US2438915A - High-frequency terminating impedance - Google Patents

High-frequency terminating impedance Download PDF

Info

Publication number
US2438915A
US2438915A US496715A US49671543A US2438915A US 2438915 A US2438915 A US 2438915A US 496715 A US496715 A US 496715A US 49671543 A US49671543 A US 49671543A US 2438915 A US2438915 A US 2438915A
Authority
US
United States
Prior art keywords
terminating
impedance
frequency
line
inner conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US496715A
Inventor
William W Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sperry Corp
Original Assignee
Sperry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sperry Corp filed Critical Sperry Corp
Priority to US496715A priority Critical patent/US2438915A/en
Priority to GB21715/47A priority patent/GB628928A/en
Application granted granted Critical
Publication of US2438915A publication Critical patent/US2438915A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/026Transitions between lines of the same kind and shape, but with different dimensions between coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/24Terminating devices
    • H01P1/26Dissipative terminations
    • H01P1/266Coaxial terminations

Definitions

  • the present invention is related to the art including high frequency energy conducting systems and it is more specifically related to devices for providing an energy sink or energyabsorbing termination for concentric transmission lines.
  • terminating device which will be able to absorb whatever energy is flowing through the system without producing reflections or standing waves.
  • terminating devices are also known as energy sinks or black bodies, since they absorb substantially all energy incident thereon without retransmittin an appreciable amount of such energy.
  • FIG. 1 shows a longitudinal cross-sectional view of one form of the present invention
  • Fig. 2 shows a similar longitudinal cross-sectional view of a more practical embodiment of the present invention adapted for easy manufacture
  • FIGs. 3 and 4 show similar views of other forms of my invention.
  • a suitable terminating device for a concentric transmission line must provide a substantially pure resistance equal to the characteristic impedance Z0 of the transmission line to be terminated.
  • the terminating resistance also usually displays a reactance which prevents matching of the device to the line.
  • lumped high frequency resistances usually employed it may be so small'as to have limited power handling capabilities.
  • a terminating impedance which presents a substantially pure resistance so that matching to the line is effected without frequency dependency and which can handle appreciable amounts of power.
  • the concentric transmission line to be terminated is represented by the outer conductor 1 I and the inner conductor l2.
  • Joined to the inner conductor I2 is a rod l3 of resistance material having a diameter substantially the same as that of inner conductor l2 and forming a smooth continuation thereof.
  • rod 13 is surrounded by a conducting member I4 which has an inner taper I6 of an exponential character, which will be shown more clearly below.
  • Equation 1 Equation 5'indicat'es that"; at point x,
  • Io isthe maximum value of current flowing'fin:theinnerIconductor, which can also be seen from (3) to"have constant magnitude but variable phase along the terminating impedance device.
  • the impedance offered by the present terminating device is entirely independent of frequency, as is the characteristic impedanceZojthatis; this terrninating impedance is'substa'ntially a pure resistance.
  • rL is chosen equal to Z0, and the device will serve as a proper frequency-independent termination.
  • the characteristic impedance Z0 of a concentric transmission line su'ch as ll, 12 may be given by the following expression:
  • the j device" oflliig l is somewhat diificult to manufactureinfview of therequirement that the inner taper oifcorrductor'i 4 rnust be a substantiallyperfectfexponential curve; "However, a dejvice can be produced 'which performs substantially in the same manner as that of Fig 1,- which is rel ative ly easy to iabricate. Such a” device is shown in'Fig.
  • the inner conductor l3 may be formed as a solid rod or hollow cylinder of the proper resistivity, or may be formed as a resistance coating on an insulating form or rod.
  • Fig. 3 a similar terminating impedance is illustrated in which the inner conductor is tapered and the outer conductor is uniform.
  • the essential criterion for the terminating device of the invention is that the characteristic impedance of the terminating device vary linearly from the value Z characteristic of the line lI-
  • the ratio of the outer conductor diameter to the inner conductor diameter must vary exponentially.
  • the outer conductor 14" is preferably made of resistance material or may have a surface coated with resistance material.
  • the inner conductor I3" is preferably made of conductive material so that substantially all of the resistivity of the tapered line is produced by the outer conductor, the resistance of the inner conductor being negligible with respect thereto.
  • This device of Fig. 3 has an advantage over that of Fig. 1 in that the inner conductor I3" may be manufactured by a relatively simple machining operation, as by turning on a lathe. Also, the much larger area of the resistive element 14" and its location at the outside of the device permits better heat dissipation and use in higher power systems.
  • the device of Fig. 3 may be approximated in a manner similar to that shown in Fig. 2 by use of short stepped sections.
  • the length of the sections is again preferably less than one-eighth wave length.
  • the outer conductor 14 is made the resistance member of the device.
  • the device of Fig. 4 is still more readily adapted for manufacture, since it is relatively simple to assure accurate machining of externally formed 6 cylindrical sections of member l3"' while the accurate machining of an exponential taper, as in Fig. 3 or Fig. 1, is relatively difficult.
  • a high frequency terminating impedance comprising a section of concentric transmission line having a resistive inner conductor of uniform diameter and constant resistance per unit length, and an outer conductor formed of a series of sections, each section having a constant inner diameter and a ratio of the diameters of successive sections being constant;
  • each of said sections has a length which is less than one-eighth wave length at the operating frequency thereof.
  • a high frequency terminating impedance comprising a section of concentric transmission line, one of whose conductors has a constant resistance per unit length and the other of whose conductors has an effective diameter varying in steps along said section, the ratio of the diameters of successive sections being equal.
  • each of said steps has a length less than one-eighth wave length at the operating frequency of said device.
  • a high frequency terminating impedance comprising a section of concentric transmission line having an outer resistive conductor of uniform inner diameter and uniform resistance per unit length, and an inner conductor whose diameter varies in steps along the length thereof, said steps being selected to provide a constant ratio of successive step diameters along said section.

Description

April 6, 1948,
HIGH-FREQUENCY TERMINATING IMPEDANCE Filed July 30, 1943 2 Sheets-Sheet 1 W. w. HANSEN 2,438,915
INVENTOR W/L 4 64/14 M f/A/VSE/V ATTORNEY April-6, 1948. w.'w. HANSEN 2,433,915
HIGH-FREQUENCY TERMINATING IMPEDANCE Filed July 30, 1943 2 Sheets-Sheet 2 Patented Apr. 6, 1948 HIGH-FREQUENCY TERMINATING HHPEDANCE William W. Hansen, Garden City, N. Y., assignor to The Sperry Corporation, a corporation of Delaware Application July so, 1943, Serial No. 496,715.
Claims. (01. 178-44) The present invention is related to the art including high frequency energy conducting systems and it is more specifically related to devices for providing an energy sink or energyabsorbing termination for concentric transmission lines.
As the frequencies utilized in radio communication and radio control have increased, it has become necessary to use substantially enclosed, non-radiating energy conductors such as the well known concentric transmission line type. In many types of application of such energy conducting devices, it is necessary to provide a termination for the conductor which will avoid the production of reflected electromagnetic waves in the energy conducting system. Such reflected waves, of course, combine with the forward traveling energy and produce so-called standing waves which interfere with the proper functioning of other portions of the system by rendering the apparatus position sensitive; that is, the effects produced may depend upon the position at which the particular apparatus in question is connected to the energy conducting system. In addition, the powertransfer through the system may be materially reduced. It is desirable, therefore, to provide a terminating device which will be able to absorb whatever energy is flowing through the system without producing reflections or standing waves. Such terminating devices are also known as energy sinks or black bodies, since they absorb substantially all energy incident thereon without retransmittin an appreciable amount of such energy.
Accordingly, it is an object of the present invention to provide an improved form of terminating device for high frequency energy conducting systems.
It is a further object of the present invention to provide an improved high frequency terminating device for concentric transmission lines adapted to properly terminate such lines substantially without reflection or standing waves.
It is another object of the present invention to provide a practical and easily manufacturable form of such high frequency terminating devices.
It is still another object of the present invention to provide an improved form of concentric line terminating device which is substantially insensitive to variations in frequency and there- 2 fore may be utilized with a large number of widely varying operating frequencies.
It is a further object of the present invention to provide an improved form of energy sink or terminating device adapted for use at high power.
Other. objects and advantages will become apparent from the following specification and attached drawings in which Fig. 1 shows a longitudinal cross-sectional view of one form of the present invention,
Fig. 2 shows a similar longitudinal cross-sectional view of a more practical embodiment of the present invention adapted for easy manufacture, and
Figs. 3 and 4 show similar views of other forms of my invention.
As is well known, a suitable terminating device for a concentric transmission line must provide a substantially pure resistance equal to the characteristic impedance Z0 of the transmission line to be terminated. However, if an ordinary lumped resistance is inserted in the end of such a transmission line it will be found that, at the high frequencies with which such devices are used, the terminating resistance also usually displays a reactance which prevents matching of the device to the line. Also, with lumped high frequency resistances usually employed, it may be so small'as to have limited power handling capabilities.
According to the present invention, a terminating impedance is provided which presents a substantially pure resistance so that matching to the line is effected without frequency dependency and which can handle appreciable amounts of power. In the present instance, as seen in Fig. 1,the concentric transmission line to be terminated is represented by the outer conductor 1 I and the inner conductor l2. Joined to the inner conductor I2 is a rod l3 of resistance material having a diameter substantially the same as that of inner conductor l2 and forming a smooth continuation thereof.
The length of rod [3 is so chosen with relation to the resistivity thereof that the total re- -However, 2 should also equal terminating impedance, rod 13 is surrounded by a conducting member I4 which has an inner taper I6 of an exponential character, which will be shown more clearly below.
Thus, by the well known transmission line equations, the current and voltage relations at any point as along the tapered line of Fig. 1 may be written:
where z is the current, 1: is the voltage, is the, unit capacitance, l is the unit inductance, is'
theradian frequency, and a is the pureima'ginary /-1. If it be assumed that i=Ae 4 where A is a constant, e is the base of the Naperian logarithm, and 7c is aconstant to be determined, then Equation 1 becomes Thus, Equation 5'indicat'es that"; at point x,
e where Io isthe maximum value of current flowing'fin:theinnerIconductor, which can also be seen from (3) to"have constant magnitude but variable phase along the terminating impedance device.
Furthermore, as shown above, the impedance offered by the present terminating device is entirely independent of frequency, as is the characteristic impedanceZojthatis; this terrninating impedance is'substa'ntially a pure resistance. 'Accordingly the present device can be utilized for widely yary'ing ppe'rati ng' frequencies whilefstill the ratio, of voltage to current will be real'if'R is real, and'will be independent of frequency if k is a multiple of w. By selectingk=wl these conditions are satisfied, and then is the characteristic impedance at m. Substituting (4) and (6) in (2) %=Ae %+jkZA =(r FjwDAe 7 By equating the real components of ('7),
and therefore Z=r:c.
If the line H, l2 has a characteristic impedance Z0, then rL is chosen equal to Z0, and the device will serve as a proper frequency-independent termination.
As is well known, the characteristic impedance Z0 of a concentric transmission line su'ch as ll, 12 may be given by the following expression:
where be is the radius of the outer conductor of the line H, l2 and a is the radius of the inner conductor thereof. For a tapering or varying line such as l3, M, the correspond'ing"expression, which may be termed the characteristic impedance Z at a point of the line sectionpwill depend upon the position considered along the line. If we let the variable :0 represent the distance from the closed end of the device, as fshown in the diagram, to a point along the line being considered, and if bx isthe radius of the outer conductor at that point, then z=co 10g f 10 maintaining substantially perfect 'iinpeidance matching and. the optimum energy dissipating characteristics produced "by the "constant power dissipation along the length of the device,
The j device" oflliig l "is somewhat diificult to manufactureinfview of therequirement that the inner taper oifcorrductor'i 4 rnust be a substantiallyperfectfexponential curve; "However, a dejvice can be produced 'which performs substantially in the same manner as that of Fig 1,- which is rel ative ly easy to iabricate. Such a" device is shown in'Fig. 2 in which the outer conductor l t is roi'med 'as'i a' series'w f 'stepsgpreferably, each stepbeingfshortfcompared to one wave length at an operating frequency in the center of the yr qi sma b Q e V in length. These' sections"are ;made" to approxioperatingfrangeof requenciea Preferably these eighth" wave length or less mate neexppne fiatim of Fig. l by-choosing "a'constant 'r "ancesyary's y 'Ifhe 'ehange'm 1 characteristic impedance J from er ett f e i "refi onsfini a';
optimu rn value, =Withthis'yrelation'among the pr h f i ers iq um aging the characteristic impedstantially linearly alongthe device.
sive -section ee q tess t p i e ii n a t By" malgingl the mber of sections'frelatively ndered gnite} insensitive to erating irequencies' from the characteristicimpedances ofthe several sections, the over-all "effect "or fall thesections is substantially the same as theexponential' curve variation "o'fFig. 1.
"It" will be noticed "that t he devi'ce of Fig, 2 3 can be manufactured by relatively}simplemachining or drilling operations; The-center conductor may beheld infplace-by suitable set sr ew illbr may be pressed into the"end-"oFthe'outer conductor 14 or fixeddn any other de sired manner. The
other ma nu "resistivefconductor I3fmay"be suitably "supported by the "inn'enconductor i2,
' ner.
as fby means of' a 'suitable conducting peg arangernentillustr atedat'l 8 *or in any other-manbe imiderstciod' 'tiiat eemereoneuet l2 rt ed witliin coridulctor "I I by the usual in- 76"Siilating" spacers or'stub' liiie The inner conductor l3 may be formed as a solid rod or hollow cylinder of the proper resistivity, or may be formed as a resistance coating on an insulating form or rod.
While the above forms of the invention have been illustrated with the resistance incorporated in the inner member and the taper in the outer member, it is to be understood that these features may be reversed. Thus, in Fig. 3 a similar terminating impedance is illustrated in which the inner conductor is tapered and the outer conductor is uniform. As seen above, the essential criterion for the terminating device of the invention is that the characteristic impedance of the terminating device vary linearly from the value Z characteristic of the line lI-|2 to the value zero. For this purpose the ratio of the outer conductor diameter to the inner conductor diameter must vary exponentially.
In the device of Fig. 1, this exponential relation was obtained by a constant inner conductor and an exponentially varying outer conductor. In the device of Fig. 3, this relationship is obtained by a constant outer conductor diameter and varying inner conductor diameter. The essential relationship is defined by the following equation,
60 log -=a:r (11) from which is obtained the equation :2 a =be k 12 which indicates how the radius of the inner conductor must vary to provide the desired impedance relation.
In the device of Fig. 3, the outer conductor 14" is preferably made of resistance material or may have a surface coated with resistance material. The inner conductor I3" is preferably made of conductive material so that substantially all of the resistivity of the tapered line is produced by the outer conductor, the resistance of the inner conductor being negligible with respect thereto.
This device of Fig. 3 has an advantage over that of Fig. 1 in that the inner conductor I3" may be manufactured by a relatively simple machining operation, as by turning on a lathe. Also, the much larger area of the resistive element 14" and its location at the outside of the device permits better heat dissipation and use in higher power systems.
The device of Fig. 3 may be approximated in a manner similar to that shown in Fig. 2 by use of short stepped sections. This is shown in Fig. 4 where the inner conductor 13" is now formed of stepped sections such that the ratio of the radii of successive section-s remains constant. The length of the sections is again preferably less than one-eighth wave length. Here again, the outer conductor 14 is made the resistance member of the device.
The device of Fig. 4 is still more readily adapted for manufacture, since it is relatively simple to assure accurate machining of externally formed 6 cylindrical sections of member l3"' while the accurate machining of an exponential taper, as in Fig. 3 or Fig. 1, is relatively difficult.
Accordingly, I have provided a terminating impedance for a concentric transmission line which provides proper termination over a wide range of frequencies, which provides a desired uniform distribution of the power dissipation to avoid overheating of any local area, and which is relatively simple to manufacture and assemble. 7
Since many changes could be made in the above construction and many apparently widely different embodiments of this invention could be made without departing from the scope thereof, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
What is claimed is:
1. A high frequency terminating impedance comprising a section of concentric transmission line having a resistive inner conductor of uniform diameter and constant resistance per unit length, and an outer conductor formed of a series of sections, each section having a constant inner diameter and a ratio of the diameters of successive sections being constant;
2. A high frequency terminating impedance as in claim 1, wherein each of said sections has a length which is less than one-eighth wave length at the operating frequency thereof.
3. A high frequency terminating impedance comprising a section of concentric transmission line, one of whose conductors has a constant resistance per unit length and the other of whose conductors has an effective diameter varying in steps along said section, the ratio of the diameters of successive sections being equal.
4. Apparatus as in claim 3, wherein each of said steps has a length less than one-eighth wave length at the operating frequency of said device.
5. A high frequency terminating impedance comprising a section of concentric transmission line having an outer resistive conductor of uniform inner diameter and uniform resistance per unit length, and an inner conductor whose diameter varies in steps along the length thereof, said steps being selected to provide a constant ratio of successive step diameters along said section.
WI LIAM W. HAN- SEN.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 2,273,54'7- Von Radinger Feb. 17, 1942 1,926,807 Hansell Sept. 12, 1933 2,399,645 Latimer May 7, 19 6 2,409,599 Tiley Oct. 15, 1946 FOREIGN PATENTS Number Country Date 502,807 Germany July .22, 1930 Certificate of Correction Patent No. 2,438,915. April 6, 1948. WILLIAM W. HANSEN It is hereby certified that errors appear in the above nu mbered patent requiring correction as follows: In the grant, line 1, for William W.
Hensen reed William W.
, 7, Hansen; in the specification, column 3, line 43, equation 7, for 3; read 2%; same line, for Ae read Ad"; and that the said Letters Patent should be read with these corrections therein that the same may conform to the record of the case in the Patent fli-ce.
Signed and sealed this 15th day of June, A. D. 1948.
THOMAS F. MURPHY,
Assistant floflmissioner of Patents.
US496715A 1943-07-30 1943-07-30 High-frequency terminating impedance Expired - Lifetime US2438915A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US496715A US2438915A (en) 1943-07-30 1943-07-30 High-frequency terminating impedance
GB21715/47A GB628928A (en) 1943-07-30 1947-08-07 Improvements in or relating to terminations for ultra-high-frequency electromagnetic wave transmission lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US496715A US2438915A (en) 1943-07-30 1943-07-30 High-frequency terminating impedance

Publications (1)

Publication Number Publication Date
US2438915A true US2438915A (en) 1948-04-06

Family

ID=23973816

Family Applications (1)

Application Number Title Priority Date Filing Date
US496715A Expired - Lifetime US2438915A (en) 1943-07-30 1943-07-30 High-frequency terminating impedance

Country Status (2)

Country Link
US (1) US2438915A (en)
GB (1) GB628928A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2463428A (en) * 1945-12-17 1949-03-01 Foster F Rieke Coaxial line termination
US2550689A (en) * 1946-12-11 1951-05-01 Wilbur E Gustafson Wide range high-frequency power meter
US2552707A (en) * 1946-08-21 1951-05-15 Bird Electronic Corp High-frequency coaxial coupling device
US2576060A (en) * 1945-08-08 1951-11-20 James M Wolf Radio-frequency calorimeter wattmeter
US2594874A (en) * 1946-05-08 1952-04-29 Us Sec War High-frequency dissipating load
US2634307A (en) * 1950-03-07 1953-04-07 Quentin A Kerns High-frequency shunt
US2646549A (en) * 1946-01-07 1953-07-21 Us Sec War Coaxial line terminating device
US2648047A (en) * 1945-08-04 1953-08-04 Us Navy Wave guide calorimeter wattmeter
US2655635A (en) * 1948-12-21 1953-10-13 Rca Corp Transmission line termination
US2677109A (en) * 1946-05-01 1954-04-27 Us Navy Coaxial thermistor mount
US2700749A (en) * 1950-10-24 1955-01-25 James R Bird Resistor for high-frequency electrical transmission lines
US2752572A (en) * 1949-01-26 1956-06-26 Bird Electronic Corp Liquid-cooled load for a coaxial transmission line
US2764739A (en) * 1952-02-01 1956-09-25 Rca Corp Directional coupler
US2804598A (en) * 1946-02-08 1957-08-27 Roberto M Fano Wave guide termination
US2840787A (en) * 1952-09-11 1958-06-24 Hughes Aircraft Co Hybrid tau type waveguide junction
US2863126A (en) * 1953-12-31 1958-12-02 Bell Telephone Labor Inc Tapered wave guide delay equalizer
US2884603A (en) * 1953-02-04 1959-04-28 Bird Electronic Corp Method of and apparatus for converting high frequency electrical energy into heat
US2899640A (en) * 1959-08-11 carlin
US2933705A (en) * 1955-10-25 1960-04-19 Polytechnic Res & Dev Co Inc Thermistor mounts
US2938182A (en) * 1955-11-18 1960-05-24 Raytheon Co Microwave tube output coupling
US2966639A (en) * 1955-06-06 1960-12-27 Bird Electronic Corp Diminutive coaxial line resistive termination
US3046507A (en) * 1957-04-18 1962-07-24 Jr Howard S Jones Waveguide components
US3312926A (en) * 1965-06-17 1967-04-04 Bird Electronics Corp Air-cooled coaxial line termination
US3761846A (en) * 1970-05-04 1973-09-25 Iwatsu Electric Co Ltd Impedance-matching resistor
US3786377A (en) * 1971-04-19 1974-01-15 G Spinner Plug fitting for hf transmission lines
US4260962A (en) * 1979-08-06 1981-04-07 Motorola, Inc. RF Termination for coaxial transmission lines
US4647877A (en) * 1985-03-11 1987-03-03 Rockwell International Corporation Broadband signal termination apparatus comprising series cascade of resistors and transmission lines
US5047737A (en) * 1988-03-31 1991-09-10 Wiltron Company Directional coupler and termination for stripline and coaxial conductors
US5210464A (en) * 1991-05-15 1993-05-11 The United States Of America As Represented By The Department Of Energy Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load
US5508669A (en) * 1993-02-26 1996-04-16 Sugawara; Goro High-frequency signal transmission system
US6222500B1 (en) * 1998-05-08 2001-04-24 Telefonaktiebolaget Lm Ericsson (Publ) Device for impedance adaption
US6229327B1 (en) * 1997-05-30 2001-05-08 Gregory G. Boll Broadband impedance matching probe
EP1376751A1 (en) * 2001-04-05 2004-01-02 Sumitomo Electric Industries, Ltd. Connection structure of connector pin and signal line and semiconductor package using it
US20130092413A1 (en) * 2011-10-14 2013-04-18 Varian Semiconductor Equipment Associates, Inc. Current Lead with a Configuration to Reduce Heat Load Transfer in an Alternating Electrical Current Environment
JP2016517237A (en) * 2013-04-18 2016-06-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft High voltage pulse generating apparatus and high voltage pulse generating method
US10304593B2 (en) * 2017-10-20 2019-05-28 Microsoft Technology Licensing, Llc Data carrying cable with mixed-gauge conductors to achieve longer reach and flexibility

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE953817C (en) * 1953-03-29 1956-12-06 Telefunken Gmbh Device for damping very short electromagnetic waves traveling in a coaxial line
DE960110C (en) * 1953-11-29 1957-03-14 Siemens Ag Coaxial terminating resistor for very high frequencies
DE961993C (en) * 1953-11-29 1957-04-18 Siemens Ag Coaxial attenuator for very high frequencies
EP0023437A1 (en) * 1979-07-27 1981-02-04 The Bendix Corporation Radio frequency load resistor
EP0141833A4 (en) * 1983-05-05 1985-08-20 Commw Of Australia Transmission lines.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502807C (en) * 1928-10-16 1930-07-22 Telefunken Gmbh Arrangement for frequency-independent adaptation of consumers to high-frequency energy sources
US1926807A (en) * 1928-04-14 1933-09-12 Rca Corp Impedance transformer
US2273547A (en) * 1938-10-28 1942-02-17 Telefunken Gmbh Ohmic resistance for ultra-short waves
US2399645A (en) * 1942-01-09 1946-05-07 Hartford Nat Bank & Trust Co High-frequency resistance
US2409599A (en) * 1944-04-28 1946-10-15 Philco Corp Coaxial line termination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1926807A (en) * 1928-04-14 1933-09-12 Rca Corp Impedance transformer
DE502807C (en) * 1928-10-16 1930-07-22 Telefunken Gmbh Arrangement for frequency-independent adaptation of consumers to high-frequency energy sources
US2273547A (en) * 1938-10-28 1942-02-17 Telefunken Gmbh Ohmic resistance for ultra-short waves
US2399645A (en) * 1942-01-09 1946-05-07 Hartford Nat Bank & Trust Co High-frequency resistance
US2409599A (en) * 1944-04-28 1946-10-15 Philco Corp Coaxial line termination

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899640A (en) * 1959-08-11 carlin
US2648047A (en) * 1945-08-04 1953-08-04 Us Navy Wave guide calorimeter wattmeter
US2576060A (en) * 1945-08-08 1951-11-20 James M Wolf Radio-frequency calorimeter wattmeter
US2463428A (en) * 1945-12-17 1949-03-01 Foster F Rieke Coaxial line termination
US2646549A (en) * 1946-01-07 1953-07-21 Us Sec War Coaxial line terminating device
US2804598A (en) * 1946-02-08 1957-08-27 Roberto M Fano Wave guide termination
US2677109A (en) * 1946-05-01 1954-04-27 Us Navy Coaxial thermistor mount
US2594874A (en) * 1946-05-08 1952-04-29 Us Sec War High-frequency dissipating load
US2552707A (en) * 1946-08-21 1951-05-15 Bird Electronic Corp High-frequency coaxial coupling device
US2550689A (en) * 1946-12-11 1951-05-01 Wilbur E Gustafson Wide range high-frequency power meter
US2655635A (en) * 1948-12-21 1953-10-13 Rca Corp Transmission line termination
US2752572A (en) * 1949-01-26 1956-06-26 Bird Electronic Corp Liquid-cooled load for a coaxial transmission line
US2634307A (en) * 1950-03-07 1953-04-07 Quentin A Kerns High-frequency shunt
US2700749A (en) * 1950-10-24 1955-01-25 James R Bird Resistor for high-frequency electrical transmission lines
US2764739A (en) * 1952-02-01 1956-09-25 Rca Corp Directional coupler
US2840787A (en) * 1952-09-11 1958-06-24 Hughes Aircraft Co Hybrid tau type waveguide junction
US2884603A (en) * 1953-02-04 1959-04-28 Bird Electronic Corp Method of and apparatus for converting high frequency electrical energy into heat
US2863126A (en) * 1953-12-31 1958-12-02 Bell Telephone Labor Inc Tapered wave guide delay equalizer
US2966639A (en) * 1955-06-06 1960-12-27 Bird Electronic Corp Diminutive coaxial line resistive termination
US2933705A (en) * 1955-10-25 1960-04-19 Polytechnic Res & Dev Co Inc Thermistor mounts
US2938182A (en) * 1955-11-18 1960-05-24 Raytheon Co Microwave tube output coupling
US3046507A (en) * 1957-04-18 1962-07-24 Jr Howard S Jones Waveguide components
US3312926A (en) * 1965-06-17 1967-04-04 Bird Electronics Corp Air-cooled coaxial line termination
US3761846A (en) * 1970-05-04 1973-09-25 Iwatsu Electric Co Ltd Impedance-matching resistor
US3786377A (en) * 1971-04-19 1974-01-15 G Spinner Plug fitting for hf transmission lines
US4260962A (en) * 1979-08-06 1981-04-07 Motorola, Inc. RF Termination for coaxial transmission lines
US4647877A (en) * 1985-03-11 1987-03-03 Rockwell International Corporation Broadband signal termination apparatus comprising series cascade of resistors and transmission lines
US5047737A (en) * 1988-03-31 1991-09-10 Wiltron Company Directional coupler and termination for stripline and coaxial conductors
US5210464A (en) * 1991-05-15 1993-05-11 The United States Of America As Represented By The Department Of Energy Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load
US5508669A (en) * 1993-02-26 1996-04-16 Sugawara; Goro High-frequency signal transmission system
US6229327B1 (en) * 1997-05-30 2001-05-08 Gregory G. Boll Broadband impedance matching probe
US6222500B1 (en) * 1998-05-08 2001-04-24 Telefonaktiebolaget Lm Ericsson (Publ) Device for impedance adaption
EP1376751A1 (en) * 2001-04-05 2004-01-02 Sumitomo Electric Industries, Ltd. Connection structure of connector pin and signal line and semiconductor package using it
EP1376751A4 (en) * 2001-04-05 2004-07-07 Sumitomo Electric Industries Connection structure of connector pin and signal line and semiconductor package using it
US20130092413A1 (en) * 2011-10-14 2013-04-18 Varian Semiconductor Equipment Associates, Inc. Current Lead with a Configuration to Reduce Heat Load Transfer in an Alternating Electrical Current Environment
US8933335B2 (en) * 2011-10-14 2015-01-13 Varian Semiconductor Equipment Associates, Inc. Current lead with a configuration to reduce heat load transfer in an alternating electrical current environment
JP2016517237A (en) * 2013-04-18 2016-06-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft High voltage pulse generating apparatus and high voltage pulse generating method
US10304593B2 (en) * 2017-10-20 2019-05-28 Microsoft Technology Licensing, Llc Data carrying cable with mixed-gauge conductors to achieve longer reach and flexibility

Also Published As

Publication number Publication date
GB628928A (en) 1949-09-07

Similar Documents

Publication Publication Date Title
US2438915A (en) High-frequency terminating impedance
US2409599A (en) Coaxial line termination
DE69923805T2 (en) Ceramic-metal bushings for millimeter waves
US2202380A (en) Confined or space resonance antenna
US2262134A (en) Ultrahigh frequency transmission line termination
US2567210A (en) Ultra-high-frequency attenuator
US2171219A (en) High frequency condenser
US2828440A (en) Traveling wave electron tube
US3238477A (en) High-impedance radio frequency coaxial line having ferrite sleeve in dielectric space
US2968774A (en) Microwave attenuation units
US2406945A (en) Insulator for concentric transmission lines
US2552707A (en) High-frequency coaxial coupling device
US2994049A (en) High-frequency radial coaxial attenuator
US2399645A (en) High-frequency resistance
US3013226A (en) Wideband tapered balun
US2894219A (en) Co-axial resistive load
US2474794A (en) Attenuator
US3541474A (en) Microwave transmission line termination
US2853644A (en) Traveling-wave tube
US2529436A (en) Metal film attenuator
US3324424A (en) Microwave circuit termination
US2561184A (en) Transmission line attenuator
Mousavi et al. High performance LPF structure with sharp roll‐off and low VSWR
US3311856A (en) Bilateral coaxial resistive device having coaxial and coextensive resistor elements
US3414844A (en) Frequency dependent wave transmission device