US2432858A - Antenna system - Google Patents

Antenna system Download PDF

Info

Publication number
US2432858A
US2432858A US481218A US48121843A US2432858A US 2432858 A US2432858 A US 2432858A US 481218 A US481218 A US 481218A US 48121843 A US48121843 A US 48121843A US 2432858 A US2432858 A US 2432858A
Authority
US
United States
Prior art keywords
line
radiator
lines
switch
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US481218A
Inventor
George H Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US481218A priority Critical patent/US2432858A/en
Application granted granted Critical
Publication of US2432858A publication Critical patent/US2432858A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves

Definitions

  • This invention relates to directive antennas and more particularly to antennas for providing alternately or sequentially overlapping directive patterns.
  • Such antennas are generally applicable to radio aircraft locators, radio direction finders, object detectors and the like.
  • Directive a'ntenna systems for ultra high frequencies frequently include a parabolic reflector with one or more radiator elements disposed at or near the focal point. The directive characteristic of the reflector is superimposed upon the field pattern of the radiator, providing substantially a single narrow pattern lobe. The axis of this lobe may be altered with respect to the axis of the reflec- -tor by moving the radiator system off center, or
  • a further object is to provide a structure of the above described type which is mechanically strong.
  • FIG. 1 is a perspective view of a radiator structure according "to the instant invention
  • Fig. 2 is a schematic diagram of thestructure of Fig. 1 and the associated transmission line circuits
  • Fig. 3 is a schematic diagram of a portion of the system of Fig. 1. Similar reference characters indicate similar elements in the drawing.
  • a coaxial transmis- "sion line I has its inner conductor connected to a radiator 3 substantially A; wave length long.
  • radiator elements 5, I, 9 and i I are provided at the end of the outer conductor of the line I and extend radially therefrom along two lines at right angles to each other.
  • Each of the elements 5, "1,9 and II comprise an inner conductor I3, which is connected to the outer conductor of the line I, and an outer conductor connected to the inner conductor at the outer end thereof by a plug I5.
  • the outer conductors are made slightly shorter than the inner conductors to avoid contact 7 Claims. (Cl. 250-11 2 with the line I.
  • Each of the radiator elements :5, I, 9 and-I I is approximately /4 wave length long.
  • are connected together at a point 25 which is one-half wavelength further from the radiator 5 than from the radiator' 9. so
  • a transmission line 21 is connected to the point 25 and through a line section 29 one-half wavelength long to a line 3
  • a switch 33 is connected across the section 29.
  • the radiatorelements I and II are similarly connected to a junction point 35, aline 31 one-half w'ave section 39, a line 4i and a switch 43.
  • are connected to a double throw switch '45 which is connected to the line I and through a line 4'! to a radio device, not shown,
  • a power division network may beprovidediin the connections between the line 41, the line I and the switch 45 if necessary to provide the proper ratio between the energizati'ons of the element 3 and the radiators 5, I, 9 and II.
  • the total length of the line from the switch 45 to each of the elements 5, I, 9 and II is an odd number of quarter wavelengths.
  • the switches 33, '43 and 45 may comprise rotatable variable capacitor means connected with resonant line sections or any other well known type of radio frequency circuit making and breaking devices. These switches may be mechanically ganged together for sequential operation by means of an electric motor-46 or the like.
  • the radiator 3 is constantly energized through lines I and 41.
  • the switch '45 alternately connects the lines 3
  • is connected to the line 41, the open circuit presented at the lower end of the line 4
  • the radiators and 9 are similarly grounded when the radiators I and II are energized.
  • the switch 33 When the switch 33 is open the total length of the line between the switch 45 and the radiators 5 and 9 is one-half wave longer than when the switch 33 is closed. Thus by opening and closing the switch 33, the polarity of the dipole 5, 9 is reversed.
  • and 41 are connected together by the switch 45, operation of the switch 43 reverses the polarity of the dipole I, II.
  • the radiation pattern of the radiator 3, neglecting the effect of the reflector is approximately the shape of a torus with an inner radius of zero, maximum energy being radiated in all directions at right angles to the axis of the radiator 3,
  • the reflector 24 modifies the pattern by concentrating it in a forward direction to'form a relatively narrow hollow conical beam, with maximum radiation in all directions at apredetermined small angle to the axis. This pattern is substantially the same Whether one pair or the other of the elements 5, 1, 9 and II is grounded.
  • the switch 45 connects the line 3
  • the current through the elements 5 and 9 provides a toroidal radiation pattern with the axis of minimum radiation along the axis 5, 9.
  • the reflector 24 modifies this pattern to form a single narrow lobe with its maximum intensity along the axis of the element l3.
  • the electric field vectorproduced by the element 3 is at right angles to the line between the antenna system and the point R, and is directed toward the center.
  • the electric field vector produced by the dipole 5, 9 at point R is.
  • the field vector produced by the radiator 3- is again at right angles to the line from the antenna to the point L and directed inwardly.
  • the field vector at L produced by the dipole 5, 9 is also at right angles to the line CL but extends in the same direction as that produced by the element 3 at point L.
  • the total radiation pattern is asymmetrical, having a point of maximum intensity to the left of the axis of the radiator 3.
  • An antenna system including two pairs of collinear radiators lying in a common plane, said pairs being disposed at an angle to each other, two concentric transmission lines each connected between the adjacent ends of the radiators of one of said pairs, two branch concentric lines each connected to one of said first mentioned lines at a point one-quarter wave length distant from the midpoint thereof, each of said branch lines including a one-half wave line section and means for selectively including and removing said section from the circuit thereof, a main transmission line, means for connecting said main transmission line selectively to one of said branch lines, and a radiator element disposed at right angles to the plane of said coplanar elements and connected to saidmain transmission line.
  • each of said two coplanar radiator elements comprises a concentric line section substantially onequarter wave length long and short-circuited at its outer end and with its inner conductor to the end of the outer conductor of said main transmission line.
  • An antenna system comprising pairs of collinear radiator elements lying in a common plane, each of said elements comprising a coaxial line section substantially one-quarter wave length long with its inner conductor connected to a grounded supporting member at one end and to its outer conductor at the other end, two concentric lines each connected between the outer conductors of a respective pair of radiators, each of said concentric lines being substantially an odd number of half wave lengths long, two branch lines, one connected to each of said first mentioned lines at a point one-half wave length further from one radiator element than from the other radiator element of the respective pair, a fifth radiator element extending at right angles to two of said coplanar elements and connected to a main transmission line, and means for selectively connecting said branch lines to said main transmission line.
  • each of said branch lines includes means for changingthe length of the transmission path through said branch lines by one-half wave length.

Description

Dec. 16, 1947. G. H. BROVVUN 2,432,858
ANTENNA SYSTEM Filed March 31, 1943 L 15 610 i DEV/(5: l I Inventor fik'o yz-filimwn Gmrncu Patented Dec. 16, 1947 UNITED STATES PATENT OFFICE 2,432,858 ANTENNA SYSTEM George H. Brown, Princeton, N. J-., 'assigno'r to Radio Corporation of America, acorporation of Delaware Application March 31, 1943, Serial No. 481,218
This invention relates to directive antennas and more particularly to antennas for providing alternately or sequentially overlapping directive patterns. Such antennas are generally applicable to radio aircraft locators, radio direction finders, object detectors and the like. Directive a'ntenna systems for ultra high frequencies frequently include a parabolic reflector with one or more radiator elements disposed at or near the focal point. The directive characteristic of the reflector is superimposed upon the field pattern of the radiator, providing substantially a single narrow pattern lobe. The axis of this lobe may be altered with respect to the axis of the reflec- -tor by moving the radiator system off center, or
necessary switching may be done at any convenient point in the feed system between the antenna and associated radio apparatus.
I A further object is to provide a structure of the above described type which is mechanically strong.
These and other objects will become apparent to those skilled in the art upon consideration of the following description with reference to the accompanying drawing, of which Fig. 1 is a perspective view of a radiator structure according "to the instant invention, Fig. 2 is a schematic diagram of thestructure of Fig. 1 and the associated transmission line circuits, and Fig. 3 is a schematic diagram of a portion of the system of Fig. 1. Similar reference characters indicate similar elements in the drawing.
Referring to Figs. 1 and 2 a coaxial transmis- "sion line I has its inner conductor connected to a radiator 3 substantially A; wave length long. Four radiator elements 5, I, 9 and i I are provided at the end of the outer conductor of the line I and extend radially therefrom along two lines at right angles to each other. Each of the elements 5, "1,9 and II comprise an inner conductor I3, which is connected to the outer conductor of the line I, and an outer conductor connected to the inner conductor at the outer end thereof by a plug I5. The outer conductors are made slightly shorter than the inner conductors to avoid contact 7 Claims. (Cl. 250-11 2 with the line I. Each of the radiator elements :5, I, 9 and-I I is approximately /4 wave length long.
Four coaxial lines I'I, I9, 2| and 23 surround the line I with their outer conductors connected to the outer conductor of the line I. The inner conductors of the lines I119, 2| and 23 are connected to the outer conductors of the radiator elements 5, 1, 9 and II respectively. The above described structure is positioned in a parabolic reflector, not shown. The focal point of the refiector lies approximately in the plane of the radiator elements 5, l, 9 and I I.
The lines I! and 2| are connected together at a point 25 which is one-half wavelength further from the radiator 5 than from the radiator' 9. so
odd number of half wavelengths. A transmission line 21 is connected to the point 25 and through a line section 29 one-half wavelength long to a line 3|. A switch 33 is connected across the section 29. The radiatorelements I and II are similarly connected to a junction point 35, aline 31 one-half w'ave section 39, a line 4i and a switch 43. The lines 3| and 4| are connected to a double throw switch '45 which is connected to the line I and through a line 4'! to a radio device, not shown,
A power division network may beprovidediin the connections between the line 41, the line I and the switch 45 if necessary to provide the proper ratio between the energizati'ons of the element 3 and the radiators 5, I, 9 and II. The total length of the line from the switch 45 to each of the elements 5, I, 9 and II is an odd number of quarter wavelengths. The switches 33, '43 and 45 may comprise rotatable variable capacitor means connected with resonant line sections or any other well known type of radio frequency circuit making and breaking devices. These switches may be mechanically ganged together for sequential operation by means of an electric motor-46 or the like.
The operation is as follows:
Assuming the antenna is to be used for transmission, the radiator 3 is constantly energized through lines I and 41. The switch '45 alternately connects the lines 3| and 4|, energizing the respective dipoles 5, 9, and I, II. When the line 3| is connected to the line 41, the open circuit presented at the lower end of the line 4| is transformed to a short circuit at the upper ends of the lines I9 and 23, efiectively grounding the outer conductors of the members I and II. The radiators and 9 are similarly grounded when the radiators I and II are energized. When the switch 33 is open the total length of the line between the switch 45 and the radiators 5 and 9 is one-half wave longer than when the switch 33 is closed. Thus by opening and closing the switch 33, the polarity of the dipole 5, 9 is reversed. Similarly when the lines 4| and 41 are connected together by the switch 45, operation of the switch 43 reverses the polarity of the dipole I, II.
The radiation pattern of the radiator 3, neglecting the effect of the reflector is approximately the shape of a torus with an inner radius of zero, maximum energy being radiated in all directions at right angles to the axis of the radiator 3,
The reflector 24 modifies the pattern by concentrating it in a forward direction to'form a relatively narrow hollow conical beam, with maximum radiation in all directions at apredetermined small angle to the axis. This pattern is substantially the same Whether one pair or the other of the elements 5, 1, 9 and II is grounded. When the switch 45 connects the line 3| and the switch 33 is closed, current flows in the radiator elements 5, 9, and 3 as indicated by the solid arrow in Fig. 2. The current through the elements 5 and 9 provides a toroidal radiation pattern with the axis of minimum radiation along the axis 5, 9. The reflector 24 modifies this pattern to form a single narrow lobe with its maximum intensity along the axis of the element l3.
At a point R in space ahead of and to theright of the array, the electric field vectorproduced by the element 3 is at right angles to the line between the antenna system and the point R, and is directed toward the center. The electric field vector produced by the dipole 5, 9 at point R is.
also'at right angles to the radial line CR, but extends in the opposite direction. Thus the fields tend to cancel.
At a point L to the left of the; axis of the radiator 3 the field vector produced by the radiator 3- is again at right angles to the line from the antenna to the point L and directed inwardly. The field vector at L produced by the dipole 5, 9 is also at right angles to the line CL but extends in the same direction as that produced by the element 3 at point L. Thus the total radiation pattern is asymmetrical, having a point of maximum intensity to the left of the axis of the radiator 3.
If the switch 33 (Fig, 2) is now opened, the
polarity of the dipole 5, 9 is reversed, producing field vectors at points L and R as indicated by the dash arrows. The fields are now added at the points to the right of the axis of the radiator 3 and subtracted at points to the left of radiator 3.
Thus by operating the switch 33 two overlapping radiation lobes are produced alternately by the elements 35 and 9. The axis of maximum radiation of two lobes lie in the plane defined by the elements 3, 5, and '9. The operation of the radiators 1 and II, when the switch 45 is thrown to connect lines 4! and 47 is identical with the above described operation. However, the axis of maximum radiation will now lie in the plane determined by the elements 3, l and l I. By operating the switches 33, 43 and 45 in the proper sequence, four overlapping directive patterns are provided pairs of said coplanar radiators.
2. An antenna system including two pairs of collinear radiators lying in a common plane, said pairs being disposed at an angle to each other, two concentric transmission lines each connected between the adjacent ends of the radiators of one of said pairs, two branch concentric lines each connected to one of said first mentioned lines at a point one-quarter wave length distant from the midpoint thereof, each of said branch lines including a one-half wave line section and means for selectively including and removing said section from the circuit thereof, a main transmission line, means for connecting said main transmission line selectively to one of said branch lines, and a radiator element disposed at right angles to the plane of said coplanar elements and connected to saidmain transmission line.
3; The invention as set forth in claim 2 wherein each of said two coplanar radiator elements comprises a concentric line section substantially onequarter wave length long and short-circuited at its outer end and with its inner conductor to the end of the outer conductor of said main transmission line.
4. The invention as set forth in claim 2 including a substantially parabolic reflector arranged with its focal plane lying substantiall in the plane of said coplanar radiators.
5. An antenna system comprising pairs of collinear radiator elements lying in a common plane, each of said elements comprising a coaxial line section substantially one-quarter wave length long with its inner conductor connected to a grounded supporting member at one end and to its outer conductor at the other end, two concentric lines each connected between the outer conductors of a respective pair of radiators, each of said concentric lines being substantially an odd number of half wave lengths long, two branch lines, one connected to each of said first mentioned lines at a point one-half wave length further from one radiator element than from the other radiator element of the respective pair, a fifth radiator element extending at right angles to two of said coplanar elements and connected to a main transmission line, and means for selectively connecting said branch lines to said main transmission line.
6. The invention as set forth in claim 5 wherein each of said branch lines includes means for changingthe length of the transmission path through said branch lines by one-half wave length.
US481218A 1943-03-31 1943-03-31 Antenna system Expired - Lifetime US2432858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US481218A US2432858A (en) 1943-03-31 1943-03-31 Antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US481218A US2432858A (en) 1943-03-31 1943-03-31 Antenna system

Publications (1)

Publication Number Publication Date
US2432858A true US2432858A (en) 1947-12-16

Family

ID=23911106

Family Applications (1)

Application Number Title Priority Date Filing Date
US481218A Expired - Lifetime US2432858A (en) 1943-03-31 1943-03-31 Antenna system

Country Status (1)

Country Link
US (1) US2432858A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2619596A (en) * 1948-11-12 1952-11-25 Kolster Muriel Multiband antenna system
US2934286A (en) * 1953-06-03 1960-04-26 Earl F Kiernan Radar controlled missile
US3354459A (en) * 1965-08-05 1967-11-21 Devenco Inc Tri-orthogonal antenna system with variable effective axis
US3521286A (en) * 1967-04-21 1970-07-21 Gen Dynamics Corp Orthogonal array antenna system
US3618105A (en) * 1970-03-06 1971-11-02 Collins Radio Co Orthogonal dipole antennas
US3725943A (en) * 1970-10-12 1973-04-03 Itt Turnstile antenna
US3789416A (en) * 1972-04-20 1974-01-29 Itt Shortened turnstile antenna
US4298874A (en) * 1977-01-17 1981-11-03 The Austin Company Method and apparatus for tracking objects
US4314251A (en) * 1979-07-30 1982-02-02 The Austin Company Remote object position and orientation locater
US4328548A (en) * 1980-04-04 1982-05-04 The Austin Company Locator for source of electromagnetic radiation having unknown structure or orientation
US4346384A (en) * 1980-06-30 1982-08-24 The Austin Company Remote object position and orientation locator
US4633265A (en) * 1984-12-24 1986-12-30 Hazeltine Corporation Low frequency/high frequency omnidirectional antenna formed of plural dipoles extending from a common center
US4737794A (en) * 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4742356A (en) * 1985-12-09 1988-05-03 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US5321412A (en) * 1991-05-13 1994-06-14 Sensormatic Electronics Corporation Antenna arrangement with reduced coupling between transmit antenna and receive antenna
US20010030610A1 (en) * 2000-02-08 2001-10-18 Rochelle James M. Wireless boundary proximity determining and animal containment system and method
US6538617B2 (en) 2000-02-08 2003-03-25 Concorde Microsystems, Inc. Two-axis, single output magnetic field sensing antenna
US7746284B2 (en) * 2007-09-10 2010-06-29 Electronics And Telecommunications Research Institute Cross dipole, cross dipole module, array antenna, and multiple input multiple output antenna
US20100277387A1 (en) * 2004-12-21 2010-11-04 Q-Track Corporation Space Efficient Magnetic Antenna Method
US20110025573A1 (en) * 2009-08-03 2011-02-03 William Ernest Payne Cross-dipole antenna
US20110025569A1 (en) * 2009-08-03 2011-02-03 Venti Group, LLC Cross-dipole antenna combination
US20110068992A1 (en) * 2009-08-03 2011-03-24 Venti Group, LLC Cross-dipole antenna configurations
US8106846B2 (en) 2009-05-01 2012-01-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna
US8436780B2 (en) 2010-07-12 2013-05-07 Q-Track Corporation Planar loop antenna system
US8618998B2 (en) 2009-07-21 2013-12-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna with cavity for additional devices
US8624791B2 (en) 2012-03-22 2014-01-07 Venti Group, LLC Chokes for electrical cables
US8803755B2 (en) 2013-01-10 2014-08-12 Venti Group, LLC Low passive intermodulation chokes for electrical cables
US9985363B2 (en) 2013-10-18 2018-05-29 Venti Group, LLC Electrical connectors with low passive intermodulation
US9997845B2 (en) 2004-12-21 2018-06-12 Q-Track Corporation Embedded symmetric multiple axis antenna system with isolation among the multiple axes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2619596A (en) * 1948-11-12 1952-11-25 Kolster Muriel Multiband antenna system
US2934286A (en) * 1953-06-03 1960-04-26 Earl F Kiernan Radar controlled missile
US3354459A (en) * 1965-08-05 1967-11-21 Devenco Inc Tri-orthogonal antenna system with variable effective axis
US3521286A (en) * 1967-04-21 1970-07-21 Gen Dynamics Corp Orthogonal array antenna system
US3618105A (en) * 1970-03-06 1971-11-02 Collins Radio Co Orthogonal dipole antennas
US3725943A (en) * 1970-10-12 1973-04-03 Itt Turnstile antenna
US3789416A (en) * 1972-04-20 1974-01-29 Itt Shortened turnstile antenna
US4298874A (en) * 1977-01-17 1981-11-03 The Austin Company Method and apparatus for tracking objects
US4314251A (en) * 1979-07-30 1982-02-02 The Austin Company Remote object position and orientation locater
US4328548A (en) * 1980-04-04 1982-05-04 The Austin Company Locator for source of electromagnetic radiation having unknown structure or orientation
US4346384A (en) * 1980-06-30 1982-08-24 The Austin Company Remote object position and orientation locator
US4633265A (en) * 1984-12-24 1986-12-30 Hazeltine Corporation Low frequency/high frequency omnidirectional antenna formed of plural dipoles extending from a common center
US4737794A (en) * 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4742356A (en) * 1985-12-09 1988-05-03 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US5321412A (en) * 1991-05-13 1994-06-14 Sensormatic Electronics Corporation Antenna arrangement with reduced coupling between transmit antenna and receive antenna
US20050093760A1 (en) * 2000-02-08 2005-05-05 Cms Partners, Inc. Wireless boundary proximity determining and animal containment
US6538617B2 (en) 2000-02-08 2003-03-25 Concorde Microsystems, Inc. Two-axis, single output magnetic field sensing antenna
US6879300B2 (en) 2000-02-08 2005-04-12 Cms Partners, Inc. Wireless boundary proximity determining and animal containment system and method
US20010030610A1 (en) * 2000-02-08 2001-10-18 Rochelle James M. Wireless boundary proximity determining and animal containment system and method
US7142167B2 (en) 2000-02-08 2006-11-28 Cms Partners, Inc. Wireless boundary proximity determining and animal containment
US20100277387A1 (en) * 2004-12-21 2010-11-04 Q-Track Corporation Space Efficient Magnetic Antenna Method
US9997845B2 (en) 2004-12-21 2018-06-12 Q-Track Corporation Embedded symmetric multiple axis antenna system with isolation among the multiple axes
US8922440B2 (en) 2004-12-21 2014-12-30 Q-Track Corporation Space efficient magnetic antenna method
US7746284B2 (en) * 2007-09-10 2010-06-29 Electronics And Telecommunications Research Institute Cross dipole, cross dipole module, array antenna, and multiple input multiple output antenna
US8106846B2 (en) 2009-05-01 2012-01-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna
US8618998B2 (en) 2009-07-21 2013-12-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna with cavity for additional devices
US8289218B2 (en) 2009-08-03 2012-10-16 Venti Group, LLC Cross-dipole antenna combination
US8325101B2 (en) 2009-08-03 2012-12-04 Venti Group, LLC Cross-dipole antenna configurations
US8427385B2 (en) 2009-08-03 2013-04-23 Venti Group, LLC Cross-dipole antenna
US20110068992A1 (en) * 2009-08-03 2011-03-24 Venti Group, LLC Cross-dipole antenna configurations
US8638270B2 (en) 2009-08-03 2014-01-28 Venti Group, LLC Cross-dipole antenna configurations
US20110025569A1 (en) * 2009-08-03 2011-02-03 Venti Group, LLC Cross-dipole antenna combination
US9710576B2 (en) 2009-08-03 2017-07-18 Venti Group, LLC Cross-dipole antenna configurations
US20110025573A1 (en) * 2009-08-03 2011-02-03 William Ernest Payne Cross-dipole antenna
US8436780B2 (en) 2010-07-12 2013-05-07 Q-Track Corporation Planar loop antenna system
US8624791B2 (en) 2012-03-22 2014-01-07 Venti Group, LLC Chokes for electrical cables
US8803755B2 (en) 2013-01-10 2014-08-12 Venti Group, LLC Low passive intermodulation chokes for electrical cables
US9985363B2 (en) 2013-10-18 2018-05-29 Venti Group, LLC Electrical connectors with low passive intermodulation

Similar Documents

Publication Publication Date Title
US2432858A (en) Antenna system
US3541559A (en) Antenna for producing circular polarization over wide angles
US3273158A (en) Multi-polarized tracking antenna
US3245081A (en) Multiple feed wide angle antenna utilizing biconcave spherical delay lens
US1745342A (en) Directive-projecting system of electric waves
US2275646A (en) Antenna
US3713167A (en) Omni-steerable cardioid antenna
US2455403A (en) Antenna
US2268640A (en) Rotary beam antenna
US2846678A (en) Dual frequency antenna
US3392394A (en) Steerable luneberg antenna array
US3274602A (en) Antenna having variable beamwidth achieved by variation of source width
US2562332A (en) Tilted slot antenna
US3560976A (en) Feed system
US2471284A (en) Directive antenna system
US2419552A (en) Radio antenna
US2452202A (en) Radio-frequency distributor apparatus
US2462881A (en) Antenna
US2522562A (en) Antenna system
US2925595A (en) Monopulse transmitting and receiving systems
GB1182724A (en) Combined Radar Antenna System
GB606124A (en) Directive antenna array
US2632851A (en) Electromagnetic radiating or receiving apparatus
US2458885A (en) Directive antenna system
US3343165A (en) Directional radio and tracking systems