seated the other is unseated and when one delivery valve is seated the other is unseated, means operative to move all of said valves simultaneously, the connectin means being so arranged that when the inlet port leading to the atmosphere is open the delivery port leading to the atmosphere is closed and vice versa, 2, conduit leading from the intermediate delivery chamber to the suction side of the nozzle, a conduit leading from the delivery of the nozzle to the nozzle within the case, two pairs of valves within the case, said valves being operative to change the course of the gaseous medium delivered to and from the aspiratornozzle thereby alternately to deliver gaseous medium to the mask and to withdraw gaseous medium from the mask respectively, and a pressure-actuated diaphragm with in the case, said
  • a resuscitator of the type which is automatically operated by gas under pressure, a Venturi chamber, a nozzle arranged to deliver gas into said Venturi chamber, a gas inlet conduit leading from said source of gas to said nozzle, an exhalation conduit leading to said chamber, an exit port leading from said chamber, a motor chamber, a movable pressure-responsive member in said motor chamber, and a conduit affording communication between said motor chamber and the patient
  • the improvement which comprises a first valve chamber, a second valve chamber, a conduit leading from said exit port to the first valve chamber, a conduit leading from said first valve chamber to the atmosphere, a conduit leading from said first valve chamber to the motor chamber, a valve means operative to open the conduit leading from said first valve chamber to the atmosphere during each period of exhalation by the patient, to close said conduit during each period of inhalation by the patient, to open said conduit leading from the first valve chamber to the valve-reversing chamber during each period of inhalation by the patient and to close said conduit during each period of excitation
  • a resuscitator comprising a rigid support, means carried by said support defining a Venturi chamber, an atmospheric pressure chamber one wall of which is formed by said support, a flexible diaphragm having its edges secured to said support to close said atmospheric pressure chambar, a port in said support continuously affording communication between said atmospheric pressure chamber and the atmosphere, a rigid mem- :bersecuredxto the support andpwithithe latter,

Description

Dec. 12, 1944. J. .H. EMERSON 2,364,626
RES US CITATOR Filed Nov. 9, 1942' erably substantially constant pressure. herein reierence'is made to a gas, gaseous fluid Patented Dec. 12, 1944 UNITED STATES PATENT OFFICE RESUSCITATOR John H. Emerson, Cambridge, Mass. Application November 9, 1942, Serial No. 464,948
4 Claims. (01. 12830) This invention relates to apparatus of automatic type, wherein gas supplied under pressure acts alternately to inflate and deflate the lungs, designed in particular for treating patients who are unable to breathe normally, as, for example, when suffering from gas asphyxiation, drowning or the like. The principal object of this invention is to provide a small, compact, portable resuscitator which is light and may be conveniently used in the field for first aid punposes.
A further object is to provide a resuscitator which may be manipulated by a single attendant.
Other objects relate to the construction and mode of operation and will be apparent from a consideration of the following description and the accompanying drawing which exemplifies one 3 Fig.2;
Fig. 5 is an enlarged section taken on the lines 55 of Fig. 2;
Fig. 6 is a section taken on the lines 6-6 of Fig. 5; and
Fig. 7 is a reduced of Fig. 6. v
For effective operation the apparatus requires a source of gas under super-atmospheric,- pref- When section on the lines 1-4 v. of the plunger and stored in the reservoir [1.
The pressure gauge [3 indicates the gas pressure in the reservoir ll. Such a pump serves as a convenient light and portable source of gas under positive pressure for field use of the improved resuscitator device. It should be understood,
however, that any other source of gas may be used, such as a cylinder of compressed oxygen- The operative parts of the resuscitator (Fig. 1) are all contained in the two-piece housing This housing or casing is hollow and externally shaped and dimensioned to permit it to be held in the palm of one hand, in effect constituting a handle for the mask M which is attached directly to the housing or casing by a rigid connection, thus leaving the other hand free to operate the plunger of the pump. The
face mask M is detachably secured to the resuscitator R, preferably by a telescopic rigid connection, The weight of the resuscitator is so small that when a patient reclines, his head can comfortably support the entire resuscitator (exclusive of the pump), its weight being distributed over the area of his face which is in contact with the face mask M.
Thetwo housing parts w and I5 are devtachably secured together by two screws I6 (Fig.
1) which pass through the flange ll of the member l5 'and the edge portion of the member l5? -23 constituting the pressure-actuated element of a fluid-pressure motor which is sensitively responsive to lung pressure. The edges of this disk-shaped diaphragm 23 are secured to the casting by the clamping ring 24 (Fig. 7) which is held in place by the screws 25 which pass through the ring 24, the diaphragm 23, and into the casting 20. A port 26 (Fig. 3) extends out through the part 20 and continuously provides communication between the atmospheric pressure chamber 22 and the atmosphere. The perforations 21 (Fig. 2) in the housing member I5 admit atmospheric pressure to the interior of the housing I5 I5 A valve reversing or motor chamber 30 (Figs. 6 and 5) is provided by a rigid cap member 3! including a cylindrical flange 32, the lower edge a of which engages a gasket 33 which extends around the edge of the upper face of the casting 20. The flange 32 is held tightly against the gasket 33 by two screws (not shown) which extend through the cap 3| and into the threaded holes 35 (Fig. 7) in the part 20. A rigid, tubular promotion or nipple 31 is secured to or formed integrally with the cap 3| and affords communication between the valve reversing chamber 30 (Fig. 6) and the interior of the mask M (Fig. 1). The mask is directly secured to the casing, the mask having a tubular member 38 (Fig. 1) which telescopes over the outer surface of the tubular member 31, thus permitting the separation of the mask and casing when desired.
One end of a flexible rubber tube 40 (Fig. 1) is detachably connected with the outlet from the positive pressure gas reservoir H by a bayonet coupling. The other end of this tube or conduit 40 is connected to one end of the metallic nozzle tube 42 (Figs. 2, 3 and 4). The opposite end of the tube 42 (Fig. 6) is shaped to constitute the primary nozzle of an aspirator device, having an orifice 43 of restricted cross-section so that the speed of the gas passingthrough the orifice is accelerated. The gas passing through the orifice is supplied from the positivepressure reservoir ll through the tube 40.
The orifice 43 of the 'rprimary'nozzle delivers the'fiuid into the interior of the secondary or forcer nozzle 44 which has an orifice 45 of slightly larger cross-section than that of the orifice'43.
passage coaxial with'atube 50 which leads to 'valve chamber 5|. munication between'the chamber'fl-and'a tube 6| An orifice 60 affords comwhich leads from the secondvalvechamber'62 (Fig. 5).
The first valve chamber 5|, hereinafter referred to'for convenience as-the intermediate delivery chamber, (Figs. Bend 6), is provided with a port 53 which communicates with the atmosphere and his also provided with a'port' 54 which communicates with'the-chamber 55, hereinafter 'referred to for convenience as the upper delivery chamber, communicating with the valve reversing or motor chamber '30.
The second valve chamber 62, hereinafter referred'to fo'r convenience as theintermediate inlet chamber, is provided with'a port 63 which communicates-with the atmosphere and it is also provided' with 'a'port64which communicates with thechamber 65, hereinafter referred to for convenienceas the upper'inlet chamber, communicating with the valve reversing or motor chamber 30.
The motor .mechanism is substantially identical withthat'disclosed in the patent to Sinnett No. 2,268,172, December 30, .1941, comprising a U-shaped member 10 having :parallel legs H, II (Figs.-.6 and-7). This member lflis'secured at its base-to the-center of *the'diaphragm 23 so that it is carried up and down by corresponding movement of the center of the diaphragm. The inner adjacent ends of the toggle members 12 and 82 are pivotally supported by the edges of the legs H, H which engage grooves provided in the ends of .the toggle-members. The coiled tension spring serves to force the adjacent inner-ends of these toggle members toward each other at all times, thereby keeping these ends .in engagement with the legs H at all times.
The outerencl of the toggle member .12 passes loosely around the bolt 73 and it is prevented from sliding over the end of the bolt by the washer 14 and the nut 15.
The outer end of the toggle member 82 passes loosely through a yoke 85 which is mounted for vertical sliding movement on the two pins 86. The valve stems 56 and 66 have their upper ends secured by nuts to the yoke 85 so that when the yoke moves up and down on the pins 86, corresponding vertical movement is impart-ed to these valve stems.
The valve stem 56 is provided with two spaced valve members 51 and 58 (Figs. 5 and 6). When the stem 56 is in the lowered position of Fig. 6, the valve 51 is seated, closing the orifice 53, and the valve 58 is unseated, permittin gas to pass through the orifice 54. When the stem 56 is in the elevated position of Fig. 5, the valve 58 is seated, closingthe orifice 54, and 'the valve 51 is unseated, permitting gas to pass through the orifice 53.
The valve stemtfifi is provided with two spaced = valvemembers 61 and 68. When this stem is in the elevated position of Fig. 5, the valve 61 is seated, closing the orifice'63, and the'valve68 is unseated, permitting gas to pass through the ori- 'fice 64. When the stem=66 is in lowered position (not shown) the valve '68 is seated, closing the orifice 64, and the valve 61 isunseated, permitting gas to pass through the orifice 63.
In use, the patient usually reclines and the mask is placed over his nose and mouth and heldfirmly in place by one hand of the operator, sealing both nose and mouth from atmospheric pressure. A constant supplyof air under positive pressure is maintained in the positive pressure reservoir I I. This air, under positive pressure, thatis tosay, super-atmospheric, is continuously delivered through the restricted orifice 43 (Fig.
6), the larger orifice 45, and the still larger outlet port 48 and thence through the tube 50 into the'valve chamber 5!. When the valves 51 and 58 are in the lowered position of Fig. 6, the air emerging from the chamber 41 through the port 48 is conducted upwardly through the passage into the valve reversing or motor chamber 30,
outer ends of the toggle members 12 and 82 to move upwardly. The upward movement of the toggle member 82 causes the yoke 85 to slide upwardly along the pins 86 thereby elevating the valve stems 56 and 66. As soon as the stem 56 is elevated, the valve 58 seatsand immediately stops the passage of air through-the port 54 and causes the air emerging from the tube 50 togo out to the atmosphere through the orifice 53. This terminates-the first forced inhalation, and it is terminated because the lungs have receiveda nor- .mal quantity of air for inhalation when the increased positive pressure in the lungs causes the diaphragm 23 to trip and to reverse'the valves.
The moment the stem 56 is elevated (as shown in Fig. 5) the stem .66 is also elevated and the orifice 64 is opened. The air passing at high velocity through the orifices 43 and 45 aspirates or suction in the tube 6!, the second valve chamber 62, the passage 65, the valve reversing or metor chamber 35!, the members 3'1, 38 the face mask M and the patients lungs, thus drawing gas from his lungs and eventually forcin it out through the orifice 53 to the atmosphere.
As the gases are withdrawn from the patients lungs, the negative pressure in his lungs'and in the valve reversing chamber lil increases and it finally becomes strong enough to draw thecenter of the diaphragm 23 upwardly again to the position of Fig. 6. This automatically lowers the valve stems intermediate inlet chamber, and means providing a passage leading from the upper delivery chamher to theface mask.
2. In an artificial resuscitator of the kind wherein gas supplies the energy for alternately inflating and deflating the lungs and having a face mask provided with a rigid attaching nipple, a case of asize such that it may be held in the palm of one hand, said case having a rigid nipple constructed and arranged for releasable connection to the nipple on the mask thereby detachably to unite the case and mask, an aspirator 5B and 66, closing the port 64 and opening the port 54, thus closing the passage 65 so that negative pressure or suction is no longer created therein. This terminates the period of exhalation and automatically begins the next period of in halation.
It will be observed that during inhalation the port 63 is open so that air is sucked through it into the valve chamber 62, the tube GI and the chamber 47. This air mixes with the air which is emitted from the tube 42 and passes to the patient during inhalation, thus reducing the quantity of air removed from the positive pressure reservoir l l during each inhalation.
While I have shown and described one desirable embodiment of the invention, it is to be understood that this disclosure is for the purpose of illustration only and that variou changes in shape, proportion and arrangement of parts and the substitution of equivalent elements may be made without departing from the spirit and scope of the invention as set forth in the appended claims.
Iclaim:
1. In an automatic resuscitator of the kind wherein gas supplied under super-atmospheric pressure provides the energy for alternately infiating and deflating the lungs and having a face mask and a hollow handle rigidly united to the face mask, the handle havin therein a motor chamber, a nozzle device comprising a housing provided with a Venturi chamber and a nozzle for delivering'a jet of pressure fluid into said chamber, the parts being so designed that a suction is created in the Venturi chamber by the action oi the jet, the handle also having therein an upper inlet and an upper delivery chamber each communicating with the motor chamber, the casing also having therein an intermediate inlet chamber and an intermediate delivery chamber, a valve port between the intermediate delivery chamber and the upper delivery chamber. a valve port between the intermediate inlet chamber and the upper inlet chamber, a valve port between each intermediate chamber and the atmosphere, a valve for controlling each of said ports, means for connecting the inlet valves and means con necting the delivery valves, the connecting means being so designed and arranged that when one inlet valve is seated the other is unseated and when one delivery valve is seated the other is unseated, means operative to move all of said valves simultaneously, the connectin means being so arranged that when the inlet port leading to the atmosphere is open the delivery port leading to the atmosphere is closed and vice versa, 2, conduit leading from the intermediate delivery chamber to the suction side of the nozzle, a conduit leading from the delivery of the nozzle to the nozzle within the case, two pairs of valves within the case, said valves being operative to change the course of the gaseous medium delivered to and from the aspiratornozzle thereby alternately to deliver gaseous medium to the mask and to withdraw gaseous medium from the mask respectively, and a pressure-actuated diaphragm with in the case, said diaphragm being operative in response to lung pressure automatically to actuate the valves, the connected nipples of the case and mask providing a single passage through which gas flows to and from the mask, and a single flexible conduit for supplying gas to the nozzle.
I 3. In a resuscitator of the type, which is automatically operated by gas under pressure, a Venturi chamber, a nozzle arranged to deliver gas into said Venturi chamber, a gas inlet conduit leading from said source of gas to said nozzle, an exhalation conduit leading to said chamber, an exit port leading from said chamber, a motor chamber, a movable pressure-responsive member in said motor chamber, and a conduit affording communication between said motor chamber and the patient, the improvement which comprises a first valve chamber, a second valve chamber, a conduit leading from said exit port to the first valve chamber, a conduit leading from said first valve chamber to the atmosphere, a conduit leading from said first valve chamber to the motor chamber, a valve means operative to open the conduit leading from said first valve chamber to the atmosphere during each period of exhalation by the patient, to close said conduit during each period of inhalation by the patient, to open said conduit leading from the first valve chamber to the valve-reversing chamber during each period of inhalation by the patient and to close said conduit during each period of exhalation, a conduit leading from said Venturi chamber exhalation port to said second valve chamber, a conduit leading from said second valve chamber to said valve-reversing chamber, a conduit leading from said second valve chamber to the atmosphere, and valve means associated with said valvereversing member adapted to open said conduit leading from said second valve chamber to said valve-reversing chamber during each period of exhalation by the patient, to close said conduit during each period of inhalation, to open said conduit leading from said second valve chamber to the atmosphere during each period of inhalation and to close said conduit during each period of exhalation.
4. A resuscitator comprising a rigid support, means carried by said support defining a Venturi chamber, an atmospheric pressure chamber one wall of which is formed by said support, a flexible diaphragm having its edges secured to said support to close said atmospheric pressure chambar, a port in said support continuously affording communication between said atmospheric pressure chamber and the atmosphere, a rigid mem- :bersecuredxto the support andpwithithe latter,
:providingamotorchamber'one wall of which is formed by the diaphragm, arigidxconduit extending from 'oneside of :said support, a :face 'maskdetachablysbut rigidlysecuredto said rigid con'duit,:said conduit affording communication rbetweensaid face mask-and said motor chamber, :aconduit adapted to afford communication 'be tween a nozzle leading to said Venturi chamber and a source of gas under positive pressure, an exhalation conduit aifording communication between said Venturi chamber and said motor chamber, .an inhalation conduit affording communication between said Venturi chamber and said motor chamber, a port affording communi- :cation between said inhalation conduit and the communication between said Venturi chamber and said motor chamber through said exhalation conduit during each period of exhalation by the patient, to close said communication during each period of inhalation, to open communicationbetween said Venturi chamber and said port to the atmosphere during each period of exhalation, to close said communication during each period of inhalation, to open communication between said Venturi chamber and said valve-reversing chamber through said inhalation conduit during each period of inhalation and to close said communica tion during each period of exhalation, whereby a small compact resuscitator is provided which may be supported by the patients head while he reclines with the face mask in position over his nose and mouth.
JOHN H. EMERSON.
US464948A 1942-11-09 1942-11-09 Resuscitator Expired - Lifetime US2364626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US464948A US2364626A (en) 1942-11-09 1942-11-09 Resuscitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US464948A US2364626A (en) 1942-11-09 1942-11-09 Resuscitator

Publications (1)

Publication Number Publication Date
US2364626A true US2364626A (en) 1944-12-12

Family

ID=23845908

Family Applications (1)

Application Number Title Priority Date Filing Date
US464948A Expired - Lifetime US2364626A (en) 1942-11-09 1942-11-09 Resuscitator

Country Status (1)

Country Link
US (1) US2364626A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2468741A (en) * 1944-12-12 1949-05-03 John H Emerson Breathing apparatus
US2611391A (en) * 1945-12-14 1952-09-23 Ross Operating Valve Co Valve
US2814310A (en) * 1950-12-18 1957-11-26 Lee Gilbert Timing valve mechanism for pneumatically actuated well pumping devices
US2950732A (en) * 1958-09-11 1960-08-30 Rotax Ltd Compressed air or other gas control valves
US3221733A (en) * 1961-10-02 1965-12-07 Bennett Respiration Products I Pressure breathing therapy unit
US3480011A (en) * 1966-03-07 1969-11-25 Spirotechnique Device for discharging the gases exhaled by the wearer of a respiratory apparatus
US5230330A (en) * 1990-03-06 1993-07-27 Price William E Resuscitation and inhalation device
US5345929A (en) * 1990-06-11 1994-09-13 Jansson Lars Erik Pumping device
US5398714A (en) * 1990-03-06 1995-03-21 Price; William E. Resuscitation and inhalation device
US20050039749A1 (en) * 2003-09-08 2005-02-24 Emerson George P. Insufflation-exsufflation system for removal of broncho-pulmonary secretions with automatic triggering of inhalation phase
US20050051174A1 (en) * 2003-09-08 2005-03-10 Emerson George P. Insufflation-exsufflation system with percussive assist for removal of broncho-pulmonary secretions
US20090014001A1 (en) * 2007-06-29 2009-01-15 Helge Myklebust Method and apparatus for providing ventilation and perfusion
US20100206399A1 (en) * 2007-04-19 2010-08-19 Subsea 7 Limited Protection system and method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2468741A (en) * 1944-12-12 1949-05-03 John H Emerson Breathing apparatus
US2611391A (en) * 1945-12-14 1952-09-23 Ross Operating Valve Co Valve
US2814310A (en) * 1950-12-18 1957-11-26 Lee Gilbert Timing valve mechanism for pneumatically actuated well pumping devices
US2950732A (en) * 1958-09-11 1960-08-30 Rotax Ltd Compressed air or other gas control valves
US3221733A (en) * 1961-10-02 1965-12-07 Bennett Respiration Products I Pressure breathing therapy unit
US3480011A (en) * 1966-03-07 1969-11-25 Spirotechnique Device for discharging the gases exhaled by the wearer of a respiratory apparatus
US5398714A (en) * 1990-03-06 1995-03-21 Price; William E. Resuscitation and inhalation device
US5230330A (en) * 1990-03-06 1993-07-27 Price William E Resuscitation and inhalation device
US5345929A (en) * 1990-06-11 1994-09-13 Jansson Lars Erik Pumping device
US20050039749A1 (en) * 2003-09-08 2005-02-24 Emerson George P. Insufflation-exsufflation system for removal of broncho-pulmonary secretions with automatic triggering of inhalation phase
US6860265B1 (en) * 2003-09-08 2005-03-01 J.H. Emerson Company Insufflation-exsufflation system for removal of broncho-pulmonary secretions with automatic triggering of inhalation phase
US20050051174A1 (en) * 2003-09-08 2005-03-10 Emerson George P. Insufflation-exsufflation system with percussive assist for removal of broncho-pulmonary secretions
US6929007B2 (en) 2003-09-08 2005-08-16 J.H. Emerson Company Insufflation-exsufflation system with percussive assist for removal of broncho-pulmonary secretions
US20100206399A1 (en) * 2007-04-19 2010-08-19 Subsea 7 Limited Protection system and method
US8714176B2 (en) * 2007-04-19 2014-05-06 Subsea 7 Limited Protection system and method
US20090014001A1 (en) * 2007-06-29 2009-01-15 Helge Myklebust Method and apparatus for providing ventilation and perfusion

Similar Documents

Publication Publication Date Title
US2364626A (en) Resuscitator
US3485243A (en) Respirator with improved exhalation valve and control means
US4141354A (en) Ventilator system for controlling, assisting and monitoring a patient's breathing
US3319627A (en) Intermittent positive pressure breathing apparatus
US3584621A (en) Respiratory apparatus
US2376348A (en) Resuscitator
US2408136A (en) Resuscitator insufflator aspirator
US4905688A (en) Portable light weight completely self-contained emergency single patient ventilator/resuscitator
US3915164A (en) Ventilator
US2399643A (en) Resuscitator
US3730180A (en) Pneumatically operated ventilator
US2268172A (en) Resuscitator
US3859995A (en) Breathing assist apparatus
GB990870A (en) An improved valve assembly for use with breathing apparatus
US2378047A (en) Oxygen flow regulator
US2185997A (en) Means for supplying to individual persons an oxygenated gas mixture
GB748363A (en) Improvements in or relating to fluid actuated valves
GB904094A (en) Anesthetizing and gas therapy apparatus
US2269904A (en) Resuscitator-aspirator-insufflator
US2774352A (en) Breathing assistor valve
US2468741A (en) Breathing apparatus
US2452670A (en) Breathing apparatus
US2737176A (en) Breathing machine
US1896716A (en) Gas handling apparatus
USRE23496E (en) Seeler