Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.


  1. Búsqueda avanzada de patentes
Número de publicaciónUS2473971 A
Tipo de publicaciónConcesión
Fecha de publicación21 Jun 1949
Fecha de presentación25 Feb 1944
Fecha de prioridad25 Feb 1944
Número de publicaciónUS 2473971 A, US 2473971A, US-A-2473971, US2473971 A, US2473971A
InventoresRoss Donald E
Cesionario originalRoss Donald E
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Underwater transducer
US 2473971 A
Resumen  disponible en
Previous page
Next page
Reclamaciones  disponible en
Descripción  (El texto procesado por OCR puede contener errores)

D. E. Ross UNDERWATER TRANSDUGER IFiled Feb. 2s, 1944 June `21, 1949.

Patented `lune 21, 1949 UNITED STATES if!vv NT OFFICE UNDERWATER TRANSDUCER Application February 25, 1944, Serial No. 523,887

1 Claim. 1

This invention relates to fan-underwater transducer, and itis an improvement on-the invention set forth in application Ser. No. 129,640, led March `8, 1937, patented January 27, 1948, No. 2,434,926.

For many years past, `the ,problem of case radiation and visolation Ahas vbeen one of great importance in the construction of underwater electro-mechanical transducer. Because of the manner of use, rigid construction is necessary and this has been largely responsible for causing such radiation. Particularly in the construction of .piezoelectric crystal units. where the crystals are lmounted on backing plates of relatively large mass, vibrations have been transmitted to the Vtransducer housing and in turn into the water. The result in any particulartype vis a large loss in energy and eiiiciency in the case of a radiator, and a poor signal to noise ratio in a receiver. It is thus one of the objects of '.theinvention to provide a transducer of simple .construction in which the motor assembly, composed of the vibrating elements and Aany associated backing plate, is insulated and isolated from the transducer housing.

The problem kma-y be better understood by considering an ideal Atransducer (radiator) as a piston operating in a xed,rimmovable balile. This analogy `is well known in the art, and the overall response of such a unit isdue .entirely to the ac- `tion of the piston. However, 4in practice, it is found that units only approach this ideal and case or housing radiation produces an additional pressure in the sound field over and above that produced by the piston. In other Words, every actual unit, to some extent, exhibits an overall radiation pattern which is due to both vibration of the elements (the piston) and vibration of the case. Itis desirable to reduce the case radiation as Amuch as possible so that the unit produces a `pattern, with its major and minor lobes, which approaches as nearly as possible that produced vby the ideal unit, It islthe object `of =the invention to produce a unit which has a radiation pattern which very closely approaches this ideal by isolating the case or housing from the vibrating ele ments. The resulting response curve is thus largely undisturbed by the Yvibrations of the case which are normally present. This argument -applies with equal force to receivers byvirtue of the principle of reciprocity.

The solution to the-above stated problem has become of greater importance as the requirements for `directive transducershave ybecome more exacting. -A`s used here; 1-directivity for fthe unit refers not only to the width of the major lobe, but to the ratio of the response level in a certain desired direction to such level Ain fother directions in which high response is undesirable.

In order that such directivty may be predicted and achieved, means must 'be provided toy reduce such response in all but the desired direction (or directions) and it is one of the lprimary objects of the invention to provide such means. Experiments have shown that this is possible and that the response in such desired directions may -loe made to exceed by over 50 db. the response in other directions.

The invention consists primarily in supporting the motor assembly with `an insulating material of low acoustic impedance in such a manner that such material entirely surrounds such assembly, except in the directions in which high response is desired.

It has likewise been found -that the undesirable effects produced by water noise, reverberation and cavitation (particularly at high speeds) are greatly reduced and that the sensitivity :is correspondingly increased.

An additional advantage of this invention is its ease of construction and assembly, particularly as compared with other types of Vunits which provide an air chamber adjacent the backing plate( Not only is the chamber unnecessary, but only one side of the backing plate need be nished or machined in the present construction.

And an even further advantage of the :present invention is that since no bo1ts,.supports,..etc.,.ar.e used to mount the motor assembly, acoustic paths, through which vibrations might travel from the motor to the housing, and vice versa, are eliminated.

In the drawings:

Figure l is a side View, partially in section.

Figure 2 is a front view, partially in section.

As has been stated, the invention consists .primarily in means for isolating and insulating the motor assembly from the case .or housing. Any material used for this .purpose must be .characterized by low acoustic impedance whereby sonic energy is reflected from, rather than .transmitted by, it. For this purpose, cork and .Corprene (a mixture of cork and neoprene, prepared by the Armstrong Cork Works) have been foundto ibe very acceptable. Among other material which satisfy this criterion are cork composition materials, Foamglas (a patented material manufactured by the Pittsburgh Corning Corp), bre board, sponge rubber (with non-communicative Acells), and -interspaced wire mesh -All yoirsu'ch 3 materials provide poor acoustic impedance matching with metal, piezoelectric crystals, castor oil, and other materials which go to make up the transducer.

The invention may be used with a variety of transducer units and the particular type disclosed in the drawings is not intended as the only type of unit claimed. It has been chosen for illustrative purposes, while the invention claimed comprises any such use of insulating means.

The piezoelectric crystal transducer illustrated in the drawings comprises a housing, generally designated l, which may be of a metal such as steel, meehanite, bronze, brass, etc. It may be of any desired shape, although the one illustrated is square. The housing l is formed with a large central recess bounded by walls 3 and a back 4. Centrally of the back Il is an upstanding circular ilange 5 which is adapted to receive and support a stufng box 5 by means of bolts l. The adjacent portions of the back fi of the housing and the stuiing box 6 are recessed to form a terminal box 8 in which cable connections may be made. This is made watertight by a rubber gasket seal 9. The stuffing box is internally threaded at its outer end to receive a threaded nut it* which bears on a rubber gasket Il.

Centrally of the ange 5 is a hole extending through the back #i of the housing. A small plate i2 is adapted to nt over this hole and is held in place by bolts E3. This plate supports two conducting lead pins it, by means of insulators l and a rubber washer Il'.

Cable i8 enters the terminal box S through nut i6 and is there soldered to the lead pins i4, I5, which are in turn connected to crystal leads inside the housing l, as will be described. It is thus noted that cable connections may be made or changed within the terminal box 8 without dismantling the entire' unit resulting in emptying and refilling it with oil. The box 8 is maintained water and air tight by means of gasket H, seal 9 and washer Il.

Four bosses i are positioned externally of and at the corners of the back 4 of the housing and are internally threaded to receive mounting studs, not shown.

In the unit illustrated the motor assembly, generally designated 2B, comprises a bank of piezoelectric crystals '2| forming a at vibrating face, and a backing plate 22, to which the crystals are secured. This backing plate 22 may be of metal (such as steel or meehanite), Bakelite, glass, Lucite, concrete, plaster-of-Paris, porcelainized metal, ceramic material, Transite (a patented material sold by Johns Manville Co.) or any other suitable material with desirable characteristics. On two of the edges of the backing plate 22, supports 23 are mounted by means of bolts 24, and these, together with small pieces of Corprene used as spacers between the crystals, serve to hold the crystals in fixed position with respect to the backing plate 22.

No supports arey used on the other edges of the backing plate 22, but the plate itself extends slightly beyond the crystals. This provides a space in which the electrodes 25 connected to the crystals 2| may be brought out and soldered to lead wires 21.

The motor assembly 20 is designed to fit into the recess of housing l, but is formed so that its overall dimensions are from 1/2" to 11/2" less than the dimensions of the recess. Before the motor 20 is placed in position, the recess is lined with layers of cork, Corprene or any of the other described suitable materials. Thus, four sheets 28 are snugly itted against the sides of the recess, and another sheet 29 is placed on the bottom of the recess in such a manner that it is held snugly in place by the side sheets 28. The motor likewise fits snugly into this lined recess and two strips 38 of the same insulating material are positioned along the outer or upper edges of supports 23 and are supported by sheets 28 and supports 23. It bears directly against a small flange on the upper end of walls 3, which ilange also helps to keep sheets 2@ in position. The housing is closed by a metal frame' 32 to which has been vulcanized a relatively thick sound transparent window 33 formed of a material, such as rubber, whose acoustic impedance does not diier substantially from that of water. The frame is held in position by bolts 3A and the closure is made water and oil tight by a rubber gasket seal 35 of the same type as seal This gasket seal is of particular interest since it consists simply of a rectangular grooved recess formed in the flange, and approximately 1/8 wide' and .068" deep. An 1/8 neoprene or rubber circular rod is positioned therein to forni an exceptionally tight seal.

The electrodes are soldered to lead wires 27, which extend through holes in sheets 23. Grooves 36 are formed in the adjacent walls 3, which grooves extend down the walls and across the back t, and carry the lead wires 2l into a position where they are connected to pins ill, i5.

The remaining space within the recess is filled with oil so that the whole of the motor assembly Eil is immersed in it. Such oil should preferably have, as does castor oil, an acoustic impedance substantially that of water at the teinperature of use.

The particular unit just described illustrates the general principle of the invention. The motor assembly 2li is entirely surrounded by the insulating sheets 28 and 29, except for that portion facing the sound transparent window 33. The sonic insulation produced by this construction between the motor and case is very great and sharp directivity is thus obtained in a direction normal to window 33. In transducers where sensitivity is desired in two or more directions, the same principle is followed and the insulating layers are positioned to entirely surround the :fnotor or motors, except in the directions where high response is desirable.

This construction so isolates and insulates the motor assembly 2d from the housing i that vibrations normally transmitted between the motor assembly and housing are largely eliminated and greatly increased overall eiciencies are obtained. This is accomplished not only by the insulating characteristics of the sheets 23, 29 but also because the motor assembly is entirely supported by this material. No bolts, braces, or supports normally used to mount the motor assembly are present and cannot, therefore, act as sonic conductors between the motor and housing. Even ordinary rubber, which has sometimes been used to support the motor, acts as a reasonably good conductor when under compression and is affected by high frequencies. This is not true for the materials prescribed for use with the present invention.

Having thus described my invention, l claim;

A transducer for propagating sound in iuid, said transducer comprising a housing having a recess open at one end, a metal frame closing said recess, said frame having an opening, nonmetallic material closing said opening thereby forming a sound transparent window, said nonmetallic material having an acoustic impedance substantially equal to the fluid in which the sound is to be propagated from the transducer, means securing said frame to said housing Jo form a uid-tight enclosure therefor whereby said transducer can be immersed in the iluid, a unitary motor assembly within the housing facing the window, said motor assembly including a back plate on the opposite side from the window and end support members secured to the back plate, and layers of a cork and rubber mixture having a low acoustic impedance lning said recess and completely surrounding said i motor assembly except at the position facing said Window, said layers being snugly tted between the back plate and support members and the housing to form the sole support for said motor unit assembly to position and maintain the same xed Within the housing relative to said Window.


6 REFERENCES CITED The following references are of record in the Ele of this patent:

UNITED STATES PATENTS Number Name Date 549,802 Lucas Nov. 12, 1895 768,573 Mundy Aug. 23, 1904 1,204,826 Schiessler Nov. 14, 1916 1,472,558 Fessenden et al. Oct. 30, 1923 1,625,245 Dorsey Api'. 19, 1927 1,973,673 Rice Sept. 11, 1934 1,991,877 Zottali Feb. 19, 1935 2,076,330 Wood et al. Apr. 6, 1937 2,121,779 Ballantine June 28, 1938 2,270,902 RubiSsoW s Jan. 27, 1942 FOREIGN PATENTS Number Country Date 844,452 France July 26, 1939 OTHER REFERENCES Product Engineering-Cork-Rubber Materials, June, 1939.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US549802 *12 Nov 1895 Telephone-transmitter
US768573 *23 Abr 190223 Ago 1904Submarine Signal CoSubmarine sound-direction finder.
US1204826 *8 Feb 190814 Nov 1916Josef SchiesslerSubmarine signaling apparatus.
US1472558 *18 Jul 191830 Oct 1923Submarine Signal CoDirectional receiving of submarine signals
US1625245 *22 Jun 191819 Abr 1927John Hays Hammond JrReceiving system for compressional waves
US1973673 *10 Dic 193111 Sep 1934Gen ElectricSound or air wave apparatus
US1991877 *19 Jul 193219 Feb 1935Anthony M ZottoliAcoustic coating material
US2076330 *26 Ene 19326 Abr 1937Hughes Henry & Son LtdMeasurement of distances by echo reception methods
US2121779 *12 Feb 193528 Jun 1938Stuart BallantineSound translating apparatus
US2270902 *25 Nov 193927 Ene 1942Rubissow George AAntivibration means and method of use of same
FR844452A * Título no disponible
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US2981357 *1 Feb 195525 Abr 1961Socony Mobil Oil Co IncSubmerged strata acoustic probe system
US3851300 *3 Nov 197126 Nov 1974Us NavyTransducer
US4110727 *29 Jul 197629 Ago 1978Lowrance Electronics, Inc.Method of manufacturing transducer
US4122725 *16 Jun 197631 Oct 1978The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationLength mode piezoelectric ultrasonic transducer for inspection of solid objects
US4364117 *14 Abr 198014 Dic 1982Edo Western CorporationShock-hardened, high pressure ceramic sonar transducer
US4463454 *5 May 198131 Jul 1984Rockwell International CorporationSonar vibration isolation transducer mount
US4488271 *20 Jun 198311 Dic 1984The United States Of America As Represented By The Secretary Of The NavyDeep ocean wide band acoustic baffle
US4866682 *14 Jun 198412 Sep 1989Furuno Electric CompanyTransducer device
US5172344 *29 Jun 197315 Dic 1992Raytheon CompanyDeep submergence transducer
US9228183 *1 Dic 20145 Ene 2016Flodesign Sonics, Inc.Acoustophoretic separation technology using multi-dimensional standing waves
US9272234 *16 Jul 20131 Mar 2016Flodesign Sonics, Inc.Separation of multi-component fluid through ultrasonic acoustophoresis
US9422328 *11 Jul 201423 Ago 2016Flodesign Sonics, Inc.Acoustic bioreactor processes
US9458450 *13 Sep 20134 Oct 2016Flodesign Sonics, Inc.Acoustophoretic separation technology using multi-dimensional standing waves
US955013420 May 201624 Ene 2017Flodesign Sonics, Inc.Acoustic manipulation of particles in standing wave fields
US966375625 Feb 201630 May 2017Flodesign Sonics, Inc.Acoustic separation of cellular supporting materials from cultured cells
US967047729 Abr 20166 Jun 2017Flodesign Sonics, Inc.Acoustophoretic device for angled wave particle deflection
US9675902 *19 Ene 201613 Jun 2017Flodesign Sonics, Inc.Separation of multi-component fluid through ultrasonic acoustophoresis
US968895823 Ago 201627 Jun 2017Flodesign Sonics, Inc.Acoustic bioreactor processes
US97019554 Oct 201611 Jul 2017Flodesign Sonics, Inc.Acoustophoretic separation technology using multi-dimensional standing waves
US973886714 Feb 201722 Ago 2017Flodesign Sonics, Inc.Bioreactor using acoustic standing waves
US974448326 Ago 201629 Ago 2017Flodesign Sonics, Inc.Large scale acoustic separation device
US974554830 Ene 201729 Ago 2017Flodesign Sonics, Inc.Acoustic perfusion devices
US974556926 Ene 201729 Ago 2017Flodesign Sonics, Inc.System for generating high concentration factors for low cell density suspensions
US97521148 Mar 20175 Sep 2017Flodesign Sonics, IncBioreactor using acoustic standing waves
US978377514 Feb 201710 Oct 2017Flodesign Sonics, Inc.Bioreactor using acoustic standing waves
US979660717 Feb 201524 Oct 2017Flodesign Sonics, Inc.Phononic crystal desalination system and methods of use
US97969563 Oct 201624 Oct 2017Flodesign Sonics, Inc.Multi-stage acoustophoresis device
US20130302213 *16 Jul 201314 Nov 2013Flodesign Sonics Inc.Separation of multi-component fluid through ultrasonic acoustophoresis
US20140011240 *13 Sep 20139 Ene 2014Flodesign Sonics, Inc.Acoustophoretic separation technology using multi-dimensional standing waves
US20140329997 *11 Jul 20146 Nov 2014Flodesign Sonics, Inc.Acoustic bioreactor processes
US20150176001 *1 Dic 201425 Jun 2015Flodesign Sonics, Inc.Acoustophoretic separation technology using multi-dimensional standing waves
Clasificación de EE.UU.181/198, 367/162, 367/155
Clasificación internacionalG10K11/00
Clasificación cooperativaG10K11/002
Clasificación europeaG10K11/00B