US2503749A - Barium soap grease compositions and method of preparation - Google Patents

Barium soap grease compositions and method of preparation Download PDF

Info

Publication number
US2503749A
US2503749A US580278A US58027845A US2503749A US 2503749 A US2503749 A US 2503749A US 580278 A US580278 A US 580278A US 58027845 A US58027845 A US 58027845A US 2503749 A US2503749 A US 2503749A
Authority
US
United States
Prior art keywords
grease
soap
barium
barium soap
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US580278A
Inventor
Theodore W Langer
Oney P Puryear
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Priority to US580278A priority Critical patent/US2503749A/en
Application granted granted Critical
Publication of US2503749A publication Critical patent/US2503749A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M5/00Solid or semi-solid compositions containing as the essential lubricating ingredient mineral lubricating oils or fatty oils and their use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/284Esters of aromatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/285Esters of aromatic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/067Polyaryl amine alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • This invention relates to improvements in the manufacture and production of barium soap greases and particularly to an improved method in the preparation of normal barium soap greases and the grease compositions produced thereby.
  • barium soap greases possess certain inherent characteristics whichare not attained by the conventional base grease. These characteristics include the combination of high melting point normally associated with the sodium soap greases and water-resistant properties characteristic of the calcium soap greases; The preparation of these greases has been extensively investigated and the investigators have concluded that the desirable characteristics of the barium soap greases are only attained by the basic and/or complex barium soap greases. The normal barium soap greases have been prepared only with great difficulty and require the presence of water for stabilization which substantially nullifies the improvement over the conventional base greases.
  • a soap-forming hydroxy fatty acid as the acidic. component of the barium soap not only permits the use of a simplified and more efficient method of manufacture but also provides improved texture stability in the resulting barium soap grease.
  • the hydroxy fatty acid need not be the sole acid component of the soap but mus-t be the predominant acid constituent.
  • blends of conventional fats and fatty acids, with the hydroxy fatty acids may be used provided the ratio of hydroxy fatty acid to fatty acid is greater than one.
  • hydroxy fatty acids contemplated herein are those containing at least 12 carbon atoms and one or more hydroxyl groups separated from the 2 carboxyl group by at least one carbon atom. From the standpoint of economy and availability, the most practical examples of these acids are lZ-hydroxy stearic acid and the hydroxy acids produced by catalytic oxidation of hydrocarbon oils and waxes which have been extracted and fractionated to the desired molecular. range. Although repeated reference has been made to the use of hydroxy fatty acids in the method of manufacture, the glycerides thereof may also be used and the only difference in composition of the resulting grease will be the possible inclusion of small amounts of glycerine.
  • the reaction mass is heated to 260-300 F. for dehydration. It is necessary to avoid temperatures in excess of 300 F. since local overheating may cause the grease to melt and molten grease is conducive to the formation of lumps in the body of the grease.
  • the grease is gradually cooled by the progressive addition of the main body of lubricating oil. As previously mentioned, continuous stirring is maintained. The lubricating oil is added until the desired consistency is obtained and the grease is then cooled to a temperature below 200 F. and drawn as the finished product.
  • the drawing temperature is necessarily below 200 F. and preferably around F. because of the fact that high drawing temperatures promote setting up and false consistency.
  • the composition of the greases prepared in accordance with the invention naturaly depends upon the type of service and conditions of lubrication for which the grease is intended. Aside from the variations in composition obtained by the use of combinations of other metallic constituents with barium and blends of other fats and fatty acids with the hydroxy fatty acids, an important factor to be considered is the oil component of the grease.
  • the oils contemplated by the invention may be defined as an oleaginous component of lubricating viscosity. This includes the conventional lubricating oils, synthetic oils, and the oleaginous organic compounds together with mixtures and/or blends thereof.
  • the classification of oleaginous organic compounds embraces the liquid organic compounds which possess lubricating qualities and may be substituted for the conventional lubricating oils to impart improved torque-temperature characteristics to the grease.
  • the composition of the compounds falling within this classification includes such divergent polar compounds as aliphatic dibasic diesters, aromatic, mono and dibasic esters, and aliphatic ethers. Specific examples thereof are th high molecular weight diesters of sebacic acid, benzoic and phthalic acid esters, and normal hexyl ether.
  • an oxidation inhibitor may be incorporated in the grease.
  • the aromatic amine type of inhibitor is considered to be the most efiicacious.
  • the polynuclear aromatic amines such as tetramethyl diamino diphenyl methane, diphenyl amine, and phenyl alpha naphthylamine are preferred.
  • the temperature was raised rapidly to 190 F. and maintained approximately constant for five hours to effect saponification. After saponification, heatin was resumed and the product dehydrated over a five hour period, the temperature reaching 288 F.
  • the dehydrated product was a smooth, dark brown, doughlike mass. Care was exercised to avoid heating above 300 F. because the product might melt and become lumpy. After dehydration, heating was discontinued but stirring was maintained as an additional 12 lbs. of Edeleanu extract were added to make a total of 27 lbs. in the batch and yield theoretically 37.8% normal barium soap. At this stage the product was a smooth, dark, glossy grease, the temperature being 240 F.
  • the method of preparing an anhydrous normal barium soap grease having good Water and heat resistant properties and stable against oleaginous liquid and soap separation which comprises saponifying in the presence of oleaginous liquid of lubricating viscosityconstituting a frac- Hydroxyl value a 16 7 5 tional part of'the oleaginous liquid employed in the final grease, an acidic soap-forming material containing a predominant proportion of soapforming hydroxy fatty acids with barium hydrate at temperatures withinthe range of 170-200 F. to produce a saponified product of normal barium soap, heating the saponified product to effect substantially complete dehydration at temperatures above 260 F.
  • a method of preparing an anhydrous normal barium soap grease having good water and heat resistant properties and stable against oil and soap separation which comprises saponifying in the presence of mineral lubricating oil constituting a fractional part of the lubricating oil employed in the final grease, an acidic soap-forming material containing a predominant proportion of hydrogenated castor oil with barium hydrate at temperatures within the range of 170-200 F. to produce a saponified product of normal barium soap, heating the saponified product to eifect substantially complete dehydration at temperatures above 260 F.

Description

Patented Apr. 11,1950
BARIUM SOAP GREASE COMPOSITIONS AND METHOD OF PREPARATION Theodore W. Langer and Oney P. Puryear, Fishkill, N. Y., assignors to The Texas Company, New York, N. Y., a corporation of Delaware No Drawing. Application February 28, 1945, Serial No. 580,278-
2 Claims.
This invention relates to improvements in the manufacture and production of barium soap greases and particularly to an improved method in the preparation of normal barium soap greases and the grease compositions produced thereby.
It has been recognized for some time that barium soap greases possess certain inherent characteristics whichare not attained by the conventional base grease. These characteristics include the combination of high melting point normally associated with the sodium soap greases and water-resistant properties characteristic of the calcium soap greases; The preparation of these greases has been extensively investigated and the investigators have concluded that the desirable characteristics of the barium soap greases are only attained by the basic and/or complex barium soap greases. The normal barium soap greases have been prepared only with great difficulty and require the presence of water for stabilization which substantially nullifies the improvement over the conventional base greases.
.Even the bas-icand complex barium soap greases cannot be prepared without resort to involved compounding procedures and special cooling and milling operations.
It has now been found possible to prepare. stable barium soap greases, using a simplified manufacturing technique which eliminates the requirement of special gelling, static cooling, and cold working. Although this discovery is generally applicable to all barium soap greases, including the mixed base greases in which barium is one of the components, it is particularly applicable to thenormal barium soap greases and affords a method of preparation which produces a stable normal barium soap grease possessing exceptional water and heat-resistant properties.
In accordance with the invention, it has been I found that the use of a soap-forming hydroxy fatty acid as the acidic. component of the barium soap not only permits the use of a simplified and more efficient method of manufacture but also provides improved texture stability in the resulting barium soap grease. In order to obtain these improvements the hydroxy fatty acid need not be the sole acid component of the soap but mus-t be the predominant acid constituent. Thus, blends of conventional fats and fatty acids, with the hydroxy fatty acids, may be used provided the ratio of hydroxy fatty acid to fatty acid is greater than one.
The hydroxy fatty acids contemplated herein are those containing at least 12 carbon atoms and one or more hydroxyl groups separated from the 2 carboxyl group by at least one carbon atom. From the standpoint of economy and availability, the most practical examples of these acids are lZ-hydroxy stearic acid and the hydroxy acids produced by catalytic oxidation of hydrocarbon oils and waxes which have been extracted and fractionated to the desired molecular. range. Although repeated reference has been made to the use of hydroxy fatty acids in the method of manufacture, the glycerides thereof may also be used and the only difference in composition of the resulting grease will be the possible inclusion of small amounts of glycerine.
In preparing the normal barium soap greases, the following general procedure has been found most effective. The desired amount of hydroxy fatty acid or the glycerides thereof are charged into a grease kettle with an equal weight of lubricating oil and a chemical equivalent amount of barium hydrate added. The temperature of the mass is maintained within the range of 170-210 F. until saponification is complete, usually 4-5 hours. The saponification time may be shortened by the addition of water with the reactants. During the saponification and throughout the following steps of manufacture, continuous stirring is maintained.
It is furthermore preferable to utilize a steamheated kettle since the temperatures used are well within the range of this type of equipment and a more accurate control thereover can be obtained. After saponification the reaction mass is heated to 260-300 F. for dehydration. It is necessary to avoid temperatures in excess of 300 F. since local overheating may cause the grease to melt and molten grease is conducive to the formation of lumps in the body of the grease. When the dehydration is substantially complete, the grease is gradually cooled by the progressive addition of the main body of lubricating oil. As previously mentioned, continuous stirring is maintained. The lubricating oil is added until the desired consistency is obtained and the grease is then cooled to a temperature below 200 F. and drawn as the finished product. The drawing temperature is necessarily below 200 F. and preferably around F. because of the fact that high drawing temperatures promote setting up and false consistency.
The composition of the greases prepared in accordance with the invention naturaly depends upon the type of service and conditions of lubrication for which the grease is intended. Aside from the variations in composition obtained by the use of combinations of other metallic constituents with barium and blends of other fats and fatty acids with the hydroxy fatty acids, an important factor to be considered is the oil component of the grease. In its broadest aspect, the oils contemplated by the invention may be defined as an oleaginous component of lubricating viscosity. This includes the conventional lubricating oils, synthetic oils, and the oleaginous organic compounds together with mixtures and/or blends thereof. The classification of oleaginous organic compounds embraces the liquid organic compounds which possess lubricating qualities and may be substituted for the conventional lubricating oils to impart improved torque-temperature characteristics to the grease. The composition of the compounds falling within this classification includes such divergent polar compounds as aliphatic dibasic diesters, aromatic, mono and dibasic esters, and aliphatic ethers. Specific examples thereof are th high molecular weight diesters of sebacic acid, benzoic and phthalic acid esters, and normal hexyl ether.
Outstanding results have been obtained by the use of extracts from the solvent refining of mineral lubricating oils as the oil component of barium soap greases designed for non-floating under-Water lubrication. These extracts and. particularly the extracts obtained from the sulfur dioxide or Edeleanu refining process provide grease compositions possessing certain characteristics which are not obtained by the use of other mineral oils of comparable density. For the preparation of the non-fioating type of grease, it is desirable to select an Edeleanu extract with a 100 maximum A. P. 'I. gravity; that is, a density not less than 1.0. Also, for the best lubricating properties it is preferred to select extracts from naphthenic lubricating stocks of intermediate viscosity, which extract or blend thereof has a Saybolt Universal viscosity of approximately 300-340 seconds at 100 F.
For certain types of service where ahigh de gree of oxidation stability is required an oxidation inhibitor may be incorporated in the grease. The aromatic amine type of inhibitor is considered to be the most efiicacious. Of this class of inhibitors the polynuclear aromatic amines, such as tetramethyl diamino diphenyl methane, diphenyl amine, and phenyl alpha naphthylamine are preferred.
In order to illustrate the method of manufacture and grease compositions previously outlined, the following example is presented. 15 lbs of hydrogenated castor oil and 15 lbs. of an Edeleanu extract, which is a blend of 44% extract from 80 Pale Stock and 56% extract from 300 Pale turbine stock, were charged to a steam heated kettle and stirred at a rate of 27 R. P. M. 8.1 lbs. of barium hydrate, havin a barium carbonate content of 2.9% were then addedto the mixture through a 12 mesh sieve followed by the addition of lbs. of water. The ingredients were added in this order to minimize formation of barium carbonate from the hydroxide which is undesirable in the reaction since the barium carbonate reacts very slowly with fatty acids. The physical tests on the charged ingredients are as follows:
Hydrogenated castor oil Saponification No 179 Neutralization N0 2.4 Iodine No 3 Titer C 76.2
Edeleanu extract Gravity A. P. I. 9.6 Equivalent density at 60 F 1.003
Flash C. O. 0., F 340 Fire C. O. C., F 395 Viscosity S. U. at F 316 Pour A. S. T. M., "F -5 Carbon residue, per cent 0.09
The temperature was raised rapidly to 190 F. and maintained approximately constant for five hours to effect saponification. After saponification, heatin was resumed and the product dehydrated over a five hour period, the temperature reaching 288 F. The dehydrated product was a smooth, dark brown, doughlike mass. Care was exercised to avoid heating above 300 F. because the product might melt and become lumpy. After dehydration, heating was discontinued but stirring was maintained as an additional 12 lbs. of Edeleanu extract were added to make a total of 27 lbs. in the batch and yield theoretically 37.8% normal barium soap. At this stage the product was a smooth, dark, glossy grease, the temperature being 240 F. A sample was removed for control penetration test and was found to have a non-worked penetration of 41 and a worked penetration of 155. Since the product was harder than desired, two more pounds of Edeleanu extract were added to give a theoretical soap content of 36.0%. Stirring was then continued until the temperature dropped to F., when the grease was drawn from the kettle as a dull, grayish, adhesive, buttery grease.
Physical properties of this grease Were as follows:
Barium soap, per cent (theoretical) 36.0 Water, per cent None Mineral oil', per cent 60.0 Dropping point, "F 315 Oil separation at F., per cent None Penetration, unworkedm 133 Penetration, worked 203 Density 1.07 Corrosion None Althoughhydrogenated castor oil was used as the source of the soap-forming hydroxy fatty acids in the above example, other hydroxy fatty acids or their glycerides may be used Without departing from the fundamental steps of the process. Furthermore, blends of these hydroxy fatty acids with the conventional fats or fatty acids such as tallow and stearic acid may also be used. The oleaginous component has no effect upon the conditions of manufacture of the grease and therefore other oils such as the conventional lubricating stocks and the oleaginous organic compounds may be substituted for the Edeleanu extract of the example.
Obviously many modifications and variations of the invention, as hereinbefore set forth, may be made without departing from the spirit and scope thereof, and therefore only such limitations should be imposed as are indicated in the appended claims.
We claim: 7
1. The method of preparing an anhydrous normal barium soap grease having good Water and heat resistant properties and stable against oleaginous liquid and soap separation, which comprises saponifying in the presence of oleaginous liquid of lubricating viscosityconstituting a frac- Hydroxyl value a 16 7 5 tional part of'the oleaginous liquid employed in the final grease, an acidic soap-forming material containing a predominant proportion of soapforming hydroxy fatty acids with barium hydrate at temperatures withinthe range of 170-200 F. to produce a saponified product of normal barium soap, heating the saponified product to effect substantially complete dehydration at temperatures above 260 F. but below 300 F., adding additional oleaginous liquid of lubricating viscosity in substantial amount to obtain a stifi adhesive grease consistency while cooling the dehydrated product to a temperature below 200 F., all of said operations being conducted with continuous stir ring, and finally drawing the resulting anhydrous grease composition at a temperature below 200 F.
2. A method of preparing an anhydrous normal barium soap grease having good water and heat resistant properties and stable against oil and soap separation, which comprises saponifying in the presence of mineral lubricating oil constituting a fractional part of the lubricating oil employed in the final grease, an acidic soap-forming material containing a predominant proportion of hydrogenated castor oil with barium hydrate at temperatures within the range of 170-200 F. to produce a saponified product of normal barium soap, heating the saponified product to eifect substantially complete dehydration at temperatures above 260 F. but below 300 F., then adding addi tional mineral lubricating oil to obtain a stiff adhesive grease consistency while cooling the dehydrated product to a temperature below 200 F., all of said operations being conducted with continuous stirring and finally drawing the resulting anhydrous grease composition at a temperature below 200 F.
THEODORE W. LANGER. ONEY P. PURYEAR.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS OTHER REFERENCES Kalichevsky, Modern Methods of Refining Lubricating Oils, published 1938 by Reinhold Publishing Corp page 166.

Claims (1)

1. THE METHOD OF PREPARING AN ANHYDROUS NORMAL BARIUM SOAP GREASE HAVING GOOD WATER AND HEAT RESISTANT PROPERTIES AND STABLE AGAINST OLEAGINOUS LIQUID AND SOAP SEPARATION, WHICH COMPRISES SAPONIFYING IN THE PRESENCE OF OLEAGINOUS LIQUID OF LUBRICATING VISCCOSITY CONSTITUTING A FRACTIONAL PART OF THE OLEAGINOUS LIQUID EMPLOYED IN THE FINAL GREASE, AN ACIDIC SOAP-FORMING MATERIAL CONTAINING A PREDOMINANT PROPORTION OF SOAPFORMING HYDROXY FATTY ACIDS WITH BARTIUM HYDRATE AT TEMPERATURES WITHIN THE RANGE OF 170-200* F. TO PRODUCE A SAPONIFIED PRODUCT OF NORMAL BARIUM SOAP, HEATING THE SAPONIFIED PRODUCT TO EFFECT SUBSTANTIALLY CCOMPLETE DEHYDRATION AT TEMPERATURES ABOVE 260*F. BUT BELOW 300*F., ADDING ADDITIONAL OLEGINOUS LIQUID OF LUBRICATING VISCOSITY IN SUBSTANTIAL AMOUNT TO OBTAIN A STIFF ADHESIVE GREASE CONSISTENCCY WHILE COOLING THE DEHYDRATED PRODUCT TO A TEMPERATURE BELOW 200*F., ALL OF SAID OPERATIONS BEING CONDUCTED WITH CONTINUOUS STIRRING, AND FINALLY DRAWING THE RESULTING ANHYDROUS GREASE COMPOSITION AT A TEMPERATURE BELOW 200*F.
US580278A 1945-02-28 1945-02-28 Barium soap grease compositions and method of preparation Expired - Lifetime US2503749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US580278A US2503749A (en) 1945-02-28 1945-02-28 Barium soap grease compositions and method of preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US580278A US2503749A (en) 1945-02-28 1945-02-28 Barium soap grease compositions and method of preparation

Publications (1)

Publication Number Publication Date
US2503749A true US2503749A (en) 1950-04-11

Family

ID=24320446

Family Applications (1)

Application Number Title Priority Date Filing Date
US580278A Expired - Lifetime US2503749A (en) 1945-02-28 1945-02-28 Barium soap grease compositions and method of preparation

Country Status (1)

Country Link
US (1) US2503749A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2607734A (en) * 1950-05-20 1952-08-19 Standard Oil Dev Co Process of manufacturing hydroxy acid greases and product thereof
US2607735A (en) * 1949-03-12 1952-08-19 Standard Oil Dev Co Alkaline earth metal soap greases
DE935272C (en) * 1951-04-13 1955-11-17 Bataafsche Petroleum Lubricating greases
US2822331A (en) * 1954-02-03 1958-02-04 Texas Co Anhydrous calcium 12-hydroxy stearate grease
US2915467A (en) * 1954-11-23 1959-12-01 Sinclair Refining Co Method of preparing an anhydrous calcium grease
US2943054A (en) * 1958-03-21 1960-06-28 Union Oil Co Shear stable barium 12-hydroxy stearate grease containing a boron ester compound
US3010898A (en) * 1959-05-20 1961-11-28 Socony Mobil Oil Co Inc Barium c20-c22 soap-barium carbonate grease composition and process for forming same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH157953A (en) * 1931-11-14 1932-10-31 N Taszlicki Process for the production of rigid lubrication.
US2033148A (en) * 1932-05-17 1936-03-10 Union Oil Co Barium grease
US2303256A (en) * 1940-11-13 1942-11-24 Alox Corp Grease and process of making same
US2308599A (en) * 1940-01-09 1943-01-19 Internat Lubricant Corp Production of lubricants containing lead soap of hydrogenated ricinoleic acid
US2326596A (en) * 1939-12-29 1943-08-10 Standard Oil Dev Co Lubricant
US2380960A (en) * 1940-01-09 1945-08-07 Internat Lubricant Corp Production of lubricants
US2397956A (en) * 1943-01-15 1946-04-09 Internat Lubricant Corp Production of lubricants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH157953A (en) * 1931-11-14 1932-10-31 N Taszlicki Process for the production of rigid lubrication.
US2033148A (en) * 1932-05-17 1936-03-10 Union Oil Co Barium grease
US2326596A (en) * 1939-12-29 1943-08-10 Standard Oil Dev Co Lubricant
US2308599A (en) * 1940-01-09 1943-01-19 Internat Lubricant Corp Production of lubricants containing lead soap of hydrogenated ricinoleic acid
US2380960A (en) * 1940-01-09 1945-08-07 Internat Lubricant Corp Production of lubricants
US2303256A (en) * 1940-11-13 1942-11-24 Alox Corp Grease and process of making same
US2397956A (en) * 1943-01-15 1946-04-09 Internat Lubricant Corp Production of lubricants

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2607735A (en) * 1949-03-12 1952-08-19 Standard Oil Dev Co Alkaline earth metal soap greases
US2607734A (en) * 1950-05-20 1952-08-19 Standard Oil Dev Co Process of manufacturing hydroxy acid greases and product thereof
DE935272C (en) * 1951-04-13 1955-11-17 Bataafsche Petroleum Lubricating greases
US2822331A (en) * 1954-02-03 1958-02-04 Texas Co Anhydrous calcium 12-hydroxy stearate grease
US2915467A (en) * 1954-11-23 1959-12-01 Sinclair Refining Co Method of preparing an anhydrous calcium grease
US2943054A (en) * 1958-03-21 1960-06-28 Union Oil Co Shear stable barium 12-hydroxy stearate grease containing a boron ester compound
US3010898A (en) * 1959-05-20 1961-11-28 Socony Mobil Oil Co Inc Barium c20-c22 soap-barium carbonate grease composition and process for forming same

Similar Documents

Publication Publication Date Title
US2450220A (en) Texture-stable lithium base grease
US2712527A (en) Improved lubricating greases containing dihydroxy stearic acid soap
US2450254A (en) Lithium base grease and method of preparing the same
US2503749A (en) Barium soap grease compositions and method of preparation
US3068175A (en) Process for preparing complex calcium salt-calcium soap grease
US2450255A (en) Method of preparing lithium base greases
US3015624A (en) Method of preparing lithium soap greases
US2943054A (en) Shear stable barium 12-hydroxy stearate grease containing a boron ester compound
US2360631A (en) Lubricant
US2877181A (en) Stabilized calcium fatty acid base grease
US2332247A (en) Lubricant
US3068174A (en) Process for preparing complex calcium salt-calcium soap grease
US3828086A (en) Metallic dibasic fatty soap based greases
US2610947A (en) Lubricating grease and process of manufacture
US2870090A (en) Method of grease manufacture comprising shearing
US2303558A (en) Premium cup grease of improved heat and texture stability
US2450219A (en) Texture-stable lithium base grease
US2908645A (en) Blended lithium calcium base grease
US2880174A (en) Soap-salt complex thickened greases
US2967826A (en) Calcium soap grease containing lithium hydroxide
US3009878A (en) Lubricating greases prepared from epoxy fatty acid materials
US3076763A (en) Calcium alkenyl succinate grease
US3003962A (en) Extreme pressure steel mill lithium base grease containing sulfurized sperm oil and lead naphthenate
US2521438A (en) Grease composition
US2626898A (en) Process for preparing alkali metal greases