Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS2406888 A
Tipo de publicaciónConcesión
Fecha de publicación3 Sep 1946
Fecha de presentación6 Jun 1944
Fecha de prioridad6 Jun 1944
Número de publicaciónUS 2406888 A, US 2406888A, US-A-2406888, US2406888 A, US2406888A
InventoresJr Phillip E Meidenbauer
Cesionario originalScott Aviation Corp
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Breathing apparatus
US 2406888 A
Imágenes(3)
Previous page
Next page
Descripción  (El texto procesado por OCR puede contener errores)

Sept. 3, 1946.

P. E. MEIDENBAUER, JR

BREATHING APPARATUS "File d June 6, 1944 3 Sheets-Sheet 1 INVENTOR.

BY g p W 4% BREATHING APPARATUS Filed June 6, 1944 3 Sh'e'ets-Sheet 2 0 52 aw w w m m. 1 G MW w W mm BY W M in

Patented Sept. 3, 1946 BREATHING APPARATUS Phillip E. Meidenbauer, Jr., Lancaster, N. Y., as-

signor to Scott Aviation Corporation, Lancaster, N. Y., a corporation of New York Application June 6, 1944, Serial No. 538,923

1 Claim. 1 This invention relates to a breathing apparatus and method of using the same which is more particularly designed for use by persons at or below ground level in mines or other such locations where, because of accident or for some other reason, the air is either full of explosive, poisonous or noxious vapors, or is contaminated with fine dust particles, or is deficient in oxygen content, or is at abnormally high pressure.

In order to enable a workman, operator or other person to enter any of such atmospheres or a combination thereof with safety it is desirable to utilize a portable breathing apparatus which prevents the wearer from being affected injuriously by any of these atmospheres.

It is the object of this invention to provide a simple, efficient and convenient apparatus for this purpose which can be readily carried by the person to be protected and easily and instantly operated in case of emergency to meet varying conditions and thus constantly safeguard the person using the apparatus.

In the accompanying drawings:

Fig. l is a perspective view of a mask embodying some of the features of this invention.

Fig. 2 is a similar view of the means for controlling the flow of air, gas or vapor to the mask in accordance with this invention.

Fig. 3 is a similar view of the storage means for carrying a supply of compressed air, oxygen or the likeior use in this apparatus and embodying another feature of this invention.

Fig. 4. is a fragmentary sectional view showing a form of valve suitable for use in controlling the supply of compressed air, oxygen or the like to the apparatus when required in case of an emergency.

Fig. 5 is a vertical section of the means for controlling the flow of gas to the mask and associated parts.

Fig. 6 is a side view of a form of low resistance exhalation valve which is suitable for use in connection with the mask and capable of being rendered operative and inoperative at will.

Fig. '7 is a vertical section, taken on line 1-1,

Fig. 6.

Fig. 8 is a vertical section of a high resistance exhalation valve adapted to be used in connection with the mask.

Fig. 9 is a cross section of a coupling for quickly connecting tubular members of this apparatus, this section being taken on line 9-9,

Fig. 5. V l a Fig. 10 is a vertical section of the gas control mechanism of this apparatus, taken online Ill-l0, Fig. 5 and showing more particularly the demand valve mechanism in a position in which the same will be opened and closed in response to the breathing of a person.

Fig. 11 is a similar View showing the demand valve held in its open position.

Fig. 12 is a fragmentary vertical section of a modified means for taking care of surging gas in this apparatus.

In the following description similar reference characters indicate like parts in the several figures of the drawings.

. In its general organization this breathing apparatus comprises gas storage means from which air, oxygen or the like are supplied to the apparatus, control means whereby the flow of gas received from the storage means is controlled to suit requirements, and gas using or feeding means whereby live gas is delivered from the control means to the person using the apparatus and the spent gas is discharged to the atmosphere.

. In the preferred form of the gas storage means the same, as shown in Figs. 3 and 4, are constructed as follows:

The numeral 20 represents the whole of a harness whereby gas storage means are supported on the body of a person and which includes a belt 2| adapted to pass around the waist of a person and suspenders 22 connected with the belt and passing over the shoulders of the person. In rear of the harness is arranged a sling or carrier whereby the gas containers are detachably mounted on the harness and which preferably comprises a comparatively wide flexible band 23 adapted to firmly and snugly receive the gas containers and having its central front part connected with the rear part of the harness and its opposed rear ends connected with each other by a lacing 24 passing through eyes 25 on the band and having its end tied together by a bow 2G in the manner of shoe strings. The gas container preferably comprises a plurality of containers, bottles or holders of relatively small diameter instead of a single bottle of large diameter inasmuch as a plurality of small bottles can be so arranged that the same comfortably straddle the spine of the person or worker and also project rearwardly a lesser distance. In the preferred construction shown in Fig. 3 two upright cylindrical front bottles or containers 21, 21 serve as the main storage means and are arranged transversely side by side within the band, and a third upright cylindrical rear bottle or container 28 which serves as auxiliary or emergency storage means is nested between the rear parts of the front bottles, these bottles forming a cluster or group which is tightly held against movement within the sling band 23 and relative to each other by tightening the lacing 24 sufficient for this purpose. Each of the main bottles 21 is adapted to be filled with compressed air at a pressure of about 1000 lbs. per square inch and the small emergency bottle 28 is adapted to be filled either with compressed air at about 1800 lbs. per square inch pressure or the same may be filled with liquid or compressed oxygen while the large main bottles 21 are filled with compressed air.

Each of the main compressed air bottles 27 is provided at its lower end with a tubular neck through which the same is filled and emptied, this neck, while the apparatus is in use, being detachably connected by a quick connect coupling with a flexible branch delivery hose 3%. This quick connect coupling consists generally of a tubular male plug 31 arranged on the neck 29 of the respective bottle and pushed into a female socket 32 of the respective branch hose 30.

Preparatory to mounting the main compressed air storage bottles 2i in the sling of the harness and using the breathing apparatus each of these bottles is removed from the sling and filled with compressed air by connecting its neck 29 temporarily with a main compressed air supply tank (not shown in the drawings), this being preferably accomplished by pushing the plug 3! of the quick connect coupling.

The auxiliary or emergency bottle 23 may be filled with the desired kind of compressed gas by screwing the tubular neck 33 at its lower end onto the pipe 34 of a storage tank containing a compressed supply of the gas desired.

Each of the main compressed air storage bottles 2'! and the emergency compressed gas storage bottle 28 is provided at its upper end with a pressure gage 35 which enables the operator to determine whether the respective bottle contains air or gas at the required pressure.

The discharge of compressed air from the main compressed air storage bottles is controlled by the manually and automatically actuated controlling mechanism during normal operation of the apparatus in which case the main air supply bottles 2'! contain suffieient air to adequately supply the requirements of usual conditions. Under normal conditions the outlet port 36 in the neck of the emergency bottle28 is closed by an emergency valve which preferably has the form of a screw plug 31 having a threaded connection with the neck 33 so that upon screwing this plug tight the same will close the port 36 and shut off the escape of gas from the emergency bottle 28, as shown in Fig. 4. If, however, the supply of compressed air from the main bottles 21 is exhausted or deficient the operator unscrews the valve plug 31, thus opening the outlet of the emergency bottle and permitting the gas stored therein to be utilized in the apparatus. This emergency valve is preferably sealed or held against being turned into an open position by a sealing wire 38 which passes through an eye 39 on the outer end of the valve plug 3? and is sol dered to the adjacent part of the neck 33, thereby preventing this valve from being opened accidentally and making it necessary for the operator to rip oil the sealing wire 38 before this valve can be opened and'permit the emergency supply of compressed gas to enter the breathing apparatus and aid the operator.

The gas from the several storage bottles 21, 23 may be carried to the control mechanism in various ways, but preferably by the meam shown in Fig. 3 in which these bottles are connected in parallel by means of a manifold or cross-shaped tubular fitting having four branches one of which is connected with the branch hose or tube 30 of one main compressed air storage bottle 2i, the second of which is connected with the branch hose 3!) of the other main compressed air storage bottle, the third of which is connected with the outlet neck 33 of the emergency compressed gas storage bottle 28, and the fourth of which connects with a main flexible gas or air delivery hose or tube 4| which leads to the gas control mechanism.

For convenience in using the breathing apparatus and keeping the main delivery hose from getting in the way, a part of this tube between the compressed air and as storage bottles is supported on the harness preferably by arranging a part of this hose in a tube 42 formed on the belt 2| of theharness by stitching together a plurality of layers constituting a part of this belt, as shown in Fig. 3.

The controlling mechanism which is interposed between the compressed air or gas storage means and the means which feed this air or gas to the person using the apparatus include means which reduce the pressure of the air or gas from the high pressure at which it is stored in the bottles 21, 28 to a low pressure of about 0.75 inch of water at which the same can be fed to the person using the breathing apparatus.

Pressure reducing mechanism suitable for this purpose is disclosed in United States patent application Ser. No. 505,172 and is constructed and operated as follows:

The numeral 13 represents the case of a control mechanism which may be attached to supported on the harness or any suitable part of the garment of the person using the apparatus by means of a clip 44. Within this case is arranged a body 45, the lower part of which contains a high pressure chamber 46 and the upper part of which contains a low pressure chamber 41. The outer end of the high pressure chamber is detachably connected by a quick connect coupling with the delivery hose ll by a male tubular coupling plug 48 connected with the outer end of the high pressure chamber and pushed into a female socket 493 on the delivery hose 4|. Communication between the high and low pressure chambers 46, 41 is controlled by a pressure reducing mechanism which is constructed as follows and shown in Figs. 2, 5, l0 and 11:

The numeral 50 represents a valve seat formed around the port between the high and low pressure chambers and 5| a reducing valve movable toward and from the seat for closing and opening said port. Within the low pressure chamber is arranged a bell crank or L-shaped lever 52 one arm of which bears against the inner end of the reducing valve 5| and the other arm of which is connected by a rod 53 with a head 54 which closes the movable end of a bellows 55. The fixed end of this bellows is secured to the body 55 and its interior communicates with the high pressure chamber so that the interior of the bellows is exposed to the same pressure which exists in the high pressure chamber. The head 54 of the bellows is subjected to the pressure of the spring 56 which tends to collapse the bellows which spring bears at its outer end against a follower 51 the position of which may be adjusted by a pressure adjusting screw 58 for varying the eifect of this spring. This adjusting screw 58 is mounted on a bracket 59 which is connected with the body 45.

When the pressure within the low pressure chamber has been reduced to the desired degree, the bellows are expanded and turn the bell crank lever 52 so that the same moves the reducing valve into its closed position, as shown in Fig. 5, thereby preventing the further admission of high pressure medium from the high pressure chamber into the low pressure chamber. When thepressure in the low. pressurechamber drops below normal the return spring 55 contracts the bellows and turns the bell crank lever 52 with the aid of an auxiliary spring 60 and permits the reducing valve to open under the pressure existing in the high pressure chamber and thereby allows the air or gas under high pressure to flow from the high pressure chamber into the low pressure chamber. When the normal pressure has again been restored in the low pressure chamber the bellows expands and turns the bell crank lever in the direction for shutting the reducing valve and arresting the flow of pressure medium from the high pressure chamber into the low pressure chamber.

In order to enable the user of the breathing apparatus to readily observe the pressure in the high pressure chamber the latter is connected by a passage 6| with a pressure indicator 62 mounted on the top of the case where the same can be conveniently read.

If desired the high pressure chamber may be supplied directly with a main or large source of compressed air or gaseous medium instead of from the bottles 21, 28 which are of relatively small capacity. For this purpose the body 45 is provided externally of the case 43 with a quick connect coupling whereby the high pressure chamber 41 may be connected with a main low pressure source independently of the pressure storage bottles 21, 28. As shown in Figs. 2 and 5 this quick connect coupling comprises a tubular male coupling plug 53, pushed into a female coupling socket 64 forming part of a main hose or tube 65 which communicates with a main or large source of pressure medium. This plug 63 may also be used to simultaneously charge both bottles 21, 21.

Although the quick connect couplings 3|, 32;

as, as; and as, 64 may be of any suitable construction that form shown in detail in Figs. 5 and 9 is preferred and constructed as follows:

The male member or plug of this quick connect coupling is provided with a conical periphery or tapering surface 66 and the bore 61 of the socket or female member of this coupling which is engaged by this conical periphery is of corresponding tapering or conical form, as shown in Fig. 5. As the plug 53 is pushed into the socket 64 the conical surface of the plug engages with two locking jaws 68 and spreads them and at the inner end of this movement these jaws contract and engage an annular groove 69 on the coupling plug whereby the plug and socket of the quick connect coupling are locked together. These jaws are pivoted by pins H to the socket member 64 and are yieldingly held in engagement with the groove 69 by springs on the socket member 64. When it is desired to ,unoouple the plug and socket of the quick connect coupling, this may be effected by turning a cup-shaped releasing sleeve l2 on the periphery of the coupling socket whereby releasing pins 13 on this sleeve are caused to spread the jaws 68 and disengage the same from the groove 69 of the coupling plug and thereby permit the latter and the coupling socket to be pulled apart. Rotation of the releasing sleeve is limited by a stop pin 14 on the releasing sleeve engaging with a circumferential slot [5 in this sleeve, as shown in Fig. 9.

A check valve, similar to air tire valves, is employed in connecting the members of each quick connect coupling so that when the members of the same are connected the passage between the same will be opened but when these members are separated backward flow through the male member will be shut off. The main elements of such a check valve shown in Fig. 5 include a closure member 76 which is yieldin'gly held in its closed position by a spring ll and a releasing pin '18 arranged in the socket 64 of the coupling and operating against the stem 19 of the closure member for opening the check valve when the plug and socket of the quick connect coupling are pushed together.

The body 45 forming part of the flow control means is spaced from the case 43 to form an intermediate delivery or respiration chamber 80 which is adapted to receive low pressure breathing fluid from the low pressure chamber 4'! and supply the same to the means which feed this fluid to the person using the apparatus as required. The flow of this breathing fluid from the low pressure chamber to the delivery chamher is controlled by demand valve means which are responsive to the breathing action of the person being supplied with the breathing fluid which demand valve means are similar to those shown in United States patent applications Serial Numbers 466,165 and 505,172 and are constructed. as follows:

The numeral 8| is a fluid port or passage formed in the body 45 and extending from the low pressure chamber to the delivery chamber and having a rearwardly facing demand valve seat 82 at its outlet end, as shown in Figs. 10 and 11. This seat is adapted to be engaged by a rocking demand valve 83 for opening and closing the port 82 which is connected with the inner end of an inclined valve stem 84 projecting into the delivery chamber 80. The outer end of this valve stem engages with the inner side of a flexible diaphragm 85 which forms a part of the wall of the case 83 and has its outer side exposed to atmospheric pressure. Upon exhausting fluid from the delivery chamber by the inhalation of the person being served with this fluid, the diaphragm 85 is drawn inwardly and causes the valve stem 84 to rock the demand valve 83 into an open position, as shown in Fig. 11, thereby permitting the breathing fluid to flow from the low pressure chamber to the delivery chamber. When this inhalation ceases the demand valve is rocked back into its closed position by a spring 86 connected with this valve stem and resting of an adjacent relatively stationary support. Upon moving the demand valve into its closed position the spring 86 also moves the diaphragm outwardly into its expanded position, as indicated in Fig. 10.

For a purpose which will presently appear the demand valve 82 may be held constantly in its open position and thus permit the low pressure breathing fluid to flow from the low pressure chamber into the delivery chamber independently of the breathing action of the person being served. Means suitable for this purpose, shown in Figs. 2, 9 and 10, are similar to those shown in United States patent application Serial No. 505,172 and are constructed as follows:

The numeral 81 represents a cover applied to the case 43 over the outer side of the diaphragm and provided with openings 88 to permit the pressure of the atmosphere to act on the outer side of the diaphragm. The numeral 89 represents a bearing plate which engages with the outer side of the diaphragm and 90 a retaining arm having preferably the form of a leaf spring which has its inner free end connected with the bearing plate 89 while its outer end is connected with the cover 87. Means are provided for permitting the retaining arm 93 to either move inwardly for holding the diaphragm in its collapsed condition and the demand valve in its open position or permitting the diaphragm to expand and the demand valve to close. This is accomplished by a detent projection 91 arranged on the inner side of the retaining arm adjacent to its fixed end, a shifting head 92 movable lengthwise of said arm over said detent 9i and into a position on either side of the same, a shank 93 movable radially in a slot 94 in the cover 3? and carrying said head at its inner end, and a positive pressure knob or fingerpiece 55 arranged outside of the cover and connected with the outer end of said shank. Upon moving said shifting head 92 inwardly nearer the free end of the retaining arm 90 the latter will be held in its outwardly retracted position, as shown in Fig. 10, whereby the diaphragm is free to expand and the demand valve is free to close, but when this shifting head is moved nearer to the fixed end of the retaining arm 81, as shown in Fig. 11, this arm, due to its resilience, will move inwardly and hold the diaphragm in its contracted or collapsed condition and hold the demand valve in a tilted open position. Upon moving the shifting head 92 lengthwise of the retaining arm over the detent 9| in either direction, this detent will yieldingly hold the shifting head in its outer or inner position.

The means for feeding the breathing or sustaining fluid to the person being served may be variously constructed but usually includes a mask, the body 96 of which is applied to the face of the person and held on the head of the same by fastening means Ell similar to those shown in Fig. l, or of any other suitable construction. The breathing fluid is conducted from the delivery or respiration chamber 89 to the interior of this mask by a service tube $8 which is preferably of corrugated form and permanently connected at its upper end with the inlet 99 at the front of the mask while its lower end is detachably connected with the respiration chamber by a quick connect coupling comprising a tubular plug I06] arranged at the lower end of the service tube 98 and adapted to be slipped into a tubular socket l ii! arranged on the top of the case 53 and communicating by a passage 982 with the respiration chamber, as shown in Fig. 5.

Valve means are provided whereby the breathing fluid which is exhaled into the mask may be discharged from the latter to the atmosphere by encountering either practically no resistance or a substantial amount of resistance depending on the conditions under which the apparatus is being used. This is preferably accomplished by means of two exhalation valve units one of which,

termed a primary or main exhalation valve unit,

opens under a low or nearly zero pressure in .the mask for permitting the breath of exhalation to escape from the mask to the atmosphere but can also be rendered inoperative by manually actuated means so as to prevent escape of breathing fluid from the mask to the atmosphere, while the other, termed a secondary or auxiliary exhalation valve unit, only opens under a relatively high pressure in the mask before the breath of exhalation can escape to the atmosphere. The primary exhalation valve unit, as shown in Figs. 1, 6 and 7, is preferably constructed as follows:

The numerals I03, I04 represent outer and inner valve rings secured to the outer and inner sides of a part of one Wall of the mask around an opening I55 therein forming together the primary exhalation port of this valve unit. The outer valve ring 33 is provided around the outer end of this port with a valve seat I06 and this port is opened and closed by a primary valve H11 which is movable toward and from the seat I06. This valve is guided by means of a stem I 08 projecting outwardly from the central part thereof and sliding in a guideway 09 on the central part of a cap I it which extends over the outer side of the primary exhalation valve and engages with the outer side of the outer valve ring I03. The latter, together with the inner valve ring I04 and the cap lil, are connected and secured to the mask by screws Hi. The primary exhalation valve is yieldingly held in its inner closed position by a comparatively light spring H2 which surrounds the valve stem 28 and its guideway and is interposed between the primary exhalation valve and the cap i It), as shown in Fig. 7. Around its center the cap of the primary exhalation valve is provided with an annular row of openings H3 and on the outer side of this cap is rotatably mounted a disk-shaped shutter I M which is pivoted on the cap by a pivot pin I l5 projecting outwardly from the cap through a central bearing opening H6. This shutter is provided with an annular row of openings H! which may be moved into and out of register with the openings H3 in the cap IN] by turning the shutter manually on the pin 1 l5. Means for limiting the oscillation of the shutter in either direction and arresting the same when its openings are either in register or out of register with the openings in the cap is preferably effected by a stop pin I I8 projecting forwardly from the cap into a segmental or arcuate slot H9 'in the shutter, as shown in Figs. 6 and '7. The shutter disk is frictionally held against rotation by means of a spring E28 preferably of C-shape which is mounted on the pivot pin H5 and interposed between the outer side of the shutter and a shoulder |2l on this pin so that the tension of this spring presses this shutter against the outer side of the cap.

The secondary or auxiliary exhalation valve unit is constructed substantially like the primary exhalation valve .unit with the exception of the shutter device and comprises outer and inner valve rings H2, 523 engaging the outer and inner sides of another part of the wall of the mask around an opening l2 l therein and thus forming a secondary exhalation port, an outwardly facing secondary valve seat I25 formed on the outer side of the ring I23 around this port, a secondary exhalation valve I 26 movable toward and from the valve seat I25 for closing and opening the secondary exhalation port, a guide pin I21 projecting outwardly from the secondary exhala- 75 tion valve and sliding in a guideway I28 formed .9 in a cap I29 which extends across the outer side of the valve I26 and ring I23, screws I29 connecting the valve rings I23, I24 and the cap I32 with the respective wall of the mask, openings I30 formed in the cap I29 around its center, and a comparatively heavy spring I3l surrounding the guide pin I2'I'and guideway I28 and interposed between the cap I29 and the secondary valve I26 for holding the latter yieldingly in its inner closed position in engagement with the seat I25.

Whenever the Worker inhales and draws fluid by a negative pressure from the delivery or respiration chamber 80 into the mask the pressure on the outer side of the diaphragm drops below atmospheric pressure whereby the demand valve 83 is opened and low pressure fluid is permitted to flow from the lowpressure chamber ll to the respiration chamber and replace that which has been drawn through the service tube 98 into the mask. Under normal conditions when the atmosphere is not contaminated, part of the fluid in the mask during exhalation of the person is discharged from the mask to the outer atmos phere through the port of the primary exhalation valve unit the valve disk Hi1 of which opens easily inasmuch as the resilient resistance to the light spring II2 to such opening is almost zero, but closes quickly when a negative pressure exists in themask during inhaling and thus prevents any air outside of the mask from entering the mask.

When, however,the worker suspects the presence of poisonous or noxious substances in the atmosphere through which he is able to travel, he not only pushes, down the positive pressure knob 95 so as to open the demand valve 33, as shown in Fig. 11, but he also turns the shutter H4 so as to close the shutter openings H3 and thus prevent the primary exhalation valve IE1! from opening, thereby compelling the discharge of exhalation from the mask to the outer atmosphere through the secondary exhalation valve unit to take place under a higher resistance due to the heavier spring I3! which loads the secondary exhalation valve to such an extent that it only opens at a pressure of 1.25 inches of water which is slightly above the pressureof fluid, viz., 0.75 inch of water, as the fluid is discharged by the pressure regulator or reducer into the respiration chamber and mask connected therewith by the service tube 98. In other words, the worker, under these particular conditions inhales from a source which has a pressure of, say, 0.75 inch of water and hence drops the pressure in the mask to a point slightly below 0.75 inch of water. Then, when he exhales, he causes the pressure in the mask and in the corrugated hose or service tube 98 and connecting spaces to rise to, say, 1.25 inches of water, which pressure is sufficient to permit exhalation to be vented out from the mask to the outer atmosphere through the heavy spring loaded secondary exhalation valve I26,

From the foregoing it will be clear that during normal use of the apparatus the demand valve will be opened intermittently by negative pressure due to inhalation of the wearer which is satisfactory for breathing under safe conditions, but if the wearer believes that the atmosphere might be dangerously poisonous, noxious or injurious he naturally does not want any negative pressure in the mask, the service hose or other spaces communicating therewith, but instead wants a positive pressure in these spaces to insure a definite supply of life sustaining fluid to the wearer while there is a possibility ofthe' 1o surrounding atmosphere being contaminated and it is at this time that the primary exhalation valve is shut off and the demand valve is held open so as to ensure a steady supply of life sustaining fluid to the wearer and prevent the same from escaping too freely to the atmosphere.

Experiments haveshown that when a person part-of CO2 .fromthe breath which did go into the lungs. Means are therefore provided by this invention whereby this first one-third of each exhaled breath is prevented from venting out to the atmosphere through the exhalation valves,

but is saved for use in connection with the next inhalation which means are constructed as follows:

At a point relatively close to the respiration chamber and the inlet end of the service hose 93v and remote from the mask a surge chamber or compartment I32 is provided which in effect is 'an enlargement of the passage between the respiration chamber and the mask and serves to.

take up any back pressure of air in this passage. In the preferred construction this surge chamber is formed in a bag I33 which is made of impervious but flexible and elastic material, such as rubber, which has a neck I34 communicating with the air service passage from the respiration chamber to the mask at a point relatively close to this chamber but remote from the mask. As shown in Fig. 5 the connection between the surge bag I33 is effected by detachably mounting the surge bag onthe case 43 so that it communicates with the air service passage between the respiration chamber and the socket IIlI which receives the quick connect coupling plug I00.

The means for thus detachably mounting the surge bag on the case comprise a collar I34 secured to the neck of this bag and resting by 1 means of an interposed soft packing ring I35 "on an annular shoulder I36 on the case and a clamping ring I31 having a screw connection with the case and bearing against the front or.

upper side of the collar I34.

When the worker is inhaling, a partial vac :uum is created in the service hose 98 and in the respiration chamber and spaces communicating therewith. When the worker starts the next following exhalation the pressure in the mask, serv- 7 ice hose and the respiration chamber is increased,

,but at first this increased pressure is not enough to open either of the exhalation valves. While this pressure is being built up, some of the exhaled air flows backwardly into the surge bag I33 and builds up an appreciable amount of pressure therein. When the worker again inhales the pressure in the mask, service hose and respiration chamber, as well as in the surge bag, is again lowered, thereby causing the air stored in the I surge bag to flow out and join the stream of air which is flowing from the respiration chamber wa e 1 1- t e qllme o u p y a w ressss ires air t refill his portable bottlesorcqnt i'ne'rsfl" Owing to e s e as be ne lq elv nne te with the respiration chamber and remotely cfoin i nected with the mask, the first third of the. ex:

halation of the worker which'is' only slightly con taminat'ed with'COz does not pass nto the s'urge bag but is received almost wholly within the mas}; and the service hose and is thereafter swept into the very bottom or remote part of the lungs during the next inhalation, thereby always keeping'the surge bag free from CO2. At the end of each inhalation all parts of this apparatus are free from contaminated air, particularlythe mask and service hose which are close to the face of the wearer. 'It will now be apparent that the first third, or substantially so, of the breath which isexhaled by the 'person'using the apparatus is that which contains the lowest percentage of CO1 and it is this partly vitiated or contaminated air which is sent down to the very deepestpart of the lungs'on the next inhalation and thus charged to'the maximum extent WithCOa and is then the last part of the air to be exhaled and hence is inevitably discharged to the outer atmo'sphere through one or both exhalation valves which open at this time under the increased pres sure exerted against them at this time, while none of this air is directed toward the surge bag because the latter is only filled as a consequence of the backward flow of the first, third of the exhaled air.

When the user of this apparatus exhales the virtually uncontaminated air, from the thorax. bronchial tubes, etc., the same enters the mask before enough pressure has been built up therein to open the exhalation valves and service hose, thereby causing a pr ssure to be built up in the surge bag. During the subsequent inhalation fluid flows from the surge. bag and, respiration chamber before the demand valve opens, which ensures that all the air which is fully inhaled will be welll'oaded with CO2 beforeit' is, discharged.

from the mask to the outer atmosphere and thus enables the worker to use the apparatus a longer time before he i's'cOmpelled to refill the portable containers from a main supply source; By thus saving the first third of the w'orkerfs exhaled breath, both when he is resting'and when he'is doing physical work, the length of time he can keepg'oingw'ithout recharging mean storage bottles or tanks is increased one-third, or for. the same length of time, the size of the bottles or tanks may be reduced one-third.

If desired the surge'chamber may be formed in a metal can or other container having fixed walls but this is disadvantageous owing t6 the capacity being constant and permits of storing therein a volume of air equal to. the difference betweenfthe pressure of the air flow into and out of such a can, whereas a flexible bag when collapsed can receive its full volume of air at a pressure which balances the atmospheric pressure, and'can receive, in addition, the same volume of air which a metal can is capable ofv storing.

By utilizing abagfwhich is not only flexible but also elastic as a surge chamber the same is. merelyfdistended' and, collapsed or contracted, butnot stretched when used while the worker is at rest. When, however, the worker does physical work, then both the volumes and positive and negative pressures 'of hi's'iinhala'tion and exhalation are increased under which circumstances the bag not only collapses, as would a bag which is only flexible a'nd'not st a b l 12 but the same is also capable of increased capacity due to its stretchability, thereby enabling the same to' hold approximately one-third greater volume of air.

In order to prevent too great a distention of the elastic surge bag and possible bursting of the same, limiting means are provided which operate to arrest the further expansion of the surge bag after the same has expanded to a predetermined extent. Various means may be employed for this purpose. For example, as shown in Fig. 5, this is accomplished by a guard or stop wall I38 which preferably is formed integrally with the case and encloses the surge bag like a cage and is provided with vent open ings'l39 so that the exterior of the surge bag'is exposed to atmospheric pressure. When the surge bag has been distended by the pressure of the air within the same until it engages the limitin'g wall I38 further distention is prevented and thus avoids injury to the same.

' Instead of employing a separate surge bag as a unit separate from the case 43 it is to be understood that the volume of the respiration or delivery chamber 8!! may be made sufficiently large, as shown in Fig. 5, to also form an inflexible surge tank which will take care of the first third of the air exhaled by the worker while resting or while'doing' physical work, and, if desired, this surge bag may be arranged in a suitable compartment within the respiration chamber instead of on the outer side of the same.

An alternative form of means for taking care of the first one-third of the exhalation of the worker is shown in Fig. 12 in which a flexible and elastic surge bag I93 is arranged on one side of the respiration chamber 30 of the case and provided with'a tubular neck I46 which is connected with a coupling tube Ml projecting from the side of the case and places the respiration chamber in communication with this surge bag. Expansion or distension of the surge bag in this modified form of this feature of the invention is limited by an inelastic netting or open mesh sack M2 which encloses the surge bag E93.

Safety means are provided whereby compressed air may be conducted directly from the high pres-- sure source of air to the service hose and mask regardless of the pressure reducing or regulating means or the demand valve mechanism in case of an emergency, such as might occur if the pres-- sure reducing means and the demand valve means, or either of them, should become defective or fail to operate emciently or cease to function altogether. Means for this purpose are shown in Fig. 5 and include a safety or emergency bypass 144 formed in the body 45 and extending from the high pressure air chamber 46 to the respiration chamber 8H and a safety valve having preferably the form of a plug I45 which has a screw connection with the body 45 so that upon turning this plug in one direction the same will obstruct or close the bypass M4 and prevent the flow of high pressure air directly to the mask While upon turning this plug in the opposite direction this bypass is opened and permits high valve and is soldered to the adjacent part of the case. Whenever the occasion requires it the worker breaks the sealing wire by hand and then turns this plug valve into its open position and thus permits air to reach the mask without being subjected to the operation of the regulating valve and demand valve, or either of them.

I claim as my invention:

A breathing apparatus, comprising a high pressure fluid chamber adapted to receive sustaining fluid from a high pressure source, a low pressure chamber which receives fluid at reduced pressure from said high pressure chamber, a respiration chamber which receives fluid from said low pressure chamber, a mask which communicates with said respiration chamber and whereby'sustaining fluid is supplied to a person, exhalation valve means through which fluid is discharged from the mask and which comprises one unit having a lightly loaded outwardly opening check valve member and another unit having a heavily loaded outwardly opening check valve member, manually operated means for positively holding said lightly loaded check valve member in its closed position, pressure regulating valve means interposed between said high and low pressure chambers, demand valve means interposed between said low pressure chamber and said respiration chamber and adapted to be opened in response to inhalation of the person using the apparatus, and manually operated retaining means for holding the demand valve means in open position and bypassing said pressure regulating valve means.

PHILLIP E. MEIDENBAUER, JR.

Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US2482209 *27 Oct 194420 Sep 1949Ralston Frank DWelder's hood
US2544991 *8 Nov 194513 Mar 1951Bendix Aviat CorpPressure breathing regulator
US2614573 *5 May 194521 Oct 1952Union Carbide & Carbon CorpAircraft breathing oxygen regulator
US2616442 *18 Jun 19464 Nov 1952Bendix Aviat CorpRespiratory device
US2630129 *22 Ene 19473 Mar 1953Bendix Aviat CorpRespiratory device
US2695022 *5 Jul 195223 Nov 1954Mine Safety Appliances CoBreathing apparatus oxygen augmenter
US2764151 *16 Jun 195325 Sep 1956Scott Aviation CorpUnderwater breathing apparatus
US2766752 *28 Nov 195216 Oct 1956Firewel IndApparatus for supplying gas for respiration
US2790454 *17 Dic 195130 Abr 1957Scott Aviation CorpDemand fluid regulator
US2821990 *9 Oct 19524 Feb 1958Firewel IndDemand valve
US2970602 *23 Abr 19567 Feb 1961Scott Aviation CorpPositive pressure demand regulator
US3861417 *23 Ene 197421 Ene 1975Rowe Gerald WInstrument console for underwater diving apparatus
US3957007 *15 Nov 197418 May 1976The Thomas CompanyAir powered water propulsion method and apparatus
US4159717 *7 Jun 19773 Jul 1979Under Sea Industries, Inc.Antiset protector for second stage scuba regulators
US4250876 *10 Ago 197817 Feb 1981Robertshaw Controls CompanyEmergency life support system
US4298023 *9 Sep 19803 Nov 1981Mcginnis Gerald ESpring loaded exhalation valve
US4328798 *8 Sep 198011 May 1982Max IsaacsonBreathing apparatus with connector system for supplying emergency air to another individual
US4334532 *20 Jun 198015 Jun 1982Chubb Panorama LimitedValves and breathing apparatus incorporating such valves
US4345592 *10 Sep 198024 Ago 1982A-T-O Inc.Pressure demand regulator with automatic shut-off
US4345593 *6 Feb 198124 Ago 1982A-T-O Inc.Pressure-demand breathing apparatus with automatic air shut-off
US4361145 *8 Oct 198030 Nov 1982Aga AktiebolagRespirator mask
US4572176 *19 Oct 198325 Feb 1986Dragerwerk AktiengesellschaftControl for a protective mask which operates with excess internal pressure
US4667670 *8 Mar 198326 May 1987Racal Panorama LimitedGas flow control valves
US4693242 *15 Mar 198315 Sep 1987Fenzy S.A.Coupling connectors for respirator masks
US4714077 *24 Feb 198622 Dic 1987Mine Safety Appliances CompanyReplenishable self contained breathing apparatus
US4838256 *28 Abr 198813 Jun 1989Miltz Arthur IMethod and apparatus for air transfer between scuba divers
US4949889 *13 Jun 198921 Ago 1990Carson Ronald HBracket for mounting auxiliary compressed air tank to a main tank
US5072728 *7 Sep 199017 Dic 1991Dragerwerk AgRecirculating respirator
US5259372 *24 Jun 19919 Nov 1993Gross Betty JOxygen cylinder carrier apparatus particularly for stretchers
US5271387 *11 Ago 199221 Dic 1993Murray Dive Inc.Harness connector for scuba tanks and the like
US5400934 *6 Oct 199328 Mar 1995Skis Rossignol S.A.For transporting articles under harsh climatic conditions
US5425358 *6 Ene 199420 Jun 1995Vital Signs, Inc.Pressure limiting valve for ventilation gas apparatus
US5678542 *28 May 199621 Oct 1997Maffatone; Anthony NeilDecompression gas switching manifold
US6082359 *11 Dic 19974 Jul 2000Preston; Paul ChristopherDual cylinder manifold
US6405728 *31 May 199618 Jun 2002Draeger LimitedBreathing apparatus
US64574733 Abr 20001 Oct 20023M Innovative Properties CompanyDrop-down face mask assembly
US6651660 *6 Sep 200125 Nov 2003DRäGER AEROSPACE GMBHApparatus for supplying respiratory gas to a parachute jumper
US6732733 *27 Mar 200011 May 20043M Innovative Properties CompanyHalf-mask respirator with head harness assembly
US71917902 Jul 200420 Mar 2007Scott Technologies, Inc.Quick connect pressure reducer/cylinder valve for self-contained breathing apparatus
US786631926 Sep 200511 Ene 2011Avon Protection Systems, Inc.Respirator exhalation unit
US786633829 Abr 200811 Ene 2011Sti Licensing Corp.Quick connect pressure reducer/cylinder valve for self-contained breathing apparatus
US786634029 Abr 200811 Ene 2011Sti Licensing Corp.Universal pressure reducer for self-contained breathing apparatus
US20110277766 *9 Dic 200917 Nov 2011Koninklijke Philips Electronics N.V.Mask and method for delivering a therapeutic breathable substance
EP2111898A2 *26 Sep 200528 Oct 2009Avon Protection Systems, Inc.Respirator exhalation unit
WO2006037000A1 *26 Sep 20056 Abr 2006Avon Protection Systems IncRespirator exhalation unit
Clasificaciones
Clasificación de EE.UU.128/205.24, 137/102, 128/204.26, 128/205.25, 137/506, 128/205.22, 128/202.27
Clasificación internacionalA62B7/02
Clasificación cooperativaA62B7/02
Clasificación europeaA62B7/02